1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/delay.h> 35 #include <linux/blkdev.h> 36 #include <linux/seq_file.h> 37 #include "md.h" 38 #include "raid1.h" 39 #include "bitmap.h" 40 41 #define DEBUG 0 42 #if DEBUG 43 #define PRINTK(x...) printk(x) 44 #else 45 #define PRINTK(x...) 46 #endif 47 48 /* 49 * Number of guaranteed r1bios in case of extreme VM load: 50 */ 51 #define NR_RAID1_BIOS 256 52 53 54 static void unplug_slaves(mddev_t *mddev); 55 56 static void allow_barrier(conf_t *conf); 57 static void lower_barrier(conf_t *conf); 58 59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 60 { 61 struct pool_info *pi = data; 62 r1bio_t *r1_bio; 63 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 64 65 /* allocate a r1bio with room for raid_disks entries in the bios array */ 66 r1_bio = kzalloc(size, gfp_flags); 67 if (!r1_bio) 68 unplug_slaves(pi->mddev); 69 70 return r1_bio; 71 } 72 73 static void r1bio_pool_free(void *r1_bio, void *data) 74 { 75 kfree(r1_bio); 76 } 77 78 #define RESYNC_BLOCK_SIZE (64*1024) 79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 82 #define RESYNC_WINDOW (2048*1024) 83 84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 85 { 86 struct pool_info *pi = data; 87 struct page *page; 88 r1bio_t *r1_bio; 89 struct bio *bio; 90 int i, j; 91 92 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 93 if (!r1_bio) { 94 unplug_slaves(pi->mddev); 95 return NULL; 96 } 97 98 /* 99 * Allocate bios : 1 for reading, n-1 for writing 100 */ 101 for (j = pi->raid_disks ; j-- ; ) { 102 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 103 if (!bio) 104 goto out_free_bio; 105 r1_bio->bios[j] = bio; 106 } 107 /* 108 * Allocate RESYNC_PAGES data pages and attach them to 109 * the first bio. 110 * If this is a user-requested check/repair, allocate 111 * RESYNC_PAGES for each bio. 112 */ 113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 114 j = pi->raid_disks; 115 else 116 j = 1; 117 while(j--) { 118 bio = r1_bio->bios[j]; 119 for (i = 0; i < RESYNC_PAGES; i++) { 120 page = alloc_page(gfp_flags); 121 if (unlikely(!page)) 122 goto out_free_pages; 123 124 bio->bi_io_vec[i].bv_page = page; 125 bio->bi_vcnt = i+1; 126 } 127 } 128 /* If not user-requests, copy the page pointers to all bios */ 129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 130 for (i=0; i<RESYNC_PAGES ; i++) 131 for (j=1; j<pi->raid_disks; j++) 132 r1_bio->bios[j]->bi_io_vec[i].bv_page = 133 r1_bio->bios[0]->bi_io_vec[i].bv_page; 134 } 135 136 r1_bio->master_bio = NULL; 137 138 return r1_bio; 139 140 out_free_pages: 141 for (j=0 ; j < pi->raid_disks; j++) 142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < pi->raid_disks ) 147 bio_put(r1_bio->bios[j]); 148 r1bio_pool_free(r1_bio, data); 149 return NULL; 150 } 151 152 static void r1buf_pool_free(void *__r1_bio, void *data) 153 { 154 struct pool_info *pi = data; 155 int i,j; 156 r1bio_t *r1bio = __r1_bio; 157 158 for (i = 0; i < RESYNC_PAGES; i++) 159 for (j = pi->raid_disks; j-- ;) { 160 if (j == 0 || 161 r1bio->bios[j]->bi_io_vec[i].bv_page != 162 r1bio->bios[0]->bi_io_vec[i].bv_page) 163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 164 } 165 for (i=0 ; i < pi->raid_disks; i++) 166 bio_put(r1bio->bios[i]); 167 168 r1bio_pool_free(r1bio, data); 169 } 170 171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 172 { 173 int i; 174 175 for (i = 0; i < conf->raid_disks; i++) { 176 struct bio **bio = r1_bio->bios + i; 177 if (*bio && *bio != IO_BLOCKED) 178 bio_put(*bio); 179 *bio = NULL; 180 } 181 } 182 183 static void free_r1bio(r1bio_t *r1_bio) 184 { 185 conf_t *conf = r1_bio->mddev->private; 186 187 /* 188 * Wake up any possible resync thread that waits for the device 189 * to go idle. 190 */ 191 allow_barrier(conf); 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(r1bio_t *r1_bio) 198 { 199 conf_t *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i=0; i<conf->raid_disks; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(r1bio_t *r1_bio) 214 { 215 unsigned long flags; 216 mddev_t *mddev = r1_bio->mddev; 217 conf_t *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void raid_end_bio_io(r1bio_t *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 237 /* if nobody has done the final endio yet, do it now */ 238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 240 (bio_data_dir(bio) == WRITE) ? "write" : "read", 241 (unsigned long long) bio->bi_sector, 242 (unsigned long long) bio->bi_sector + 243 (bio->bi_size >> 9) - 1); 244 245 bio_endio(bio, 246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 247 } 248 free_r1bio(r1_bio); 249 } 250 251 /* 252 * Update disk head position estimator based on IRQ completion info. 253 */ 254 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 255 { 256 conf_t *conf = r1_bio->mddev->private; 257 258 conf->mirrors[disk].head_position = 259 r1_bio->sector + (r1_bio->sectors); 260 } 261 262 static void raid1_end_read_request(struct bio *bio, int error) 263 { 264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 266 int mirror; 267 conf_t *conf = r1_bio->mddev->private; 268 269 mirror = r1_bio->read_disk; 270 /* 271 * this branch is our 'one mirror IO has finished' event handler: 272 */ 273 update_head_pos(mirror, r1_bio); 274 275 if (uptodate) 276 set_bit(R1BIO_Uptodate, &r1_bio->state); 277 else { 278 /* If all other devices have failed, we want to return 279 * the error upwards rather than fail the last device. 280 * Here we redefine "uptodate" to mean "Don't want to retry" 281 */ 282 unsigned long flags; 283 spin_lock_irqsave(&conf->device_lock, flags); 284 if (r1_bio->mddev->degraded == conf->raid_disks || 285 (r1_bio->mddev->degraded == conf->raid_disks-1 && 286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 287 uptodate = 1; 288 spin_unlock_irqrestore(&conf->device_lock, flags); 289 } 290 291 if (uptodate) 292 raid_end_bio_io(r1_bio); 293 else { 294 /* 295 * oops, read error: 296 */ 297 char b[BDEVNAME_SIZE]; 298 if (printk_ratelimit()) 299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 301 reschedule_retry(r1_bio); 302 } 303 304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 305 } 306 307 static void raid1_end_write_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 312 conf_t *conf = r1_bio->mddev->private; 313 struct bio *to_put = NULL; 314 315 316 for (mirror = 0; mirror < conf->raid_disks; mirror++) 317 if (r1_bio->bios[mirror] == bio) 318 break; 319 320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 322 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 323 r1_bio->mddev->barriers_work = 0; 324 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 325 } else { 326 /* 327 * this branch is our 'one mirror IO has finished' event handler: 328 */ 329 r1_bio->bios[mirror] = NULL; 330 to_put = bio; 331 if (!uptodate) { 332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 333 /* an I/O failed, we can't clear the bitmap */ 334 set_bit(R1BIO_Degraded, &r1_bio->state); 335 } else 336 /* 337 * Set R1BIO_Uptodate in our master bio, so that 338 * we will return a good error code for to the higher 339 * levels even if IO on some other mirrored buffer fails. 340 * 341 * The 'master' represents the composite IO operation to 342 * user-side. So if something waits for IO, then it will 343 * wait for the 'master' bio. 344 */ 345 set_bit(R1BIO_Uptodate, &r1_bio->state); 346 347 update_head_pos(mirror, r1_bio); 348 349 if (behind) { 350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 351 atomic_dec(&r1_bio->behind_remaining); 352 353 /* In behind mode, we ACK the master bio once the I/O has safely 354 * reached all non-writemostly disks. Setting the Returned bit 355 * ensures that this gets done only once -- we don't ever want to 356 * return -EIO here, instead we'll wait */ 357 358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 359 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 360 /* Maybe we can return now */ 361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 362 struct bio *mbio = r1_bio->master_bio; 363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 364 (unsigned long long) mbio->bi_sector, 365 (unsigned long long) mbio->bi_sector + 366 (mbio->bi_size >> 9) - 1); 367 bio_endio(mbio, 0); 368 } 369 } 370 } 371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 372 } 373 /* 374 * 375 * Let's see if all mirrored write operations have finished 376 * already. 377 */ 378 if (atomic_dec_and_test(&r1_bio->remaining)) { 379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 380 reschedule_retry(r1_bio); 381 else { 382 /* it really is the end of this request */ 383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 384 /* free extra copy of the data pages */ 385 int i = bio->bi_vcnt; 386 while (i--) 387 safe_put_page(bio->bi_io_vec[i].bv_page); 388 } 389 /* clear the bitmap if all writes complete successfully */ 390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 391 r1_bio->sectors, 392 !test_bit(R1BIO_Degraded, &r1_bio->state), 393 behind); 394 md_write_end(r1_bio->mddev); 395 raid_end_bio_io(r1_bio); 396 } 397 } 398 399 if (to_put) 400 bio_put(to_put); 401 } 402 403 404 /* 405 * This routine returns the disk from which the requested read should 406 * be done. There is a per-array 'next expected sequential IO' sector 407 * number - if this matches on the next IO then we use the last disk. 408 * There is also a per-disk 'last know head position' sector that is 409 * maintained from IRQ contexts, both the normal and the resync IO 410 * completion handlers update this position correctly. If there is no 411 * perfect sequential match then we pick the disk whose head is closest. 412 * 413 * If there are 2 mirrors in the same 2 devices, performance degrades 414 * because position is mirror, not device based. 415 * 416 * The rdev for the device selected will have nr_pending incremented. 417 */ 418 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 419 { 420 const unsigned long this_sector = r1_bio->sector; 421 int new_disk = conf->last_used, disk = new_disk; 422 int wonly_disk = -1; 423 const int sectors = r1_bio->sectors; 424 sector_t new_distance, current_distance; 425 mdk_rdev_t *rdev; 426 427 rcu_read_lock(); 428 /* 429 * Check if we can balance. We can balance on the whole 430 * device if no resync is going on, or below the resync window. 431 * We take the first readable disk when above the resync window. 432 */ 433 retry: 434 if (conf->mddev->recovery_cp < MaxSector && 435 (this_sector + sectors >= conf->next_resync)) { 436 /* Choose the first operation device, for consistancy */ 437 new_disk = 0; 438 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 440 r1_bio->bios[new_disk] == IO_BLOCKED || 441 !rdev || !test_bit(In_sync, &rdev->flags) 442 || test_bit(WriteMostly, &rdev->flags); 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 444 445 if (rdev && test_bit(In_sync, &rdev->flags) && 446 r1_bio->bios[new_disk] != IO_BLOCKED) 447 wonly_disk = new_disk; 448 449 if (new_disk == conf->raid_disks - 1) { 450 new_disk = wonly_disk; 451 break; 452 } 453 } 454 goto rb_out; 455 } 456 457 458 /* make sure the disk is operational */ 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 460 r1_bio->bios[new_disk] == IO_BLOCKED || 461 !rdev || !test_bit(In_sync, &rdev->flags) || 462 test_bit(WriteMostly, &rdev->flags); 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 464 465 if (rdev && test_bit(In_sync, &rdev->flags) && 466 r1_bio->bios[new_disk] != IO_BLOCKED) 467 wonly_disk = new_disk; 468 469 if (new_disk <= 0) 470 new_disk = conf->raid_disks; 471 new_disk--; 472 if (new_disk == disk) { 473 new_disk = wonly_disk; 474 break; 475 } 476 } 477 478 if (new_disk < 0) 479 goto rb_out; 480 481 disk = new_disk; 482 /* now disk == new_disk == starting point for search */ 483 484 /* 485 * Don't change to another disk for sequential reads: 486 */ 487 if (conf->next_seq_sect == this_sector) 488 goto rb_out; 489 if (this_sector == conf->mirrors[new_disk].head_position) 490 goto rb_out; 491 492 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 493 494 /* Find the disk whose head is closest */ 495 496 do { 497 if (disk <= 0) 498 disk = conf->raid_disks; 499 disk--; 500 501 rdev = rcu_dereference(conf->mirrors[disk].rdev); 502 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 504 !test_bit(In_sync, &rdev->flags) || 505 test_bit(WriteMostly, &rdev->flags)) 506 continue; 507 508 if (!atomic_read(&rdev->nr_pending)) { 509 new_disk = disk; 510 break; 511 } 512 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 513 if (new_distance < current_distance) { 514 current_distance = new_distance; 515 new_disk = disk; 516 } 517 } while (disk != conf->last_used); 518 519 rb_out: 520 521 522 if (new_disk >= 0) { 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 524 if (!rdev) 525 goto retry; 526 atomic_inc(&rdev->nr_pending); 527 if (!test_bit(In_sync, &rdev->flags)) { 528 /* cannot risk returning a device that failed 529 * before we inc'ed nr_pending 530 */ 531 rdev_dec_pending(rdev, conf->mddev); 532 goto retry; 533 } 534 conf->next_seq_sect = this_sector + sectors; 535 conf->last_used = new_disk; 536 } 537 rcu_read_unlock(); 538 539 return new_disk; 540 } 541 542 static void unplug_slaves(mddev_t *mddev) 543 { 544 conf_t *conf = mddev->private; 545 int i; 546 547 rcu_read_lock(); 548 for (i=0; i<mddev->raid_disks; i++) { 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 552 553 atomic_inc(&rdev->nr_pending); 554 rcu_read_unlock(); 555 556 blk_unplug(r_queue); 557 558 rdev_dec_pending(rdev, mddev); 559 rcu_read_lock(); 560 } 561 } 562 rcu_read_unlock(); 563 } 564 565 static void raid1_unplug(struct request_queue *q) 566 { 567 mddev_t *mddev = q->queuedata; 568 569 unplug_slaves(mddev); 570 md_wakeup_thread(mddev->thread); 571 } 572 573 static int raid1_congested(void *data, int bits) 574 { 575 mddev_t *mddev = data; 576 conf_t *conf = mddev->private; 577 int i, ret = 0; 578 579 if (mddev_congested(mddev, bits)) 580 return 1; 581 582 rcu_read_lock(); 583 for (i = 0; i < mddev->raid_disks; i++) { 584 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 585 if (rdev && !test_bit(Faulty, &rdev->flags)) { 586 struct request_queue *q = bdev_get_queue(rdev->bdev); 587 588 /* Note the '|| 1' - when read_balance prefers 589 * non-congested targets, it can be removed 590 */ 591 if ((bits & (1<<BDI_async_congested)) || 1) 592 ret |= bdi_congested(&q->backing_dev_info, bits); 593 else 594 ret &= bdi_congested(&q->backing_dev_info, bits); 595 } 596 } 597 rcu_read_unlock(); 598 return ret; 599 } 600 601 602 static int flush_pending_writes(conf_t *conf) 603 { 604 /* Any writes that have been queued but are awaiting 605 * bitmap updates get flushed here. 606 * We return 1 if any requests were actually submitted. 607 */ 608 int rv = 0; 609 610 spin_lock_irq(&conf->device_lock); 611 612 if (conf->pending_bio_list.head) { 613 struct bio *bio; 614 bio = bio_list_get(&conf->pending_bio_list); 615 blk_remove_plug(conf->mddev->queue); 616 spin_unlock_irq(&conf->device_lock); 617 /* flush any pending bitmap writes to 618 * disk before proceeding w/ I/O */ 619 bitmap_unplug(conf->mddev->bitmap); 620 621 while (bio) { /* submit pending writes */ 622 struct bio *next = bio->bi_next; 623 bio->bi_next = NULL; 624 generic_make_request(bio); 625 bio = next; 626 } 627 rv = 1; 628 } else 629 spin_unlock_irq(&conf->device_lock); 630 return rv; 631 } 632 633 /* Barriers.... 634 * Sometimes we need to suspend IO while we do something else, 635 * either some resync/recovery, or reconfigure the array. 636 * To do this we raise a 'barrier'. 637 * The 'barrier' is a counter that can be raised multiple times 638 * to count how many activities are happening which preclude 639 * normal IO. 640 * We can only raise the barrier if there is no pending IO. 641 * i.e. if nr_pending == 0. 642 * We choose only to raise the barrier if no-one is waiting for the 643 * barrier to go down. This means that as soon as an IO request 644 * is ready, no other operations which require a barrier will start 645 * until the IO request has had a chance. 646 * 647 * So: regular IO calls 'wait_barrier'. When that returns there 648 * is no backgroup IO happening, It must arrange to call 649 * allow_barrier when it has finished its IO. 650 * backgroup IO calls must call raise_barrier. Once that returns 651 * there is no normal IO happeing. It must arrange to call 652 * lower_barrier when the particular background IO completes. 653 */ 654 #define RESYNC_DEPTH 32 655 656 static void raise_barrier(conf_t *conf) 657 { 658 spin_lock_irq(&conf->resync_lock); 659 660 /* Wait until no block IO is waiting */ 661 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 662 conf->resync_lock, 663 raid1_unplug(conf->mddev->queue)); 664 665 /* block any new IO from starting */ 666 conf->barrier++; 667 668 /* No wait for all pending IO to complete */ 669 wait_event_lock_irq(conf->wait_barrier, 670 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 671 conf->resync_lock, 672 raid1_unplug(conf->mddev->queue)); 673 674 spin_unlock_irq(&conf->resync_lock); 675 } 676 677 static void lower_barrier(conf_t *conf) 678 { 679 unsigned long flags; 680 spin_lock_irqsave(&conf->resync_lock, flags); 681 conf->barrier--; 682 spin_unlock_irqrestore(&conf->resync_lock, flags); 683 wake_up(&conf->wait_barrier); 684 } 685 686 static void wait_barrier(conf_t *conf) 687 { 688 spin_lock_irq(&conf->resync_lock); 689 if (conf->barrier) { 690 conf->nr_waiting++; 691 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 692 conf->resync_lock, 693 raid1_unplug(conf->mddev->queue)); 694 conf->nr_waiting--; 695 } 696 conf->nr_pending++; 697 spin_unlock_irq(&conf->resync_lock); 698 } 699 700 static void allow_barrier(conf_t *conf) 701 { 702 unsigned long flags; 703 spin_lock_irqsave(&conf->resync_lock, flags); 704 conf->nr_pending--; 705 spin_unlock_irqrestore(&conf->resync_lock, flags); 706 wake_up(&conf->wait_barrier); 707 } 708 709 static void freeze_array(conf_t *conf) 710 { 711 /* stop syncio and normal IO and wait for everything to 712 * go quite. 713 * We increment barrier and nr_waiting, and then 714 * wait until nr_pending match nr_queued+1 715 * This is called in the context of one normal IO request 716 * that has failed. Thus any sync request that might be pending 717 * will be blocked by nr_pending, and we need to wait for 718 * pending IO requests to complete or be queued for re-try. 719 * Thus the number queued (nr_queued) plus this request (1) 720 * must match the number of pending IOs (nr_pending) before 721 * we continue. 722 */ 723 spin_lock_irq(&conf->resync_lock); 724 conf->barrier++; 725 conf->nr_waiting++; 726 wait_event_lock_irq(conf->wait_barrier, 727 conf->nr_pending == conf->nr_queued+1, 728 conf->resync_lock, 729 ({ flush_pending_writes(conf); 730 raid1_unplug(conf->mddev->queue); })); 731 spin_unlock_irq(&conf->resync_lock); 732 } 733 static void unfreeze_array(conf_t *conf) 734 { 735 /* reverse the effect of the freeze */ 736 spin_lock_irq(&conf->resync_lock); 737 conf->barrier--; 738 conf->nr_waiting--; 739 wake_up(&conf->wait_barrier); 740 spin_unlock_irq(&conf->resync_lock); 741 } 742 743 744 /* duplicate the data pages for behind I/O */ 745 static struct page **alloc_behind_pages(struct bio *bio) 746 { 747 int i; 748 struct bio_vec *bvec; 749 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 750 GFP_NOIO); 751 if (unlikely(!pages)) 752 goto do_sync_io; 753 754 bio_for_each_segment(bvec, bio, i) { 755 pages[i] = alloc_page(GFP_NOIO); 756 if (unlikely(!pages[i])) 757 goto do_sync_io; 758 memcpy(kmap(pages[i]) + bvec->bv_offset, 759 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 760 kunmap(pages[i]); 761 kunmap(bvec->bv_page); 762 } 763 764 return pages; 765 766 do_sync_io: 767 if (pages) 768 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 769 put_page(pages[i]); 770 kfree(pages); 771 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 772 return NULL; 773 } 774 775 static int make_request(struct request_queue *q, struct bio * bio) 776 { 777 mddev_t *mddev = q->queuedata; 778 conf_t *conf = mddev->private; 779 mirror_info_t *mirror; 780 r1bio_t *r1_bio; 781 struct bio *read_bio; 782 int i, targets = 0, disks; 783 struct bitmap *bitmap; 784 unsigned long flags; 785 struct bio_list bl; 786 struct page **behind_pages = NULL; 787 const int rw = bio_data_dir(bio); 788 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 789 int cpu; 790 bool do_barriers; 791 mdk_rdev_t *blocked_rdev; 792 793 /* 794 * Register the new request and wait if the reconstruction 795 * thread has put up a bar for new requests. 796 * Continue immediately if no resync is active currently. 797 * We test barriers_work *after* md_write_start as md_write_start 798 * may cause the first superblock write, and that will check out 799 * if barriers work. 800 */ 801 802 md_write_start(mddev, bio); /* wait on superblock update early */ 803 804 if (unlikely(!mddev->barriers_work && 805 bio_rw_flagged(bio, BIO_RW_BARRIER))) { 806 if (rw == WRITE) 807 md_write_end(mddev); 808 bio_endio(bio, -EOPNOTSUPP); 809 return 0; 810 } 811 812 wait_barrier(conf); 813 814 bitmap = mddev->bitmap; 815 816 cpu = part_stat_lock(); 817 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 818 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 819 bio_sectors(bio)); 820 part_stat_unlock(); 821 822 /* 823 * make_request() can abort the operation when READA is being 824 * used and no empty request is available. 825 * 826 */ 827 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 828 829 r1_bio->master_bio = bio; 830 r1_bio->sectors = bio->bi_size >> 9; 831 r1_bio->state = 0; 832 r1_bio->mddev = mddev; 833 r1_bio->sector = bio->bi_sector; 834 835 if (rw == READ) { 836 /* 837 * read balancing logic: 838 */ 839 int rdisk = read_balance(conf, r1_bio); 840 841 if (rdisk < 0) { 842 /* couldn't find anywhere to read from */ 843 raid_end_bio_io(r1_bio); 844 return 0; 845 } 846 mirror = conf->mirrors + rdisk; 847 848 r1_bio->read_disk = rdisk; 849 850 read_bio = bio_clone(bio, GFP_NOIO); 851 852 r1_bio->bios[rdisk] = read_bio; 853 854 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 855 read_bio->bi_bdev = mirror->rdev->bdev; 856 read_bio->bi_end_io = raid1_end_read_request; 857 read_bio->bi_rw = READ | do_sync; 858 read_bio->bi_private = r1_bio; 859 860 generic_make_request(read_bio); 861 return 0; 862 } 863 864 /* 865 * WRITE: 866 */ 867 /* first select target devices under spinlock and 868 * inc refcount on their rdev. Record them by setting 869 * bios[x] to bio 870 */ 871 disks = conf->raid_disks; 872 #if 0 873 { static int first=1; 874 if (first) printk("First Write sector %llu disks %d\n", 875 (unsigned long long)r1_bio->sector, disks); 876 first = 0; 877 } 878 #endif 879 retry_write: 880 blocked_rdev = NULL; 881 rcu_read_lock(); 882 for (i = 0; i < disks; i++) { 883 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 884 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 885 atomic_inc(&rdev->nr_pending); 886 blocked_rdev = rdev; 887 break; 888 } 889 if (rdev && !test_bit(Faulty, &rdev->flags)) { 890 atomic_inc(&rdev->nr_pending); 891 if (test_bit(Faulty, &rdev->flags)) { 892 rdev_dec_pending(rdev, mddev); 893 r1_bio->bios[i] = NULL; 894 } else 895 r1_bio->bios[i] = bio; 896 targets++; 897 } else 898 r1_bio->bios[i] = NULL; 899 } 900 rcu_read_unlock(); 901 902 if (unlikely(blocked_rdev)) { 903 /* Wait for this device to become unblocked */ 904 int j; 905 906 for (j = 0; j < i; j++) 907 if (r1_bio->bios[j]) 908 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 909 910 allow_barrier(conf); 911 md_wait_for_blocked_rdev(blocked_rdev, mddev); 912 wait_barrier(conf); 913 goto retry_write; 914 } 915 916 BUG_ON(targets == 0); /* we never fail the last device */ 917 918 if (targets < conf->raid_disks) { 919 /* array is degraded, we will not clear the bitmap 920 * on I/O completion (see raid1_end_write_request) */ 921 set_bit(R1BIO_Degraded, &r1_bio->state); 922 } 923 924 /* do behind I/O ? */ 925 if (bitmap && 926 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 927 (behind_pages = alloc_behind_pages(bio)) != NULL) 928 set_bit(R1BIO_BehindIO, &r1_bio->state); 929 930 atomic_set(&r1_bio->remaining, 0); 931 atomic_set(&r1_bio->behind_remaining, 0); 932 933 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER); 934 if (do_barriers) 935 set_bit(R1BIO_Barrier, &r1_bio->state); 936 937 bio_list_init(&bl); 938 for (i = 0; i < disks; i++) { 939 struct bio *mbio; 940 if (!r1_bio->bios[i]) 941 continue; 942 943 mbio = bio_clone(bio, GFP_NOIO); 944 r1_bio->bios[i] = mbio; 945 946 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 947 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 948 mbio->bi_end_io = raid1_end_write_request; 949 mbio->bi_rw = WRITE | do_barriers | do_sync; 950 mbio->bi_private = r1_bio; 951 952 if (behind_pages) { 953 struct bio_vec *bvec; 954 int j; 955 956 /* Yes, I really want the '__' version so that 957 * we clear any unused pointer in the io_vec, rather 958 * than leave them unchanged. This is important 959 * because when we come to free the pages, we won't 960 * know the originial bi_idx, so we just free 961 * them all 962 */ 963 __bio_for_each_segment(bvec, mbio, j, 0) 964 bvec->bv_page = behind_pages[j]; 965 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 966 atomic_inc(&r1_bio->behind_remaining); 967 } 968 969 atomic_inc(&r1_bio->remaining); 970 971 bio_list_add(&bl, mbio); 972 } 973 kfree(behind_pages); /* the behind pages are attached to the bios now */ 974 975 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 976 test_bit(R1BIO_BehindIO, &r1_bio->state)); 977 spin_lock_irqsave(&conf->device_lock, flags); 978 bio_list_merge(&conf->pending_bio_list, &bl); 979 bio_list_init(&bl); 980 981 blk_plug_device(mddev->queue); 982 spin_unlock_irqrestore(&conf->device_lock, flags); 983 984 /* In case raid1d snuck into freeze_array */ 985 wake_up(&conf->wait_barrier); 986 987 if (do_sync) 988 md_wakeup_thread(mddev->thread); 989 #if 0 990 while ((bio = bio_list_pop(&bl)) != NULL) 991 generic_make_request(bio); 992 #endif 993 994 return 0; 995 } 996 997 static void status(struct seq_file *seq, mddev_t *mddev) 998 { 999 conf_t *conf = mddev->private; 1000 int i; 1001 1002 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1003 conf->raid_disks - mddev->degraded); 1004 rcu_read_lock(); 1005 for (i = 0; i < conf->raid_disks; i++) { 1006 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1007 seq_printf(seq, "%s", 1008 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1009 } 1010 rcu_read_unlock(); 1011 seq_printf(seq, "]"); 1012 } 1013 1014 1015 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1016 { 1017 char b[BDEVNAME_SIZE]; 1018 conf_t *conf = mddev->private; 1019 1020 /* 1021 * If it is not operational, then we have already marked it as dead 1022 * else if it is the last working disks, ignore the error, let the 1023 * next level up know. 1024 * else mark the drive as failed 1025 */ 1026 if (test_bit(In_sync, &rdev->flags) 1027 && (conf->raid_disks - mddev->degraded) == 1) { 1028 /* 1029 * Don't fail the drive, act as though we were just a 1030 * normal single drive. 1031 * However don't try a recovery from this drive as 1032 * it is very likely to fail. 1033 */ 1034 mddev->recovery_disabled = 1; 1035 return; 1036 } 1037 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1038 unsigned long flags; 1039 spin_lock_irqsave(&conf->device_lock, flags); 1040 mddev->degraded++; 1041 set_bit(Faulty, &rdev->flags); 1042 spin_unlock_irqrestore(&conf->device_lock, flags); 1043 /* 1044 * if recovery is running, make sure it aborts. 1045 */ 1046 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1047 } else 1048 set_bit(Faulty, &rdev->flags); 1049 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1050 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n" 1051 "raid1: Operation continuing on %d devices.\n", 1052 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1053 } 1054 1055 static void print_conf(conf_t *conf) 1056 { 1057 int i; 1058 1059 printk("RAID1 conf printout:\n"); 1060 if (!conf) { 1061 printk("(!conf)\n"); 1062 return; 1063 } 1064 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1065 conf->raid_disks); 1066 1067 rcu_read_lock(); 1068 for (i = 0; i < conf->raid_disks; i++) { 1069 char b[BDEVNAME_SIZE]; 1070 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1071 if (rdev) 1072 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1073 i, !test_bit(In_sync, &rdev->flags), 1074 !test_bit(Faulty, &rdev->flags), 1075 bdevname(rdev->bdev,b)); 1076 } 1077 rcu_read_unlock(); 1078 } 1079 1080 static void close_sync(conf_t *conf) 1081 { 1082 wait_barrier(conf); 1083 allow_barrier(conf); 1084 1085 mempool_destroy(conf->r1buf_pool); 1086 conf->r1buf_pool = NULL; 1087 } 1088 1089 static int raid1_spare_active(mddev_t *mddev) 1090 { 1091 int i; 1092 conf_t *conf = mddev->private; 1093 1094 /* 1095 * Find all failed disks within the RAID1 configuration 1096 * and mark them readable. 1097 * Called under mddev lock, so rcu protection not needed. 1098 */ 1099 for (i = 0; i < conf->raid_disks; i++) { 1100 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1101 if (rdev 1102 && !test_bit(Faulty, &rdev->flags) 1103 && !test_and_set_bit(In_sync, &rdev->flags)) { 1104 unsigned long flags; 1105 spin_lock_irqsave(&conf->device_lock, flags); 1106 mddev->degraded--; 1107 spin_unlock_irqrestore(&conf->device_lock, flags); 1108 } 1109 } 1110 1111 print_conf(conf); 1112 return 0; 1113 } 1114 1115 1116 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1117 { 1118 conf_t *conf = mddev->private; 1119 int err = -EEXIST; 1120 int mirror = 0; 1121 mirror_info_t *p; 1122 int first = 0; 1123 int last = mddev->raid_disks - 1; 1124 1125 if (rdev->raid_disk >= 0) 1126 first = last = rdev->raid_disk; 1127 1128 for (mirror = first; mirror <= last; mirror++) 1129 if ( !(p=conf->mirrors+mirror)->rdev) { 1130 1131 disk_stack_limits(mddev->gendisk, rdev->bdev, 1132 rdev->data_offset << 9); 1133 /* as we don't honour merge_bvec_fn, we must never risk 1134 * violating it, so limit ->max_sector to one PAGE, as 1135 * a one page request is never in violation. 1136 */ 1137 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1138 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 1139 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1140 1141 p->head_position = 0; 1142 rdev->raid_disk = mirror; 1143 err = 0; 1144 /* As all devices are equivalent, we don't need a full recovery 1145 * if this was recently any drive of the array 1146 */ 1147 if (rdev->saved_raid_disk < 0) 1148 conf->fullsync = 1; 1149 rcu_assign_pointer(p->rdev, rdev); 1150 break; 1151 } 1152 md_integrity_add_rdev(rdev, mddev); 1153 print_conf(conf); 1154 return err; 1155 } 1156 1157 static int raid1_remove_disk(mddev_t *mddev, int number) 1158 { 1159 conf_t *conf = mddev->private; 1160 int err = 0; 1161 mdk_rdev_t *rdev; 1162 mirror_info_t *p = conf->mirrors+ number; 1163 1164 print_conf(conf); 1165 rdev = p->rdev; 1166 if (rdev) { 1167 if (test_bit(In_sync, &rdev->flags) || 1168 atomic_read(&rdev->nr_pending)) { 1169 err = -EBUSY; 1170 goto abort; 1171 } 1172 /* Only remove non-faulty devices is recovery 1173 * is not possible. 1174 */ 1175 if (!test_bit(Faulty, &rdev->flags) && 1176 mddev->degraded < conf->raid_disks) { 1177 err = -EBUSY; 1178 goto abort; 1179 } 1180 p->rdev = NULL; 1181 synchronize_rcu(); 1182 if (atomic_read(&rdev->nr_pending)) { 1183 /* lost the race, try later */ 1184 err = -EBUSY; 1185 p->rdev = rdev; 1186 goto abort; 1187 } 1188 md_integrity_register(mddev); 1189 } 1190 abort: 1191 1192 print_conf(conf); 1193 return err; 1194 } 1195 1196 1197 static void end_sync_read(struct bio *bio, int error) 1198 { 1199 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1200 int i; 1201 1202 for (i=r1_bio->mddev->raid_disks; i--; ) 1203 if (r1_bio->bios[i] == bio) 1204 break; 1205 BUG_ON(i < 0); 1206 update_head_pos(i, r1_bio); 1207 /* 1208 * we have read a block, now it needs to be re-written, 1209 * or re-read if the read failed. 1210 * We don't do much here, just schedule handling by raid1d 1211 */ 1212 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1213 set_bit(R1BIO_Uptodate, &r1_bio->state); 1214 1215 if (atomic_dec_and_test(&r1_bio->remaining)) 1216 reschedule_retry(r1_bio); 1217 } 1218 1219 static void end_sync_write(struct bio *bio, int error) 1220 { 1221 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1222 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1223 mddev_t *mddev = r1_bio->mddev; 1224 conf_t *conf = mddev->private; 1225 int i; 1226 int mirror=0; 1227 1228 for (i = 0; i < conf->raid_disks; i++) 1229 if (r1_bio->bios[i] == bio) { 1230 mirror = i; 1231 break; 1232 } 1233 if (!uptodate) { 1234 int sync_blocks = 0; 1235 sector_t s = r1_bio->sector; 1236 long sectors_to_go = r1_bio->sectors; 1237 /* make sure these bits doesn't get cleared. */ 1238 do { 1239 bitmap_end_sync(mddev->bitmap, s, 1240 &sync_blocks, 1); 1241 s += sync_blocks; 1242 sectors_to_go -= sync_blocks; 1243 } while (sectors_to_go > 0); 1244 md_error(mddev, conf->mirrors[mirror].rdev); 1245 } 1246 1247 update_head_pos(mirror, r1_bio); 1248 1249 if (atomic_dec_and_test(&r1_bio->remaining)) { 1250 sector_t s = r1_bio->sectors; 1251 put_buf(r1_bio); 1252 md_done_sync(mddev, s, uptodate); 1253 } 1254 } 1255 1256 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1257 { 1258 conf_t *conf = mddev->private; 1259 int i; 1260 int disks = conf->raid_disks; 1261 struct bio *bio, *wbio; 1262 1263 bio = r1_bio->bios[r1_bio->read_disk]; 1264 1265 1266 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1267 /* We have read all readable devices. If we haven't 1268 * got the block, then there is no hope left. 1269 * If we have, then we want to do a comparison 1270 * and skip the write if everything is the same. 1271 * If any blocks failed to read, then we need to 1272 * attempt an over-write 1273 */ 1274 int primary; 1275 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1276 for (i=0; i<mddev->raid_disks; i++) 1277 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1278 md_error(mddev, conf->mirrors[i].rdev); 1279 1280 md_done_sync(mddev, r1_bio->sectors, 1); 1281 put_buf(r1_bio); 1282 return; 1283 } 1284 for (primary=0; primary<mddev->raid_disks; primary++) 1285 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1286 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1287 r1_bio->bios[primary]->bi_end_io = NULL; 1288 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1289 break; 1290 } 1291 r1_bio->read_disk = primary; 1292 for (i=0; i<mddev->raid_disks; i++) 1293 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1294 int j; 1295 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1296 struct bio *pbio = r1_bio->bios[primary]; 1297 struct bio *sbio = r1_bio->bios[i]; 1298 1299 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1300 for (j = vcnt; j-- ; ) { 1301 struct page *p, *s; 1302 p = pbio->bi_io_vec[j].bv_page; 1303 s = sbio->bi_io_vec[j].bv_page; 1304 if (memcmp(page_address(p), 1305 page_address(s), 1306 PAGE_SIZE)) 1307 break; 1308 } 1309 } else 1310 j = 0; 1311 if (j >= 0) 1312 mddev->resync_mismatches += r1_bio->sectors; 1313 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1314 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1315 sbio->bi_end_io = NULL; 1316 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1317 } else { 1318 /* fixup the bio for reuse */ 1319 int size; 1320 sbio->bi_vcnt = vcnt; 1321 sbio->bi_size = r1_bio->sectors << 9; 1322 sbio->bi_idx = 0; 1323 sbio->bi_phys_segments = 0; 1324 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1325 sbio->bi_flags |= 1 << BIO_UPTODATE; 1326 sbio->bi_next = NULL; 1327 sbio->bi_sector = r1_bio->sector + 1328 conf->mirrors[i].rdev->data_offset; 1329 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1330 size = sbio->bi_size; 1331 for (j = 0; j < vcnt ; j++) { 1332 struct bio_vec *bi; 1333 bi = &sbio->bi_io_vec[j]; 1334 bi->bv_offset = 0; 1335 if (size > PAGE_SIZE) 1336 bi->bv_len = PAGE_SIZE; 1337 else 1338 bi->bv_len = size; 1339 size -= PAGE_SIZE; 1340 memcpy(page_address(bi->bv_page), 1341 page_address(pbio->bi_io_vec[j].bv_page), 1342 PAGE_SIZE); 1343 } 1344 1345 } 1346 } 1347 } 1348 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1349 /* ouch - failed to read all of that. 1350 * Try some synchronous reads of other devices to get 1351 * good data, much like with normal read errors. Only 1352 * read into the pages we already have so we don't 1353 * need to re-issue the read request. 1354 * We don't need to freeze the array, because being in an 1355 * active sync request, there is no normal IO, and 1356 * no overlapping syncs. 1357 */ 1358 sector_t sect = r1_bio->sector; 1359 int sectors = r1_bio->sectors; 1360 int idx = 0; 1361 1362 while(sectors) { 1363 int s = sectors; 1364 int d = r1_bio->read_disk; 1365 int success = 0; 1366 mdk_rdev_t *rdev; 1367 1368 if (s > (PAGE_SIZE>>9)) 1369 s = PAGE_SIZE >> 9; 1370 do { 1371 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1372 /* No rcu protection needed here devices 1373 * can only be removed when no resync is 1374 * active, and resync is currently active 1375 */ 1376 rdev = conf->mirrors[d].rdev; 1377 if (sync_page_io(rdev->bdev, 1378 sect + rdev->data_offset, 1379 s<<9, 1380 bio->bi_io_vec[idx].bv_page, 1381 READ)) { 1382 success = 1; 1383 break; 1384 } 1385 } 1386 d++; 1387 if (d == conf->raid_disks) 1388 d = 0; 1389 } while (!success && d != r1_bio->read_disk); 1390 1391 if (success) { 1392 int start = d; 1393 /* write it back and re-read */ 1394 set_bit(R1BIO_Uptodate, &r1_bio->state); 1395 while (d != r1_bio->read_disk) { 1396 if (d == 0) 1397 d = conf->raid_disks; 1398 d--; 1399 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1400 continue; 1401 rdev = conf->mirrors[d].rdev; 1402 atomic_add(s, &rdev->corrected_errors); 1403 if (sync_page_io(rdev->bdev, 1404 sect + rdev->data_offset, 1405 s<<9, 1406 bio->bi_io_vec[idx].bv_page, 1407 WRITE) == 0) 1408 md_error(mddev, rdev); 1409 } 1410 d = start; 1411 while (d != r1_bio->read_disk) { 1412 if (d == 0) 1413 d = conf->raid_disks; 1414 d--; 1415 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1416 continue; 1417 rdev = conf->mirrors[d].rdev; 1418 if (sync_page_io(rdev->bdev, 1419 sect + rdev->data_offset, 1420 s<<9, 1421 bio->bi_io_vec[idx].bv_page, 1422 READ) == 0) 1423 md_error(mddev, rdev); 1424 } 1425 } else { 1426 char b[BDEVNAME_SIZE]; 1427 /* Cannot read from anywhere, array is toast */ 1428 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1429 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1430 " for block %llu\n", 1431 bdevname(bio->bi_bdev,b), 1432 (unsigned long long)r1_bio->sector); 1433 md_done_sync(mddev, r1_bio->sectors, 0); 1434 put_buf(r1_bio); 1435 return; 1436 } 1437 sectors -= s; 1438 sect += s; 1439 idx ++; 1440 } 1441 } 1442 1443 /* 1444 * schedule writes 1445 */ 1446 atomic_set(&r1_bio->remaining, 1); 1447 for (i = 0; i < disks ; i++) { 1448 wbio = r1_bio->bios[i]; 1449 if (wbio->bi_end_io == NULL || 1450 (wbio->bi_end_io == end_sync_read && 1451 (i == r1_bio->read_disk || 1452 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1453 continue; 1454 1455 wbio->bi_rw = WRITE; 1456 wbio->bi_end_io = end_sync_write; 1457 atomic_inc(&r1_bio->remaining); 1458 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1459 1460 generic_make_request(wbio); 1461 } 1462 1463 if (atomic_dec_and_test(&r1_bio->remaining)) { 1464 /* if we're here, all write(s) have completed, so clean up */ 1465 md_done_sync(mddev, r1_bio->sectors, 1); 1466 put_buf(r1_bio); 1467 } 1468 } 1469 1470 /* 1471 * This is a kernel thread which: 1472 * 1473 * 1. Retries failed read operations on working mirrors. 1474 * 2. Updates the raid superblock when problems encounter. 1475 * 3. Performs writes following reads for array syncronising. 1476 */ 1477 1478 static void fix_read_error(conf_t *conf, int read_disk, 1479 sector_t sect, int sectors) 1480 { 1481 mddev_t *mddev = conf->mddev; 1482 while(sectors) { 1483 int s = sectors; 1484 int d = read_disk; 1485 int success = 0; 1486 int start; 1487 mdk_rdev_t *rdev; 1488 1489 if (s > (PAGE_SIZE>>9)) 1490 s = PAGE_SIZE >> 9; 1491 1492 do { 1493 /* Note: no rcu protection needed here 1494 * as this is synchronous in the raid1d thread 1495 * which is the thread that might remove 1496 * a device. If raid1d ever becomes multi-threaded.... 1497 */ 1498 rdev = conf->mirrors[d].rdev; 1499 if (rdev && 1500 test_bit(In_sync, &rdev->flags) && 1501 sync_page_io(rdev->bdev, 1502 sect + rdev->data_offset, 1503 s<<9, 1504 conf->tmppage, READ)) 1505 success = 1; 1506 else { 1507 d++; 1508 if (d == conf->raid_disks) 1509 d = 0; 1510 } 1511 } while (!success && d != read_disk); 1512 1513 if (!success) { 1514 /* Cannot read from anywhere -- bye bye array */ 1515 md_error(mddev, conf->mirrors[read_disk].rdev); 1516 break; 1517 } 1518 /* write it back and re-read */ 1519 start = d; 1520 while (d != read_disk) { 1521 if (d==0) 1522 d = conf->raid_disks; 1523 d--; 1524 rdev = conf->mirrors[d].rdev; 1525 if (rdev && 1526 test_bit(In_sync, &rdev->flags)) { 1527 if (sync_page_io(rdev->bdev, 1528 sect + rdev->data_offset, 1529 s<<9, conf->tmppage, WRITE) 1530 == 0) 1531 /* Well, this device is dead */ 1532 md_error(mddev, rdev); 1533 } 1534 } 1535 d = start; 1536 while (d != read_disk) { 1537 char b[BDEVNAME_SIZE]; 1538 if (d==0) 1539 d = conf->raid_disks; 1540 d--; 1541 rdev = conf->mirrors[d].rdev; 1542 if (rdev && 1543 test_bit(In_sync, &rdev->flags)) { 1544 if (sync_page_io(rdev->bdev, 1545 sect + rdev->data_offset, 1546 s<<9, conf->tmppage, READ) 1547 == 0) 1548 /* Well, this device is dead */ 1549 md_error(mddev, rdev); 1550 else { 1551 atomic_add(s, &rdev->corrected_errors); 1552 printk(KERN_INFO 1553 "raid1:%s: read error corrected " 1554 "(%d sectors at %llu on %s)\n", 1555 mdname(mddev), s, 1556 (unsigned long long)(sect + 1557 rdev->data_offset), 1558 bdevname(rdev->bdev, b)); 1559 } 1560 } 1561 } 1562 sectors -= s; 1563 sect += s; 1564 } 1565 } 1566 1567 static void raid1d(mddev_t *mddev) 1568 { 1569 r1bio_t *r1_bio; 1570 struct bio *bio; 1571 unsigned long flags; 1572 conf_t *conf = mddev->private; 1573 struct list_head *head = &conf->retry_list; 1574 int unplug=0; 1575 mdk_rdev_t *rdev; 1576 1577 md_check_recovery(mddev); 1578 1579 for (;;) { 1580 char b[BDEVNAME_SIZE]; 1581 1582 unplug += flush_pending_writes(conf); 1583 1584 spin_lock_irqsave(&conf->device_lock, flags); 1585 if (list_empty(head)) { 1586 spin_unlock_irqrestore(&conf->device_lock, flags); 1587 break; 1588 } 1589 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1590 list_del(head->prev); 1591 conf->nr_queued--; 1592 spin_unlock_irqrestore(&conf->device_lock, flags); 1593 1594 mddev = r1_bio->mddev; 1595 conf = mddev->private; 1596 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1597 sync_request_write(mddev, r1_bio); 1598 unplug = 1; 1599 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1600 /* some requests in the r1bio were BIO_RW_BARRIER 1601 * requests which failed with -EOPNOTSUPP. Hohumm.. 1602 * Better resubmit without the barrier. 1603 * We know which devices to resubmit for, because 1604 * all others have had their bios[] entry cleared. 1605 * We already have a nr_pending reference on these rdevs. 1606 */ 1607 int i; 1608 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1609 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1610 clear_bit(R1BIO_Barrier, &r1_bio->state); 1611 for (i=0; i < conf->raid_disks; i++) 1612 if (r1_bio->bios[i]) 1613 atomic_inc(&r1_bio->remaining); 1614 for (i=0; i < conf->raid_disks; i++) 1615 if (r1_bio->bios[i]) { 1616 struct bio_vec *bvec; 1617 int j; 1618 1619 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1620 /* copy pages from the failed bio, as 1621 * this might be a write-behind device */ 1622 __bio_for_each_segment(bvec, bio, j, 0) 1623 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1624 bio_put(r1_bio->bios[i]); 1625 bio->bi_sector = r1_bio->sector + 1626 conf->mirrors[i].rdev->data_offset; 1627 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1628 bio->bi_end_io = raid1_end_write_request; 1629 bio->bi_rw = WRITE | do_sync; 1630 bio->bi_private = r1_bio; 1631 r1_bio->bios[i] = bio; 1632 generic_make_request(bio); 1633 } 1634 } else { 1635 int disk; 1636 1637 /* we got a read error. Maybe the drive is bad. Maybe just 1638 * the block and we can fix it. 1639 * We freeze all other IO, and try reading the block from 1640 * other devices. When we find one, we re-write 1641 * and check it that fixes the read error. 1642 * This is all done synchronously while the array is 1643 * frozen 1644 */ 1645 if (mddev->ro == 0) { 1646 freeze_array(conf); 1647 fix_read_error(conf, r1_bio->read_disk, 1648 r1_bio->sector, 1649 r1_bio->sectors); 1650 unfreeze_array(conf); 1651 } 1652 1653 bio = r1_bio->bios[r1_bio->read_disk]; 1654 if ((disk=read_balance(conf, r1_bio)) == -1 || 1655 disk == r1_bio->read_disk) { 1656 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1657 " read error for block %llu\n", 1658 bdevname(bio->bi_bdev,b), 1659 (unsigned long long)r1_bio->sector); 1660 raid_end_bio_io(r1_bio); 1661 } else { 1662 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1663 r1_bio->bios[r1_bio->read_disk] = 1664 mddev->ro ? IO_BLOCKED : NULL; 1665 r1_bio->read_disk = disk; 1666 bio_put(bio); 1667 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1668 r1_bio->bios[r1_bio->read_disk] = bio; 1669 rdev = conf->mirrors[disk].rdev; 1670 if (printk_ratelimit()) 1671 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1672 " another mirror\n", 1673 bdevname(rdev->bdev,b), 1674 (unsigned long long)r1_bio->sector); 1675 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1676 bio->bi_bdev = rdev->bdev; 1677 bio->bi_end_io = raid1_end_read_request; 1678 bio->bi_rw = READ | do_sync; 1679 bio->bi_private = r1_bio; 1680 unplug = 1; 1681 generic_make_request(bio); 1682 } 1683 } 1684 } 1685 if (unplug) 1686 unplug_slaves(mddev); 1687 } 1688 1689 1690 static int init_resync(conf_t *conf) 1691 { 1692 int buffs; 1693 1694 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1695 BUG_ON(conf->r1buf_pool); 1696 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1697 conf->poolinfo); 1698 if (!conf->r1buf_pool) 1699 return -ENOMEM; 1700 conf->next_resync = 0; 1701 return 0; 1702 } 1703 1704 /* 1705 * perform a "sync" on one "block" 1706 * 1707 * We need to make sure that no normal I/O request - particularly write 1708 * requests - conflict with active sync requests. 1709 * 1710 * This is achieved by tracking pending requests and a 'barrier' concept 1711 * that can be installed to exclude normal IO requests. 1712 */ 1713 1714 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1715 { 1716 conf_t *conf = mddev->private; 1717 r1bio_t *r1_bio; 1718 struct bio *bio; 1719 sector_t max_sector, nr_sectors; 1720 int disk = -1; 1721 int i; 1722 int wonly = -1; 1723 int write_targets = 0, read_targets = 0; 1724 int sync_blocks; 1725 int still_degraded = 0; 1726 1727 if (!conf->r1buf_pool) 1728 { 1729 /* 1730 printk("sync start - bitmap %p\n", mddev->bitmap); 1731 */ 1732 if (init_resync(conf)) 1733 return 0; 1734 } 1735 1736 max_sector = mddev->dev_sectors; 1737 if (sector_nr >= max_sector) { 1738 /* If we aborted, we need to abort the 1739 * sync on the 'current' bitmap chunk (there will 1740 * only be one in raid1 resync. 1741 * We can find the current addess in mddev->curr_resync 1742 */ 1743 if (mddev->curr_resync < max_sector) /* aborted */ 1744 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1745 &sync_blocks, 1); 1746 else /* completed sync */ 1747 conf->fullsync = 0; 1748 1749 bitmap_close_sync(mddev->bitmap); 1750 close_sync(conf); 1751 return 0; 1752 } 1753 1754 if (mddev->bitmap == NULL && 1755 mddev->recovery_cp == MaxSector && 1756 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1757 conf->fullsync == 0) { 1758 *skipped = 1; 1759 return max_sector - sector_nr; 1760 } 1761 /* before building a request, check if we can skip these blocks.. 1762 * This call the bitmap_start_sync doesn't actually record anything 1763 */ 1764 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1765 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1766 /* We can skip this block, and probably several more */ 1767 *skipped = 1; 1768 return sync_blocks; 1769 } 1770 /* 1771 * If there is non-resync activity waiting for a turn, 1772 * and resync is going fast enough, 1773 * then let it though before starting on this new sync request. 1774 */ 1775 if (!go_faster && conf->nr_waiting) 1776 msleep_interruptible(1000); 1777 1778 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1779 raise_barrier(conf); 1780 1781 conf->next_resync = sector_nr; 1782 1783 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1784 rcu_read_lock(); 1785 /* 1786 * If we get a correctably read error during resync or recovery, 1787 * we might want to read from a different device. So we 1788 * flag all drives that could conceivably be read from for READ, 1789 * and any others (which will be non-In_sync devices) for WRITE. 1790 * If a read fails, we try reading from something else for which READ 1791 * is OK. 1792 */ 1793 1794 r1_bio->mddev = mddev; 1795 r1_bio->sector = sector_nr; 1796 r1_bio->state = 0; 1797 set_bit(R1BIO_IsSync, &r1_bio->state); 1798 1799 for (i=0; i < conf->raid_disks; i++) { 1800 mdk_rdev_t *rdev; 1801 bio = r1_bio->bios[i]; 1802 1803 /* take from bio_init */ 1804 bio->bi_next = NULL; 1805 bio->bi_flags |= 1 << BIO_UPTODATE; 1806 bio->bi_rw = READ; 1807 bio->bi_vcnt = 0; 1808 bio->bi_idx = 0; 1809 bio->bi_phys_segments = 0; 1810 bio->bi_size = 0; 1811 bio->bi_end_io = NULL; 1812 bio->bi_private = NULL; 1813 1814 rdev = rcu_dereference(conf->mirrors[i].rdev); 1815 if (rdev == NULL || 1816 test_bit(Faulty, &rdev->flags)) { 1817 still_degraded = 1; 1818 continue; 1819 } else if (!test_bit(In_sync, &rdev->flags)) { 1820 bio->bi_rw = WRITE; 1821 bio->bi_end_io = end_sync_write; 1822 write_targets ++; 1823 } else { 1824 /* may need to read from here */ 1825 bio->bi_rw = READ; 1826 bio->bi_end_io = end_sync_read; 1827 if (test_bit(WriteMostly, &rdev->flags)) { 1828 if (wonly < 0) 1829 wonly = i; 1830 } else { 1831 if (disk < 0) 1832 disk = i; 1833 } 1834 read_targets++; 1835 } 1836 atomic_inc(&rdev->nr_pending); 1837 bio->bi_sector = sector_nr + rdev->data_offset; 1838 bio->bi_bdev = rdev->bdev; 1839 bio->bi_private = r1_bio; 1840 } 1841 rcu_read_unlock(); 1842 if (disk < 0) 1843 disk = wonly; 1844 r1_bio->read_disk = disk; 1845 1846 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1847 /* extra read targets are also write targets */ 1848 write_targets += read_targets-1; 1849 1850 if (write_targets == 0 || read_targets == 0) { 1851 /* There is nowhere to write, so all non-sync 1852 * drives must be failed - so we are finished 1853 */ 1854 sector_t rv = max_sector - sector_nr; 1855 *skipped = 1; 1856 put_buf(r1_bio); 1857 return rv; 1858 } 1859 1860 if (max_sector > mddev->resync_max) 1861 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1862 nr_sectors = 0; 1863 sync_blocks = 0; 1864 do { 1865 struct page *page; 1866 int len = PAGE_SIZE; 1867 if (sector_nr + (len>>9) > max_sector) 1868 len = (max_sector - sector_nr) << 9; 1869 if (len == 0) 1870 break; 1871 if (sync_blocks == 0) { 1872 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1873 &sync_blocks, still_degraded) && 1874 !conf->fullsync && 1875 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1876 break; 1877 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1878 if (len > (sync_blocks<<9)) 1879 len = sync_blocks<<9; 1880 } 1881 1882 for (i=0 ; i < conf->raid_disks; i++) { 1883 bio = r1_bio->bios[i]; 1884 if (bio->bi_end_io) { 1885 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1886 if (bio_add_page(bio, page, len, 0) == 0) { 1887 /* stop here */ 1888 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1889 while (i > 0) { 1890 i--; 1891 bio = r1_bio->bios[i]; 1892 if (bio->bi_end_io==NULL) 1893 continue; 1894 /* remove last page from this bio */ 1895 bio->bi_vcnt--; 1896 bio->bi_size -= len; 1897 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1898 } 1899 goto bio_full; 1900 } 1901 } 1902 } 1903 nr_sectors += len>>9; 1904 sector_nr += len>>9; 1905 sync_blocks -= (len>>9); 1906 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1907 bio_full: 1908 r1_bio->sectors = nr_sectors; 1909 1910 /* For a user-requested sync, we read all readable devices and do a 1911 * compare 1912 */ 1913 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1914 atomic_set(&r1_bio->remaining, read_targets); 1915 for (i=0; i<conf->raid_disks; i++) { 1916 bio = r1_bio->bios[i]; 1917 if (bio->bi_end_io == end_sync_read) { 1918 md_sync_acct(bio->bi_bdev, nr_sectors); 1919 generic_make_request(bio); 1920 } 1921 } 1922 } else { 1923 atomic_set(&r1_bio->remaining, 1); 1924 bio = r1_bio->bios[r1_bio->read_disk]; 1925 md_sync_acct(bio->bi_bdev, nr_sectors); 1926 generic_make_request(bio); 1927 1928 } 1929 return nr_sectors; 1930 } 1931 1932 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1933 { 1934 if (sectors) 1935 return sectors; 1936 1937 return mddev->dev_sectors; 1938 } 1939 1940 static int run(mddev_t *mddev) 1941 { 1942 conf_t *conf; 1943 int i, j, disk_idx; 1944 mirror_info_t *disk; 1945 mdk_rdev_t *rdev; 1946 1947 if (mddev->level != 1) { 1948 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1949 mdname(mddev), mddev->level); 1950 goto out; 1951 } 1952 if (mddev->reshape_position != MaxSector) { 1953 printk("raid1: %s: reshape_position set but not supported\n", 1954 mdname(mddev)); 1955 goto out; 1956 } 1957 /* 1958 * copy the already verified devices into our private RAID1 1959 * bookkeeping area. [whatever we allocate in run(), 1960 * should be freed in stop()] 1961 */ 1962 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1963 mddev->private = conf; 1964 if (!conf) 1965 goto out_no_mem; 1966 1967 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1968 GFP_KERNEL); 1969 if (!conf->mirrors) 1970 goto out_no_mem; 1971 1972 conf->tmppage = alloc_page(GFP_KERNEL); 1973 if (!conf->tmppage) 1974 goto out_no_mem; 1975 1976 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1977 if (!conf->poolinfo) 1978 goto out_no_mem; 1979 conf->poolinfo->mddev = mddev; 1980 conf->poolinfo->raid_disks = mddev->raid_disks; 1981 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1982 r1bio_pool_free, 1983 conf->poolinfo); 1984 if (!conf->r1bio_pool) 1985 goto out_no_mem; 1986 1987 spin_lock_init(&conf->device_lock); 1988 mddev->queue->queue_lock = &conf->device_lock; 1989 1990 list_for_each_entry(rdev, &mddev->disks, same_set) { 1991 disk_idx = rdev->raid_disk; 1992 if (disk_idx >= mddev->raid_disks 1993 || disk_idx < 0) 1994 continue; 1995 disk = conf->mirrors + disk_idx; 1996 1997 disk->rdev = rdev; 1998 disk_stack_limits(mddev->gendisk, rdev->bdev, 1999 rdev->data_offset << 9); 2000 /* as we don't honour merge_bvec_fn, we must never risk 2001 * violating it, so limit ->max_sector to one PAGE, as 2002 * a one page request is never in violation. 2003 */ 2004 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2005 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 2006 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 2007 2008 disk->head_position = 0; 2009 } 2010 conf->raid_disks = mddev->raid_disks; 2011 conf->mddev = mddev; 2012 INIT_LIST_HEAD(&conf->retry_list); 2013 2014 spin_lock_init(&conf->resync_lock); 2015 init_waitqueue_head(&conf->wait_barrier); 2016 2017 bio_list_init(&conf->pending_bio_list); 2018 bio_list_init(&conf->flushing_bio_list); 2019 2020 2021 mddev->degraded = 0; 2022 for (i = 0; i < conf->raid_disks; i++) { 2023 2024 disk = conf->mirrors + i; 2025 2026 if (!disk->rdev || 2027 !test_bit(In_sync, &disk->rdev->flags)) { 2028 disk->head_position = 0; 2029 mddev->degraded++; 2030 if (disk->rdev) 2031 conf->fullsync = 1; 2032 } 2033 } 2034 if (mddev->degraded == conf->raid_disks) { 2035 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 2036 mdname(mddev)); 2037 goto out_free_conf; 2038 } 2039 if (conf->raid_disks - mddev->degraded == 1) 2040 mddev->recovery_cp = MaxSector; 2041 2042 /* 2043 * find the first working one and use it as a starting point 2044 * to read balancing. 2045 */ 2046 for (j = 0; j < conf->raid_disks && 2047 (!conf->mirrors[j].rdev || 2048 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 2049 /* nothing */; 2050 conf->last_used = j; 2051 2052 2053 mddev->thread = md_register_thread(raid1d, mddev, NULL); 2054 if (!mddev->thread) { 2055 printk(KERN_ERR 2056 "raid1: couldn't allocate thread for %s\n", 2057 mdname(mddev)); 2058 goto out_free_conf; 2059 } 2060 2061 if (mddev->recovery_cp != MaxSector) 2062 printk(KERN_NOTICE "raid1: %s is not clean" 2063 " -- starting background reconstruction\n", 2064 mdname(mddev)); 2065 printk(KERN_INFO 2066 "raid1: raid set %s active with %d out of %d mirrors\n", 2067 mdname(mddev), mddev->raid_disks - mddev->degraded, 2068 mddev->raid_disks); 2069 /* 2070 * Ok, everything is just fine now 2071 */ 2072 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2073 2074 mddev->queue->unplug_fn = raid1_unplug; 2075 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2076 mddev->queue->backing_dev_info.congested_data = mddev; 2077 md_integrity_register(mddev); 2078 return 0; 2079 2080 out_no_mem: 2081 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2082 mdname(mddev)); 2083 2084 out_free_conf: 2085 if (conf) { 2086 if (conf->r1bio_pool) 2087 mempool_destroy(conf->r1bio_pool); 2088 kfree(conf->mirrors); 2089 safe_put_page(conf->tmppage); 2090 kfree(conf->poolinfo); 2091 kfree(conf); 2092 mddev->private = NULL; 2093 } 2094 out: 2095 return -EIO; 2096 } 2097 2098 static int stop(mddev_t *mddev) 2099 { 2100 conf_t *conf = mddev->private; 2101 struct bitmap *bitmap = mddev->bitmap; 2102 int behind_wait = 0; 2103 2104 /* wait for behind writes to complete */ 2105 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2106 behind_wait++; 2107 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2108 set_current_state(TASK_UNINTERRUPTIBLE); 2109 schedule_timeout(HZ); /* wait a second */ 2110 /* need to kick something here to make sure I/O goes? */ 2111 } 2112 2113 raise_barrier(conf); 2114 lower_barrier(conf); 2115 2116 md_unregister_thread(mddev->thread); 2117 mddev->thread = NULL; 2118 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2119 if (conf->r1bio_pool) 2120 mempool_destroy(conf->r1bio_pool); 2121 kfree(conf->mirrors); 2122 kfree(conf->poolinfo); 2123 kfree(conf); 2124 mddev->private = NULL; 2125 return 0; 2126 } 2127 2128 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2129 { 2130 /* no resync is happening, and there is enough space 2131 * on all devices, so we can resize. 2132 * We need to make sure resync covers any new space. 2133 * If the array is shrinking we should possibly wait until 2134 * any io in the removed space completes, but it hardly seems 2135 * worth it. 2136 */ 2137 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2138 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2139 return -EINVAL; 2140 set_capacity(mddev->gendisk, mddev->array_sectors); 2141 mddev->changed = 1; 2142 revalidate_disk(mddev->gendisk); 2143 if (sectors > mddev->dev_sectors && 2144 mddev->recovery_cp == MaxSector) { 2145 mddev->recovery_cp = mddev->dev_sectors; 2146 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2147 } 2148 mddev->dev_sectors = sectors; 2149 mddev->resync_max_sectors = sectors; 2150 return 0; 2151 } 2152 2153 static int raid1_reshape(mddev_t *mddev) 2154 { 2155 /* We need to: 2156 * 1/ resize the r1bio_pool 2157 * 2/ resize conf->mirrors 2158 * 2159 * We allocate a new r1bio_pool if we can. 2160 * Then raise a device barrier and wait until all IO stops. 2161 * Then resize conf->mirrors and swap in the new r1bio pool. 2162 * 2163 * At the same time, we "pack" the devices so that all the missing 2164 * devices have the higher raid_disk numbers. 2165 */ 2166 mempool_t *newpool, *oldpool; 2167 struct pool_info *newpoolinfo; 2168 mirror_info_t *newmirrors; 2169 conf_t *conf = mddev->private; 2170 int cnt, raid_disks; 2171 unsigned long flags; 2172 int d, d2, err; 2173 2174 /* Cannot change chunk_size, layout, or level */ 2175 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2176 mddev->layout != mddev->new_layout || 2177 mddev->level != mddev->new_level) { 2178 mddev->new_chunk_sectors = mddev->chunk_sectors; 2179 mddev->new_layout = mddev->layout; 2180 mddev->new_level = mddev->level; 2181 return -EINVAL; 2182 } 2183 2184 err = md_allow_write(mddev); 2185 if (err) 2186 return err; 2187 2188 raid_disks = mddev->raid_disks + mddev->delta_disks; 2189 2190 if (raid_disks < conf->raid_disks) { 2191 cnt=0; 2192 for (d= 0; d < conf->raid_disks; d++) 2193 if (conf->mirrors[d].rdev) 2194 cnt++; 2195 if (cnt > raid_disks) 2196 return -EBUSY; 2197 } 2198 2199 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2200 if (!newpoolinfo) 2201 return -ENOMEM; 2202 newpoolinfo->mddev = mddev; 2203 newpoolinfo->raid_disks = raid_disks; 2204 2205 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2206 r1bio_pool_free, newpoolinfo); 2207 if (!newpool) { 2208 kfree(newpoolinfo); 2209 return -ENOMEM; 2210 } 2211 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2212 if (!newmirrors) { 2213 kfree(newpoolinfo); 2214 mempool_destroy(newpool); 2215 return -ENOMEM; 2216 } 2217 2218 raise_barrier(conf); 2219 2220 /* ok, everything is stopped */ 2221 oldpool = conf->r1bio_pool; 2222 conf->r1bio_pool = newpool; 2223 2224 for (d = d2 = 0; d < conf->raid_disks; d++) { 2225 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2226 if (rdev && rdev->raid_disk != d2) { 2227 char nm[20]; 2228 sprintf(nm, "rd%d", rdev->raid_disk); 2229 sysfs_remove_link(&mddev->kobj, nm); 2230 rdev->raid_disk = d2; 2231 sprintf(nm, "rd%d", rdev->raid_disk); 2232 sysfs_remove_link(&mddev->kobj, nm); 2233 if (sysfs_create_link(&mddev->kobj, 2234 &rdev->kobj, nm)) 2235 printk(KERN_WARNING 2236 "md/raid1: cannot register " 2237 "%s for %s\n", 2238 nm, mdname(mddev)); 2239 } 2240 if (rdev) 2241 newmirrors[d2++].rdev = rdev; 2242 } 2243 kfree(conf->mirrors); 2244 conf->mirrors = newmirrors; 2245 kfree(conf->poolinfo); 2246 conf->poolinfo = newpoolinfo; 2247 2248 spin_lock_irqsave(&conf->device_lock, flags); 2249 mddev->degraded += (raid_disks - conf->raid_disks); 2250 spin_unlock_irqrestore(&conf->device_lock, flags); 2251 conf->raid_disks = mddev->raid_disks = raid_disks; 2252 mddev->delta_disks = 0; 2253 2254 conf->last_used = 0; /* just make sure it is in-range */ 2255 lower_barrier(conf); 2256 2257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2258 md_wakeup_thread(mddev->thread); 2259 2260 mempool_destroy(oldpool); 2261 return 0; 2262 } 2263 2264 static void raid1_quiesce(mddev_t *mddev, int state) 2265 { 2266 conf_t *conf = mddev->private; 2267 2268 switch(state) { 2269 case 1: 2270 raise_barrier(conf); 2271 break; 2272 case 0: 2273 lower_barrier(conf); 2274 break; 2275 } 2276 } 2277 2278 2279 static struct mdk_personality raid1_personality = 2280 { 2281 .name = "raid1", 2282 .level = 1, 2283 .owner = THIS_MODULE, 2284 .make_request = make_request, 2285 .run = run, 2286 .stop = stop, 2287 .status = status, 2288 .error_handler = error, 2289 .hot_add_disk = raid1_add_disk, 2290 .hot_remove_disk= raid1_remove_disk, 2291 .spare_active = raid1_spare_active, 2292 .sync_request = sync_request, 2293 .resize = raid1_resize, 2294 .size = raid1_size, 2295 .check_reshape = raid1_reshape, 2296 .quiesce = raid1_quiesce, 2297 }; 2298 2299 static int __init raid_init(void) 2300 { 2301 return register_md_personality(&raid1_personality); 2302 } 2303 2304 static void raid_exit(void) 2305 { 2306 unregister_md_personality(&raid1_personality); 2307 } 2308 2309 module_init(raid_init); 2310 module_exit(raid_exit); 2311 MODULE_LICENSE("GPL"); 2312 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2313 MODULE_ALIAS("md-raid1"); 2314 MODULE_ALIAS("md-level-1"); 2315