xref: /openbmc/linux/drivers/md/md.c (revision fe45e630a1035aea94c29016f2598bbde149bbe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    md.c : Multiple Devices driver for Linux
4      Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 
6      completely rewritten, based on the MD driver code from Marc Zyngier
7 
8    Changes:
9 
10    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14    - kmod support by: Cyrus Durgin
15    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 
18    - lots of fixes and improvements to the RAID1/RAID5 and generic
19      RAID code (such as request based resynchronization):
20 
21      Neil Brown <neilb@cse.unsw.edu.au>.
22 
23    - persistent bitmap code
24      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 
26 
27    Errors, Warnings, etc.
28    Please use:
29      pr_crit() for error conditions that risk data loss
30      pr_err() for error conditions that are unexpected, like an IO error
31          or internal inconsistency
32      pr_warn() for error conditions that could have been predicated, like
33          adding a device to an array when it has incompatible metadata
34      pr_info() for every interesting, very rare events, like an array starting
35          or stopping, or resync starting or stopping
36      pr_debug() for everything else.
37 
38 */
39 
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67 
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72 
73 /* pers_list is a list of registered personalities protected
74  * by pers_lock.
75  * pers_lock does extra service to protect accesses to
76  * mddev->thread when the mutex cannot be held.
77  */
78 static LIST_HEAD(pers_list);
79 static DEFINE_SPINLOCK(pers_lock);
80 
81 static struct kobj_type md_ktype;
82 
83 struct md_cluster_operations *md_cluster_ops;
84 EXPORT_SYMBOL(md_cluster_ops);
85 static struct module *md_cluster_mod;
86 
87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88 static struct workqueue_struct *md_wq;
89 static struct workqueue_struct *md_misc_wq;
90 static struct workqueue_struct *md_rdev_misc_wq;
91 
92 static int remove_and_add_spares(struct mddev *mddev,
93 				 struct md_rdev *this);
94 static void mddev_detach(struct mddev *mddev);
95 
96 /*
97  * Default number of read corrections we'll attempt on an rdev
98  * before ejecting it from the array. We divide the read error
99  * count by 2 for every hour elapsed between read errors.
100  */
101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
102 /* Default safemode delay: 200 msec */
103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
104 /*
105  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
106  * is 1000 KB/sec, so the extra system load does not show up that much.
107  * Increase it if you want to have more _guaranteed_ speed. Note that
108  * the RAID driver will use the maximum available bandwidth if the IO
109  * subsystem is idle. There is also an 'absolute maximum' reconstruction
110  * speed limit - in case reconstruction slows down your system despite
111  * idle IO detection.
112  *
113  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
114  * or /sys/block/mdX/md/sync_speed_{min,max}
115  */
116 
117 static int sysctl_speed_limit_min = 1000;
118 static int sysctl_speed_limit_max = 200000;
119 static inline int speed_min(struct mddev *mddev)
120 {
121 	return mddev->sync_speed_min ?
122 		mddev->sync_speed_min : sysctl_speed_limit_min;
123 }
124 
125 static inline int speed_max(struct mddev *mddev)
126 {
127 	return mddev->sync_speed_max ?
128 		mddev->sync_speed_max : sysctl_speed_limit_max;
129 }
130 
131 static void rdev_uninit_serial(struct md_rdev *rdev)
132 {
133 	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
134 		return;
135 
136 	kvfree(rdev->serial);
137 	rdev->serial = NULL;
138 }
139 
140 static void rdevs_uninit_serial(struct mddev *mddev)
141 {
142 	struct md_rdev *rdev;
143 
144 	rdev_for_each(rdev, mddev)
145 		rdev_uninit_serial(rdev);
146 }
147 
148 static int rdev_init_serial(struct md_rdev *rdev)
149 {
150 	/* serial_nums equals with BARRIER_BUCKETS_NR */
151 	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
152 	struct serial_in_rdev *serial = NULL;
153 
154 	if (test_bit(CollisionCheck, &rdev->flags))
155 		return 0;
156 
157 	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
158 			  GFP_KERNEL);
159 	if (!serial)
160 		return -ENOMEM;
161 
162 	for (i = 0; i < serial_nums; i++) {
163 		struct serial_in_rdev *serial_tmp = &serial[i];
164 
165 		spin_lock_init(&serial_tmp->serial_lock);
166 		serial_tmp->serial_rb = RB_ROOT_CACHED;
167 		init_waitqueue_head(&serial_tmp->serial_io_wait);
168 	}
169 
170 	rdev->serial = serial;
171 	set_bit(CollisionCheck, &rdev->flags);
172 
173 	return 0;
174 }
175 
176 static int rdevs_init_serial(struct mddev *mddev)
177 {
178 	struct md_rdev *rdev;
179 	int ret = 0;
180 
181 	rdev_for_each(rdev, mddev) {
182 		ret = rdev_init_serial(rdev);
183 		if (ret)
184 			break;
185 	}
186 
187 	/* Free all resources if pool is not existed */
188 	if (ret && !mddev->serial_info_pool)
189 		rdevs_uninit_serial(mddev);
190 
191 	return ret;
192 }
193 
194 /*
195  * rdev needs to enable serial stuffs if it meets the conditions:
196  * 1. it is multi-queue device flaged with writemostly.
197  * 2. the write-behind mode is enabled.
198  */
199 static int rdev_need_serial(struct md_rdev *rdev)
200 {
201 	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
202 		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
203 		test_bit(WriteMostly, &rdev->flags));
204 }
205 
206 /*
207  * Init resource for rdev(s), then create serial_info_pool if:
208  * 1. rdev is the first device which return true from rdev_enable_serial.
209  * 2. rdev is NULL, means we want to enable serialization for all rdevs.
210  */
211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
212 			      bool is_suspend)
213 {
214 	int ret = 0;
215 
216 	if (rdev && !rdev_need_serial(rdev) &&
217 	    !test_bit(CollisionCheck, &rdev->flags))
218 		return;
219 
220 	if (!is_suspend)
221 		mddev_suspend(mddev);
222 
223 	if (!rdev)
224 		ret = rdevs_init_serial(mddev);
225 	else
226 		ret = rdev_init_serial(rdev);
227 	if (ret)
228 		goto abort;
229 
230 	if (mddev->serial_info_pool == NULL) {
231 		/*
232 		 * already in memalloc noio context by
233 		 * mddev_suspend()
234 		 */
235 		mddev->serial_info_pool =
236 			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
237 						sizeof(struct serial_info));
238 		if (!mddev->serial_info_pool) {
239 			rdevs_uninit_serial(mddev);
240 			pr_err("can't alloc memory pool for serialization\n");
241 		}
242 	}
243 
244 abort:
245 	if (!is_suspend)
246 		mddev_resume(mddev);
247 }
248 
249 /*
250  * Free resource from rdev(s), and destroy serial_info_pool under conditions:
251  * 1. rdev is the last device flaged with CollisionCheck.
252  * 2. when bitmap is destroyed while policy is not enabled.
253  * 3. for disable policy, the pool is destroyed only when no rdev needs it.
254  */
255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
256 			       bool is_suspend)
257 {
258 	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
259 		return;
260 
261 	if (mddev->serial_info_pool) {
262 		struct md_rdev *temp;
263 		int num = 0; /* used to track if other rdevs need the pool */
264 
265 		if (!is_suspend)
266 			mddev_suspend(mddev);
267 		rdev_for_each(temp, mddev) {
268 			if (!rdev) {
269 				if (!mddev->serialize_policy ||
270 				    !rdev_need_serial(temp))
271 					rdev_uninit_serial(temp);
272 				else
273 					num++;
274 			} else if (temp != rdev &&
275 				   test_bit(CollisionCheck, &temp->flags))
276 				num++;
277 		}
278 
279 		if (rdev)
280 			rdev_uninit_serial(rdev);
281 
282 		if (num)
283 			pr_info("The mempool could be used by other devices\n");
284 		else {
285 			mempool_destroy(mddev->serial_info_pool);
286 			mddev->serial_info_pool = NULL;
287 		}
288 		if (!is_suspend)
289 			mddev_resume(mddev);
290 	}
291 }
292 
293 static struct ctl_table_header *raid_table_header;
294 
295 static struct ctl_table raid_table[] = {
296 	{
297 		.procname	= "speed_limit_min",
298 		.data		= &sysctl_speed_limit_min,
299 		.maxlen		= sizeof(int),
300 		.mode		= S_IRUGO|S_IWUSR,
301 		.proc_handler	= proc_dointvec,
302 	},
303 	{
304 		.procname	= "speed_limit_max",
305 		.data		= &sysctl_speed_limit_max,
306 		.maxlen		= sizeof(int),
307 		.mode		= S_IRUGO|S_IWUSR,
308 		.proc_handler	= proc_dointvec,
309 	},
310 	{ }
311 };
312 
313 static struct ctl_table raid_dir_table[] = {
314 	{
315 		.procname	= "raid",
316 		.maxlen		= 0,
317 		.mode		= S_IRUGO|S_IXUGO,
318 		.child		= raid_table,
319 	},
320 	{ }
321 };
322 
323 static struct ctl_table raid_root_table[] = {
324 	{
325 		.procname	= "dev",
326 		.maxlen		= 0,
327 		.mode		= 0555,
328 		.child		= raid_dir_table,
329 	},
330 	{  }
331 };
332 
333 static int start_readonly;
334 
335 /*
336  * The original mechanism for creating an md device is to create
337  * a device node in /dev and to open it.  This causes races with device-close.
338  * The preferred method is to write to the "new_array" module parameter.
339  * This can avoid races.
340  * Setting create_on_open to false disables the original mechanism
341  * so all the races disappear.
342  */
343 static bool create_on_open = true;
344 
345 /*
346  * We have a system wide 'event count' that is incremented
347  * on any 'interesting' event, and readers of /proc/mdstat
348  * can use 'poll' or 'select' to find out when the event
349  * count increases.
350  *
351  * Events are:
352  *  start array, stop array, error, add device, remove device,
353  *  start build, activate spare
354  */
355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
356 static atomic_t md_event_count;
357 void md_new_event(struct mddev *mddev)
358 {
359 	atomic_inc(&md_event_count);
360 	wake_up(&md_event_waiters);
361 }
362 EXPORT_SYMBOL_GPL(md_new_event);
363 
364 /*
365  * Enables to iterate over all existing md arrays
366  * all_mddevs_lock protects this list.
367  */
368 static LIST_HEAD(all_mddevs);
369 static DEFINE_SPINLOCK(all_mddevs_lock);
370 
371 /*
372  * iterates through all used mddevs in the system.
373  * We take care to grab the all_mddevs_lock whenever navigating
374  * the list, and to always hold a refcount when unlocked.
375  * Any code which breaks out of this loop while own
376  * a reference to the current mddev and must mddev_put it.
377  */
378 #define for_each_mddev(_mddev,_tmp)					\
379 									\
380 	for (({ spin_lock(&all_mddevs_lock);				\
381 		_tmp = all_mddevs.next;					\
382 		_mddev = NULL;});					\
383 	     ({ if (_tmp != &all_mddevs)				\
384 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
385 		spin_unlock(&all_mddevs_lock);				\
386 		if (_mddev) mddev_put(_mddev);				\
387 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
388 		_tmp != &all_mddevs;});					\
389 	     ({ spin_lock(&all_mddevs_lock);				\
390 		_tmp = _tmp->next;})					\
391 		)
392 
393 /* Rather than calling directly into the personality make_request function,
394  * IO requests come here first so that we can check if the device is
395  * being suspended pending a reconfiguration.
396  * We hold a refcount over the call to ->make_request.  By the time that
397  * call has finished, the bio has been linked into some internal structure
398  * and so is visible to ->quiesce(), so we don't need the refcount any more.
399  */
400 static bool is_suspended(struct mddev *mddev, struct bio *bio)
401 {
402 	if (mddev->suspended)
403 		return true;
404 	if (bio_data_dir(bio) != WRITE)
405 		return false;
406 	if (mddev->suspend_lo >= mddev->suspend_hi)
407 		return false;
408 	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
409 		return false;
410 	if (bio_end_sector(bio) < mddev->suspend_lo)
411 		return false;
412 	return true;
413 }
414 
415 void md_handle_request(struct mddev *mddev, struct bio *bio)
416 {
417 check_suspended:
418 	rcu_read_lock();
419 	if (is_suspended(mddev, bio)) {
420 		DEFINE_WAIT(__wait);
421 		for (;;) {
422 			prepare_to_wait(&mddev->sb_wait, &__wait,
423 					TASK_UNINTERRUPTIBLE);
424 			if (!is_suspended(mddev, bio))
425 				break;
426 			rcu_read_unlock();
427 			schedule();
428 			rcu_read_lock();
429 		}
430 		finish_wait(&mddev->sb_wait, &__wait);
431 	}
432 	atomic_inc(&mddev->active_io);
433 	rcu_read_unlock();
434 
435 	if (!mddev->pers->make_request(mddev, bio)) {
436 		atomic_dec(&mddev->active_io);
437 		wake_up(&mddev->sb_wait);
438 		goto check_suspended;
439 	}
440 
441 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
442 		wake_up(&mddev->sb_wait);
443 }
444 EXPORT_SYMBOL(md_handle_request);
445 
446 static blk_qc_t md_submit_bio(struct bio *bio)
447 {
448 	const int rw = bio_data_dir(bio);
449 	struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
450 
451 	if (mddev == NULL || mddev->pers == NULL) {
452 		bio_io_error(bio);
453 		return BLK_QC_T_NONE;
454 	}
455 
456 	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
457 		bio_io_error(bio);
458 		return BLK_QC_T_NONE;
459 	}
460 
461 	blk_queue_split(&bio);
462 
463 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
464 		if (bio_sectors(bio) != 0)
465 			bio->bi_status = BLK_STS_IOERR;
466 		bio_endio(bio);
467 		return BLK_QC_T_NONE;
468 	}
469 
470 	/* bio could be mergeable after passing to underlayer */
471 	bio->bi_opf &= ~REQ_NOMERGE;
472 
473 	md_handle_request(mddev, bio);
474 
475 	return BLK_QC_T_NONE;
476 }
477 
478 /* mddev_suspend makes sure no new requests are submitted
479  * to the device, and that any requests that have been submitted
480  * are completely handled.
481  * Once mddev_detach() is called and completes, the module will be
482  * completely unused.
483  */
484 void mddev_suspend(struct mddev *mddev)
485 {
486 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
487 	lockdep_assert_held(&mddev->reconfig_mutex);
488 	if (mddev->suspended++)
489 		return;
490 	synchronize_rcu();
491 	wake_up(&mddev->sb_wait);
492 	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
493 	smp_mb__after_atomic();
494 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
495 	mddev->pers->quiesce(mddev, 1);
496 	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
497 	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
498 
499 	del_timer_sync(&mddev->safemode_timer);
500 	/* restrict memory reclaim I/O during raid array is suspend */
501 	mddev->noio_flag = memalloc_noio_save();
502 }
503 EXPORT_SYMBOL_GPL(mddev_suspend);
504 
505 void mddev_resume(struct mddev *mddev)
506 {
507 	/* entred the memalloc scope from mddev_suspend() */
508 	memalloc_noio_restore(mddev->noio_flag);
509 	lockdep_assert_held(&mddev->reconfig_mutex);
510 	if (--mddev->suspended)
511 		return;
512 	wake_up(&mddev->sb_wait);
513 	mddev->pers->quiesce(mddev, 0);
514 
515 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
516 	md_wakeup_thread(mddev->thread);
517 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
518 }
519 EXPORT_SYMBOL_GPL(mddev_resume);
520 
521 /*
522  * Generic flush handling for md
523  */
524 
525 static void md_end_flush(struct bio *bio)
526 {
527 	struct md_rdev *rdev = bio->bi_private;
528 	struct mddev *mddev = rdev->mddev;
529 
530 	rdev_dec_pending(rdev, mddev);
531 
532 	if (atomic_dec_and_test(&mddev->flush_pending)) {
533 		/* The pre-request flush has finished */
534 		queue_work(md_wq, &mddev->flush_work);
535 	}
536 	bio_put(bio);
537 }
538 
539 static void md_submit_flush_data(struct work_struct *ws);
540 
541 static void submit_flushes(struct work_struct *ws)
542 {
543 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
544 	struct md_rdev *rdev;
545 
546 	mddev->start_flush = ktime_get_boottime();
547 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
548 	atomic_set(&mddev->flush_pending, 1);
549 	rcu_read_lock();
550 	rdev_for_each_rcu(rdev, mddev)
551 		if (rdev->raid_disk >= 0 &&
552 		    !test_bit(Faulty, &rdev->flags)) {
553 			/* Take two references, one is dropped
554 			 * when request finishes, one after
555 			 * we reclaim rcu_read_lock
556 			 */
557 			struct bio *bi;
558 			atomic_inc(&rdev->nr_pending);
559 			atomic_inc(&rdev->nr_pending);
560 			rcu_read_unlock();
561 			bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
562 			bi->bi_end_io = md_end_flush;
563 			bi->bi_private = rdev;
564 			bio_set_dev(bi, rdev->bdev);
565 			bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
566 			atomic_inc(&mddev->flush_pending);
567 			submit_bio(bi);
568 			rcu_read_lock();
569 			rdev_dec_pending(rdev, mddev);
570 		}
571 	rcu_read_unlock();
572 	if (atomic_dec_and_test(&mddev->flush_pending))
573 		queue_work(md_wq, &mddev->flush_work);
574 }
575 
576 static void md_submit_flush_data(struct work_struct *ws)
577 {
578 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
579 	struct bio *bio = mddev->flush_bio;
580 
581 	/*
582 	 * must reset flush_bio before calling into md_handle_request to avoid a
583 	 * deadlock, because other bios passed md_handle_request suspend check
584 	 * could wait for this and below md_handle_request could wait for those
585 	 * bios because of suspend check
586 	 */
587 	spin_lock_irq(&mddev->lock);
588 	mddev->prev_flush_start = mddev->start_flush;
589 	mddev->flush_bio = NULL;
590 	spin_unlock_irq(&mddev->lock);
591 	wake_up(&mddev->sb_wait);
592 
593 	if (bio->bi_iter.bi_size == 0) {
594 		/* an empty barrier - all done */
595 		bio_endio(bio);
596 	} else {
597 		bio->bi_opf &= ~REQ_PREFLUSH;
598 		md_handle_request(mddev, bio);
599 	}
600 }
601 
602 /*
603  * Manages consolidation of flushes and submitting any flushes needed for
604  * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
605  * being finished in another context.  Returns false if the flushing is
606  * complete but still needs the I/O portion of the bio to be processed.
607  */
608 bool md_flush_request(struct mddev *mddev, struct bio *bio)
609 {
610 	ktime_t req_start = ktime_get_boottime();
611 	spin_lock_irq(&mddev->lock);
612 	/* flush requests wait until ongoing flush completes,
613 	 * hence coalescing all the pending requests.
614 	 */
615 	wait_event_lock_irq(mddev->sb_wait,
616 			    !mddev->flush_bio ||
617 			    ktime_before(req_start, mddev->prev_flush_start),
618 			    mddev->lock);
619 	/* new request after previous flush is completed */
620 	if (ktime_after(req_start, mddev->prev_flush_start)) {
621 		WARN_ON(mddev->flush_bio);
622 		mddev->flush_bio = bio;
623 		bio = NULL;
624 	}
625 	spin_unlock_irq(&mddev->lock);
626 
627 	if (!bio) {
628 		INIT_WORK(&mddev->flush_work, submit_flushes);
629 		queue_work(md_wq, &mddev->flush_work);
630 	} else {
631 		/* flush was performed for some other bio while we waited. */
632 		if (bio->bi_iter.bi_size == 0)
633 			/* an empty barrier - all done */
634 			bio_endio(bio);
635 		else {
636 			bio->bi_opf &= ~REQ_PREFLUSH;
637 			return false;
638 		}
639 	}
640 	return true;
641 }
642 EXPORT_SYMBOL(md_flush_request);
643 
644 static inline struct mddev *mddev_get(struct mddev *mddev)
645 {
646 	atomic_inc(&mddev->active);
647 	return mddev;
648 }
649 
650 static void mddev_delayed_delete(struct work_struct *ws);
651 
652 static void mddev_put(struct mddev *mddev)
653 {
654 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
655 		return;
656 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
657 	    mddev->ctime == 0 && !mddev->hold_active) {
658 		/* Array is not configured at all, and not held active,
659 		 * so destroy it */
660 		list_del_init(&mddev->all_mddevs);
661 
662 		/*
663 		 * Call queue_work inside the spinlock so that
664 		 * flush_workqueue() after mddev_find will succeed in waiting
665 		 * for the work to be done.
666 		 */
667 		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
668 		queue_work(md_misc_wq, &mddev->del_work);
669 	}
670 	spin_unlock(&all_mddevs_lock);
671 }
672 
673 static void md_safemode_timeout(struct timer_list *t);
674 
675 void mddev_init(struct mddev *mddev)
676 {
677 	kobject_init(&mddev->kobj, &md_ktype);
678 	mutex_init(&mddev->open_mutex);
679 	mutex_init(&mddev->reconfig_mutex);
680 	mutex_init(&mddev->bitmap_info.mutex);
681 	INIT_LIST_HEAD(&mddev->disks);
682 	INIT_LIST_HEAD(&mddev->all_mddevs);
683 	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
684 	atomic_set(&mddev->active, 1);
685 	atomic_set(&mddev->openers, 0);
686 	atomic_set(&mddev->active_io, 0);
687 	spin_lock_init(&mddev->lock);
688 	atomic_set(&mddev->flush_pending, 0);
689 	init_waitqueue_head(&mddev->sb_wait);
690 	init_waitqueue_head(&mddev->recovery_wait);
691 	mddev->reshape_position = MaxSector;
692 	mddev->reshape_backwards = 0;
693 	mddev->last_sync_action = "none";
694 	mddev->resync_min = 0;
695 	mddev->resync_max = MaxSector;
696 	mddev->level = LEVEL_NONE;
697 }
698 EXPORT_SYMBOL_GPL(mddev_init);
699 
700 static struct mddev *mddev_find_locked(dev_t unit)
701 {
702 	struct mddev *mddev;
703 
704 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
705 		if (mddev->unit == unit)
706 			return mddev;
707 
708 	return NULL;
709 }
710 
711 /* find an unused unit number */
712 static dev_t mddev_alloc_unit(void)
713 {
714 	static int next_minor = 512;
715 	int start = next_minor;
716 	bool is_free = 0;
717 	dev_t dev = 0;
718 
719 	while (!is_free) {
720 		dev = MKDEV(MD_MAJOR, next_minor);
721 		next_minor++;
722 		if (next_minor > MINORMASK)
723 			next_minor = 0;
724 		if (next_minor == start)
725 			return 0;		/* Oh dear, all in use. */
726 		is_free = !mddev_find_locked(dev);
727 	}
728 
729 	return dev;
730 }
731 
732 static struct mddev *mddev_find(dev_t unit)
733 {
734 	struct mddev *mddev;
735 
736 	if (MAJOR(unit) != MD_MAJOR)
737 		unit &= ~((1 << MdpMinorShift) - 1);
738 
739 	spin_lock(&all_mddevs_lock);
740 	mddev = mddev_find_locked(unit);
741 	if (mddev)
742 		mddev_get(mddev);
743 	spin_unlock(&all_mddevs_lock);
744 
745 	return mddev;
746 }
747 
748 static struct mddev *mddev_alloc(dev_t unit)
749 {
750 	struct mddev *new;
751 	int error;
752 
753 	if (unit && MAJOR(unit) != MD_MAJOR)
754 		unit &= ~((1 << MdpMinorShift) - 1);
755 
756 	new = kzalloc(sizeof(*new), GFP_KERNEL);
757 	if (!new)
758 		return ERR_PTR(-ENOMEM);
759 	mddev_init(new);
760 
761 	spin_lock(&all_mddevs_lock);
762 	if (unit) {
763 		error = -EEXIST;
764 		if (mddev_find_locked(unit))
765 			goto out_free_new;
766 		new->unit = unit;
767 		if (MAJOR(unit) == MD_MAJOR)
768 			new->md_minor = MINOR(unit);
769 		else
770 			new->md_minor = MINOR(unit) >> MdpMinorShift;
771 		new->hold_active = UNTIL_IOCTL;
772 	} else {
773 		error = -ENODEV;
774 		new->unit = mddev_alloc_unit();
775 		if (!new->unit)
776 			goto out_free_new;
777 		new->md_minor = MINOR(new->unit);
778 		new->hold_active = UNTIL_STOP;
779 	}
780 
781 	list_add(&new->all_mddevs, &all_mddevs);
782 	spin_unlock(&all_mddevs_lock);
783 	return new;
784 out_free_new:
785 	spin_unlock(&all_mddevs_lock);
786 	kfree(new);
787 	return ERR_PTR(error);
788 }
789 
790 static const struct attribute_group md_redundancy_group;
791 
792 void mddev_unlock(struct mddev *mddev)
793 {
794 	if (mddev->to_remove) {
795 		/* These cannot be removed under reconfig_mutex as
796 		 * an access to the files will try to take reconfig_mutex
797 		 * while holding the file unremovable, which leads to
798 		 * a deadlock.
799 		 * So hold set sysfs_active while the remove in happeing,
800 		 * and anything else which might set ->to_remove or my
801 		 * otherwise change the sysfs namespace will fail with
802 		 * -EBUSY if sysfs_active is still set.
803 		 * We set sysfs_active under reconfig_mutex and elsewhere
804 		 * test it under the same mutex to ensure its correct value
805 		 * is seen.
806 		 */
807 		const struct attribute_group *to_remove = mddev->to_remove;
808 		mddev->to_remove = NULL;
809 		mddev->sysfs_active = 1;
810 		mutex_unlock(&mddev->reconfig_mutex);
811 
812 		if (mddev->kobj.sd) {
813 			if (to_remove != &md_redundancy_group)
814 				sysfs_remove_group(&mddev->kobj, to_remove);
815 			if (mddev->pers == NULL ||
816 			    mddev->pers->sync_request == NULL) {
817 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
818 				if (mddev->sysfs_action)
819 					sysfs_put(mddev->sysfs_action);
820 				if (mddev->sysfs_completed)
821 					sysfs_put(mddev->sysfs_completed);
822 				if (mddev->sysfs_degraded)
823 					sysfs_put(mddev->sysfs_degraded);
824 				mddev->sysfs_action = NULL;
825 				mddev->sysfs_completed = NULL;
826 				mddev->sysfs_degraded = NULL;
827 			}
828 		}
829 		mddev->sysfs_active = 0;
830 	} else
831 		mutex_unlock(&mddev->reconfig_mutex);
832 
833 	/* As we've dropped the mutex we need a spinlock to
834 	 * make sure the thread doesn't disappear
835 	 */
836 	spin_lock(&pers_lock);
837 	md_wakeup_thread(mddev->thread);
838 	wake_up(&mddev->sb_wait);
839 	spin_unlock(&pers_lock);
840 }
841 EXPORT_SYMBOL_GPL(mddev_unlock);
842 
843 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
844 {
845 	struct md_rdev *rdev;
846 
847 	rdev_for_each_rcu(rdev, mddev)
848 		if (rdev->desc_nr == nr)
849 			return rdev;
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
854 
855 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
856 {
857 	struct md_rdev *rdev;
858 
859 	rdev_for_each(rdev, mddev)
860 		if (rdev->bdev->bd_dev == dev)
861 			return rdev;
862 
863 	return NULL;
864 }
865 
866 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
867 {
868 	struct md_rdev *rdev;
869 
870 	rdev_for_each_rcu(rdev, mddev)
871 		if (rdev->bdev->bd_dev == dev)
872 			return rdev;
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
877 
878 static struct md_personality *find_pers(int level, char *clevel)
879 {
880 	struct md_personality *pers;
881 	list_for_each_entry(pers, &pers_list, list) {
882 		if (level != LEVEL_NONE && pers->level == level)
883 			return pers;
884 		if (strcmp(pers->name, clevel)==0)
885 			return pers;
886 	}
887 	return NULL;
888 }
889 
890 /* return the offset of the super block in 512byte sectors */
891 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
892 {
893 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
894 	return MD_NEW_SIZE_SECTORS(num_sectors);
895 }
896 
897 static int alloc_disk_sb(struct md_rdev *rdev)
898 {
899 	rdev->sb_page = alloc_page(GFP_KERNEL);
900 	if (!rdev->sb_page)
901 		return -ENOMEM;
902 	return 0;
903 }
904 
905 void md_rdev_clear(struct md_rdev *rdev)
906 {
907 	if (rdev->sb_page) {
908 		put_page(rdev->sb_page);
909 		rdev->sb_loaded = 0;
910 		rdev->sb_page = NULL;
911 		rdev->sb_start = 0;
912 		rdev->sectors = 0;
913 	}
914 	if (rdev->bb_page) {
915 		put_page(rdev->bb_page);
916 		rdev->bb_page = NULL;
917 	}
918 	badblocks_exit(&rdev->badblocks);
919 }
920 EXPORT_SYMBOL_GPL(md_rdev_clear);
921 
922 static void super_written(struct bio *bio)
923 {
924 	struct md_rdev *rdev = bio->bi_private;
925 	struct mddev *mddev = rdev->mddev;
926 
927 	if (bio->bi_status) {
928 		pr_err("md: %s gets error=%d\n", __func__,
929 		       blk_status_to_errno(bio->bi_status));
930 		md_error(mddev, rdev);
931 		if (!test_bit(Faulty, &rdev->flags)
932 		    && (bio->bi_opf & MD_FAILFAST)) {
933 			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
934 			set_bit(LastDev, &rdev->flags);
935 		}
936 	} else
937 		clear_bit(LastDev, &rdev->flags);
938 
939 	if (atomic_dec_and_test(&mddev->pending_writes))
940 		wake_up(&mddev->sb_wait);
941 	rdev_dec_pending(rdev, mddev);
942 	bio_put(bio);
943 }
944 
945 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
946 		   sector_t sector, int size, struct page *page)
947 {
948 	/* write first size bytes of page to sector of rdev
949 	 * Increment mddev->pending_writes before returning
950 	 * and decrement it on completion, waking up sb_wait
951 	 * if zero is reached.
952 	 * If an error occurred, call md_error
953 	 */
954 	struct bio *bio;
955 	int ff = 0;
956 
957 	if (!page)
958 		return;
959 
960 	if (test_bit(Faulty, &rdev->flags))
961 		return;
962 
963 	bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
964 
965 	atomic_inc(&rdev->nr_pending);
966 
967 	bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
968 	bio->bi_iter.bi_sector = sector;
969 	bio_add_page(bio, page, size, 0);
970 	bio->bi_private = rdev;
971 	bio->bi_end_io = super_written;
972 
973 	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
974 	    test_bit(FailFast, &rdev->flags) &&
975 	    !test_bit(LastDev, &rdev->flags))
976 		ff = MD_FAILFAST;
977 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
978 
979 	atomic_inc(&mddev->pending_writes);
980 	submit_bio(bio);
981 }
982 
983 int md_super_wait(struct mddev *mddev)
984 {
985 	/* wait for all superblock writes that were scheduled to complete */
986 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
987 	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
988 		return -EAGAIN;
989 	return 0;
990 }
991 
992 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
993 		 struct page *page, int op, int op_flags, bool metadata_op)
994 {
995 	struct bio bio;
996 	struct bio_vec bvec;
997 
998 	bio_init(&bio, &bvec, 1);
999 
1000 	if (metadata_op && rdev->meta_bdev)
1001 		bio_set_dev(&bio, rdev->meta_bdev);
1002 	else
1003 		bio_set_dev(&bio, rdev->bdev);
1004 	bio.bi_opf = op | op_flags;
1005 	if (metadata_op)
1006 		bio.bi_iter.bi_sector = sector + rdev->sb_start;
1007 	else if (rdev->mddev->reshape_position != MaxSector &&
1008 		 (rdev->mddev->reshape_backwards ==
1009 		  (sector >= rdev->mddev->reshape_position)))
1010 		bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1011 	else
1012 		bio.bi_iter.bi_sector = sector + rdev->data_offset;
1013 	bio_add_page(&bio, page, size, 0);
1014 
1015 	submit_bio_wait(&bio);
1016 
1017 	return !bio.bi_status;
1018 }
1019 EXPORT_SYMBOL_GPL(sync_page_io);
1020 
1021 static int read_disk_sb(struct md_rdev *rdev, int size)
1022 {
1023 	char b[BDEVNAME_SIZE];
1024 
1025 	if (rdev->sb_loaded)
1026 		return 0;
1027 
1028 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1029 		goto fail;
1030 	rdev->sb_loaded = 1;
1031 	return 0;
1032 
1033 fail:
1034 	pr_err("md: disabled device %s, could not read superblock.\n",
1035 	       bdevname(rdev->bdev,b));
1036 	return -EINVAL;
1037 }
1038 
1039 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1040 {
1041 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1042 		sb1->set_uuid1 == sb2->set_uuid1 &&
1043 		sb1->set_uuid2 == sb2->set_uuid2 &&
1044 		sb1->set_uuid3 == sb2->set_uuid3;
1045 }
1046 
1047 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1048 {
1049 	int ret;
1050 	mdp_super_t *tmp1, *tmp2;
1051 
1052 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1053 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1054 
1055 	if (!tmp1 || !tmp2) {
1056 		ret = 0;
1057 		goto abort;
1058 	}
1059 
1060 	*tmp1 = *sb1;
1061 	*tmp2 = *sb2;
1062 
1063 	/*
1064 	 * nr_disks is not constant
1065 	 */
1066 	tmp1->nr_disks = 0;
1067 	tmp2->nr_disks = 0;
1068 
1069 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1070 abort:
1071 	kfree(tmp1);
1072 	kfree(tmp2);
1073 	return ret;
1074 }
1075 
1076 static u32 md_csum_fold(u32 csum)
1077 {
1078 	csum = (csum & 0xffff) + (csum >> 16);
1079 	return (csum & 0xffff) + (csum >> 16);
1080 }
1081 
1082 static unsigned int calc_sb_csum(mdp_super_t *sb)
1083 {
1084 	u64 newcsum = 0;
1085 	u32 *sb32 = (u32*)sb;
1086 	int i;
1087 	unsigned int disk_csum, csum;
1088 
1089 	disk_csum = sb->sb_csum;
1090 	sb->sb_csum = 0;
1091 
1092 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1093 		newcsum += sb32[i];
1094 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1095 
1096 #ifdef CONFIG_ALPHA
1097 	/* This used to use csum_partial, which was wrong for several
1098 	 * reasons including that different results are returned on
1099 	 * different architectures.  It isn't critical that we get exactly
1100 	 * the same return value as before (we always csum_fold before
1101 	 * testing, and that removes any differences).  However as we
1102 	 * know that csum_partial always returned a 16bit value on
1103 	 * alphas, do a fold to maximise conformity to previous behaviour.
1104 	 */
1105 	sb->sb_csum = md_csum_fold(disk_csum);
1106 #else
1107 	sb->sb_csum = disk_csum;
1108 #endif
1109 	return csum;
1110 }
1111 
1112 /*
1113  * Handle superblock details.
1114  * We want to be able to handle multiple superblock formats
1115  * so we have a common interface to them all, and an array of
1116  * different handlers.
1117  * We rely on user-space to write the initial superblock, and support
1118  * reading and updating of superblocks.
1119  * Interface methods are:
1120  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1121  *      loads and validates a superblock on dev.
1122  *      if refdev != NULL, compare superblocks on both devices
1123  *    Return:
1124  *      0 - dev has a superblock that is compatible with refdev
1125  *      1 - dev has a superblock that is compatible and newer than refdev
1126  *          so dev should be used as the refdev in future
1127  *     -EINVAL superblock incompatible or invalid
1128  *     -othererror e.g. -EIO
1129  *
1130  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1131  *      Verify that dev is acceptable into mddev.
1132  *       The first time, mddev->raid_disks will be 0, and data from
1133  *       dev should be merged in.  Subsequent calls check that dev
1134  *       is new enough.  Return 0 or -EINVAL
1135  *
1136  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1137  *     Update the superblock for rdev with data in mddev
1138  *     This does not write to disc.
1139  *
1140  */
1141 
1142 struct super_type  {
1143 	char		    *name;
1144 	struct module	    *owner;
1145 	int		    (*load_super)(struct md_rdev *rdev,
1146 					  struct md_rdev *refdev,
1147 					  int minor_version);
1148 	int		    (*validate_super)(struct mddev *mddev,
1149 					      struct md_rdev *rdev);
1150 	void		    (*sync_super)(struct mddev *mddev,
1151 					  struct md_rdev *rdev);
1152 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1153 						sector_t num_sectors);
1154 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1155 						unsigned long long new_offset);
1156 };
1157 
1158 /*
1159  * Check that the given mddev has no bitmap.
1160  *
1161  * This function is called from the run method of all personalities that do not
1162  * support bitmaps. It prints an error message and returns non-zero if mddev
1163  * has a bitmap. Otherwise, it returns 0.
1164  *
1165  */
1166 int md_check_no_bitmap(struct mddev *mddev)
1167 {
1168 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1169 		return 0;
1170 	pr_warn("%s: bitmaps are not supported for %s\n",
1171 		mdname(mddev), mddev->pers->name);
1172 	return 1;
1173 }
1174 EXPORT_SYMBOL(md_check_no_bitmap);
1175 
1176 /*
1177  * load_super for 0.90.0
1178  */
1179 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1180 {
1181 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1182 	mdp_super_t *sb;
1183 	int ret;
1184 	bool spare_disk = true;
1185 
1186 	/*
1187 	 * Calculate the position of the superblock (512byte sectors),
1188 	 * it's at the end of the disk.
1189 	 *
1190 	 * It also happens to be a multiple of 4Kb.
1191 	 */
1192 	rdev->sb_start = calc_dev_sboffset(rdev);
1193 
1194 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1195 	if (ret)
1196 		return ret;
1197 
1198 	ret = -EINVAL;
1199 
1200 	bdevname(rdev->bdev, b);
1201 	sb = page_address(rdev->sb_page);
1202 
1203 	if (sb->md_magic != MD_SB_MAGIC) {
1204 		pr_warn("md: invalid raid superblock magic on %s\n", b);
1205 		goto abort;
1206 	}
1207 
1208 	if (sb->major_version != 0 ||
1209 	    sb->minor_version < 90 ||
1210 	    sb->minor_version > 91) {
1211 		pr_warn("Bad version number %d.%d on %s\n",
1212 			sb->major_version, sb->minor_version, b);
1213 		goto abort;
1214 	}
1215 
1216 	if (sb->raid_disks <= 0)
1217 		goto abort;
1218 
1219 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1220 		pr_warn("md: invalid superblock checksum on %s\n", b);
1221 		goto abort;
1222 	}
1223 
1224 	rdev->preferred_minor = sb->md_minor;
1225 	rdev->data_offset = 0;
1226 	rdev->new_data_offset = 0;
1227 	rdev->sb_size = MD_SB_BYTES;
1228 	rdev->badblocks.shift = -1;
1229 
1230 	if (sb->level == LEVEL_MULTIPATH)
1231 		rdev->desc_nr = -1;
1232 	else
1233 		rdev->desc_nr = sb->this_disk.number;
1234 
1235 	/* not spare disk, or LEVEL_MULTIPATH */
1236 	if (sb->level == LEVEL_MULTIPATH ||
1237 		(rdev->desc_nr >= 0 &&
1238 		 rdev->desc_nr < MD_SB_DISKS &&
1239 		 sb->disks[rdev->desc_nr].state &
1240 		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1241 		spare_disk = false;
1242 
1243 	if (!refdev) {
1244 		if (!spare_disk)
1245 			ret = 1;
1246 		else
1247 			ret = 0;
1248 	} else {
1249 		__u64 ev1, ev2;
1250 		mdp_super_t *refsb = page_address(refdev->sb_page);
1251 		if (!md_uuid_equal(refsb, sb)) {
1252 			pr_warn("md: %s has different UUID to %s\n",
1253 				b, bdevname(refdev->bdev,b2));
1254 			goto abort;
1255 		}
1256 		if (!md_sb_equal(refsb, sb)) {
1257 			pr_warn("md: %s has same UUID but different superblock to %s\n",
1258 				b, bdevname(refdev->bdev, b2));
1259 			goto abort;
1260 		}
1261 		ev1 = md_event(sb);
1262 		ev2 = md_event(refsb);
1263 
1264 		if (!spare_disk && ev1 > ev2)
1265 			ret = 1;
1266 		else
1267 			ret = 0;
1268 	}
1269 	rdev->sectors = rdev->sb_start;
1270 	/* Limit to 4TB as metadata cannot record more than that.
1271 	 * (not needed for Linear and RAID0 as metadata doesn't
1272 	 * record this size)
1273 	 */
1274 	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1275 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1276 
1277 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1278 		/* "this cannot possibly happen" ... */
1279 		ret = -EINVAL;
1280 
1281  abort:
1282 	return ret;
1283 }
1284 
1285 /*
1286  * validate_super for 0.90.0
1287  */
1288 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1289 {
1290 	mdp_disk_t *desc;
1291 	mdp_super_t *sb = page_address(rdev->sb_page);
1292 	__u64 ev1 = md_event(sb);
1293 
1294 	rdev->raid_disk = -1;
1295 	clear_bit(Faulty, &rdev->flags);
1296 	clear_bit(In_sync, &rdev->flags);
1297 	clear_bit(Bitmap_sync, &rdev->flags);
1298 	clear_bit(WriteMostly, &rdev->flags);
1299 
1300 	if (mddev->raid_disks == 0) {
1301 		mddev->major_version = 0;
1302 		mddev->minor_version = sb->minor_version;
1303 		mddev->patch_version = sb->patch_version;
1304 		mddev->external = 0;
1305 		mddev->chunk_sectors = sb->chunk_size >> 9;
1306 		mddev->ctime = sb->ctime;
1307 		mddev->utime = sb->utime;
1308 		mddev->level = sb->level;
1309 		mddev->clevel[0] = 0;
1310 		mddev->layout = sb->layout;
1311 		mddev->raid_disks = sb->raid_disks;
1312 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1313 		mddev->events = ev1;
1314 		mddev->bitmap_info.offset = 0;
1315 		mddev->bitmap_info.space = 0;
1316 		/* bitmap can use 60 K after the 4K superblocks */
1317 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1318 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1319 		mddev->reshape_backwards = 0;
1320 
1321 		if (mddev->minor_version >= 91) {
1322 			mddev->reshape_position = sb->reshape_position;
1323 			mddev->delta_disks = sb->delta_disks;
1324 			mddev->new_level = sb->new_level;
1325 			mddev->new_layout = sb->new_layout;
1326 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1327 			if (mddev->delta_disks < 0)
1328 				mddev->reshape_backwards = 1;
1329 		} else {
1330 			mddev->reshape_position = MaxSector;
1331 			mddev->delta_disks = 0;
1332 			mddev->new_level = mddev->level;
1333 			mddev->new_layout = mddev->layout;
1334 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1335 		}
1336 		if (mddev->level == 0)
1337 			mddev->layout = -1;
1338 
1339 		if (sb->state & (1<<MD_SB_CLEAN))
1340 			mddev->recovery_cp = MaxSector;
1341 		else {
1342 			if (sb->events_hi == sb->cp_events_hi &&
1343 				sb->events_lo == sb->cp_events_lo) {
1344 				mddev->recovery_cp = sb->recovery_cp;
1345 			} else
1346 				mddev->recovery_cp = 0;
1347 		}
1348 
1349 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1350 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1351 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1352 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1353 
1354 		mddev->max_disks = MD_SB_DISKS;
1355 
1356 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1357 		    mddev->bitmap_info.file == NULL) {
1358 			mddev->bitmap_info.offset =
1359 				mddev->bitmap_info.default_offset;
1360 			mddev->bitmap_info.space =
1361 				mddev->bitmap_info.default_space;
1362 		}
1363 
1364 	} else if (mddev->pers == NULL) {
1365 		/* Insist on good event counter while assembling, except
1366 		 * for spares (which don't need an event count) */
1367 		++ev1;
1368 		if (sb->disks[rdev->desc_nr].state & (
1369 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1370 			if (ev1 < mddev->events)
1371 				return -EINVAL;
1372 	} else if (mddev->bitmap) {
1373 		/* if adding to array with a bitmap, then we can accept an
1374 		 * older device ... but not too old.
1375 		 */
1376 		if (ev1 < mddev->bitmap->events_cleared)
1377 			return 0;
1378 		if (ev1 < mddev->events)
1379 			set_bit(Bitmap_sync, &rdev->flags);
1380 	} else {
1381 		if (ev1 < mddev->events)
1382 			/* just a hot-add of a new device, leave raid_disk at -1 */
1383 			return 0;
1384 	}
1385 
1386 	if (mddev->level != LEVEL_MULTIPATH) {
1387 		desc = sb->disks + rdev->desc_nr;
1388 
1389 		if (desc->state & (1<<MD_DISK_FAULTY))
1390 			set_bit(Faulty, &rdev->flags);
1391 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1392 			    desc->raid_disk < mddev->raid_disks */) {
1393 			set_bit(In_sync, &rdev->flags);
1394 			rdev->raid_disk = desc->raid_disk;
1395 			rdev->saved_raid_disk = desc->raid_disk;
1396 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1397 			/* active but not in sync implies recovery up to
1398 			 * reshape position.  We don't know exactly where
1399 			 * that is, so set to zero for now */
1400 			if (mddev->minor_version >= 91) {
1401 				rdev->recovery_offset = 0;
1402 				rdev->raid_disk = desc->raid_disk;
1403 			}
1404 		}
1405 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1406 			set_bit(WriteMostly, &rdev->flags);
1407 		if (desc->state & (1<<MD_DISK_FAILFAST))
1408 			set_bit(FailFast, &rdev->flags);
1409 	} else /* MULTIPATH are always insync */
1410 		set_bit(In_sync, &rdev->flags);
1411 	return 0;
1412 }
1413 
1414 /*
1415  * sync_super for 0.90.0
1416  */
1417 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1418 {
1419 	mdp_super_t *sb;
1420 	struct md_rdev *rdev2;
1421 	int next_spare = mddev->raid_disks;
1422 
1423 	/* make rdev->sb match mddev data..
1424 	 *
1425 	 * 1/ zero out disks
1426 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1427 	 * 3/ any empty disks < next_spare become removed
1428 	 *
1429 	 * disks[0] gets initialised to REMOVED because
1430 	 * we cannot be sure from other fields if it has
1431 	 * been initialised or not.
1432 	 */
1433 	int i;
1434 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1435 
1436 	rdev->sb_size = MD_SB_BYTES;
1437 
1438 	sb = page_address(rdev->sb_page);
1439 
1440 	memset(sb, 0, sizeof(*sb));
1441 
1442 	sb->md_magic = MD_SB_MAGIC;
1443 	sb->major_version = mddev->major_version;
1444 	sb->patch_version = mddev->patch_version;
1445 	sb->gvalid_words  = 0; /* ignored */
1446 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1447 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1448 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1449 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1450 
1451 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1452 	sb->level = mddev->level;
1453 	sb->size = mddev->dev_sectors / 2;
1454 	sb->raid_disks = mddev->raid_disks;
1455 	sb->md_minor = mddev->md_minor;
1456 	sb->not_persistent = 0;
1457 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1458 	sb->state = 0;
1459 	sb->events_hi = (mddev->events>>32);
1460 	sb->events_lo = (u32)mddev->events;
1461 
1462 	if (mddev->reshape_position == MaxSector)
1463 		sb->minor_version = 90;
1464 	else {
1465 		sb->minor_version = 91;
1466 		sb->reshape_position = mddev->reshape_position;
1467 		sb->new_level = mddev->new_level;
1468 		sb->delta_disks = mddev->delta_disks;
1469 		sb->new_layout = mddev->new_layout;
1470 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1471 	}
1472 	mddev->minor_version = sb->minor_version;
1473 	if (mddev->in_sync)
1474 	{
1475 		sb->recovery_cp = mddev->recovery_cp;
1476 		sb->cp_events_hi = (mddev->events>>32);
1477 		sb->cp_events_lo = (u32)mddev->events;
1478 		if (mddev->recovery_cp == MaxSector)
1479 			sb->state = (1<< MD_SB_CLEAN);
1480 	} else
1481 		sb->recovery_cp = 0;
1482 
1483 	sb->layout = mddev->layout;
1484 	sb->chunk_size = mddev->chunk_sectors << 9;
1485 
1486 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1487 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1488 
1489 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1490 	rdev_for_each(rdev2, mddev) {
1491 		mdp_disk_t *d;
1492 		int desc_nr;
1493 		int is_active = test_bit(In_sync, &rdev2->flags);
1494 
1495 		if (rdev2->raid_disk >= 0 &&
1496 		    sb->minor_version >= 91)
1497 			/* we have nowhere to store the recovery_offset,
1498 			 * but if it is not below the reshape_position,
1499 			 * we can piggy-back on that.
1500 			 */
1501 			is_active = 1;
1502 		if (rdev2->raid_disk < 0 ||
1503 		    test_bit(Faulty, &rdev2->flags))
1504 			is_active = 0;
1505 		if (is_active)
1506 			desc_nr = rdev2->raid_disk;
1507 		else
1508 			desc_nr = next_spare++;
1509 		rdev2->desc_nr = desc_nr;
1510 		d = &sb->disks[rdev2->desc_nr];
1511 		nr_disks++;
1512 		d->number = rdev2->desc_nr;
1513 		d->major = MAJOR(rdev2->bdev->bd_dev);
1514 		d->minor = MINOR(rdev2->bdev->bd_dev);
1515 		if (is_active)
1516 			d->raid_disk = rdev2->raid_disk;
1517 		else
1518 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1519 		if (test_bit(Faulty, &rdev2->flags))
1520 			d->state = (1<<MD_DISK_FAULTY);
1521 		else if (is_active) {
1522 			d->state = (1<<MD_DISK_ACTIVE);
1523 			if (test_bit(In_sync, &rdev2->flags))
1524 				d->state |= (1<<MD_DISK_SYNC);
1525 			active++;
1526 			working++;
1527 		} else {
1528 			d->state = 0;
1529 			spare++;
1530 			working++;
1531 		}
1532 		if (test_bit(WriteMostly, &rdev2->flags))
1533 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1534 		if (test_bit(FailFast, &rdev2->flags))
1535 			d->state |= (1<<MD_DISK_FAILFAST);
1536 	}
1537 	/* now set the "removed" and "faulty" bits on any missing devices */
1538 	for (i=0 ; i < mddev->raid_disks ; i++) {
1539 		mdp_disk_t *d = &sb->disks[i];
1540 		if (d->state == 0 && d->number == 0) {
1541 			d->number = i;
1542 			d->raid_disk = i;
1543 			d->state = (1<<MD_DISK_REMOVED);
1544 			d->state |= (1<<MD_DISK_FAULTY);
1545 			failed++;
1546 		}
1547 	}
1548 	sb->nr_disks = nr_disks;
1549 	sb->active_disks = active;
1550 	sb->working_disks = working;
1551 	sb->failed_disks = failed;
1552 	sb->spare_disks = spare;
1553 
1554 	sb->this_disk = sb->disks[rdev->desc_nr];
1555 	sb->sb_csum = calc_sb_csum(sb);
1556 }
1557 
1558 /*
1559  * rdev_size_change for 0.90.0
1560  */
1561 static unsigned long long
1562 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1563 {
1564 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1565 		return 0; /* component must fit device */
1566 	if (rdev->mddev->bitmap_info.offset)
1567 		return 0; /* can't move bitmap */
1568 	rdev->sb_start = calc_dev_sboffset(rdev);
1569 	if (!num_sectors || num_sectors > rdev->sb_start)
1570 		num_sectors = rdev->sb_start;
1571 	/* Limit to 4TB as metadata cannot record more than that.
1572 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1573 	 */
1574 	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1575 		num_sectors = (sector_t)(2ULL << 32) - 2;
1576 	do {
1577 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1578 		       rdev->sb_page);
1579 	} while (md_super_wait(rdev->mddev) < 0);
1580 	return num_sectors;
1581 }
1582 
1583 static int
1584 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1585 {
1586 	/* non-zero offset changes not possible with v0.90 */
1587 	return new_offset == 0;
1588 }
1589 
1590 /*
1591  * version 1 superblock
1592  */
1593 
1594 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1595 {
1596 	__le32 disk_csum;
1597 	u32 csum;
1598 	unsigned long long newcsum;
1599 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1600 	__le32 *isuper = (__le32*)sb;
1601 
1602 	disk_csum = sb->sb_csum;
1603 	sb->sb_csum = 0;
1604 	newcsum = 0;
1605 	for (; size >= 4; size -= 4)
1606 		newcsum += le32_to_cpu(*isuper++);
1607 
1608 	if (size == 2)
1609 		newcsum += le16_to_cpu(*(__le16*) isuper);
1610 
1611 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1612 	sb->sb_csum = disk_csum;
1613 	return cpu_to_le32(csum);
1614 }
1615 
1616 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1617 {
1618 	struct mdp_superblock_1 *sb;
1619 	int ret;
1620 	sector_t sb_start;
1621 	sector_t sectors;
1622 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1623 	int bmask;
1624 	bool spare_disk = true;
1625 
1626 	/*
1627 	 * Calculate the position of the superblock in 512byte sectors.
1628 	 * It is always aligned to a 4K boundary and
1629 	 * depeding on minor_version, it can be:
1630 	 * 0: At least 8K, but less than 12K, from end of device
1631 	 * 1: At start of device
1632 	 * 2: 4K from start of device.
1633 	 */
1634 	switch(minor_version) {
1635 	case 0:
1636 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1637 		sb_start -= 8*2;
1638 		sb_start &= ~(sector_t)(4*2-1);
1639 		break;
1640 	case 1:
1641 		sb_start = 0;
1642 		break;
1643 	case 2:
1644 		sb_start = 8;
1645 		break;
1646 	default:
1647 		return -EINVAL;
1648 	}
1649 	rdev->sb_start = sb_start;
1650 
1651 	/* superblock is rarely larger than 1K, but it can be larger,
1652 	 * and it is safe to read 4k, so we do that
1653 	 */
1654 	ret = read_disk_sb(rdev, 4096);
1655 	if (ret) return ret;
1656 
1657 	sb = page_address(rdev->sb_page);
1658 
1659 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1660 	    sb->major_version != cpu_to_le32(1) ||
1661 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1662 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1663 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1664 		return -EINVAL;
1665 
1666 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1667 		pr_warn("md: invalid superblock checksum on %s\n",
1668 			bdevname(rdev->bdev,b));
1669 		return -EINVAL;
1670 	}
1671 	if (le64_to_cpu(sb->data_size) < 10) {
1672 		pr_warn("md: data_size too small on %s\n",
1673 			bdevname(rdev->bdev,b));
1674 		return -EINVAL;
1675 	}
1676 	if (sb->pad0 ||
1677 	    sb->pad3[0] ||
1678 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1679 		/* Some padding is non-zero, might be a new feature */
1680 		return -EINVAL;
1681 
1682 	rdev->preferred_minor = 0xffff;
1683 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1684 	rdev->new_data_offset = rdev->data_offset;
1685 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1686 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1687 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1688 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1689 
1690 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1691 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1692 	if (rdev->sb_size & bmask)
1693 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1694 
1695 	if (minor_version
1696 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1697 		return -EINVAL;
1698 	if (minor_version
1699 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1700 		return -EINVAL;
1701 
1702 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1703 		rdev->desc_nr = -1;
1704 	else
1705 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1706 
1707 	if (!rdev->bb_page) {
1708 		rdev->bb_page = alloc_page(GFP_KERNEL);
1709 		if (!rdev->bb_page)
1710 			return -ENOMEM;
1711 	}
1712 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1713 	    rdev->badblocks.count == 0) {
1714 		/* need to load the bad block list.
1715 		 * Currently we limit it to one page.
1716 		 */
1717 		s32 offset;
1718 		sector_t bb_sector;
1719 		__le64 *bbp;
1720 		int i;
1721 		int sectors = le16_to_cpu(sb->bblog_size);
1722 		if (sectors > (PAGE_SIZE / 512))
1723 			return -EINVAL;
1724 		offset = le32_to_cpu(sb->bblog_offset);
1725 		if (offset == 0)
1726 			return -EINVAL;
1727 		bb_sector = (long long)offset;
1728 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1729 				  rdev->bb_page, REQ_OP_READ, 0, true))
1730 			return -EIO;
1731 		bbp = (__le64 *)page_address(rdev->bb_page);
1732 		rdev->badblocks.shift = sb->bblog_shift;
1733 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1734 			u64 bb = le64_to_cpu(*bbp);
1735 			int count = bb & (0x3ff);
1736 			u64 sector = bb >> 10;
1737 			sector <<= sb->bblog_shift;
1738 			count <<= sb->bblog_shift;
1739 			if (bb + 1 == 0)
1740 				break;
1741 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1742 				return -EINVAL;
1743 		}
1744 	} else if (sb->bblog_offset != 0)
1745 		rdev->badblocks.shift = 0;
1746 
1747 	if ((le32_to_cpu(sb->feature_map) &
1748 	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1749 		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1750 		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1751 		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1752 	}
1753 
1754 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1755 	    sb->level != 0)
1756 		return -EINVAL;
1757 
1758 	/* not spare disk, or LEVEL_MULTIPATH */
1759 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1760 		(rdev->desc_nr >= 0 &&
1761 		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1762 		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1763 		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1764 		spare_disk = false;
1765 
1766 	if (!refdev) {
1767 		if (!spare_disk)
1768 			ret = 1;
1769 		else
1770 			ret = 0;
1771 	} else {
1772 		__u64 ev1, ev2;
1773 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1774 
1775 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1776 		    sb->level != refsb->level ||
1777 		    sb->layout != refsb->layout ||
1778 		    sb->chunksize != refsb->chunksize) {
1779 			pr_warn("md: %s has strangely different superblock to %s\n",
1780 				bdevname(rdev->bdev,b),
1781 				bdevname(refdev->bdev,b2));
1782 			return -EINVAL;
1783 		}
1784 		ev1 = le64_to_cpu(sb->events);
1785 		ev2 = le64_to_cpu(refsb->events);
1786 
1787 		if (!spare_disk && ev1 > ev2)
1788 			ret = 1;
1789 		else
1790 			ret = 0;
1791 	}
1792 	if (minor_version) {
1793 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1794 		sectors -= rdev->data_offset;
1795 	} else
1796 		sectors = rdev->sb_start;
1797 	if (sectors < le64_to_cpu(sb->data_size))
1798 		return -EINVAL;
1799 	rdev->sectors = le64_to_cpu(sb->data_size);
1800 	return ret;
1801 }
1802 
1803 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1804 {
1805 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1806 	__u64 ev1 = le64_to_cpu(sb->events);
1807 
1808 	rdev->raid_disk = -1;
1809 	clear_bit(Faulty, &rdev->flags);
1810 	clear_bit(In_sync, &rdev->flags);
1811 	clear_bit(Bitmap_sync, &rdev->flags);
1812 	clear_bit(WriteMostly, &rdev->flags);
1813 
1814 	if (mddev->raid_disks == 0) {
1815 		mddev->major_version = 1;
1816 		mddev->patch_version = 0;
1817 		mddev->external = 0;
1818 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1819 		mddev->ctime = le64_to_cpu(sb->ctime);
1820 		mddev->utime = le64_to_cpu(sb->utime);
1821 		mddev->level = le32_to_cpu(sb->level);
1822 		mddev->clevel[0] = 0;
1823 		mddev->layout = le32_to_cpu(sb->layout);
1824 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1825 		mddev->dev_sectors = le64_to_cpu(sb->size);
1826 		mddev->events = ev1;
1827 		mddev->bitmap_info.offset = 0;
1828 		mddev->bitmap_info.space = 0;
1829 		/* Default location for bitmap is 1K after superblock
1830 		 * using 3K - total of 4K
1831 		 */
1832 		mddev->bitmap_info.default_offset = 1024 >> 9;
1833 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1834 		mddev->reshape_backwards = 0;
1835 
1836 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1837 		memcpy(mddev->uuid, sb->set_uuid, 16);
1838 
1839 		mddev->max_disks =  (4096-256)/2;
1840 
1841 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1842 		    mddev->bitmap_info.file == NULL) {
1843 			mddev->bitmap_info.offset =
1844 				(__s32)le32_to_cpu(sb->bitmap_offset);
1845 			/* Metadata doesn't record how much space is available.
1846 			 * For 1.0, we assume we can use up to the superblock
1847 			 * if before, else to 4K beyond superblock.
1848 			 * For others, assume no change is possible.
1849 			 */
1850 			if (mddev->minor_version > 0)
1851 				mddev->bitmap_info.space = 0;
1852 			else if (mddev->bitmap_info.offset > 0)
1853 				mddev->bitmap_info.space =
1854 					8 - mddev->bitmap_info.offset;
1855 			else
1856 				mddev->bitmap_info.space =
1857 					-mddev->bitmap_info.offset;
1858 		}
1859 
1860 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1861 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1862 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1863 			mddev->new_level = le32_to_cpu(sb->new_level);
1864 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1865 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1866 			if (mddev->delta_disks < 0 ||
1867 			    (mddev->delta_disks == 0 &&
1868 			     (le32_to_cpu(sb->feature_map)
1869 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1870 				mddev->reshape_backwards = 1;
1871 		} else {
1872 			mddev->reshape_position = MaxSector;
1873 			mddev->delta_disks = 0;
1874 			mddev->new_level = mddev->level;
1875 			mddev->new_layout = mddev->layout;
1876 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1877 		}
1878 
1879 		if (mddev->level == 0 &&
1880 		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1881 			mddev->layout = -1;
1882 
1883 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1884 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1885 
1886 		if (le32_to_cpu(sb->feature_map) &
1887 		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1888 			if (le32_to_cpu(sb->feature_map) &
1889 			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1890 				return -EINVAL;
1891 			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1892 			    (le32_to_cpu(sb->feature_map) &
1893 					    MD_FEATURE_MULTIPLE_PPLS))
1894 				return -EINVAL;
1895 			set_bit(MD_HAS_PPL, &mddev->flags);
1896 		}
1897 	} else if (mddev->pers == NULL) {
1898 		/* Insist of good event counter while assembling, except for
1899 		 * spares (which don't need an event count) */
1900 		++ev1;
1901 		if (rdev->desc_nr >= 0 &&
1902 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1903 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1904 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1905 			if (ev1 < mddev->events)
1906 				return -EINVAL;
1907 	} else if (mddev->bitmap) {
1908 		/* If adding to array with a bitmap, then we can accept an
1909 		 * older device, but not too old.
1910 		 */
1911 		if (ev1 < mddev->bitmap->events_cleared)
1912 			return 0;
1913 		if (ev1 < mddev->events)
1914 			set_bit(Bitmap_sync, &rdev->flags);
1915 	} else {
1916 		if (ev1 < mddev->events)
1917 			/* just a hot-add of a new device, leave raid_disk at -1 */
1918 			return 0;
1919 	}
1920 	if (mddev->level != LEVEL_MULTIPATH) {
1921 		int role;
1922 		if (rdev->desc_nr < 0 ||
1923 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1924 			role = MD_DISK_ROLE_SPARE;
1925 			rdev->desc_nr = -1;
1926 		} else
1927 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1928 		switch(role) {
1929 		case MD_DISK_ROLE_SPARE: /* spare */
1930 			break;
1931 		case MD_DISK_ROLE_FAULTY: /* faulty */
1932 			set_bit(Faulty, &rdev->flags);
1933 			break;
1934 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1935 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1936 				/* journal device without journal feature */
1937 				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1938 				return -EINVAL;
1939 			}
1940 			set_bit(Journal, &rdev->flags);
1941 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1942 			rdev->raid_disk = 0;
1943 			break;
1944 		default:
1945 			rdev->saved_raid_disk = role;
1946 			if ((le32_to_cpu(sb->feature_map) &
1947 			     MD_FEATURE_RECOVERY_OFFSET)) {
1948 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1949 				if (!(le32_to_cpu(sb->feature_map) &
1950 				      MD_FEATURE_RECOVERY_BITMAP))
1951 					rdev->saved_raid_disk = -1;
1952 			} else {
1953 				/*
1954 				 * If the array is FROZEN, then the device can't
1955 				 * be in_sync with rest of array.
1956 				 */
1957 				if (!test_bit(MD_RECOVERY_FROZEN,
1958 					      &mddev->recovery))
1959 					set_bit(In_sync, &rdev->flags);
1960 			}
1961 			rdev->raid_disk = role;
1962 			break;
1963 		}
1964 		if (sb->devflags & WriteMostly1)
1965 			set_bit(WriteMostly, &rdev->flags);
1966 		if (sb->devflags & FailFast1)
1967 			set_bit(FailFast, &rdev->flags);
1968 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1969 			set_bit(Replacement, &rdev->flags);
1970 	} else /* MULTIPATH are always insync */
1971 		set_bit(In_sync, &rdev->flags);
1972 
1973 	return 0;
1974 }
1975 
1976 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1977 {
1978 	struct mdp_superblock_1 *sb;
1979 	struct md_rdev *rdev2;
1980 	int max_dev, i;
1981 	/* make rdev->sb match mddev and rdev data. */
1982 
1983 	sb = page_address(rdev->sb_page);
1984 
1985 	sb->feature_map = 0;
1986 	sb->pad0 = 0;
1987 	sb->recovery_offset = cpu_to_le64(0);
1988 	memset(sb->pad3, 0, sizeof(sb->pad3));
1989 
1990 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1991 	sb->events = cpu_to_le64(mddev->events);
1992 	if (mddev->in_sync)
1993 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1994 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1995 		sb->resync_offset = cpu_to_le64(MaxSector);
1996 	else
1997 		sb->resync_offset = cpu_to_le64(0);
1998 
1999 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2000 
2001 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2002 	sb->size = cpu_to_le64(mddev->dev_sectors);
2003 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2004 	sb->level = cpu_to_le32(mddev->level);
2005 	sb->layout = cpu_to_le32(mddev->layout);
2006 	if (test_bit(FailFast, &rdev->flags))
2007 		sb->devflags |= FailFast1;
2008 	else
2009 		sb->devflags &= ~FailFast1;
2010 
2011 	if (test_bit(WriteMostly, &rdev->flags))
2012 		sb->devflags |= WriteMostly1;
2013 	else
2014 		sb->devflags &= ~WriteMostly1;
2015 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2016 	sb->data_size = cpu_to_le64(rdev->sectors);
2017 
2018 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2019 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2020 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2021 	}
2022 
2023 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2024 	    !test_bit(In_sync, &rdev->flags)) {
2025 		sb->feature_map |=
2026 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2027 		sb->recovery_offset =
2028 			cpu_to_le64(rdev->recovery_offset);
2029 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2030 			sb->feature_map |=
2031 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2032 	}
2033 	/* Note: recovery_offset and journal_tail share space  */
2034 	if (test_bit(Journal, &rdev->flags))
2035 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2036 	if (test_bit(Replacement, &rdev->flags))
2037 		sb->feature_map |=
2038 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2039 
2040 	if (mddev->reshape_position != MaxSector) {
2041 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2042 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2043 		sb->new_layout = cpu_to_le32(mddev->new_layout);
2044 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2045 		sb->new_level = cpu_to_le32(mddev->new_level);
2046 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2047 		if (mddev->delta_disks == 0 &&
2048 		    mddev->reshape_backwards)
2049 			sb->feature_map
2050 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2051 		if (rdev->new_data_offset != rdev->data_offset) {
2052 			sb->feature_map
2053 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2054 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2055 							     - rdev->data_offset));
2056 		}
2057 	}
2058 
2059 	if (mddev_is_clustered(mddev))
2060 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2061 
2062 	if (rdev->badblocks.count == 0)
2063 		/* Nothing to do for bad blocks*/ ;
2064 	else if (sb->bblog_offset == 0)
2065 		/* Cannot record bad blocks on this device */
2066 		md_error(mddev, rdev);
2067 	else {
2068 		struct badblocks *bb = &rdev->badblocks;
2069 		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2070 		u64 *p = bb->page;
2071 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2072 		if (bb->changed) {
2073 			unsigned seq;
2074 
2075 retry:
2076 			seq = read_seqbegin(&bb->lock);
2077 
2078 			memset(bbp, 0xff, PAGE_SIZE);
2079 
2080 			for (i = 0 ; i < bb->count ; i++) {
2081 				u64 internal_bb = p[i];
2082 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2083 						| BB_LEN(internal_bb));
2084 				bbp[i] = cpu_to_le64(store_bb);
2085 			}
2086 			bb->changed = 0;
2087 			if (read_seqretry(&bb->lock, seq))
2088 				goto retry;
2089 
2090 			bb->sector = (rdev->sb_start +
2091 				      (int)le32_to_cpu(sb->bblog_offset));
2092 			bb->size = le16_to_cpu(sb->bblog_size);
2093 		}
2094 	}
2095 
2096 	max_dev = 0;
2097 	rdev_for_each(rdev2, mddev)
2098 		if (rdev2->desc_nr+1 > max_dev)
2099 			max_dev = rdev2->desc_nr+1;
2100 
2101 	if (max_dev > le32_to_cpu(sb->max_dev)) {
2102 		int bmask;
2103 		sb->max_dev = cpu_to_le32(max_dev);
2104 		rdev->sb_size = max_dev * 2 + 256;
2105 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2106 		if (rdev->sb_size & bmask)
2107 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2108 	} else
2109 		max_dev = le32_to_cpu(sb->max_dev);
2110 
2111 	for (i=0; i<max_dev;i++)
2112 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2113 
2114 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2115 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2116 
2117 	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2118 		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2119 			sb->feature_map |=
2120 			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2121 		else
2122 			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2123 		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2124 		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2125 	}
2126 
2127 	rdev_for_each(rdev2, mddev) {
2128 		i = rdev2->desc_nr;
2129 		if (test_bit(Faulty, &rdev2->flags))
2130 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2131 		else if (test_bit(In_sync, &rdev2->flags))
2132 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2133 		else if (test_bit(Journal, &rdev2->flags))
2134 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2135 		else if (rdev2->raid_disk >= 0)
2136 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2137 		else
2138 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2139 	}
2140 
2141 	sb->sb_csum = calc_sb_1_csum(sb);
2142 }
2143 
2144 static sector_t super_1_choose_bm_space(sector_t dev_size)
2145 {
2146 	sector_t bm_space;
2147 
2148 	/* if the device is bigger than 8Gig, save 64k for bitmap
2149 	 * usage, if bigger than 200Gig, save 128k
2150 	 */
2151 	if (dev_size < 64*2)
2152 		bm_space = 0;
2153 	else if (dev_size - 64*2 >= 200*1024*1024*2)
2154 		bm_space = 128*2;
2155 	else if (dev_size - 4*2 > 8*1024*1024*2)
2156 		bm_space = 64*2;
2157 	else
2158 		bm_space = 4*2;
2159 	return bm_space;
2160 }
2161 
2162 static unsigned long long
2163 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2164 {
2165 	struct mdp_superblock_1 *sb;
2166 	sector_t max_sectors;
2167 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2168 		return 0; /* component must fit device */
2169 	if (rdev->data_offset != rdev->new_data_offset)
2170 		return 0; /* too confusing */
2171 	if (rdev->sb_start < rdev->data_offset) {
2172 		/* minor versions 1 and 2; superblock before data */
2173 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2174 		max_sectors -= rdev->data_offset;
2175 		if (!num_sectors || num_sectors > max_sectors)
2176 			num_sectors = max_sectors;
2177 	} else if (rdev->mddev->bitmap_info.offset) {
2178 		/* minor version 0 with bitmap we can't move */
2179 		return 0;
2180 	} else {
2181 		/* minor version 0; superblock after data */
2182 		sector_t sb_start, bm_space;
2183 		sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2184 
2185 		/* 8K is for superblock */
2186 		sb_start = dev_size - 8*2;
2187 		sb_start &= ~(sector_t)(4*2 - 1);
2188 
2189 		bm_space = super_1_choose_bm_space(dev_size);
2190 
2191 		/* Space that can be used to store date needs to decrease
2192 		 * superblock bitmap space and bad block space(4K)
2193 		 */
2194 		max_sectors = sb_start - bm_space - 4*2;
2195 
2196 		if (!num_sectors || num_sectors > max_sectors)
2197 			num_sectors = max_sectors;
2198 	}
2199 	sb = page_address(rdev->sb_page);
2200 	sb->data_size = cpu_to_le64(num_sectors);
2201 	sb->super_offset = cpu_to_le64(rdev->sb_start);
2202 	sb->sb_csum = calc_sb_1_csum(sb);
2203 	do {
2204 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2205 			       rdev->sb_page);
2206 	} while (md_super_wait(rdev->mddev) < 0);
2207 	return num_sectors;
2208 
2209 }
2210 
2211 static int
2212 super_1_allow_new_offset(struct md_rdev *rdev,
2213 			 unsigned long long new_offset)
2214 {
2215 	/* All necessary checks on new >= old have been done */
2216 	struct bitmap *bitmap;
2217 	if (new_offset >= rdev->data_offset)
2218 		return 1;
2219 
2220 	/* with 1.0 metadata, there is no metadata to tread on
2221 	 * so we can always move back */
2222 	if (rdev->mddev->minor_version == 0)
2223 		return 1;
2224 
2225 	/* otherwise we must be sure not to step on
2226 	 * any metadata, so stay:
2227 	 * 36K beyond start of superblock
2228 	 * beyond end of badblocks
2229 	 * beyond write-intent bitmap
2230 	 */
2231 	if (rdev->sb_start + (32+4)*2 > new_offset)
2232 		return 0;
2233 	bitmap = rdev->mddev->bitmap;
2234 	if (bitmap && !rdev->mddev->bitmap_info.file &&
2235 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2236 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2237 		return 0;
2238 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2239 		return 0;
2240 
2241 	return 1;
2242 }
2243 
2244 static struct super_type super_types[] = {
2245 	[0] = {
2246 		.name	= "0.90.0",
2247 		.owner	= THIS_MODULE,
2248 		.load_super	    = super_90_load,
2249 		.validate_super	    = super_90_validate,
2250 		.sync_super	    = super_90_sync,
2251 		.rdev_size_change   = super_90_rdev_size_change,
2252 		.allow_new_offset   = super_90_allow_new_offset,
2253 	},
2254 	[1] = {
2255 		.name	= "md-1",
2256 		.owner	= THIS_MODULE,
2257 		.load_super	    = super_1_load,
2258 		.validate_super	    = super_1_validate,
2259 		.sync_super	    = super_1_sync,
2260 		.rdev_size_change   = super_1_rdev_size_change,
2261 		.allow_new_offset   = super_1_allow_new_offset,
2262 	},
2263 };
2264 
2265 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2266 {
2267 	if (mddev->sync_super) {
2268 		mddev->sync_super(mddev, rdev);
2269 		return;
2270 	}
2271 
2272 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2273 
2274 	super_types[mddev->major_version].sync_super(mddev, rdev);
2275 }
2276 
2277 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2278 {
2279 	struct md_rdev *rdev, *rdev2;
2280 
2281 	rcu_read_lock();
2282 	rdev_for_each_rcu(rdev, mddev1) {
2283 		if (test_bit(Faulty, &rdev->flags) ||
2284 		    test_bit(Journal, &rdev->flags) ||
2285 		    rdev->raid_disk == -1)
2286 			continue;
2287 		rdev_for_each_rcu(rdev2, mddev2) {
2288 			if (test_bit(Faulty, &rdev2->flags) ||
2289 			    test_bit(Journal, &rdev2->flags) ||
2290 			    rdev2->raid_disk == -1)
2291 				continue;
2292 			if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2293 				rcu_read_unlock();
2294 				return 1;
2295 			}
2296 		}
2297 	}
2298 	rcu_read_unlock();
2299 	return 0;
2300 }
2301 
2302 static LIST_HEAD(pending_raid_disks);
2303 
2304 /*
2305  * Try to register data integrity profile for an mddev
2306  *
2307  * This is called when an array is started and after a disk has been kicked
2308  * from the array. It only succeeds if all working and active component devices
2309  * are integrity capable with matching profiles.
2310  */
2311 int md_integrity_register(struct mddev *mddev)
2312 {
2313 	struct md_rdev *rdev, *reference = NULL;
2314 
2315 	if (list_empty(&mddev->disks))
2316 		return 0; /* nothing to do */
2317 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2318 		return 0; /* shouldn't register, or already is */
2319 	rdev_for_each(rdev, mddev) {
2320 		/* skip spares and non-functional disks */
2321 		if (test_bit(Faulty, &rdev->flags))
2322 			continue;
2323 		if (rdev->raid_disk < 0)
2324 			continue;
2325 		if (!reference) {
2326 			/* Use the first rdev as the reference */
2327 			reference = rdev;
2328 			continue;
2329 		}
2330 		/* does this rdev's profile match the reference profile? */
2331 		if (blk_integrity_compare(reference->bdev->bd_disk,
2332 				rdev->bdev->bd_disk) < 0)
2333 			return -EINVAL;
2334 	}
2335 	if (!reference || !bdev_get_integrity(reference->bdev))
2336 		return 0;
2337 	/*
2338 	 * All component devices are integrity capable and have matching
2339 	 * profiles, register the common profile for the md device.
2340 	 */
2341 	blk_integrity_register(mddev->gendisk,
2342 			       bdev_get_integrity(reference->bdev));
2343 
2344 	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2345 	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2346 	    (mddev->level != 1 && mddev->level != 10 &&
2347 	     bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2348 		/*
2349 		 * No need to handle the failure of bioset_integrity_create,
2350 		 * because the function is called by md_run() -> pers->run(),
2351 		 * md_run calls bioset_exit -> bioset_integrity_free in case
2352 		 * of failure case.
2353 		 */
2354 		pr_err("md: failed to create integrity pool for %s\n",
2355 		       mdname(mddev));
2356 		return -EINVAL;
2357 	}
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(md_integrity_register);
2361 
2362 /*
2363  * Attempt to add an rdev, but only if it is consistent with the current
2364  * integrity profile
2365  */
2366 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2367 {
2368 	struct blk_integrity *bi_mddev;
2369 	char name[BDEVNAME_SIZE];
2370 
2371 	if (!mddev->gendisk)
2372 		return 0;
2373 
2374 	bi_mddev = blk_get_integrity(mddev->gendisk);
2375 
2376 	if (!bi_mddev) /* nothing to do */
2377 		return 0;
2378 
2379 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2380 		pr_err("%s: incompatible integrity profile for %s\n",
2381 		       mdname(mddev), bdevname(rdev->bdev, name));
2382 		return -ENXIO;
2383 	}
2384 
2385 	return 0;
2386 }
2387 EXPORT_SYMBOL(md_integrity_add_rdev);
2388 
2389 static bool rdev_read_only(struct md_rdev *rdev)
2390 {
2391 	return bdev_read_only(rdev->bdev) ||
2392 		(rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2393 }
2394 
2395 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2396 {
2397 	char b[BDEVNAME_SIZE];
2398 	int err;
2399 
2400 	/* prevent duplicates */
2401 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2402 		return -EEXIST;
2403 
2404 	if (rdev_read_only(rdev) && mddev->pers)
2405 		return -EROFS;
2406 
2407 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2408 	if (!test_bit(Journal, &rdev->flags) &&
2409 	    rdev->sectors &&
2410 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2411 		if (mddev->pers) {
2412 			/* Cannot change size, so fail
2413 			 * If mddev->level <= 0, then we don't care
2414 			 * about aligning sizes (e.g. linear)
2415 			 */
2416 			if (mddev->level > 0)
2417 				return -ENOSPC;
2418 		} else
2419 			mddev->dev_sectors = rdev->sectors;
2420 	}
2421 
2422 	/* Verify rdev->desc_nr is unique.
2423 	 * If it is -1, assign a free number, else
2424 	 * check number is not in use
2425 	 */
2426 	rcu_read_lock();
2427 	if (rdev->desc_nr < 0) {
2428 		int choice = 0;
2429 		if (mddev->pers)
2430 			choice = mddev->raid_disks;
2431 		while (md_find_rdev_nr_rcu(mddev, choice))
2432 			choice++;
2433 		rdev->desc_nr = choice;
2434 	} else {
2435 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2436 			rcu_read_unlock();
2437 			return -EBUSY;
2438 		}
2439 	}
2440 	rcu_read_unlock();
2441 	if (!test_bit(Journal, &rdev->flags) &&
2442 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2443 		pr_warn("md: %s: array is limited to %d devices\n",
2444 			mdname(mddev), mddev->max_disks);
2445 		return -EBUSY;
2446 	}
2447 	bdevname(rdev->bdev,b);
2448 	strreplace(b, '/', '!');
2449 
2450 	rdev->mddev = mddev;
2451 	pr_debug("md: bind<%s>\n", b);
2452 
2453 	if (mddev->raid_disks)
2454 		mddev_create_serial_pool(mddev, rdev, false);
2455 
2456 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2457 		goto fail;
2458 
2459 	/* failure here is OK */
2460 	err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2461 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2462 	rdev->sysfs_unack_badblocks =
2463 		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2464 	rdev->sysfs_badblocks =
2465 		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2466 
2467 	list_add_rcu(&rdev->same_set, &mddev->disks);
2468 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2469 
2470 	/* May as well allow recovery to be retried once */
2471 	mddev->recovery_disabled++;
2472 
2473 	return 0;
2474 
2475  fail:
2476 	pr_warn("md: failed to register dev-%s for %s\n",
2477 		b, mdname(mddev));
2478 	return err;
2479 }
2480 
2481 static void rdev_delayed_delete(struct work_struct *ws)
2482 {
2483 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2484 	kobject_del(&rdev->kobj);
2485 	kobject_put(&rdev->kobj);
2486 }
2487 
2488 static void unbind_rdev_from_array(struct md_rdev *rdev)
2489 {
2490 	char b[BDEVNAME_SIZE];
2491 
2492 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2493 	list_del_rcu(&rdev->same_set);
2494 	pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2495 	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2496 	rdev->mddev = NULL;
2497 	sysfs_remove_link(&rdev->kobj, "block");
2498 	sysfs_put(rdev->sysfs_state);
2499 	sysfs_put(rdev->sysfs_unack_badblocks);
2500 	sysfs_put(rdev->sysfs_badblocks);
2501 	rdev->sysfs_state = NULL;
2502 	rdev->sysfs_unack_badblocks = NULL;
2503 	rdev->sysfs_badblocks = NULL;
2504 	rdev->badblocks.count = 0;
2505 	/* We need to delay this, otherwise we can deadlock when
2506 	 * writing to 'remove' to "dev/state".  We also need
2507 	 * to delay it due to rcu usage.
2508 	 */
2509 	synchronize_rcu();
2510 	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2511 	kobject_get(&rdev->kobj);
2512 	queue_work(md_rdev_misc_wq, &rdev->del_work);
2513 }
2514 
2515 /*
2516  * prevent the device from being mounted, repartitioned or
2517  * otherwise reused by a RAID array (or any other kernel
2518  * subsystem), by bd_claiming the device.
2519  */
2520 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2521 {
2522 	int err = 0;
2523 	struct block_device *bdev;
2524 
2525 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2526 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2527 	if (IS_ERR(bdev)) {
2528 		pr_warn("md: could not open device unknown-block(%u,%u).\n",
2529 			MAJOR(dev), MINOR(dev));
2530 		return PTR_ERR(bdev);
2531 	}
2532 	rdev->bdev = bdev;
2533 	return err;
2534 }
2535 
2536 static void unlock_rdev(struct md_rdev *rdev)
2537 {
2538 	struct block_device *bdev = rdev->bdev;
2539 	rdev->bdev = NULL;
2540 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2541 }
2542 
2543 void md_autodetect_dev(dev_t dev);
2544 
2545 static void export_rdev(struct md_rdev *rdev)
2546 {
2547 	char b[BDEVNAME_SIZE];
2548 
2549 	pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2550 	md_rdev_clear(rdev);
2551 #ifndef MODULE
2552 	if (test_bit(AutoDetected, &rdev->flags))
2553 		md_autodetect_dev(rdev->bdev->bd_dev);
2554 #endif
2555 	unlock_rdev(rdev);
2556 	kobject_put(&rdev->kobj);
2557 }
2558 
2559 void md_kick_rdev_from_array(struct md_rdev *rdev)
2560 {
2561 	unbind_rdev_from_array(rdev);
2562 	export_rdev(rdev);
2563 }
2564 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2565 
2566 static void export_array(struct mddev *mddev)
2567 {
2568 	struct md_rdev *rdev;
2569 
2570 	while (!list_empty(&mddev->disks)) {
2571 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2572 					same_set);
2573 		md_kick_rdev_from_array(rdev);
2574 	}
2575 	mddev->raid_disks = 0;
2576 	mddev->major_version = 0;
2577 }
2578 
2579 static bool set_in_sync(struct mddev *mddev)
2580 {
2581 	lockdep_assert_held(&mddev->lock);
2582 	if (!mddev->in_sync) {
2583 		mddev->sync_checkers++;
2584 		spin_unlock(&mddev->lock);
2585 		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2586 		spin_lock(&mddev->lock);
2587 		if (!mddev->in_sync &&
2588 		    percpu_ref_is_zero(&mddev->writes_pending)) {
2589 			mddev->in_sync = 1;
2590 			/*
2591 			 * Ensure ->in_sync is visible before we clear
2592 			 * ->sync_checkers.
2593 			 */
2594 			smp_mb();
2595 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2596 			sysfs_notify_dirent_safe(mddev->sysfs_state);
2597 		}
2598 		if (--mddev->sync_checkers == 0)
2599 			percpu_ref_switch_to_percpu(&mddev->writes_pending);
2600 	}
2601 	if (mddev->safemode == 1)
2602 		mddev->safemode = 0;
2603 	return mddev->in_sync;
2604 }
2605 
2606 static void sync_sbs(struct mddev *mddev, int nospares)
2607 {
2608 	/* Update each superblock (in-memory image), but
2609 	 * if we are allowed to, skip spares which already
2610 	 * have the right event counter, or have one earlier
2611 	 * (which would mean they aren't being marked as dirty
2612 	 * with the rest of the array)
2613 	 */
2614 	struct md_rdev *rdev;
2615 	rdev_for_each(rdev, mddev) {
2616 		if (rdev->sb_events == mddev->events ||
2617 		    (nospares &&
2618 		     rdev->raid_disk < 0 &&
2619 		     rdev->sb_events+1 == mddev->events)) {
2620 			/* Don't update this superblock */
2621 			rdev->sb_loaded = 2;
2622 		} else {
2623 			sync_super(mddev, rdev);
2624 			rdev->sb_loaded = 1;
2625 		}
2626 	}
2627 }
2628 
2629 static bool does_sb_need_changing(struct mddev *mddev)
2630 {
2631 	struct md_rdev *rdev;
2632 	struct mdp_superblock_1 *sb;
2633 	int role;
2634 
2635 	/* Find a good rdev */
2636 	rdev_for_each(rdev, mddev)
2637 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2638 			break;
2639 
2640 	/* No good device found. */
2641 	if (!rdev)
2642 		return false;
2643 
2644 	sb = page_address(rdev->sb_page);
2645 	/* Check if a device has become faulty or a spare become active */
2646 	rdev_for_each(rdev, mddev) {
2647 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2648 		/* Device activated? */
2649 		if (role == 0xffff && rdev->raid_disk >=0 &&
2650 		    !test_bit(Faulty, &rdev->flags))
2651 			return true;
2652 		/* Device turned faulty? */
2653 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2654 			return true;
2655 	}
2656 
2657 	/* Check if any mddev parameters have changed */
2658 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2659 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2660 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2661 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2662 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2663 		return true;
2664 
2665 	return false;
2666 }
2667 
2668 void md_update_sb(struct mddev *mddev, int force_change)
2669 {
2670 	struct md_rdev *rdev;
2671 	int sync_req;
2672 	int nospares = 0;
2673 	int any_badblocks_changed = 0;
2674 	int ret = -1;
2675 
2676 	if (mddev->ro) {
2677 		if (force_change)
2678 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2679 		return;
2680 	}
2681 
2682 repeat:
2683 	if (mddev_is_clustered(mddev)) {
2684 		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2685 			force_change = 1;
2686 		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2687 			nospares = 1;
2688 		ret = md_cluster_ops->metadata_update_start(mddev);
2689 		/* Has someone else has updated the sb */
2690 		if (!does_sb_need_changing(mddev)) {
2691 			if (ret == 0)
2692 				md_cluster_ops->metadata_update_cancel(mddev);
2693 			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2694 							 BIT(MD_SB_CHANGE_DEVS) |
2695 							 BIT(MD_SB_CHANGE_CLEAN));
2696 			return;
2697 		}
2698 	}
2699 
2700 	/*
2701 	 * First make sure individual recovery_offsets are correct
2702 	 * curr_resync_completed can only be used during recovery.
2703 	 * During reshape/resync it might use array-addresses rather
2704 	 * that device addresses.
2705 	 */
2706 	rdev_for_each(rdev, mddev) {
2707 		if (rdev->raid_disk >= 0 &&
2708 		    mddev->delta_disks >= 0 &&
2709 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2710 		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2711 		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2712 		    !test_bit(Journal, &rdev->flags) &&
2713 		    !test_bit(In_sync, &rdev->flags) &&
2714 		    mddev->curr_resync_completed > rdev->recovery_offset)
2715 				rdev->recovery_offset = mddev->curr_resync_completed;
2716 
2717 	}
2718 	if (!mddev->persistent) {
2719 		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2720 		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2721 		if (!mddev->external) {
2722 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2723 			rdev_for_each(rdev, mddev) {
2724 				if (rdev->badblocks.changed) {
2725 					rdev->badblocks.changed = 0;
2726 					ack_all_badblocks(&rdev->badblocks);
2727 					md_error(mddev, rdev);
2728 				}
2729 				clear_bit(Blocked, &rdev->flags);
2730 				clear_bit(BlockedBadBlocks, &rdev->flags);
2731 				wake_up(&rdev->blocked_wait);
2732 			}
2733 		}
2734 		wake_up(&mddev->sb_wait);
2735 		return;
2736 	}
2737 
2738 	spin_lock(&mddev->lock);
2739 
2740 	mddev->utime = ktime_get_real_seconds();
2741 
2742 	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2743 		force_change = 1;
2744 	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2745 		/* just a clean<-> dirty transition, possibly leave spares alone,
2746 		 * though if events isn't the right even/odd, we will have to do
2747 		 * spares after all
2748 		 */
2749 		nospares = 1;
2750 	if (force_change)
2751 		nospares = 0;
2752 	if (mddev->degraded)
2753 		/* If the array is degraded, then skipping spares is both
2754 		 * dangerous and fairly pointless.
2755 		 * Dangerous because a device that was removed from the array
2756 		 * might have a event_count that still looks up-to-date,
2757 		 * so it can be re-added without a resync.
2758 		 * Pointless because if there are any spares to skip,
2759 		 * then a recovery will happen and soon that array won't
2760 		 * be degraded any more and the spare can go back to sleep then.
2761 		 */
2762 		nospares = 0;
2763 
2764 	sync_req = mddev->in_sync;
2765 
2766 	/* If this is just a dirty<->clean transition, and the array is clean
2767 	 * and 'events' is odd, we can roll back to the previous clean state */
2768 	if (nospares
2769 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2770 	    && mddev->can_decrease_events
2771 	    && mddev->events != 1) {
2772 		mddev->events--;
2773 		mddev->can_decrease_events = 0;
2774 	} else {
2775 		/* otherwise we have to go forward and ... */
2776 		mddev->events ++;
2777 		mddev->can_decrease_events = nospares;
2778 	}
2779 
2780 	/*
2781 	 * This 64-bit counter should never wrap.
2782 	 * Either we are in around ~1 trillion A.C., assuming
2783 	 * 1 reboot per second, or we have a bug...
2784 	 */
2785 	WARN_ON(mddev->events == 0);
2786 
2787 	rdev_for_each(rdev, mddev) {
2788 		if (rdev->badblocks.changed)
2789 			any_badblocks_changed++;
2790 		if (test_bit(Faulty, &rdev->flags))
2791 			set_bit(FaultRecorded, &rdev->flags);
2792 	}
2793 
2794 	sync_sbs(mddev, nospares);
2795 	spin_unlock(&mddev->lock);
2796 
2797 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2798 		 mdname(mddev), mddev->in_sync);
2799 
2800 	if (mddev->queue)
2801 		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2802 rewrite:
2803 	md_bitmap_update_sb(mddev->bitmap);
2804 	rdev_for_each(rdev, mddev) {
2805 		char b[BDEVNAME_SIZE];
2806 
2807 		if (rdev->sb_loaded != 1)
2808 			continue; /* no noise on spare devices */
2809 
2810 		if (!test_bit(Faulty, &rdev->flags)) {
2811 			md_super_write(mddev,rdev,
2812 				       rdev->sb_start, rdev->sb_size,
2813 				       rdev->sb_page);
2814 			pr_debug("md: (write) %s's sb offset: %llu\n",
2815 				 bdevname(rdev->bdev, b),
2816 				 (unsigned long long)rdev->sb_start);
2817 			rdev->sb_events = mddev->events;
2818 			if (rdev->badblocks.size) {
2819 				md_super_write(mddev, rdev,
2820 					       rdev->badblocks.sector,
2821 					       rdev->badblocks.size << 9,
2822 					       rdev->bb_page);
2823 				rdev->badblocks.size = 0;
2824 			}
2825 
2826 		} else
2827 			pr_debug("md: %s (skipping faulty)\n",
2828 				 bdevname(rdev->bdev, b));
2829 
2830 		if (mddev->level == LEVEL_MULTIPATH)
2831 			/* only need to write one superblock... */
2832 			break;
2833 	}
2834 	if (md_super_wait(mddev) < 0)
2835 		goto rewrite;
2836 	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2837 
2838 	if (mddev_is_clustered(mddev) && ret == 0)
2839 		md_cluster_ops->metadata_update_finish(mddev);
2840 
2841 	if (mddev->in_sync != sync_req ||
2842 	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2843 			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2844 		/* have to write it out again */
2845 		goto repeat;
2846 	wake_up(&mddev->sb_wait);
2847 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2848 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2849 
2850 	rdev_for_each(rdev, mddev) {
2851 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2852 			clear_bit(Blocked, &rdev->flags);
2853 
2854 		if (any_badblocks_changed)
2855 			ack_all_badblocks(&rdev->badblocks);
2856 		clear_bit(BlockedBadBlocks, &rdev->flags);
2857 		wake_up(&rdev->blocked_wait);
2858 	}
2859 }
2860 EXPORT_SYMBOL(md_update_sb);
2861 
2862 static int add_bound_rdev(struct md_rdev *rdev)
2863 {
2864 	struct mddev *mddev = rdev->mddev;
2865 	int err = 0;
2866 	bool add_journal = test_bit(Journal, &rdev->flags);
2867 
2868 	if (!mddev->pers->hot_remove_disk || add_journal) {
2869 		/* If there is hot_add_disk but no hot_remove_disk
2870 		 * then added disks for geometry changes,
2871 		 * and should be added immediately.
2872 		 */
2873 		super_types[mddev->major_version].
2874 			validate_super(mddev, rdev);
2875 		if (add_journal)
2876 			mddev_suspend(mddev);
2877 		err = mddev->pers->hot_add_disk(mddev, rdev);
2878 		if (add_journal)
2879 			mddev_resume(mddev);
2880 		if (err) {
2881 			md_kick_rdev_from_array(rdev);
2882 			return err;
2883 		}
2884 	}
2885 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2886 
2887 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2888 	if (mddev->degraded)
2889 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2890 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2891 	md_new_event(mddev);
2892 	md_wakeup_thread(mddev->thread);
2893 	return 0;
2894 }
2895 
2896 /* words written to sysfs files may, or may not, be \n terminated.
2897  * We want to accept with case. For this we use cmd_match.
2898  */
2899 static int cmd_match(const char *cmd, const char *str)
2900 {
2901 	/* See if cmd, written into a sysfs file, matches
2902 	 * str.  They must either be the same, or cmd can
2903 	 * have a trailing newline
2904 	 */
2905 	while (*cmd && *str && *cmd == *str) {
2906 		cmd++;
2907 		str++;
2908 	}
2909 	if (*cmd == '\n')
2910 		cmd++;
2911 	if (*str || *cmd)
2912 		return 0;
2913 	return 1;
2914 }
2915 
2916 struct rdev_sysfs_entry {
2917 	struct attribute attr;
2918 	ssize_t (*show)(struct md_rdev *, char *);
2919 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2920 };
2921 
2922 static ssize_t
2923 state_show(struct md_rdev *rdev, char *page)
2924 {
2925 	char *sep = ",";
2926 	size_t len = 0;
2927 	unsigned long flags = READ_ONCE(rdev->flags);
2928 
2929 	if (test_bit(Faulty, &flags) ||
2930 	    (!test_bit(ExternalBbl, &flags) &&
2931 	    rdev->badblocks.unacked_exist))
2932 		len += sprintf(page+len, "faulty%s", sep);
2933 	if (test_bit(In_sync, &flags))
2934 		len += sprintf(page+len, "in_sync%s", sep);
2935 	if (test_bit(Journal, &flags))
2936 		len += sprintf(page+len, "journal%s", sep);
2937 	if (test_bit(WriteMostly, &flags))
2938 		len += sprintf(page+len, "write_mostly%s", sep);
2939 	if (test_bit(Blocked, &flags) ||
2940 	    (rdev->badblocks.unacked_exist
2941 	     && !test_bit(Faulty, &flags)))
2942 		len += sprintf(page+len, "blocked%s", sep);
2943 	if (!test_bit(Faulty, &flags) &&
2944 	    !test_bit(Journal, &flags) &&
2945 	    !test_bit(In_sync, &flags))
2946 		len += sprintf(page+len, "spare%s", sep);
2947 	if (test_bit(WriteErrorSeen, &flags))
2948 		len += sprintf(page+len, "write_error%s", sep);
2949 	if (test_bit(WantReplacement, &flags))
2950 		len += sprintf(page+len, "want_replacement%s", sep);
2951 	if (test_bit(Replacement, &flags))
2952 		len += sprintf(page+len, "replacement%s", sep);
2953 	if (test_bit(ExternalBbl, &flags))
2954 		len += sprintf(page+len, "external_bbl%s", sep);
2955 	if (test_bit(FailFast, &flags))
2956 		len += sprintf(page+len, "failfast%s", sep);
2957 
2958 	if (len)
2959 		len -= strlen(sep);
2960 
2961 	return len+sprintf(page+len, "\n");
2962 }
2963 
2964 static ssize_t
2965 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2966 {
2967 	/* can write
2968 	 *  faulty  - simulates an error
2969 	 *  remove  - disconnects the device
2970 	 *  writemostly - sets write_mostly
2971 	 *  -writemostly - clears write_mostly
2972 	 *  blocked - sets the Blocked flags
2973 	 *  -blocked - clears the Blocked and possibly simulates an error
2974 	 *  insync - sets Insync providing device isn't active
2975 	 *  -insync - clear Insync for a device with a slot assigned,
2976 	 *            so that it gets rebuilt based on bitmap
2977 	 *  write_error - sets WriteErrorSeen
2978 	 *  -write_error - clears WriteErrorSeen
2979 	 *  {,-}failfast - set/clear FailFast
2980 	 */
2981 	int err = -EINVAL;
2982 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2983 		md_error(rdev->mddev, rdev);
2984 		if (test_bit(Faulty, &rdev->flags))
2985 			err = 0;
2986 		else
2987 			err = -EBUSY;
2988 	} else if (cmd_match(buf, "remove")) {
2989 		if (rdev->mddev->pers) {
2990 			clear_bit(Blocked, &rdev->flags);
2991 			remove_and_add_spares(rdev->mddev, rdev);
2992 		}
2993 		if (rdev->raid_disk >= 0)
2994 			err = -EBUSY;
2995 		else {
2996 			struct mddev *mddev = rdev->mddev;
2997 			err = 0;
2998 			if (mddev_is_clustered(mddev))
2999 				err = md_cluster_ops->remove_disk(mddev, rdev);
3000 
3001 			if (err == 0) {
3002 				md_kick_rdev_from_array(rdev);
3003 				if (mddev->pers) {
3004 					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3005 					md_wakeup_thread(mddev->thread);
3006 				}
3007 				md_new_event(mddev);
3008 			}
3009 		}
3010 	} else if (cmd_match(buf, "writemostly")) {
3011 		set_bit(WriteMostly, &rdev->flags);
3012 		mddev_create_serial_pool(rdev->mddev, rdev, false);
3013 		err = 0;
3014 	} else if (cmd_match(buf, "-writemostly")) {
3015 		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3016 		clear_bit(WriteMostly, &rdev->flags);
3017 		err = 0;
3018 	} else if (cmd_match(buf, "blocked")) {
3019 		set_bit(Blocked, &rdev->flags);
3020 		err = 0;
3021 	} else if (cmd_match(buf, "-blocked")) {
3022 		if (!test_bit(Faulty, &rdev->flags) &&
3023 		    !test_bit(ExternalBbl, &rdev->flags) &&
3024 		    rdev->badblocks.unacked_exist) {
3025 			/* metadata handler doesn't understand badblocks,
3026 			 * so we need to fail the device
3027 			 */
3028 			md_error(rdev->mddev, rdev);
3029 		}
3030 		clear_bit(Blocked, &rdev->flags);
3031 		clear_bit(BlockedBadBlocks, &rdev->flags);
3032 		wake_up(&rdev->blocked_wait);
3033 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3034 		md_wakeup_thread(rdev->mddev->thread);
3035 
3036 		err = 0;
3037 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3038 		set_bit(In_sync, &rdev->flags);
3039 		err = 0;
3040 	} else if (cmd_match(buf, "failfast")) {
3041 		set_bit(FailFast, &rdev->flags);
3042 		err = 0;
3043 	} else if (cmd_match(buf, "-failfast")) {
3044 		clear_bit(FailFast, &rdev->flags);
3045 		err = 0;
3046 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3047 		   !test_bit(Journal, &rdev->flags)) {
3048 		if (rdev->mddev->pers == NULL) {
3049 			clear_bit(In_sync, &rdev->flags);
3050 			rdev->saved_raid_disk = rdev->raid_disk;
3051 			rdev->raid_disk = -1;
3052 			err = 0;
3053 		}
3054 	} else if (cmd_match(buf, "write_error")) {
3055 		set_bit(WriteErrorSeen, &rdev->flags);
3056 		err = 0;
3057 	} else if (cmd_match(buf, "-write_error")) {
3058 		clear_bit(WriteErrorSeen, &rdev->flags);
3059 		err = 0;
3060 	} else if (cmd_match(buf, "want_replacement")) {
3061 		/* Any non-spare device that is not a replacement can
3062 		 * become want_replacement at any time, but we then need to
3063 		 * check if recovery is needed.
3064 		 */
3065 		if (rdev->raid_disk >= 0 &&
3066 		    !test_bit(Journal, &rdev->flags) &&
3067 		    !test_bit(Replacement, &rdev->flags))
3068 			set_bit(WantReplacement, &rdev->flags);
3069 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3070 		md_wakeup_thread(rdev->mddev->thread);
3071 		err = 0;
3072 	} else if (cmd_match(buf, "-want_replacement")) {
3073 		/* Clearing 'want_replacement' is always allowed.
3074 		 * Once replacements starts it is too late though.
3075 		 */
3076 		err = 0;
3077 		clear_bit(WantReplacement, &rdev->flags);
3078 	} else if (cmd_match(buf, "replacement")) {
3079 		/* Can only set a device as a replacement when array has not
3080 		 * yet been started.  Once running, replacement is automatic
3081 		 * from spares, or by assigning 'slot'.
3082 		 */
3083 		if (rdev->mddev->pers)
3084 			err = -EBUSY;
3085 		else {
3086 			set_bit(Replacement, &rdev->flags);
3087 			err = 0;
3088 		}
3089 	} else if (cmd_match(buf, "-replacement")) {
3090 		/* Similarly, can only clear Replacement before start */
3091 		if (rdev->mddev->pers)
3092 			err = -EBUSY;
3093 		else {
3094 			clear_bit(Replacement, &rdev->flags);
3095 			err = 0;
3096 		}
3097 	} else if (cmd_match(buf, "re-add")) {
3098 		if (!rdev->mddev->pers)
3099 			err = -EINVAL;
3100 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3101 				rdev->saved_raid_disk >= 0) {
3102 			/* clear_bit is performed _after_ all the devices
3103 			 * have their local Faulty bit cleared. If any writes
3104 			 * happen in the meantime in the local node, they
3105 			 * will land in the local bitmap, which will be synced
3106 			 * by this node eventually
3107 			 */
3108 			if (!mddev_is_clustered(rdev->mddev) ||
3109 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3110 				clear_bit(Faulty, &rdev->flags);
3111 				err = add_bound_rdev(rdev);
3112 			}
3113 		} else
3114 			err = -EBUSY;
3115 	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3116 		set_bit(ExternalBbl, &rdev->flags);
3117 		rdev->badblocks.shift = 0;
3118 		err = 0;
3119 	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3120 		clear_bit(ExternalBbl, &rdev->flags);
3121 		err = 0;
3122 	}
3123 	if (!err)
3124 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3125 	return err ? err : len;
3126 }
3127 static struct rdev_sysfs_entry rdev_state =
3128 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3129 
3130 static ssize_t
3131 errors_show(struct md_rdev *rdev, char *page)
3132 {
3133 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3134 }
3135 
3136 static ssize_t
3137 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3138 {
3139 	unsigned int n;
3140 	int rv;
3141 
3142 	rv = kstrtouint(buf, 10, &n);
3143 	if (rv < 0)
3144 		return rv;
3145 	atomic_set(&rdev->corrected_errors, n);
3146 	return len;
3147 }
3148 static struct rdev_sysfs_entry rdev_errors =
3149 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3150 
3151 static ssize_t
3152 slot_show(struct md_rdev *rdev, char *page)
3153 {
3154 	if (test_bit(Journal, &rdev->flags))
3155 		return sprintf(page, "journal\n");
3156 	else if (rdev->raid_disk < 0)
3157 		return sprintf(page, "none\n");
3158 	else
3159 		return sprintf(page, "%d\n", rdev->raid_disk);
3160 }
3161 
3162 static ssize_t
3163 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3164 {
3165 	int slot;
3166 	int err;
3167 
3168 	if (test_bit(Journal, &rdev->flags))
3169 		return -EBUSY;
3170 	if (strncmp(buf, "none", 4)==0)
3171 		slot = -1;
3172 	else {
3173 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3174 		if (err < 0)
3175 			return err;
3176 	}
3177 	if (rdev->mddev->pers && slot == -1) {
3178 		/* Setting 'slot' on an active array requires also
3179 		 * updating the 'rd%d' link, and communicating
3180 		 * with the personality with ->hot_*_disk.
3181 		 * For now we only support removing
3182 		 * failed/spare devices.  This normally happens automatically,
3183 		 * but not when the metadata is externally managed.
3184 		 */
3185 		if (rdev->raid_disk == -1)
3186 			return -EEXIST;
3187 		/* personality does all needed checks */
3188 		if (rdev->mddev->pers->hot_remove_disk == NULL)
3189 			return -EINVAL;
3190 		clear_bit(Blocked, &rdev->flags);
3191 		remove_and_add_spares(rdev->mddev, rdev);
3192 		if (rdev->raid_disk >= 0)
3193 			return -EBUSY;
3194 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3195 		md_wakeup_thread(rdev->mddev->thread);
3196 	} else if (rdev->mddev->pers) {
3197 		/* Activating a spare .. or possibly reactivating
3198 		 * if we ever get bitmaps working here.
3199 		 */
3200 		int err;
3201 
3202 		if (rdev->raid_disk != -1)
3203 			return -EBUSY;
3204 
3205 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3206 			return -EBUSY;
3207 
3208 		if (rdev->mddev->pers->hot_add_disk == NULL)
3209 			return -EINVAL;
3210 
3211 		if (slot >= rdev->mddev->raid_disks &&
3212 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3213 			return -ENOSPC;
3214 
3215 		rdev->raid_disk = slot;
3216 		if (test_bit(In_sync, &rdev->flags))
3217 			rdev->saved_raid_disk = slot;
3218 		else
3219 			rdev->saved_raid_disk = -1;
3220 		clear_bit(In_sync, &rdev->flags);
3221 		clear_bit(Bitmap_sync, &rdev->flags);
3222 		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3223 		if (err) {
3224 			rdev->raid_disk = -1;
3225 			return err;
3226 		} else
3227 			sysfs_notify_dirent_safe(rdev->sysfs_state);
3228 		/* failure here is OK */;
3229 		sysfs_link_rdev(rdev->mddev, rdev);
3230 		/* don't wakeup anyone, leave that to userspace. */
3231 	} else {
3232 		if (slot >= rdev->mddev->raid_disks &&
3233 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3234 			return -ENOSPC;
3235 		rdev->raid_disk = slot;
3236 		/* assume it is working */
3237 		clear_bit(Faulty, &rdev->flags);
3238 		clear_bit(WriteMostly, &rdev->flags);
3239 		set_bit(In_sync, &rdev->flags);
3240 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3241 	}
3242 	return len;
3243 }
3244 
3245 static struct rdev_sysfs_entry rdev_slot =
3246 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3247 
3248 static ssize_t
3249 offset_show(struct md_rdev *rdev, char *page)
3250 {
3251 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3252 }
3253 
3254 static ssize_t
3255 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3256 {
3257 	unsigned long long offset;
3258 	if (kstrtoull(buf, 10, &offset) < 0)
3259 		return -EINVAL;
3260 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3261 		return -EBUSY;
3262 	if (rdev->sectors && rdev->mddev->external)
3263 		/* Must set offset before size, so overlap checks
3264 		 * can be sane */
3265 		return -EBUSY;
3266 	rdev->data_offset = offset;
3267 	rdev->new_data_offset = offset;
3268 	return len;
3269 }
3270 
3271 static struct rdev_sysfs_entry rdev_offset =
3272 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3273 
3274 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3275 {
3276 	return sprintf(page, "%llu\n",
3277 		       (unsigned long long)rdev->new_data_offset);
3278 }
3279 
3280 static ssize_t new_offset_store(struct md_rdev *rdev,
3281 				const char *buf, size_t len)
3282 {
3283 	unsigned long long new_offset;
3284 	struct mddev *mddev = rdev->mddev;
3285 
3286 	if (kstrtoull(buf, 10, &new_offset) < 0)
3287 		return -EINVAL;
3288 
3289 	if (mddev->sync_thread ||
3290 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3291 		return -EBUSY;
3292 	if (new_offset == rdev->data_offset)
3293 		/* reset is always permitted */
3294 		;
3295 	else if (new_offset > rdev->data_offset) {
3296 		/* must not push array size beyond rdev_sectors */
3297 		if (new_offset - rdev->data_offset
3298 		    + mddev->dev_sectors > rdev->sectors)
3299 				return -E2BIG;
3300 	}
3301 	/* Metadata worries about other space details. */
3302 
3303 	/* decreasing the offset is inconsistent with a backwards
3304 	 * reshape.
3305 	 */
3306 	if (new_offset < rdev->data_offset &&
3307 	    mddev->reshape_backwards)
3308 		return -EINVAL;
3309 	/* Increasing offset is inconsistent with forwards
3310 	 * reshape.  reshape_direction should be set to
3311 	 * 'backwards' first.
3312 	 */
3313 	if (new_offset > rdev->data_offset &&
3314 	    !mddev->reshape_backwards)
3315 		return -EINVAL;
3316 
3317 	if (mddev->pers && mddev->persistent &&
3318 	    !super_types[mddev->major_version]
3319 	    .allow_new_offset(rdev, new_offset))
3320 		return -E2BIG;
3321 	rdev->new_data_offset = new_offset;
3322 	if (new_offset > rdev->data_offset)
3323 		mddev->reshape_backwards = 1;
3324 	else if (new_offset < rdev->data_offset)
3325 		mddev->reshape_backwards = 0;
3326 
3327 	return len;
3328 }
3329 static struct rdev_sysfs_entry rdev_new_offset =
3330 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3331 
3332 static ssize_t
3333 rdev_size_show(struct md_rdev *rdev, char *page)
3334 {
3335 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3336 }
3337 
3338 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3339 {
3340 	/* check if two start/length pairs overlap */
3341 	if (s1+l1 <= s2)
3342 		return 0;
3343 	if (s2+l2 <= s1)
3344 		return 0;
3345 	return 1;
3346 }
3347 
3348 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3349 {
3350 	unsigned long long blocks;
3351 	sector_t new;
3352 
3353 	if (kstrtoull(buf, 10, &blocks) < 0)
3354 		return -EINVAL;
3355 
3356 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3357 		return -EINVAL; /* sector conversion overflow */
3358 
3359 	new = blocks * 2;
3360 	if (new != blocks * 2)
3361 		return -EINVAL; /* unsigned long long to sector_t overflow */
3362 
3363 	*sectors = new;
3364 	return 0;
3365 }
3366 
3367 static ssize_t
3368 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3369 {
3370 	struct mddev *my_mddev = rdev->mddev;
3371 	sector_t oldsectors = rdev->sectors;
3372 	sector_t sectors;
3373 
3374 	if (test_bit(Journal, &rdev->flags))
3375 		return -EBUSY;
3376 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3377 		return -EINVAL;
3378 	if (rdev->data_offset != rdev->new_data_offset)
3379 		return -EINVAL; /* too confusing */
3380 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3381 		if (my_mddev->persistent) {
3382 			sectors = super_types[my_mddev->major_version].
3383 				rdev_size_change(rdev, sectors);
3384 			if (!sectors)
3385 				return -EBUSY;
3386 		} else if (!sectors)
3387 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3388 				rdev->data_offset;
3389 		if (!my_mddev->pers->resize)
3390 			/* Cannot change size for RAID0 or Linear etc */
3391 			return -EINVAL;
3392 	}
3393 	if (sectors < my_mddev->dev_sectors)
3394 		return -EINVAL; /* component must fit device */
3395 
3396 	rdev->sectors = sectors;
3397 	if (sectors > oldsectors && my_mddev->external) {
3398 		/* Need to check that all other rdevs with the same
3399 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3400 		 * the rdev lists safely.
3401 		 * This check does not provide a hard guarantee, it
3402 		 * just helps avoid dangerous mistakes.
3403 		 */
3404 		struct mddev *mddev;
3405 		int overlap = 0;
3406 		struct list_head *tmp;
3407 
3408 		rcu_read_lock();
3409 		for_each_mddev(mddev, tmp) {
3410 			struct md_rdev *rdev2;
3411 
3412 			rdev_for_each(rdev2, mddev)
3413 				if (rdev->bdev == rdev2->bdev &&
3414 				    rdev != rdev2 &&
3415 				    overlaps(rdev->data_offset, rdev->sectors,
3416 					     rdev2->data_offset,
3417 					     rdev2->sectors)) {
3418 					overlap = 1;
3419 					break;
3420 				}
3421 			if (overlap) {
3422 				mddev_put(mddev);
3423 				break;
3424 			}
3425 		}
3426 		rcu_read_unlock();
3427 		if (overlap) {
3428 			/* Someone else could have slipped in a size
3429 			 * change here, but doing so is just silly.
3430 			 * We put oldsectors back because we *know* it is
3431 			 * safe, and trust userspace not to race with
3432 			 * itself
3433 			 */
3434 			rdev->sectors = oldsectors;
3435 			return -EBUSY;
3436 		}
3437 	}
3438 	return len;
3439 }
3440 
3441 static struct rdev_sysfs_entry rdev_size =
3442 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3443 
3444 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3445 {
3446 	unsigned long long recovery_start = rdev->recovery_offset;
3447 
3448 	if (test_bit(In_sync, &rdev->flags) ||
3449 	    recovery_start == MaxSector)
3450 		return sprintf(page, "none\n");
3451 
3452 	return sprintf(page, "%llu\n", recovery_start);
3453 }
3454 
3455 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3456 {
3457 	unsigned long long recovery_start;
3458 
3459 	if (cmd_match(buf, "none"))
3460 		recovery_start = MaxSector;
3461 	else if (kstrtoull(buf, 10, &recovery_start))
3462 		return -EINVAL;
3463 
3464 	if (rdev->mddev->pers &&
3465 	    rdev->raid_disk >= 0)
3466 		return -EBUSY;
3467 
3468 	rdev->recovery_offset = recovery_start;
3469 	if (recovery_start == MaxSector)
3470 		set_bit(In_sync, &rdev->flags);
3471 	else
3472 		clear_bit(In_sync, &rdev->flags);
3473 	return len;
3474 }
3475 
3476 static struct rdev_sysfs_entry rdev_recovery_start =
3477 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3478 
3479 /* sysfs access to bad-blocks list.
3480  * We present two files.
3481  * 'bad-blocks' lists sector numbers and lengths of ranges that
3482  *    are recorded as bad.  The list is truncated to fit within
3483  *    the one-page limit of sysfs.
3484  *    Writing "sector length" to this file adds an acknowledged
3485  *    bad block list.
3486  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3487  *    been acknowledged.  Writing to this file adds bad blocks
3488  *    without acknowledging them.  This is largely for testing.
3489  */
3490 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3491 {
3492 	return badblocks_show(&rdev->badblocks, page, 0);
3493 }
3494 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3495 {
3496 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3497 	/* Maybe that ack was all we needed */
3498 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3499 		wake_up(&rdev->blocked_wait);
3500 	return rv;
3501 }
3502 static struct rdev_sysfs_entry rdev_bad_blocks =
3503 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3504 
3505 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3506 {
3507 	return badblocks_show(&rdev->badblocks, page, 1);
3508 }
3509 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3510 {
3511 	return badblocks_store(&rdev->badblocks, page, len, 1);
3512 }
3513 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3514 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3515 
3516 static ssize_t
3517 ppl_sector_show(struct md_rdev *rdev, char *page)
3518 {
3519 	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3520 }
3521 
3522 static ssize_t
3523 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3524 {
3525 	unsigned long long sector;
3526 
3527 	if (kstrtoull(buf, 10, &sector) < 0)
3528 		return -EINVAL;
3529 	if (sector != (sector_t)sector)
3530 		return -EINVAL;
3531 
3532 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3533 	    rdev->raid_disk >= 0)
3534 		return -EBUSY;
3535 
3536 	if (rdev->mddev->persistent) {
3537 		if (rdev->mddev->major_version == 0)
3538 			return -EINVAL;
3539 		if ((sector > rdev->sb_start &&
3540 		     sector - rdev->sb_start > S16_MAX) ||
3541 		    (sector < rdev->sb_start &&
3542 		     rdev->sb_start - sector > -S16_MIN))
3543 			return -EINVAL;
3544 		rdev->ppl.offset = sector - rdev->sb_start;
3545 	} else if (!rdev->mddev->external) {
3546 		return -EBUSY;
3547 	}
3548 	rdev->ppl.sector = sector;
3549 	return len;
3550 }
3551 
3552 static struct rdev_sysfs_entry rdev_ppl_sector =
3553 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3554 
3555 static ssize_t
3556 ppl_size_show(struct md_rdev *rdev, char *page)
3557 {
3558 	return sprintf(page, "%u\n", rdev->ppl.size);
3559 }
3560 
3561 static ssize_t
3562 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3563 {
3564 	unsigned int size;
3565 
3566 	if (kstrtouint(buf, 10, &size) < 0)
3567 		return -EINVAL;
3568 
3569 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3570 	    rdev->raid_disk >= 0)
3571 		return -EBUSY;
3572 
3573 	if (rdev->mddev->persistent) {
3574 		if (rdev->mddev->major_version == 0)
3575 			return -EINVAL;
3576 		if (size > U16_MAX)
3577 			return -EINVAL;
3578 	} else if (!rdev->mddev->external) {
3579 		return -EBUSY;
3580 	}
3581 	rdev->ppl.size = size;
3582 	return len;
3583 }
3584 
3585 static struct rdev_sysfs_entry rdev_ppl_size =
3586 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3587 
3588 static struct attribute *rdev_default_attrs[] = {
3589 	&rdev_state.attr,
3590 	&rdev_errors.attr,
3591 	&rdev_slot.attr,
3592 	&rdev_offset.attr,
3593 	&rdev_new_offset.attr,
3594 	&rdev_size.attr,
3595 	&rdev_recovery_start.attr,
3596 	&rdev_bad_blocks.attr,
3597 	&rdev_unack_bad_blocks.attr,
3598 	&rdev_ppl_sector.attr,
3599 	&rdev_ppl_size.attr,
3600 	NULL,
3601 };
3602 static ssize_t
3603 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3604 {
3605 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3606 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3607 
3608 	if (!entry->show)
3609 		return -EIO;
3610 	if (!rdev->mddev)
3611 		return -ENODEV;
3612 	return entry->show(rdev, page);
3613 }
3614 
3615 static ssize_t
3616 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3617 	      const char *page, size_t length)
3618 {
3619 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3620 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3621 	ssize_t rv;
3622 	struct mddev *mddev = rdev->mddev;
3623 
3624 	if (!entry->store)
3625 		return -EIO;
3626 	if (!capable(CAP_SYS_ADMIN))
3627 		return -EACCES;
3628 	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3629 	if (!rv) {
3630 		if (rdev->mddev == NULL)
3631 			rv = -ENODEV;
3632 		else
3633 			rv = entry->store(rdev, page, length);
3634 		mddev_unlock(mddev);
3635 	}
3636 	return rv;
3637 }
3638 
3639 static void rdev_free(struct kobject *ko)
3640 {
3641 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3642 	kfree(rdev);
3643 }
3644 static const struct sysfs_ops rdev_sysfs_ops = {
3645 	.show		= rdev_attr_show,
3646 	.store		= rdev_attr_store,
3647 };
3648 static struct kobj_type rdev_ktype = {
3649 	.release	= rdev_free,
3650 	.sysfs_ops	= &rdev_sysfs_ops,
3651 	.default_attrs	= rdev_default_attrs,
3652 };
3653 
3654 int md_rdev_init(struct md_rdev *rdev)
3655 {
3656 	rdev->desc_nr = -1;
3657 	rdev->saved_raid_disk = -1;
3658 	rdev->raid_disk = -1;
3659 	rdev->flags = 0;
3660 	rdev->data_offset = 0;
3661 	rdev->new_data_offset = 0;
3662 	rdev->sb_events = 0;
3663 	rdev->last_read_error = 0;
3664 	rdev->sb_loaded = 0;
3665 	rdev->bb_page = NULL;
3666 	atomic_set(&rdev->nr_pending, 0);
3667 	atomic_set(&rdev->read_errors, 0);
3668 	atomic_set(&rdev->corrected_errors, 0);
3669 
3670 	INIT_LIST_HEAD(&rdev->same_set);
3671 	init_waitqueue_head(&rdev->blocked_wait);
3672 
3673 	/* Add space to store bad block list.
3674 	 * This reserves the space even on arrays where it cannot
3675 	 * be used - I wonder if that matters
3676 	 */
3677 	return badblocks_init(&rdev->badblocks, 0);
3678 }
3679 EXPORT_SYMBOL_GPL(md_rdev_init);
3680 /*
3681  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3682  *
3683  * mark the device faulty if:
3684  *
3685  *   - the device is nonexistent (zero size)
3686  *   - the device has no valid superblock
3687  *
3688  * a faulty rdev _never_ has rdev->sb set.
3689  */
3690 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3691 {
3692 	char b[BDEVNAME_SIZE];
3693 	int err;
3694 	struct md_rdev *rdev;
3695 	sector_t size;
3696 
3697 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3698 	if (!rdev)
3699 		return ERR_PTR(-ENOMEM);
3700 
3701 	err = md_rdev_init(rdev);
3702 	if (err)
3703 		goto abort_free;
3704 	err = alloc_disk_sb(rdev);
3705 	if (err)
3706 		goto abort_free;
3707 
3708 	err = lock_rdev(rdev, newdev, super_format == -2);
3709 	if (err)
3710 		goto abort_free;
3711 
3712 	kobject_init(&rdev->kobj, &rdev_ktype);
3713 
3714 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3715 	if (!size) {
3716 		pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3717 			bdevname(rdev->bdev,b));
3718 		err = -EINVAL;
3719 		goto abort_free;
3720 	}
3721 
3722 	if (super_format >= 0) {
3723 		err = super_types[super_format].
3724 			load_super(rdev, NULL, super_minor);
3725 		if (err == -EINVAL) {
3726 			pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3727 				bdevname(rdev->bdev,b),
3728 				super_format, super_minor);
3729 			goto abort_free;
3730 		}
3731 		if (err < 0) {
3732 			pr_warn("md: could not read %s's sb, not importing!\n",
3733 				bdevname(rdev->bdev,b));
3734 			goto abort_free;
3735 		}
3736 	}
3737 
3738 	return rdev;
3739 
3740 abort_free:
3741 	if (rdev->bdev)
3742 		unlock_rdev(rdev);
3743 	md_rdev_clear(rdev);
3744 	kfree(rdev);
3745 	return ERR_PTR(err);
3746 }
3747 
3748 /*
3749  * Check a full RAID array for plausibility
3750  */
3751 
3752 static int analyze_sbs(struct mddev *mddev)
3753 {
3754 	int i;
3755 	struct md_rdev *rdev, *freshest, *tmp;
3756 	char b[BDEVNAME_SIZE];
3757 
3758 	freshest = NULL;
3759 	rdev_for_each_safe(rdev, tmp, mddev)
3760 		switch (super_types[mddev->major_version].
3761 			load_super(rdev, freshest, mddev->minor_version)) {
3762 		case 1:
3763 			freshest = rdev;
3764 			break;
3765 		case 0:
3766 			break;
3767 		default:
3768 			pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3769 				bdevname(rdev->bdev,b));
3770 			md_kick_rdev_from_array(rdev);
3771 		}
3772 
3773 	/* Cannot find a valid fresh disk */
3774 	if (!freshest) {
3775 		pr_warn("md: cannot find a valid disk\n");
3776 		return -EINVAL;
3777 	}
3778 
3779 	super_types[mddev->major_version].
3780 		validate_super(mddev, freshest);
3781 
3782 	i = 0;
3783 	rdev_for_each_safe(rdev, tmp, mddev) {
3784 		if (mddev->max_disks &&
3785 		    (rdev->desc_nr >= mddev->max_disks ||
3786 		     i > mddev->max_disks)) {
3787 			pr_warn("md: %s: %s: only %d devices permitted\n",
3788 				mdname(mddev), bdevname(rdev->bdev, b),
3789 				mddev->max_disks);
3790 			md_kick_rdev_from_array(rdev);
3791 			continue;
3792 		}
3793 		if (rdev != freshest) {
3794 			if (super_types[mddev->major_version].
3795 			    validate_super(mddev, rdev)) {
3796 				pr_warn("md: kicking non-fresh %s from array!\n",
3797 					bdevname(rdev->bdev,b));
3798 				md_kick_rdev_from_array(rdev);
3799 				continue;
3800 			}
3801 		}
3802 		if (mddev->level == LEVEL_MULTIPATH) {
3803 			rdev->desc_nr = i++;
3804 			rdev->raid_disk = rdev->desc_nr;
3805 			set_bit(In_sync, &rdev->flags);
3806 		} else if (rdev->raid_disk >=
3807 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3808 			   !test_bit(Journal, &rdev->flags)) {
3809 			rdev->raid_disk = -1;
3810 			clear_bit(In_sync, &rdev->flags);
3811 		}
3812 	}
3813 
3814 	return 0;
3815 }
3816 
3817 /* Read a fixed-point number.
3818  * Numbers in sysfs attributes should be in "standard" units where
3819  * possible, so time should be in seconds.
3820  * However we internally use a a much smaller unit such as
3821  * milliseconds or jiffies.
3822  * This function takes a decimal number with a possible fractional
3823  * component, and produces an integer which is the result of
3824  * multiplying that number by 10^'scale'.
3825  * all without any floating-point arithmetic.
3826  */
3827 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3828 {
3829 	unsigned long result = 0;
3830 	long decimals = -1;
3831 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3832 		if (*cp == '.')
3833 			decimals = 0;
3834 		else if (decimals < scale) {
3835 			unsigned int value;
3836 			value = *cp - '0';
3837 			result = result * 10 + value;
3838 			if (decimals >= 0)
3839 				decimals++;
3840 		}
3841 		cp++;
3842 	}
3843 	if (*cp == '\n')
3844 		cp++;
3845 	if (*cp)
3846 		return -EINVAL;
3847 	if (decimals < 0)
3848 		decimals = 0;
3849 	*res = result * int_pow(10, scale - decimals);
3850 	return 0;
3851 }
3852 
3853 static ssize_t
3854 safe_delay_show(struct mddev *mddev, char *page)
3855 {
3856 	int msec = (mddev->safemode_delay*1000)/HZ;
3857 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3858 }
3859 static ssize_t
3860 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3861 {
3862 	unsigned long msec;
3863 
3864 	if (mddev_is_clustered(mddev)) {
3865 		pr_warn("md: Safemode is disabled for clustered mode\n");
3866 		return -EINVAL;
3867 	}
3868 
3869 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3870 		return -EINVAL;
3871 	if (msec == 0)
3872 		mddev->safemode_delay = 0;
3873 	else {
3874 		unsigned long old_delay = mddev->safemode_delay;
3875 		unsigned long new_delay = (msec*HZ)/1000;
3876 
3877 		if (new_delay == 0)
3878 			new_delay = 1;
3879 		mddev->safemode_delay = new_delay;
3880 		if (new_delay < old_delay || old_delay == 0)
3881 			mod_timer(&mddev->safemode_timer, jiffies+1);
3882 	}
3883 	return len;
3884 }
3885 static struct md_sysfs_entry md_safe_delay =
3886 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3887 
3888 static ssize_t
3889 level_show(struct mddev *mddev, char *page)
3890 {
3891 	struct md_personality *p;
3892 	int ret;
3893 	spin_lock(&mddev->lock);
3894 	p = mddev->pers;
3895 	if (p)
3896 		ret = sprintf(page, "%s\n", p->name);
3897 	else if (mddev->clevel[0])
3898 		ret = sprintf(page, "%s\n", mddev->clevel);
3899 	else if (mddev->level != LEVEL_NONE)
3900 		ret = sprintf(page, "%d\n", mddev->level);
3901 	else
3902 		ret = 0;
3903 	spin_unlock(&mddev->lock);
3904 	return ret;
3905 }
3906 
3907 static ssize_t
3908 level_store(struct mddev *mddev, const char *buf, size_t len)
3909 {
3910 	char clevel[16];
3911 	ssize_t rv;
3912 	size_t slen = len;
3913 	struct md_personality *pers, *oldpers;
3914 	long level;
3915 	void *priv, *oldpriv;
3916 	struct md_rdev *rdev;
3917 
3918 	if (slen == 0 || slen >= sizeof(clevel))
3919 		return -EINVAL;
3920 
3921 	rv = mddev_lock(mddev);
3922 	if (rv)
3923 		return rv;
3924 
3925 	if (mddev->pers == NULL) {
3926 		strncpy(mddev->clevel, buf, slen);
3927 		if (mddev->clevel[slen-1] == '\n')
3928 			slen--;
3929 		mddev->clevel[slen] = 0;
3930 		mddev->level = LEVEL_NONE;
3931 		rv = len;
3932 		goto out_unlock;
3933 	}
3934 	rv = -EROFS;
3935 	if (mddev->ro)
3936 		goto out_unlock;
3937 
3938 	/* request to change the personality.  Need to ensure:
3939 	 *  - array is not engaged in resync/recovery/reshape
3940 	 *  - old personality can be suspended
3941 	 *  - new personality will access other array.
3942 	 */
3943 
3944 	rv = -EBUSY;
3945 	if (mddev->sync_thread ||
3946 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3947 	    mddev->reshape_position != MaxSector ||
3948 	    mddev->sysfs_active)
3949 		goto out_unlock;
3950 
3951 	rv = -EINVAL;
3952 	if (!mddev->pers->quiesce) {
3953 		pr_warn("md: %s: %s does not support online personality change\n",
3954 			mdname(mddev), mddev->pers->name);
3955 		goto out_unlock;
3956 	}
3957 
3958 	/* Now find the new personality */
3959 	strncpy(clevel, buf, slen);
3960 	if (clevel[slen-1] == '\n')
3961 		slen--;
3962 	clevel[slen] = 0;
3963 	if (kstrtol(clevel, 10, &level))
3964 		level = LEVEL_NONE;
3965 
3966 	if (request_module("md-%s", clevel) != 0)
3967 		request_module("md-level-%s", clevel);
3968 	spin_lock(&pers_lock);
3969 	pers = find_pers(level, clevel);
3970 	if (!pers || !try_module_get(pers->owner)) {
3971 		spin_unlock(&pers_lock);
3972 		pr_warn("md: personality %s not loaded\n", clevel);
3973 		rv = -EINVAL;
3974 		goto out_unlock;
3975 	}
3976 	spin_unlock(&pers_lock);
3977 
3978 	if (pers == mddev->pers) {
3979 		/* Nothing to do! */
3980 		module_put(pers->owner);
3981 		rv = len;
3982 		goto out_unlock;
3983 	}
3984 	if (!pers->takeover) {
3985 		module_put(pers->owner);
3986 		pr_warn("md: %s: %s does not support personality takeover\n",
3987 			mdname(mddev), clevel);
3988 		rv = -EINVAL;
3989 		goto out_unlock;
3990 	}
3991 
3992 	rdev_for_each(rdev, mddev)
3993 		rdev->new_raid_disk = rdev->raid_disk;
3994 
3995 	/* ->takeover must set new_* and/or delta_disks
3996 	 * if it succeeds, and may set them when it fails.
3997 	 */
3998 	priv = pers->takeover(mddev);
3999 	if (IS_ERR(priv)) {
4000 		mddev->new_level = mddev->level;
4001 		mddev->new_layout = mddev->layout;
4002 		mddev->new_chunk_sectors = mddev->chunk_sectors;
4003 		mddev->raid_disks -= mddev->delta_disks;
4004 		mddev->delta_disks = 0;
4005 		mddev->reshape_backwards = 0;
4006 		module_put(pers->owner);
4007 		pr_warn("md: %s: %s would not accept array\n",
4008 			mdname(mddev), clevel);
4009 		rv = PTR_ERR(priv);
4010 		goto out_unlock;
4011 	}
4012 
4013 	/* Looks like we have a winner */
4014 	mddev_suspend(mddev);
4015 	mddev_detach(mddev);
4016 
4017 	spin_lock(&mddev->lock);
4018 	oldpers = mddev->pers;
4019 	oldpriv = mddev->private;
4020 	mddev->pers = pers;
4021 	mddev->private = priv;
4022 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4023 	mddev->level = mddev->new_level;
4024 	mddev->layout = mddev->new_layout;
4025 	mddev->chunk_sectors = mddev->new_chunk_sectors;
4026 	mddev->delta_disks = 0;
4027 	mddev->reshape_backwards = 0;
4028 	mddev->degraded = 0;
4029 	spin_unlock(&mddev->lock);
4030 
4031 	if (oldpers->sync_request == NULL &&
4032 	    mddev->external) {
4033 		/* We are converting from a no-redundancy array
4034 		 * to a redundancy array and metadata is managed
4035 		 * externally so we need to be sure that writes
4036 		 * won't block due to a need to transition
4037 		 *      clean->dirty
4038 		 * until external management is started.
4039 		 */
4040 		mddev->in_sync = 0;
4041 		mddev->safemode_delay = 0;
4042 		mddev->safemode = 0;
4043 	}
4044 
4045 	oldpers->free(mddev, oldpriv);
4046 
4047 	if (oldpers->sync_request == NULL &&
4048 	    pers->sync_request != NULL) {
4049 		/* need to add the md_redundancy_group */
4050 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4051 			pr_warn("md: cannot register extra attributes for %s\n",
4052 				mdname(mddev));
4053 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4054 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4055 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4056 	}
4057 	if (oldpers->sync_request != NULL &&
4058 	    pers->sync_request == NULL) {
4059 		/* need to remove the md_redundancy_group */
4060 		if (mddev->to_remove == NULL)
4061 			mddev->to_remove = &md_redundancy_group;
4062 	}
4063 
4064 	module_put(oldpers->owner);
4065 
4066 	rdev_for_each(rdev, mddev) {
4067 		if (rdev->raid_disk < 0)
4068 			continue;
4069 		if (rdev->new_raid_disk >= mddev->raid_disks)
4070 			rdev->new_raid_disk = -1;
4071 		if (rdev->new_raid_disk == rdev->raid_disk)
4072 			continue;
4073 		sysfs_unlink_rdev(mddev, rdev);
4074 	}
4075 	rdev_for_each(rdev, mddev) {
4076 		if (rdev->raid_disk < 0)
4077 			continue;
4078 		if (rdev->new_raid_disk == rdev->raid_disk)
4079 			continue;
4080 		rdev->raid_disk = rdev->new_raid_disk;
4081 		if (rdev->raid_disk < 0)
4082 			clear_bit(In_sync, &rdev->flags);
4083 		else {
4084 			if (sysfs_link_rdev(mddev, rdev))
4085 				pr_warn("md: cannot register rd%d for %s after level change\n",
4086 					rdev->raid_disk, mdname(mddev));
4087 		}
4088 	}
4089 
4090 	if (pers->sync_request == NULL) {
4091 		/* this is now an array without redundancy, so
4092 		 * it must always be in_sync
4093 		 */
4094 		mddev->in_sync = 1;
4095 		del_timer_sync(&mddev->safemode_timer);
4096 	}
4097 	blk_set_stacking_limits(&mddev->queue->limits);
4098 	pers->run(mddev);
4099 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4100 	mddev_resume(mddev);
4101 	if (!mddev->thread)
4102 		md_update_sb(mddev, 1);
4103 	sysfs_notify_dirent_safe(mddev->sysfs_level);
4104 	md_new_event(mddev);
4105 	rv = len;
4106 out_unlock:
4107 	mddev_unlock(mddev);
4108 	return rv;
4109 }
4110 
4111 static struct md_sysfs_entry md_level =
4112 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4113 
4114 static ssize_t
4115 layout_show(struct mddev *mddev, char *page)
4116 {
4117 	/* just a number, not meaningful for all levels */
4118 	if (mddev->reshape_position != MaxSector &&
4119 	    mddev->layout != mddev->new_layout)
4120 		return sprintf(page, "%d (%d)\n",
4121 			       mddev->new_layout, mddev->layout);
4122 	return sprintf(page, "%d\n", mddev->layout);
4123 }
4124 
4125 static ssize_t
4126 layout_store(struct mddev *mddev, const char *buf, size_t len)
4127 {
4128 	unsigned int n;
4129 	int err;
4130 
4131 	err = kstrtouint(buf, 10, &n);
4132 	if (err < 0)
4133 		return err;
4134 	err = mddev_lock(mddev);
4135 	if (err)
4136 		return err;
4137 
4138 	if (mddev->pers) {
4139 		if (mddev->pers->check_reshape == NULL)
4140 			err = -EBUSY;
4141 		else if (mddev->ro)
4142 			err = -EROFS;
4143 		else {
4144 			mddev->new_layout = n;
4145 			err = mddev->pers->check_reshape(mddev);
4146 			if (err)
4147 				mddev->new_layout = mddev->layout;
4148 		}
4149 	} else {
4150 		mddev->new_layout = n;
4151 		if (mddev->reshape_position == MaxSector)
4152 			mddev->layout = n;
4153 	}
4154 	mddev_unlock(mddev);
4155 	return err ?: len;
4156 }
4157 static struct md_sysfs_entry md_layout =
4158 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4159 
4160 static ssize_t
4161 raid_disks_show(struct mddev *mddev, char *page)
4162 {
4163 	if (mddev->raid_disks == 0)
4164 		return 0;
4165 	if (mddev->reshape_position != MaxSector &&
4166 	    mddev->delta_disks != 0)
4167 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4168 			       mddev->raid_disks - mddev->delta_disks);
4169 	return sprintf(page, "%d\n", mddev->raid_disks);
4170 }
4171 
4172 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4173 
4174 static ssize_t
4175 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4176 {
4177 	unsigned int n;
4178 	int err;
4179 
4180 	err = kstrtouint(buf, 10, &n);
4181 	if (err < 0)
4182 		return err;
4183 
4184 	err = mddev_lock(mddev);
4185 	if (err)
4186 		return err;
4187 	if (mddev->pers)
4188 		err = update_raid_disks(mddev, n);
4189 	else if (mddev->reshape_position != MaxSector) {
4190 		struct md_rdev *rdev;
4191 		int olddisks = mddev->raid_disks - mddev->delta_disks;
4192 
4193 		err = -EINVAL;
4194 		rdev_for_each(rdev, mddev) {
4195 			if (olddisks < n &&
4196 			    rdev->data_offset < rdev->new_data_offset)
4197 				goto out_unlock;
4198 			if (olddisks > n &&
4199 			    rdev->data_offset > rdev->new_data_offset)
4200 				goto out_unlock;
4201 		}
4202 		err = 0;
4203 		mddev->delta_disks = n - olddisks;
4204 		mddev->raid_disks = n;
4205 		mddev->reshape_backwards = (mddev->delta_disks < 0);
4206 	} else
4207 		mddev->raid_disks = n;
4208 out_unlock:
4209 	mddev_unlock(mddev);
4210 	return err ? err : len;
4211 }
4212 static struct md_sysfs_entry md_raid_disks =
4213 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4214 
4215 static ssize_t
4216 uuid_show(struct mddev *mddev, char *page)
4217 {
4218 	return sprintf(page, "%pU\n", mddev->uuid);
4219 }
4220 static struct md_sysfs_entry md_uuid =
4221 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4222 
4223 static ssize_t
4224 chunk_size_show(struct mddev *mddev, char *page)
4225 {
4226 	if (mddev->reshape_position != MaxSector &&
4227 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4228 		return sprintf(page, "%d (%d)\n",
4229 			       mddev->new_chunk_sectors << 9,
4230 			       mddev->chunk_sectors << 9);
4231 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4232 }
4233 
4234 static ssize_t
4235 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4236 {
4237 	unsigned long n;
4238 	int err;
4239 
4240 	err = kstrtoul(buf, 10, &n);
4241 	if (err < 0)
4242 		return err;
4243 
4244 	err = mddev_lock(mddev);
4245 	if (err)
4246 		return err;
4247 	if (mddev->pers) {
4248 		if (mddev->pers->check_reshape == NULL)
4249 			err = -EBUSY;
4250 		else if (mddev->ro)
4251 			err = -EROFS;
4252 		else {
4253 			mddev->new_chunk_sectors = n >> 9;
4254 			err = mddev->pers->check_reshape(mddev);
4255 			if (err)
4256 				mddev->new_chunk_sectors = mddev->chunk_sectors;
4257 		}
4258 	} else {
4259 		mddev->new_chunk_sectors = n >> 9;
4260 		if (mddev->reshape_position == MaxSector)
4261 			mddev->chunk_sectors = n >> 9;
4262 	}
4263 	mddev_unlock(mddev);
4264 	return err ?: len;
4265 }
4266 static struct md_sysfs_entry md_chunk_size =
4267 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4268 
4269 static ssize_t
4270 resync_start_show(struct mddev *mddev, char *page)
4271 {
4272 	if (mddev->recovery_cp == MaxSector)
4273 		return sprintf(page, "none\n");
4274 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4275 }
4276 
4277 static ssize_t
4278 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4279 {
4280 	unsigned long long n;
4281 	int err;
4282 
4283 	if (cmd_match(buf, "none"))
4284 		n = MaxSector;
4285 	else {
4286 		err = kstrtoull(buf, 10, &n);
4287 		if (err < 0)
4288 			return err;
4289 		if (n != (sector_t)n)
4290 			return -EINVAL;
4291 	}
4292 
4293 	err = mddev_lock(mddev);
4294 	if (err)
4295 		return err;
4296 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4297 		err = -EBUSY;
4298 
4299 	if (!err) {
4300 		mddev->recovery_cp = n;
4301 		if (mddev->pers)
4302 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4303 	}
4304 	mddev_unlock(mddev);
4305 	return err ?: len;
4306 }
4307 static struct md_sysfs_entry md_resync_start =
4308 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4309 		resync_start_show, resync_start_store);
4310 
4311 /*
4312  * The array state can be:
4313  *
4314  * clear
4315  *     No devices, no size, no level
4316  *     Equivalent to STOP_ARRAY ioctl
4317  * inactive
4318  *     May have some settings, but array is not active
4319  *        all IO results in error
4320  *     When written, doesn't tear down array, but just stops it
4321  * suspended (not supported yet)
4322  *     All IO requests will block. The array can be reconfigured.
4323  *     Writing this, if accepted, will block until array is quiescent
4324  * readonly
4325  *     no resync can happen.  no superblocks get written.
4326  *     write requests fail
4327  * read-auto
4328  *     like readonly, but behaves like 'clean' on a write request.
4329  *
4330  * clean - no pending writes, but otherwise active.
4331  *     When written to inactive array, starts without resync
4332  *     If a write request arrives then
4333  *       if metadata is known, mark 'dirty' and switch to 'active'.
4334  *       if not known, block and switch to write-pending
4335  *     If written to an active array that has pending writes, then fails.
4336  * active
4337  *     fully active: IO and resync can be happening.
4338  *     When written to inactive array, starts with resync
4339  *
4340  * write-pending
4341  *     clean, but writes are blocked waiting for 'active' to be written.
4342  *
4343  * active-idle
4344  *     like active, but no writes have been seen for a while (100msec).
4345  *
4346  * broken
4347  *     RAID0/LINEAR-only: same as clean, but array is missing a member.
4348  *     It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4349  *     when a member is gone, so this state will at least alert the
4350  *     user that something is wrong.
4351  */
4352 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4353 		   write_pending, active_idle, broken, bad_word};
4354 static char *array_states[] = {
4355 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4356 	"write-pending", "active-idle", "broken", NULL };
4357 
4358 static int match_word(const char *word, char **list)
4359 {
4360 	int n;
4361 	for (n=0; list[n]; n++)
4362 		if (cmd_match(word, list[n]))
4363 			break;
4364 	return n;
4365 }
4366 
4367 static ssize_t
4368 array_state_show(struct mddev *mddev, char *page)
4369 {
4370 	enum array_state st = inactive;
4371 
4372 	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4373 		switch(mddev->ro) {
4374 		case 1:
4375 			st = readonly;
4376 			break;
4377 		case 2:
4378 			st = read_auto;
4379 			break;
4380 		case 0:
4381 			spin_lock(&mddev->lock);
4382 			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4383 				st = write_pending;
4384 			else if (mddev->in_sync)
4385 				st = clean;
4386 			else if (mddev->safemode)
4387 				st = active_idle;
4388 			else
4389 				st = active;
4390 			spin_unlock(&mddev->lock);
4391 		}
4392 
4393 		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4394 			st = broken;
4395 	} else {
4396 		if (list_empty(&mddev->disks) &&
4397 		    mddev->raid_disks == 0 &&
4398 		    mddev->dev_sectors == 0)
4399 			st = clear;
4400 		else
4401 			st = inactive;
4402 	}
4403 	return sprintf(page, "%s\n", array_states[st]);
4404 }
4405 
4406 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4407 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4408 static int restart_array(struct mddev *mddev);
4409 
4410 static ssize_t
4411 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4412 {
4413 	int err = 0;
4414 	enum array_state st = match_word(buf, array_states);
4415 
4416 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4417 		/* don't take reconfig_mutex when toggling between
4418 		 * clean and active
4419 		 */
4420 		spin_lock(&mddev->lock);
4421 		if (st == active) {
4422 			restart_array(mddev);
4423 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4424 			md_wakeup_thread(mddev->thread);
4425 			wake_up(&mddev->sb_wait);
4426 		} else /* st == clean */ {
4427 			restart_array(mddev);
4428 			if (!set_in_sync(mddev))
4429 				err = -EBUSY;
4430 		}
4431 		if (!err)
4432 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4433 		spin_unlock(&mddev->lock);
4434 		return err ?: len;
4435 	}
4436 	err = mddev_lock(mddev);
4437 	if (err)
4438 		return err;
4439 	err = -EINVAL;
4440 	switch(st) {
4441 	case bad_word:
4442 		break;
4443 	case clear:
4444 		/* stopping an active array */
4445 		err = do_md_stop(mddev, 0, NULL);
4446 		break;
4447 	case inactive:
4448 		/* stopping an active array */
4449 		if (mddev->pers)
4450 			err = do_md_stop(mddev, 2, NULL);
4451 		else
4452 			err = 0; /* already inactive */
4453 		break;
4454 	case suspended:
4455 		break; /* not supported yet */
4456 	case readonly:
4457 		if (mddev->pers)
4458 			err = md_set_readonly(mddev, NULL);
4459 		else {
4460 			mddev->ro = 1;
4461 			set_disk_ro(mddev->gendisk, 1);
4462 			err = do_md_run(mddev);
4463 		}
4464 		break;
4465 	case read_auto:
4466 		if (mddev->pers) {
4467 			if (mddev->ro == 0)
4468 				err = md_set_readonly(mddev, NULL);
4469 			else if (mddev->ro == 1)
4470 				err = restart_array(mddev);
4471 			if (err == 0) {
4472 				mddev->ro = 2;
4473 				set_disk_ro(mddev->gendisk, 0);
4474 			}
4475 		} else {
4476 			mddev->ro = 2;
4477 			err = do_md_run(mddev);
4478 		}
4479 		break;
4480 	case clean:
4481 		if (mddev->pers) {
4482 			err = restart_array(mddev);
4483 			if (err)
4484 				break;
4485 			spin_lock(&mddev->lock);
4486 			if (!set_in_sync(mddev))
4487 				err = -EBUSY;
4488 			spin_unlock(&mddev->lock);
4489 		} else
4490 			err = -EINVAL;
4491 		break;
4492 	case active:
4493 		if (mddev->pers) {
4494 			err = restart_array(mddev);
4495 			if (err)
4496 				break;
4497 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4498 			wake_up(&mddev->sb_wait);
4499 			err = 0;
4500 		} else {
4501 			mddev->ro = 0;
4502 			set_disk_ro(mddev->gendisk, 0);
4503 			err = do_md_run(mddev);
4504 		}
4505 		break;
4506 	case write_pending:
4507 	case active_idle:
4508 	case broken:
4509 		/* these cannot be set */
4510 		break;
4511 	}
4512 
4513 	if (!err) {
4514 		if (mddev->hold_active == UNTIL_IOCTL)
4515 			mddev->hold_active = 0;
4516 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4517 	}
4518 	mddev_unlock(mddev);
4519 	return err ?: len;
4520 }
4521 static struct md_sysfs_entry md_array_state =
4522 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4523 
4524 static ssize_t
4525 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4526 	return sprintf(page, "%d\n",
4527 		       atomic_read(&mddev->max_corr_read_errors));
4528 }
4529 
4530 static ssize_t
4531 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4532 {
4533 	unsigned int n;
4534 	int rv;
4535 
4536 	rv = kstrtouint(buf, 10, &n);
4537 	if (rv < 0)
4538 		return rv;
4539 	atomic_set(&mddev->max_corr_read_errors, n);
4540 	return len;
4541 }
4542 
4543 static struct md_sysfs_entry max_corr_read_errors =
4544 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4545 	max_corrected_read_errors_store);
4546 
4547 static ssize_t
4548 null_show(struct mddev *mddev, char *page)
4549 {
4550 	return -EINVAL;
4551 }
4552 
4553 /* need to ensure rdev_delayed_delete() has completed */
4554 static void flush_rdev_wq(struct mddev *mddev)
4555 {
4556 	struct md_rdev *rdev;
4557 
4558 	rcu_read_lock();
4559 	rdev_for_each_rcu(rdev, mddev)
4560 		if (work_pending(&rdev->del_work)) {
4561 			flush_workqueue(md_rdev_misc_wq);
4562 			break;
4563 		}
4564 	rcu_read_unlock();
4565 }
4566 
4567 static ssize_t
4568 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4569 {
4570 	/* buf must be %d:%d\n? giving major and minor numbers */
4571 	/* The new device is added to the array.
4572 	 * If the array has a persistent superblock, we read the
4573 	 * superblock to initialise info and check validity.
4574 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4575 	 * which mainly checks size.
4576 	 */
4577 	char *e;
4578 	int major = simple_strtoul(buf, &e, 10);
4579 	int minor;
4580 	dev_t dev;
4581 	struct md_rdev *rdev;
4582 	int err;
4583 
4584 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4585 		return -EINVAL;
4586 	minor = simple_strtoul(e+1, &e, 10);
4587 	if (*e && *e != '\n')
4588 		return -EINVAL;
4589 	dev = MKDEV(major, minor);
4590 	if (major != MAJOR(dev) ||
4591 	    minor != MINOR(dev))
4592 		return -EOVERFLOW;
4593 
4594 	flush_rdev_wq(mddev);
4595 	err = mddev_lock(mddev);
4596 	if (err)
4597 		return err;
4598 	if (mddev->persistent) {
4599 		rdev = md_import_device(dev, mddev->major_version,
4600 					mddev->minor_version);
4601 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4602 			struct md_rdev *rdev0
4603 				= list_entry(mddev->disks.next,
4604 					     struct md_rdev, same_set);
4605 			err = super_types[mddev->major_version]
4606 				.load_super(rdev, rdev0, mddev->minor_version);
4607 			if (err < 0)
4608 				goto out;
4609 		}
4610 	} else if (mddev->external)
4611 		rdev = md_import_device(dev, -2, -1);
4612 	else
4613 		rdev = md_import_device(dev, -1, -1);
4614 
4615 	if (IS_ERR(rdev)) {
4616 		mddev_unlock(mddev);
4617 		return PTR_ERR(rdev);
4618 	}
4619 	err = bind_rdev_to_array(rdev, mddev);
4620  out:
4621 	if (err)
4622 		export_rdev(rdev);
4623 	mddev_unlock(mddev);
4624 	if (!err)
4625 		md_new_event(mddev);
4626 	return err ? err : len;
4627 }
4628 
4629 static struct md_sysfs_entry md_new_device =
4630 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4631 
4632 static ssize_t
4633 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4634 {
4635 	char *end;
4636 	unsigned long chunk, end_chunk;
4637 	int err;
4638 
4639 	err = mddev_lock(mddev);
4640 	if (err)
4641 		return err;
4642 	if (!mddev->bitmap)
4643 		goto out;
4644 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4645 	while (*buf) {
4646 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4647 		if (buf == end) break;
4648 		if (*end == '-') { /* range */
4649 			buf = end + 1;
4650 			end_chunk = simple_strtoul(buf, &end, 0);
4651 			if (buf == end) break;
4652 		}
4653 		if (*end && !isspace(*end)) break;
4654 		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4655 		buf = skip_spaces(end);
4656 	}
4657 	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4658 out:
4659 	mddev_unlock(mddev);
4660 	return len;
4661 }
4662 
4663 static struct md_sysfs_entry md_bitmap =
4664 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4665 
4666 static ssize_t
4667 size_show(struct mddev *mddev, char *page)
4668 {
4669 	return sprintf(page, "%llu\n",
4670 		(unsigned long long)mddev->dev_sectors / 2);
4671 }
4672 
4673 static int update_size(struct mddev *mddev, sector_t num_sectors);
4674 
4675 static ssize_t
4676 size_store(struct mddev *mddev, const char *buf, size_t len)
4677 {
4678 	/* If array is inactive, we can reduce the component size, but
4679 	 * not increase it (except from 0).
4680 	 * If array is active, we can try an on-line resize
4681 	 */
4682 	sector_t sectors;
4683 	int err = strict_blocks_to_sectors(buf, &sectors);
4684 
4685 	if (err < 0)
4686 		return err;
4687 	err = mddev_lock(mddev);
4688 	if (err)
4689 		return err;
4690 	if (mddev->pers) {
4691 		err = update_size(mddev, sectors);
4692 		if (err == 0)
4693 			md_update_sb(mddev, 1);
4694 	} else {
4695 		if (mddev->dev_sectors == 0 ||
4696 		    mddev->dev_sectors > sectors)
4697 			mddev->dev_sectors = sectors;
4698 		else
4699 			err = -ENOSPC;
4700 	}
4701 	mddev_unlock(mddev);
4702 	return err ? err : len;
4703 }
4704 
4705 static struct md_sysfs_entry md_size =
4706 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4707 
4708 /* Metadata version.
4709  * This is one of
4710  *   'none' for arrays with no metadata (good luck...)
4711  *   'external' for arrays with externally managed metadata,
4712  * or N.M for internally known formats
4713  */
4714 static ssize_t
4715 metadata_show(struct mddev *mddev, char *page)
4716 {
4717 	if (mddev->persistent)
4718 		return sprintf(page, "%d.%d\n",
4719 			       mddev->major_version, mddev->minor_version);
4720 	else if (mddev->external)
4721 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4722 	else
4723 		return sprintf(page, "none\n");
4724 }
4725 
4726 static ssize_t
4727 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4728 {
4729 	int major, minor;
4730 	char *e;
4731 	int err;
4732 	/* Changing the details of 'external' metadata is
4733 	 * always permitted.  Otherwise there must be
4734 	 * no devices attached to the array.
4735 	 */
4736 
4737 	err = mddev_lock(mddev);
4738 	if (err)
4739 		return err;
4740 	err = -EBUSY;
4741 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4742 		;
4743 	else if (!list_empty(&mddev->disks))
4744 		goto out_unlock;
4745 
4746 	err = 0;
4747 	if (cmd_match(buf, "none")) {
4748 		mddev->persistent = 0;
4749 		mddev->external = 0;
4750 		mddev->major_version = 0;
4751 		mddev->minor_version = 90;
4752 		goto out_unlock;
4753 	}
4754 	if (strncmp(buf, "external:", 9) == 0) {
4755 		size_t namelen = len-9;
4756 		if (namelen >= sizeof(mddev->metadata_type))
4757 			namelen = sizeof(mddev->metadata_type)-1;
4758 		strncpy(mddev->metadata_type, buf+9, namelen);
4759 		mddev->metadata_type[namelen] = 0;
4760 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4761 			mddev->metadata_type[--namelen] = 0;
4762 		mddev->persistent = 0;
4763 		mddev->external = 1;
4764 		mddev->major_version = 0;
4765 		mddev->minor_version = 90;
4766 		goto out_unlock;
4767 	}
4768 	major = simple_strtoul(buf, &e, 10);
4769 	err = -EINVAL;
4770 	if (e==buf || *e != '.')
4771 		goto out_unlock;
4772 	buf = e+1;
4773 	minor = simple_strtoul(buf, &e, 10);
4774 	if (e==buf || (*e && *e != '\n') )
4775 		goto out_unlock;
4776 	err = -ENOENT;
4777 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4778 		goto out_unlock;
4779 	mddev->major_version = major;
4780 	mddev->minor_version = minor;
4781 	mddev->persistent = 1;
4782 	mddev->external = 0;
4783 	err = 0;
4784 out_unlock:
4785 	mddev_unlock(mddev);
4786 	return err ?: len;
4787 }
4788 
4789 static struct md_sysfs_entry md_metadata =
4790 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4791 
4792 static ssize_t
4793 action_show(struct mddev *mddev, char *page)
4794 {
4795 	char *type = "idle";
4796 	unsigned long recovery = mddev->recovery;
4797 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4798 		type = "frozen";
4799 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4800 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4801 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4802 			type = "reshape";
4803 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4804 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4805 				type = "resync";
4806 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4807 				type = "check";
4808 			else
4809 				type = "repair";
4810 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4811 			type = "recover";
4812 		else if (mddev->reshape_position != MaxSector)
4813 			type = "reshape";
4814 	}
4815 	return sprintf(page, "%s\n", type);
4816 }
4817 
4818 static ssize_t
4819 action_store(struct mddev *mddev, const char *page, size_t len)
4820 {
4821 	if (!mddev->pers || !mddev->pers->sync_request)
4822 		return -EINVAL;
4823 
4824 
4825 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4826 		if (cmd_match(page, "frozen"))
4827 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4828 		else
4829 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4830 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4831 		    mddev_lock(mddev) == 0) {
4832 			if (work_pending(&mddev->del_work))
4833 				flush_workqueue(md_misc_wq);
4834 			if (mddev->sync_thread) {
4835 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4836 				md_reap_sync_thread(mddev);
4837 			}
4838 			mddev_unlock(mddev);
4839 		}
4840 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4841 		return -EBUSY;
4842 	else if (cmd_match(page, "resync"))
4843 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4844 	else if (cmd_match(page, "recover")) {
4845 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4846 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4847 	} else if (cmd_match(page, "reshape")) {
4848 		int err;
4849 		if (mddev->pers->start_reshape == NULL)
4850 			return -EINVAL;
4851 		err = mddev_lock(mddev);
4852 		if (!err) {
4853 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4854 				err =  -EBUSY;
4855 			else {
4856 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4857 				err = mddev->pers->start_reshape(mddev);
4858 			}
4859 			mddev_unlock(mddev);
4860 		}
4861 		if (err)
4862 			return err;
4863 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4864 	} else {
4865 		if (cmd_match(page, "check"))
4866 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4867 		else if (!cmd_match(page, "repair"))
4868 			return -EINVAL;
4869 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4870 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4871 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4872 	}
4873 	if (mddev->ro == 2) {
4874 		/* A write to sync_action is enough to justify
4875 		 * canceling read-auto mode
4876 		 */
4877 		mddev->ro = 0;
4878 		md_wakeup_thread(mddev->sync_thread);
4879 	}
4880 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4881 	md_wakeup_thread(mddev->thread);
4882 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4883 	return len;
4884 }
4885 
4886 static struct md_sysfs_entry md_scan_mode =
4887 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4888 
4889 static ssize_t
4890 last_sync_action_show(struct mddev *mddev, char *page)
4891 {
4892 	return sprintf(page, "%s\n", mddev->last_sync_action);
4893 }
4894 
4895 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4896 
4897 static ssize_t
4898 mismatch_cnt_show(struct mddev *mddev, char *page)
4899 {
4900 	return sprintf(page, "%llu\n",
4901 		       (unsigned long long)
4902 		       atomic64_read(&mddev->resync_mismatches));
4903 }
4904 
4905 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4906 
4907 static ssize_t
4908 sync_min_show(struct mddev *mddev, char *page)
4909 {
4910 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4911 		       mddev->sync_speed_min ? "local": "system");
4912 }
4913 
4914 static ssize_t
4915 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4916 {
4917 	unsigned int min;
4918 	int rv;
4919 
4920 	if (strncmp(buf, "system", 6)==0) {
4921 		min = 0;
4922 	} else {
4923 		rv = kstrtouint(buf, 10, &min);
4924 		if (rv < 0)
4925 			return rv;
4926 		if (min == 0)
4927 			return -EINVAL;
4928 	}
4929 	mddev->sync_speed_min = min;
4930 	return len;
4931 }
4932 
4933 static struct md_sysfs_entry md_sync_min =
4934 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4935 
4936 static ssize_t
4937 sync_max_show(struct mddev *mddev, char *page)
4938 {
4939 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4940 		       mddev->sync_speed_max ? "local": "system");
4941 }
4942 
4943 static ssize_t
4944 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4945 {
4946 	unsigned int max;
4947 	int rv;
4948 
4949 	if (strncmp(buf, "system", 6)==0) {
4950 		max = 0;
4951 	} else {
4952 		rv = kstrtouint(buf, 10, &max);
4953 		if (rv < 0)
4954 			return rv;
4955 		if (max == 0)
4956 			return -EINVAL;
4957 	}
4958 	mddev->sync_speed_max = max;
4959 	return len;
4960 }
4961 
4962 static struct md_sysfs_entry md_sync_max =
4963 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4964 
4965 static ssize_t
4966 degraded_show(struct mddev *mddev, char *page)
4967 {
4968 	return sprintf(page, "%d\n", mddev->degraded);
4969 }
4970 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4971 
4972 static ssize_t
4973 sync_force_parallel_show(struct mddev *mddev, char *page)
4974 {
4975 	return sprintf(page, "%d\n", mddev->parallel_resync);
4976 }
4977 
4978 static ssize_t
4979 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4980 {
4981 	long n;
4982 
4983 	if (kstrtol(buf, 10, &n))
4984 		return -EINVAL;
4985 
4986 	if (n != 0 && n != 1)
4987 		return -EINVAL;
4988 
4989 	mddev->parallel_resync = n;
4990 
4991 	if (mddev->sync_thread)
4992 		wake_up(&resync_wait);
4993 
4994 	return len;
4995 }
4996 
4997 /* force parallel resync, even with shared block devices */
4998 static struct md_sysfs_entry md_sync_force_parallel =
4999 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5000        sync_force_parallel_show, sync_force_parallel_store);
5001 
5002 static ssize_t
5003 sync_speed_show(struct mddev *mddev, char *page)
5004 {
5005 	unsigned long resync, dt, db;
5006 	if (mddev->curr_resync == 0)
5007 		return sprintf(page, "none\n");
5008 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5009 	dt = (jiffies - mddev->resync_mark) / HZ;
5010 	if (!dt) dt++;
5011 	db = resync - mddev->resync_mark_cnt;
5012 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5013 }
5014 
5015 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5016 
5017 static ssize_t
5018 sync_completed_show(struct mddev *mddev, char *page)
5019 {
5020 	unsigned long long max_sectors, resync;
5021 
5022 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5023 		return sprintf(page, "none\n");
5024 
5025 	if (mddev->curr_resync == 1 ||
5026 	    mddev->curr_resync == 2)
5027 		return sprintf(page, "delayed\n");
5028 
5029 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5030 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5031 		max_sectors = mddev->resync_max_sectors;
5032 	else
5033 		max_sectors = mddev->dev_sectors;
5034 
5035 	resync = mddev->curr_resync_completed;
5036 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5037 }
5038 
5039 static struct md_sysfs_entry md_sync_completed =
5040 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5041 
5042 static ssize_t
5043 min_sync_show(struct mddev *mddev, char *page)
5044 {
5045 	return sprintf(page, "%llu\n",
5046 		       (unsigned long long)mddev->resync_min);
5047 }
5048 static ssize_t
5049 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5050 {
5051 	unsigned long long min;
5052 	int err;
5053 
5054 	if (kstrtoull(buf, 10, &min))
5055 		return -EINVAL;
5056 
5057 	spin_lock(&mddev->lock);
5058 	err = -EINVAL;
5059 	if (min > mddev->resync_max)
5060 		goto out_unlock;
5061 
5062 	err = -EBUSY;
5063 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5064 		goto out_unlock;
5065 
5066 	/* Round down to multiple of 4K for safety */
5067 	mddev->resync_min = round_down(min, 8);
5068 	err = 0;
5069 
5070 out_unlock:
5071 	spin_unlock(&mddev->lock);
5072 	return err ?: len;
5073 }
5074 
5075 static struct md_sysfs_entry md_min_sync =
5076 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5077 
5078 static ssize_t
5079 max_sync_show(struct mddev *mddev, char *page)
5080 {
5081 	if (mddev->resync_max == MaxSector)
5082 		return sprintf(page, "max\n");
5083 	else
5084 		return sprintf(page, "%llu\n",
5085 			       (unsigned long long)mddev->resync_max);
5086 }
5087 static ssize_t
5088 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5089 {
5090 	int err;
5091 	spin_lock(&mddev->lock);
5092 	if (strncmp(buf, "max", 3) == 0)
5093 		mddev->resync_max = MaxSector;
5094 	else {
5095 		unsigned long long max;
5096 		int chunk;
5097 
5098 		err = -EINVAL;
5099 		if (kstrtoull(buf, 10, &max))
5100 			goto out_unlock;
5101 		if (max < mddev->resync_min)
5102 			goto out_unlock;
5103 
5104 		err = -EBUSY;
5105 		if (max < mddev->resync_max &&
5106 		    mddev->ro == 0 &&
5107 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5108 			goto out_unlock;
5109 
5110 		/* Must be a multiple of chunk_size */
5111 		chunk = mddev->chunk_sectors;
5112 		if (chunk) {
5113 			sector_t temp = max;
5114 
5115 			err = -EINVAL;
5116 			if (sector_div(temp, chunk))
5117 				goto out_unlock;
5118 		}
5119 		mddev->resync_max = max;
5120 	}
5121 	wake_up(&mddev->recovery_wait);
5122 	err = 0;
5123 out_unlock:
5124 	spin_unlock(&mddev->lock);
5125 	return err ?: len;
5126 }
5127 
5128 static struct md_sysfs_entry md_max_sync =
5129 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5130 
5131 static ssize_t
5132 suspend_lo_show(struct mddev *mddev, char *page)
5133 {
5134 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5135 }
5136 
5137 static ssize_t
5138 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5139 {
5140 	unsigned long long new;
5141 	int err;
5142 
5143 	err = kstrtoull(buf, 10, &new);
5144 	if (err < 0)
5145 		return err;
5146 	if (new != (sector_t)new)
5147 		return -EINVAL;
5148 
5149 	err = mddev_lock(mddev);
5150 	if (err)
5151 		return err;
5152 	err = -EINVAL;
5153 	if (mddev->pers == NULL ||
5154 	    mddev->pers->quiesce == NULL)
5155 		goto unlock;
5156 	mddev_suspend(mddev);
5157 	mddev->suspend_lo = new;
5158 	mddev_resume(mddev);
5159 
5160 	err = 0;
5161 unlock:
5162 	mddev_unlock(mddev);
5163 	return err ?: len;
5164 }
5165 static struct md_sysfs_entry md_suspend_lo =
5166 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5167 
5168 static ssize_t
5169 suspend_hi_show(struct mddev *mddev, char *page)
5170 {
5171 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5172 }
5173 
5174 static ssize_t
5175 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5176 {
5177 	unsigned long long new;
5178 	int err;
5179 
5180 	err = kstrtoull(buf, 10, &new);
5181 	if (err < 0)
5182 		return err;
5183 	if (new != (sector_t)new)
5184 		return -EINVAL;
5185 
5186 	err = mddev_lock(mddev);
5187 	if (err)
5188 		return err;
5189 	err = -EINVAL;
5190 	if (mddev->pers == NULL)
5191 		goto unlock;
5192 
5193 	mddev_suspend(mddev);
5194 	mddev->suspend_hi = new;
5195 	mddev_resume(mddev);
5196 
5197 	err = 0;
5198 unlock:
5199 	mddev_unlock(mddev);
5200 	return err ?: len;
5201 }
5202 static struct md_sysfs_entry md_suspend_hi =
5203 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5204 
5205 static ssize_t
5206 reshape_position_show(struct mddev *mddev, char *page)
5207 {
5208 	if (mddev->reshape_position != MaxSector)
5209 		return sprintf(page, "%llu\n",
5210 			       (unsigned long long)mddev->reshape_position);
5211 	strcpy(page, "none\n");
5212 	return 5;
5213 }
5214 
5215 static ssize_t
5216 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5217 {
5218 	struct md_rdev *rdev;
5219 	unsigned long long new;
5220 	int err;
5221 
5222 	err = kstrtoull(buf, 10, &new);
5223 	if (err < 0)
5224 		return err;
5225 	if (new != (sector_t)new)
5226 		return -EINVAL;
5227 	err = mddev_lock(mddev);
5228 	if (err)
5229 		return err;
5230 	err = -EBUSY;
5231 	if (mddev->pers)
5232 		goto unlock;
5233 	mddev->reshape_position = new;
5234 	mddev->delta_disks = 0;
5235 	mddev->reshape_backwards = 0;
5236 	mddev->new_level = mddev->level;
5237 	mddev->new_layout = mddev->layout;
5238 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5239 	rdev_for_each(rdev, mddev)
5240 		rdev->new_data_offset = rdev->data_offset;
5241 	err = 0;
5242 unlock:
5243 	mddev_unlock(mddev);
5244 	return err ?: len;
5245 }
5246 
5247 static struct md_sysfs_entry md_reshape_position =
5248 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5249        reshape_position_store);
5250 
5251 static ssize_t
5252 reshape_direction_show(struct mddev *mddev, char *page)
5253 {
5254 	return sprintf(page, "%s\n",
5255 		       mddev->reshape_backwards ? "backwards" : "forwards");
5256 }
5257 
5258 static ssize_t
5259 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5260 {
5261 	int backwards = 0;
5262 	int err;
5263 
5264 	if (cmd_match(buf, "forwards"))
5265 		backwards = 0;
5266 	else if (cmd_match(buf, "backwards"))
5267 		backwards = 1;
5268 	else
5269 		return -EINVAL;
5270 	if (mddev->reshape_backwards == backwards)
5271 		return len;
5272 
5273 	err = mddev_lock(mddev);
5274 	if (err)
5275 		return err;
5276 	/* check if we are allowed to change */
5277 	if (mddev->delta_disks)
5278 		err = -EBUSY;
5279 	else if (mddev->persistent &&
5280 	    mddev->major_version == 0)
5281 		err =  -EINVAL;
5282 	else
5283 		mddev->reshape_backwards = backwards;
5284 	mddev_unlock(mddev);
5285 	return err ?: len;
5286 }
5287 
5288 static struct md_sysfs_entry md_reshape_direction =
5289 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5290        reshape_direction_store);
5291 
5292 static ssize_t
5293 array_size_show(struct mddev *mddev, char *page)
5294 {
5295 	if (mddev->external_size)
5296 		return sprintf(page, "%llu\n",
5297 			       (unsigned long long)mddev->array_sectors/2);
5298 	else
5299 		return sprintf(page, "default\n");
5300 }
5301 
5302 static ssize_t
5303 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5304 {
5305 	sector_t sectors;
5306 	int err;
5307 
5308 	err = mddev_lock(mddev);
5309 	if (err)
5310 		return err;
5311 
5312 	/* cluster raid doesn't support change array_sectors */
5313 	if (mddev_is_clustered(mddev)) {
5314 		mddev_unlock(mddev);
5315 		return -EINVAL;
5316 	}
5317 
5318 	if (strncmp(buf, "default", 7) == 0) {
5319 		if (mddev->pers)
5320 			sectors = mddev->pers->size(mddev, 0, 0);
5321 		else
5322 			sectors = mddev->array_sectors;
5323 
5324 		mddev->external_size = 0;
5325 	} else {
5326 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5327 			err = -EINVAL;
5328 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5329 			err = -E2BIG;
5330 		else
5331 			mddev->external_size = 1;
5332 	}
5333 
5334 	if (!err) {
5335 		mddev->array_sectors = sectors;
5336 		if (mddev->pers)
5337 			set_capacity_and_notify(mddev->gendisk,
5338 						mddev->array_sectors);
5339 	}
5340 	mddev_unlock(mddev);
5341 	return err ?: len;
5342 }
5343 
5344 static struct md_sysfs_entry md_array_size =
5345 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5346        array_size_store);
5347 
5348 static ssize_t
5349 consistency_policy_show(struct mddev *mddev, char *page)
5350 {
5351 	int ret;
5352 
5353 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5354 		ret = sprintf(page, "journal\n");
5355 	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5356 		ret = sprintf(page, "ppl\n");
5357 	} else if (mddev->bitmap) {
5358 		ret = sprintf(page, "bitmap\n");
5359 	} else if (mddev->pers) {
5360 		if (mddev->pers->sync_request)
5361 			ret = sprintf(page, "resync\n");
5362 		else
5363 			ret = sprintf(page, "none\n");
5364 	} else {
5365 		ret = sprintf(page, "unknown\n");
5366 	}
5367 
5368 	return ret;
5369 }
5370 
5371 static ssize_t
5372 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5373 {
5374 	int err = 0;
5375 
5376 	if (mddev->pers) {
5377 		if (mddev->pers->change_consistency_policy)
5378 			err = mddev->pers->change_consistency_policy(mddev, buf);
5379 		else
5380 			err = -EBUSY;
5381 	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5382 		set_bit(MD_HAS_PPL, &mddev->flags);
5383 	} else {
5384 		err = -EINVAL;
5385 	}
5386 
5387 	return err ? err : len;
5388 }
5389 
5390 static struct md_sysfs_entry md_consistency_policy =
5391 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5392        consistency_policy_store);
5393 
5394 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5395 {
5396 	return sprintf(page, "%d\n", mddev->fail_last_dev);
5397 }
5398 
5399 /*
5400  * Setting fail_last_dev to true to allow last device to be forcibly removed
5401  * from RAID1/RAID10.
5402  */
5403 static ssize_t
5404 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5405 {
5406 	int ret;
5407 	bool value;
5408 
5409 	ret = kstrtobool(buf, &value);
5410 	if (ret)
5411 		return ret;
5412 
5413 	if (value != mddev->fail_last_dev)
5414 		mddev->fail_last_dev = value;
5415 
5416 	return len;
5417 }
5418 static struct md_sysfs_entry md_fail_last_dev =
5419 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5420        fail_last_dev_store);
5421 
5422 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5423 {
5424 	if (mddev->pers == NULL || (mddev->pers->level != 1))
5425 		return sprintf(page, "n/a\n");
5426 	else
5427 		return sprintf(page, "%d\n", mddev->serialize_policy);
5428 }
5429 
5430 /*
5431  * Setting serialize_policy to true to enforce write IO is not reordered
5432  * for raid1.
5433  */
5434 static ssize_t
5435 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5436 {
5437 	int err;
5438 	bool value;
5439 
5440 	err = kstrtobool(buf, &value);
5441 	if (err)
5442 		return err;
5443 
5444 	if (value == mddev->serialize_policy)
5445 		return len;
5446 
5447 	err = mddev_lock(mddev);
5448 	if (err)
5449 		return err;
5450 	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5451 		pr_err("md: serialize_policy is only effective for raid1\n");
5452 		err = -EINVAL;
5453 		goto unlock;
5454 	}
5455 
5456 	mddev_suspend(mddev);
5457 	if (value)
5458 		mddev_create_serial_pool(mddev, NULL, true);
5459 	else
5460 		mddev_destroy_serial_pool(mddev, NULL, true);
5461 	mddev->serialize_policy = value;
5462 	mddev_resume(mddev);
5463 unlock:
5464 	mddev_unlock(mddev);
5465 	return err ?: len;
5466 }
5467 
5468 static struct md_sysfs_entry md_serialize_policy =
5469 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5470        serialize_policy_store);
5471 
5472 
5473 static struct attribute *md_default_attrs[] = {
5474 	&md_level.attr,
5475 	&md_layout.attr,
5476 	&md_raid_disks.attr,
5477 	&md_uuid.attr,
5478 	&md_chunk_size.attr,
5479 	&md_size.attr,
5480 	&md_resync_start.attr,
5481 	&md_metadata.attr,
5482 	&md_new_device.attr,
5483 	&md_safe_delay.attr,
5484 	&md_array_state.attr,
5485 	&md_reshape_position.attr,
5486 	&md_reshape_direction.attr,
5487 	&md_array_size.attr,
5488 	&max_corr_read_errors.attr,
5489 	&md_consistency_policy.attr,
5490 	&md_fail_last_dev.attr,
5491 	&md_serialize_policy.attr,
5492 	NULL,
5493 };
5494 
5495 static struct attribute *md_redundancy_attrs[] = {
5496 	&md_scan_mode.attr,
5497 	&md_last_scan_mode.attr,
5498 	&md_mismatches.attr,
5499 	&md_sync_min.attr,
5500 	&md_sync_max.attr,
5501 	&md_sync_speed.attr,
5502 	&md_sync_force_parallel.attr,
5503 	&md_sync_completed.attr,
5504 	&md_min_sync.attr,
5505 	&md_max_sync.attr,
5506 	&md_suspend_lo.attr,
5507 	&md_suspend_hi.attr,
5508 	&md_bitmap.attr,
5509 	&md_degraded.attr,
5510 	NULL,
5511 };
5512 static const struct attribute_group md_redundancy_group = {
5513 	.name = NULL,
5514 	.attrs = md_redundancy_attrs,
5515 };
5516 
5517 static ssize_t
5518 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5519 {
5520 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5521 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5522 	ssize_t rv;
5523 
5524 	if (!entry->show)
5525 		return -EIO;
5526 	spin_lock(&all_mddevs_lock);
5527 	if (list_empty(&mddev->all_mddevs)) {
5528 		spin_unlock(&all_mddevs_lock);
5529 		return -EBUSY;
5530 	}
5531 	mddev_get(mddev);
5532 	spin_unlock(&all_mddevs_lock);
5533 
5534 	rv = entry->show(mddev, page);
5535 	mddev_put(mddev);
5536 	return rv;
5537 }
5538 
5539 static ssize_t
5540 md_attr_store(struct kobject *kobj, struct attribute *attr,
5541 	      const char *page, size_t length)
5542 {
5543 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5544 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5545 	ssize_t rv;
5546 
5547 	if (!entry->store)
5548 		return -EIO;
5549 	if (!capable(CAP_SYS_ADMIN))
5550 		return -EACCES;
5551 	spin_lock(&all_mddevs_lock);
5552 	if (list_empty(&mddev->all_mddevs)) {
5553 		spin_unlock(&all_mddevs_lock);
5554 		return -EBUSY;
5555 	}
5556 	mddev_get(mddev);
5557 	spin_unlock(&all_mddevs_lock);
5558 	rv = entry->store(mddev, page, length);
5559 	mddev_put(mddev);
5560 	return rv;
5561 }
5562 
5563 static void md_free(struct kobject *ko)
5564 {
5565 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5566 
5567 	if (mddev->sysfs_state)
5568 		sysfs_put(mddev->sysfs_state);
5569 	if (mddev->sysfs_level)
5570 		sysfs_put(mddev->sysfs_level);
5571 
5572 	if (mddev->gendisk) {
5573 		del_gendisk(mddev->gendisk);
5574 		blk_cleanup_disk(mddev->gendisk);
5575 	}
5576 	percpu_ref_exit(&mddev->writes_pending);
5577 
5578 	bioset_exit(&mddev->bio_set);
5579 	bioset_exit(&mddev->sync_set);
5580 	if (mddev->level != 1 && mddev->level != 10)
5581 		bioset_exit(&mddev->io_acct_set);
5582 	kfree(mddev);
5583 }
5584 
5585 static const struct sysfs_ops md_sysfs_ops = {
5586 	.show	= md_attr_show,
5587 	.store	= md_attr_store,
5588 };
5589 static struct kobj_type md_ktype = {
5590 	.release	= md_free,
5591 	.sysfs_ops	= &md_sysfs_ops,
5592 	.default_attrs	= md_default_attrs,
5593 };
5594 
5595 int mdp_major = 0;
5596 
5597 static void mddev_delayed_delete(struct work_struct *ws)
5598 {
5599 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5600 
5601 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5602 	kobject_del(&mddev->kobj);
5603 	kobject_put(&mddev->kobj);
5604 }
5605 
5606 static void no_op(struct percpu_ref *r) {}
5607 
5608 int mddev_init_writes_pending(struct mddev *mddev)
5609 {
5610 	if (mddev->writes_pending.percpu_count_ptr)
5611 		return 0;
5612 	if (percpu_ref_init(&mddev->writes_pending, no_op,
5613 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5614 		return -ENOMEM;
5615 	/* We want to start with the refcount at zero */
5616 	percpu_ref_put(&mddev->writes_pending);
5617 	return 0;
5618 }
5619 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5620 
5621 static int md_alloc(dev_t dev, char *name)
5622 {
5623 	/*
5624 	 * If dev is zero, name is the name of a device to allocate with
5625 	 * an arbitrary minor number.  It will be "md_???"
5626 	 * If dev is non-zero it must be a device number with a MAJOR of
5627 	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5628 	 * the device is being created by opening a node in /dev.
5629 	 * If "name" is not NULL, the device is being created by
5630 	 * writing to /sys/module/md_mod/parameters/new_array.
5631 	 */
5632 	static DEFINE_MUTEX(disks_mutex);
5633 	struct mddev *mddev;
5634 	struct gendisk *disk;
5635 	int partitioned;
5636 	int shift;
5637 	int unit;
5638 	int error ;
5639 
5640 	/*
5641 	 * Wait for any previous instance of this device to be completely
5642 	 * removed (mddev_delayed_delete).
5643 	 */
5644 	flush_workqueue(md_misc_wq);
5645 
5646 	mutex_lock(&disks_mutex);
5647 	mddev = mddev_alloc(dev);
5648 	if (IS_ERR(mddev)) {
5649 		mutex_unlock(&disks_mutex);
5650 		return PTR_ERR(mddev);
5651 	}
5652 
5653 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5654 	shift = partitioned ? MdpMinorShift : 0;
5655 	unit = MINOR(mddev->unit) >> shift;
5656 
5657 	if (name && !dev) {
5658 		/* Need to ensure that 'name' is not a duplicate.
5659 		 */
5660 		struct mddev *mddev2;
5661 		spin_lock(&all_mddevs_lock);
5662 
5663 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5664 			if (mddev2->gendisk &&
5665 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5666 				spin_unlock(&all_mddevs_lock);
5667 				error = -EEXIST;
5668 				goto abort;
5669 			}
5670 		spin_unlock(&all_mddevs_lock);
5671 	}
5672 	if (name && dev)
5673 		/*
5674 		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5675 		 */
5676 		mddev->hold_active = UNTIL_STOP;
5677 
5678 	error = -ENOMEM;
5679 	disk = blk_alloc_disk(NUMA_NO_NODE);
5680 	if (!disk)
5681 		goto abort;
5682 
5683 	disk->major = MAJOR(mddev->unit);
5684 	disk->first_minor = unit << shift;
5685 	disk->minors = 1 << shift;
5686 	if (name)
5687 		strcpy(disk->disk_name, name);
5688 	else if (partitioned)
5689 		sprintf(disk->disk_name, "md_d%d", unit);
5690 	else
5691 		sprintf(disk->disk_name, "md%d", unit);
5692 	disk->fops = &md_fops;
5693 	disk->private_data = mddev;
5694 
5695 	mddev->queue = disk->queue;
5696 	blk_set_stacking_limits(&mddev->queue->limits);
5697 	blk_queue_write_cache(mddev->queue, true, true);
5698 	/* Allow extended partitions.  This makes the
5699 	 * 'mdp' device redundant, but we can't really
5700 	 * remove it now.
5701 	 */
5702 	disk->flags |= GENHD_FL_EXT_DEVT;
5703 	disk->events |= DISK_EVENT_MEDIA_CHANGE;
5704 	mddev->gendisk = disk;
5705 	add_disk(disk);
5706 
5707 	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5708 	if (error) {
5709 		/* This isn't possible, but as kobject_init_and_add is marked
5710 		 * __must_check, we must do something with the result
5711 		 */
5712 		pr_debug("md: cannot register %s/md - name in use\n",
5713 			 disk->disk_name);
5714 		error = 0;
5715 	}
5716 	if (mddev->kobj.sd &&
5717 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5718 		pr_debug("pointless warning\n");
5719  abort:
5720 	mutex_unlock(&disks_mutex);
5721 	if (!error && mddev->kobj.sd) {
5722 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5723 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5724 		mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5725 	}
5726 	mddev_put(mddev);
5727 	return error;
5728 }
5729 
5730 static void md_probe(dev_t dev)
5731 {
5732 	if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5733 		return;
5734 	if (create_on_open)
5735 		md_alloc(dev, NULL);
5736 }
5737 
5738 static int add_named_array(const char *val, const struct kernel_param *kp)
5739 {
5740 	/*
5741 	 * val must be "md_*" or "mdNNN".
5742 	 * For "md_*" we allocate an array with a large free minor number, and
5743 	 * set the name to val.  val must not already be an active name.
5744 	 * For "mdNNN" we allocate an array with the minor number NNN
5745 	 * which must not already be in use.
5746 	 */
5747 	int len = strlen(val);
5748 	char buf[DISK_NAME_LEN];
5749 	unsigned long devnum;
5750 
5751 	while (len && val[len-1] == '\n')
5752 		len--;
5753 	if (len >= DISK_NAME_LEN)
5754 		return -E2BIG;
5755 	strlcpy(buf, val, len+1);
5756 	if (strncmp(buf, "md_", 3) == 0)
5757 		return md_alloc(0, buf);
5758 	if (strncmp(buf, "md", 2) == 0 &&
5759 	    isdigit(buf[2]) &&
5760 	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5761 	    devnum <= MINORMASK)
5762 		return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5763 
5764 	return -EINVAL;
5765 }
5766 
5767 static void md_safemode_timeout(struct timer_list *t)
5768 {
5769 	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5770 
5771 	mddev->safemode = 1;
5772 	if (mddev->external)
5773 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5774 
5775 	md_wakeup_thread(mddev->thread);
5776 }
5777 
5778 static int start_dirty_degraded;
5779 
5780 int md_run(struct mddev *mddev)
5781 {
5782 	int err;
5783 	struct md_rdev *rdev;
5784 	struct md_personality *pers;
5785 
5786 	if (list_empty(&mddev->disks))
5787 		/* cannot run an array with no devices.. */
5788 		return -EINVAL;
5789 
5790 	if (mddev->pers)
5791 		return -EBUSY;
5792 	/* Cannot run until previous stop completes properly */
5793 	if (mddev->sysfs_active)
5794 		return -EBUSY;
5795 
5796 	/*
5797 	 * Analyze all RAID superblock(s)
5798 	 */
5799 	if (!mddev->raid_disks) {
5800 		if (!mddev->persistent)
5801 			return -EINVAL;
5802 		err = analyze_sbs(mddev);
5803 		if (err)
5804 			return -EINVAL;
5805 	}
5806 
5807 	if (mddev->level != LEVEL_NONE)
5808 		request_module("md-level-%d", mddev->level);
5809 	else if (mddev->clevel[0])
5810 		request_module("md-%s", mddev->clevel);
5811 
5812 	/*
5813 	 * Drop all container device buffers, from now on
5814 	 * the only valid external interface is through the md
5815 	 * device.
5816 	 */
5817 	mddev->has_superblocks = false;
5818 	rdev_for_each(rdev, mddev) {
5819 		if (test_bit(Faulty, &rdev->flags))
5820 			continue;
5821 		sync_blockdev(rdev->bdev);
5822 		invalidate_bdev(rdev->bdev);
5823 		if (mddev->ro != 1 && rdev_read_only(rdev)) {
5824 			mddev->ro = 1;
5825 			if (mddev->gendisk)
5826 				set_disk_ro(mddev->gendisk, 1);
5827 		}
5828 
5829 		if (rdev->sb_page)
5830 			mddev->has_superblocks = true;
5831 
5832 		/* perform some consistency tests on the device.
5833 		 * We don't want the data to overlap the metadata,
5834 		 * Internal Bitmap issues have been handled elsewhere.
5835 		 */
5836 		if (rdev->meta_bdev) {
5837 			/* Nothing to check */;
5838 		} else if (rdev->data_offset < rdev->sb_start) {
5839 			if (mddev->dev_sectors &&
5840 			    rdev->data_offset + mddev->dev_sectors
5841 			    > rdev->sb_start) {
5842 				pr_warn("md: %s: data overlaps metadata\n",
5843 					mdname(mddev));
5844 				return -EINVAL;
5845 			}
5846 		} else {
5847 			if (rdev->sb_start + rdev->sb_size/512
5848 			    > rdev->data_offset) {
5849 				pr_warn("md: %s: metadata overlaps data\n",
5850 					mdname(mddev));
5851 				return -EINVAL;
5852 			}
5853 		}
5854 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5855 	}
5856 
5857 	if (!bioset_initialized(&mddev->bio_set)) {
5858 		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5859 		if (err)
5860 			return err;
5861 	}
5862 	if (!bioset_initialized(&mddev->sync_set)) {
5863 		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5864 		if (err)
5865 			goto exit_bio_set;
5866 	}
5867 	if (mddev->level != 1 && mddev->level != 10 &&
5868 	    !bioset_initialized(&mddev->io_acct_set)) {
5869 		err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
5870 				  offsetof(struct md_io_acct, bio_clone), 0);
5871 		if (err)
5872 			goto exit_sync_set;
5873 	}
5874 
5875 	spin_lock(&pers_lock);
5876 	pers = find_pers(mddev->level, mddev->clevel);
5877 	if (!pers || !try_module_get(pers->owner)) {
5878 		spin_unlock(&pers_lock);
5879 		if (mddev->level != LEVEL_NONE)
5880 			pr_warn("md: personality for level %d is not loaded!\n",
5881 				mddev->level);
5882 		else
5883 			pr_warn("md: personality for level %s is not loaded!\n",
5884 				mddev->clevel);
5885 		err = -EINVAL;
5886 		goto abort;
5887 	}
5888 	spin_unlock(&pers_lock);
5889 	if (mddev->level != pers->level) {
5890 		mddev->level = pers->level;
5891 		mddev->new_level = pers->level;
5892 	}
5893 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5894 
5895 	if (mddev->reshape_position != MaxSector &&
5896 	    pers->start_reshape == NULL) {
5897 		/* This personality cannot handle reshaping... */
5898 		module_put(pers->owner);
5899 		err = -EINVAL;
5900 		goto abort;
5901 	}
5902 
5903 	if (pers->sync_request) {
5904 		/* Warn if this is a potentially silly
5905 		 * configuration.
5906 		 */
5907 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5908 		struct md_rdev *rdev2;
5909 		int warned = 0;
5910 
5911 		rdev_for_each(rdev, mddev)
5912 			rdev_for_each(rdev2, mddev) {
5913 				if (rdev < rdev2 &&
5914 				    rdev->bdev->bd_disk ==
5915 				    rdev2->bdev->bd_disk) {
5916 					pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5917 						mdname(mddev),
5918 						bdevname(rdev->bdev,b),
5919 						bdevname(rdev2->bdev,b2));
5920 					warned = 1;
5921 				}
5922 			}
5923 
5924 		if (warned)
5925 			pr_warn("True protection against single-disk failure might be compromised.\n");
5926 	}
5927 
5928 	mddev->recovery = 0;
5929 	/* may be over-ridden by personality */
5930 	mddev->resync_max_sectors = mddev->dev_sectors;
5931 
5932 	mddev->ok_start_degraded = start_dirty_degraded;
5933 
5934 	if (start_readonly && mddev->ro == 0)
5935 		mddev->ro = 2; /* read-only, but switch on first write */
5936 
5937 	err = pers->run(mddev);
5938 	if (err)
5939 		pr_warn("md: pers->run() failed ...\n");
5940 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5941 		WARN_ONCE(!mddev->external_size,
5942 			  "%s: default size too small, but 'external_size' not in effect?\n",
5943 			  __func__);
5944 		pr_warn("md: invalid array_size %llu > default size %llu\n",
5945 			(unsigned long long)mddev->array_sectors / 2,
5946 			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5947 		err = -EINVAL;
5948 	}
5949 	if (err == 0 && pers->sync_request &&
5950 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5951 		struct bitmap *bitmap;
5952 
5953 		bitmap = md_bitmap_create(mddev, -1);
5954 		if (IS_ERR(bitmap)) {
5955 			err = PTR_ERR(bitmap);
5956 			pr_warn("%s: failed to create bitmap (%d)\n",
5957 				mdname(mddev), err);
5958 		} else
5959 			mddev->bitmap = bitmap;
5960 
5961 	}
5962 	if (err)
5963 		goto bitmap_abort;
5964 
5965 	if (mddev->bitmap_info.max_write_behind > 0) {
5966 		bool create_pool = false;
5967 
5968 		rdev_for_each(rdev, mddev) {
5969 			if (test_bit(WriteMostly, &rdev->flags) &&
5970 			    rdev_init_serial(rdev))
5971 				create_pool = true;
5972 		}
5973 		if (create_pool && mddev->serial_info_pool == NULL) {
5974 			mddev->serial_info_pool =
5975 				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5976 						    sizeof(struct serial_info));
5977 			if (!mddev->serial_info_pool) {
5978 				err = -ENOMEM;
5979 				goto bitmap_abort;
5980 			}
5981 		}
5982 	}
5983 
5984 	if (mddev->queue) {
5985 		bool nonrot = true;
5986 
5987 		rdev_for_each(rdev, mddev) {
5988 			if (rdev->raid_disk >= 0 &&
5989 			    !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5990 				nonrot = false;
5991 				break;
5992 			}
5993 		}
5994 		if (mddev->degraded)
5995 			nonrot = false;
5996 		if (nonrot)
5997 			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
5998 		else
5999 			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6000 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6001 	}
6002 	if (pers->sync_request) {
6003 		if (mddev->kobj.sd &&
6004 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6005 			pr_warn("md: cannot register extra attributes for %s\n",
6006 				mdname(mddev));
6007 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6008 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6009 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6010 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
6011 		mddev->ro = 0;
6012 
6013 	atomic_set(&mddev->max_corr_read_errors,
6014 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6015 	mddev->safemode = 0;
6016 	if (mddev_is_clustered(mddev))
6017 		mddev->safemode_delay = 0;
6018 	else
6019 		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6020 	mddev->in_sync = 1;
6021 	smp_wmb();
6022 	spin_lock(&mddev->lock);
6023 	mddev->pers = pers;
6024 	spin_unlock(&mddev->lock);
6025 	rdev_for_each(rdev, mddev)
6026 		if (rdev->raid_disk >= 0)
6027 			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6028 
6029 	if (mddev->degraded && !mddev->ro)
6030 		/* This ensures that recovering status is reported immediately
6031 		 * via sysfs - until a lack of spares is confirmed.
6032 		 */
6033 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6034 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6035 
6036 	if (mddev->sb_flags)
6037 		md_update_sb(mddev, 0);
6038 
6039 	md_new_event(mddev);
6040 	return 0;
6041 
6042 bitmap_abort:
6043 	mddev_detach(mddev);
6044 	if (mddev->private)
6045 		pers->free(mddev, mddev->private);
6046 	mddev->private = NULL;
6047 	module_put(pers->owner);
6048 	md_bitmap_destroy(mddev);
6049 abort:
6050 	if (mddev->level != 1 && mddev->level != 10)
6051 		bioset_exit(&mddev->io_acct_set);
6052 exit_sync_set:
6053 	bioset_exit(&mddev->sync_set);
6054 exit_bio_set:
6055 	bioset_exit(&mddev->bio_set);
6056 	return err;
6057 }
6058 EXPORT_SYMBOL_GPL(md_run);
6059 
6060 int do_md_run(struct mddev *mddev)
6061 {
6062 	int err;
6063 
6064 	set_bit(MD_NOT_READY, &mddev->flags);
6065 	err = md_run(mddev);
6066 	if (err)
6067 		goto out;
6068 	err = md_bitmap_load(mddev);
6069 	if (err) {
6070 		md_bitmap_destroy(mddev);
6071 		goto out;
6072 	}
6073 
6074 	if (mddev_is_clustered(mddev))
6075 		md_allow_write(mddev);
6076 
6077 	/* run start up tasks that require md_thread */
6078 	md_start(mddev);
6079 
6080 	md_wakeup_thread(mddev->thread);
6081 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6082 
6083 	set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6084 	clear_bit(MD_NOT_READY, &mddev->flags);
6085 	mddev->changed = 1;
6086 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6087 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6088 	sysfs_notify_dirent_safe(mddev->sysfs_action);
6089 	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6090 out:
6091 	clear_bit(MD_NOT_READY, &mddev->flags);
6092 	return err;
6093 }
6094 
6095 int md_start(struct mddev *mddev)
6096 {
6097 	int ret = 0;
6098 
6099 	if (mddev->pers->start) {
6100 		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6101 		md_wakeup_thread(mddev->thread);
6102 		ret = mddev->pers->start(mddev);
6103 		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6104 		md_wakeup_thread(mddev->sync_thread);
6105 	}
6106 	return ret;
6107 }
6108 EXPORT_SYMBOL_GPL(md_start);
6109 
6110 static int restart_array(struct mddev *mddev)
6111 {
6112 	struct gendisk *disk = mddev->gendisk;
6113 	struct md_rdev *rdev;
6114 	bool has_journal = false;
6115 	bool has_readonly = false;
6116 
6117 	/* Complain if it has no devices */
6118 	if (list_empty(&mddev->disks))
6119 		return -ENXIO;
6120 	if (!mddev->pers)
6121 		return -EINVAL;
6122 	if (!mddev->ro)
6123 		return -EBUSY;
6124 
6125 	rcu_read_lock();
6126 	rdev_for_each_rcu(rdev, mddev) {
6127 		if (test_bit(Journal, &rdev->flags) &&
6128 		    !test_bit(Faulty, &rdev->flags))
6129 			has_journal = true;
6130 		if (rdev_read_only(rdev))
6131 			has_readonly = true;
6132 	}
6133 	rcu_read_unlock();
6134 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6135 		/* Don't restart rw with journal missing/faulty */
6136 			return -EINVAL;
6137 	if (has_readonly)
6138 		return -EROFS;
6139 
6140 	mddev->safemode = 0;
6141 	mddev->ro = 0;
6142 	set_disk_ro(disk, 0);
6143 	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6144 	/* Kick recovery or resync if necessary */
6145 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6146 	md_wakeup_thread(mddev->thread);
6147 	md_wakeup_thread(mddev->sync_thread);
6148 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6149 	return 0;
6150 }
6151 
6152 static void md_clean(struct mddev *mddev)
6153 {
6154 	mddev->array_sectors = 0;
6155 	mddev->external_size = 0;
6156 	mddev->dev_sectors = 0;
6157 	mddev->raid_disks = 0;
6158 	mddev->recovery_cp = 0;
6159 	mddev->resync_min = 0;
6160 	mddev->resync_max = MaxSector;
6161 	mddev->reshape_position = MaxSector;
6162 	mddev->external = 0;
6163 	mddev->persistent = 0;
6164 	mddev->level = LEVEL_NONE;
6165 	mddev->clevel[0] = 0;
6166 	mddev->flags = 0;
6167 	mddev->sb_flags = 0;
6168 	mddev->ro = 0;
6169 	mddev->metadata_type[0] = 0;
6170 	mddev->chunk_sectors = 0;
6171 	mddev->ctime = mddev->utime = 0;
6172 	mddev->layout = 0;
6173 	mddev->max_disks = 0;
6174 	mddev->events = 0;
6175 	mddev->can_decrease_events = 0;
6176 	mddev->delta_disks = 0;
6177 	mddev->reshape_backwards = 0;
6178 	mddev->new_level = LEVEL_NONE;
6179 	mddev->new_layout = 0;
6180 	mddev->new_chunk_sectors = 0;
6181 	mddev->curr_resync = 0;
6182 	atomic64_set(&mddev->resync_mismatches, 0);
6183 	mddev->suspend_lo = mddev->suspend_hi = 0;
6184 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6185 	mddev->recovery = 0;
6186 	mddev->in_sync = 0;
6187 	mddev->changed = 0;
6188 	mddev->degraded = 0;
6189 	mddev->safemode = 0;
6190 	mddev->private = NULL;
6191 	mddev->cluster_info = NULL;
6192 	mddev->bitmap_info.offset = 0;
6193 	mddev->bitmap_info.default_offset = 0;
6194 	mddev->bitmap_info.default_space = 0;
6195 	mddev->bitmap_info.chunksize = 0;
6196 	mddev->bitmap_info.daemon_sleep = 0;
6197 	mddev->bitmap_info.max_write_behind = 0;
6198 	mddev->bitmap_info.nodes = 0;
6199 }
6200 
6201 static void __md_stop_writes(struct mddev *mddev)
6202 {
6203 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6204 	if (work_pending(&mddev->del_work))
6205 		flush_workqueue(md_misc_wq);
6206 	if (mddev->sync_thread) {
6207 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6208 		md_reap_sync_thread(mddev);
6209 	}
6210 
6211 	del_timer_sync(&mddev->safemode_timer);
6212 
6213 	if (mddev->pers && mddev->pers->quiesce) {
6214 		mddev->pers->quiesce(mddev, 1);
6215 		mddev->pers->quiesce(mddev, 0);
6216 	}
6217 	md_bitmap_flush(mddev);
6218 
6219 	if (mddev->ro == 0 &&
6220 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6221 	     mddev->sb_flags)) {
6222 		/* mark array as shutdown cleanly */
6223 		if (!mddev_is_clustered(mddev))
6224 			mddev->in_sync = 1;
6225 		md_update_sb(mddev, 1);
6226 	}
6227 	/* disable policy to guarantee rdevs free resources for serialization */
6228 	mddev->serialize_policy = 0;
6229 	mddev_destroy_serial_pool(mddev, NULL, true);
6230 }
6231 
6232 void md_stop_writes(struct mddev *mddev)
6233 {
6234 	mddev_lock_nointr(mddev);
6235 	__md_stop_writes(mddev);
6236 	mddev_unlock(mddev);
6237 }
6238 EXPORT_SYMBOL_GPL(md_stop_writes);
6239 
6240 static void mddev_detach(struct mddev *mddev)
6241 {
6242 	md_bitmap_wait_behind_writes(mddev);
6243 	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6244 		mddev->pers->quiesce(mddev, 1);
6245 		mddev->pers->quiesce(mddev, 0);
6246 	}
6247 	md_unregister_thread(&mddev->thread);
6248 	if (mddev->queue)
6249 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6250 }
6251 
6252 static void __md_stop(struct mddev *mddev)
6253 {
6254 	struct md_personality *pers = mddev->pers;
6255 	md_bitmap_destroy(mddev);
6256 	mddev_detach(mddev);
6257 	/* Ensure ->event_work is done */
6258 	if (mddev->event_work.func)
6259 		flush_workqueue(md_misc_wq);
6260 	spin_lock(&mddev->lock);
6261 	mddev->pers = NULL;
6262 	spin_unlock(&mddev->lock);
6263 	pers->free(mddev, mddev->private);
6264 	mddev->private = NULL;
6265 	if (pers->sync_request && mddev->to_remove == NULL)
6266 		mddev->to_remove = &md_redundancy_group;
6267 	module_put(pers->owner);
6268 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6269 }
6270 
6271 void md_stop(struct mddev *mddev)
6272 {
6273 	/* stop the array and free an attached data structures.
6274 	 * This is called from dm-raid
6275 	 */
6276 	__md_stop(mddev);
6277 	bioset_exit(&mddev->bio_set);
6278 	bioset_exit(&mddev->sync_set);
6279 	if (mddev->level != 1 && mddev->level != 10)
6280 		bioset_exit(&mddev->io_acct_set);
6281 }
6282 
6283 EXPORT_SYMBOL_GPL(md_stop);
6284 
6285 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6286 {
6287 	int err = 0;
6288 	int did_freeze = 0;
6289 
6290 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6291 		did_freeze = 1;
6292 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6293 		md_wakeup_thread(mddev->thread);
6294 	}
6295 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6296 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6297 	if (mddev->sync_thread)
6298 		/* Thread might be blocked waiting for metadata update
6299 		 * which will now never happen */
6300 		wake_up_process(mddev->sync_thread->tsk);
6301 
6302 	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6303 		return -EBUSY;
6304 	mddev_unlock(mddev);
6305 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6306 					  &mddev->recovery));
6307 	wait_event(mddev->sb_wait,
6308 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6309 	mddev_lock_nointr(mddev);
6310 
6311 	mutex_lock(&mddev->open_mutex);
6312 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6313 	    mddev->sync_thread ||
6314 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6315 		pr_warn("md: %s still in use.\n",mdname(mddev));
6316 		if (did_freeze) {
6317 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6318 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6319 			md_wakeup_thread(mddev->thread);
6320 		}
6321 		err = -EBUSY;
6322 		goto out;
6323 	}
6324 	if (mddev->pers) {
6325 		__md_stop_writes(mddev);
6326 
6327 		err  = -ENXIO;
6328 		if (mddev->ro==1)
6329 			goto out;
6330 		mddev->ro = 1;
6331 		set_disk_ro(mddev->gendisk, 1);
6332 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6333 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6334 		md_wakeup_thread(mddev->thread);
6335 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6336 		err = 0;
6337 	}
6338 out:
6339 	mutex_unlock(&mddev->open_mutex);
6340 	return err;
6341 }
6342 
6343 /* mode:
6344  *   0 - completely stop and dis-assemble array
6345  *   2 - stop but do not disassemble array
6346  */
6347 static int do_md_stop(struct mddev *mddev, int mode,
6348 		      struct block_device *bdev)
6349 {
6350 	struct gendisk *disk = mddev->gendisk;
6351 	struct md_rdev *rdev;
6352 	int did_freeze = 0;
6353 
6354 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6355 		did_freeze = 1;
6356 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6357 		md_wakeup_thread(mddev->thread);
6358 	}
6359 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6360 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6361 	if (mddev->sync_thread)
6362 		/* Thread might be blocked waiting for metadata update
6363 		 * which will now never happen */
6364 		wake_up_process(mddev->sync_thread->tsk);
6365 
6366 	mddev_unlock(mddev);
6367 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6368 				 !test_bit(MD_RECOVERY_RUNNING,
6369 					   &mddev->recovery)));
6370 	mddev_lock_nointr(mddev);
6371 
6372 	mutex_lock(&mddev->open_mutex);
6373 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6374 	    mddev->sysfs_active ||
6375 	    mddev->sync_thread ||
6376 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6377 		pr_warn("md: %s still in use.\n",mdname(mddev));
6378 		mutex_unlock(&mddev->open_mutex);
6379 		if (did_freeze) {
6380 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6381 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6382 			md_wakeup_thread(mddev->thread);
6383 		}
6384 		return -EBUSY;
6385 	}
6386 	if (mddev->pers) {
6387 		if (mddev->ro)
6388 			set_disk_ro(disk, 0);
6389 
6390 		__md_stop_writes(mddev);
6391 		__md_stop(mddev);
6392 
6393 		/* tell userspace to handle 'inactive' */
6394 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6395 
6396 		rdev_for_each(rdev, mddev)
6397 			if (rdev->raid_disk >= 0)
6398 				sysfs_unlink_rdev(mddev, rdev);
6399 
6400 		set_capacity_and_notify(disk, 0);
6401 		mutex_unlock(&mddev->open_mutex);
6402 		mddev->changed = 1;
6403 
6404 		if (mddev->ro)
6405 			mddev->ro = 0;
6406 	} else
6407 		mutex_unlock(&mddev->open_mutex);
6408 	/*
6409 	 * Free resources if final stop
6410 	 */
6411 	if (mode == 0) {
6412 		pr_info("md: %s stopped.\n", mdname(mddev));
6413 
6414 		if (mddev->bitmap_info.file) {
6415 			struct file *f = mddev->bitmap_info.file;
6416 			spin_lock(&mddev->lock);
6417 			mddev->bitmap_info.file = NULL;
6418 			spin_unlock(&mddev->lock);
6419 			fput(f);
6420 		}
6421 		mddev->bitmap_info.offset = 0;
6422 
6423 		export_array(mddev);
6424 
6425 		md_clean(mddev);
6426 		if (mddev->hold_active == UNTIL_STOP)
6427 			mddev->hold_active = 0;
6428 	}
6429 	md_new_event(mddev);
6430 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6431 	return 0;
6432 }
6433 
6434 #ifndef MODULE
6435 static void autorun_array(struct mddev *mddev)
6436 {
6437 	struct md_rdev *rdev;
6438 	int err;
6439 
6440 	if (list_empty(&mddev->disks))
6441 		return;
6442 
6443 	pr_info("md: running: ");
6444 
6445 	rdev_for_each(rdev, mddev) {
6446 		char b[BDEVNAME_SIZE];
6447 		pr_cont("<%s>", bdevname(rdev->bdev,b));
6448 	}
6449 	pr_cont("\n");
6450 
6451 	err = do_md_run(mddev);
6452 	if (err) {
6453 		pr_warn("md: do_md_run() returned %d\n", err);
6454 		do_md_stop(mddev, 0, NULL);
6455 	}
6456 }
6457 
6458 /*
6459  * lets try to run arrays based on all disks that have arrived
6460  * until now. (those are in pending_raid_disks)
6461  *
6462  * the method: pick the first pending disk, collect all disks with
6463  * the same UUID, remove all from the pending list and put them into
6464  * the 'same_array' list. Then order this list based on superblock
6465  * update time (freshest comes first), kick out 'old' disks and
6466  * compare superblocks. If everything's fine then run it.
6467  *
6468  * If "unit" is allocated, then bump its reference count
6469  */
6470 static void autorun_devices(int part)
6471 {
6472 	struct md_rdev *rdev0, *rdev, *tmp;
6473 	struct mddev *mddev;
6474 	char b[BDEVNAME_SIZE];
6475 
6476 	pr_info("md: autorun ...\n");
6477 	while (!list_empty(&pending_raid_disks)) {
6478 		int unit;
6479 		dev_t dev;
6480 		LIST_HEAD(candidates);
6481 		rdev0 = list_entry(pending_raid_disks.next,
6482 					 struct md_rdev, same_set);
6483 
6484 		pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6485 		INIT_LIST_HEAD(&candidates);
6486 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6487 			if (super_90_load(rdev, rdev0, 0) >= 0) {
6488 				pr_debug("md:  adding %s ...\n",
6489 					 bdevname(rdev->bdev,b));
6490 				list_move(&rdev->same_set, &candidates);
6491 			}
6492 		/*
6493 		 * now we have a set of devices, with all of them having
6494 		 * mostly sane superblocks. It's time to allocate the
6495 		 * mddev.
6496 		 */
6497 		if (part) {
6498 			dev = MKDEV(mdp_major,
6499 				    rdev0->preferred_minor << MdpMinorShift);
6500 			unit = MINOR(dev) >> MdpMinorShift;
6501 		} else {
6502 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6503 			unit = MINOR(dev);
6504 		}
6505 		if (rdev0->preferred_minor != unit) {
6506 			pr_warn("md: unit number in %s is bad: %d\n",
6507 				bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6508 			break;
6509 		}
6510 
6511 		md_probe(dev);
6512 		mddev = mddev_find(dev);
6513 		if (!mddev)
6514 			break;
6515 
6516 		if (mddev_lock(mddev))
6517 			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6518 		else if (mddev->raid_disks || mddev->major_version
6519 			 || !list_empty(&mddev->disks)) {
6520 			pr_warn("md: %s already running, cannot run %s\n",
6521 				mdname(mddev), bdevname(rdev0->bdev,b));
6522 			mddev_unlock(mddev);
6523 		} else {
6524 			pr_debug("md: created %s\n", mdname(mddev));
6525 			mddev->persistent = 1;
6526 			rdev_for_each_list(rdev, tmp, &candidates) {
6527 				list_del_init(&rdev->same_set);
6528 				if (bind_rdev_to_array(rdev, mddev))
6529 					export_rdev(rdev);
6530 			}
6531 			autorun_array(mddev);
6532 			mddev_unlock(mddev);
6533 		}
6534 		/* on success, candidates will be empty, on error
6535 		 * it won't...
6536 		 */
6537 		rdev_for_each_list(rdev, tmp, &candidates) {
6538 			list_del_init(&rdev->same_set);
6539 			export_rdev(rdev);
6540 		}
6541 		mddev_put(mddev);
6542 	}
6543 	pr_info("md: ... autorun DONE.\n");
6544 }
6545 #endif /* !MODULE */
6546 
6547 static int get_version(void __user *arg)
6548 {
6549 	mdu_version_t ver;
6550 
6551 	ver.major = MD_MAJOR_VERSION;
6552 	ver.minor = MD_MINOR_VERSION;
6553 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6554 
6555 	if (copy_to_user(arg, &ver, sizeof(ver)))
6556 		return -EFAULT;
6557 
6558 	return 0;
6559 }
6560 
6561 static int get_array_info(struct mddev *mddev, void __user *arg)
6562 {
6563 	mdu_array_info_t info;
6564 	int nr,working,insync,failed,spare;
6565 	struct md_rdev *rdev;
6566 
6567 	nr = working = insync = failed = spare = 0;
6568 	rcu_read_lock();
6569 	rdev_for_each_rcu(rdev, mddev) {
6570 		nr++;
6571 		if (test_bit(Faulty, &rdev->flags))
6572 			failed++;
6573 		else {
6574 			working++;
6575 			if (test_bit(In_sync, &rdev->flags))
6576 				insync++;
6577 			else if (test_bit(Journal, &rdev->flags))
6578 				/* TODO: add journal count to md_u.h */
6579 				;
6580 			else
6581 				spare++;
6582 		}
6583 	}
6584 	rcu_read_unlock();
6585 
6586 	info.major_version = mddev->major_version;
6587 	info.minor_version = mddev->minor_version;
6588 	info.patch_version = MD_PATCHLEVEL_VERSION;
6589 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6590 	info.level         = mddev->level;
6591 	info.size          = mddev->dev_sectors / 2;
6592 	if (info.size != mddev->dev_sectors / 2) /* overflow */
6593 		info.size = -1;
6594 	info.nr_disks      = nr;
6595 	info.raid_disks    = mddev->raid_disks;
6596 	info.md_minor      = mddev->md_minor;
6597 	info.not_persistent= !mddev->persistent;
6598 
6599 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6600 	info.state         = 0;
6601 	if (mddev->in_sync)
6602 		info.state = (1<<MD_SB_CLEAN);
6603 	if (mddev->bitmap && mddev->bitmap_info.offset)
6604 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6605 	if (mddev_is_clustered(mddev))
6606 		info.state |= (1<<MD_SB_CLUSTERED);
6607 	info.active_disks  = insync;
6608 	info.working_disks = working;
6609 	info.failed_disks  = failed;
6610 	info.spare_disks   = spare;
6611 
6612 	info.layout        = mddev->layout;
6613 	info.chunk_size    = mddev->chunk_sectors << 9;
6614 
6615 	if (copy_to_user(arg, &info, sizeof(info)))
6616 		return -EFAULT;
6617 
6618 	return 0;
6619 }
6620 
6621 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6622 {
6623 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6624 	char *ptr;
6625 	int err;
6626 
6627 	file = kzalloc(sizeof(*file), GFP_NOIO);
6628 	if (!file)
6629 		return -ENOMEM;
6630 
6631 	err = 0;
6632 	spin_lock(&mddev->lock);
6633 	/* bitmap enabled */
6634 	if (mddev->bitmap_info.file) {
6635 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6636 				sizeof(file->pathname));
6637 		if (IS_ERR(ptr))
6638 			err = PTR_ERR(ptr);
6639 		else
6640 			memmove(file->pathname, ptr,
6641 				sizeof(file->pathname)-(ptr-file->pathname));
6642 	}
6643 	spin_unlock(&mddev->lock);
6644 
6645 	if (err == 0 &&
6646 	    copy_to_user(arg, file, sizeof(*file)))
6647 		err = -EFAULT;
6648 
6649 	kfree(file);
6650 	return err;
6651 }
6652 
6653 static int get_disk_info(struct mddev *mddev, void __user * arg)
6654 {
6655 	mdu_disk_info_t info;
6656 	struct md_rdev *rdev;
6657 
6658 	if (copy_from_user(&info, arg, sizeof(info)))
6659 		return -EFAULT;
6660 
6661 	rcu_read_lock();
6662 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6663 	if (rdev) {
6664 		info.major = MAJOR(rdev->bdev->bd_dev);
6665 		info.minor = MINOR(rdev->bdev->bd_dev);
6666 		info.raid_disk = rdev->raid_disk;
6667 		info.state = 0;
6668 		if (test_bit(Faulty, &rdev->flags))
6669 			info.state |= (1<<MD_DISK_FAULTY);
6670 		else if (test_bit(In_sync, &rdev->flags)) {
6671 			info.state |= (1<<MD_DISK_ACTIVE);
6672 			info.state |= (1<<MD_DISK_SYNC);
6673 		}
6674 		if (test_bit(Journal, &rdev->flags))
6675 			info.state |= (1<<MD_DISK_JOURNAL);
6676 		if (test_bit(WriteMostly, &rdev->flags))
6677 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6678 		if (test_bit(FailFast, &rdev->flags))
6679 			info.state |= (1<<MD_DISK_FAILFAST);
6680 	} else {
6681 		info.major = info.minor = 0;
6682 		info.raid_disk = -1;
6683 		info.state = (1<<MD_DISK_REMOVED);
6684 	}
6685 	rcu_read_unlock();
6686 
6687 	if (copy_to_user(arg, &info, sizeof(info)))
6688 		return -EFAULT;
6689 
6690 	return 0;
6691 }
6692 
6693 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6694 {
6695 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6696 	struct md_rdev *rdev;
6697 	dev_t dev = MKDEV(info->major,info->minor);
6698 
6699 	if (mddev_is_clustered(mddev) &&
6700 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6701 		pr_warn("%s: Cannot add to clustered mddev.\n",
6702 			mdname(mddev));
6703 		return -EINVAL;
6704 	}
6705 
6706 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6707 		return -EOVERFLOW;
6708 
6709 	if (!mddev->raid_disks) {
6710 		int err;
6711 		/* expecting a device which has a superblock */
6712 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6713 		if (IS_ERR(rdev)) {
6714 			pr_warn("md: md_import_device returned %ld\n",
6715 				PTR_ERR(rdev));
6716 			return PTR_ERR(rdev);
6717 		}
6718 		if (!list_empty(&mddev->disks)) {
6719 			struct md_rdev *rdev0
6720 				= list_entry(mddev->disks.next,
6721 					     struct md_rdev, same_set);
6722 			err = super_types[mddev->major_version]
6723 				.load_super(rdev, rdev0, mddev->minor_version);
6724 			if (err < 0) {
6725 				pr_warn("md: %s has different UUID to %s\n",
6726 					bdevname(rdev->bdev,b),
6727 					bdevname(rdev0->bdev,b2));
6728 				export_rdev(rdev);
6729 				return -EINVAL;
6730 			}
6731 		}
6732 		err = bind_rdev_to_array(rdev, mddev);
6733 		if (err)
6734 			export_rdev(rdev);
6735 		return err;
6736 	}
6737 
6738 	/*
6739 	 * md_add_new_disk can be used once the array is assembled
6740 	 * to add "hot spares".  They must already have a superblock
6741 	 * written
6742 	 */
6743 	if (mddev->pers) {
6744 		int err;
6745 		if (!mddev->pers->hot_add_disk) {
6746 			pr_warn("%s: personality does not support diskops!\n",
6747 				mdname(mddev));
6748 			return -EINVAL;
6749 		}
6750 		if (mddev->persistent)
6751 			rdev = md_import_device(dev, mddev->major_version,
6752 						mddev->minor_version);
6753 		else
6754 			rdev = md_import_device(dev, -1, -1);
6755 		if (IS_ERR(rdev)) {
6756 			pr_warn("md: md_import_device returned %ld\n",
6757 				PTR_ERR(rdev));
6758 			return PTR_ERR(rdev);
6759 		}
6760 		/* set saved_raid_disk if appropriate */
6761 		if (!mddev->persistent) {
6762 			if (info->state & (1<<MD_DISK_SYNC)  &&
6763 			    info->raid_disk < mddev->raid_disks) {
6764 				rdev->raid_disk = info->raid_disk;
6765 				set_bit(In_sync, &rdev->flags);
6766 				clear_bit(Bitmap_sync, &rdev->flags);
6767 			} else
6768 				rdev->raid_disk = -1;
6769 			rdev->saved_raid_disk = rdev->raid_disk;
6770 		} else
6771 			super_types[mddev->major_version].
6772 				validate_super(mddev, rdev);
6773 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6774 		     rdev->raid_disk != info->raid_disk) {
6775 			/* This was a hot-add request, but events doesn't
6776 			 * match, so reject it.
6777 			 */
6778 			export_rdev(rdev);
6779 			return -EINVAL;
6780 		}
6781 
6782 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6783 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6784 			set_bit(WriteMostly, &rdev->flags);
6785 		else
6786 			clear_bit(WriteMostly, &rdev->flags);
6787 		if (info->state & (1<<MD_DISK_FAILFAST))
6788 			set_bit(FailFast, &rdev->flags);
6789 		else
6790 			clear_bit(FailFast, &rdev->flags);
6791 
6792 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6793 			struct md_rdev *rdev2;
6794 			bool has_journal = false;
6795 
6796 			/* make sure no existing journal disk */
6797 			rdev_for_each(rdev2, mddev) {
6798 				if (test_bit(Journal, &rdev2->flags)) {
6799 					has_journal = true;
6800 					break;
6801 				}
6802 			}
6803 			if (has_journal || mddev->bitmap) {
6804 				export_rdev(rdev);
6805 				return -EBUSY;
6806 			}
6807 			set_bit(Journal, &rdev->flags);
6808 		}
6809 		/*
6810 		 * check whether the device shows up in other nodes
6811 		 */
6812 		if (mddev_is_clustered(mddev)) {
6813 			if (info->state & (1 << MD_DISK_CANDIDATE))
6814 				set_bit(Candidate, &rdev->flags);
6815 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6816 				/* --add initiated by this node */
6817 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6818 				if (err) {
6819 					export_rdev(rdev);
6820 					return err;
6821 				}
6822 			}
6823 		}
6824 
6825 		rdev->raid_disk = -1;
6826 		err = bind_rdev_to_array(rdev, mddev);
6827 
6828 		if (err)
6829 			export_rdev(rdev);
6830 
6831 		if (mddev_is_clustered(mddev)) {
6832 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6833 				if (!err) {
6834 					err = md_cluster_ops->new_disk_ack(mddev,
6835 						err == 0);
6836 					if (err)
6837 						md_kick_rdev_from_array(rdev);
6838 				}
6839 			} else {
6840 				if (err)
6841 					md_cluster_ops->add_new_disk_cancel(mddev);
6842 				else
6843 					err = add_bound_rdev(rdev);
6844 			}
6845 
6846 		} else if (!err)
6847 			err = add_bound_rdev(rdev);
6848 
6849 		return err;
6850 	}
6851 
6852 	/* otherwise, md_add_new_disk is only allowed
6853 	 * for major_version==0 superblocks
6854 	 */
6855 	if (mddev->major_version != 0) {
6856 		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6857 		return -EINVAL;
6858 	}
6859 
6860 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6861 		int err;
6862 		rdev = md_import_device(dev, -1, 0);
6863 		if (IS_ERR(rdev)) {
6864 			pr_warn("md: error, md_import_device() returned %ld\n",
6865 				PTR_ERR(rdev));
6866 			return PTR_ERR(rdev);
6867 		}
6868 		rdev->desc_nr = info->number;
6869 		if (info->raid_disk < mddev->raid_disks)
6870 			rdev->raid_disk = info->raid_disk;
6871 		else
6872 			rdev->raid_disk = -1;
6873 
6874 		if (rdev->raid_disk < mddev->raid_disks)
6875 			if (info->state & (1<<MD_DISK_SYNC))
6876 				set_bit(In_sync, &rdev->flags);
6877 
6878 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6879 			set_bit(WriteMostly, &rdev->flags);
6880 		if (info->state & (1<<MD_DISK_FAILFAST))
6881 			set_bit(FailFast, &rdev->flags);
6882 
6883 		if (!mddev->persistent) {
6884 			pr_debug("md: nonpersistent superblock ...\n");
6885 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6886 		} else
6887 			rdev->sb_start = calc_dev_sboffset(rdev);
6888 		rdev->sectors = rdev->sb_start;
6889 
6890 		err = bind_rdev_to_array(rdev, mddev);
6891 		if (err) {
6892 			export_rdev(rdev);
6893 			return err;
6894 		}
6895 	}
6896 
6897 	return 0;
6898 }
6899 
6900 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6901 {
6902 	char b[BDEVNAME_SIZE];
6903 	struct md_rdev *rdev;
6904 
6905 	if (!mddev->pers)
6906 		return -ENODEV;
6907 
6908 	rdev = find_rdev(mddev, dev);
6909 	if (!rdev)
6910 		return -ENXIO;
6911 
6912 	if (rdev->raid_disk < 0)
6913 		goto kick_rdev;
6914 
6915 	clear_bit(Blocked, &rdev->flags);
6916 	remove_and_add_spares(mddev, rdev);
6917 
6918 	if (rdev->raid_disk >= 0)
6919 		goto busy;
6920 
6921 kick_rdev:
6922 	if (mddev_is_clustered(mddev)) {
6923 		if (md_cluster_ops->remove_disk(mddev, rdev))
6924 			goto busy;
6925 	}
6926 
6927 	md_kick_rdev_from_array(rdev);
6928 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6929 	if (mddev->thread)
6930 		md_wakeup_thread(mddev->thread);
6931 	else
6932 		md_update_sb(mddev, 1);
6933 	md_new_event(mddev);
6934 
6935 	return 0;
6936 busy:
6937 	pr_debug("md: cannot remove active disk %s from %s ...\n",
6938 		 bdevname(rdev->bdev,b), mdname(mddev));
6939 	return -EBUSY;
6940 }
6941 
6942 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6943 {
6944 	char b[BDEVNAME_SIZE];
6945 	int err;
6946 	struct md_rdev *rdev;
6947 
6948 	if (!mddev->pers)
6949 		return -ENODEV;
6950 
6951 	if (mddev->major_version != 0) {
6952 		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6953 			mdname(mddev));
6954 		return -EINVAL;
6955 	}
6956 	if (!mddev->pers->hot_add_disk) {
6957 		pr_warn("%s: personality does not support diskops!\n",
6958 			mdname(mddev));
6959 		return -EINVAL;
6960 	}
6961 
6962 	rdev = md_import_device(dev, -1, 0);
6963 	if (IS_ERR(rdev)) {
6964 		pr_warn("md: error, md_import_device() returned %ld\n",
6965 			PTR_ERR(rdev));
6966 		return -EINVAL;
6967 	}
6968 
6969 	if (mddev->persistent)
6970 		rdev->sb_start = calc_dev_sboffset(rdev);
6971 	else
6972 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6973 
6974 	rdev->sectors = rdev->sb_start;
6975 
6976 	if (test_bit(Faulty, &rdev->flags)) {
6977 		pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6978 			bdevname(rdev->bdev,b), mdname(mddev));
6979 		err = -EINVAL;
6980 		goto abort_export;
6981 	}
6982 
6983 	clear_bit(In_sync, &rdev->flags);
6984 	rdev->desc_nr = -1;
6985 	rdev->saved_raid_disk = -1;
6986 	err = bind_rdev_to_array(rdev, mddev);
6987 	if (err)
6988 		goto abort_export;
6989 
6990 	/*
6991 	 * The rest should better be atomic, we can have disk failures
6992 	 * noticed in interrupt contexts ...
6993 	 */
6994 
6995 	rdev->raid_disk = -1;
6996 
6997 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6998 	if (!mddev->thread)
6999 		md_update_sb(mddev, 1);
7000 	/*
7001 	 * Kick recovery, maybe this spare has to be added to the
7002 	 * array immediately.
7003 	 */
7004 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7005 	md_wakeup_thread(mddev->thread);
7006 	md_new_event(mddev);
7007 	return 0;
7008 
7009 abort_export:
7010 	export_rdev(rdev);
7011 	return err;
7012 }
7013 
7014 static int set_bitmap_file(struct mddev *mddev, int fd)
7015 {
7016 	int err = 0;
7017 
7018 	if (mddev->pers) {
7019 		if (!mddev->pers->quiesce || !mddev->thread)
7020 			return -EBUSY;
7021 		if (mddev->recovery || mddev->sync_thread)
7022 			return -EBUSY;
7023 		/* we should be able to change the bitmap.. */
7024 	}
7025 
7026 	if (fd >= 0) {
7027 		struct inode *inode;
7028 		struct file *f;
7029 
7030 		if (mddev->bitmap || mddev->bitmap_info.file)
7031 			return -EEXIST; /* cannot add when bitmap is present */
7032 		f = fget(fd);
7033 
7034 		if (f == NULL) {
7035 			pr_warn("%s: error: failed to get bitmap file\n",
7036 				mdname(mddev));
7037 			return -EBADF;
7038 		}
7039 
7040 		inode = f->f_mapping->host;
7041 		if (!S_ISREG(inode->i_mode)) {
7042 			pr_warn("%s: error: bitmap file must be a regular file\n",
7043 				mdname(mddev));
7044 			err = -EBADF;
7045 		} else if (!(f->f_mode & FMODE_WRITE)) {
7046 			pr_warn("%s: error: bitmap file must open for write\n",
7047 				mdname(mddev));
7048 			err = -EBADF;
7049 		} else if (atomic_read(&inode->i_writecount) != 1) {
7050 			pr_warn("%s: error: bitmap file is already in use\n",
7051 				mdname(mddev));
7052 			err = -EBUSY;
7053 		}
7054 		if (err) {
7055 			fput(f);
7056 			return err;
7057 		}
7058 		mddev->bitmap_info.file = f;
7059 		mddev->bitmap_info.offset = 0; /* file overrides offset */
7060 	} else if (mddev->bitmap == NULL)
7061 		return -ENOENT; /* cannot remove what isn't there */
7062 	err = 0;
7063 	if (mddev->pers) {
7064 		if (fd >= 0) {
7065 			struct bitmap *bitmap;
7066 
7067 			bitmap = md_bitmap_create(mddev, -1);
7068 			mddev_suspend(mddev);
7069 			if (!IS_ERR(bitmap)) {
7070 				mddev->bitmap = bitmap;
7071 				err = md_bitmap_load(mddev);
7072 			} else
7073 				err = PTR_ERR(bitmap);
7074 			if (err) {
7075 				md_bitmap_destroy(mddev);
7076 				fd = -1;
7077 			}
7078 			mddev_resume(mddev);
7079 		} else if (fd < 0) {
7080 			mddev_suspend(mddev);
7081 			md_bitmap_destroy(mddev);
7082 			mddev_resume(mddev);
7083 		}
7084 	}
7085 	if (fd < 0) {
7086 		struct file *f = mddev->bitmap_info.file;
7087 		if (f) {
7088 			spin_lock(&mddev->lock);
7089 			mddev->bitmap_info.file = NULL;
7090 			spin_unlock(&mddev->lock);
7091 			fput(f);
7092 		}
7093 	}
7094 
7095 	return err;
7096 }
7097 
7098 /*
7099  * md_set_array_info is used two different ways
7100  * The original usage is when creating a new array.
7101  * In this usage, raid_disks is > 0 and it together with
7102  *  level, size, not_persistent,layout,chunksize determine the
7103  *  shape of the array.
7104  *  This will always create an array with a type-0.90.0 superblock.
7105  * The newer usage is when assembling an array.
7106  *  In this case raid_disks will be 0, and the major_version field is
7107  *  use to determine which style super-blocks are to be found on the devices.
7108  *  The minor and patch _version numbers are also kept incase the
7109  *  super_block handler wishes to interpret them.
7110  */
7111 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7112 {
7113 	if (info->raid_disks == 0) {
7114 		/* just setting version number for superblock loading */
7115 		if (info->major_version < 0 ||
7116 		    info->major_version >= ARRAY_SIZE(super_types) ||
7117 		    super_types[info->major_version].name == NULL) {
7118 			/* maybe try to auto-load a module? */
7119 			pr_warn("md: superblock version %d not known\n",
7120 				info->major_version);
7121 			return -EINVAL;
7122 		}
7123 		mddev->major_version = info->major_version;
7124 		mddev->minor_version = info->minor_version;
7125 		mddev->patch_version = info->patch_version;
7126 		mddev->persistent = !info->not_persistent;
7127 		/* ensure mddev_put doesn't delete this now that there
7128 		 * is some minimal configuration.
7129 		 */
7130 		mddev->ctime         = ktime_get_real_seconds();
7131 		return 0;
7132 	}
7133 	mddev->major_version = MD_MAJOR_VERSION;
7134 	mddev->minor_version = MD_MINOR_VERSION;
7135 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7136 	mddev->ctime         = ktime_get_real_seconds();
7137 
7138 	mddev->level         = info->level;
7139 	mddev->clevel[0]     = 0;
7140 	mddev->dev_sectors   = 2 * (sector_t)info->size;
7141 	mddev->raid_disks    = info->raid_disks;
7142 	/* don't set md_minor, it is determined by which /dev/md* was
7143 	 * openned
7144 	 */
7145 	if (info->state & (1<<MD_SB_CLEAN))
7146 		mddev->recovery_cp = MaxSector;
7147 	else
7148 		mddev->recovery_cp = 0;
7149 	mddev->persistent    = ! info->not_persistent;
7150 	mddev->external	     = 0;
7151 
7152 	mddev->layout        = info->layout;
7153 	if (mddev->level == 0)
7154 		/* Cannot trust RAID0 layout info here */
7155 		mddev->layout = -1;
7156 	mddev->chunk_sectors = info->chunk_size >> 9;
7157 
7158 	if (mddev->persistent) {
7159 		mddev->max_disks = MD_SB_DISKS;
7160 		mddev->flags = 0;
7161 		mddev->sb_flags = 0;
7162 	}
7163 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7164 
7165 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7166 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7167 	mddev->bitmap_info.offset = 0;
7168 
7169 	mddev->reshape_position = MaxSector;
7170 
7171 	/*
7172 	 * Generate a 128 bit UUID
7173 	 */
7174 	get_random_bytes(mddev->uuid, 16);
7175 
7176 	mddev->new_level = mddev->level;
7177 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7178 	mddev->new_layout = mddev->layout;
7179 	mddev->delta_disks = 0;
7180 	mddev->reshape_backwards = 0;
7181 
7182 	return 0;
7183 }
7184 
7185 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7186 {
7187 	lockdep_assert_held(&mddev->reconfig_mutex);
7188 
7189 	if (mddev->external_size)
7190 		return;
7191 
7192 	mddev->array_sectors = array_sectors;
7193 }
7194 EXPORT_SYMBOL(md_set_array_sectors);
7195 
7196 static int update_size(struct mddev *mddev, sector_t num_sectors)
7197 {
7198 	struct md_rdev *rdev;
7199 	int rv;
7200 	int fit = (num_sectors == 0);
7201 	sector_t old_dev_sectors = mddev->dev_sectors;
7202 
7203 	if (mddev->pers->resize == NULL)
7204 		return -EINVAL;
7205 	/* The "num_sectors" is the number of sectors of each device that
7206 	 * is used.  This can only make sense for arrays with redundancy.
7207 	 * linear and raid0 always use whatever space is available. We can only
7208 	 * consider changing this number if no resync or reconstruction is
7209 	 * happening, and if the new size is acceptable. It must fit before the
7210 	 * sb_start or, if that is <data_offset, it must fit before the size
7211 	 * of each device.  If num_sectors is zero, we find the largest size
7212 	 * that fits.
7213 	 */
7214 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7215 	    mddev->sync_thread)
7216 		return -EBUSY;
7217 	if (mddev->ro)
7218 		return -EROFS;
7219 
7220 	rdev_for_each(rdev, mddev) {
7221 		sector_t avail = rdev->sectors;
7222 
7223 		if (fit && (num_sectors == 0 || num_sectors > avail))
7224 			num_sectors = avail;
7225 		if (avail < num_sectors)
7226 			return -ENOSPC;
7227 	}
7228 	rv = mddev->pers->resize(mddev, num_sectors);
7229 	if (!rv) {
7230 		if (mddev_is_clustered(mddev))
7231 			md_cluster_ops->update_size(mddev, old_dev_sectors);
7232 		else if (mddev->queue) {
7233 			set_capacity_and_notify(mddev->gendisk,
7234 						mddev->array_sectors);
7235 		}
7236 	}
7237 	return rv;
7238 }
7239 
7240 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7241 {
7242 	int rv;
7243 	struct md_rdev *rdev;
7244 	/* change the number of raid disks */
7245 	if (mddev->pers->check_reshape == NULL)
7246 		return -EINVAL;
7247 	if (mddev->ro)
7248 		return -EROFS;
7249 	if (raid_disks <= 0 ||
7250 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7251 		return -EINVAL;
7252 	if (mddev->sync_thread ||
7253 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7254 	    test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7255 	    mddev->reshape_position != MaxSector)
7256 		return -EBUSY;
7257 
7258 	rdev_for_each(rdev, mddev) {
7259 		if (mddev->raid_disks < raid_disks &&
7260 		    rdev->data_offset < rdev->new_data_offset)
7261 			return -EINVAL;
7262 		if (mddev->raid_disks > raid_disks &&
7263 		    rdev->data_offset > rdev->new_data_offset)
7264 			return -EINVAL;
7265 	}
7266 
7267 	mddev->delta_disks = raid_disks - mddev->raid_disks;
7268 	if (mddev->delta_disks < 0)
7269 		mddev->reshape_backwards = 1;
7270 	else if (mddev->delta_disks > 0)
7271 		mddev->reshape_backwards = 0;
7272 
7273 	rv = mddev->pers->check_reshape(mddev);
7274 	if (rv < 0) {
7275 		mddev->delta_disks = 0;
7276 		mddev->reshape_backwards = 0;
7277 	}
7278 	return rv;
7279 }
7280 
7281 /*
7282  * update_array_info is used to change the configuration of an
7283  * on-line array.
7284  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7285  * fields in the info are checked against the array.
7286  * Any differences that cannot be handled will cause an error.
7287  * Normally, only one change can be managed at a time.
7288  */
7289 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7290 {
7291 	int rv = 0;
7292 	int cnt = 0;
7293 	int state = 0;
7294 
7295 	/* calculate expected state,ignoring low bits */
7296 	if (mddev->bitmap && mddev->bitmap_info.offset)
7297 		state |= (1 << MD_SB_BITMAP_PRESENT);
7298 
7299 	if (mddev->major_version != info->major_version ||
7300 	    mddev->minor_version != info->minor_version ||
7301 /*	    mddev->patch_version != info->patch_version || */
7302 	    mddev->ctime         != info->ctime         ||
7303 	    mddev->level         != info->level         ||
7304 /*	    mddev->layout        != info->layout        || */
7305 	    mddev->persistent	 != !info->not_persistent ||
7306 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7307 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7308 	    ((state^info->state) & 0xfffffe00)
7309 		)
7310 		return -EINVAL;
7311 	/* Check there is only one change */
7312 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7313 		cnt++;
7314 	if (mddev->raid_disks != info->raid_disks)
7315 		cnt++;
7316 	if (mddev->layout != info->layout)
7317 		cnt++;
7318 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7319 		cnt++;
7320 	if (cnt == 0)
7321 		return 0;
7322 	if (cnt > 1)
7323 		return -EINVAL;
7324 
7325 	if (mddev->layout != info->layout) {
7326 		/* Change layout
7327 		 * we don't need to do anything at the md level, the
7328 		 * personality will take care of it all.
7329 		 */
7330 		if (mddev->pers->check_reshape == NULL)
7331 			return -EINVAL;
7332 		else {
7333 			mddev->new_layout = info->layout;
7334 			rv = mddev->pers->check_reshape(mddev);
7335 			if (rv)
7336 				mddev->new_layout = mddev->layout;
7337 			return rv;
7338 		}
7339 	}
7340 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7341 		rv = update_size(mddev, (sector_t)info->size * 2);
7342 
7343 	if (mddev->raid_disks    != info->raid_disks)
7344 		rv = update_raid_disks(mddev, info->raid_disks);
7345 
7346 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7347 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7348 			rv = -EINVAL;
7349 			goto err;
7350 		}
7351 		if (mddev->recovery || mddev->sync_thread) {
7352 			rv = -EBUSY;
7353 			goto err;
7354 		}
7355 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7356 			struct bitmap *bitmap;
7357 			/* add the bitmap */
7358 			if (mddev->bitmap) {
7359 				rv = -EEXIST;
7360 				goto err;
7361 			}
7362 			if (mddev->bitmap_info.default_offset == 0) {
7363 				rv = -EINVAL;
7364 				goto err;
7365 			}
7366 			mddev->bitmap_info.offset =
7367 				mddev->bitmap_info.default_offset;
7368 			mddev->bitmap_info.space =
7369 				mddev->bitmap_info.default_space;
7370 			bitmap = md_bitmap_create(mddev, -1);
7371 			mddev_suspend(mddev);
7372 			if (!IS_ERR(bitmap)) {
7373 				mddev->bitmap = bitmap;
7374 				rv = md_bitmap_load(mddev);
7375 			} else
7376 				rv = PTR_ERR(bitmap);
7377 			if (rv)
7378 				md_bitmap_destroy(mddev);
7379 			mddev_resume(mddev);
7380 		} else {
7381 			/* remove the bitmap */
7382 			if (!mddev->bitmap) {
7383 				rv = -ENOENT;
7384 				goto err;
7385 			}
7386 			if (mddev->bitmap->storage.file) {
7387 				rv = -EINVAL;
7388 				goto err;
7389 			}
7390 			if (mddev->bitmap_info.nodes) {
7391 				/* hold PW on all the bitmap lock */
7392 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7393 					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7394 					rv = -EPERM;
7395 					md_cluster_ops->unlock_all_bitmaps(mddev);
7396 					goto err;
7397 				}
7398 
7399 				mddev->bitmap_info.nodes = 0;
7400 				md_cluster_ops->leave(mddev);
7401 				module_put(md_cluster_mod);
7402 				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7403 			}
7404 			mddev_suspend(mddev);
7405 			md_bitmap_destroy(mddev);
7406 			mddev_resume(mddev);
7407 			mddev->bitmap_info.offset = 0;
7408 		}
7409 	}
7410 	md_update_sb(mddev, 1);
7411 	return rv;
7412 err:
7413 	return rv;
7414 }
7415 
7416 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7417 {
7418 	struct md_rdev *rdev;
7419 	int err = 0;
7420 
7421 	if (mddev->pers == NULL)
7422 		return -ENODEV;
7423 
7424 	rcu_read_lock();
7425 	rdev = md_find_rdev_rcu(mddev, dev);
7426 	if (!rdev)
7427 		err =  -ENODEV;
7428 	else {
7429 		md_error(mddev, rdev);
7430 		if (!test_bit(Faulty, &rdev->flags))
7431 			err = -EBUSY;
7432 	}
7433 	rcu_read_unlock();
7434 	return err;
7435 }
7436 
7437 /*
7438  * We have a problem here : there is no easy way to give a CHS
7439  * virtual geometry. We currently pretend that we have a 2 heads
7440  * 4 sectors (with a BIG number of cylinders...). This drives
7441  * dosfs just mad... ;-)
7442  */
7443 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7444 {
7445 	struct mddev *mddev = bdev->bd_disk->private_data;
7446 
7447 	geo->heads = 2;
7448 	geo->sectors = 4;
7449 	geo->cylinders = mddev->array_sectors / 8;
7450 	return 0;
7451 }
7452 
7453 static inline bool md_ioctl_valid(unsigned int cmd)
7454 {
7455 	switch (cmd) {
7456 	case ADD_NEW_DISK:
7457 	case GET_ARRAY_INFO:
7458 	case GET_BITMAP_FILE:
7459 	case GET_DISK_INFO:
7460 	case HOT_ADD_DISK:
7461 	case HOT_REMOVE_DISK:
7462 	case RAID_VERSION:
7463 	case RESTART_ARRAY_RW:
7464 	case RUN_ARRAY:
7465 	case SET_ARRAY_INFO:
7466 	case SET_BITMAP_FILE:
7467 	case SET_DISK_FAULTY:
7468 	case STOP_ARRAY:
7469 	case STOP_ARRAY_RO:
7470 	case CLUSTERED_DISK_NACK:
7471 		return true;
7472 	default:
7473 		return false;
7474 	}
7475 }
7476 
7477 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7478 			unsigned int cmd, unsigned long arg)
7479 {
7480 	int err = 0;
7481 	void __user *argp = (void __user *)arg;
7482 	struct mddev *mddev = NULL;
7483 	bool did_set_md_closing = false;
7484 
7485 	if (!md_ioctl_valid(cmd))
7486 		return -ENOTTY;
7487 
7488 	switch (cmd) {
7489 	case RAID_VERSION:
7490 	case GET_ARRAY_INFO:
7491 	case GET_DISK_INFO:
7492 		break;
7493 	default:
7494 		if (!capable(CAP_SYS_ADMIN))
7495 			return -EACCES;
7496 	}
7497 
7498 	/*
7499 	 * Commands dealing with the RAID driver but not any
7500 	 * particular array:
7501 	 */
7502 	switch (cmd) {
7503 	case RAID_VERSION:
7504 		err = get_version(argp);
7505 		goto out;
7506 	default:;
7507 	}
7508 
7509 	/*
7510 	 * Commands creating/starting a new array:
7511 	 */
7512 
7513 	mddev = bdev->bd_disk->private_data;
7514 
7515 	if (!mddev) {
7516 		BUG();
7517 		goto out;
7518 	}
7519 
7520 	/* Some actions do not requires the mutex */
7521 	switch (cmd) {
7522 	case GET_ARRAY_INFO:
7523 		if (!mddev->raid_disks && !mddev->external)
7524 			err = -ENODEV;
7525 		else
7526 			err = get_array_info(mddev, argp);
7527 		goto out;
7528 
7529 	case GET_DISK_INFO:
7530 		if (!mddev->raid_disks && !mddev->external)
7531 			err = -ENODEV;
7532 		else
7533 			err = get_disk_info(mddev, argp);
7534 		goto out;
7535 
7536 	case SET_DISK_FAULTY:
7537 		err = set_disk_faulty(mddev, new_decode_dev(arg));
7538 		goto out;
7539 
7540 	case GET_BITMAP_FILE:
7541 		err = get_bitmap_file(mddev, argp);
7542 		goto out;
7543 
7544 	}
7545 
7546 	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7547 		flush_rdev_wq(mddev);
7548 
7549 	if (cmd == HOT_REMOVE_DISK)
7550 		/* need to ensure recovery thread has run */
7551 		wait_event_interruptible_timeout(mddev->sb_wait,
7552 						 !test_bit(MD_RECOVERY_NEEDED,
7553 							   &mddev->recovery),
7554 						 msecs_to_jiffies(5000));
7555 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7556 		/* Need to flush page cache, and ensure no-one else opens
7557 		 * and writes
7558 		 */
7559 		mutex_lock(&mddev->open_mutex);
7560 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7561 			mutex_unlock(&mddev->open_mutex);
7562 			err = -EBUSY;
7563 			goto out;
7564 		}
7565 		if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7566 			mutex_unlock(&mddev->open_mutex);
7567 			err = -EBUSY;
7568 			goto out;
7569 		}
7570 		did_set_md_closing = true;
7571 		mutex_unlock(&mddev->open_mutex);
7572 		sync_blockdev(bdev);
7573 	}
7574 	err = mddev_lock(mddev);
7575 	if (err) {
7576 		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7577 			 err, cmd);
7578 		goto out;
7579 	}
7580 
7581 	if (cmd == SET_ARRAY_INFO) {
7582 		mdu_array_info_t info;
7583 		if (!arg)
7584 			memset(&info, 0, sizeof(info));
7585 		else if (copy_from_user(&info, argp, sizeof(info))) {
7586 			err = -EFAULT;
7587 			goto unlock;
7588 		}
7589 		if (mddev->pers) {
7590 			err = update_array_info(mddev, &info);
7591 			if (err) {
7592 				pr_warn("md: couldn't update array info. %d\n", err);
7593 				goto unlock;
7594 			}
7595 			goto unlock;
7596 		}
7597 		if (!list_empty(&mddev->disks)) {
7598 			pr_warn("md: array %s already has disks!\n", mdname(mddev));
7599 			err = -EBUSY;
7600 			goto unlock;
7601 		}
7602 		if (mddev->raid_disks) {
7603 			pr_warn("md: array %s already initialised!\n", mdname(mddev));
7604 			err = -EBUSY;
7605 			goto unlock;
7606 		}
7607 		err = md_set_array_info(mddev, &info);
7608 		if (err) {
7609 			pr_warn("md: couldn't set array info. %d\n", err);
7610 			goto unlock;
7611 		}
7612 		goto unlock;
7613 	}
7614 
7615 	/*
7616 	 * Commands querying/configuring an existing array:
7617 	 */
7618 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7619 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7620 	if ((!mddev->raid_disks && !mddev->external)
7621 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7622 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7623 	    && cmd != GET_BITMAP_FILE) {
7624 		err = -ENODEV;
7625 		goto unlock;
7626 	}
7627 
7628 	/*
7629 	 * Commands even a read-only array can execute:
7630 	 */
7631 	switch (cmd) {
7632 	case RESTART_ARRAY_RW:
7633 		err = restart_array(mddev);
7634 		goto unlock;
7635 
7636 	case STOP_ARRAY:
7637 		err = do_md_stop(mddev, 0, bdev);
7638 		goto unlock;
7639 
7640 	case STOP_ARRAY_RO:
7641 		err = md_set_readonly(mddev, bdev);
7642 		goto unlock;
7643 
7644 	case HOT_REMOVE_DISK:
7645 		err = hot_remove_disk(mddev, new_decode_dev(arg));
7646 		goto unlock;
7647 
7648 	case ADD_NEW_DISK:
7649 		/* We can support ADD_NEW_DISK on read-only arrays
7650 		 * only if we are re-adding a preexisting device.
7651 		 * So require mddev->pers and MD_DISK_SYNC.
7652 		 */
7653 		if (mddev->pers) {
7654 			mdu_disk_info_t info;
7655 			if (copy_from_user(&info, argp, sizeof(info)))
7656 				err = -EFAULT;
7657 			else if (!(info.state & (1<<MD_DISK_SYNC)))
7658 				/* Need to clear read-only for this */
7659 				break;
7660 			else
7661 				err = md_add_new_disk(mddev, &info);
7662 			goto unlock;
7663 		}
7664 		break;
7665 	}
7666 
7667 	/*
7668 	 * The remaining ioctls are changing the state of the
7669 	 * superblock, so we do not allow them on read-only arrays.
7670 	 */
7671 	if (mddev->ro && mddev->pers) {
7672 		if (mddev->ro == 2) {
7673 			mddev->ro = 0;
7674 			sysfs_notify_dirent_safe(mddev->sysfs_state);
7675 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7676 			/* mddev_unlock will wake thread */
7677 			/* If a device failed while we were read-only, we
7678 			 * need to make sure the metadata is updated now.
7679 			 */
7680 			if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7681 				mddev_unlock(mddev);
7682 				wait_event(mddev->sb_wait,
7683 					   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7684 					   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7685 				mddev_lock_nointr(mddev);
7686 			}
7687 		} else {
7688 			err = -EROFS;
7689 			goto unlock;
7690 		}
7691 	}
7692 
7693 	switch (cmd) {
7694 	case ADD_NEW_DISK:
7695 	{
7696 		mdu_disk_info_t info;
7697 		if (copy_from_user(&info, argp, sizeof(info)))
7698 			err = -EFAULT;
7699 		else
7700 			err = md_add_new_disk(mddev, &info);
7701 		goto unlock;
7702 	}
7703 
7704 	case CLUSTERED_DISK_NACK:
7705 		if (mddev_is_clustered(mddev))
7706 			md_cluster_ops->new_disk_ack(mddev, false);
7707 		else
7708 			err = -EINVAL;
7709 		goto unlock;
7710 
7711 	case HOT_ADD_DISK:
7712 		err = hot_add_disk(mddev, new_decode_dev(arg));
7713 		goto unlock;
7714 
7715 	case RUN_ARRAY:
7716 		err = do_md_run(mddev);
7717 		goto unlock;
7718 
7719 	case SET_BITMAP_FILE:
7720 		err = set_bitmap_file(mddev, (int)arg);
7721 		goto unlock;
7722 
7723 	default:
7724 		err = -EINVAL;
7725 		goto unlock;
7726 	}
7727 
7728 unlock:
7729 	if (mddev->hold_active == UNTIL_IOCTL &&
7730 	    err != -EINVAL)
7731 		mddev->hold_active = 0;
7732 	mddev_unlock(mddev);
7733 out:
7734 	if(did_set_md_closing)
7735 		clear_bit(MD_CLOSING, &mddev->flags);
7736 	return err;
7737 }
7738 #ifdef CONFIG_COMPAT
7739 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7740 		    unsigned int cmd, unsigned long arg)
7741 {
7742 	switch (cmd) {
7743 	case HOT_REMOVE_DISK:
7744 	case HOT_ADD_DISK:
7745 	case SET_DISK_FAULTY:
7746 	case SET_BITMAP_FILE:
7747 		/* These take in integer arg, do not convert */
7748 		break;
7749 	default:
7750 		arg = (unsigned long)compat_ptr(arg);
7751 		break;
7752 	}
7753 
7754 	return md_ioctl(bdev, mode, cmd, arg);
7755 }
7756 #endif /* CONFIG_COMPAT */
7757 
7758 static int md_set_read_only(struct block_device *bdev, bool ro)
7759 {
7760 	struct mddev *mddev = bdev->bd_disk->private_data;
7761 	int err;
7762 
7763 	err = mddev_lock(mddev);
7764 	if (err)
7765 		return err;
7766 
7767 	if (!mddev->raid_disks && !mddev->external) {
7768 		err = -ENODEV;
7769 		goto out_unlock;
7770 	}
7771 
7772 	/*
7773 	 * Transitioning to read-auto need only happen for arrays that call
7774 	 * md_write_start and which are not ready for writes yet.
7775 	 */
7776 	if (!ro && mddev->ro == 1 && mddev->pers) {
7777 		err = restart_array(mddev);
7778 		if (err)
7779 			goto out_unlock;
7780 		mddev->ro = 2;
7781 	}
7782 
7783 out_unlock:
7784 	mddev_unlock(mddev);
7785 	return err;
7786 }
7787 
7788 static int md_open(struct block_device *bdev, fmode_t mode)
7789 {
7790 	/*
7791 	 * Succeed if we can lock the mddev, which confirms that
7792 	 * it isn't being stopped right now.
7793 	 */
7794 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7795 	int err;
7796 
7797 	if (!mddev)
7798 		return -ENODEV;
7799 
7800 	if (mddev->gendisk != bdev->bd_disk) {
7801 		/* we are racing with mddev_put which is discarding this
7802 		 * bd_disk.
7803 		 */
7804 		mddev_put(mddev);
7805 		/* Wait until bdev->bd_disk is definitely gone */
7806 		if (work_pending(&mddev->del_work))
7807 			flush_workqueue(md_misc_wq);
7808 		return -EBUSY;
7809 	}
7810 	BUG_ON(mddev != bdev->bd_disk->private_data);
7811 
7812 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7813 		goto out;
7814 
7815 	if (test_bit(MD_CLOSING, &mddev->flags)) {
7816 		mutex_unlock(&mddev->open_mutex);
7817 		err = -ENODEV;
7818 		goto out;
7819 	}
7820 
7821 	err = 0;
7822 	atomic_inc(&mddev->openers);
7823 	mutex_unlock(&mddev->open_mutex);
7824 
7825 	bdev_check_media_change(bdev);
7826  out:
7827 	if (err)
7828 		mddev_put(mddev);
7829 	return err;
7830 }
7831 
7832 static void md_release(struct gendisk *disk, fmode_t mode)
7833 {
7834 	struct mddev *mddev = disk->private_data;
7835 
7836 	BUG_ON(!mddev);
7837 	atomic_dec(&mddev->openers);
7838 	mddev_put(mddev);
7839 }
7840 
7841 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7842 {
7843 	struct mddev *mddev = disk->private_data;
7844 	unsigned int ret = 0;
7845 
7846 	if (mddev->changed)
7847 		ret = DISK_EVENT_MEDIA_CHANGE;
7848 	mddev->changed = 0;
7849 	return ret;
7850 }
7851 
7852 const struct block_device_operations md_fops =
7853 {
7854 	.owner		= THIS_MODULE,
7855 	.submit_bio	= md_submit_bio,
7856 	.open		= md_open,
7857 	.release	= md_release,
7858 	.ioctl		= md_ioctl,
7859 #ifdef CONFIG_COMPAT
7860 	.compat_ioctl	= md_compat_ioctl,
7861 #endif
7862 	.getgeo		= md_getgeo,
7863 	.check_events	= md_check_events,
7864 	.set_read_only	= md_set_read_only,
7865 };
7866 
7867 static int md_thread(void *arg)
7868 {
7869 	struct md_thread *thread = arg;
7870 
7871 	/*
7872 	 * md_thread is a 'system-thread', it's priority should be very
7873 	 * high. We avoid resource deadlocks individually in each
7874 	 * raid personality. (RAID5 does preallocation) We also use RR and
7875 	 * the very same RT priority as kswapd, thus we will never get
7876 	 * into a priority inversion deadlock.
7877 	 *
7878 	 * we definitely have to have equal or higher priority than
7879 	 * bdflush, otherwise bdflush will deadlock if there are too
7880 	 * many dirty RAID5 blocks.
7881 	 */
7882 
7883 	allow_signal(SIGKILL);
7884 	while (!kthread_should_stop()) {
7885 
7886 		/* We need to wait INTERRUPTIBLE so that
7887 		 * we don't add to the load-average.
7888 		 * That means we need to be sure no signals are
7889 		 * pending
7890 		 */
7891 		if (signal_pending(current))
7892 			flush_signals(current);
7893 
7894 		wait_event_interruptible_timeout
7895 			(thread->wqueue,
7896 			 test_bit(THREAD_WAKEUP, &thread->flags)
7897 			 || kthread_should_stop() || kthread_should_park(),
7898 			 thread->timeout);
7899 
7900 		clear_bit(THREAD_WAKEUP, &thread->flags);
7901 		if (kthread_should_park())
7902 			kthread_parkme();
7903 		if (!kthread_should_stop())
7904 			thread->run(thread);
7905 	}
7906 
7907 	return 0;
7908 }
7909 
7910 void md_wakeup_thread(struct md_thread *thread)
7911 {
7912 	if (thread) {
7913 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7914 		set_bit(THREAD_WAKEUP, &thread->flags);
7915 		wake_up(&thread->wqueue);
7916 	}
7917 }
7918 EXPORT_SYMBOL(md_wakeup_thread);
7919 
7920 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7921 		struct mddev *mddev, const char *name)
7922 {
7923 	struct md_thread *thread;
7924 
7925 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7926 	if (!thread)
7927 		return NULL;
7928 
7929 	init_waitqueue_head(&thread->wqueue);
7930 
7931 	thread->run = run;
7932 	thread->mddev = mddev;
7933 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7934 	thread->tsk = kthread_run(md_thread, thread,
7935 				  "%s_%s",
7936 				  mdname(thread->mddev),
7937 				  name);
7938 	if (IS_ERR(thread->tsk)) {
7939 		kfree(thread);
7940 		return NULL;
7941 	}
7942 	return thread;
7943 }
7944 EXPORT_SYMBOL(md_register_thread);
7945 
7946 void md_unregister_thread(struct md_thread **threadp)
7947 {
7948 	struct md_thread *thread = *threadp;
7949 	if (!thread)
7950 		return;
7951 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7952 	/* Locking ensures that mddev_unlock does not wake_up a
7953 	 * non-existent thread
7954 	 */
7955 	spin_lock(&pers_lock);
7956 	*threadp = NULL;
7957 	spin_unlock(&pers_lock);
7958 
7959 	kthread_stop(thread->tsk);
7960 	kfree(thread);
7961 }
7962 EXPORT_SYMBOL(md_unregister_thread);
7963 
7964 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7965 {
7966 	if (!rdev || test_bit(Faulty, &rdev->flags))
7967 		return;
7968 
7969 	if (!mddev->pers || !mddev->pers->error_handler)
7970 		return;
7971 	mddev->pers->error_handler(mddev,rdev);
7972 	if (mddev->degraded)
7973 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7974 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7975 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7976 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7977 	md_wakeup_thread(mddev->thread);
7978 	if (mddev->event_work.func)
7979 		queue_work(md_misc_wq, &mddev->event_work);
7980 	md_new_event(mddev);
7981 }
7982 EXPORT_SYMBOL(md_error);
7983 
7984 /* seq_file implementation /proc/mdstat */
7985 
7986 static void status_unused(struct seq_file *seq)
7987 {
7988 	int i = 0;
7989 	struct md_rdev *rdev;
7990 
7991 	seq_printf(seq, "unused devices: ");
7992 
7993 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7994 		char b[BDEVNAME_SIZE];
7995 		i++;
7996 		seq_printf(seq, "%s ",
7997 			      bdevname(rdev->bdev,b));
7998 	}
7999 	if (!i)
8000 		seq_printf(seq, "<none>");
8001 
8002 	seq_printf(seq, "\n");
8003 }
8004 
8005 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8006 {
8007 	sector_t max_sectors, resync, res;
8008 	unsigned long dt, db = 0;
8009 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8010 	int scale, recovery_active;
8011 	unsigned int per_milli;
8012 
8013 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8014 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8015 		max_sectors = mddev->resync_max_sectors;
8016 	else
8017 		max_sectors = mddev->dev_sectors;
8018 
8019 	resync = mddev->curr_resync;
8020 	if (resync <= 3) {
8021 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8022 			/* Still cleaning up */
8023 			resync = max_sectors;
8024 	} else if (resync > max_sectors)
8025 		resync = max_sectors;
8026 	else
8027 		resync -= atomic_read(&mddev->recovery_active);
8028 
8029 	if (resync == 0) {
8030 		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8031 			struct md_rdev *rdev;
8032 
8033 			rdev_for_each(rdev, mddev)
8034 				if (rdev->raid_disk >= 0 &&
8035 				    !test_bit(Faulty, &rdev->flags) &&
8036 				    rdev->recovery_offset != MaxSector &&
8037 				    rdev->recovery_offset) {
8038 					seq_printf(seq, "\trecover=REMOTE");
8039 					return 1;
8040 				}
8041 			if (mddev->reshape_position != MaxSector)
8042 				seq_printf(seq, "\treshape=REMOTE");
8043 			else
8044 				seq_printf(seq, "\tresync=REMOTE");
8045 			return 1;
8046 		}
8047 		if (mddev->recovery_cp < MaxSector) {
8048 			seq_printf(seq, "\tresync=PENDING");
8049 			return 1;
8050 		}
8051 		return 0;
8052 	}
8053 	if (resync < 3) {
8054 		seq_printf(seq, "\tresync=DELAYED");
8055 		return 1;
8056 	}
8057 
8058 	WARN_ON(max_sectors == 0);
8059 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8060 	 * in a sector_t, and (max_sectors>>scale) will fit in a
8061 	 * u32, as those are the requirements for sector_div.
8062 	 * Thus 'scale' must be at least 10
8063 	 */
8064 	scale = 10;
8065 	if (sizeof(sector_t) > sizeof(unsigned long)) {
8066 		while ( max_sectors/2 > (1ULL<<(scale+32)))
8067 			scale++;
8068 	}
8069 	res = (resync>>scale)*1000;
8070 	sector_div(res, (u32)((max_sectors>>scale)+1));
8071 
8072 	per_milli = res;
8073 	{
8074 		int i, x = per_milli/50, y = 20-x;
8075 		seq_printf(seq, "[");
8076 		for (i = 0; i < x; i++)
8077 			seq_printf(seq, "=");
8078 		seq_printf(seq, ">");
8079 		for (i = 0; i < y; i++)
8080 			seq_printf(seq, ".");
8081 		seq_printf(seq, "] ");
8082 	}
8083 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8084 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8085 		    "reshape" :
8086 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8087 		     "check" :
8088 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8089 		      "resync" : "recovery"))),
8090 		   per_milli/10, per_milli % 10,
8091 		   (unsigned long long) resync/2,
8092 		   (unsigned long long) max_sectors/2);
8093 
8094 	/*
8095 	 * dt: time from mark until now
8096 	 * db: blocks written from mark until now
8097 	 * rt: remaining time
8098 	 *
8099 	 * rt is a sector_t, which is always 64bit now. We are keeping
8100 	 * the original algorithm, but it is not really necessary.
8101 	 *
8102 	 * Original algorithm:
8103 	 *   So we divide before multiply in case it is 32bit and close
8104 	 *   to the limit.
8105 	 *   We scale the divisor (db) by 32 to avoid losing precision
8106 	 *   near the end of resync when the number of remaining sectors
8107 	 *   is close to 'db'.
8108 	 *   We then divide rt by 32 after multiplying by db to compensate.
8109 	 *   The '+1' avoids division by zero if db is very small.
8110 	 */
8111 	dt = ((jiffies - mddev->resync_mark) / HZ);
8112 	if (!dt) dt++;
8113 
8114 	curr_mark_cnt = mddev->curr_mark_cnt;
8115 	recovery_active = atomic_read(&mddev->recovery_active);
8116 	resync_mark_cnt = mddev->resync_mark_cnt;
8117 
8118 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8119 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8120 
8121 	rt = max_sectors - resync;    /* number of remaining sectors */
8122 	rt = div64_u64(rt, db/32+1);
8123 	rt *= dt;
8124 	rt >>= 5;
8125 
8126 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8127 		   ((unsigned long)rt % 60)/6);
8128 
8129 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8130 	return 1;
8131 }
8132 
8133 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8134 {
8135 	struct list_head *tmp;
8136 	loff_t l = *pos;
8137 	struct mddev *mddev;
8138 
8139 	if (l == 0x10000) {
8140 		++*pos;
8141 		return (void *)2;
8142 	}
8143 	if (l > 0x10000)
8144 		return NULL;
8145 	if (!l--)
8146 		/* header */
8147 		return (void*)1;
8148 
8149 	spin_lock(&all_mddevs_lock);
8150 	list_for_each(tmp,&all_mddevs)
8151 		if (!l--) {
8152 			mddev = list_entry(tmp, struct mddev, all_mddevs);
8153 			mddev_get(mddev);
8154 			spin_unlock(&all_mddevs_lock);
8155 			return mddev;
8156 		}
8157 	spin_unlock(&all_mddevs_lock);
8158 	if (!l--)
8159 		return (void*)2;/* tail */
8160 	return NULL;
8161 }
8162 
8163 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8164 {
8165 	struct list_head *tmp;
8166 	struct mddev *next_mddev, *mddev = v;
8167 
8168 	++*pos;
8169 	if (v == (void*)2)
8170 		return NULL;
8171 
8172 	spin_lock(&all_mddevs_lock);
8173 	if (v == (void*)1)
8174 		tmp = all_mddevs.next;
8175 	else
8176 		tmp = mddev->all_mddevs.next;
8177 	if (tmp != &all_mddevs)
8178 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8179 	else {
8180 		next_mddev = (void*)2;
8181 		*pos = 0x10000;
8182 	}
8183 	spin_unlock(&all_mddevs_lock);
8184 
8185 	if (v != (void*)1)
8186 		mddev_put(mddev);
8187 	return next_mddev;
8188 
8189 }
8190 
8191 static void md_seq_stop(struct seq_file *seq, void *v)
8192 {
8193 	struct mddev *mddev = v;
8194 
8195 	if (mddev && v != (void*)1 && v != (void*)2)
8196 		mddev_put(mddev);
8197 }
8198 
8199 static int md_seq_show(struct seq_file *seq, void *v)
8200 {
8201 	struct mddev *mddev = v;
8202 	sector_t sectors;
8203 	struct md_rdev *rdev;
8204 
8205 	if (v == (void*)1) {
8206 		struct md_personality *pers;
8207 		seq_printf(seq, "Personalities : ");
8208 		spin_lock(&pers_lock);
8209 		list_for_each_entry(pers, &pers_list, list)
8210 			seq_printf(seq, "[%s] ", pers->name);
8211 
8212 		spin_unlock(&pers_lock);
8213 		seq_printf(seq, "\n");
8214 		seq->poll_event = atomic_read(&md_event_count);
8215 		return 0;
8216 	}
8217 	if (v == (void*)2) {
8218 		status_unused(seq);
8219 		return 0;
8220 	}
8221 
8222 	spin_lock(&mddev->lock);
8223 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8224 		seq_printf(seq, "%s : %sactive", mdname(mddev),
8225 						mddev->pers ? "" : "in");
8226 		if (mddev->pers) {
8227 			if (mddev->ro==1)
8228 				seq_printf(seq, " (read-only)");
8229 			if (mddev->ro==2)
8230 				seq_printf(seq, " (auto-read-only)");
8231 			seq_printf(seq, " %s", mddev->pers->name);
8232 		}
8233 
8234 		sectors = 0;
8235 		rcu_read_lock();
8236 		rdev_for_each_rcu(rdev, mddev) {
8237 			char b[BDEVNAME_SIZE];
8238 			seq_printf(seq, " %s[%d]",
8239 				bdevname(rdev->bdev,b), rdev->desc_nr);
8240 			if (test_bit(WriteMostly, &rdev->flags))
8241 				seq_printf(seq, "(W)");
8242 			if (test_bit(Journal, &rdev->flags))
8243 				seq_printf(seq, "(J)");
8244 			if (test_bit(Faulty, &rdev->flags)) {
8245 				seq_printf(seq, "(F)");
8246 				continue;
8247 			}
8248 			if (rdev->raid_disk < 0)
8249 				seq_printf(seq, "(S)"); /* spare */
8250 			if (test_bit(Replacement, &rdev->flags))
8251 				seq_printf(seq, "(R)");
8252 			sectors += rdev->sectors;
8253 		}
8254 		rcu_read_unlock();
8255 
8256 		if (!list_empty(&mddev->disks)) {
8257 			if (mddev->pers)
8258 				seq_printf(seq, "\n      %llu blocks",
8259 					   (unsigned long long)
8260 					   mddev->array_sectors / 2);
8261 			else
8262 				seq_printf(seq, "\n      %llu blocks",
8263 					   (unsigned long long)sectors / 2);
8264 		}
8265 		if (mddev->persistent) {
8266 			if (mddev->major_version != 0 ||
8267 			    mddev->minor_version != 90) {
8268 				seq_printf(seq," super %d.%d",
8269 					   mddev->major_version,
8270 					   mddev->minor_version);
8271 			}
8272 		} else if (mddev->external)
8273 			seq_printf(seq, " super external:%s",
8274 				   mddev->metadata_type);
8275 		else
8276 			seq_printf(seq, " super non-persistent");
8277 
8278 		if (mddev->pers) {
8279 			mddev->pers->status(seq, mddev);
8280 			seq_printf(seq, "\n      ");
8281 			if (mddev->pers->sync_request) {
8282 				if (status_resync(seq, mddev))
8283 					seq_printf(seq, "\n      ");
8284 			}
8285 		} else
8286 			seq_printf(seq, "\n       ");
8287 
8288 		md_bitmap_status(seq, mddev->bitmap);
8289 
8290 		seq_printf(seq, "\n");
8291 	}
8292 	spin_unlock(&mddev->lock);
8293 
8294 	return 0;
8295 }
8296 
8297 static const struct seq_operations md_seq_ops = {
8298 	.start  = md_seq_start,
8299 	.next   = md_seq_next,
8300 	.stop   = md_seq_stop,
8301 	.show   = md_seq_show,
8302 };
8303 
8304 static int md_seq_open(struct inode *inode, struct file *file)
8305 {
8306 	struct seq_file *seq;
8307 	int error;
8308 
8309 	error = seq_open(file, &md_seq_ops);
8310 	if (error)
8311 		return error;
8312 
8313 	seq = file->private_data;
8314 	seq->poll_event = atomic_read(&md_event_count);
8315 	return error;
8316 }
8317 
8318 static int md_unloading;
8319 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8320 {
8321 	struct seq_file *seq = filp->private_data;
8322 	__poll_t mask;
8323 
8324 	if (md_unloading)
8325 		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8326 	poll_wait(filp, &md_event_waiters, wait);
8327 
8328 	/* always allow read */
8329 	mask = EPOLLIN | EPOLLRDNORM;
8330 
8331 	if (seq->poll_event != atomic_read(&md_event_count))
8332 		mask |= EPOLLERR | EPOLLPRI;
8333 	return mask;
8334 }
8335 
8336 static const struct proc_ops mdstat_proc_ops = {
8337 	.proc_open	= md_seq_open,
8338 	.proc_read	= seq_read,
8339 	.proc_lseek	= seq_lseek,
8340 	.proc_release	= seq_release,
8341 	.proc_poll	= mdstat_poll,
8342 };
8343 
8344 int register_md_personality(struct md_personality *p)
8345 {
8346 	pr_debug("md: %s personality registered for level %d\n",
8347 		 p->name, p->level);
8348 	spin_lock(&pers_lock);
8349 	list_add_tail(&p->list, &pers_list);
8350 	spin_unlock(&pers_lock);
8351 	return 0;
8352 }
8353 EXPORT_SYMBOL(register_md_personality);
8354 
8355 int unregister_md_personality(struct md_personality *p)
8356 {
8357 	pr_debug("md: %s personality unregistered\n", p->name);
8358 	spin_lock(&pers_lock);
8359 	list_del_init(&p->list);
8360 	spin_unlock(&pers_lock);
8361 	return 0;
8362 }
8363 EXPORT_SYMBOL(unregister_md_personality);
8364 
8365 int register_md_cluster_operations(struct md_cluster_operations *ops,
8366 				   struct module *module)
8367 {
8368 	int ret = 0;
8369 	spin_lock(&pers_lock);
8370 	if (md_cluster_ops != NULL)
8371 		ret = -EALREADY;
8372 	else {
8373 		md_cluster_ops = ops;
8374 		md_cluster_mod = module;
8375 	}
8376 	spin_unlock(&pers_lock);
8377 	return ret;
8378 }
8379 EXPORT_SYMBOL(register_md_cluster_operations);
8380 
8381 int unregister_md_cluster_operations(void)
8382 {
8383 	spin_lock(&pers_lock);
8384 	md_cluster_ops = NULL;
8385 	spin_unlock(&pers_lock);
8386 	return 0;
8387 }
8388 EXPORT_SYMBOL(unregister_md_cluster_operations);
8389 
8390 int md_setup_cluster(struct mddev *mddev, int nodes)
8391 {
8392 	int ret;
8393 	if (!md_cluster_ops)
8394 		request_module("md-cluster");
8395 	spin_lock(&pers_lock);
8396 	/* ensure module won't be unloaded */
8397 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8398 		pr_warn("can't find md-cluster module or get it's reference.\n");
8399 		spin_unlock(&pers_lock);
8400 		return -ENOENT;
8401 	}
8402 	spin_unlock(&pers_lock);
8403 
8404 	ret = md_cluster_ops->join(mddev, nodes);
8405 	if (!ret)
8406 		mddev->safemode_delay = 0;
8407 	return ret;
8408 }
8409 
8410 void md_cluster_stop(struct mddev *mddev)
8411 {
8412 	if (!md_cluster_ops)
8413 		return;
8414 	md_cluster_ops->leave(mddev);
8415 	module_put(md_cluster_mod);
8416 }
8417 
8418 static int is_mddev_idle(struct mddev *mddev, int init)
8419 {
8420 	struct md_rdev *rdev;
8421 	int idle;
8422 	int curr_events;
8423 
8424 	idle = 1;
8425 	rcu_read_lock();
8426 	rdev_for_each_rcu(rdev, mddev) {
8427 		struct gendisk *disk = rdev->bdev->bd_disk;
8428 		curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8429 			      atomic_read(&disk->sync_io);
8430 		/* sync IO will cause sync_io to increase before the disk_stats
8431 		 * as sync_io is counted when a request starts, and
8432 		 * disk_stats is counted when it completes.
8433 		 * So resync activity will cause curr_events to be smaller than
8434 		 * when there was no such activity.
8435 		 * non-sync IO will cause disk_stat to increase without
8436 		 * increasing sync_io so curr_events will (eventually)
8437 		 * be larger than it was before.  Once it becomes
8438 		 * substantially larger, the test below will cause
8439 		 * the array to appear non-idle, and resync will slow
8440 		 * down.
8441 		 * If there is a lot of outstanding resync activity when
8442 		 * we set last_event to curr_events, then all that activity
8443 		 * completing might cause the array to appear non-idle
8444 		 * and resync will be slowed down even though there might
8445 		 * not have been non-resync activity.  This will only
8446 		 * happen once though.  'last_events' will soon reflect
8447 		 * the state where there is little or no outstanding
8448 		 * resync requests, and further resync activity will
8449 		 * always make curr_events less than last_events.
8450 		 *
8451 		 */
8452 		if (init || curr_events - rdev->last_events > 64) {
8453 			rdev->last_events = curr_events;
8454 			idle = 0;
8455 		}
8456 	}
8457 	rcu_read_unlock();
8458 	return idle;
8459 }
8460 
8461 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8462 {
8463 	/* another "blocks" (512byte) blocks have been synced */
8464 	atomic_sub(blocks, &mddev->recovery_active);
8465 	wake_up(&mddev->recovery_wait);
8466 	if (!ok) {
8467 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8468 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8469 		md_wakeup_thread(mddev->thread);
8470 		// stop recovery, signal do_sync ....
8471 	}
8472 }
8473 EXPORT_SYMBOL(md_done_sync);
8474 
8475 /* md_write_start(mddev, bi)
8476  * If we need to update some array metadata (e.g. 'active' flag
8477  * in superblock) before writing, schedule a superblock update
8478  * and wait for it to complete.
8479  * A return value of 'false' means that the write wasn't recorded
8480  * and cannot proceed as the array is being suspend.
8481  */
8482 bool md_write_start(struct mddev *mddev, struct bio *bi)
8483 {
8484 	int did_change = 0;
8485 
8486 	if (bio_data_dir(bi) != WRITE)
8487 		return true;
8488 
8489 	BUG_ON(mddev->ro == 1);
8490 	if (mddev->ro == 2) {
8491 		/* need to switch to read/write */
8492 		mddev->ro = 0;
8493 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8494 		md_wakeup_thread(mddev->thread);
8495 		md_wakeup_thread(mddev->sync_thread);
8496 		did_change = 1;
8497 	}
8498 	rcu_read_lock();
8499 	percpu_ref_get(&mddev->writes_pending);
8500 	smp_mb(); /* Match smp_mb in set_in_sync() */
8501 	if (mddev->safemode == 1)
8502 		mddev->safemode = 0;
8503 	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8504 	if (mddev->in_sync || mddev->sync_checkers) {
8505 		spin_lock(&mddev->lock);
8506 		if (mddev->in_sync) {
8507 			mddev->in_sync = 0;
8508 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8509 			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8510 			md_wakeup_thread(mddev->thread);
8511 			did_change = 1;
8512 		}
8513 		spin_unlock(&mddev->lock);
8514 	}
8515 	rcu_read_unlock();
8516 	if (did_change)
8517 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8518 	if (!mddev->has_superblocks)
8519 		return true;
8520 	wait_event(mddev->sb_wait,
8521 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8522 		   mddev->suspended);
8523 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8524 		percpu_ref_put(&mddev->writes_pending);
8525 		return false;
8526 	}
8527 	return true;
8528 }
8529 EXPORT_SYMBOL(md_write_start);
8530 
8531 /* md_write_inc can only be called when md_write_start() has
8532  * already been called at least once of the current request.
8533  * It increments the counter and is useful when a single request
8534  * is split into several parts.  Each part causes an increment and
8535  * so needs a matching md_write_end().
8536  * Unlike md_write_start(), it is safe to call md_write_inc() inside
8537  * a spinlocked region.
8538  */
8539 void md_write_inc(struct mddev *mddev, struct bio *bi)
8540 {
8541 	if (bio_data_dir(bi) != WRITE)
8542 		return;
8543 	WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8544 	percpu_ref_get(&mddev->writes_pending);
8545 }
8546 EXPORT_SYMBOL(md_write_inc);
8547 
8548 void md_write_end(struct mddev *mddev)
8549 {
8550 	percpu_ref_put(&mddev->writes_pending);
8551 
8552 	if (mddev->safemode == 2)
8553 		md_wakeup_thread(mddev->thread);
8554 	else if (mddev->safemode_delay)
8555 		/* The roundup() ensures this only performs locking once
8556 		 * every ->safemode_delay jiffies
8557 		 */
8558 		mod_timer(&mddev->safemode_timer,
8559 			  roundup(jiffies, mddev->safemode_delay) +
8560 			  mddev->safemode_delay);
8561 }
8562 
8563 EXPORT_SYMBOL(md_write_end);
8564 
8565 /* This is used by raid0 and raid10 */
8566 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8567 			struct bio *bio, sector_t start, sector_t size)
8568 {
8569 	struct bio *discard_bio = NULL;
8570 
8571 	if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8572 			&discard_bio) || !discard_bio)
8573 		return;
8574 
8575 	bio_chain(discard_bio, bio);
8576 	bio_clone_blkg_association(discard_bio, bio);
8577 	if (mddev->gendisk)
8578 		trace_block_bio_remap(discard_bio,
8579 				disk_devt(mddev->gendisk),
8580 				bio->bi_iter.bi_sector);
8581 	submit_bio_noacct(discard_bio);
8582 }
8583 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8584 
8585 static void md_end_io_acct(struct bio *bio)
8586 {
8587 	struct md_io_acct *md_io_acct = bio->bi_private;
8588 	struct bio *orig_bio = md_io_acct->orig_bio;
8589 
8590 	orig_bio->bi_status = bio->bi_status;
8591 
8592 	bio_end_io_acct(orig_bio, md_io_acct->start_time);
8593 	bio_put(bio);
8594 	bio_endio(orig_bio);
8595 }
8596 
8597 /*
8598  * Used by personalities that don't already clone the bio and thus can't
8599  * easily add the timestamp to their extended bio structure.
8600  */
8601 void md_account_bio(struct mddev *mddev, struct bio **bio)
8602 {
8603 	struct md_io_acct *md_io_acct;
8604 	struct bio *clone;
8605 
8606 	if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8607 		return;
8608 
8609 	clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8610 	md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8611 	md_io_acct->orig_bio = *bio;
8612 	md_io_acct->start_time = bio_start_io_acct(*bio);
8613 
8614 	clone->bi_end_io = md_end_io_acct;
8615 	clone->bi_private = md_io_acct;
8616 	*bio = clone;
8617 }
8618 EXPORT_SYMBOL_GPL(md_account_bio);
8619 
8620 /* md_allow_write(mddev)
8621  * Calling this ensures that the array is marked 'active' so that writes
8622  * may proceed without blocking.  It is important to call this before
8623  * attempting a GFP_KERNEL allocation while holding the mddev lock.
8624  * Must be called with mddev_lock held.
8625  */
8626 void md_allow_write(struct mddev *mddev)
8627 {
8628 	if (!mddev->pers)
8629 		return;
8630 	if (mddev->ro)
8631 		return;
8632 	if (!mddev->pers->sync_request)
8633 		return;
8634 
8635 	spin_lock(&mddev->lock);
8636 	if (mddev->in_sync) {
8637 		mddev->in_sync = 0;
8638 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8639 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8640 		if (mddev->safemode_delay &&
8641 		    mddev->safemode == 0)
8642 			mddev->safemode = 1;
8643 		spin_unlock(&mddev->lock);
8644 		md_update_sb(mddev, 0);
8645 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8646 		/* wait for the dirty state to be recorded in the metadata */
8647 		wait_event(mddev->sb_wait,
8648 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8649 	} else
8650 		spin_unlock(&mddev->lock);
8651 }
8652 EXPORT_SYMBOL_GPL(md_allow_write);
8653 
8654 #define SYNC_MARKS	10
8655 #define	SYNC_MARK_STEP	(3*HZ)
8656 #define UPDATE_FREQUENCY (5*60*HZ)
8657 void md_do_sync(struct md_thread *thread)
8658 {
8659 	struct mddev *mddev = thread->mddev;
8660 	struct mddev *mddev2;
8661 	unsigned int currspeed = 0, window;
8662 	sector_t max_sectors,j, io_sectors, recovery_done;
8663 	unsigned long mark[SYNC_MARKS];
8664 	unsigned long update_time;
8665 	sector_t mark_cnt[SYNC_MARKS];
8666 	int last_mark,m;
8667 	struct list_head *tmp;
8668 	sector_t last_check;
8669 	int skipped = 0;
8670 	struct md_rdev *rdev;
8671 	char *desc, *action = NULL;
8672 	struct blk_plug plug;
8673 	int ret;
8674 
8675 	/* just incase thread restarts... */
8676 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8677 	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8678 		return;
8679 	if (mddev->ro) {/* never try to sync a read-only array */
8680 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8681 		return;
8682 	}
8683 
8684 	if (mddev_is_clustered(mddev)) {
8685 		ret = md_cluster_ops->resync_start(mddev);
8686 		if (ret)
8687 			goto skip;
8688 
8689 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8690 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8691 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8692 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8693 		     && ((unsigned long long)mddev->curr_resync_completed
8694 			 < (unsigned long long)mddev->resync_max_sectors))
8695 			goto skip;
8696 	}
8697 
8698 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8699 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8700 			desc = "data-check";
8701 			action = "check";
8702 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8703 			desc = "requested-resync";
8704 			action = "repair";
8705 		} else
8706 			desc = "resync";
8707 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8708 		desc = "reshape";
8709 	else
8710 		desc = "recovery";
8711 
8712 	mddev->last_sync_action = action ?: desc;
8713 
8714 	/* we overload curr_resync somewhat here.
8715 	 * 0 == not engaged in resync at all
8716 	 * 2 == checking that there is no conflict with another sync
8717 	 * 1 == like 2, but have yielded to allow conflicting resync to
8718 	 *		commence
8719 	 * other == active in resync - this many blocks
8720 	 *
8721 	 * Before starting a resync we must have set curr_resync to
8722 	 * 2, and then checked that every "conflicting" array has curr_resync
8723 	 * less than ours.  When we find one that is the same or higher
8724 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8725 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8726 	 * This will mean we have to start checking from the beginning again.
8727 	 *
8728 	 */
8729 
8730 	do {
8731 		int mddev2_minor = -1;
8732 		mddev->curr_resync = 2;
8733 
8734 	try_again:
8735 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8736 			goto skip;
8737 		for_each_mddev(mddev2, tmp) {
8738 			if (mddev2 == mddev)
8739 				continue;
8740 			if (!mddev->parallel_resync
8741 			&&  mddev2->curr_resync
8742 			&&  match_mddev_units(mddev, mddev2)) {
8743 				DEFINE_WAIT(wq);
8744 				if (mddev < mddev2 && mddev->curr_resync == 2) {
8745 					/* arbitrarily yield */
8746 					mddev->curr_resync = 1;
8747 					wake_up(&resync_wait);
8748 				}
8749 				if (mddev > mddev2 && mddev->curr_resync == 1)
8750 					/* no need to wait here, we can wait the next
8751 					 * time 'round when curr_resync == 2
8752 					 */
8753 					continue;
8754 				/* We need to wait 'interruptible' so as not to
8755 				 * contribute to the load average, and not to
8756 				 * be caught by 'softlockup'
8757 				 */
8758 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8759 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8760 				    mddev2->curr_resync >= mddev->curr_resync) {
8761 					if (mddev2_minor != mddev2->md_minor) {
8762 						mddev2_minor = mddev2->md_minor;
8763 						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8764 							desc, mdname(mddev),
8765 							mdname(mddev2));
8766 					}
8767 					mddev_put(mddev2);
8768 					if (signal_pending(current))
8769 						flush_signals(current);
8770 					schedule();
8771 					finish_wait(&resync_wait, &wq);
8772 					goto try_again;
8773 				}
8774 				finish_wait(&resync_wait, &wq);
8775 			}
8776 		}
8777 	} while (mddev->curr_resync < 2);
8778 
8779 	j = 0;
8780 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8781 		/* resync follows the size requested by the personality,
8782 		 * which defaults to physical size, but can be virtual size
8783 		 */
8784 		max_sectors = mddev->resync_max_sectors;
8785 		atomic64_set(&mddev->resync_mismatches, 0);
8786 		/* we don't use the checkpoint if there's a bitmap */
8787 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8788 			j = mddev->resync_min;
8789 		else if (!mddev->bitmap)
8790 			j = mddev->recovery_cp;
8791 
8792 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8793 		max_sectors = mddev->resync_max_sectors;
8794 		/*
8795 		 * If the original node aborts reshaping then we continue the
8796 		 * reshaping, so set j again to avoid restart reshape from the
8797 		 * first beginning
8798 		 */
8799 		if (mddev_is_clustered(mddev) &&
8800 		    mddev->reshape_position != MaxSector)
8801 			j = mddev->reshape_position;
8802 	} else {
8803 		/* recovery follows the physical size of devices */
8804 		max_sectors = mddev->dev_sectors;
8805 		j = MaxSector;
8806 		rcu_read_lock();
8807 		rdev_for_each_rcu(rdev, mddev)
8808 			if (rdev->raid_disk >= 0 &&
8809 			    !test_bit(Journal, &rdev->flags) &&
8810 			    !test_bit(Faulty, &rdev->flags) &&
8811 			    !test_bit(In_sync, &rdev->flags) &&
8812 			    rdev->recovery_offset < j)
8813 				j = rdev->recovery_offset;
8814 		rcu_read_unlock();
8815 
8816 		/* If there is a bitmap, we need to make sure all
8817 		 * writes that started before we added a spare
8818 		 * complete before we start doing a recovery.
8819 		 * Otherwise the write might complete and (via
8820 		 * bitmap_endwrite) set a bit in the bitmap after the
8821 		 * recovery has checked that bit and skipped that
8822 		 * region.
8823 		 */
8824 		if (mddev->bitmap) {
8825 			mddev->pers->quiesce(mddev, 1);
8826 			mddev->pers->quiesce(mddev, 0);
8827 		}
8828 	}
8829 
8830 	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8831 	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8832 	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8833 		 speed_max(mddev), desc);
8834 
8835 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8836 
8837 	io_sectors = 0;
8838 	for (m = 0; m < SYNC_MARKS; m++) {
8839 		mark[m] = jiffies;
8840 		mark_cnt[m] = io_sectors;
8841 	}
8842 	last_mark = 0;
8843 	mddev->resync_mark = mark[last_mark];
8844 	mddev->resync_mark_cnt = mark_cnt[last_mark];
8845 
8846 	/*
8847 	 * Tune reconstruction:
8848 	 */
8849 	window = 32 * (PAGE_SIZE / 512);
8850 	pr_debug("md: using %dk window, over a total of %lluk.\n",
8851 		 window/2, (unsigned long long)max_sectors/2);
8852 
8853 	atomic_set(&mddev->recovery_active, 0);
8854 	last_check = 0;
8855 
8856 	if (j>2) {
8857 		pr_debug("md: resuming %s of %s from checkpoint.\n",
8858 			 desc, mdname(mddev));
8859 		mddev->curr_resync = j;
8860 	} else
8861 		mddev->curr_resync = 3; /* no longer delayed */
8862 	mddev->curr_resync_completed = j;
8863 	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8864 	md_new_event(mddev);
8865 	update_time = jiffies;
8866 
8867 	blk_start_plug(&plug);
8868 	while (j < max_sectors) {
8869 		sector_t sectors;
8870 
8871 		skipped = 0;
8872 
8873 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8874 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8875 		      (mddev->curr_resync - mddev->curr_resync_completed)
8876 		      > (max_sectors >> 4)) ||
8877 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8878 		     (j - mddev->curr_resync_completed)*2
8879 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8880 		     mddev->curr_resync_completed > mddev->resync_max
8881 			    )) {
8882 			/* time to update curr_resync_completed */
8883 			wait_event(mddev->recovery_wait,
8884 				   atomic_read(&mddev->recovery_active) == 0);
8885 			mddev->curr_resync_completed = j;
8886 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8887 			    j > mddev->recovery_cp)
8888 				mddev->recovery_cp = j;
8889 			update_time = jiffies;
8890 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8891 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8892 		}
8893 
8894 		while (j >= mddev->resync_max &&
8895 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8896 			/* As this condition is controlled by user-space,
8897 			 * we can block indefinitely, so use '_interruptible'
8898 			 * to avoid triggering warnings.
8899 			 */
8900 			flush_signals(current); /* just in case */
8901 			wait_event_interruptible(mddev->recovery_wait,
8902 						 mddev->resync_max > j
8903 						 || test_bit(MD_RECOVERY_INTR,
8904 							     &mddev->recovery));
8905 		}
8906 
8907 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8908 			break;
8909 
8910 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8911 		if (sectors == 0) {
8912 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8913 			break;
8914 		}
8915 
8916 		if (!skipped) { /* actual IO requested */
8917 			io_sectors += sectors;
8918 			atomic_add(sectors, &mddev->recovery_active);
8919 		}
8920 
8921 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8922 			break;
8923 
8924 		j += sectors;
8925 		if (j > max_sectors)
8926 			/* when skipping, extra large numbers can be returned. */
8927 			j = max_sectors;
8928 		if (j > 2)
8929 			mddev->curr_resync = j;
8930 		mddev->curr_mark_cnt = io_sectors;
8931 		if (last_check == 0)
8932 			/* this is the earliest that rebuild will be
8933 			 * visible in /proc/mdstat
8934 			 */
8935 			md_new_event(mddev);
8936 
8937 		if (last_check + window > io_sectors || j == max_sectors)
8938 			continue;
8939 
8940 		last_check = io_sectors;
8941 	repeat:
8942 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8943 			/* step marks */
8944 			int next = (last_mark+1) % SYNC_MARKS;
8945 
8946 			mddev->resync_mark = mark[next];
8947 			mddev->resync_mark_cnt = mark_cnt[next];
8948 			mark[next] = jiffies;
8949 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8950 			last_mark = next;
8951 		}
8952 
8953 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8954 			break;
8955 
8956 		/*
8957 		 * this loop exits only if either when we are slower than
8958 		 * the 'hard' speed limit, or the system was IO-idle for
8959 		 * a jiffy.
8960 		 * the system might be non-idle CPU-wise, but we only care
8961 		 * about not overloading the IO subsystem. (things like an
8962 		 * e2fsck being done on the RAID array should execute fast)
8963 		 */
8964 		cond_resched();
8965 
8966 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8967 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8968 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8969 
8970 		if (currspeed > speed_min(mddev)) {
8971 			if (currspeed > speed_max(mddev)) {
8972 				msleep(500);
8973 				goto repeat;
8974 			}
8975 			if (!is_mddev_idle(mddev, 0)) {
8976 				/*
8977 				 * Give other IO more of a chance.
8978 				 * The faster the devices, the less we wait.
8979 				 */
8980 				wait_event(mddev->recovery_wait,
8981 					   !atomic_read(&mddev->recovery_active));
8982 			}
8983 		}
8984 	}
8985 	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8986 		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8987 		? "interrupted" : "done");
8988 	/*
8989 	 * this also signals 'finished resyncing' to md_stop
8990 	 */
8991 	blk_finish_plug(&plug);
8992 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8993 
8994 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8995 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8996 	    mddev->curr_resync > 3) {
8997 		mddev->curr_resync_completed = mddev->curr_resync;
8998 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
8999 	}
9000 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
9001 
9002 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9003 	    mddev->curr_resync > 3) {
9004 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9005 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9006 				if (mddev->curr_resync >= mddev->recovery_cp) {
9007 					pr_debug("md: checkpointing %s of %s.\n",
9008 						 desc, mdname(mddev));
9009 					if (test_bit(MD_RECOVERY_ERROR,
9010 						&mddev->recovery))
9011 						mddev->recovery_cp =
9012 							mddev->curr_resync_completed;
9013 					else
9014 						mddev->recovery_cp =
9015 							mddev->curr_resync;
9016 				}
9017 			} else
9018 				mddev->recovery_cp = MaxSector;
9019 		} else {
9020 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9021 				mddev->curr_resync = MaxSector;
9022 			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9023 			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9024 				rcu_read_lock();
9025 				rdev_for_each_rcu(rdev, mddev)
9026 					if (rdev->raid_disk >= 0 &&
9027 					    mddev->delta_disks >= 0 &&
9028 					    !test_bit(Journal, &rdev->flags) &&
9029 					    !test_bit(Faulty, &rdev->flags) &&
9030 					    !test_bit(In_sync, &rdev->flags) &&
9031 					    rdev->recovery_offset < mddev->curr_resync)
9032 						rdev->recovery_offset = mddev->curr_resync;
9033 				rcu_read_unlock();
9034 			}
9035 		}
9036 	}
9037  skip:
9038 	/* set CHANGE_PENDING here since maybe another update is needed,
9039 	 * so other nodes are informed. It should be harmless for normal
9040 	 * raid */
9041 	set_mask_bits(&mddev->sb_flags, 0,
9042 		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9043 
9044 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9045 			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9046 			mddev->delta_disks > 0 &&
9047 			mddev->pers->finish_reshape &&
9048 			mddev->pers->size &&
9049 			mddev->queue) {
9050 		mddev_lock_nointr(mddev);
9051 		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9052 		mddev_unlock(mddev);
9053 		if (!mddev_is_clustered(mddev))
9054 			set_capacity_and_notify(mddev->gendisk,
9055 						mddev->array_sectors);
9056 	}
9057 
9058 	spin_lock(&mddev->lock);
9059 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9060 		/* We completed so min/max setting can be forgotten if used. */
9061 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9062 			mddev->resync_min = 0;
9063 		mddev->resync_max = MaxSector;
9064 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9065 		mddev->resync_min = mddev->curr_resync_completed;
9066 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9067 	mddev->curr_resync = 0;
9068 	spin_unlock(&mddev->lock);
9069 
9070 	wake_up(&resync_wait);
9071 	md_wakeup_thread(mddev->thread);
9072 	return;
9073 }
9074 EXPORT_SYMBOL_GPL(md_do_sync);
9075 
9076 static int remove_and_add_spares(struct mddev *mddev,
9077 				 struct md_rdev *this)
9078 {
9079 	struct md_rdev *rdev;
9080 	int spares = 0;
9081 	int removed = 0;
9082 	bool remove_some = false;
9083 
9084 	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9085 		/* Mustn't remove devices when resync thread is running */
9086 		return 0;
9087 
9088 	rdev_for_each(rdev, mddev) {
9089 		if ((this == NULL || rdev == this) &&
9090 		    rdev->raid_disk >= 0 &&
9091 		    !test_bit(Blocked, &rdev->flags) &&
9092 		    test_bit(Faulty, &rdev->flags) &&
9093 		    atomic_read(&rdev->nr_pending)==0) {
9094 			/* Faulty non-Blocked devices with nr_pending == 0
9095 			 * never get nr_pending incremented,
9096 			 * never get Faulty cleared, and never get Blocked set.
9097 			 * So we can synchronize_rcu now rather than once per device
9098 			 */
9099 			remove_some = true;
9100 			set_bit(RemoveSynchronized, &rdev->flags);
9101 		}
9102 	}
9103 
9104 	if (remove_some)
9105 		synchronize_rcu();
9106 	rdev_for_each(rdev, mddev) {
9107 		if ((this == NULL || rdev == this) &&
9108 		    rdev->raid_disk >= 0 &&
9109 		    !test_bit(Blocked, &rdev->flags) &&
9110 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9111 		     (!test_bit(In_sync, &rdev->flags) &&
9112 		      !test_bit(Journal, &rdev->flags))) &&
9113 		    atomic_read(&rdev->nr_pending)==0)) {
9114 			if (mddev->pers->hot_remove_disk(
9115 				    mddev, rdev) == 0) {
9116 				sysfs_unlink_rdev(mddev, rdev);
9117 				rdev->saved_raid_disk = rdev->raid_disk;
9118 				rdev->raid_disk = -1;
9119 				removed++;
9120 			}
9121 		}
9122 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9123 			clear_bit(RemoveSynchronized, &rdev->flags);
9124 	}
9125 
9126 	if (removed && mddev->kobj.sd)
9127 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9128 
9129 	if (this && removed)
9130 		goto no_add;
9131 
9132 	rdev_for_each(rdev, mddev) {
9133 		if (this && this != rdev)
9134 			continue;
9135 		if (test_bit(Candidate, &rdev->flags))
9136 			continue;
9137 		if (rdev->raid_disk >= 0 &&
9138 		    !test_bit(In_sync, &rdev->flags) &&
9139 		    !test_bit(Journal, &rdev->flags) &&
9140 		    !test_bit(Faulty, &rdev->flags))
9141 			spares++;
9142 		if (rdev->raid_disk >= 0)
9143 			continue;
9144 		if (test_bit(Faulty, &rdev->flags))
9145 			continue;
9146 		if (!test_bit(Journal, &rdev->flags)) {
9147 			if (mddev->ro &&
9148 			    ! (rdev->saved_raid_disk >= 0 &&
9149 			       !test_bit(Bitmap_sync, &rdev->flags)))
9150 				continue;
9151 
9152 			rdev->recovery_offset = 0;
9153 		}
9154 		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9155 			/* failure here is OK */
9156 			sysfs_link_rdev(mddev, rdev);
9157 			if (!test_bit(Journal, &rdev->flags))
9158 				spares++;
9159 			md_new_event(mddev);
9160 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9161 		}
9162 	}
9163 no_add:
9164 	if (removed)
9165 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9166 	return spares;
9167 }
9168 
9169 static void md_start_sync(struct work_struct *ws)
9170 {
9171 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9172 
9173 	mddev->sync_thread = md_register_thread(md_do_sync,
9174 						mddev,
9175 						"resync");
9176 	if (!mddev->sync_thread) {
9177 		pr_warn("%s: could not start resync thread...\n",
9178 			mdname(mddev));
9179 		/* leave the spares where they are, it shouldn't hurt */
9180 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9181 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9182 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9183 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9184 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9185 		wake_up(&resync_wait);
9186 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9187 				       &mddev->recovery))
9188 			if (mddev->sysfs_action)
9189 				sysfs_notify_dirent_safe(mddev->sysfs_action);
9190 	} else
9191 		md_wakeup_thread(mddev->sync_thread);
9192 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9193 	md_new_event(mddev);
9194 }
9195 
9196 /*
9197  * This routine is regularly called by all per-raid-array threads to
9198  * deal with generic issues like resync and super-block update.
9199  * Raid personalities that don't have a thread (linear/raid0) do not
9200  * need this as they never do any recovery or update the superblock.
9201  *
9202  * It does not do any resync itself, but rather "forks" off other threads
9203  * to do that as needed.
9204  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9205  * "->recovery" and create a thread at ->sync_thread.
9206  * When the thread finishes it sets MD_RECOVERY_DONE
9207  * and wakeups up this thread which will reap the thread and finish up.
9208  * This thread also removes any faulty devices (with nr_pending == 0).
9209  *
9210  * The overall approach is:
9211  *  1/ if the superblock needs updating, update it.
9212  *  2/ If a recovery thread is running, don't do anything else.
9213  *  3/ If recovery has finished, clean up, possibly marking spares active.
9214  *  4/ If there are any faulty devices, remove them.
9215  *  5/ If array is degraded, try to add spares devices
9216  *  6/ If array has spares or is not in-sync, start a resync thread.
9217  */
9218 void md_check_recovery(struct mddev *mddev)
9219 {
9220 	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9221 		/* Write superblock - thread that called mddev_suspend()
9222 		 * holds reconfig_mutex for us.
9223 		 */
9224 		set_bit(MD_UPDATING_SB, &mddev->flags);
9225 		smp_mb__after_atomic();
9226 		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9227 			md_update_sb(mddev, 0);
9228 		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9229 		wake_up(&mddev->sb_wait);
9230 	}
9231 
9232 	if (mddev->suspended)
9233 		return;
9234 
9235 	if (mddev->bitmap)
9236 		md_bitmap_daemon_work(mddev);
9237 
9238 	if (signal_pending(current)) {
9239 		if (mddev->pers->sync_request && !mddev->external) {
9240 			pr_debug("md: %s in immediate safe mode\n",
9241 				 mdname(mddev));
9242 			mddev->safemode = 2;
9243 		}
9244 		flush_signals(current);
9245 	}
9246 
9247 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9248 		return;
9249 	if ( ! (
9250 		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9251 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9252 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9253 		(mddev->external == 0 && mddev->safemode == 1) ||
9254 		(mddev->safemode == 2
9255 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9256 		))
9257 		return;
9258 
9259 	if (mddev_trylock(mddev)) {
9260 		int spares = 0;
9261 		bool try_set_sync = mddev->safemode != 0;
9262 
9263 		if (!mddev->external && mddev->safemode == 1)
9264 			mddev->safemode = 0;
9265 
9266 		if (mddev->ro) {
9267 			struct md_rdev *rdev;
9268 			if (!mddev->external && mddev->in_sync)
9269 				/* 'Blocked' flag not needed as failed devices
9270 				 * will be recorded if array switched to read/write.
9271 				 * Leaving it set will prevent the device
9272 				 * from being removed.
9273 				 */
9274 				rdev_for_each(rdev, mddev)
9275 					clear_bit(Blocked, &rdev->flags);
9276 			/* On a read-only array we can:
9277 			 * - remove failed devices
9278 			 * - add already-in_sync devices if the array itself
9279 			 *   is in-sync.
9280 			 * As we only add devices that are already in-sync,
9281 			 * we can activate the spares immediately.
9282 			 */
9283 			remove_and_add_spares(mddev, NULL);
9284 			/* There is no thread, but we need to call
9285 			 * ->spare_active and clear saved_raid_disk
9286 			 */
9287 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9288 			md_reap_sync_thread(mddev);
9289 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9290 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9291 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9292 			goto unlock;
9293 		}
9294 
9295 		if (mddev_is_clustered(mddev)) {
9296 			struct md_rdev *rdev, *tmp;
9297 			/* kick the device if another node issued a
9298 			 * remove disk.
9299 			 */
9300 			rdev_for_each_safe(rdev, tmp, mddev) {
9301 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9302 						rdev->raid_disk < 0)
9303 					md_kick_rdev_from_array(rdev);
9304 			}
9305 		}
9306 
9307 		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9308 			spin_lock(&mddev->lock);
9309 			set_in_sync(mddev);
9310 			spin_unlock(&mddev->lock);
9311 		}
9312 
9313 		if (mddev->sb_flags)
9314 			md_update_sb(mddev, 0);
9315 
9316 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9317 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9318 			/* resync/recovery still happening */
9319 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9320 			goto unlock;
9321 		}
9322 		if (mddev->sync_thread) {
9323 			md_reap_sync_thread(mddev);
9324 			goto unlock;
9325 		}
9326 		/* Set RUNNING before clearing NEEDED to avoid
9327 		 * any transients in the value of "sync_action".
9328 		 */
9329 		mddev->curr_resync_completed = 0;
9330 		spin_lock(&mddev->lock);
9331 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9332 		spin_unlock(&mddev->lock);
9333 		/* Clear some bits that don't mean anything, but
9334 		 * might be left set
9335 		 */
9336 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9337 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9338 
9339 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9340 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9341 			goto not_running;
9342 		/* no recovery is running.
9343 		 * remove any failed drives, then
9344 		 * add spares if possible.
9345 		 * Spares are also removed and re-added, to allow
9346 		 * the personality to fail the re-add.
9347 		 */
9348 
9349 		if (mddev->reshape_position != MaxSector) {
9350 			if (mddev->pers->check_reshape == NULL ||
9351 			    mddev->pers->check_reshape(mddev) != 0)
9352 				/* Cannot proceed */
9353 				goto not_running;
9354 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9355 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9356 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9357 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9358 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9359 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9360 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9361 		} else if (mddev->recovery_cp < MaxSector) {
9362 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9363 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9364 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9365 			/* nothing to be done ... */
9366 			goto not_running;
9367 
9368 		if (mddev->pers->sync_request) {
9369 			if (spares) {
9370 				/* We are adding a device or devices to an array
9371 				 * which has the bitmap stored on all devices.
9372 				 * So make sure all bitmap pages get written
9373 				 */
9374 				md_bitmap_write_all(mddev->bitmap);
9375 			}
9376 			INIT_WORK(&mddev->del_work, md_start_sync);
9377 			queue_work(md_misc_wq, &mddev->del_work);
9378 			goto unlock;
9379 		}
9380 	not_running:
9381 		if (!mddev->sync_thread) {
9382 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9383 			wake_up(&resync_wait);
9384 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9385 					       &mddev->recovery))
9386 				if (mddev->sysfs_action)
9387 					sysfs_notify_dirent_safe(mddev->sysfs_action);
9388 		}
9389 	unlock:
9390 		wake_up(&mddev->sb_wait);
9391 		mddev_unlock(mddev);
9392 	}
9393 }
9394 EXPORT_SYMBOL(md_check_recovery);
9395 
9396 void md_reap_sync_thread(struct mddev *mddev)
9397 {
9398 	struct md_rdev *rdev;
9399 	sector_t old_dev_sectors = mddev->dev_sectors;
9400 	bool is_reshaped = false;
9401 
9402 	/* resync has finished, collect result */
9403 	md_unregister_thread(&mddev->sync_thread);
9404 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9405 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9406 	    mddev->degraded != mddev->raid_disks) {
9407 		/* success...*/
9408 		/* activate any spares */
9409 		if (mddev->pers->spare_active(mddev)) {
9410 			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9411 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9412 		}
9413 	}
9414 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9415 	    mddev->pers->finish_reshape) {
9416 		mddev->pers->finish_reshape(mddev);
9417 		if (mddev_is_clustered(mddev))
9418 			is_reshaped = true;
9419 	}
9420 
9421 	/* If array is no-longer degraded, then any saved_raid_disk
9422 	 * information must be scrapped.
9423 	 */
9424 	if (!mddev->degraded)
9425 		rdev_for_each(rdev, mddev)
9426 			rdev->saved_raid_disk = -1;
9427 
9428 	md_update_sb(mddev, 1);
9429 	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9430 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9431 	 * clustered raid */
9432 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9433 		md_cluster_ops->resync_finish(mddev);
9434 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9435 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9436 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9437 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9438 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9439 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9440 	/*
9441 	 * We call md_cluster_ops->update_size here because sync_size could
9442 	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9443 	 * so it is time to update size across cluster.
9444 	 */
9445 	if (mddev_is_clustered(mddev) && is_reshaped
9446 				      && !test_bit(MD_CLOSING, &mddev->flags))
9447 		md_cluster_ops->update_size(mddev, old_dev_sectors);
9448 	wake_up(&resync_wait);
9449 	/* flag recovery needed just to double check */
9450 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9451 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9452 	md_new_event(mddev);
9453 	if (mddev->event_work.func)
9454 		queue_work(md_misc_wq, &mddev->event_work);
9455 }
9456 EXPORT_SYMBOL(md_reap_sync_thread);
9457 
9458 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9459 {
9460 	sysfs_notify_dirent_safe(rdev->sysfs_state);
9461 	wait_event_timeout(rdev->blocked_wait,
9462 			   !test_bit(Blocked, &rdev->flags) &&
9463 			   !test_bit(BlockedBadBlocks, &rdev->flags),
9464 			   msecs_to_jiffies(5000));
9465 	rdev_dec_pending(rdev, mddev);
9466 }
9467 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9468 
9469 void md_finish_reshape(struct mddev *mddev)
9470 {
9471 	/* called be personality module when reshape completes. */
9472 	struct md_rdev *rdev;
9473 
9474 	rdev_for_each(rdev, mddev) {
9475 		if (rdev->data_offset > rdev->new_data_offset)
9476 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9477 		else
9478 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9479 		rdev->data_offset = rdev->new_data_offset;
9480 	}
9481 }
9482 EXPORT_SYMBOL(md_finish_reshape);
9483 
9484 /* Bad block management */
9485 
9486 /* Returns 1 on success, 0 on failure */
9487 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9488 		       int is_new)
9489 {
9490 	struct mddev *mddev = rdev->mddev;
9491 	int rv;
9492 	if (is_new)
9493 		s += rdev->new_data_offset;
9494 	else
9495 		s += rdev->data_offset;
9496 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9497 	if (rv == 0) {
9498 		/* Make sure they get written out promptly */
9499 		if (test_bit(ExternalBbl, &rdev->flags))
9500 			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9501 		sysfs_notify_dirent_safe(rdev->sysfs_state);
9502 		set_mask_bits(&mddev->sb_flags, 0,
9503 			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9504 		md_wakeup_thread(rdev->mddev->thread);
9505 		return 1;
9506 	} else
9507 		return 0;
9508 }
9509 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9510 
9511 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9512 			 int is_new)
9513 {
9514 	int rv;
9515 	if (is_new)
9516 		s += rdev->new_data_offset;
9517 	else
9518 		s += rdev->data_offset;
9519 	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9520 	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9521 		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9522 	return rv;
9523 }
9524 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9525 
9526 static int md_notify_reboot(struct notifier_block *this,
9527 			    unsigned long code, void *x)
9528 {
9529 	struct list_head *tmp;
9530 	struct mddev *mddev;
9531 	int need_delay = 0;
9532 
9533 	for_each_mddev(mddev, tmp) {
9534 		if (mddev_trylock(mddev)) {
9535 			if (mddev->pers)
9536 				__md_stop_writes(mddev);
9537 			if (mddev->persistent)
9538 				mddev->safemode = 2;
9539 			mddev_unlock(mddev);
9540 		}
9541 		need_delay = 1;
9542 	}
9543 	/*
9544 	 * certain more exotic SCSI devices are known to be
9545 	 * volatile wrt too early system reboots. While the
9546 	 * right place to handle this issue is the given
9547 	 * driver, we do want to have a safe RAID driver ...
9548 	 */
9549 	if (need_delay)
9550 		mdelay(1000*1);
9551 
9552 	return NOTIFY_DONE;
9553 }
9554 
9555 static struct notifier_block md_notifier = {
9556 	.notifier_call	= md_notify_reboot,
9557 	.next		= NULL,
9558 	.priority	= INT_MAX, /* before any real devices */
9559 };
9560 
9561 static void md_geninit(void)
9562 {
9563 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9564 
9565 	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9566 }
9567 
9568 static int __init md_init(void)
9569 {
9570 	int ret = -ENOMEM;
9571 
9572 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9573 	if (!md_wq)
9574 		goto err_wq;
9575 
9576 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9577 	if (!md_misc_wq)
9578 		goto err_misc_wq;
9579 
9580 	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9581 	if (!md_rdev_misc_wq)
9582 		goto err_rdev_misc_wq;
9583 
9584 	ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9585 	if (ret < 0)
9586 		goto err_md;
9587 
9588 	ret = __register_blkdev(0, "mdp", md_probe);
9589 	if (ret < 0)
9590 		goto err_mdp;
9591 	mdp_major = ret;
9592 
9593 	register_reboot_notifier(&md_notifier);
9594 	raid_table_header = register_sysctl_table(raid_root_table);
9595 
9596 	md_geninit();
9597 	return 0;
9598 
9599 err_mdp:
9600 	unregister_blkdev(MD_MAJOR, "md");
9601 err_md:
9602 	destroy_workqueue(md_rdev_misc_wq);
9603 err_rdev_misc_wq:
9604 	destroy_workqueue(md_misc_wq);
9605 err_misc_wq:
9606 	destroy_workqueue(md_wq);
9607 err_wq:
9608 	return ret;
9609 }
9610 
9611 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9612 {
9613 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9614 	struct md_rdev *rdev2, *tmp;
9615 	int role, ret;
9616 	char b[BDEVNAME_SIZE];
9617 
9618 	/*
9619 	 * If size is changed in another node then we need to
9620 	 * do resize as well.
9621 	 */
9622 	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9623 		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9624 		if (ret)
9625 			pr_info("md-cluster: resize failed\n");
9626 		else
9627 			md_bitmap_update_sb(mddev->bitmap);
9628 	}
9629 
9630 	/* Check for change of roles in the active devices */
9631 	rdev_for_each_safe(rdev2, tmp, mddev) {
9632 		if (test_bit(Faulty, &rdev2->flags))
9633 			continue;
9634 
9635 		/* Check if the roles changed */
9636 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9637 
9638 		if (test_bit(Candidate, &rdev2->flags)) {
9639 			if (role == 0xfffe) {
9640 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9641 				md_kick_rdev_from_array(rdev2);
9642 				continue;
9643 			}
9644 			else
9645 				clear_bit(Candidate, &rdev2->flags);
9646 		}
9647 
9648 		if (role != rdev2->raid_disk) {
9649 			/*
9650 			 * got activated except reshape is happening.
9651 			 */
9652 			if (rdev2->raid_disk == -1 && role != 0xffff &&
9653 			    !(le32_to_cpu(sb->feature_map) &
9654 			      MD_FEATURE_RESHAPE_ACTIVE)) {
9655 				rdev2->saved_raid_disk = role;
9656 				ret = remove_and_add_spares(mddev, rdev2);
9657 				pr_info("Activated spare: %s\n",
9658 					bdevname(rdev2->bdev,b));
9659 				/* wakeup mddev->thread here, so array could
9660 				 * perform resync with the new activated disk */
9661 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9662 				md_wakeup_thread(mddev->thread);
9663 			}
9664 			/* device faulty
9665 			 * We just want to do the minimum to mark the disk
9666 			 * as faulty. The recovery is performed by the
9667 			 * one who initiated the error.
9668 			 */
9669 			if ((role == 0xfffe) || (role == 0xfffd)) {
9670 				md_error(mddev, rdev2);
9671 				clear_bit(Blocked, &rdev2->flags);
9672 			}
9673 		}
9674 	}
9675 
9676 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9677 		ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9678 		if (ret)
9679 			pr_warn("md: updating array disks failed. %d\n", ret);
9680 	}
9681 
9682 	/*
9683 	 * Since mddev->delta_disks has already updated in update_raid_disks,
9684 	 * so it is time to check reshape.
9685 	 */
9686 	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9687 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9688 		/*
9689 		 * reshape is happening in the remote node, we need to
9690 		 * update reshape_position and call start_reshape.
9691 		 */
9692 		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9693 		if (mddev->pers->update_reshape_pos)
9694 			mddev->pers->update_reshape_pos(mddev);
9695 		if (mddev->pers->start_reshape)
9696 			mddev->pers->start_reshape(mddev);
9697 	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9698 		   mddev->reshape_position != MaxSector &&
9699 		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9700 		/* reshape is just done in another node. */
9701 		mddev->reshape_position = MaxSector;
9702 		if (mddev->pers->update_reshape_pos)
9703 			mddev->pers->update_reshape_pos(mddev);
9704 	}
9705 
9706 	/* Finally set the event to be up to date */
9707 	mddev->events = le64_to_cpu(sb->events);
9708 }
9709 
9710 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9711 {
9712 	int err;
9713 	struct page *swapout = rdev->sb_page;
9714 	struct mdp_superblock_1 *sb;
9715 
9716 	/* Store the sb page of the rdev in the swapout temporary
9717 	 * variable in case we err in the future
9718 	 */
9719 	rdev->sb_page = NULL;
9720 	err = alloc_disk_sb(rdev);
9721 	if (err == 0) {
9722 		ClearPageUptodate(rdev->sb_page);
9723 		rdev->sb_loaded = 0;
9724 		err = super_types[mddev->major_version].
9725 			load_super(rdev, NULL, mddev->minor_version);
9726 	}
9727 	if (err < 0) {
9728 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9729 				__func__, __LINE__, rdev->desc_nr, err);
9730 		if (rdev->sb_page)
9731 			put_page(rdev->sb_page);
9732 		rdev->sb_page = swapout;
9733 		rdev->sb_loaded = 1;
9734 		return err;
9735 	}
9736 
9737 	sb = page_address(rdev->sb_page);
9738 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9739 	 * is not set
9740 	 */
9741 
9742 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9743 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9744 
9745 	/* The other node finished recovery, call spare_active to set
9746 	 * device In_sync and mddev->degraded
9747 	 */
9748 	if (rdev->recovery_offset == MaxSector &&
9749 	    !test_bit(In_sync, &rdev->flags) &&
9750 	    mddev->pers->spare_active(mddev))
9751 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9752 
9753 	put_page(swapout);
9754 	return 0;
9755 }
9756 
9757 void md_reload_sb(struct mddev *mddev, int nr)
9758 {
9759 	struct md_rdev *rdev;
9760 	int err;
9761 
9762 	/* Find the rdev */
9763 	rdev_for_each_rcu(rdev, mddev) {
9764 		if (rdev->desc_nr == nr)
9765 			break;
9766 	}
9767 
9768 	if (!rdev || rdev->desc_nr != nr) {
9769 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9770 		return;
9771 	}
9772 
9773 	err = read_rdev(mddev, rdev);
9774 	if (err < 0)
9775 		return;
9776 
9777 	check_sb_changes(mddev, rdev);
9778 
9779 	/* Read all rdev's to update recovery_offset */
9780 	rdev_for_each_rcu(rdev, mddev) {
9781 		if (!test_bit(Faulty, &rdev->flags))
9782 			read_rdev(mddev, rdev);
9783 	}
9784 }
9785 EXPORT_SYMBOL(md_reload_sb);
9786 
9787 #ifndef MODULE
9788 
9789 /*
9790  * Searches all registered partitions for autorun RAID arrays
9791  * at boot time.
9792  */
9793 
9794 static DEFINE_MUTEX(detected_devices_mutex);
9795 static LIST_HEAD(all_detected_devices);
9796 struct detected_devices_node {
9797 	struct list_head list;
9798 	dev_t dev;
9799 };
9800 
9801 void md_autodetect_dev(dev_t dev)
9802 {
9803 	struct detected_devices_node *node_detected_dev;
9804 
9805 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9806 	if (node_detected_dev) {
9807 		node_detected_dev->dev = dev;
9808 		mutex_lock(&detected_devices_mutex);
9809 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9810 		mutex_unlock(&detected_devices_mutex);
9811 	}
9812 }
9813 
9814 void md_autostart_arrays(int part)
9815 {
9816 	struct md_rdev *rdev;
9817 	struct detected_devices_node *node_detected_dev;
9818 	dev_t dev;
9819 	int i_scanned, i_passed;
9820 
9821 	i_scanned = 0;
9822 	i_passed = 0;
9823 
9824 	pr_info("md: Autodetecting RAID arrays.\n");
9825 
9826 	mutex_lock(&detected_devices_mutex);
9827 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9828 		i_scanned++;
9829 		node_detected_dev = list_entry(all_detected_devices.next,
9830 					struct detected_devices_node, list);
9831 		list_del(&node_detected_dev->list);
9832 		dev = node_detected_dev->dev;
9833 		kfree(node_detected_dev);
9834 		mutex_unlock(&detected_devices_mutex);
9835 		rdev = md_import_device(dev,0, 90);
9836 		mutex_lock(&detected_devices_mutex);
9837 		if (IS_ERR(rdev))
9838 			continue;
9839 
9840 		if (test_bit(Faulty, &rdev->flags))
9841 			continue;
9842 
9843 		set_bit(AutoDetected, &rdev->flags);
9844 		list_add(&rdev->same_set, &pending_raid_disks);
9845 		i_passed++;
9846 	}
9847 	mutex_unlock(&detected_devices_mutex);
9848 
9849 	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9850 
9851 	autorun_devices(part);
9852 }
9853 
9854 #endif /* !MODULE */
9855 
9856 static __exit void md_exit(void)
9857 {
9858 	struct mddev *mddev;
9859 	struct list_head *tmp;
9860 	int delay = 1;
9861 
9862 	unregister_blkdev(MD_MAJOR,"md");
9863 	unregister_blkdev(mdp_major, "mdp");
9864 	unregister_reboot_notifier(&md_notifier);
9865 	unregister_sysctl_table(raid_table_header);
9866 
9867 	/* We cannot unload the modules while some process is
9868 	 * waiting for us in select() or poll() - wake them up
9869 	 */
9870 	md_unloading = 1;
9871 	while (waitqueue_active(&md_event_waiters)) {
9872 		/* not safe to leave yet */
9873 		wake_up(&md_event_waiters);
9874 		msleep(delay);
9875 		delay += delay;
9876 	}
9877 	remove_proc_entry("mdstat", NULL);
9878 
9879 	for_each_mddev(mddev, tmp) {
9880 		export_array(mddev);
9881 		mddev->ctime = 0;
9882 		mddev->hold_active = 0;
9883 		/*
9884 		 * for_each_mddev() will call mddev_put() at the end of each
9885 		 * iteration.  As the mddev is now fully clear, this will
9886 		 * schedule the mddev for destruction by a workqueue, and the
9887 		 * destroy_workqueue() below will wait for that to complete.
9888 		 */
9889 	}
9890 	destroy_workqueue(md_rdev_misc_wq);
9891 	destroy_workqueue(md_misc_wq);
9892 	destroy_workqueue(md_wq);
9893 }
9894 
9895 subsys_initcall(md_init);
9896 module_exit(md_exit)
9897 
9898 static int get_ro(char *buffer, const struct kernel_param *kp)
9899 {
9900 	return sprintf(buffer, "%d\n", start_readonly);
9901 }
9902 static int set_ro(const char *val, const struct kernel_param *kp)
9903 {
9904 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9905 }
9906 
9907 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9908 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9909 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9910 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9911 
9912 MODULE_LICENSE("GPL");
9913 MODULE_DESCRIPTION("MD RAID framework");
9914 MODULE_ALIAS("md");
9915 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9916