1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 169 if (!bio) 170 goto out_free_bio; 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 172 r1_bio->bios[j] = bio; 173 } 174 /* 175 * Allocate RESYNC_PAGES data pages and attach them to 176 * the first bio. 177 * If this is a user-requested check/repair, allocate 178 * RESYNC_PAGES for each bio. 179 */ 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 181 need_pages = pi->raid_disks; 182 else 183 need_pages = 1; 184 for (j = 0; j < pi->raid_disks; j++) { 185 struct resync_pages *rp = &rps[j]; 186 187 bio = r1_bio->bios[j]; 188 189 if (j < need_pages) { 190 if (resync_alloc_pages(rp, gfp_flags)) 191 goto out_free_pages; 192 } else { 193 memcpy(rp, &rps[0], sizeof(*rp)); 194 resync_get_all_pages(rp); 195 } 196 197 rp->raid_bio = r1_bio; 198 bio->bi_private = rp; 199 } 200 201 r1_bio->master_bio = NULL; 202 203 return r1_bio; 204 205 out_free_pages: 206 while (--j >= 0) 207 resync_free_pages(&rps[j]); 208 209 out_free_bio: 210 while (++j < pi->raid_disks) { 211 bio_uninit(r1_bio->bios[j]); 212 kfree(r1_bio->bios[j]); 213 } 214 kfree(rps); 215 216 out_free_r1bio: 217 rbio_pool_free(r1_bio, data); 218 return NULL; 219 } 220 221 static void r1buf_pool_free(void *__r1_bio, void *data) 222 { 223 struct pool_info *pi = data; 224 int i; 225 struct r1bio *r1bio = __r1_bio; 226 struct resync_pages *rp = NULL; 227 228 for (i = pi->raid_disks; i--; ) { 229 rp = get_resync_pages(r1bio->bios[i]); 230 resync_free_pages(rp); 231 bio_uninit(r1bio->bios[i]); 232 kfree(r1bio->bios[i]); 233 } 234 235 /* resync pages array stored in the 1st bio's .bi_private */ 236 kfree(rp); 237 238 rbio_pool_free(r1bio, data); 239 } 240 241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->raid_disks * 2; i++) { 246 struct bio **bio = r1_bio->bios + i; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r1bio(struct r1bio *r1_bio) 254 { 255 struct r1conf *conf = r1_bio->mddev->private; 256 257 put_all_bios(conf, r1_bio); 258 mempool_free(r1_bio, &conf->r1bio_pool); 259 } 260 261 static void put_buf(struct r1bio *r1_bio) 262 { 263 struct r1conf *conf = r1_bio->mddev->private; 264 sector_t sect = r1_bio->sector; 265 int i; 266 267 for (i = 0; i < conf->raid_disks * 2; i++) { 268 struct bio *bio = r1_bio->bios[i]; 269 if (bio->bi_end_io) 270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 271 } 272 273 mempool_free(r1_bio, &conf->r1buf_pool); 274 275 lower_barrier(conf, sect); 276 } 277 278 static void reschedule_retry(struct r1bio *r1_bio) 279 { 280 unsigned long flags; 281 struct mddev *mddev = r1_bio->mddev; 282 struct r1conf *conf = mddev->private; 283 int idx; 284 285 idx = sector_to_idx(r1_bio->sector); 286 spin_lock_irqsave(&conf->device_lock, flags); 287 list_add(&r1_bio->retry_list, &conf->retry_list); 288 atomic_inc(&conf->nr_queued[idx]); 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 291 wake_up(&conf->wait_barrier); 292 md_wakeup_thread(mddev->thread); 293 } 294 295 /* 296 * raid_end_bio_io() is called when we have finished servicing a mirrored 297 * operation and are ready to return a success/failure code to the buffer 298 * cache layer. 299 */ 300 static void call_bio_endio(struct r1bio *r1_bio) 301 { 302 struct bio *bio = r1_bio->master_bio; 303 304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 305 bio->bi_status = BLK_STS_IOERR; 306 307 bio_endio(bio); 308 } 309 310 static void raid_end_bio_io(struct r1bio *r1_bio) 311 { 312 struct bio *bio = r1_bio->master_bio; 313 struct r1conf *conf = r1_bio->mddev->private; 314 sector_t sector = r1_bio->sector; 315 316 /* if nobody has done the final endio yet, do it now */ 317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 319 (bio_data_dir(bio) == WRITE) ? "write" : "read", 320 (unsigned long long) bio->bi_iter.bi_sector, 321 (unsigned long long) bio_end_sector(bio) - 1); 322 323 call_bio_endio(r1_bio); 324 } 325 326 free_r1bio(r1_bio); 327 /* 328 * Wake up any possible resync thread that waits for the device 329 * to go idle. All I/Os, even write-behind writes, are done. 330 */ 331 allow_barrier(conf, sector); 332 } 333 334 /* 335 * Update disk head position estimator based on IRQ completion info. 336 */ 337 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 338 { 339 struct r1conf *conf = r1_bio->mddev->private; 340 341 conf->mirrors[disk].head_position = 342 r1_bio->sector + (r1_bio->sectors); 343 } 344 345 /* 346 * Find the disk number which triggered given bio 347 */ 348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 349 { 350 int mirror; 351 struct r1conf *conf = r1_bio->mddev->private; 352 int raid_disks = conf->raid_disks; 353 354 for (mirror = 0; mirror < raid_disks * 2; mirror++) 355 if (r1_bio->bios[mirror] == bio) 356 break; 357 358 BUG_ON(mirror == raid_disks * 2); 359 update_head_pos(mirror, r1_bio); 360 361 return mirror; 362 } 363 364 static void raid1_end_read_request(struct bio *bio) 365 { 366 int uptodate = !bio->bi_status; 367 struct r1bio *r1_bio = bio->bi_private; 368 struct r1conf *conf = r1_bio->mddev->private; 369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 370 371 /* 372 * this branch is our 'one mirror IO has finished' event handler: 373 */ 374 update_head_pos(r1_bio->read_disk, r1_bio); 375 376 if (uptodate) 377 set_bit(R1BIO_Uptodate, &r1_bio->state); 378 else if (test_bit(FailFast, &rdev->flags) && 379 test_bit(R1BIO_FailFast, &r1_bio->state)) 380 /* This was a fail-fast read so we definitely 381 * want to retry */ 382 ; 383 else { 384 /* If all other devices have failed, we want to return 385 * the error upwards rather than fail the last device. 386 * Here we redefine "uptodate" to mean "Don't want to retry" 387 */ 388 unsigned long flags; 389 spin_lock_irqsave(&conf->device_lock, flags); 390 if (r1_bio->mddev->degraded == conf->raid_disks || 391 (r1_bio->mddev->degraded == conf->raid_disks-1 && 392 test_bit(In_sync, &rdev->flags))) 393 uptodate = 1; 394 spin_unlock_irqrestore(&conf->device_lock, flags); 395 } 396 397 if (uptodate) { 398 raid_end_bio_io(r1_bio); 399 rdev_dec_pending(rdev, conf->mddev); 400 } else { 401 /* 402 * oops, read error: 403 */ 404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 405 mdname(conf->mddev), 406 rdev->bdev, 407 (unsigned long long)r1_bio->sector); 408 set_bit(R1BIO_ReadError, &r1_bio->state); 409 reschedule_retry(r1_bio); 410 /* don't drop the reference on read_disk yet */ 411 } 412 } 413 414 static void close_write(struct r1bio *r1_bio) 415 { 416 /* it really is the end of this request */ 417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 418 bio_free_pages(r1_bio->behind_master_bio); 419 bio_put(r1_bio->behind_master_bio); 420 r1_bio->behind_master_bio = NULL; 421 } 422 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 423 md_bitmap_end_behind_write(r1_bio->mddev); 424 md_write_end(r1_bio->mddev); 425 } 426 427 static void r1_bio_write_done(struct r1bio *r1_bio) 428 { 429 if (!atomic_dec_and_test(&r1_bio->remaining)) 430 return; 431 432 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 433 reschedule_retry(r1_bio); 434 else { 435 close_write(r1_bio); 436 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 437 reschedule_retry(r1_bio); 438 else 439 raid_end_bio_io(r1_bio); 440 } 441 } 442 443 static void raid1_end_write_request(struct bio *bio) 444 { 445 struct r1bio *r1_bio = bio->bi_private; 446 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 447 struct r1conf *conf = r1_bio->mddev->private; 448 struct bio *to_put = NULL; 449 int mirror = find_bio_disk(r1_bio, bio); 450 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 451 bool discard_error; 452 sector_t lo = r1_bio->sector; 453 sector_t hi = r1_bio->sector + r1_bio->sectors; 454 455 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 456 457 /* 458 * 'one mirror IO has finished' event handler: 459 */ 460 if (bio->bi_status && !discard_error) { 461 set_bit(WriteErrorSeen, &rdev->flags); 462 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 463 set_bit(MD_RECOVERY_NEEDED, & 464 conf->mddev->recovery); 465 466 if (test_bit(FailFast, &rdev->flags) && 467 (bio->bi_opf & MD_FAILFAST) && 468 /* We never try FailFast to WriteMostly devices */ 469 !test_bit(WriteMostly, &rdev->flags)) { 470 md_error(r1_bio->mddev, rdev); 471 } 472 473 /* 474 * When the device is faulty, it is not necessary to 475 * handle write error. 476 */ 477 if (!test_bit(Faulty, &rdev->flags)) 478 set_bit(R1BIO_WriteError, &r1_bio->state); 479 else { 480 /* Finished with this branch */ 481 r1_bio->bios[mirror] = NULL; 482 to_put = bio; 483 } 484 } else { 485 /* 486 * Set R1BIO_Uptodate in our master bio, so that we 487 * will return a good error code for to the higher 488 * levels even if IO on some other mirrored buffer 489 * fails. 490 * 491 * The 'master' represents the composite IO operation 492 * to user-side. So if something waits for IO, then it 493 * will wait for the 'master' bio. 494 */ 495 sector_t first_bad; 496 int bad_sectors; 497 498 r1_bio->bios[mirror] = NULL; 499 to_put = bio; 500 /* 501 * Do not set R1BIO_Uptodate if the current device is 502 * rebuilding or Faulty. This is because we cannot use 503 * such device for properly reading the data back (we could 504 * potentially use it, if the current write would have felt 505 * before rdev->recovery_offset, but for simplicity we don't 506 * check this here. 507 */ 508 if (test_bit(In_sync, &rdev->flags) && 509 !test_bit(Faulty, &rdev->flags)) 510 set_bit(R1BIO_Uptodate, &r1_bio->state); 511 512 /* Maybe we can clear some bad blocks. */ 513 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 514 &first_bad, &bad_sectors) && !discard_error) { 515 r1_bio->bios[mirror] = IO_MADE_GOOD; 516 set_bit(R1BIO_MadeGood, &r1_bio->state); 517 } 518 } 519 520 if (behind) { 521 if (test_bit(CollisionCheck, &rdev->flags)) 522 remove_serial(rdev, lo, hi); 523 if (test_bit(WriteMostly, &rdev->flags)) 524 atomic_dec(&r1_bio->behind_remaining); 525 526 /* 527 * In behind mode, we ACK the master bio once the I/O 528 * has safely reached all non-writemostly 529 * disks. Setting the Returned bit ensures that this 530 * gets done only once -- we don't ever want to return 531 * -EIO here, instead we'll wait 532 */ 533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 534 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 535 /* Maybe we can return now */ 536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 537 struct bio *mbio = r1_bio->master_bio; 538 pr_debug("raid1: behind end write sectors" 539 " %llu-%llu\n", 540 (unsigned long long) mbio->bi_iter.bi_sector, 541 (unsigned long long) bio_end_sector(mbio) - 1); 542 call_bio_endio(r1_bio); 543 } 544 } 545 } else if (rdev->mddev->serialize_policy) 546 remove_serial(rdev, lo, hi); 547 if (r1_bio->bios[mirror] == NULL) 548 rdev_dec_pending(rdev, conf->mddev); 549 550 /* 551 * Let's see if all mirrored write operations have finished 552 * already. 553 */ 554 r1_bio_write_done(r1_bio); 555 556 if (to_put) 557 bio_put(to_put); 558 } 559 560 static sector_t align_to_barrier_unit_end(sector_t start_sector, 561 sector_t sectors) 562 { 563 sector_t len; 564 565 WARN_ON(sectors == 0); 566 /* 567 * len is the number of sectors from start_sector to end of the 568 * barrier unit which start_sector belongs to. 569 */ 570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 571 start_sector; 572 573 if (len > sectors) 574 len = sectors; 575 576 return len; 577 } 578 579 /* 580 * This routine returns the disk from which the requested read should 581 * be done. There is a per-array 'next expected sequential IO' sector 582 * number - if this matches on the next IO then we use the last disk. 583 * There is also a per-disk 'last know head position' sector that is 584 * maintained from IRQ contexts, both the normal and the resync IO 585 * completion handlers update this position correctly. If there is no 586 * perfect sequential match then we pick the disk whose head is closest. 587 * 588 * If there are 2 mirrors in the same 2 devices, performance degrades 589 * because position is mirror, not device based. 590 * 591 * The rdev for the device selected will have nr_pending incremented. 592 */ 593 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 594 { 595 const sector_t this_sector = r1_bio->sector; 596 int sectors; 597 int best_good_sectors; 598 int best_disk, best_dist_disk, best_pending_disk; 599 int has_nonrot_disk; 600 int disk; 601 sector_t best_dist; 602 unsigned int min_pending; 603 struct md_rdev *rdev; 604 int choose_first; 605 int choose_next_idle; 606 607 rcu_read_lock(); 608 /* 609 * Check if we can balance. We can balance on the whole 610 * device if no resync is going on, or below the resync window. 611 * We take the first readable disk when above the resync window. 612 */ 613 retry: 614 sectors = r1_bio->sectors; 615 best_disk = -1; 616 best_dist_disk = -1; 617 best_dist = MaxSector; 618 best_pending_disk = -1; 619 min_pending = UINT_MAX; 620 best_good_sectors = 0; 621 has_nonrot_disk = 0; 622 choose_next_idle = 0; 623 clear_bit(R1BIO_FailFast, &r1_bio->state); 624 625 if ((conf->mddev->recovery_cp < this_sector + sectors) || 626 (mddev_is_clustered(conf->mddev) && 627 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 628 this_sector + sectors))) 629 choose_first = 1; 630 else 631 choose_first = 0; 632 633 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 634 sector_t dist; 635 sector_t first_bad; 636 int bad_sectors; 637 unsigned int pending; 638 bool nonrot; 639 640 rdev = rcu_dereference(conf->mirrors[disk].rdev); 641 if (r1_bio->bios[disk] == IO_BLOCKED 642 || rdev == NULL 643 || test_bit(Faulty, &rdev->flags)) 644 continue; 645 if (!test_bit(In_sync, &rdev->flags) && 646 rdev->recovery_offset < this_sector + sectors) 647 continue; 648 if (test_bit(WriteMostly, &rdev->flags)) { 649 /* Don't balance among write-mostly, just 650 * use the first as a last resort */ 651 if (best_dist_disk < 0) { 652 if (is_badblock(rdev, this_sector, sectors, 653 &first_bad, &bad_sectors)) { 654 if (first_bad <= this_sector) 655 /* Cannot use this */ 656 continue; 657 best_good_sectors = first_bad - this_sector; 658 } else 659 best_good_sectors = sectors; 660 best_dist_disk = disk; 661 best_pending_disk = disk; 662 } 663 continue; 664 } 665 /* This is a reasonable device to use. It might 666 * even be best. 667 */ 668 if (is_badblock(rdev, this_sector, sectors, 669 &first_bad, &bad_sectors)) { 670 if (best_dist < MaxSector) 671 /* already have a better device */ 672 continue; 673 if (first_bad <= this_sector) { 674 /* cannot read here. If this is the 'primary' 675 * device, then we must not read beyond 676 * bad_sectors from another device.. 677 */ 678 bad_sectors -= (this_sector - first_bad); 679 if (choose_first && sectors > bad_sectors) 680 sectors = bad_sectors; 681 if (best_good_sectors > sectors) 682 best_good_sectors = sectors; 683 684 } else { 685 sector_t good_sectors = first_bad - this_sector; 686 if (good_sectors > best_good_sectors) { 687 best_good_sectors = good_sectors; 688 best_disk = disk; 689 } 690 if (choose_first) 691 break; 692 } 693 continue; 694 } else { 695 if ((sectors > best_good_sectors) && (best_disk >= 0)) 696 best_disk = -1; 697 best_good_sectors = sectors; 698 } 699 700 if (best_disk >= 0) 701 /* At least two disks to choose from so failfast is OK */ 702 set_bit(R1BIO_FailFast, &r1_bio->state); 703 704 nonrot = bdev_nonrot(rdev->bdev); 705 has_nonrot_disk |= nonrot; 706 pending = atomic_read(&rdev->nr_pending); 707 dist = abs(this_sector - conf->mirrors[disk].head_position); 708 if (choose_first) { 709 best_disk = disk; 710 break; 711 } 712 /* Don't change to another disk for sequential reads */ 713 if (conf->mirrors[disk].next_seq_sect == this_sector 714 || dist == 0) { 715 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 716 struct raid1_info *mirror = &conf->mirrors[disk]; 717 718 best_disk = disk; 719 /* 720 * If buffered sequential IO size exceeds optimal 721 * iosize, check if there is idle disk. If yes, choose 722 * the idle disk. read_balance could already choose an 723 * idle disk before noticing it's a sequential IO in 724 * this disk. This doesn't matter because this disk 725 * will idle, next time it will be utilized after the 726 * first disk has IO size exceeds optimal iosize. In 727 * this way, iosize of the first disk will be optimal 728 * iosize at least. iosize of the second disk might be 729 * small, but not a big deal since when the second disk 730 * starts IO, the first disk is likely still busy. 731 */ 732 if (nonrot && opt_iosize > 0 && 733 mirror->seq_start != MaxSector && 734 mirror->next_seq_sect > opt_iosize && 735 mirror->next_seq_sect - opt_iosize >= 736 mirror->seq_start) { 737 choose_next_idle = 1; 738 continue; 739 } 740 break; 741 } 742 743 if (choose_next_idle) 744 continue; 745 746 if (min_pending > pending) { 747 min_pending = pending; 748 best_pending_disk = disk; 749 } 750 751 if (dist < best_dist) { 752 best_dist = dist; 753 best_dist_disk = disk; 754 } 755 } 756 757 /* 758 * If all disks are rotational, choose the closest disk. If any disk is 759 * non-rotational, choose the disk with less pending request even the 760 * disk is rotational, which might/might not be optimal for raids with 761 * mixed ratation/non-rotational disks depending on workload. 762 */ 763 if (best_disk == -1) { 764 if (has_nonrot_disk || min_pending == 0) 765 best_disk = best_pending_disk; 766 else 767 best_disk = best_dist_disk; 768 } 769 770 if (best_disk >= 0) { 771 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 772 if (!rdev) 773 goto retry; 774 atomic_inc(&rdev->nr_pending); 775 sectors = best_good_sectors; 776 777 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 778 conf->mirrors[best_disk].seq_start = this_sector; 779 780 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 781 } 782 rcu_read_unlock(); 783 *max_sectors = sectors; 784 785 return best_disk; 786 } 787 788 static void wake_up_barrier(struct r1conf *conf) 789 { 790 if (wq_has_sleeper(&conf->wait_barrier)) 791 wake_up(&conf->wait_barrier); 792 } 793 794 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 795 { 796 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 797 raid1_prepare_flush_writes(conf->mddev->bitmap); 798 wake_up_barrier(conf); 799 800 while (bio) { /* submit pending writes */ 801 struct bio *next = bio->bi_next; 802 803 raid1_submit_write(bio); 804 bio = next; 805 cond_resched(); 806 } 807 } 808 809 static void flush_pending_writes(struct r1conf *conf) 810 { 811 /* Any writes that have been queued but are awaiting 812 * bitmap updates get flushed here. 813 */ 814 spin_lock_irq(&conf->device_lock); 815 816 if (conf->pending_bio_list.head) { 817 struct blk_plug plug; 818 struct bio *bio; 819 820 bio = bio_list_get(&conf->pending_bio_list); 821 spin_unlock_irq(&conf->device_lock); 822 823 /* 824 * As this is called in a wait_event() loop (see freeze_array), 825 * current->state might be TASK_UNINTERRUPTIBLE which will 826 * cause a warning when we prepare to wait again. As it is 827 * rare that this path is taken, it is perfectly safe to force 828 * us to go around the wait_event() loop again, so the warning 829 * is a false-positive. Silence the warning by resetting 830 * thread state 831 */ 832 __set_current_state(TASK_RUNNING); 833 blk_start_plug(&plug); 834 flush_bio_list(conf, bio); 835 blk_finish_plug(&plug); 836 } else 837 spin_unlock_irq(&conf->device_lock); 838 } 839 840 /* Barriers.... 841 * Sometimes we need to suspend IO while we do something else, 842 * either some resync/recovery, or reconfigure the array. 843 * To do this we raise a 'barrier'. 844 * The 'barrier' is a counter that can be raised multiple times 845 * to count how many activities are happening which preclude 846 * normal IO. 847 * We can only raise the barrier if there is no pending IO. 848 * i.e. if nr_pending == 0. 849 * We choose only to raise the barrier if no-one is waiting for the 850 * barrier to go down. This means that as soon as an IO request 851 * is ready, no other operations which require a barrier will start 852 * until the IO request has had a chance. 853 * 854 * So: regular IO calls 'wait_barrier'. When that returns there 855 * is no backgroup IO happening, It must arrange to call 856 * allow_barrier when it has finished its IO. 857 * backgroup IO calls must call raise_barrier. Once that returns 858 * there is no normal IO happeing. It must arrange to call 859 * lower_barrier when the particular background IO completes. 860 * 861 * If resync/recovery is interrupted, returns -EINTR; 862 * Otherwise, returns 0. 863 */ 864 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 865 { 866 int idx = sector_to_idx(sector_nr); 867 868 spin_lock_irq(&conf->resync_lock); 869 870 /* Wait until no block IO is waiting */ 871 wait_event_lock_irq(conf->wait_barrier, 872 !atomic_read(&conf->nr_waiting[idx]), 873 conf->resync_lock); 874 875 /* block any new IO from starting */ 876 atomic_inc(&conf->barrier[idx]); 877 /* 878 * In raise_barrier() we firstly increase conf->barrier[idx] then 879 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 880 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 881 * A memory barrier here to make sure conf->nr_pending[idx] won't 882 * be fetched before conf->barrier[idx] is increased. Otherwise 883 * there will be a race between raise_barrier() and _wait_barrier(). 884 */ 885 smp_mb__after_atomic(); 886 887 /* For these conditions we must wait: 888 * A: while the array is in frozen state 889 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 890 * existing in corresponding I/O barrier bucket. 891 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 892 * max resync count which allowed on current I/O barrier bucket. 893 */ 894 wait_event_lock_irq(conf->wait_barrier, 895 (!conf->array_frozen && 896 !atomic_read(&conf->nr_pending[idx]) && 897 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 898 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 899 conf->resync_lock); 900 901 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 902 atomic_dec(&conf->barrier[idx]); 903 spin_unlock_irq(&conf->resync_lock); 904 wake_up(&conf->wait_barrier); 905 return -EINTR; 906 } 907 908 atomic_inc(&conf->nr_sync_pending); 909 spin_unlock_irq(&conf->resync_lock); 910 911 return 0; 912 } 913 914 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 915 { 916 int idx = sector_to_idx(sector_nr); 917 918 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 919 920 atomic_dec(&conf->barrier[idx]); 921 atomic_dec(&conf->nr_sync_pending); 922 wake_up(&conf->wait_barrier); 923 } 924 925 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 926 { 927 bool ret = true; 928 929 /* 930 * We need to increase conf->nr_pending[idx] very early here, 931 * then raise_barrier() can be blocked when it waits for 932 * conf->nr_pending[idx] to be 0. Then we can avoid holding 933 * conf->resync_lock when there is no barrier raised in same 934 * barrier unit bucket. Also if the array is frozen, I/O 935 * should be blocked until array is unfrozen. 936 */ 937 atomic_inc(&conf->nr_pending[idx]); 938 /* 939 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 940 * check conf->barrier[idx]. In raise_barrier() we firstly increase 941 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 942 * barrier is necessary here to make sure conf->barrier[idx] won't be 943 * fetched before conf->nr_pending[idx] is increased. Otherwise there 944 * will be a race between _wait_barrier() and raise_barrier(). 945 */ 946 smp_mb__after_atomic(); 947 948 /* 949 * Don't worry about checking two atomic_t variables at same time 950 * here. If during we check conf->barrier[idx], the array is 951 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 952 * 0, it is safe to return and make the I/O continue. Because the 953 * array is frozen, all I/O returned here will eventually complete 954 * or be queued, no race will happen. See code comment in 955 * frozen_array(). 956 */ 957 if (!READ_ONCE(conf->array_frozen) && 958 !atomic_read(&conf->barrier[idx])) 959 return ret; 960 961 /* 962 * After holding conf->resync_lock, conf->nr_pending[idx] 963 * should be decreased before waiting for barrier to drop. 964 * Otherwise, we may encounter a race condition because 965 * raise_barrer() might be waiting for conf->nr_pending[idx] 966 * to be 0 at same time. 967 */ 968 spin_lock_irq(&conf->resync_lock); 969 atomic_inc(&conf->nr_waiting[idx]); 970 atomic_dec(&conf->nr_pending[idx]); 971 /* 972 * In case freeze_array() is waiting for 973 * get_unqueued_pending() == extra 974 */ 975 wake_up_barrier(conf); 976 /* Wait for the barrier in same barrier unit bucket to drop. */ 977 978 /* Return false when nowait flag is set */ 979 if (nowait) { 980 ret = false; 981 } else { 982 wait_event_lock_irq(conf->wait_barrier, 983 !conf->array_frozen && 984 !atomic_read(&conf->barrier[idx]), 985 conf->resync_lock); 986 atomic_inc(&conf->nr_pending[idx]); 987 } 988 989 atomic_dec(&conf->nr_waiting[idx]); 990 spin_unlock_irq(&conf->resync_lock); 991 return ret; 992 } 993 994 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 995 { 996 int idx = sector_to_idx(sector_nr); 997 bool ret = true; 998 999 /* 1000 * Very similar to _wait_barrier(). The difference is, for read 1001 * I/O we don't need wait for sync I/O, but if the whole array 1002 * is frozen, the read I/O still has to wait until the array is 1003 * unfrozen. Since there is no ordering requirement with 1004 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1005 */ 1006 atomic_inc(&conf->nr_pending[idx]); 1007 1008 if (!READ_ONCE(conf->array_frozen)) 1009 return ret; 1010 1011 spin_lock_irq(&conf->resync_lock); 1012 atomic_inc(&conf->nr_waiting[idx]); 1013 atomic_dec(&conf->nr_pending[idx]); 1014 /* 1015 * In case freeze_array() is waiting for 1016 * get_unqueued_pending() == extra 1017 */ 1018 wake_up_barrier(conf); 1019 /* Wait for array to be unfrozen */ 1020 1021 /* Return false when nowait flag is set */ 1022 if (nowait) { 1023 /* Return false when nowait flag is set */ 1024 ret = false; 1025 } else { 1026 wait_event_lock_irq(conf->wait_barrier, 1027 !conf->array_frozen, 1028 conf->resync_lock); 1029 atomic_inc(&conf->nr_pending[idx]); 1030 } 1031 1032 atomic_dec(&conf->nr_waiting[idx]); 1033 spin_unlock_irq(&conf->resync_lock); 1034 return ret; 1035 } 1036 1037 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1038 { 1039 int idx = sector_to_idx(sector_nr); 1040 1041 return _wait_barrier(conf, idx, nowait); 1042 } 1043 1044 static void _allow_barrier(struct r1conf *conf, int idx) 1045 { 1046 atomic_dec(&conf->nr_pending[idx]); 1047 wake_up_barrier(conf); 1048 } 1049 1050 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1051 { 1052 int idx = sector_to_idx(sector_nr); 1053 1054 _allow_barrier(conf, idx); 1055 } 1056 1057 /* conf->resync_lock should be held */ 1058 static int get_unqueued_pending(struct r1conf *conf) 1059 { 1060 int idx, ret; 1061 1062 ret = atomic_read(&conf->nr_sync_pending); 1063 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1064 ret += atomic_read(&conf->nr_pending[idx]) - 1065 atomic_read(&conf->nr_queued[idx]); 1066 1067 return ret; 1068 } 1069 1070 static void freeze_array(struct r1conf *conf, int extra) 1071 { 1072 /* Stop sync I/O and normal I/O and wait for everything to 1073 * go quiet. 1074 * This is called in two situations: 1075 * 1) management command handlers (reshape, remove disk, quiesce). 1076 * 2) one normal I/O request failed. 1077 1078 * After array_frozen is set to 1, new sync IO will be blocked at 1079 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1080 * or wait_read_barrier(). The flying I/Os will either complete or be 1081 * queued. When everything goes quite, there are only queued I/Os left. 1082 1083 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1084 * barrier bucket index which this I/O request hits. When all sync and 1085 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1086 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1087 * in handle_read_error(), we may call freeze_array() before trying to 1088 * fix the read error. In this case, the error read I/O is not queued, 1089 * so get_unqueued_pending() == 1. 1090 * 1091 * Therefore before this function returns, we need to wait until 1092 * get_unqueued_pendings(conf) gets equal to extra. For 1093 * normal I/O context, extra is 1, in rested situations extra is 0. 1094 */ 1095 spin_lock_irq(&conf->resync_lock); 1096 conf->array_frozen = 1; 1097 raid1_log(conf->mddev, "wait freeze"); 1098 wait_event_lock_irq_cmd( 1099 conf->wait_barrier, 1100 get_unqueued_pending(conf) == extra, 1101 conf->resync_lock, 1102 flush_pending_writes(conf)); 1103 spin_unlock_irq(&conf->resync_lock); 1104 } 1105 static void unfreeze_array(struct r1conf *conf) 1106 { 1107 /* reverse the effect of the freeze */ 1108 spin_lock_irq(&conf->resync_lock); 1109 conf->array_frozen = 0; 1110 spin_unlock_irq(&conf->resync_lock); 1111 wake_up(&conf->wait_barrier); 1112 } 1113 1114 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1115 struct bio *bio) 1116 { 1117 int size = bio->bi_iter.bi_size; 1118 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1119 int i = 0; 1120 struct bio *behind_bio = NULL; 1121 1122 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1123 &r1_bio->mddev->bio_set); 1124 if (!behind_bio) 1125 return; 1126 1127 /* discard op, we don't support writezero/writesame yet */ 1128 if (!bio_has_data(bio)) { 1129 behind_bio->bi_iter.bi_size = size; 1130 goto skip_copy; 1131 } 1132 1133 while (i < vcnt && size) { 1134 struct page *page; 1135 int len = min_t(int, PAGE_SIZE, size); 1136 1137 page = alloc_page(GFP_NOIO); 1138 if (unlikely(!page)) 1139 goto free_pages; 1140 1141 if (!bio_add_page(behind_bio, page, len, 0)) { 1142 put_page(page); 1143 goto free_pages; 1144 } 1145 1146 size -= len; 1147 i++; 1148 } 1149 1150 bio_copy_data(behind_bio, bio); 1151 skip_copy: 1152 r1_bio->behind_master_bio = behind_bio; 1153 set_bit(R1BIO_BehindIO, &r1_bio->state); 1154 1155 return; 1156 1157 free_pages: 1158 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1159 bio->bi_iter.bi_size); 1160 bio_free_pages(behind_bio); 1161 bio_put(behind_bio); 1162 } 1163 1164 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1165 { 1166 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1167 cb); 1168 struct mddev *mddev = plug->cb.data; 1169 struct r1conf *conf = mddev->private; 1170 struct bio *bio; 1171 1172 if (from_schedule) { 1173 spin_lock_irq(&conf->device_lock); 1174 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1175 spin_unlock_irq(&conf->device_lock); 1176 wake_up_barrier(conf); 1177 md_wakeup_thread(mddev->thread); 1178 kfree(plug); 1179 return; 1180 } 1181 1182 /* we aren't scheduling, so we can do the write-out directly. */ 1183 bio = bio_list_get(&plug->pending); 1184 flush_bio_list(conf, bio); 1185 kfree(plug); 1186 } 1187 1188 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1189 { 1190 r1_bio->master_bio = bio; 1191 r1_bio->sectors = bio_sectors(bio); 1192 r1_bio->state = 0; 1193 r1_bio->mddev = mddev; 1194 r1_bio->sector = bio->bi_iter.bi_sector; 1195 } 1196 1197 static inline struct r1bio * 1198 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1199 { 1200 struct r1conf *conf = mddev->private; 1201 struct r1bio *r1_bio; 1202 1203 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1204 /* Ensure no bio records IO_BLOCKED */ 1205 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1206 init_r1bio(r1_bio, mddev, bio); 1207 return r1_bio; 1208 } 1209 1210 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1211 int max_read_sectors, struct r1bio *r1_bio) 1212 { 1213 struct r1conf *conf = mddev->private; 1214 struct raid1_info *mirror; 1215 struct bio *read_bio; 1216 struct bitmap *bitmap = mddev->bitmap; 1217 const enum req_op op = bio_op(bio); 1218 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1219 int max_sectors; 1220 int rdisk; 1221 bool r1bio_existed = !!r1_bio; 1222 char b[BDEVNAME_SIZE]; 1223 1224 /* 1225 * If r1_bio is set, we are blocking the raid1d thread 1226 * so there is a tiny risk of deadlock. So ask for 1227 * emergency memory if needed. 1228 */ 1229 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1230 1231 if (r1bio_existed) { 1232 /* Need to get the block device name carefully */ 1233 struct md_rdev *rdev; 1234 rcu_read_lock(); 1235 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1236 if (rdev) 1237 snprintf(b, sizeof(b), "%pg", rdev->bdev); 1238 else 1239 strcpy(b, "???"); 1240 rcu_read_unlock(); 1241 } 1242 1243 /* 1244 * Still need barrier for READ in case that whole 1245 * array is frozen. 1246 */ 1247 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1248 bio->bi_opf & REQ_NOWAIT)) { 1249 bio_wouldblock_error(bio); 1250 return; 1251 } 1252 1253 if (!r1_bio) 1254 r1_bio = alloc_r1bio(mddev, bio); 1255 else 1256 init_r1bio(r1_bio, mddev, bio); 1257 r1_bio->sectors = max_read_sectors; 1258 1259 /* 1260 * make_request() can abort the operation when read-ahead is being 1261 * used and no empty request is available. 1262 */ 1263 rdisk = read_balance(conf, r1_bio, &max_sectors); 1264 1265 if (rdisk < 0) { 1266 /* couldn't find anywhere to read from */ 1267 if (r1bio_existed) { 1268 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1269 mdname(mddev), 1270 b, 1271 (unsigned long long)r1_bio->sector); 1272 } 1273 raid_end_bio_io(r1_bio); 1274 return; 1275 } 1276 mirror = conf->mirrors + rdisk; 1277 1278 if (r1bio_existed) 1279 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1280 mdname(mddev), 1281 (unsigned long long)r1_bio->sector, 1282 mirror->rdev->bdev); 1283 1284 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1285 bitmap) { 1286 /* 1287 * Reading from a write-mostly device must take care not to 1288 * over-take any writes that are 'behind' 1289 */ 1290 raid1_log(mddev, "wait behind writes"); 1291 wait_event(bitmap->behind_wait, 1292 atomic_read(&bitmap->behind_writes) == 0); 1293 } 1294 1295 if (max_sectors < bio_sectors(bio)) { 1296 struct bio *split = bio_split(bio, max_sectors, 1297 gfp, &conf->bio_split); 1298 bio_chain(split, bio); 1299 submit_bio_noacct(bio); 1300 bio = split; 1301 r1_bio->master_bio = bio; 1302 r1_bio->sectors = max_sectors; 1303 } 1304 1305 r1_bio->read_disk = rdisk; 1306 if (!r1bio_existed) { 1307 md_account_bio(mddev, &bio); 1308 r1_bio->master_bio = bio; 1309 } 1310 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1311 &mddev->bio_set); 1312 1313 r1_bio->bios[rdisk] = read_bio; 1314 1315 read_bio->bi_iter.bi_sector = r1_bio->sector + 1316 mirror->rdev->data_offset; 1317 read_bio->bi_end_io = raid1_end_read_request; 1318 read_bio->bi_opf = op | do_sync; 1319 if (test_bit(FailFast, &mirror->rdev->flags) && 1320 test_bit(R1BIO_FailFast, &r1_bio->state)) 1321 read_bio->bi_opf |= MD_FAILFAST; 1322 read_bio->bi_private = r1_bio; 1323 1324 if (mddev->gendisk) 1325 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1326 r1_bio->sector); 1327 1328 submit_bio_noacct(read_bio); 1329 } 1330 1331 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1332 int max_write_sectors) 1333 { 1334 struct r1conf *conf = mddev->private; 1335 struct r1bio *r1_bio; 1336 int i, disks; 1337 struct bitmap *bitmap = mddev->bitmap; 1338 unsigned long flags; 1339 struct md_rdev *blocked_rdev; 1340 int first_clone; 1341 int max_sectors; 1342 bool write_behind = false; 1343 1344 if (mddev_is_clustered(mddev) && 1345 md_cluster_ops->area_resyncing(mddev, WRITE, 1346 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1347 1348 DEFINE_WAIT(w); 1349 if (bio->bi_opf & REQ_NOWAIT) { 1350 bio_wouldblock_error(bio); 1351 return; 1352 } 1353 for (;;) { 1354 prepare_to_wait(&conf->wait_barrier, 1355 &w, TASK_IDLE); 1356 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1357 bio->bi_iter.bi_sector, 1358 bio_end_sector(bio))) 1359 break; 1360 schedule(); 1361 } 1362 finish_wait(&conf->wait_barrier, &w); 1363 } 1364 1365 /* 1366 * Register the new request and wait if the reconstruction 1367 * thread has put up a bar for new requests. 1368 * Continue immediately if no resync is active currently. 1369 */ 1370 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1371 bio->bi_opf & REQ_NOWAIT)) { 1372 bio_wouldblock_error(bio); 1373 return; 1374 } 1375 1376 retry_write: 1377 r1_bio = alloc_r1bio(mddev, bio); 1378 r1_bio->sectors = max_write_sectors; 1379 1380 /* first select target devices under rcu_lock and 1381 * inc refcount on their rdev. Record them by setting 1382 * bios[x] to bio 1383 * If there are known/acknowledged bad blocks on any device on 1384 * which we have seen a write error, we want to avoid writing those 1385 * blocks. 1386 * This potentially requires several writes to write around 1387 * the bad blocks. Each set of writes gets it's own r1bio 1388 * with a set of bios attached. 1389 */ 1390 1391 disks = conf->raid_disks * 2; 1392 blocked_rdev = NULL; 1393 rcu_read_lock(); 1394 max_sectors = r1_bio->sectors; 1395 for (i = 0; i < disks; i++) { 1396 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1397 1398 /* 1399 * The write-behind io is only attempted on drives marked as 1400 * write-mostly, which means we could allocate write behind 1401 * bio later. 1402 */ 1403 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1404 write_behind = true; 1405 1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1407 atomic_inc(&rdev->nr_pending); 1408 blocked_rdev = rdev; 1409 break; 1410 } 1411 r1_bio->bios[i] = NULL; 1412 if (!rdev || test_bit(Faulty, &rdev->flags)) 1413 continue; 1414 1415 atomic_inc(&rdev->nr_pending); 1416 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1417 sector_t first_bad; 1418 int bad_sectors; 1419 int is_bad; 1420 1421 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1422 &first_bad, &bad_sectors); 1423 if (is_bad < 0) { 1424 /* mustn't write here until the bad block is 1425 * acknowledged*/ 1426 set_bit(BlockedBadBlocks, &rdev->flags); 1427 blocked_rdev = rdev; 1428 break; 1429 } 1430 if (is_bad && first_bad <= r1_bio->sector) { 1431 /* Cannot write here at all */ 1432 bad_sectors -= (r1_bio->sector - first_bad); 1433 if (bad_sectors < max_sectors) 1434 /* mustn't write more than bad_sectors 1435 * to other devices yet 1436 */ 1437 max_sectors = bad_sectors; 1438 rdev_dec_pending(rdev, mddev); 1439 continue; 1440 } 1441 if (is_bad) { 1442 int good_sectors = first_bad - r1_bio->sector; 1443 if (good_sectors < max_sectors) 1444 max_sectors = good_sectors; 1445 } 1446 } 1447 r1_bio->bios[i] = bio; 1448 } 1449 rcu_read_unlock(); 1450 1451 if (unlikely(blocked_rdev)) { 1452 /* Wait for this device to become unblocked */ 1453 int j; 1454 1455 for (j = 0; j < i; j++) 1456 if (r1_bio->bios[j]) 1457 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1458 mempool_free(r1_bio, &conf->r1bio_pool); 1459 allow_barrier(conf, bio->bi_iter.bi_sector); 1460 1461 if (bio->bi_opf & REQ_NOWAIT) { 1462 bio_wouldblock_error(bio); 1463 return; 1464 } 1465 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1466 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1467 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1468 goto retry_write; 1469 } 1470 1471 /* 1472 * When using a bitmap, we may call alloc_behind_master_bio below. 1473 * alloc_behind_master_bio allocates a copy of the data payload a page 1474 * at a time and thus needs a new bio that can fit the whole payload 1475 * this bio in page sized chunks. 1476 */ 1477 if (write_behind && bitmap) 1478 max_sectors = min_t(int, max_sectors, 1479 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1480 if (max_sectors < bio_sectors(bio)) { 1481 struct bio *split = bio_split(bio, max_sectors, 1482 GFP_NOIO, &conf->bio_split); 1483 bio_chain(split, bio); 1484 submit_bio_noacct(bio); 1485 bio = split; 1486 r1_bio->master_bio = bio; 1487 r1_bio->sectors = max_sectors; 1488 } 1489 1490 md_account_bio(mddev, &bio); 1491 r1_bio->master_bio = bio; 1492 atomic_set(&r1_bio->remaining, 1); 1493 atomic_set(&r1_bio->behind_remaining, 0); 1494 1495 first_clone = 1; 1496 1497 for (i = 0; i < disks; i++) { 1498 struct bio *mbio = NULL; 1499 struct md_rdev *rdev = conf->mirrors[i].rdev; 1500 if (!r1_bio->bios[i]) 1501 continue; 1502 1503 if (first_clone) { 1504 /* do behind I/O ? 1505 * Not if there are too many, or cannot 1506 * allocate memory, or a reader on WriteMostly 1507 * is waiting for behind writes to flush */ 1508 if (bitmap && write_behind && 1509 (atomic_read(&bitmap->behind_writes) 1510 < mddev->bitmap_info.max_write_behind) && 1511 !waitqueue_active(&bitmap->behind_wait)) { 1512 alloc_behind_master_bio(r1_bio, bio); 1513 } 1514 1515 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 1516 md_bitmap_start_behind_write(mddev); 1517 first_clone = 0; 1518 } 1519 1520 if (r1_bio->behind_master_bio) { 1521 mbio = bio_alloc_clone(rdev->bdev, 1522 r1_bio->behind_master_bio, 1523 GFP_NOIO, &mddev->bio_set); 1524 if (test_bit(CollisionCheck, &rdev->flags)) 1525 wait_for_serialization(rdev, r1_bio); 1526 if (test_bit(WriteMostly, &rdev->flags)) 1527 atomic_inc(&r1_bio->behind_remaining); 1528 } else { 1529 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1530 &mddev->bio_set); 1531 1532 if (mddev->serialize_policy) 1533 wait_for_serialization(rdev, r1_bio); 1534 } 1535 1536 r1_bio->bios[i] = mbio; 1537 1538 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1539 mbio->bi_end_io = raid1_end_write_request; 1540 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1541 if (test_bit(FailFast, &rdev->flags) && 1542 !test_bit(WriteMostly, &rdev->flags) && 1543 conf->raid_disks - mddev->degraded > 1) 1544 mbio->bi_opf |= MD_FAILFAST; 1545 mbio->bi_private = r1_bio; 1546 1547 atomic_inc(&r1_bio->remaining); 1548 1549 if (mddev->gendisk) 1550 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1551 r1_bio->sector); 1552 /* flush_pending_writes() needs access to the rdev so...*/ 1553 mbio->bi_bdev = (void *)rdev; 1554 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1555 spin_lock_irqsave(&conf->device_lock, flags); 1556 bio_list_add(&conf->pending_bio_list, mbio); 1557 spin_unlock_irqrestore(&conf->device_lock, flags); 1558 md_wakeup_thread(mddev->thread); 1559 } 1560 } 1561 1562 r1_bio_write_done(r1_bio); 1563 1564 /* In case raid1d snuck in to freeze_array */ 1565 wake_up_barrier(conf); 1566 } 1567 1568 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1569 { 1570 sector_t sectors; 1571 1572 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1573 && md_flush_request(mddev, bio)) 1574 return true; 1575 1576 /* 1577 * There is a limit to the maximum size, but 1578 * the read/write handler might find a lower limit 1579 * due to bad blocks. To avoid multiple splits, 1580 * we pass the maximum number of sectors down 1581 * and let the lower level perform the split. 1582 */ 1583 sectors = align_to_barrier_unit_end( 1584 bio->bi_iter.bi_sector, bio_sectors(bio)); 1585 1586 if (bio_data_dir(bio) == READ) 1587 raid1_read_request(mddev, bio, sectors, NULL); 1588 else { 1589 if (!md_write_start(mddev,bio)) 1590 return false; 1591 raid1_write_request(mddev, bio, sectors); 1592 } 1593 return true; 1594 } 1595 1596 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1597 { 1598 struct r1conf *conf = mddev->private; 1599 int i; 1600 1601 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1602 conf->raid_disks - mddev->degraded); 1603 rcu_read_lock(); 1604 for (i = 0; i < conf->raid_disks; i++) { 1605 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1606 seq_printf(seq, "%s", 1607 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1608 } 1609 rcu_read_unlock(); 1610 seq_printf(seq, "]"); 1611 } 1612 1613 /** 1614 * raid1_error() - RAID1 error handler. 1615 * @mddev: affected md device. 1616 * @rdev: member device to fail. 1617 * 1618 * The routine acknowledges &rdev failure and determines new @mddev state. 1619 * If it failed, then: 1620 * - &MD_BROKEN flag is set in &mddev->flags. 1621 * - recovery is disabled. 1622 * Otherwise, it must be degraded: 1623 * - recovery is interrupted. 1624 * - &mddev->degraded is bumped. 1625 * 1626 * @rdev is marked as &Faulty excluding case when array is failed and 1627 * &mddev->fail_last_dev is off. 1628 */ 1629 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1630 { 1631 struct r1conf *conf = mddev->private; 1632 unsigned long flags; 1633 1634 spin_lock_irqsave(&conf->device_lock, flags); 1635 1636 if (test_bit(In_sync, &rdev->flags) && 1637 (conf->raid_disks - mddev->degraded) == 1) { 1638 set_bit(MD_BROKEN, &mddev->flags); 1639 1640 if (!mddev->fail_last_dev) { 1641 conf->recovery_disabled = mddev->recovery_disabled; 1642 spin_unlock_irqrestore(&conf->device_lock, flags); 1643 return; 1644 } 1645 } 1646 set_bit(Blocked, &rdev->flags); 1647 if (test_and_clear_bit(In_sync, &rdev->flags)) 1648 mddev->degraded++; 1649 set_bit(Faulty, &rdev->flags); 1650 spin_unlock_irqrestore(&conf->device_lock, flags); 1651 /* 1652 * if recovery is running, make sure it aborts. 1653 */ 1654 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1655 set_mask_bits(&mddev->sb_flags, 0, 1656 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1657 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1658 "md/raid1:%s: Operation continuing on %d devices.\n", 1659 mdname(mddev), rdev->bdev, 1660 mdname(mddev), conf->raid_disks - mddev->degraded); 1661 } 1662 1663 static void print_conf(struct r1conf *conf) 1664 { 1665 int i; 1666 1667 pr_debug("RAID1 conf printout:\n"); 1668 if (!conf) { 1669 pr_debug("(!conf)\n"); 1670 return; 1671 } 1672 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1673 conf->raid_disks); 1674 1675 rcu_read_lock(); 1676 for (i = 0; i < conf->raid_disks; i++) { 1677 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1678 if (rdev) 1679 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1680 i, !test_bit(In_sync, &rdev->flags), 1681 !test_bit(Faulty, &rdev->flags), 1682 rdev->bdev); 1683 } 1684 rcu_read_unlock(); 1685 } 1686 1687 static void close_sync(struct r1conf *conf) 1688 { 1689 int idx; 1690 1691 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1692 _wait_barrier(conf, idx, false); 1693 _allow_barrier(conf, idx); 1694 } 1695 1696 mempool_exit(&conf->r1buf_pool); 1697 } 1698 1699 static int raid1_spare_active(struct mddev *mddev) 1700 { 1701 int i; 1702 struct r1conf *conf = mddev->private; 1703 int count = 0; 1704 unsigned long flags; 1705 1706 /* 1707 * Find all failed disks within the RAID1 configuration 1708 * and mark them readable. 1709 * Called under mddev lock, so rcu protection not needed. 1710 * device_lock used to avoid races with raid1_end_read_request 1711 * which expects 'In_sync' flags and ->degraded to be consistent. 1712 */ 1713 spin_lock_irqsave(&conf->device_lock, flags); 1714 for (i = 0; i < conf->raid_disks; i++) { 1715 struct md_rdev *rdev = conf->mirrors[i].rdev; 1716 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1717 if (repl 1718 && !test_bit(Candidate, &repl->flags) 1719 && repl->recovery_offset == MaxSector 1720 && !test_bit(Faulty, &repl->flags) 1721 && !test_and_set_bit(In_sync, &repl->flags)) { 1722 /* replacement has just become active */ 1723 if (!rdev || 1724 !test_and_clear_bit(In_sync, &rdev->flags)) 1725 count++; 1726 if (rdev) { 1727 /* Replaced device not technically 1728 * faulty, but we need to be sure 1729 * it gets removed and never re-added 1730 */ 1731 set_bit(Faulty, &rdev->flags); 1732 sysfs_notify_dirent_safe( 1733 rdev->sysfs_state); 1734 } 1735 } 1736 if (rdev 1737 && rdev->recovery_offset == MaxSector 1738 && !test_bit(Faulty, &rdev->flags) 1739 && !test_and_set_bit(In_sync, &rdev->flags)) { 1740 count++; 1741 sysfs_notify_dirent_safe(rdev->sysfs_state); 1742 } 1743 } 1744 mddev->degraded -= count; 1745 spin_unlock_irqrestore(&conf->device_lock, flags); 1746 1747 print_conf(conf); 1748 return count; 1749 } 1750 1751 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1752 { 1753 struct r1conf *conf = mddev->private; 1754 int err = -EEXIST; 1755 int mirror = 0, repl_slot = -1; 1756 struct raid1_info *p; 1757 int first = 0; 1758 int last = conf->raid_disks - 1; 1759 1760 if (mddev->recovery_disabled == conf->recovery_disabled) 1761 return -EBUSY; 1762 1763 if (md_integrity_add_rdev(rdev, mddev)) 1764 return -ENXIO; 1765 1766 if (rdev->raid_disk >= 0) 1767 first = last = rdev->raid_disk; 1768 1769 /* 1770 * find the disk ... but prefer rdev->saved_raid_disk 1771 * if possible. 1772 */ 1773 if (rdev->saved_raid_disk >= 0 && 1774 rdev->saved_raid_disk >= first && 1775 rdev->saved_raid_disk < conf->raid_disks && 1776 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1777 first = last = rdev->saved_raid_disk; 1778 1779 for (mirror = first; mirror <= last; mirror++) { 1780 p = conf->mirrors + mirror; 1781 if (!p->rdev) { 1782 if (mddev->gendisk) 1783 disk_stack_limits(mddev->gendisk, rdev->bdev, 1784 rdev->data_offset << 9); 1785 1786 p->head_position = 0; 1787 rdev->raid_disk = mirror; 1788 err = 0; 1789 /* As all devices are equivalent, we don't need a full recovery 1790 * if this was recently any drive of the array 1791 */ 1792 if (rdev->saved_raid_disk < 0) 1793 conf->fullsync = 1; 1794 rcu_assign_pointer(p->rdev, rdev); 1795 break; 1796 } 1797 if (test_bit(WantReplacement, &p->rdev->flags) && 1798 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1799 repl_slot = mirror; 1800 } 1801 1802 if (err && repl_slot >= 0) { 1803 /* Add this device as a replacement */ 1804 p = conf->mirrors + repl_slot; 1805 clear_bit(In_sync, &rdev->flags); 1806 set_bit(Replacement, &rdev->flags); 1807 rdev->raid_disk = repl_slot; 1808 err = 0; 1809 conf->fullsync = 1; 1810 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1811 } 1812 1813 print_conf(conf); 1814 return err; 1815 } 1816 1817 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1818 { 1819 struct r1conf *conf = mddev->private; 1820 int err = 0; 1821 int number = rdev->raid_disk; 1822 struct raid1_info *p = conf->mirrors + number; 1823 1824 if (unlikely(number >= conf->raid_disks)) 1825 goto abort; 1826 1827 if (rdev != p->rdev) 1828 p = conf->mirrors + conf->raid_disks + number; 1829 1830 print_conf(conf); 1831 if (rdev == p->rdev) { 1832 if (test_bit(In_sync, &rdev->flags) || 1833 atomic_read(&rdev->nr_pending)) { 1834 err = -EBUSY; 1835 goto abort; 1836 } 1837 /* Only remove non-faulty devices if recovery 1838 * is not possible. 1839 */ 1840 if (!test_bit(Faulty, &rdev->flags) && 1841 mddev->recovery_disabled != conf->recovery_disabled && 1842 mddev->degraded < conf->raid_disks) { 1843 err = -EBUSY; 1844 goto abort; 1845 } 1846 p->rdev = NULL; 1847 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1848 synchronize_rcu(); 1849 if (atomic_read(&rdev->nr_pending)) { 1850 /* lost the race, try later */ 1851 err = -EBUSY; 1852 p->rdev = rdev; 1853 goto abort; 1854 } 1855 } 1856 if (conf->mirrors[conf->raid_disks + number].rdev) { 1857 /* We just removed a device that is being replaced. 1858 * Move down the replacement. We drain all IO before 1859 * doing this to avoid confusion. 1860 */ 1861 struct md_rdev *repl = 1862 conf->mirrors[conf->raid_disks + number].rdev; 1863 freeze_array(conf, 0); 1864 if (atomic_read(&repl->nr_pending)) { 1865 /* It means that some queued IO of retry_list 1866 * hold repl. Thus, we cannot set replacement 1867 * as NULL, avoiding rdev NULL pointer 1868 * dereference in sync_request_write and 1869 * handle_write_finished. 1870 */ 1871 err = -EBUSY; 1872 unfreeze_array(conf); 1873 goto abort; 1874 } 1875 clear_bit(Replacement, &repl->flags); 1876 p->rdev = repl; 1877 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1878 unfreeze_array(conf); 1879 } 1880 1881 clear_bit(WantReplacement, &rdev->flags); 1882 err = md_integrity_register(mddev); 1883 } 1884 abort: 1885 1886 print_conf(conf); 1887 return err; 1888 } 1889 1890 static void end_sync_read(struct bio *bio) 1891 { 1892 struct r1bio *r1_bio = get_resync_r1bio(bio); 1893 1894 update_head_pos(r1_bio->read_disk, r1_bio); 1895 1896 /* 1897 * we have read a block, now it needs to be re-written, 1898 * or re-read if the read failed. 1899 * We don't do much here, just schedule handling by raid1d 1900 */ 1901 if (!bio->bi_status) 1902 set_bit(R1BIO_Uptodate, &r1_bio->state); 1903 1904 if (atomic_dec_and_test(&r1_bio->remaining)) 1905 reschedule_retry(r1_bio); 1906 } 1907 1908 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1909 { 1910 sector_t sync_blocks = 0; 1911 sector_t s = r1_bio->sector; 1912 long sectors_to_go = r1_bio->sectors; 1913 1914 /* make sure these bits don't get cleared. */ 1915 do { 1916 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1917 s += sync_blocks; 1918 sectors_to_go -= sync_blocks; 1919 } while (sectors_to_go > 0); 1920 } 1921 1922 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1923 { 1924 if (atomic_dec_and_test(&r1_bio->remaining)) { 1925 struct mddev *mddev = r1_bio->mddev; 1926 int s = r1_bio->sectors; 1927 1928 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1929 test_bit(R1BIO_WriteError, &r1_bio->state)) 1930 reschedule_retry(r1_bio); 1931 else { 1932 put_buf(r1_bio); 1933 md_done_sync(mddev, s, uptodate); 1934 } 1935 } 1936 } 1937 1938 static void end_sync_write(struct bio *bio) 1939 { 1940 int uptodate = !bio->bi_status; 1941 struct r1bio *r1_bio = get_resync_r1bio(bio); 1942 struct mddev *mddev = r1_bio->mddev; 1943 struct r1conf *conf = mddev->private; 1944 sector_t first_bad; 1945 int bad_sectors; 1946 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1947 1948 if (!uptodate) { 1949 abort_sync_write(mddev, r1_bio); 1950 set_bit(WriteErrorSeen, &rdev->flags); 1951 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1952 set_bit(MD_RECOVERY_NEEDED, & 1953 mddev->recovery); 1954 set_bit(R1BIO_WriteError, &r1_bio->state); 1955 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1956 &first_bad, &bad_sectors) && 1957 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1958 r1_bio->sector, 1959 r1_bio->sectors, 1960 &first_bad, &bad_sectors) 1961 ) 1962 set_bit(R1BIO_MadeGood, &r1_bio->state); 1963 1964 put_sync_write_buf(r1_bio, uptodate); 1965 } 1966 1967 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1968 int sectors, struct page *page, blk_opf_t rw) 1969 { 1970 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1971 /* success */ 1972 return 1; 1973 if (rw == REQ_OP_WRITE) { 1974 set_bit(WriteErrorSeen, &rdev->flags); 1975 if (!test_and_set_bit(WantReplacement, 1976 &rdev->flags)) 1977 set_bit(MD_RECOVERY_NEEDED, & 1978 rdev->mddev->recovery); 1979 } 1980 /* need to record an error - either for the block or the device */ 1981 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1982 md_error(rdev->mddev, rdev); 1983 return 0; 1984 } 1985 1986 static int fix_sync_read_error(struct r1bio *r1_bio) 1987 { 1988 /* Try some synchronous reads of other devices to get 1989 * good data, much like with normal read errors. Only 1990 * read into the pages we already have so we don't 1991 * need to re-issue the read request. 1992 * We don't need to freeze the array, because being in an 1993 * active sync request, there is no normal IO, and 1994 * no overlapping syncs. 1995 * We don't need to check is_badblock() again as we 1996 * made sure that anything with a bad block in range 1997 * will have bi_end_io clear. 1998 */ 1999 struct mddev *mddev = r1_bio->mddev; 2000 struct r1conf *conf = mddev->private; 2001 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2002 struct page **pages = get_resync_pages(bio)->pages; 2003 sector_t sect = r1_bio->sector; 2004 int sectors = r1_bio->sectors; 2005 int idx = 0; 2006 struct md_rdev *rdev; 2007 2008 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2009 if (test_bit(FailFast, &rdev->flags)) { 2010 /* Don't try recovering from here - just fail it 2011 * ... unless it is the last working device of course */ 2012 md_error(mddev, rdev); 2013 if (test_bit(Faulty, &rdev->flags)) 2014 /* Don't try to read from here, but make sure 2015 * put_buf does it's thing 2016 */ 2017 bio->bi_end_io = end_sync_write; 2018 } 2019 2020 while(sectors) { 2021 int s = sectors; 2022 int d = r1_bio->read_disk; 2023 int success = 0; 2024 int start; 2025 2026 if (s > (PAGE_SIZE>>9)) 2027 s = PAGE_SIZE >> 9; 2028 do { 2029 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2030 /* No rcu protection needed here devices 2031 * can only be removed when no resync is 2032 * active, and resync is currently active 2033 */ 2034 rdev = conf->mirrors[d].rdev; 2035 if (sync_page_io(rdev, sect, s<<9, 2036 pages[idx], 2037 REQ_OP_READ, false)) { 2038 success = 1; 2039 break; 2040 } 2041 } 2042 d++; 2043 if (d == conf->raid_disks * 2) 2044 d = 0; 2045 } while (!success && d != r1_bio->read_disk); 2046 2047 if (!success) { 2048 int abort = 0; 2049 /* Cannot read from anywhere, this block is lost. 2050 * Record a bad block on each device. If that doesn't 2051 * work just disable and interrupt the recovery. 2052 * Don't fail devices as that won't really help. 2053 */ 2054 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2055 mdname(mddev), bio->bi_bdev, 2056 (unsigned long long)r1_bio->sector); 2057 for (d = 0; d < conf->raid_disks * 2; d++) { 2058 rdev = conf->mirrors[d].rdev; 2059 if (!rdev || test_bit(Faulty, &rdev->flags)) 2060 continue; 2061 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2062 abort = 1; 2063 } 2064 if (abort) { 2065 conf->recovery_disabled = 2066 mddev->recovery_disabled; 2067 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2068 md_done_sync(mddev, r1_bio->sectors, 0); 2069 put_buf(r1_bio); 2070 return 0; 2071 } 2072 /* Try next page */ 2073 sectors -= s; 2074 sect += s; 2075 idx++; 2076 continue; 2077 } 2078 2079 start = d; 2080 /* write it back and re-read */ 2081 while (d != r1_bio->read_disk) { 2082 if (d == 0) 2083 d = conf->raid_disks * 2; 2084 d--; 2085 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2086 continue; 2087 rdev = conf->mirrors[d].rdev; 2088 if (r1_sync_page_io(rdev, sect, s, 2089 pages[idx], 2090 REQ_OP_WRITE) == 0) { 2091 r1_bio->bios[d]->bi_end_io = NULL; 2092 rdev_dec_pending(rdev, mddev); 2093 } 2094 } 2095 d = start; 2096 while (d != r1_bio->read_disk) { 2097 if (d == 0) 2098 d = conf->raid_disks * 2; 2099 d--; 2100 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2101 continue; 2102 rdev = conf->mirrors[d].rdev; 2103 if (r1_sync_page_io(rdev, sect, s, 2104 pages[idx], 2105 REQ_OP_READ) != 0) 2106 atomic_add(s, &rdev->corrected_errors); 2107 } 2108 sectors -= s; 2109 sect += s; 2110 idx ++; 2111 } 2112 set_bit(R1BIO_Uptodate, &r1_bio->state); 2113 bio->bi_status = 0; 2114 return 1; 2115 } 2116 2117 static void process_checks(struct r1bio *r1_bio) 2118 { 2119 /* We have read all readable devices. If we haven't 2120 * got the block, then there is no hope left. 2121 * If we have, then we want to do a comparison 2122 * and skip the write if everything is the same. 2123 * If any blocks failed to read, then we need to 2124 * attempt an over-write 2125 */ 2126 struct mddev *mddev = r1_bio->mddev; 2127 struct r1conf *conf = mddev->private; 2128 int primary; 2129 int i; 2130 int vcnt; 2131 2132 /* Fix variable parts of all bios */ 2133 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2134 for (i = 0; i < conf->raid_disks * 2; i++) { 2135 blk_status_t status; 2136 struct bio *b = r1_bio->bios[i]; 2137 struct resync_pages *rp = get_resync_pages(b); 2138 if (b->bi_end_io != end_sync_read) 2139 continue; 2140 /* fixup the bio for reuse, but preserve errno */ 2141 status = b->bi_status; 2142 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2143 b->bi_status = status; 2144 b->bi_iter.bi_sector = r1_bio->sector + 2145 conf->mirrors[i].rdev->data_offset; 2146 b->bi_end_io = end_sync_read; 2147 rp->raid_bio = r1_bio; 2148 b->bi_private = rp; 2149 2150 /* initialize bvec table again */ 2151 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2152 } 2153 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2154 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2155 !r1_bio->bios[primary]->bi_status) { 2156 r1_bio->bios[primary]->bi_end_io = NULL; 2157 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2158 break; 2159 } 2160 r1_bio->read_disk = primary; 2161 for (i = 0; i < conf->raid_disks * 2; i++) { 2162 int j = 0; 2163 struct bio *pbio = r1_bio->bios[primary]; 2164 struct bio *sbio = r1_bio->bios[i]; 2165 blk_status_t status = sbio->bi_status; 2166 struct page **ppages = get_resync_pages(pbio)->pages; 2167 struct page **spages = get_resync_pages(sbio)->pages; 2168 struct bio_vec *bi; 2169 int page_len[RESYNC_PAGES] = { 0 }; 2170 struct bvec_iter_all iter_all; 2171 2172 if (sbio->bi_end_io != end_sync_read) 2173 continue; 2174 /* Now we can 'fixup' the error value */ 2175 sbio->bi_status = 0; 2176 2177 bio_for_each_segment_all(bi, sbio, iter_all) 2178 page_len[j++] = bi->bv_len; 2179 2180 if (!status) { 2181 for (j = vcnt; j-- ; ) { 2182 if (memcmp(page_address(ppages[j]), 2183 page_address(spages[j]), 2184 page_len[j])) 2185 break; 2186 } 2187 } else 2188 j = 0; 2189 if (j >= 0) 2190 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2191 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2192 && !status)) { 2193 /* No need to write to this device. */ 2194 sbio->bi_end_io = NULL; 2195 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2196 continue; 2197 } 2198 2199 bio_copy_data(sbio, pbio); 2200 } 2201 } 2202 2203 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2204 { 2205 struct r1conf *conf = mddev->private; 2206 int i; 2207 int disks = conf->raid_disks * 2; 2208 struct bio *wbio; 2209 2210 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2211 /* ouch - failed to read all of that. */ 2212 if (!fix_sync_read_error(r1_bio)) 2213 return; 2214 2215 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2216 process_checks(r1_bio); 2217 2218 /* 2219 * schedule writes 2220 */ 2221 atomic_set(&r1_bio->remaining, 1); 2222 for (i = 0; i < disks ; i++) { 2223 wbio = r1_bio->bios[i]; 2224 if (wbio->bi_end_io == NULL || 2225 (wbio->bi_end_io == end_sync_read && 2226 (i == r1_bio->read_disk || 2227 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2228 continue; 2229 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2230 abort_sync_write(mddev, r1_bio); 2231 continue; 2232 } 2233 2234 wbio->bi_opf = REQ_OP_WRITE; 2235 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2236 wbio->bi_opf |= MD_FAILFAST; 2237 2238 wbio->bi_end_io = end_sync_write; 2239 atomic_inc(&r1_bio->remaining); 2240 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2241 2242 submit_bio_noacct(wbio); 2243 } 2244 2245 put_sync_write_buf(r1_bio, 1); 2246 } 2247 2248 /* 2249 * This is a kernel thread which: 2250 * 2251 * 1. Retries failed read operations on working mirrors. 2252 * 2. Updates the raid superblock when problems encounter. 2253 * 3. Performs writes following reads for array synchronising. 2254 */ 2255 2256 static void fix_read_error(struct r1conf *conf, int read_disk, 2257 sector_t sect, int sectors) 2258 { 2259 struct mddev *mddev = conf->mddev; 2260 while(sectors) { 2261 int s = sectors; 2262 int d = read_disk; 2263 int success = 0; 2264 int start; 2265 struct md_rdev *rdev; 2266 2267 if (s > (PAGE_SIZE>>9)) 2268 s = PAGE_SIZE >> 9; 2269 2270 do { 2271 sector_t first_bad; 2272 int bad_sectors; 2273 2274 rcu_read_lock(); 2275 rdev = rcu_dereference(conf->mirrors[d].rdev); 2276 if (rdev && 2277 (test_bit(In_sync, &rdev->flags) || 2278 (!test_bit(Faulty, &rdev->flags) && 2279 rdev->recovery_offset >= sect + s)) && 2280 is_badblock(rdev, sect, s, 2281 &first_bad, &bad_sectors) == 0) { 2282 atomic_inc(&rdev->nr_pending); 2283 rcu_read_unlock(); 2284 if (sync_page_io(rdev, sect, s<<9, 2285 conf->tmppage, REQ_OP_READ, false)) 2286 success = 1; 2287 rdev_dec_pending(rdev, mddev); 2288 if (success) 2289 break; 2290 } else 2291 rcu_read_unlock(); 2292 d++; 2293 if (d == conf->raid_disks * 2) 2294 d = 0; 2295 } while (d != read_disk); 2296 2297 if (!success) { 2298 /* Cannot read from anywhere - mark it bad */ 2299 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2300 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2301 md_error(mddev, rdev); 2302 break; 2303 } 2304 /* write it back and re-read */ 2305 start = d; 2306 while (d != read_disk) { 2307 if (d==0) 2308 d = conf->raid_disks * 2; 2309 d--; 2310 rcu_read_lock(); 2311 rdev = rcu_dereference(conf->mirrors[d].rdev); 2312 if (rdev && 2313 !test_bit(Faulty, &rdev->flags)) { 2314 atomic_inc(&rdev->nr_pending); 2315 rcu_read_unlock(); 2316 r1_sync_page_io(rdev, sect, s, 2317 conf->tmppage, REQ_OP_WRITE); 2318 rdev_dec_pending(rdev, mddev); 2319 } else 2320 rcu_read_unlock(); 2321 } 2322 d = start; 2323 while (d != read_disk) { 2324 if (d==0) 2325 d = conf->raid_disks * 2; 2326 d--; 2327 rcu_read_lock(); 2328 rdev = rcu_dereference(conf->mirrors[d].rdev); 2329 if (rdev && 2330 !test_bit(Faulty, &rdev->flags)) { 2331 atomic_inc(&rdev->nr_pending); 2332 rcu_read_unlock(); 2333 if (r1_sync_page_io(rdev, sect, s, 2334 conf->tmppage, REQ_OP_READ)) { 2335 atomic_add(s, &rdev->corrected_errors); 2336 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2337 mdname(mddev), s, 2338 (unsigned long long)(sect + 2339 rdev->data_offset), 2340 rdev->bdev); 2341 } 2342 rdev_dec_pending(rdev, mddev); 2343 } else 2344 rcu_read_unlock(); 2345 } 2346 sectors -= s; 2347 sect += s; 2348 } 2349 } 2350 2351 static int narrow_write_error(struct r1bio *r1_bio, int i) 2352 { 2353 struct mddev *mddev = r1_bio->mddev; 2354 struct r1conf *conf = mddev->private; 2355 struct md_rdev *rdev = conf->mirrors[i].rdev; 2356 2357 /* bio has the data to be written to device 'i' where 2358 * we just recently had a write error. 2359 * We repeatedly clone the bio and trim down to one block, 2360 * then try the write. Where the write fails we record 2361 * a bad block. 2362 * It is conceivable that the bio doesn't exactly align with 2363 * blocks. We must handle this somehow. 2364 * 2365 * We currently own a reference on the rdev. 2366 */ 2367 2368 int block_sectors; 2369 sector_t sector; 2370 int sectors; 2371 int sect_to_write = r1_bio->sectors; 2372 int ok = 1; 2373 2374 if (rdev->badblocks.shift < 0) 2375 return 0; 2376 2377 block_sectors = roundup(1 << rdev->badblocks.shift, 2378 bdev_logical_block_size(rdev->bdev) >> 9); 2379 sector = r1_bio->sector; 2380 sectors = ((sector + block_sectors) 2381 & ~(sector_t)(block_sectors - 1)) 2382 - sector; 2383 2384 while (sect_to_write) { 2385 struct bio *wbio; 2386 if (sectors > sect_to_write) 2387 sectors = sect_to_write; 2388 /* Write at 'sector' for 'sectors'*/ 2389 2390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2391 wbio = bio_alloc_clone(rdev->bdev, 2392 r1_bio->behind_master_bio, 2393 GFP_NOIO, &mddev->bio_set); 2394 } else { 2395 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2396 GFP_NOIO, &mddev->bio_set); 2397 } 2398 2399 wbio->bi_opf = REQ_OP_WRITE; 2400 wbio->bi_iter.bi_sector = r1_bio->sector; 2401 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2402 2403 bio_trim(wbio, sector - r1_bio->sector, sectors); 2404 wbio->bi_iter.bi_sector += rdev->data_offset; 2405 2406 if (submit_bio_wait(wbio) < 0) 2407 /* failure! */ 2408 ok = rdev_set_badblocks(rdev, sector, 2409 sectors, 0) 2410 && ok; 2411 2412 bio_put(wbio); 2413 sect_to_write -= sectors; 2414 sector += sectors; 2415 sectors = block_sectors; 2416 } 2417 return ok; 2418 } 2419 2420 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2421 { 2422 int m; 2423 int s = r1_bio->sectors; 2424 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2425 struct md_rdev *rdev = conf->mirrors[m].rdev; 2426 struct bio *bio = r1_bio->bios[m]; 2427 if (bio->bi_end_io == NULL) 2428 continue; 2429 if (!bio->bi_status && 2430 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2431 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2432 } 2433 if (bio->bi_status && 2434 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2435 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2436 md_error(conf->mddev, rdev); 2437 } 2438 } 2439 put_buf(r1_bio); 2440 md_done_sync(conf->mddev, s, 1); 2441 } 2442 2443 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2444 { 2445 int m, idx; 2446 bool fail = false; 2447 2448 for (m = 0; m < conf->raid_disks * 2 ; m++) 2449 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2450 struct md_rdev *rdev = conf->mirrors[m].rdev; 2451 rdev_clear_badblocks(rdev, 2452 r1_bio->sector, 2453 r1_bio->sectors, 0); 2454 rdev_dec_pending(rdev, conf->mddev); 2455 } else if (r1_bio->bios[m] != NULL) { 2456 /* This drive got a write error. We need to 2457 * narrow down and record precise write 2458 * errors. 2459 */ 2460 fail = true; 2461 if (!narrow_write_error(r1_bio, m)) 2462 md_error(conf->mddev, 2463 conf->mirrors[m].rdev); 2464 rdev_dec_pending(conf->mirrors[m].rdev, 2465 conf->mddev); 2466 } 2467 if (fail) { 2468 spin_lock_irq(&conf->device_lock); 2469 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2470 idx = sector_to_idx(r1_bio->sector); 2471 atomic_inc(&conf->nr_queued[idx]); 2472 spin_unlock_irq(&conf->device_lock); 2473 /* 2474 * In case freeze_array() is waiting for condition 2475 * get_unqueued_pending() == extra to be true. 2476 */ 2477 wake_up(&conf->wait_barrier); 2478 md_wakeup_thread(conf->mddev->thread); 2479 } else { 2480 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2481 close_write(r1_bio); 2482 raid_end_bio_io(r1_bio); 2483 } 2484 } 2485 2486 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2487 { 2488 struct mddev *mddev = conf->mddev; 2489 struct bio *bio; 2490 struct md_rdev *rdev; 2491 sector_t sector; 2492 2493 clear_bit(R1BIO_ReadError, &r1_bio->state); 2494 /* we got a read error. Maybe the drive is bad. Maybe just 2495 * the block and we can fix it. 2496 * We freeze all other IO, and try reading the block from 2497 * other devices. When we find one, we re-write 2498 * and check it that fixes the read error. 2499 * This is all done synchronously while the array is 2500 * frozen 2501 */ 2502 2503 bio = r1_bio->bios[r1_bio->read_disk]; 2504 bio_put(bio); 2505 r1_bio->bios[r1_bio->read_disk] = NULL; 2506 2507 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2508 if (mddev->ro == 0 2509 && !test_bit(FailFast, &rdev->flags)) { 2510 freeze_array(conf, 1); 2511 fix_read_error(conf, r1_bio->read_disk, 2512 r1_bio->sector, r1_bio->sectors); 2513 unfreeze_array(conf); 2514 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2515 md_error(mddev, rdev); 2516 } else { 2517 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2518 } 2519 2520 rdev_dec_pending(rdev, conf->mddev); 2521 sector = r1_bio->sector; 2522 bio = r1_bio->master_bio; 2523 2524 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2525 r1_bio->state = 0; 2526 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2527 allow_barrier(conf, sector); 2528 } 2529 2530 static void raid1d(struct md_thread *thread) 2531 { 2532 struct mddev *mddev = thread->mddev; 2533 struct r1bio *r1_bio; 2534 unsigned long flags; 2535 struct r1conf *conf = mddev->private; 2536 struct list_head *head = &conf->retry_list; 2537 struct blk_plug plug; 2538 int idx; 2539 2540 md_check_recovery(mddev); 2541 2542 if (!list_empty_careful(&conf->bio_end_io_list) && 2543 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2544 LIST_HEAD(tmp); 2545 spin_lock_irqsave(&conf->device_lock, flags); 2546 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2547 list_splice_init(&conf->bio_end_io_list, &tmp); 2548 spin_unlock_irqrestore(&conf->device_lock, flags); 2549 while (!list_empty(&tmp)) { 2550 r1_bio = list_first_entry(&tmp, struct r1bio, 2551 retry_list); 2552 list_del(&r1_bio->retry_list); 2553 idx = sector_to_idx(r1_bio->sector); 2554 atomic_dec(&conf->nr_queued[idx]); 2555 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2556 close_write(r1_bio); 2557 raid_end_bio_io(r1_bio); 2558 } 2559 } 2560 2561 blk_start_plug(&plug); 2562 for (;;) { 2563 2564 flush_pending_writes(conf); 2565 2566 spin_lock_irqsave(&conf->device_lock, flags); 2567 if (list_empty(head)) { 2568 spin_unlock_irqrestore(&conf->device_lock, flags); 2569 break; 2570 } 2571 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2572 list_del(head->prev); 2573 idx = sector_to_idx(r1_bio->sector); 2574 atomic_dec(&conf->nr_queued[idx]); 2575 spin_unlock_irqrestore(&conf->device_lock, flags); 2576 2577 mddev = r1_bio->mddev; 2578 conf = mddev->private; 2579 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2580 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2581 test_bit(R1BIO_WriteError, &r1_bio->state)) 2582 handle_sync_write_finished(conf, r1_bio); 2583 else 2584 sync_request_write(mddev, r1_bio); 2585 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2586 test_bit(R1BIO_WriteError, &r1_bio->state)) 2587 handle_write_finished(conf, r1_bio); 2588 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2589 handle_read_error(conf, r1_bio); 2590 else 2591 WARN_ON_ONCE(1); 2592 2593 cond_resched(); 2594 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2595 md_check_recovery(mddev); 2596 } 2597 blk_finish_plug(&plug); 2598 } 2599 2600 static int init_resync(struct r1conf *conf) 2601 { 2602 int buffs; 2603 2604 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2605 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2606 2607 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2608 r1buf_pool_free, conf->poolinfo); 2609 } 2610 2611 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2612 { 2613 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2614 struct resync_pages *rps; 2615 struct bio *bio; 2616 int i; 2617 2618 for (i = conf->poolinfo->raid_disks; i--; ) { 2619 bio = r1bio->bios[i]; 2620 rps = bio->bi_private; 2621 bio_reset(bio, NULL, 0); 2622 bio->bi_private = rps; 2623 } 2624 r1bio->master_bio = NULL; 2625 return r1bio; 2626 } 2627 2628 /* 2629 * perform a "sync" on one "block" 2630 * 2631 * We need to make sure that no normal I/O request - particularly write 2632 * requests - conflict with active sync requests. 2633 * 2634 * This is achieved by tracking pending requests and a 'barrier' concept 2635 * that can be installed to exclude normal IO requests. 2636 */ 2637 2638 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2639 int *skipped) 2640 { 2641 struct r1conf *conf = mddev->private; 2642 struct r1bio *r1_bio; 2643 struct bio *bio; 2644 sector_t max_sector, nr_sectors; 2645 int disk = -1; 2646 int i; 2647 int wonly = -1; 2648 int write_targets = 0, read_targets = 0; 2649 sector_t sync_blocks; 2650 int still_degraded = 0; 2651 int good_sectors = RESYNC_SECTORS; 2652 int min_bad = 0; /* number of sectors that are bad in all devices */ 2653 int idx = sector_to_idx(sector_nr); 2654 int page_idx = 0; 2655 2656 if (!mempool_initialized(&conf->r1buf_pool)) 2657 if (init_resync(conf)) 2658 return 0; 2659 2660 max_sector = mddev->dev_sectors; 2661 if (sector_nr >= max_sector) { 2662 /* If we aborted, we need to abort the 2663 * sync on the 'current' bitmap chunk (there will 2664 * only be one in raid1 resync. 2665 * We can find the current addess in mddev->curr_resync 2666 */ 2667 if (mddev->curr_resync < max_sector) /* aborted */ 2668 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2669 &sync_blocks, 1); 2670 else /* completed sync */ 2671 conf->fullsync = 0; 2672 2673 md_bitmap_close_sync(mddev->bitmap); 2674 close_sync(conf); 2675 2676 if (mddev_is_clustered(mddev)) { 2677 conf->cluster_sync_low = 0; 2678 conf->cluster_sync_high = 0; 2679 } 2680 return 0; 2681 } 2682 2683 if (mddev->bitmap == NULL && 2684 mddev->recovery_cp == MaxSector && 2685 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2686 conf->fullsync == 0) { 2687 *skipped = 1; 2688 return max_sector - sector_nr; 2689 } 2690 /* before building a request, check if we can skip these blocks.. 2691 * This call the bitmap_start_sync doesn't actually record anything 2692 */ 2693 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2694 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2695 /* We can skip this block, and probably several more */ 2696 *skipped = 1; 2697 return sync_blocks; 2698 } 2699 2700 /* 2701 * If there is non-resync activity waiting for a turn, then let it 2702 * though before starting on this new sync request. 2703 */ 2704 if (atomic_read(&conf->nr_waiting[idx])) 2705 schedule_timeout_uninterruptible(1); 2706 2707 /* we are incrementing sector_nr below. To be safe, we check against 2708 * sector_nr + two times RESYNC_SECTORS 2709 */ 2710 2711 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2712 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2713 2714 2715 if (raise_barrier(conf, sector_nr)) 2716 return 0; 2717 2718 r1_bio = raid1_alloc_init_r1buf(conf); 2719 2720 rcu_read_lock(); 2721 /* 2722 * If we get a correctably read error during resync or recovery, 2723 * we might want to read from a different device. So we 2724 * flag all drives that could conceivably be read from for READ, 2725 * and any others (which will be non-In_sync devices) for WRITE. 2726 * If a read fails, we try reading from something else for which READ 2727 * is OK. 2728 */ 2729 2730 r1_bio->mddev = mddev; 2731 r1_bio->sector = sector_nr; 2732 r1_bio->state = 0; 2733 set_bit(R1BIO_IsSync, &r1_bio->state); 2734 /* make sure good_sectors won't go across barrier unit boundary */ 2735 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2736 2737 for (i = 0; i < conf->raid_disks * 2; i++) { 2738 struct md_rdev *rdev; 2739 bio = r1_bio->bios[i]; 2740 2741 rdev = rcu_dereference(conf->mirrors[i].rdev); 2742 if (rdev == NULL || 2743 test_bit(Faulty, &rdev->flags)) { 2744 if (i < conf->raid_disks) 2745 still_degraded = 1; 2746 } else if (!test_bit(In_sync, &rdev->flags)) { 2747 bio->bi_opf = REQ_OP_WRITE; 2748 bio->bi_end_io = end_sync_write; 2749 write_targets ++; 2750 } else { 2751 /* may need to read from here */ 2752 sector_t first_bad = MaxSector; 2753 int bad_sectors; 2754 2755 if (is_badblock(rdev, sector_nr, good_sectors, 2756 &first_bad, &bad_sectors)) { 2757 if (first_bad > sector_nr) 2758 good_sectors = first_bad - sector_nr; 2759 else { 2760 bad_sectors -= (sector_nr - first_bad); 2761 if (min_bad == 0 || 2762 min_bad > bad_sectors) 2763 min_bad = bad_sectors; 2764 } 2765 } 2766 if (sector_nr < first_bad) { 2767 if (test_bit(WriteMostly, &rdev->flags)) { 2768 if (wonly < 0) 2769 wonly = i; 2770 } else { 2771 if (disk < 0) 2772 disk = i; 2773 } 2774 bio->bi_opf = REQ_OP_READ; 2775 bio->bi_end_io = end_sync_read; 2776 read_targets++; 2777 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2778 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2779 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2780 /* 2781 * The device is suitable for reading (InSync), 2782 * but has bad block(s) here. Let's try to correct them, 2783 * if we are doing resync or repair. Otherwise, leave 2784 * this device alone for this sync request. 2785 */ 2786 bio->bi_opf = REQ_OP_WRITE; 2787 bio->bi_end_io = end_sync_write; 2788 write_targets++; 2789 } 2790 } 2791 if (rdev && bio->bi_end_io) { 2792 atomic_inc(&rdev->nr_pending); 2793 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2794 bio_set_dev(bio, rdev->bdev); 2795 if (test_bit(FailFast, &rdev->flags)) 2796 bio->bi_opf |= MD_FAILFAST; 2797 } 2798 } 2799 rcu_read_unlock(); 2800 if (disk < 0) 2801 disk = wonly; 2802 r1_bio->read_disk = disk; 2803 2804 if (read_targets == 0 && min_bad > 0) { 2805 /* These sectors are bad on all InSync devices, so we 2806 * need to mark them bad on all write targets 2807 */ 2808 int ok = 1; 2809 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2810 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2811 struct md_rdev *rdev = conf->mirrors[i].rdev; 2812 ok = rdev_set_badblocks(rdev, sector_nr, 2813 min_bad, 0 2814 ) && ok; 2815 } 2816 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2817 *skipped = 1; 2818 put_buf(r1_bio); 2819 2820 if (!ok) { 2821 /* Cannot record the badblocks, so need to 2822 * abort the resync. 2823 * If there are multiple read targets, could just 2824 * fail the really bad ones ??? 2825 */ 2826 conf->recovery_disabled = mddev->recovery_disabled; 2827 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2828 return 0; 2829 } else 2830 return min_bad; 2831 2832 } 2833 if (min_bad > 0 && min_bad < good_sectors) { 2834 /* only resync enough to reach the next bad->good 2835 * transition */ 2836 good_sectors = min_bad; 2837 } 2838 2839 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2840 /* extra read targets are also write targets */ 2841 write_targets += read_targets-1; 2842 2843 if (write_targets == 0 || read_targets == 0) { 2844 /* There is nowhere to write, so all non-sync 2845 * drives must be failed - so we are finished 2846 */ 2847 sector_t rv; 2848 if (min_bad > 0) 2849 max_sector = sector_nr + min_bad; 2850 rv = max_sector - sector_nr; 2851 *skipped = 1; 2852 put_buf(r1_bio); 2853 return rv; 2854 } 2855 2856 if (max_sector > mddev->resync_max) 2857 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2858 if (max_sector > sector_nr + good_sectors) 2859 max_sector = sector_nr + good_sectors; 2860 nr_sectors = 0; 2861 sync_blocks = 0; 2862 do { 2863 struct page *page; 2864 int len = PAGE_SIZE; 2865 if (sector_nr + (len>>9) > max_sector) 2866 len = (max_sector - sector_nr) << 9; 2867 if (len == 0) 2868 break; 2869 if (sync_blocks == 0) { 2870 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2871 &sync_blocks, still_degraded) && 2872 !conf->fullsync && 2873 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2874 break; 2875 if ((len >> 9) > sync_blocks) 2876 len = sync_blocks<<9; 2877 } 2878 2879 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2880 struct resync_pages *rp; 2881 2882 bio = r1_bio->bios[i]; 2883 rp = get_resync_pages(bio); 2884 if (bio->bi_end_io) { 2885 page = resync_fetch_page(rp, page_idx); 2886 2887 /* 2888 * won't fail because the vec table is big 2889 * enough to hold all these pages 2890 */ 2891 __bio_add_page(bio, page, len, 0); 2892 } 2893 } 2894 nr_sectors += len>>9; 2895 sector_nr += len>>9; 2896 sync_blocks -= (len>>9); 2897 } while (++page_idx < RESYNC_PAGES); 2898 2899 r1_bio->sectors = nr_sectors; 2900 2901 if (mddev_is_clustered(mddev) && 2902 conf->cluster_sync_high < sector_nr + nr_sectors) { 2903 conf->cluster_sync_low = mddev->curr_resync_completed; 2904 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2905 /* Send resync message */ 2906 md_cluster_ops->resync_info_update(mddev, 2907 conf->cluster_sync_low, 2908 conf->cluster_sync_high); 2909 } 2910 2911 /* For a user-requested sync, we read all readable devices and do a 2912 * compare 2913 */ 2914 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2915 atomic_set(&r1_bio->remaining, read_targets); 2916 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2917 bio = r1_bio->bios[i]; 2918 if (bio->bi_end_io == end_sync_read) { 2919 read_targets--; 2920 md_sync_acct_bio(bio, nr_sectors); 2921 if (read_targets == 1) 2922 bio->bi_opf &= ~MD_FAILFAST; 2923 submit_bio_noacct(bio); 2924 } 2925 } 2926 } else { 2927 atomic_set(&r1_bio->remaining, 1); 2928 bio = r1_bio->bios[r1_bio->read_disk]; 2929 md_sync_acct_bio(bio, nr_sectors); 2930 if (read_targets == 1) 2931 bio->bi_opf &= ~MD_FAILFAST; 2932 submit_bio_noacct(bio); 2933 } 2934 return nr_sectors; 2935 } 2936 2937 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2938 { 2939 if (sectors) 2940 return sectors; 2941 2942 return mddev->dev_sectors; 2943 } 2944 2945 static struct r1conf *setup_conf(struct mddev *mddev) 2946 { 2947 struct r1conf *conf; 2948 int i; 2949 struct raid1_info *disk; 2950 struct md_rdev *rdev; 2951 int err = -ENOMEM; 2952 2953 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2954 if (!conf) 2955 goto abort; 2956 2957 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2958 sizeof(atomic_t), GFP_KERNEL); 2959 if (!conf->nr_pending) 2960 goto abort; 2961 2962 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2963 sizeof(atomic_t), GFP_KERNEL); 2964 if (!conf->nr_waiting) 2965 goto abort; 2966 2967 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2968 sizeof(atomic_t), GFP_KERNEL); 2969 if (!conf->nr_queued) 2970 goto abort; 2971 2972 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2973 sizeof(atomic_t), GFP_KERNEL); 2974 if (!conf->barrier) 2975 goto abort; 2976 2977 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2978 mddev->raid_disks, 2), 2979 GFP_KERNEL); 2980 if (!conf->mirrors) 2981 goto abort; 2982 2983 conf->tmppage = alloc_page(GFP_KERNEL); 2984 if (!conf->tmppage) 2985 goto abort; 2986 2987 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2988 if (!conf->poolinfo) 2989 goto abort; 2990 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2991 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2992 rbio_pool_free, conf->poolinfo); 2993 if (err) 2994 goto abort; 2995 2996 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2997 if (err) 2998 goto abort; 2999 3000 conf->poolinfo->mddev = mddev; 3001 3002 err = -EINVAL; 3003 spin_lock_init(&conf->device_lock); 3004 rdev_for_each(rdev, mddev) { 3005 int disk_idx = rdev->raid_disk; 3006 if (disk_idx >= mddev->raid_disks 3007 || disk_idx < 0) 3008 continue; 3009 if (test_bit(Replacement, &rdev->flags)) 3010 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3011 else 3012 disk = conf->mirrors + disk_idx; 3013 3014 if (disk->rdev) 3015 goto abort; 3016 disk->rdev = rdev; 3017 disk->head_position = 0; 3018 disk->seq_start = MaxSector; 3019 } 3020 conf->raid_disks = mddev->raid_disks; 3021 conf->mddev = mddev; 3022 INIT_LIST_HEAD(&conf->retry_list); 3023 INIT_LIST_HEAD(&conf->bio_end_io_list); 3024 3025 spin_lock_init(&conf->resync_lock); 3026 init_waitqueue_head(&conf->wait_barrier); 3027 3028 bio_list_init(&conf->pending_bio_list); 3029 conf->recovery_disabled = mddev->recovery_disabled - 1; 3030 3031 err = -EIO; 3032 for (i = 0; i < conf->raid_disks * 2; i++) { 3033 3034 disk = conf->mirrors + i; 3035 3036 if (i < conf->raid_disks && 3037 disk[conf->raid_disks].rdev) { 3038 /* This slot has a replacement. */ 3039 if (!disk->rdev) { 3040 /* No original, just make the replacement 3041 * a recovering spare 3042 */ 3043 disk->rdev = 3044 disk[conf->raid_disks].rdev; 3045 disk[conf->raid_disks].rdev = NULL; 3046 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3047 /* Original is not in_sync - bad */ 3048 goto abort; 3049 } 3050 3051 if (!disk->rdev || 3052 !test_bit(In_sync, &disk->rdev->flags)) { 3053 disk->head_position = 0; 3054 if (disk->rdev && 3055 (disk->rdev->saved_raid_disk < 0)) 3056 conf->fullsync = 1; 3057 } 3058 } 3059 3060 err = -ENOMEM; 3061 rcu_assign_pointer(conf->thread, 3062 md_register_thread(raid1d, mddev, "raid1")); 3063 if (!conf->thread) 3064 goto abort; 3065 3066 return conf; 3067 3068 abort: 3069 if (conf) { 3070 mempool_exit(&conf->r1bio_pool); 3071 kfree(conf->mirrors); 3072 safe_put_page(conf->tmppage); 3073 kfree(conf->poolinfo); 3074 kfree(conf->nr_pending); 3075 kfree(conf->nr_waiting); 3076 kfree(conf->nr_queued); 3077 kfree(conf->barrier); 3078 bioset_exit(&conf->bio_split); 3079 kfree(conf); 3080 } 3081 return ERR_PTR(err); 3082 } 3083 3084 static void raid1_free(struct mddev *mddev, void *priv); 3085 static int raid1_run(struct mddev *mddev) 3086 { 3087 struct r1conf *conf; 3088 int i; 3089 struct md_rdev *rdev; 3090 int ret; 3091 3092 if (mddev->level != 1) { 3093 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3094 mdname(mddev), mddev->level); 3095 return -EIO; 3096 } 3097 if (mddev->reshape_position != MaxSector) { 3098 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3099 mdname(mddev)); 3100 return -EIO; 3101 } 3102 if (mddev_init_writes_pending(mddev) < 0) 3103 return -ENOMEM; 3104 /* 3105 * copy the already verified devices into our private RAID1 3106 * bookkeeping area. [whatever we allocate in run(), 3107 * should be freed in raid1_free()] 3108 */ 3109 if (mddev->private == NULL) 3110 conf = setup_conf(mddev); 3111 else 3112 conf = mddev->private; 3113 3114 if (IS_ERR(conf)) 3115 return PTR_ERR(conf); 3116 3117 if (mddev->queue) 3118 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3119 3120 rdev_for_each(rdev, mddev) { 3121 if (!mddev->gendisk) 3122 continue; 3123 disk_stack_limits(mddev->gendisk, rdev->bdev, 3124 rdev->data_offset << 9); 3125 } 3126 3127 mddev->degraded = 0; 3128 for (i = 0; i < conf->raid_disks; i++) 3129 if (conf->mirrors[i].rdev == NULL || 3130 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3131 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3132 mddev->degraded++; 3133 /* 3134 * RAID1 needs at least one disk in active 3135 */ 3136 if (conf->raid_disks - mddev->degraded < 1) { 3137 md_unregister_thread(mddev, &conf->thread); 3138 ret = -EINVAL; 3139 goto abort; 3140 } 3141 3142 if (conf->raid_disks - mddev->degraded == 1) 3143 mddev->recovery_cp = MaxSector; 3144 3145 if (mddev->recovery_cp != MaxSector) 3146 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3147 mdname(mddev)); 3148 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3149 mdname(mddev), mddev->raid_disks - mddev->degraded, 3150 mddev->raid_disks); 3151 3152 /* 3153 * Ok, everything is just fine now 3154 */ 3155 rcu_assign_pointer(mddev->thread, conf->thread); 3156 rcu_assign_pointer(conf->thread, NULL); 3157 mddev->private = conf; 3158 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3159 3160 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3161 3162 ret = md_integrity_register(mddev); 3163 if (ret) { 3164 md_unregister_thread(mddev, &mddev->thread); 3165 goto abort; 3166 } 3167 return 0; 3168 3169 abort: 3170 raid1_free(mddev, conf); 3171 return ret; 3172 } 3173 3174 static void raid1_free(struct mddev *mddev, void *priv) 3175 { 3176 struct r1conf *conf = priv; 3177 3178 mempool_exit(&conf->r1bio_pool); 3179 kfree(conf->mirrors); 3180 safe_put_page(conf->tmppage); 3181 kfree(conf->poolinfo); 3182 kfree(conf->nr_pending); 3183 kfree(conf->nr_waiting); 3184 kfree(conf->nr_queued); 3185 kfree(conf->barrier); 3186 bioset_exit(&conf->bio_split); 3187 kfree(conf); 3188 } 3189 3190 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3191 { 3192 /* no resync is happening, and there is enough space 3193 * on all devices, so we can resize. 3194 * We need to make sure resync covers any new space. 3195 * If the array is shrinking we should possibly wait until 3196 * any io in the removed space completes, but it hardly seems 3197 * worth it. 3198 */ 3199 sector_t newsize = raid1_size(mddev, sectors, 0); 3200 if (mddev->external_size && 3201 mddev->array_sectors > newsize) 3202 return -EINVAL; 3203 if (mddev->bitmap) { 3204 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3205 if (ret) 3206 return ret; 3207 } 3208 md_set_array_sectors(mddev, newsize); 3209 if (sectors > mddev->dev_sectors && 3210 mddev->recovery_cp > mddev->dev_sectors) { 3211 mddev->recovery_cp = mddev->dev_sectors; 3212 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3213 } 3214 mddev->dev_sectors = sectors; 3215 mddev->resync_max_sectors = sectors; 3216 return 0; 3217 } 3218 3219 static int raid1_reshape(struct mddev *mddev) 3220 { 3221 /* We need to: 3222 * 1/ resize the r1bio_pool 3223 * 2/ resize conf->mirrors 3224 * 3225 * We allocate a new r1bio_pool if we can. 3226 * Then raise a device barrier and wait until all IO stops. 3227 * Then resize conf->mirrors and swap in the new r1bio pool. 3228 * 3229 * At the same time, we "pack" the devices so that all the missing 3230 * devices have the higher raid_disk numbers. 3231 */ 3232 mempool_t newpool, oldpool; 3233 struct pool_info *newpoolinfo; 3234 struct raid1_info *newmirrors; 3235 struct r1conf *conf = mddev->private; 3236 int cnt, raid_disks; 3237 unsigned long flags; 3238 int d, d2; 3239 int ret; 3240 3241 memset(&newpool, 0, sizeof(newpool)); 3242 memset(&oldpool, 0, sizeof(oldpool)); 3243 3244 /* Cannot change chunk_size, layout, or level */ 3245 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3246 mddev->layout != mddev->new_layout || 3247 mddev->level != mddev->new_level) { 3248 mddev->new_chunk_sectors = mddev->chunk_sectors; 3249 mddev->new_layout = mddev->layout; 3250 mddev->new_level = mddev->level; 3251 return -EINVAL; 3252 } 3253 3254 if (!mddev_is_clustered(mddev)) 3255 md_allow_write(mddev); 3256 3257 raid_disks = mddev->raid_disks + mddev->delta_disks; 3258 3259 if (raid_disks < conf->raid_disks) { 3260 cnt=0; 3261 for (d= 0; d < conf->raid_disks; d++) 3262 if (conf->mirrors[d].rdev) 3263 cnt++; 3264 if (cnt > raid_disks) 3265 return -EBUSY; 3266 } 3267 3268 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3269 if (!newpoolinfo) 3270 return -ENOMEM; 3271 newpoolinfo->mddev = mddev; 3272 newpoolinfo->raid_disks = raid_disks * 2; 3273 3274 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3275 rbio_pool_free, newpoolinfo); 3276 if (ret) { 3277 kfree(newpoolinfo); 3278 return ret; 3279 } 3280 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3281 raid_disks, 2), 3282 GFP_KERNEL); 3283 if (!newmirrors) { 3284 kfree(newpoolinfo); 3285 mempool_exit(&newpool); 3286 return -ENOMEM; 3287 } 3288 3289 freeze_array(conf, 0); 3290 3291 /* ok, everything is stopped */ 3292 oldpool = conf->r1bio_pool; 3293 conf->r1bio_pool = newpool; 3294 3295 for (d = d2 = 0; d < conf->raid_disks; d++) { 3296 struct md_rdev *rdev = conf->mirrors[d].rdev; 3297 if (rdev && rdev->raid_disk != d2) { 3298 sysfs_unlink_rdev(mddev, rdev); 3299 rdev->raid_disk = d2; 3300 sysfs_unlink_rdev(mddev, rdev); 3301 if (sysfs_link_rdev(mddev, rdev)) 3302 pr_warn("md/raid1:%s: cannot register rd%d\n", 3303 mdname(mddev), rdev->raid_disk); 3304 } 3305 if (rdev) 3306 newmirrors[d2++].rdev = rdev; 3307 } 3308 kfree(conf->mirrors); 3309 conf->mirrors = newmirrors; 3310 kfree(conf->poolinfo); 3311 conf->poolinfo = newpoolinfo; 3312 3313 spin_lock_irqsave(&conf->device_lock, flags); 3314 mddev->degraded += (raid_disks - conf->raid_disks); 3315 spin_unlock_irqrestore(&conf->device_lock, flags); 3316 conf->raid_disks = mddev->raid_disks = raid_disks; 3317 mddev->delta_disks = 0; 3318 3319 unfreeze_array(conf); 3320 3321 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3323 md_wakeup_thread(mddev->thread); 3324 3325 mempool_exit(&oldpool); 3326 return 0; 3327 } 3328 3329 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3330 { 3331 struct r1conf *conf = mddev->private; 3332 3333 if (quiesce) 3334 freeze_array(conf, 0); 3335 else 3336 unfreeze_array(conf); 3337 } 3338 3339 static void *raid1_takeover(struct mddev *mddev) 3340 { 3341 /* raid1 can take over: 3342 * raid5 with 2 devices, any layout or chunk size 3343 */ 3344 if (mddev->level == 5 && mddev->raid_disks == 2) { 3345 struct r1conf *conf; 3346 mddev->new_level = 1; 3347 mddev->new_layout = 0; 3348 mddev->new_chunk_sectors = 0; 3349 conf = setup_conf(mddev); 3350 if (!IS_ERR(conf)) { 3351 /* Array must appear to be quiesced */ 3352 conf->array_frozen = 1; 3353 mddev_clear_unsupported_flags(mddev, 3354 UNSUPPORTED_MDDEV_FLAGS); 3355 } 3356 return conf; 3357 } 3358 return ERR_PTR(-EINVAL); 3359 } 3360 3361 static struct md_personality raid1_personality = 3362 { 3363 .name = "raid1", 3364 .level = 1, 3365 .owner = THIS_MODULE, 3366 .make_request = raid1_make_request, 3367 .run = raid1_run, 3368 .free = raid1_free, 3369 .status = raid1_status, 3370 .error_handler = raid1_error, 3371 .hot_add_disk = raid1_add_disk, 3372 .hot_remove_disk= raid1_remove_disk, 3373 .spare_active = raid1_spare_active, 3374 .sync_request = raid1_sync_request, 3375 .resize = raid1_resize, 3376 .size = raid1_size, 3377 .check_reshape = raid1_reshape, 3378 .quiesce = raid1_quiesce, 3379 .takeover = raid1_takeover, 3380 }; 3381 3382 static int __init raid_init(void) 3383 { 3384 return register_md_personality(&raid1_personality); 3385 } 3386 3387 static void raid_exit(void) 3388 { 3389 unregister_md_personality(&raid1_personality); 3390 } 3391 3392 module_init(raid_init); 3393 module_exit(raid_exit); 3394 MODULE_LICENSE("GPL"); 3395 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3396 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3397 MODULE_ALIAS("md-raid1"); 3398 MODULE_ALIAS("md-level-1"); 3399