1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 struct pool_info *pi = data; 63 r1bio_t *r1_bio; 64 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 65 66 /* allocate a r1bio with room for raid_disks entries in the bios array */ 67 r1_bio = kzalloc(size, gfp_flags); 68 if (!r1_bio && pi->mddev) 69 unplug_slaves(pi->mddev); 70 71 return r1_bio; 72 } 73 74 static void r1bio_pool_free(void *r1_bio, void *data) 75 { 76 kfree(r1_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 86 { 87 struct pool_info *pi = data; 88 struct page *page; 89 r1bio_t *r1_bio; 90 struct bio *bio; 91 int i, j; 92 93 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 94 if (!r1_bio) { 95 unplug_slaves(pi->mddev); 96 return NULL; 97 } 98 99 /* 100 * Allocate bios : 1 for reading, n-1 for writing 101 */ 102 for (j = pi->raid_disks ; j-- ; ) { 103 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 104 if (!bio) 105 goto out_free_bio; 106 r1_bio->bios[j] = bio; 107 } 108 /* 109 * Allocate RESYNC_PAGES data pages and attach them to 110 * the first bio. 111 * If this is a user-requested check/repair, allocate 112 * RESYNC_PAGES for each bio. 113 */ 114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 115 j = pi->raid_disks; 116 else 117 j = 1; 118 while(j--) { 119 bio = r1_bio->bios[j]; 120 for (i = 0; i < RESYNC_PAGES; i++) { 121 page = alloc_page(gfp_flags); 122 if (unlikely(!page)) 123 goto out_free_pages; 124 125 bio->bi_io_vec[i].bv_page = page; 126 bio->bi_vcnt = i+1; 127 } 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_pages: 142 for (j=0 ; j < pi->raid_disks; j++) 143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 145 j = -1; 146 out_free_bio: 147 while ( ++j < pi->raid_disks ) 148 bio_put(r1_bio->bios[j]); 149 r1bio_pool_free(r1_bio, data); 150 return NULL; 151 } 152 153 static void r1buf_pool_free(void *__r1_bio, void *data) 154 { 155 struct pool_info *pi = data; 156 int i,j; 157 r1bio_t *r1bio = __r1_bio; 158 159 for (i = 0; i < RESYNC_PAGES; i++) 160 for (j = pi->raid_disks; j-- ;) { 161 if (j == 0 || 162 r1bio->bios[j]->bi_io_vec[i].bv_page != 163 r1bio->bios[0]->bi_io_vec[i].bv_page) 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 165 } 166 for (i=0 ; i < pi->raid_disks; i++) 167 bio_put(r1bio->bios[i]); 168 169 r1bio_pool_free(r1bio, data); 170 } 171 172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->raid_disks; i++) { 177 struct bio **bio = r1_bio->bios + i; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r1bio(r1bio_t *r1_bio) 185 { 186 conf_t *conf = r1_bio->mddev->private; 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r1_bio); 195 mempool_free(r1_bio, conf->r1bio_pool); 196 } 197 198 static void put_buf(r1bio_t *r1_bio) 199 { 200 conf_t *conf = r1_bio->mddev->private; 201 int i; 202 203 for (i=0; i<conf->raid_disks; i++) { 204 struct bio *bio = r1_bio->bios[i]; 205 if (bio->bi_end_io) 206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 207 } 208 209 mempool_free(r1_bio, conf->r1buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r1bio_t *r1_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r1_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r1_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 wake_up(&conf->wait_barrier); 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r1bio_t *r1_bio) 235 { 236 struct bio *bio = r1_bio->master_bio; 237 238 /* if nobody has done the final endio yet, do it now */ 239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 241 (bio_data_dir(bio) == WRITE) ? "write" : "read", 242 (unsigned long long) bio->bi_sector, 243 (unsigned long long) bio->bi_sector + 244 (bio->bi_size >> 9) - 1); 245 246 bio_endio(bio, 247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 248 } 249 free_r1bio(r1_bio); 250 } 251 252 /* 253 * Update disk head position estimator based on IRQ completion info. 254 */ 255 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 256 { 257 conf_t *conf = r1_bio->mddev->private; 258 259 conf->mirrors[disk].head_position = 260 r1_bio->sector + (r1_bio->sectors); 261 } 262 263 static void raid1_end_read_request(struct bio *bio, int error) 264 { 265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 266 r1bio_t *r1_bio = bio->bi_private; 267 int mirror; 268 conf_t *conf = r1_bio->mddev->private; 269 270 mirror = r1_bio->read_disk; 271 /* 272 * this branch is our 'one mirror IO has finished' event handler: 273 */ 274 update_head_pos(mirror, r1_bio); 275 276 if (uptodate) 277 set_bit(R1BIO_Uptodate, &r1_bio->state); 278 else { 279 /* If all other devices have failed, we want to return 280 * the error upwards rather than fail the last device. 281 * Here we redefine "uptodate" to mean "Don't want to retry" 282 */ 283 unsigned long flags; 284 spin_lock_irqsave(&conf->device_lock, flags); 285 if (r1_bio->mddev->degraded == conf->raid_disks || 286 (r1_bio->mddev->degraded == conf->raid_disks-1 && 287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 288 uptodate = 1; 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 } 291 292 if (uptodate) 293 raid_end_bio_io(r1_bio); 294 else { 295 /* 296 * oops, read error: 297 */ 298 char b[BDEVNAME_SIZE]; 299 if (printk_ratelimit()) 300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 301 mdname(conf->mddev), 302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 303 reschedule_retry(r1_bio); 304 } 305 306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 307 } 308 309 static void raid1_end_write_request(struct bio *bio, int error) 310 { 311 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 312 r1bio_t *r1_bio = bio->bi_private; 313 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 314 conf_t *conf = r1_bio->mddev->private; 315 struct bio *to_put = NULL; 316 317 318 for (mirror = 0; mirror < conf->raid_disks; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 323 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 324 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 325 r1_bio->mddev->barriers_work = 0; 326 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 327 } else { 328 /* 329 * this branch is our 'one mirror IO has finished' event handler: 330 */ 331 r1_bio->bios[mirror] = NULL; 332 to_put = bio; 333 if (!uptodate) { 334 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 335 /* an I/O failed, we can't clear the bitmap */ 336 set_bit(R1BIO_Degraded, &r1_bio->state); 337 } else 338 /* 339 * Set R1BIO_Uptodate in our master bio, so that 340 * we will return a good error code for to the higher 341 * levels even if IO on some other mirrored buffer fails. 342 * 343 * The 'master' represents the composite IO operation to 344 * user-side. So if something waits for IO, then it will 345 * wait for the 'master' bio. 346 */ 347 set_bit(R1BIO_Uptodate, &r1_bio->state); 348 349 update_head_pos(mirror, r1_bio); 350 351 if (behind) { 352 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 353 atomic_dec(&r1_bio->behind_remaining); 354 355 /* In behind mode, we ACK the master bio once the I/O has safely 356 * reached all non-writemostly disks. Setting the Returned bit 357 * ensures that this gets done only once -- we don't ever want to 358 * return -EIO here, instead we'll wait */ 359 360 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 361 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 362 /* Maybe we can return now */ 363 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 364 struct bio *mbio = r1_bio->master_bio; 365 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 366 (unsigned long long) mbio->bi_sector, 367 (unsigned long long) mbio->bi_sector + 368 (mbio->bi_size >> 9) - 1); 369 bio_endio(mbio, 0); 370 } 371 } 372 } 373 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 374 } 375 /* 376 * 377 * Let's see if all mirrored write operations have finished 378 * already. 379 */ 380 if (atomic_dec_and_test(&r1_bio->remaining)) { 381 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 /* it really is the end of this request */ 385 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 386 /* free extra copy of the data pages */ 387 int i = bio->bi_vcnt; 388 while (i--) 389 safe_put_page(bio->bi_io_vec[i].bv_page); 390 } 391 /* clear the bitmap if all writes complete successfully */ 392 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 393 r1_bio->sectors, 394 !test_bit(R1BIO_Degraded, &r1_bio->state), 395 behind); 396 md_write_end(r1_bio->mddev); 397 raid_end_bio_io(r1_bio); 398 } 399 } 400 401 if (to_put) 402 bio_put(to_put); 403 } 404 405 406 /* 407 * This routine returns the disk from which the requested read should 408 * be done. There is a per-array 'next expected sequential IO' sector 409 * number - if this matches on the next IO then we use the last disk. 410 * There is also a per-disk 'last know head position' sector that is 411 * maintained from IRQ contexts, both the normal and the resync IO 412 * completion handlers update this position correctly. If there is no 413 * perfect sequential match then we pick the disk whose head is closest. 414 * 415 * If there are 2 mirrors in the same 2 devices, performance degrades 416 * because position is mirror, not device based. 417 * 418 * The rdev for the device selected will have nr_pending incremented. 419 */ 420 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 421 { 422 const sector_t this_sector = r1_bio->sector; 423 int new_disk = conf->last_used, disk = new_disk; 424 int wonly_disk = -1; 425 const int sectors = r1_bio->sectors; 426 sector_t new_distance, current_distance; 427 mdk_rdev_t *rdev; 428 429 rcu_read_lock(); 430 /* 431 * Check if we can balance. We can balance on the whole 432 * device if no resync is going on, or below the resync window. 433 * We take the first readable disk when above the resync window. 434 */ 435 retry: 436 if (conf->mddev->recovery_cp < MaxSector && 437 (this_sector + sectors >= conf->next_resync)) { 438 /* Choose the first operational device, for consistancy */ 439 new_disk = 0; 440 441 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 442 r1_bio->bios[new_disk] == IO_BLOCKED || 443 !rdev || !test_bit(In_sync, &rdev->flags) 444 || test_bit(WriteMostly, &rdev->flags); 445 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 446 447 if (rdev && test_bit(In_sync, &rdev->flags) && 448 r1_bio->bios[new_disk] != IO_BLOCKED) 449 wonly_disk = new_disk; 450 451 if (new_disk == conf->raid_disks - 1) { 452 new_disk = wonly_disk; 453 break; 454 } 455 } 456 goto rb_out; 457 } 458 459 460 /* make sure the disk is operational */ 461 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 462 r1_bio->bios[new_disk] == IO_BLOCKED || 463 !rdev || !test_bit(In_sync, &rdev->flags) || 464 test_bit(WriteMostly, &rdev->flags); 465 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 466 467 if (rdev && test_bit(In_sync, &rdev->flags) && 468 r1_bio->bios[new_disk] != IO_BLOCKED) 469 wonly_disk = new_disk; 470 471 if (new_disk <= 0) 472 new_disk = conf->raid_disks; 473 new_disk--; 474 if (new_disk == disk) { 475 new_disk = wonly_disk; 476 break; 477 } 478 } 479 480 if (new_disk < 0) 481 goto rb_out; 482 483 disk = new_disk; 484 /* now disk == new_disk == starting point for search */ 485 486 /* 487 * Don't change to another disk for sequential reads: 488 */ 489 if (conf->next_seq_sect == this_sector) 490 goto rb_out; 491 if (this_sector == conf->mirrors[new_disk].head_position) 492 goto rb_out; 493 494 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 495 496 /* Find the disk whose head is closest */ 497 498 do { 499 if (disk <= 0) 500 disk = conf->raid_disks; 501 disk--; 502 503 rdev = rcu_dereference(conf->mirrors[disk].rdev); 504 505 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 506 !test_bit(In_sync, &rdev->flags) || 507 test_bit(WriteMostly, &rdev->flags)) 508 continue; 509 510 if (!atomic_read(&rdev->nr_pending)) { 511 new_disk = disk; 512 break; 513 } 514 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 515 if (new_distance < current_distance) { 516 current_distance = new_distance; 517 new_disk = disk; 518 } 519 } while (disk != conf->last_used); 520 521 rb_out: 522 523 524 if (new_disk >= 0) { 525 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 526 if (!rdev) 527 goto retry; 528 atomic_inc(&rdev->nr_pending); 529 if (!test_bit(In_sync, &rdev->flags)) { 530 /* cannot risk returning a device that failed 531 * before we inc'ed nr_pending 532 */ 533 rdev_dec_pending(rdev, conf->mddev); 534 goto retry; 535 } 536 conf->next_seq_sect = this_sector + sectors; 537 conf->last_used = new_disk; 538 } 539 rcu_read_unlock(); 540 541 return new_disk; 542 } 543 544 static void unplug_slaves(mddev_t *mddev) 545 { 546 conf_t *conf = mddev->private; 547 int i; 548 549 rcu_read_lock(); 550 for (i=0; i<mddev->raid_disks; i++) { 551 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 553 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 554 555 atomic_inc(&rdev->nr_pending); 556 rcu_read_unlock(); 557 558 blk_unplug(r_queue); 559 560 rdev_dec_pending(rdev, mddev); 561 rcu_read_lock(); 562 } 563 } 564 rcu_read_unlock(); 565 } 566 567 static void raid1_unplug(struct request_queue *q) 568 { 569 mddev_t *mddev = q->queuedata; 570 571 unplug_slaves(mddev); 572 md_wakeup_thread(mddev->thread); 573 } 574 575 static int raid1_congested(void *data, int bits) 576 { 577 mddev_t *mddev = data; 578 conf_t *conf = mddev->private; 579 int i, ret = 0; 580 581 if (mddev_congested(mddev, bits)) 582 return 1; 583 584 rcu_read_lock(); 585 for (i = 0; i < mddev->raid_disks; i++) { 586 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 587 if (rdev && !test_bit(Faulty, &rdev->flags)) { 588 struct request_queue *q = bdev_get_queue(rdev->bdev); 589 590 /* Note the '|| 1' - when read_balance prefers 591 * non-congested targets, it can be removed 592 */ 593 if ((bits & (1<<BDI_async_congested)) || 1) 594 ret |= bdi_congested(&q->backing_dev_info, bits); 595 else 596 ret &= bdi_congested(&q->backing_dev_info, bits); 597 } 598 } 599 rcu_read_unlock(); 600 return ret; 601 } 602 603 604 static int flush_pending_writes(conf_t *conf) 605 { 606 /* Any writes that have been queued but are awaiting 607 * bitmap updates get flushed here. 608 * We return 1 if any requests were actually submitted. 609 */ 610 int rv = 0; 611 612 spin_lock_irq(&conf->device_lock); 613 614 if (conf->pending_bio_list.head) { 615 struct bio *bio; 616 bio = bio_list_get(&conf->pending_bio_list); 617 blk_remove_plug(conf->mddev->queue); 618 spin_unlock_irq(&conf->device_lock); 619 /* flush any pending bitmap writes to 620 * disk before proceeding w/ I/O */ 621 bitmap_unplug(conf->mddev->bitmap); 622 623 while (bio) { /* submit pending writes */ 624 struct bio *next = bio->bi_next; 625 bio->bi_next = NULL; 626 generic_make_request(bio); 627 bio = next; 628 } 629 rv = 1; 630 } else 631 spin_unlock_irq(&conf->device_lock); 632 return rv; 633 } 634 635 /* Barriers.... 636 * Sometimes we need to suspend IO while we do something else, 637 * either some resync/recovery, or reconfigure the array. 638 * To do this we raise a 'barrier'. 639 * The 'barrier' is a counter that can be raised multiple times 640 * to count how many activities are happening which preclude 641 * normal IO. 642 * We can only raise the barrier if there is no pending IO. 643 * i.e. if nr_pending == 0. 644 * We choose only to raise the barrier if no-one is waiting for the 645 * barrier to go down. This means that as soon as an IO request 646 * is ready, no other operations which require a barrier will start 647 * until the IO request has had a chance. 648 * 649 * So: regular IO calls 'wait_barrier'. When that returns there 650 * is no backgroup IO happening, It must arrange to call 651 * allow_barrier when it has finished its IO. 652 * backgroup IO calls must call raise_barrier. Once that returns 653 * there is no normal IO happeing. It must arrange to call 654 * lower_barrier when the particular background IO completes. 655 */ 656 #define RESYNC_DEPTH 32 657 658 static void raise_barrier(conf_t *conf) 659 { 660 spin_lock_irq(&conf->resync_lock); 661 662 /* Wait until no block IO is waiting */ 663 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 664 conf->resync_lock, 665 raid1_unplug(conf->mddev->queue)); 666 667 /* block any new IO from starting */ 668 conf->barrier++; 669 670 /* No wait for all pending IO to complete */ 671 wait_event_lock_irq(conf->wait_barrier, 672 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 673 conf->resync_lock, 674 raid1_unplug(conf->mddev->queue)); 675 676 spin_unlock_irq(&conf->resync_lock); 677 } 678 679 static void lower_barrier(conf_t *conf) 680 { 681 unsigned long flags; 682 BUG_ON(conf->barrier <= 0); 683 spin_lock_irqsave(&conf->resync_lock, flags); 684 conf->barrier--; 685 spin_unlock_irqrestore(&conf->resync_lock, flags); 686 wake_up(&conf->wait_barrier); 687 } 688 689 static void wait_barrier(conf_t *conf) 690 { 691 spin_lock_irq(&conf->resync_lock); 692 if (conf->barrier) { 693 conf->nr_waiting++; 694 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 695 conf->resync_lock, 696 raid1_unplug(conf->mddev->queue)); 697 conf->nr_waiting--; 698 } 699 conf->nr_pending++; 700 spin_unlock_irq(&conf->resync_lock); 701 } 702 703 static void allow_barrier(conf_t *conf) 704 { 705 unsigned long flags; 706 spin_lock_irqsave(&conf->resync_lock, flags); 707 conf->nr_pending--; 708 spin_unlock_irqrestore(&conf->resync_lock, flags); 709 wake_up(&conf->wait_barrier); 710 } 711 712 static void freeze_array(conf_t *conf) 713 { 714 /* stop syncio and normal IO and wait for everything to 715 * go quite. 716 * We increment barrier and nr_waiting, and then 717 * wait until nr_pending match nr_queued+1 718 * This is called in the context of one normal IO request 719 * that has failed. Thus any sync request that might be pending 720 * will be blocked by nr_pending, and we need to wait for 721 * pending IO requests to complete or be queued for re-try. 722 * Thus the number queued (nr_queued) plus this request (1) 723 * must match the number of pending IOs (nr_pending) before 724 * we continue. 725 */ 726 spin_lock_irq(&conf->resync_lock); 727 conf->barrier++; 728 conf->nr_waiting++; 729 wait_event_lock_irq(conf->wait_barrier, 730 conf->nr_pending == conf->nr_queued+1, 731 conf->resync_lock, 732 ({ flush_pending_writes(conf); 733 raid1_unplug(conf->mddev->queue); })); 734 spin_unlock_irq(&conf->resync_lock); 735 } 736 static void unfreeze_array(conf_t *conf) 737 { 738 /* reverse the effect of the freeze */ 739 spin_lock_irq(&conf->resync_lock); 740 conf->barrier--; 741 conf->nr_waiting--; 742 wake_up(&conf->wait_barrier); 743 spin_unlock_irq(&conf->resync_lock); 744 } 745 746 747 /* duplicate the data pages for behind I/O */ 748 static struct page **alloc_behind_pages(struct bio *bio) 749 { 750 int i; 751 struct bio_vec *bvec; 752 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 753 GFP_NOIO); 754 if (unlikely(!pages)) 755 goto do_sync_io; 756 757 bio_for_each_segment(bvec, bio, i) { 758 pages[i] = alloc_page(GFP_NOIO); 759 if (unlikely(!pages[i])) 760 goto do_sync_io; 761 memcpy(kmap(pages[i]) + bvec->bv_offset, 762 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 763 kunmap(pages[i]); 764 kunmap(bvec->bv_page); 765 } 766 767 return pages; 768 769 do_sync_io: 770 if (pages) 771 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 772 put_page(pages[i]); 773 kfree(pages); 774 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 775 return NULL; 776 } 777 778 static int make_request(mddev_t *mddev, struct bio * bio) 779 { 780 conf_t *conf = mddev->private; 781 mirror_info_t *mirror; 782 r1bio_t *r1_bio; 783 struct bio *read_bio; 784 int i, targets = 0, disks; 785 struct bitmap *bitmap; 786 unsigned long flags; 787 struct bio_list bl; 788 struct page **behind_pages = NULL; 789 const int rw = bio_data_dir(bio); 790 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 791 bool do_barriers; 792 mdk_rdev_t *blocked_rdev; 793 794 /* 795 * Register the new request and wait if the reconstruction 796 * thread has put up a bar for new requests. 797 * Continue immediately if no resync is active currently. 798 * We test barriers_work *after* md_write_start as md_write_start 799 * may cause the first superblock write, and that will check out 800 * if barriers work. 801 */ 802 803 md_write_start(mddev, bio); /* wait on superblock update early */ 804 805 if (bio_data_dir(bio) == WRITE && 806 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 807 bio->bi_sector < mddev->suspend_hi) { 808 /* As the suspend_* range is controlled by 809 * userspace, we want an interruptible 810 * wait. 811 */ 812 DEFINE_WAIT(w); 813 for (;;) { 814 flush_signals(current); 815 prepare_to_wait(&conf->wait_barrier, 816 &w, TASK_INTERRUPTIBLE); 817 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 818 bio->bi_sector >= mddev->suspend_hi) 819 break; 820 schedule(); 821 } 822 finish_wait(&conf->wait_barrier, &w); 823 } 824 if (unlikely(!mddev->barriers_work && 825 bio_rw_flagged(bio, BIO_RW_BARRIER))) { 826 if (rw == WRITE) 827 md_write_end(mddev); 828 bio_endio(bio, -EOPNOTSUPP); 829 return 0; 830 } 831 832 wait_barrier(conf); 833 834 bitmap = mddev->bitmap; 835 836 /* 837 * make_request() can abort the operation when READA is being 838 * used and no empty request is available. 839 * 840 */ 841 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 842 843 r1_bio->master_bio = bio; 844 r1_bio->sectors = bio->bi_size >> 9; 845 r1_bio->state = 0; 846 r1_bio->mddev = mddev; 847 r1_bio->sector = bio->bi_sector; 848 849 if (rw == READ) { 850 /* 851 * read balancing logic: 852 */ 853 int rdisk = read_balance(conf, r1_bio); 854 855 if (rdisk < 0) { 856 /* couldn't find anywhere to read from */ 857 raid_end_bio_io(r1_bio); 858 return 0; 859 } 860 mirror = conf->mirrors + rdisk; 861 862 if (test_bit(WriteMostly, &mirror->rdev->flags) && 863 bitmap) { 864 /* Reading from a write-mostly device must 865 * take care not to over-take any writes 866 * that are 'behind' 867 */ 868 wait_event(bitmap->behind_wait, 869 atomic_read(&bitmap->behind_writes) == 0); 870 } 871 r1_bio->read_disk = rdisk; 872 873 read_bio = bio_clone(bio, GFP_NOIO); 874 875 r1_bio->bios[rdisk] = read_bio; 876 877 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 878 read_bio->bi_bdev = mirror->rdev->bdev; 879 read_bio->bi_end_io = raid1_end_read_request; 880 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 881 read_bio->bi_private = r1_bio; 882 883 generic_make_request(read_bio); 884 return 0; 885 } 886 887 /* 888 * WRITE: 889 */ 890 /* first select target devices under spinlock and 891 * inc refcount on their rdev. Record them by setting 892 * bios[x] to bio 893 */ 894 disks = conf->raid_disks; 895 #if 0 896 { static int first=1; 897 if (first) printk("First Write sector %llu disks %d\n", 898 (unsigned long long)r1_bio->sector, disks); 899 first = 0; 900 } 901 #endif 902 retry_write: 903 blocked_rdev = NULL; 904 rcu_read_lock(); 905 for (i = 0; i < disks; i++) { 906 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 907 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 908 atomic_inc(&rdev->nr_pending); 909 blocked_rdev = rdev; 910 break; 911 } 912 if (rdev && !test_bit(Faulty, &rdev->flags)) { 913 atomic_inc(&rdev->nr_pending); 914 if (test_bit(Faulty, &rdev->flags)) { 915 rdev_dec_pending(rdev, mddev); 916 r1_bio->bios[i] = NULL; 917 } else { 918 r1_bio->bios[i] = bio; 919 targets++; 920 } 921 } else 922 r1_bio->bios[i] = NULL; 923 } 924 rcu_read_unlock(); 925 926 if (unlikely(blocked_rdev)) { 927 /* Wait for this device to become unblocked */ 928 int j; 929 930 for (j = 0; j < i; j++) 931 if (r1_bio->bios[j]) 932 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 933 934 allow_barrier(conf); 935 md_wait_for_blocked_rdev(blocked_rdev, mddev); 936 wait_barrier(conf); 937 goto retry_write; 938 } 939 940 BUG_ON(targets == 0); /* we never fail the last device */ 941 942 if (targets < conf->raid_disks) { 943 /* array is degraded, we will not clear the bitmap 944 * on I/O completion (see raid1_end_write_request) */ 945 set_bit(R1BIO_Degraded, &r1_bio->state); 946 } 947 948 /* do behind I/O ? 949 * Not if there are too many, or cannot allocate memory, 950 * or a reader on WriteMostly is waiting for behind writes 951 * to flush */ 952 if (bitmap && 953 (atomic_read(&bitmap->behind_writes) 954 < mddev->bitmap_info.max_write_behind) && 955 !waitqueue_active(&bitmap->behind_wait) && 956 (behind_pages = alloc_behind_pages(bio)) != NULL) 957 set_bit(R1BIO_BehindIO, &r1_bio->state); 958 959 atomic_set(&r1_bio->remaining, 0); 960 atomic_set(&r1_bio->behind_remaining, 0); 961 962 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER); 963 if (do_barriers) 964 set_bit(R1BIO_Barrier, &r1_bio->state); 965 966 bio_list_init(&bl); 967 for (i = 0; i < disks; i++) { 968 struct bio *mbio; 969 if (!r1_bio->bios[i]) 970 continue; 971 972 mbio = bio_clone(bio, GFP_NOIO); 973 r1_bio->bios[i] = mbio; 974 975 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 976 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 977 mbio->bi_end_io = raid1_end_write_request; 978 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) | 979 (do_sync << BIO_RW_SYNCIO); 980 mbio->bi_private = r1_bio; 981 982 if (behind_pages) { 983 struct bio_vec *bvec; 984 int j; 985 986 /* Yes, I really want the '__' version so that 987 * we clear any unused pointer in the io_vec, rather 988 * than leave them unchanged. This is important 989 * because when we come to free the pages, we won't 990 * know the originial bi_idx, so we just free 991 * them all 992 */ 993 __bio_for_each_segment(bvec, mbio, j, 0) 994 bvec->bv_page = behind_pages[j]; 995 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 996 atomic_inc(&r1_bio->behind_remaining); 997 } 998 999 atomic_inc(&r1_bio->remaining); 1000 1001 bio_list_add(&bl, mbio); 1002 } 1003 kfree(behind_pages); /* the behind pages are attached to the bios now */ 1004 1005 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 1006 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1007 spin_lock_irqsave(&conf->device_lock, flags); 1008 bio_list_merge(&conf->pending_bio_list, &bl); 1009 bio_list_init(&bl); 1010 1011 blk_plug_device(mddev->queue); 1012 spin_unlock_irqrestore(&conf->device_lock, flags); 1013 1014 /* In case raid1d snuck into freeze_array */ 1015 wake_up(&conf->wait_barrier); 1016 1017 if (do_sync) 1018 md_wakeup_thread(mddev->thread); 1019 #if 0 1020 while ((bio = bio_list_pop(&bl)) != NULL) 1021 generic_make_request(bio); 1022 #endif 1023 1024 return 0; 1025 } 1026 1027 static void status(struct seq_file *seq, mddev_t *mddev) 1028 { 1029 conf_t *conf = mddev->private; 1030 int i; 1031 1032 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1033 conf->raid_disks - mddev->degraded); 1034 rcu_read_lock(); 1035 for (i = 0; i < conf->raid_disks; i++) { 1036 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1037 seq_printf(seq, "%s", 1038 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1039 } 1040 rcu_read_unlock(); 1041 seq_printf(seq, "]"); 1042 } 1043 1044 1045 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1046 { 1047 char b[BDEVNAME_SIZE]; 1048 conf_t *conf = mddev->private; 1049 1050 /* 1051 * If it is not operational, then we have already marked it as dead 1052 * else if it is the last working disks, ignore the error, let the 1053 * next level up know. 1054 * else mark the drive as failed 1055 */ 1056 if (test_bit(In_sync, &rdev->flags) 1057 && (conf->raid_disks - mddev->degraded) == 1) { 1058 /* 1059 * Don't fail the drive, act as though we were just a 1060 * normal single drive. 1061 * However don't try a recovery from this drive as 1062 * it is very likely to fail. 1063 */ 1064 mddev->recovery_disabled = 1; 1065 return; 1066 } 1067 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1068 unsigned long flags; 1069 spin_lock_irqsave(&conf->device_lock, flags); 1070 mddev->degraded++; 1071 set_bit(Faulty, &rdev->flags); 1072 spin_unlock_irqrestore(&conf->device_lock, flags); 1073 /* 1074 * if recovery is running, make sure it aborts. 1075 */ 1076 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1077 } else 1078 set_bit(Faulty, &rdev->flags); 1079 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1080 printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n" 1081 KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n", 1082 mdname(mddev), bdevname(rdev->bdev, b), 1083 mdname(mddev), conf->raid_disks - mddev->degraded); 1084 } 1085 1086 static void print_conf(conf_t *conf) 1087 { 1088 int i; 1089 1090 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1091 if (!conf) { 1092 printk(KERN_DEBUG "(!conf)\n"); 1093 return; 1094 } 1095 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1096 conf->raid_disks); 1097 1098 rcu_read_lock(); 1099 for (i = 0; i < conf->raid_disks; i++) { 1100 char b[BDEVNAME_SIZE]; 1101 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1102 if (rdev) 1103 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1104 i, !test_bit(In_sync, &rdev->flags), 1105 !test_bit(Faulty, &rdev->flags), 1106 bdevname(rdev->bdev,b)); 1107 } 1108 rcu_read_unlock(); 1109 } 1110 1111 static void close_sync(conf_t *conf) 1112 { 1113 wait_barrier(conf); 1114 allow_barrier(conf); 1115 1116 mempool_destroy(conf->r1buf_pool); 1117 conf->r1buf_pool = NULL; 1118 } 1119 1120 static int raid1_spare_active(mddev_t *mddev) 1121 { 1122 int i; 1123 conf_t *conf = mddev->private; 1124 1125 /* 1126 * Find all failed disks within the RAID1 configuration 1127 * and mark them readable. 1128 * Called under mddev lock, so rcu protection not needed. 1129 */ 1130 for (i = 0; i < conf->raid_disks; i++) { 1131 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1132 if (rdev 1133 && !test_bit(Faulty, &rdev->flags) 1134 && !test_and_set_bit(In_sync, &rdev->flags)) { 1135 unsigned long flags; 1136 spin_lock_irqsave(&conf->device_lock, flags); 1137 mddev->degraded--; 1138 spin_unlock_irqrestore(&conf->device_lock, flags); 1139 } 1140 } 1141 1142 print_conf(conf); 1143 return 0; 1144 } 1145 1146 1147 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1148 { 1149 conf_t *conf = mddev->private; 1150 int err = -EEXIST; 1151 int mirror = 0; 1152 mirror_info_t *p; 1153 int first = 0; 1154 int last = mddev->raid_disks - 1; 1155 1156 if (rdev->raid_disk >= 0) 1157 first = last = rdev->raid_disk; 1158 1159 for (mirror = first; mirror <= last; mirror++) 1160 if ( !(p=conf->mirrors+mirror)->rdev) { 1161 1162 disk_stack_limits(mddev->gendisk, rdev->bdev, 1163 rdev->data_offset << 9); 1164 /* as we don't honour merge_bvec_fn, we must 1165 * never risk violating it, so limit 1166 * ->max_segments to one lying with a single 1167 * page, as a one page request is never in 1168 * violation. 1169 */ 1170 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1171 blk_queue_max_segments(mddev->queue, 1); 1172 blk_queue_segment_boundary(mddev->queue, 1173 PAGE_CACHE_SIZE - 1); 1174 } 1175 1176 p->head_position = 0; 1177 rdev->raid_disk = mirror; 1178 err = 0; 1179 /* As all devices are equivalent, we don't need a full recovery 1180 * if this was recently any drive of the array 1181 */ 1182 if (rdev->saved_raid_disk < 0) 1183 conf->fullsync = 1; 1184 rcu_assign_pointer(p->rdev, rdev); 1185 break; 1186 } 1187 md_integrity_add_rdev(rdev, mddev); 1188 print_conf(conf); 1189 return err; 1190 } 1191 1192 static int raid1_remove_disk(mddev_t *mddev, int number) 1193 { 1194 conf_t *conf = mddev->private; 1195 int err = 0; 1196 mdk_rdev_t *rdev; 1197 mirror_info_t *p = conf->mirrors+ number; 1198 1199 print_conf(conf); 1200 rdev = p->rdev; 1201 if (rdev) { 1202 if (test_bit(In_sync, &rdev->flags) || 1203 atomic_read(&rdev->nr_pending)) { 1204 err = -EBUSY; 1205 goto abort; 1206 } 1207 /* Only remove non-faulty devices is recovery 1208 * is not possible. 1209 */ 1210 if (!test_bit(Faulty, &rdev->flags) && 1211 mddev->degraded < conf->raid_disks) { 1212 err = -EBUSY; 1213 goto abort; 1214 } 1215 p->rdev = NULL; 1216 synchronize_rcu(); 1217 if (atomic_read(&rdev->nr_pending)) { 1218 /* lost the race, try later */ 1219 err = -EBUSY; 1220 p->rdev = rdev; 1221 goto abort; 1222 } 1223 md_integrity_register(mddev); 1224 } 1225 abort: 1226 1227 print_conf(conf); 1228 return err; 1229 } 1230 1231 1232 static void end_sync_read(struct bio *bio, int error) 1233 { 1234 r1bio_t *r1_bio = bio->bi_private; 1235 int i; 1236 1237 for (i=r1_bio->mddev->raid_disks; i--; ) 1238 if (r1_bio->bios[i] == bio) 1239 break; 1240 BUG_ON(i < 0); 1241 update_head_pos(i, r1_bio); 1242 /* 1243 * we have read a block, now it needs to be re-written, 1244 * or re-read if the read failed. 1245 * We don't do much here, just schedule handling by raid1d 1246 */ 1247 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1248 set_bit(R1BIO_Uptodate, &r1_bio->state); 1249 1250 if (atomic_dec_and_test(&r1_bio->remaining)) 1251 reschedule_retry(r1_bio); 1252 } 1253 1254 static void end_sync_write(struct bio *bio, int error) 1255 { 1256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1257 r1bio_t *r1_bio = bio->bi_private; 1258 mddev_t *mddev = r1_bio->mddev; 1259 conf_t *conf = mddev->private; 1260 int i; 1261 int mirror=0; 1262 1263 for (i = 0; i < conf->raid_disks; i++) 1264 if (r1_bio->bios[i] == bio) { 1265 mirror = i; 1266 break; 1267 } 1268 if (!uptodate) { 1269 int sync_blocks = 0; 1270 sector_t s = r1_bio->sector; 1271 long sectors_to_go = r1_bio->sectors; 1272 /* make sure these bits doesn't get cleared. */ 1273 do { 1274 bitmap_end_sync(mddev->bitmap, s, 1275 &sync_blocks, 1); 1276 s += sync_blocks; 1277 sectors_to_go -= sync_blocks; 1278 } while (sectors_to_go > 0); 1279 md_error(mddev, conf->mirrors[mirror].rdev); 1280 } 1281 1282 update_head_pos(mirror, r1_bio); 1283 1284 if (atomic_dec_and_test(&r1_bio->remaining)) { 1285 sector_t s = r1_bio->sectors; 1286 put_buf(r1_bio); 1287 md_done_sync(mddev, s, uptodate); 1288 } 1289 } 1290 1291 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1292 { 1293 conf_t *conf = mddev->private; 1294 int i; 1295 int disks = conf->raid_disks; 1296 struct bio *bio, *wbio; 1297 1298 bio = r1_bio->bios[r1_bio->read_disk]; 1299 1300 1301 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1302 /* We have read all readable devices. If we haven't 1303 * got the block, then there is no hope left. 1304 * If we have, then we want to do a comparison 1305 * and skip the write if everything is the same. 1306 * If any blocks failed to read, then we need to 1307 * attempt an over-write 1308 */ 1309 int primary; 1310 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1311 for (i=0; i<mddev->raid_disks; i++) 1312 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1313 md_error(mddev, conf->mirrors[i].rdev); 1314 1315 md_done_sync(mddev, r1_bio->sectors, 1); 1316 put_buf(r1_bio); 1317 return; 1318 } 1319 for (primary=0; primary<mddev->raid_disks; primary++) 1320 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1321 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1322 r1_bio->bios[primary]->bi_end_io = NULL; 1323 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1324 break; 1325 } 1326 r1_bio->read_disk = primary; 1327 for (i=0; i<mddev->raid_disks; i++) 1328 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1329 int j; 1330 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1331 struct bio *pbio = r1_bio->bios[primary]; 1332 struct bio *sbio = r1_bio->bios[i]; 1333 1334 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1335 for (j = vcnt; j-- ; ) { 1336 struct page *p, *s; 1337 p = pbio->bi_io_vec[j].bv_page; 1338 s = sbio->bi_io_vec[j].bv_page; 1339 if (memcmp(page_address(p), 1340 page_address(s), 1341 PAGE_SIZE)) 1342 break; 1343 } 1344 } else 1345 j = 0; 1346 if (j >= 0) 1347 mddev->resync_mismatches += r1_bio->sectors; 1348 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1349 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1350 sbio->bi_end_io = NULL; 1351 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1352 } else { 1353 /* fixup the bio for reuse */ 1354 int size; 1355 sbio->bi_vcnt = vcnt; 1356 sbio->bi_size = r1_bio->sectors << 9; 1357 sbio->bi_idx = 0; 1358 sbio->bi_phys_segments = 0; 1359 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1360 sbio->bi_flags |= 1 << BIO_UPTODATE; 1361 sbio->bi_next = NULL; 1362 sbio->bi_sector = r1_bio->sector + 1363 conf->mirrors[i].rdev->data_offset; 1364 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1365 size = sbio->bi_size; 1366 for (j = 0; j < vcnt ; j++) { 1367 struct bio_vec *bi; 1368 bi = &sbio->bi_io_vec[j]; 1369 bi->bv_offset = 0; 1370 if (size > PAGE_SIZE) 1371 bi->bv_len = PAGE_SIZE; 1372 else 1373 bi->bv_len = size; 1374 size -= PAGE_SIZE; 1375 memcpy(page_address(bi->bv_page), 1376 page_address(pbio->bi_io_vec[j].bv_page), 1377 PAGE_SIZE); 1378 } 1379 1380 } 1381 } 1382 } 1383 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1384 /* ouch - failed to read all of that. 1385 * Try some synchronous reads of other devices to get 1386 * good data, much like with normal read errors. Only 1387 * read into the pages we already have so we don't 1388 * need to re-issue the read request. 1389 * We don't need to freeze the array, because being in an 1390 * active sync request, there is no normal IO, and 1391 * no overlapping syncs. 1392 */ 1393 sector_t sect = r1_bio->sector; 1394 int sectors = r1_bio->sectors; 1395 int idx = 0; 1396 1397 while(sectors) { 1398 int s = sectors; 1399 int d = r1_bio->read_disk; 1400 int success = 0; 1401 mdk_rdev_t *rdev; 1402 1403 if (s > (PAGE_SIZE>>9)) 1404 s = PAGE_SIZE >> 9; 1405 do { 1406 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1407 /* No rcu protection needed here devices 1408 * can only be removed when no resync is 1409 * active, and resync is currently active 1410 */ 1411 rdev = conf->mirrors[d].rdev; 1412 if (sync_page_io(rdev->bdev, 1413 sect + rdev->data_offset, 1414 s<<9, 1415 bio->bi_io_vec[idx].bv_page, 1416 READ)) { 1417 success = 1; 1418 break; 1419 } 1420 } 1421 d++; 1422 if (d == conf->raid_disks) 1423 d = 0; 1424 } while (!success && d != r1_bio->read_disk); 1425 1426 if (success) { 1427 int start = d; 1428 /* write it back and re-read */ 1429 set_bit(R1BIO_Uptodate, &r1_bio->state); 1430 while (d != r1_bio->read_disk) { 1431 if (d == 0) 1432 d = conf->raid_disks; 1433 d--; 1434 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1435 continue; 1436 rdev = conf->mirrors[d].rdev; 1437 atomic_add(s, &rdev->corrected_errors); 1438 if (sync_page_io(rdev->bdev, 1439 sect + rdev->data_offset, 1440 s<<9, 1441 bio->bi_io_vec[idx].bv_page, 1442 WRITE) == 0) 1443 md_error(mddev, rdev); 1444 } 1445 d = start; 1446 while (d != r1_bio->read_disk) { 1447 if (d == 0) 1448 d = conf->raid_disks; 1449 d--; 1450 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1451 continue; 1452 rdev = conf->mirrors[d].rdev; 1453 if (sync_page_io(rdev->bdev, 1454 sect + rdev->data_offset, 1455 s<<9, 1456 bio->bi_io_vec[idx].bv_page, 1457 READ) == 0) 1458 md_error(mddev, rdev); 1459 } 1460 } else { 1461 char b[BDEVNAME_SIZE]; 1462 /* Cannot read from anywhere, array is toast */ 1463 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1464 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1465 " for block %llu\n", 1466 mdname(mddev), 1467 bdevname(bio->bi_bdev, b), 1468 (unsigned long long)r1_bio->sector); 1469 md_done_sync(mddev, r1_bio->sectors, 0); 1470 put_buf(r1_bio); 1471 return; 1472 } 1473 sectors -= s; 1474 sect += s; 1475 idx ++; 1476 } 1477 } 1478 1479 /* 1480 * schedule writes 1481 */ 1482 atomic_set(&r1_bio->remaining, 1); 1483 for (i = 0; i < disks ; i++) { 1484 wbio = r1_bio->bios[i]; 1485 if (wbio->bi_end_io == NULL || 1486 (wbio->bi_end_io == end_sync_read && 1487 (i == r1_bio->read_disk || 1488 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1489 continue; 1490 1491 wbio->bi_rw = WRITE; 1492 wbio->bi_end_io = end_sync_write; 1493 atomic_inc(&r1_bio->remaining); 1494 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1495 1496 generic_make_request(wbio); 1497 } 1498 1499 if (atomic_dec_and_test(&r1_bio->remaining)) { 1500 /* if we're here, all write(s) have completed, so clean up */ 1501 md_done_sync(mddev, r1_bio->sectors, 1); 1502 put_buf(r1_bio); 1503 } 1504 } 1505 1506 /* 1507 * This is a kernel thread which: 1508 * 1509 * 1. Retries failed read operations on working mirrors. 1510 * 2. Updates the raid superblock when problems encounter. 1511 * 3. Performs writes following reads for array syncronising. 1512 */ 1513 1514 static void fix_read_error(conf_t *conf, int read_disk, 1515 sector_t sect, int sectors) 1516 { 1517 mddev_t *mddev = conf->mddev; 1518 while(sectors) { 1519 int s = sectors; 1520 int d = read_disk; 1521 int success = 0; 1522 int start; 1523 mdk_rdev_t *rdev; 1524 1525 if (s > (PAGE_SIZE>>9)) 1526 s = PAGE_SIZE >> 9; 1527 1528 do { 1529 /* Note: no rcu protection needed here 1530 * as this is synchronous in the raid1d thread 1531 * which is the thread that might remove 1532 * a device. If raid1d ever becomes multi-threaded.... 1533 */ 1534 rdev = conf->mirrors[d].rdev; 1535 if (rdev && 1536 test_bit(In_sync, &rdev->flags) && 1537 sync_page_io(rdev->bdev, 1538 sect + rdev->data_offset, 1539 s<<9, 1540 conf->tmppage, READ)) 1541 success = 1; 1542 else { 1543 d++; 1544 if (d == conf->raid_disks) 1545 d = 0; 1546 } 1547 } while (!success && d != read_disk); 1548 1549 if (!success) { 1550 /* Cannot read from anywhere -- bye bye array */ 1551 md_error(mddev, conf->mirrors[read_disk].rdev); 1552 break; 1553 } 1554 /* write it back and re-read */ 1555 start = d; 1556 while (d != read_disk) { 1557 if (d==0) 1558 d = conf->raid_disks; 1559 d--; 1560 rdev = conf->mirrors[d].rdev; 1561 if (rdev && 1562 test_bit(In_sync, &rdev->flags)) { 1563 if (sync_page_io(rdev->bdev, 1564 sect + rdev->data_offset, 1565 s<<9, conf->tmppage, WRITE) 1566 == 0) 1567 /* Well, this device is dead */ 1568 md_error(mddev, rdev); 1569 } 1570 } 1571 d = start; 1572 while (d != read_disk) { 1573 char b[BDEVNAME_SIZE]; 1574 if (d==0) 1575 d = conf->raid_disks; 1576 d--; 1577 rdev = conf->mirrors[d].rdev; 1578 if (rdev && 1579 test_bit(In_sync, &rdev->flags)) { 1580 if (sync_page_io(rdev->bdev, 1581 sect + rdev->data_offset, 1582 s<<9, conf->tmppage, READ) 1583 == 0) 1584 /* Well, this device is dead */ 1585 md_error(mddev, rdev); 1586 else { 1587 atomic_add(s, &rdev->corrected_errors); 1588 printk(KERN_INFO 1589 "md/raid1:%s: read error corrected " 1590 "(%d sectors at %llu on %s)\n", 1591 mdname(mddev), s, 1592 (unsigned long long)(sect + 1593 rdev->data_offset), 1594 bdevname(rdev->bdev, b)); 1595 } 1596 } 1597 } 1598 sectors -= s; 1599 sect += s; 1600 } 1601 } 1602 1603 static void raid1d(mddev_t *mddev) 1604 { 1605 r1bio_t *r1_bio; 1606 struct bio *bio; 1607 unsigned long flags; 1608 conf_t *conf = mddev->private; 1609 struct list_head *head = &conf->retry_list; 1610 int unplug=0; 1611 mdk_rdev_t *rdev; 1612 1613 md_check_recovery(mddev); 1614 1615 for (;;) { 1616 char b[BDEVNAME_SIZE]; 1617 1618 unplug += flush_pending_writes(conf); 1619 1620 spin_lock_irqsave(&conf->device_lock, flags); 1621 if (list_empty(head)) { 1622 spin_unlock_irqrestore(&conf->device_lock, flags); 1623 break; 1624 } 1625 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1626 list_del(head->prev); 1627 conf->nr_queued--; 1628 spin_unlock_irqrestore(&conf->device_lock, flags); 1629 1630 mddev = r1_bio->mddev; 1631 conf = mddev->private; 1632 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1633 sync_request_write(mddev, r1_bio); 1634 unplug = 1; 1635 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1636 /* some requests in the r1bio were BIO_RW_BARRIER 1637 * requests which failed with -EOPNOTSUPP. Hohumm.. 1638 * Better resubmit without the barrier. 1639 * We know which devices to resubmit for, because 1640 * all others have had their bios[] entry cleared. 1641 * We already have a nr_pending reference on these rdevs. 1642 */ 1643 int i; 1644 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1645 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1646 clear_bit(R1BIO_Barrier, &r1_bio->state); 1647 for (i=0; i < conf->raid_disks; i++) 1648 if (r1_bio->bios[i]) 1649 atomic_inc(&r1_bio->remaining); 1650 for (i=0; i < conf->raid_disks; i++) 1651 if (r1_bio->bios[i]) { 1652 struct bio_vec *bvec; 1653 int j; 1654 1655 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1656 /* copy pages from the failed bio, as 1657 * this might be a write-behind device */ 1658 __bio_for_each_segment(bvec, bio, j, 0) 1659 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1660 bio_put(r1_bio->bios[i]); 1661 bio->bi_sector = r1_bio->sector + 1662 conf->mirrors[i].rdev->data_offset; 1663 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1664 bio->bi_end_io = raid1_end_write_request; 1665 bio->bi_rw = WRITE | 1666 (do_sync << BIO_RW_SYNCIO); 1667 bio->bi_private = r1_bio; 1668 r1_bio->bios[i] = bio; 1669 generic_make_request(bio); 1670 } 1671 } else { 1672 int disk; 1673 1674 /* we got a read error. Maybe the drive is bad. Maybe just 1675 * the block and we can fix it. 1676 * We freeze all other IO, and try reading the block from 1677 * other devices. When we find one, we re-write 1678 * and check it that fixes the read error. 1679 * This is all done synchronously while the array is 1680 * frozen 1681 */ 1682 if (mddev->ro == 0) { 1683 freeze_array(conf); 1684 fix_read_error(conf, r1_bio->read_disk, 1685 r1_bio->sector, 1686 r1_bio->sectors); 1687 unfreeze_array(conf); 1688 } else 1689 md_error(mddev, 1690 conf->mirrors[r1_bio->read_disk].rdev); 1691 1692 bio = r1_bio->bios[r1_bio->read_disk]; 1693 if ((disk=read_balance(conf, r1_bio)) == -1) { 1694 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1695 " read error for block %llu\n", 1696 mdname(mddev), 1697 bdevname(bio->bi_bdev,b), 1698 (unsigned long long)r1_bio->sector); 1699 raid_end_bio_io(r1_bio); 1700 } else { 1701 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1702 r1_bio->bios[r1_bio->read_disk] = 1703 mddev->ro ? IO_BLOCKED : NULL; 1704 r1_bio->read_disk = disk; 1705 bio_put(bio); 1706 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1707 r1_bio->bios[r1_bio->read_disk] = bio; 1708 rdev = conf->mirrors[disk].rdev; 1709 if (printk_ratelimit()) 1710 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1711 " other mirror: %s\n", 1712 mdname(mddev), 1713 (unsigned long long)r1_bio->sector, 1714 bdevname(rdev->bdev,b)); 1715 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1716 bio->bi_bdev = rdev->bdev; 1717 bio->bi_end_io = raid1_end_read_request; 1718 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1719 bio->bi_private = r1_bio; 1720 unplug = 1; 1721 generic_make_request(bio); 1722 } 1723 } 1724 cond_resched(); 1725 } 1726 if (unplug) 1727 unplug_slaves(mddev); 1728 } 1729 1730 1731 static int init_resync(conf_t *conf) 1732 { 1733 int buffs; 1734 1735 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1736 BUG_ON(conf->r1buf_pool); 1737 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1738 conf->poolinfo); 1739 if (!conf->r1buf_pool) 1740 return -ENOMEM; 1741 conf->next_resync = 0; 1742 return 0; 1743 } 1744 1745 /* 1746 * perform a "sync" on one "block" 1747 * 1748 * We need to make sure that no normal I/O request - particularly write 1749 * requests - conflict with active sync requests. 1750 * 1751 * This is achieved by tracking pending requests and a 'barrier' concept 1752 * that can be installed to exclude normal IO requests. 1753 */ 1754 1755 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1756 { 1757 conf_t *conf = mddev->private; 1758 r1bio_t *r1_bio; 1759 struct bio *bio; 1760 sector_t max_sector, nr_sectors; 1761 int disk = -1; 1762 int i; 1763 int wonly = -1; 1764 int write_targets = 0, read_targets = 0; 1765 int sync_blocks; 1766 int still_degraded = 0; 1767 1768 if (!conf->r1buf_pool) 1769 if (init_resync(conf)) 1770 return 0; 1771 1772 max_sector = mddev->dev_sectors; 1773 if (sector_nr >= max_sector) { 1774 /* If we aborted, we need to abort the 1775 * sync on the 'current' bitmap chunk (there will 1776 * only be one in raid1 resync. 1777 * We can find the current addess in mddev->curr_resync 1778 */ 1779 if (mddev->curr_resync < max_sector) /* aborted */ 1780 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1781 &sync_blocks, 1); 1782 else /* completed sync */ 1783 conf->fullsync = 0; 1784 1785 bitmap_close_sync(mddev->bitmap); 1786 close_sync(conf); 1787 return 0; 1788 } 1789 1790 if (mddev->bitmap == NULL && 1791 mddev->recovery_cp == MaxSector && 1792 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1793 conf->fullsync == 0) { 1794 *skipped = 1; 1795 return max_sector - sector_nr; 1796 } 1797 /* before building a request, check if we can skip these blocks.. 1798 * This call the bitmap_start_sync doesn't actually record anything 1799 */ 1800 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1801 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1802 /* We can skip this block, and probably several more */ 1803 *skipped = 1; 1804 return sync_blocks; 1805 } 1806 /* 1807 * If there is non-resync activity waiting for a turn, 1808 * and resync is going fast enough, 1809 * then let it though before starting on this new sync request. 1810 */ 1811 if (!go_faster && conf->nr_waiting) 1812 msleep_interruptible(1000); 1813 1814 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1815 raise_barrier(conf); 1816 1817 conf->next_resync = sector_nr; 1818 1819 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1820 rcu_read_lock(); 1821 /* 1822 * If we get a correctably read error during resync or recovery, 1823 * we might want to read from a different device. So we 1824 * flag all drives that could conceivably be read from for READ, 1825 * and any others (which will be non-In_sync devices) for WRITE. 1826 * If a read fails, we try reading from something else for which READ 1827 * is OK. 1828 */ 1829 1830 r1_bio->mddev = mddev; 1831 r1_bio->sector = sector_nr; 1832 r1_bio->state = 0; 1833 set_bit(R1BIO_IsSync, &r1_bio->state); 1834 1835 for (i=0; i < conf->raid_disks; i++) { 1836 mdk_rdev_t *rdev; 1837 bio = r1_bio->bios[i]; 1838 1839 /* take from bio_init */ 1840 bio->bi_next = NULL; 1841 bio->bi_flags |= 1 << BIO_UPTODATE; 1842 bio->bi_rw = READ; 1843 bio->bi_vcnt = 0; 1844 bio->bi_idx = 0; 1845 bio->bi_phys_segments = 0; 1846 bio->bi_size = 0; 1847 bio->bi_end_io = NULL; 1848 bio->bi_private = NULL; 1849 1850 rdev = rcu_dereference(conf->mirrors[i].rdev); 1851 if (rdev == NULL || 1852 test_bit(Faulty, &rdev->flags)) { 1853 still_degraded = 1; 1854 continue; 1855 } else if (!test_bit(In_sync, &rdev->flags)) { 1856 bio->bi_rw = WRITE; 1857 bio->bi_end_io = end_sync_write; 1858 write_targets ++; 1859 } else { 1860 /* may need to read from here */ 1861 bio->bi_rw = READ; 1862 bio->bi_end_io = end_sync_read; 1863 if (test_bit(WriteMostly, &rdev->flags)) { 1864 if (wonly < 0) 1865 wonly = i; 1866 } else { 1867 if (disk < 0) 1868 disk = i; 1869 } 1870 read_targets++; 1871 } 1872 atomic_inc(&rdev->nr_pending); 1873 bio->bi_sector = sector_nr + rdev->data_offset; 1874 bio->bi_bdev = rdev->bdev; 1875 bio->bi_private = r1_bio; 1876 } 1877 rcu_read_unlock(); 1878 if (disk < 0) 1879 disk = wonly; 1880 r1_bio->read_disk = disk; 1881 1882 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1883 /* extra read targets are also write targets */ 1884 write_targets += read_targets-1; 1885 1886 if (write_targets == 0 || read_targets == 0) { 1887 /* There is nowhere to write, so all non-sync 1888 * drives must be failed - so we are finished 1889 */ 1890 sector_t rv = max_sector - sector_nr; 1891 *skipped = 1; 1892 put_buf(r1_bio); 1893 return rv; 1894 } 1895 1896 if (max_sector > mddev->resync_max) 1897 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1898 nr_sectors = 0; 1899 sync_blocks = 0; 1900 do { 1901 struct page *page; 1902 int len = PAGE_SIZE; 1903 if (sector_nr + (len>>9) > max_sector) 1904 len = (max_sector - sector_nr) << 9; 1905 if (len == 0) 1906 break; 1907 if (sync_blocks == 0) { 1908 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1909 &sync_blocks, still_degraded) && 1910 !conf->fullsync && 1911 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1912 break; 1913 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1914 if (len > (sync_blocks<<9)) 1915 len = sync_blocks<<9; 1916 } 1917 1918 for (i=0 ; i < conf->raid_disks; i++) { 1919 bio = r1_bio->bios[i]; 1920 if (bio->bi_end_io) { 1921 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1922 if (bio_add_page(bio, page, len, 0) == 0) { 1923 /* stop here */ 1924 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1925 while (i > 0) { 1926 i--; 1927 bio = r1_bio->bios[i]; 1928 if (bio->bi_end_io==NULL) 1929 continue; 1930 /* remove last page from this bio */ 1931 bio->bi_vcnt--; 1932 bio->bi_size -= len; 1933 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1934 } 1935 goto bio_full; 1936 } 1937 } 1938 } 1939 nr_sectors += len>>9; 1940 sector_nr += len>>9; 1941 sync_blocks -= (len>>9); 1942 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1943 bio_full: 1944 r1_bio->sectors = nr_sectors; 1945 1946 /* For a user-requested sync, we read all readable devices and do a 1947 * compare 1948 */ 1949 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1950 atomic_set(&r1_bio->remaining, read_targets); 1951 for (i=0; i<conf->raid_disks; i++) { 1952 bio = r1_bio->bios[i]; 1953 if (bio->bi_end_io == end_sync_read) { 1954 md_sync_acct(bio->bi_bdev, nr_sectors); 1955 generic_make_request(bio); 1956 } 1957 } 1958 } else { 1959 atomic_set(&r1_bio->remaining, 1); 1960 bio = r1_bio->bios[r1_bio->read_disk]; 1961 md_sync_acct(bio->bi_bdev, nr_sectors); 1962 generic_make_request(bio); 1963 1964 } 1965 return nr_sectors; 1966 } 1967 1968 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1969 { 1970 if (sectors) 1971 return sectors; 1972 1973 return mddev->dev_sectors; 1974 } 1975 1976 static conf_t *setup_conf(mddev_t *mddev) 1977 { 1978 conf_t *conf; 1979 int i; 1980 mirror_info_t *disk; 1981 mdk_rdev_t *rdev; 1982 int err = -ENOMEM; 1983 1984 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1985 if (!conf) 1986 goto abort; 1987 1988 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1989 GFP_KERNEL); 1990 if (!conf->mirrors) 1991 goto abort; 1992 1993 conf->tmppage = alloc_page(GFP_KERNEL); 1994 if (!conf->tmppage) 1995 goto abort; 1996 1997 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1998 if (!conf->poolinfo) 1999 goto abort; 2000 conf->poolinfo->raid_disks = mddev->raid_disks; 2001 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2002 r1bio_pool_free, 2003 conf->poolinfo); 2004 if (!conf->r1bio_pool) 2005 goto abort; 2006 2007 conf->poolinfo->mddev = mddev; 2008 2009 spin_lock_init(&conf->device_lock); 2010 list_for_each_entry(rdev, &mddev->disks, same_set) { 2011 int disk_idx = rdev->raid_disk; 2012 if (disk_idx >= mddev->raid_disks 2013 || disk_idx < 0) 2014 continue; 2015 disk = conf->mirrors + disk_idx; 2016 2017 disk->rdev = rdev; 2018 2019 disk->head_position = 0; 2020 } 2021 conf->raid_disks = mddev->raid_disks; 2022 conf->mddev = mddev; 2023 INIT_LIST_HEAD(&conf->retry_list); 2024 2025 spin_lock_init(&conf->resync_lock); 2026 init_waitqueue_head(&conf->wait_barrier); 2027 2028 bio_list_init(&conf->pending_bio_list); 2029 bio_list_init(&conf->flushing_bio_list); 2030 2031 conf->last_used = -1; 2032 for (i = 0; i < conf->raid_disks; i++) { 2033 2034 disk = conf->mirrors + i; 2035 2036 if (!disk->rdev || 2037 !test_bit(In_sync, &disk->rdev->flags)) { 2038 disk->head_position = 0; 2039 if (disk->rdev) 2040 conf->fullsync = 1; 2041 } else if (conf->last_used < 0) 2042 /* 2043 * The first working device is used as a 2044 * starting point to read balancing. 2045 */ 2046 conf->last_used = i; 2047 } 2048 2049 err = -EIO; 2050 if (conf->last_used < 0) { 2051 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2052 mdname(mddev)); 2053 goto abort; 2054 } 2055 err = -ENOMEM; 2056 conf->thread = md_register_thread(raid1d, mddev, NULL); 2057 if (!conf->thread) { 2058 printk(KERN_ERR 2059 "md/raid1:%s: couldn't allocate thread\n", 2060 mdname(mddev)); 2061 goto abort; 2062 } 2063 2064 return conf; 2065 2066 abort: 2067 if (conf) { 2068 if (conf->r1bio_pool) 2069 mempool_destroy(conf->r1bio_pool); 2070 kfree(conf->mirrors); 2071 safe_put_page(conf->tmppage); 2072 kfree(conf->poolinfo); 2073 kfree(conf); 2074 } 2075 return ERR_PTR(err); 2076 } 2077 2078 static int run(mddev_t *mddev) 2079 { 2080 conf_t *conf; 2081 int i; 2082 mdk_rdev_t *rdev; 2083 2084 if (mddev->level != 1) { 2085 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2086 mdname(mddev), mddev->level); 2087 return -EIO; 2088 } 2089 if (mddev->reshape_position != MaxSector) { 2090 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2091 mdname(mddev)); 2092 return -EIO; 2093 } 2094 /* 2095 * copy the already verified devices into our private RAID1 2096 * bookkeeping area. [whatever we allocate in run(), 2097 * should be freed in stop()] 2098 */ 2099 if (mddev->private == NULL) 2100 conf = setup_conf(mddev); 2101 else 2102 conf = mddev->private; 2103 2104 if (IS_ERR(conf)) 2105 return PTR_ERR(conf); 2106 2107 mddev->queue->queue_lock = &conf->device_lock; 2108 list_for_each_entry(rdev, &mddev->disks, same_set) { 2109 disk_stack_limits(mddev->gendisk, rdev->bdev, 2110 rdev->data_offset << 9); 2111 /* as we don't honour merge_bvec_fn, we must never risk 2112 * violating it, so limit ->max_segments to 1 lying within 2113 * a single page, as a one page request is never in violation. 2114 */ 2115 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2116 blk_queue_max_segments(mddev->queue, 1); 2117 blk_queue_segment_boundary(mddev->queue, 2118 PAGE_CACHE_SIZE - 1); 2119 } 2120 } 2121 2122 mddev->degraded = 0; 2123 for (i=0; i < conf->raid_disks; i++) 2124 if (conf->mirrors[i].rdev == NULL || 2125 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2126 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2127 mddev->degraded++; 2128 2129 if (conf->raid_disks - mddev->degraded == 1) 2130 mddev->recovery_cp = MaxSector; 2131 2132 if (mddev->recovery_cp != MaxSector) 2133 printk(KERN_NOTICE "md/raid1:%s: not clean" 2134 " -- starting background reconstruction\n", 2135 mdname(mddev)); 2136 printk(KERN_INFO 2137 "md/raid1:%s: active with %d out of %d mirrors\n", 2138 mdname(mddev), mddev->raid_disks - mddev->degraded, 2139 mddev->raid_disks); 2140 2141 /* 2142 * Ok, everything is just fine now 2143 */ 2144 mddev->thread = conf->thread; 2145 conf->thread = NULL; 2146 mddev->private = conf; 2147 2148 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2149 2150 mddev->queue->unplug_fn = raid1_unplug; 2151 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2152 mddev->queue->backing_dev_info.congested_data = mddev; 2153 md_integrity_register(mddev); 2154 return 0; 2155 } 2156 2157 static int stop(mddev_t *mddev) 2158 { 2159 conf_t *conf = mddev->private; 2160 struct bitmap *bitmap = mddev->bitmap; 2161 2162 /* wait for behind writes to complete */ 2163 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2164 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2165 mdname(mddev)); 2166 /* need to kick something here to make sure I/O goes? */ 2167 wait_event(bitmap->behind_wait, 2168 atomic_read(&bitmap->behind_writes) == 0); 2169 } 2170 2171 raise_barrier(conf); 2172 lower_barrier(conf); 2173 2174 md_unregister_thread(mddev->thread); 2175 mddev->thread = NULL; 2176 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2177 if (conf->r1bio_pool) 2178 mempool_destroy(conf->r1bio_pool); 2179 kfree(conf->mirrors); 2180 kfree(conf->poolinfo); 2181 kfree(conf); 2182 mddev->private = NULL; 2183 return 0; 2184 } 2185 2186 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2187 { 2188 /* no resync is happening, and there is enough space 2189 * on all devices, so we can resize. 2190 * We need to make sure resync covers any new space. 2191 * If the array is shrinking we should possibly wait until 2192 * any io in the removed space completes, but it hardly seems 2193 * worth it. 2194 */ 2195 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2196 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2197 return -EINVAL; 2198 set_capacity(mddev->gendisk, mddev->array_sectors); 2199 revalidate_disk(mddev->gendisk); 2200 if (sectors > mddev->dev_sectors && 2201 mddev->recovery_cp == MaxSector) { 2202 mddev->recovery_cp = mddev->dev_sectors; 2203 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2204 } 2205 mddev->dev_sectors = sectors; 2206 mddev->resync_max_sectors = sectors; 2207 return 0; 2208 } 2209 2210 static int raid1_reshape(mddev_t *mddev) 2211 { 2212 /* We need to: 2213 * 1/ resize the r1bio_pool 2214 * 2/ resize conf->mirrors 2215 * 2216 * We allocate a new r1bio_pool if we can. 2217 * Then raise a device barrier and wait until all IO stops. 2218 * Then resize conf->mirrors and swap in the new r1bio pool. 2219 * 2220 * At the same time, we "pack" the devices so that all the missing 2221 * devices have the higher raid_disk numbers. 2222 */ 2223 mempool_t *newpool, *oldpool; 2224 struct pool_info *newpoolinfo; 2225 mirror_info_t *newmirrors; 2226 conf_t *conf = mddev->private; 2227 int cnt, raid_disks; 2228 unsigned long flags; 2229 int d, d2, err; 2230 2231 /* Cannot change chunk_size, layout, or level */ 2232 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2233 mddev->layout != mddev->new_layout || 2234 mddev->level != mddev->new_level) { 2235 mddev->new_chunk_sectors = mddev->chunk_sectors; 2236 mddev->new_layout = mddev->layout; 2237 mddev->new_level = mddev->level; 2238 return -EINVAL; 2239 } 2240 2241 err = md_allow_write(mddev); 2242 if (err) 2243 return err; 2244 2245 raid_disks = mddev->raid_disks + mddev->delta_disks; 2246 2247 if (raid_disks < conf->raid_disks) { 2248 cnt=0; 2249 for (d= 0; d < conf->raid_disks; d++) 2250 if (conf->mirrors[d].rdev) 2251 cnt++; 2252 if (cnt > raid_disks) 2253 return -EBUSY; 2254 } 2255 2256 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2257 if (!newpoolinfo) 2258 return -ENOMEM; 2259 newpoolinfo->mddev = mddev; 2260 newpoolinfo->raid_disks = raid_disks; 2261 2262 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2263 r1bio_pool_free, newpoolinfo); 2264 if (!newpool) { 2265 kfree(newpoolinfo); 2266 return -ENOMEM; 2267 } 2268 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2269 if (!newmirrors) { 2270 kfree(newpoolinfo); 2271 mempool_destroy(newpool); 2272 return -ENOMEM; 2273 } 2274 2275 raise_barrier(conf); 2276 2277 /* ok, everything is stopped */ 2278 oldpool = conf->r1bio_pool; 2279 conf->r1bio_pool = newpool; 2280 2281 for (d = d2 = 0; d < conf->raid_disks; d++) { 2282 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2283 if (rdev && rdev->raid_disk != d2) { 2284 char nm[20]; 2285 sprintf(nm, "rd%d", rdev->raid_disk); 2286 sysfs_remove_link(&mddev->kobj, nm); 2287 rdev->raid_disk = d2; 2288 sprintf(nm, "rd%d", rdev->raid_disk); 2289 sysfs_remove_link(&mddev->kobj, nm); 2290 if (sysfs_create_link(&mddev->kobj, 2291 &rdev->kobj, nm)) 2292 printk(KERN_WARNING 2293 "md/raid1:%s: cannot register " 2294 "%s\n", 2295 mdname(mddev), nm); 2296 } 2297 if (rdev) 2298 newmirrors[d2++].rdev = rdev; 2299 } 2300 kfree(conf->mirrors); 2301 conf->mirrors = newmirrors; 2302 kfree(conf->poolinfo); 2303 conf->poolinfo = newpoolinfo; 2304 2305 spin_lock_irqsave(&conf->device_lock, flags); 2306 mddev->degraded += (raid_disks - conf->raid_disks); 2307 spin_unlock_irqrestore(&conf->device_lock, flags); 2308 conf->raid_disks = mddev->raid_disks = raid_disks; 2309 mddev->delta_disks = 0; 2310 2311 conf->last_used = 0; /* just make sure it is in-range */ 2312 lower_barrier(conf); 2313 2314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2315 md_wakeup_thread(mddev->thread); 2316 2317 mempool_destroy(oldpool); 2318 return 0; 2319 } 2320 2321 static void raid1_quiesce(mddev_t *mddev, int state) 2322 { 2323 conf_t *conf = mddev->private; 2324 2325 switch(state) { 2326 case 2: /* wake for suspend */ 2327 wake_up(&conf->wait_barrier); 2328 break; 2329 case 1: 2330 raise_barrier(conf); 2331 break; 2332 case 0: 2333 lower_barrier(conf); 2334 break; 2335 } 2336 } 2337 2338 static void *raid1_takeover(mddev_t *mddev) 2339 { 2340 /* raid1 can take over: 2341 * raid5 with 2 devices, any layout or chunk size 2342 */ 2343 if (mddev->level == 5 && mddev->raid_disks == 2) { 2344 conf_t *conf; 2345 mddev->new_level = 1; 2346 mddev->new_layout = 0; 2347 mddev->new_chunk_sectors = 0; 2348 conf = setup_conf(mddev); 2349 if (!IS_ERR(conf)) 2350 conf->barrier = 1; 2351 return conf; 2352 } 2353 return ERR_PTR(-EINVAL); 2354 } 2355 2356 static struct mdk_personality raid1_personality = 2357 { 2358 .name = "raid1", 2359 .level = 1, 2360 .owner = THIS_MODULE, 2361 .make_request = make_request, 2362 .run = run, 2363 .stop = stop, 2364 .status = status, 2365 .error_handler = error, 2366 .hot_add_disk = raid1_add_disk, 2367 .hot_remove_disk= raid1_remove_disk, 2368 .spare_active = raid1_spare_active, 2369 .sync_request = sync_request, 2370 .resize = raid1_resize, 2371 .size = raid1_size, 2372 .check_reshape = raid1_reshape, 2373 .quiesce = raid1_quiesce, 2374 .takeover = raid1_takeover, 2375 }; 2376 2377 static int __init raid_init(void) 2378 { 2379 return register_md_personality(&raid1_personality); 2380 } 2381 2382 static void raid_exit(void) 2383 { 2384 unregister_md_personality(&raid1_personality); 2385 } 2386 2387 module_init(raid_init); 2388 module_exit(raid_exit); 2389 MODULE_LICENSE("GPL"); 2390 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2391 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2392 MODULE_ALIAS("md-raid1"); 2393 MODULE_ALIAS("md-level-1"); 2394