1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kthread.h> 37 #include <linux/linkage.h> 38 #include <linux/raid/md.h> 39 #include <linux/raid/bitmap.h> 40 #include <linux/sysctl.h> 41 #include <linux/buffer_head.h> /* for invalidate_bdev */ 42 #include <linux/poll.h> 43 #include <linux/mutex.h> 44 #include <linux/ctype.h> 45 #include <linux/freezer.h> 46 47 #include <linux/init.h> 48 49 #include <linux/file.h> 50 51 #ifdef CONFIG_KMOD 52 #include <linux/kmod.h> 53 #endif 54 55 #include <asm/unaligned.h> 56 57 #define MAJOR_NR MD_MAJOR 58 #define MD_DRIVER 59 60 /* 63 partitions with the alternate major number (mdp) */ 61 #define MdpMinorShift 6 62 63 #define DEBUG 0 64 #define dprintk(x...) ((void)(DEBUG && printk(x))) 65 66 67 #ifndef MODULE 68 static void autostart_arrays (int part); 69 #endif 70 71 static LIST_HEAD(pers_list); 72 static DEFINE_SPINLOCK(pers_lock); 73 74 static void md_print_devices(void); 75 76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 77 78 /* 79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 80 * is 1000 KB/sec, so the extra system load does not show up that much. 81 * Increase it if you want to have more _guaranteed_ speed. Note that 82 * the RAID driver will use the maximum available bandwidth if the IO 83 * subsystem is idle. There is also an 'absolute maximum' reconstruction 84 * speed limit - in case reconstruction slows down your system despite 85 * idle IO detection. 86 * 87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 88 * or /sys/block/mdX/md/sync_speed_{min,max} 89 */ 90 91 static int sysctl_speed_limit_min = 1000; 92 static int sysctl_speed_limit_max = 200000; 93 static inline int speed_min(mddev_t *mddev) 94 { 95 return mddev->sync_speed_min ? 96 mddev->sync_speed_min : sysctl_speed_limit_min; 97 } 98 99 static inline int speed_max(mddev_t *mddev) 100 { 101 return mddev->sync_speed_max ? 102 mddev->sync_speed_max : sysctl_speed_limit_max; 103 } 104 105 static struct ctl_table_header *raid_table_header; 106 107 static ctl_table raid_table[] = { 108 { 109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 110 .procname = "speed_limit_min", 111 .data = &sysctl_speed_limit_min, 112 .maxlen = sizeof(int), 113 .mode = S_IRUGO|S_IWUSR, 114 .proc_handler = &proc_dointvec, 115 }, 116 { 117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 118 .procname = "speed_limit_max", 119 .data = &sysctl_speed_limit_max, 120 .maxlen = sizeof(int), 121 .mode = S_IRUGO|S_IWUSR, 122 .proc_handler = &proc_dointvec, 123 }, 124 { .ctl_name = 0 } 125 }; 126 127 static ctl_table raid_dir_table[] = { 128 { 129 .ctl_name = DEV_RAID, 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { .ctl_name = 0 } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .ctl_name = CTL_DEV, 141 .procname = "dev", 142 .maxlen = 0, 143 .mode = 0555, 144 .child = raid_dir_table, 145 }, 146 { .ctl_name = 0 } 147 }; 148 149 static struct block_device_operations md_fops; 150 151 static int start_readonly; 152 153 /* 154 * We have a system wide 'event count' that is incremented 155 * on any 'interesting' event, and readers of /proc/mdstat 156 * can use 'poll' or 'select' to find out when the event 157 * count increases. 158 * 159 * Events are: 160 * start array, stop array, error, add device, remove device, 161 * start build, activate spare 162 */ 163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 164 static atomic_t md_event_count; 165 void md_new_event(mddev_t *mddev) 166 { 167 atomic_inc(&md_event_count); 168 wake_up(&md_event_waiters); 169 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 170 } 171 EXPORT_SYMBOL_GPL(md_new_event); 172 173 /* Alternate version that can be called from interrupts 174 * when calling sysfs_notify isn't needed. 175 */ 176 static void md_new_event_inintr(mddev_t *mddev) 177 { 178 atomic_inc(&md_event_count); 179 wake_up(&md_event_waiters); 180 } 181 182 /* 183 * Enables to iterate over all existing md arrays 184 * all_mddevs_lock protects this list. 185 */ 186 static LIST_HEAD(all_mddevs); 187 static DEFINE_SPINLOCK(all_mddevs_lock); 188 189 190 /* 191 * iterates through all used mddevs in the system. 192 * We take care to grab the all_mddevs_lock whenever navigating 193 * the list, and to always hold a refcount when unlocked. 194 * Any code which breaks out of this loop while own 195 * a reference to the current mddev and must mddev_put it. 196 */ 197 #define ITERATE_MDDEV(mddev,tmp) \ 198 \ 199 for (({ spin_lock(&all_mddevs_lock); \ 200 tmp = all_mddevs.next; \ 201 mddev = NULL;}); \ 202 ({ if (tmp != &all_mddevs) \ 203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 204 spin_unlock(&all_mddevs_lock); \ 205 if (mddev) mddev_put(mddev); \ 206 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 207 tmp != &all_mddevs;}); \ 208 ({ spin_lock(&all_mddevs_lock); \ 209 tmp = tmp->next;}) \ 210 ) 211 212 213 static int md_fail_request (request_queue_t *q, struct bio *bio) 214 { 215 bio_io_error(bio, bio->bi_size); 216 return 0; 217 } 218 219 static inline mddev_t *mddev_get(mddev_t *mddev) 220 { 221 atomic_inc(&mddev->active); 222 return mddev; 223 } 224 225 static void mddev_put(mddev_t *mddev) 226 { 227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 228 return; 229 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 230 list_del(&mddev->all_mddevs); 231 spin_unlock(&all_mddevs_lock); 232 blk_cleanup_queue(mddev->queue); 233 kobject_unregister(&mddev->kobj); 234 } else 235 spin_unlock(&all_mddevs_lock); 236 } 237 238 static mddev_t * mddev_find(dev_t unit) 239 { 240 mddev_t *mddev, *new = NULL; 241 242 retry: 243 spin_lock(&all_mddevs_lock); 244 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 245 if (mddev->unit == unit) { 246 mddev_get(mddev); 247 spin_unlock(&all_mddevs_lock); 248 kfree(new); 249 return mddev; 250 } 251 252 if (new) { 253 list_add(&new->all_mddevs, &all_mddevs); 254 spin_unlock(&all_mddevs_lock); 255 return new; 256 } 257 spin_unlock(&all_mddevs_lock); 258 259 new = kzalloc(sizeof(*new), GFP_KERNEL); 260 if (!new) 261 return NULL; 262 263 new->unit = unit; 264 if (MAJOR(unit) == MD_MAJOR) 265 new->md_minor = MINOR(unit); 266 else 267 new->md_minor = MINOR(unit) >> MdpMinorShift; 268 269 mutex_init(&new->reconfig_mutex); 270 INIT_LIST_HEAD(&new->disks); 271 INIT_LIST_HEAD(&new->all_mddevs); 272 init_timer(&new->safemode_timer); 273 atomic_set(&new->active, 1); 274 spin_lock_init(&new->write_lock); 275 init_waitqueue_head(&new->sb_wait); 276 277 new->queue = blk_alloc_queue(GFP_KERNEL); 278 if (!new->queue) { 279 kfree(new); 280 return NULL; 281 } 282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags); 283 284 blk_queue_make_request(new->queue, md_fail_request); 285 286 goto retry; 287 } 288 289 static inline int mddev_lock(mddev_t * mddev) 290 { 291 return mutex_lock_interruptible(&mddev->reconfig_mutex); 292 } 293 294 static inline int mddev_trylock(mddev_t * mddev) 295 { 296 return mutex_trylock(&mddev->reconfig_mutex); 297 } 298 299 static inline void mddev_unlock(mddev_t * mddev) 300 { 301 mutex_unlock(&mddev->reconfig_mutex); 302 303 md_wakeup_thread(mddev->thread); 304 } 305 306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 307 { 308 mdk_rdev_t * rdev; 309 struct list_head *tmp; 310 311 ITERATE_RDEV(mddev,rdev,tmp) { 312 if (rdev->desc_nr == nr) 313 return rdev; 314 } 315 return NULL; 316 } 317 318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 319 { 320 struct list_head *tmp; 321 mdk_rdev_t *rdev; 322 323 ITERATE_RDEV(mddev,rdev,tmp) { 324 if (rdev->bdev->bd_dev == dev) 325 return rdev; 326 } 327 return NULL; 328 } 329 330 static struct mdk_personality *find_pers(int level, char *clevel) 331 { 332 struct mdk_personality *pers; 333 list_for_each_entry(pers, &pers_list, list) { 334 if (level != LEVEL_NONE && pers->level == level) 335 return pers; 336 if (strcmp(pers->name, clevel)==0) 337 return pers; 338 } 339 return NULL; 340 } 341 342 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 343 { 344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 345 return MD_NEW_SIZE_BLOCKS(size); 346 } 347 348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 349 { 350 sector_t size; 351 352 size = rdev->sb_offset; 353 354 if (chunk_size) 355 size &= ~((sector_t)chunk_size/1024 - 1); 356 return size; 357 } 358 359 static int alloc_disk_sb(mdk_rdev_t * rdev) 360 { 361 if (rdev->sb_page) 362 MD_BUG(); 363 364 rdev->sb_page = alloc_page(GFP_KERNEL); 365 if (!rdev->sb_page) { 366 printk(KERN_ALERT "md: out of memory.\n"); 367 return -EINVAL; 368 } 369 370 return 0; 371 } 372 373 static void free_disk_sb(mdk_rdev_t * rdev) 374 { 375 if (rdev->sb_page) { 376 put_page(rdev->sb_page); 377 rdev->sb_loaded = 0; 378 rdev->sb_page = NULL; 379 rdev->sb_offset = 0; 380 rdev->size = 0; 381 } 382 } 383 384 385 static int super_written(struct bio *bio, unsigned int bytes_done, int error) 386 { 387 mdk_rdev_t *rdev = bio->bi_private; 388 mddev_t *mddev = rdev->mddev; 389 if (bio->bi_size) 390 return 1; 391 392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 393 printk("md: super_written gets error=%d, uptodate=%d\n", 394 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 396 md_error(mddev, rdev); 397 } 398 399 if (atomic_dec_and_test(&mddev->pending_writes)) 400 wake_up(&mddev->sb_wait); 401 bio_put(bio); 402 return 0; 403 } 404 405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error) 406 { 407 struct bio *bio2 = bio->bi_private; 408 mdk_rdev_t *rdev = bio2->bi_private; 409 mddev_t *mddev = rdev->mddev; 410 if (bio->bi_size) 411 return 1; 412 413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 414 error == -EOPNOTSUPP) { 415 unsigned long flags; 416 /* barriers don't appear to be supported :-( */ 417 set_bit(BarriersNotsupp, &rdev->flags); 418 mddev->barriers_work = 0; 419 spin_lock_irqsave(&mddev->write_lock, flags); 420 bio2->bi_next = mddev->biolist; 421 mddev->biolist = bio2; 422 spin_unlock_irqrestore(&mddev->write_lock, flags); 423 wake_up(&mddev->sb_wait); 424 bio_put(bio); 425 return 0; 426 } 427 bio_put(bio2); 428 bio->bi_private = rdev; 429 return super_written(bio, bytes_done, error); 430 } 431 432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 433 sector_t sector, int size, struct page *page) 434 { 435 /* write first size bytes of page to sector of rdev 436 * Increment mddev->pending_writes before returning 437 * and decrement it on completion, waking up sb_wait 438 * if zero is reached. 439 * If an error occurred, call md_error 440 * 441 * As we might need to resubmit the request if BIO_RW_BARRIER 442 * causes ENOTSUPP, we allocate a spare bio... 443 */ 444 struct bio *bio = bio_alloc(GFP_NOIO, 1); 445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 446 447 bio->bi_bdev = rdev->bdev; 448 bio->bi_sector = sector; 449 bio_add_page(bio, page, size, 0); 450 bio->bi_private = rdev; 451 bio->bi_end_io = super_written; 452 bio->bi_rw = rw; 453 454 atomic_inc(&mddev->pending_writes); 455 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 456 struct bio *rbio; 457 rw |= (1<<BIO_RW_BARRIER); 458 rbio = bio_clone(bio, GFP_NOIO); 459 rbio->bi_private = bio; 460 rbio->bi_end_io = super_written_barrier; 461 submit_bio(rw, rbio); 462 } else 463 submit_bio(rw, bio); 464 } 465 466 void md_super_wait(mddev_t *mddev) 467 { 468 /* wait for all superblock writes that were scheduled to complete. 469 * if any had to be retried (due to BARRIER problems), retry them 470 */ 471 DEFINE_WAIT(wq); 472 for(;;) { 473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 474 if (atomic_read(&mddev->pending_writes)==0) 475 break; 476 while (mddev->biolist) { 477 struct bio *bio; 478 spin_lock_irq(&mddev->write_lock); 479 bio = mddev->biolist; 480 mddev->biolist = bio->bi_next ; 481 bio->bi_next = NULL; 482 spin_unlock_irq(&mddev->write_lock); 483 submit_bio(bio->bi_rw, bio); 484 } 485 schedule(); 486 } 487 finish_wait(&mddev->sb_wait, &wq); 488 } 489 490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error) 491 { 492 if (bio->bi_size) 493 return 1; 494 495 complete((struct completion*)bio->bi_private); 496 return 0; 497 } 498 499 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 500 struct page *page, int rw) 501 { 502 struct bio *bio = bio_alloc(GFP_NOIO, 1); 503 struct completion event; 504 int ret; 505 506 rw |= (1 << BIO_RW_SYNC); 507 508 bio->bi_bdev = bdev; 509 bio->bi_sector = sector; 510 bio_add_page(bio, page, size, 0); 511 init_completion(&event); 512 bio->bi_private = &event; 513 bio->bi_end_io = bi_complete; 514 submit_bio(rw, bio); 515 wait_for_completion(&event); 516 517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 518 bio_put(bio); 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(sync_page_io); 522 523 static int read_disk_sb(mdk_rdev_t * rdev, int size) 524 { 525 char b[BDEVNAME_SIZE]; 526 if (!rdev->sb_page) { 527 MD_BUG(); 528 return -EINVAL; 529 } 530 if (rdev->sb_loaded) 531 return 0; 532 533 534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) 535 goto fail; 536 rdev->sb_loaded = 1; 537 return 0; 538 539 fail: 540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 541 bdevname(rdev->bdev,b)); 542 return -EINVAL; 543 } 544 545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 546 { 547 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 548 (sb1->set_uuid1 == sb2->set_uuid1) && 549 (sb1->set_uuid2 == sb2->set_uuid2) && 550 (sb1->set_uuid3 == sb2->set_uuid3)) 551 552 return 1; 553 554 return 0; 555 } 556 557 558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 559 { 560 int ret; 561 mdp_super_t *tmp1, *tmp2; 562 563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 565 566 if (!tmp1 || !tmp2) { 567 ret = 0; 568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 569 goto abort; 570 } 571 572 *tmp1 = *sb1; 573 *tmp2 = *sb2; 574 575 /* 576 * nr_disks is not constant 577 */ 578 tmp1->nr_disks = 0; 579 tmp2->nr_disks = 0; 580 581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 582 ret = 0; 583 else 584 ret = 1; 585 586 abort: 587 kfree(tmp1); 588 kfree(tmp2); 589 return ret; 590 } 591 592 static unsigned int calc_sb_csum(mdp_super_t * sb) 593 { 594 unsigned int disk_csum, csum; 595 596 disk_csum = sb->sb_csum; 597 sb->sb_csum = 0; 598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0); 599 sb->sb_csum = disk_csum; 600 return csum; 601 } 602 603 604 /* 605 * Handle superblock details. 606 * We want to be able to handle multiple superblock formats 607 * so we have a common interface to them all, and an array of 608 * different handlers. 609 * We rely on user-space to write the initial superblock, and support 610 * reading and updating of superblocks. 611 * Interface methods are: 612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 613 * loads and validates a superblock on dev. 614 * if refdev != NULL, compare superblocks on both devices 615 * Return: 616 * 0 - dev has a superblock that is compatible with refdev 617 * 1 - dev has a superblock that is compatible and newer than refdev 618 * so dev should be used as the refdev in future 619 * -EINVAL superblock incompatible or invalid 620 * -othererror e.g. -EIO 621 * 622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 623 * Verify that dev is acceptable into mddev. 624 * The first time, mddev->raid_disks will be 0, and data from 625 * dev should be merged in. Subsequent calls check that dev 626 * is new enough. Return 0 or -EINVAL 627 * 628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 629 * Update the superblock for rdev with data in mddev 630 * This does not write to disc. 631 * 632 */ 633 634 struct super_type { 635 char *name; 636 struct module *owner; 637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 640 }; 641 642 /* 643 * load_super for 0.90.0 644 */ 645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 646 { 647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 648 mdp_super_t *sb; 649 int ret; 650 sector_t sb_offset; 651 652 /* 653 * Calculate the position of the superblock, 654 * it's at the end of the disk. 655 * 656 * It also happens to be a multiple of 4Kb. 657 */ 658 sb_offset = calc_dev_sboffset(rdev->bdev); 659 rdev->sb_offset = sb_offset; 660 661 ret = read_disk_sb(rdev, MD_SB_BYTES); 662 if (ret) return ret; 663 664 ret = -EINVAL; 665 666 bdevname(rdev->bdev, b); 667 sb = (mdp_super_t*)page_address(rdev->sb_page); 668 669 if (sb->md_magic != MD_SB_MAGIC) { 670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 671 b); 672 goto abort; 673 } 674 675 if (sb->major_version != 0 || 676 sb->minor_version < 90 || 677 sb->minor_version > 91) { 678 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 679 sb->major_version, sb->minor_version, 680 b); 681 goto abort; 682 } 683 684 if (sb->raid_disks <= 0) 685 goto abort; 686 687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) { 688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 689 b); 690 goto abort; 691 } 692 693 rdev->preferred_minor = sb->md_minor; 694 rdev->data_offset = 0; 695 rdev->sb_size = MD_SB_BYTES; 696 697 if (sb->level == LEVEL_MULTIPATH) 698 rdev->desc_nr = -1; 699 else 700 rdev->desc_nr = sb->this_disk.number; 701 702 if (refdev == 0) 703 ret = 1; 704 else { 705 __u64 ev1, ev2; 706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 707 if (!uuid_equal(refsb, sb)) { 708 printk(KERN_WARNING "md: %s has different UUID to %s\n", 709 b, bdevname(refdev->bdev,b2)); 710 goto abort; 711 } 712 if (!sb_equal(refsb, sb)) { 713 printk(KERN_WARNING "md: %s has same UUID" 714 " but different superblock to %s\n", 715 b, bdevname(refdev->bdev, b2)); 716 goto abort; 717 } 718 ev1 = md_event(sb); 719 ev2 = md_event(refsb); 720 if (ev1 > ev2) 721 ret = 1; 722 else 723 ret = 0; 724 } 725 rdev->size = calc_dev_size(rdev, sb->chunk_size); 726 727 if (rdev->size < sb->size && sb->level > 1) 728 /* "this cannot possibly happen" ... */ 729 ret = -EINVAL; 730 731 abort: 732 return ret; 733 } 734 735 /* 736 * validate_super for 0.90.0 737 */ 738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 739 { 740 mdp_disk_t *desc; 741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 742 __u64 ev1 = md_event(sb); 743 744 rdev->raid_disk = -1; 745 rdev->flags = 0; 746 if (mddev->raid_disks == 0) { 747 mddev->major_version = 0; 748 mddev->minor_version = sb->minor_version; 749 mddev->patch_version = sb->patch_version; 750 mddev->persistent = ! sb->not_persistent; 751 mddev->chunk_size = sb->chunk_size; 752 mddev->ctime = sb->ctime; 753 mddev->utime = sb->utime; 754 mddev->level = sb->level; 755 mddev->clevel[0] = 0; 756 mddev->layout = sb->layout; 757 mddev->raid_disks = sb->raid_disks; 758 mddev->size = sb->size; 759 mddev->events = ev1; 760 mddev->bitmap_offset = 0; 761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 762 763 if (mddev->minor_version >= 91) { 764 mddev->reshape_position = sb->reshape_position; 765 mddev->delta_disks = sb->delta_disks; 766 mddev->new_level = sb->new_level; 767 mddev->new_layout = sb->new_layout; 768 mddev->new_chunk = sb->new_chunk; 769 } else { 770 mddev->reshape_position = MaxSector; 771 mddev->delta_disks = 0; 772 mddev->new_level = mddev->level; 773 mddev->new_layout = mddev->layout; 774 mddev->new_chunk = mddev->chunk_size; 775 } 776 777 if (sb->state & (1<<MD_SB_CLEAN)) 778 mddev->recovery_cp = MaxSector; 779 else { 780 if (sb->events_hi == sb->cp_events_hi && 781 sb->events_lo == sb->cp_events_lo) { 782 mddev->recovery_cp = sb->recovery_cp; 783 } else 784 mddev->recovery_cp = 0; 785 } 786 787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 791 792 mddev->max_disks = MD_SB_DISKS; 793 794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 795 mddev->bitmap_file == NULL) { 796 if (mddev->level != 1 && mddev->level != 4 797 && mddev->level != 5 && mddev->level != 6 798 && mddev->level != 10) { 799 /* FIXME use a better test */ 800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); 801 return -EINVAL; 802 } 803 mddev->bitmap_offset = mddev->default_bitmap_offset; 804 } 805 806 } else if (mddev->pers == NULL) { 807 /* Insist on good event counter while assembling */ 808 ++ev1; 809 if (ev1 < mddev->events) 810 return -EINVAL; 811 } else if (mddev->bitmap) { 812 /* if adding to array with a bitmap, then we can accept an 813 * older device ... but not too old. 814 */ 815 if (ev1 < mddev->bitmap->events_cleared) 816 return 0; 817 } else { 818 if (ev1 < mddev->events) 819 /* just a hot-add of a new device, leave raid_disk at -1 */ 820 return 0; 821 } 822 823 if (mddev->level != LEVEL_MULTIPATH) { 824 desc = sb->disks + rdev->desc_nr; 825 826 if (desc->state & (1<<MD_DISK_FAULTY)) 827 set_bit(Faulty, &rdev->flags); 828 else if (desc->state & (1<<MD_DISK_SYNC) /* && 829 desc->raid_disk < mddev->raid_disks */) { 830 set_bit(In_sync, &rdev->flags); 831 rdev->raid_disk = desc->raid_disk; 832 } 833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 834 set_bit(WriteMostly, &rdev->flags); 835 } else /* MULTIPATH are always insync */ 836 set_bit(In_sync, &rdev->flags); 837 return 0; 838 } 839 840 /* 841 * sync_super for 0.90.0 842 */ 843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 844 { 845 mdp_super_t *sb; 846 struct list_head *tmp; 847 mdk_rdev_t *rdev2; 848 int next_spare = mddev->raid_disks; 849 850 851 /* make rdev->sb match mddev data.. 852 * 853 * 1/ zero out disks 854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 855 * 3/ any empty disks < next_spare become removed 856 * 857 * disks[0] gets initialised to REMOVED because 858 * we cannot be sure from other fields if it has 859 * been initialised or not. 860 */ 861 int i; 862 int active=0, working=0,failed=0,spare=0,nr_disks=0; 863 864 rdev->sb_size = MD_SB_BYTES; 865 866 sb = (mdp_super_t*)page_address(rdev->sb_page); 867 868 memset(sb, 0, sizeof(*sb)); 869 870 sb->md_magic = MD_SB_MAGIC; 871 sb->major_version = mddev->major_version; 872 sb->patch_version = mddev->patch_version; 873 sb->gvalid_words = 0; /* ignored */ 874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 877 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 878 879 sb->ctime = mddev->ctime; 880 sb->level = mddev->level; 881 sb->size = mddev->size; 882 sb->raid_disks = mddev->raid_disks; 883 sb->md_minor = mddev->md_minor; 884 sb->not_persistent = !mddev->persistent; 885 sb->utime = mddev->utime; 886 sb->state = 0; 887 sb->events_hi = (mddev->events>>32); 888 sb->events_lo = (u32)mddev->events; 889 890 if (mddev->reshape_position == MaxSector) 891 sb->minor_version = 90; 892 else { 893 sb->minor_version = 91; 894 sb->reshape_position = mddev->reshape_position; 895 sb->new_level = mddev->new_level; 896 sb->delta_disks = mddev->delta_disks; 897 sb->new_layout = mddev->new_layout; 898 sb->new_chunk = mddev->new_chunk; 899 } 900 mddev->minor_version = sb->minor_version; 901 if (mddev->in_sync) 902 { 903 sb->recovery_cp = mddev->recovery_cp; 904 sb->cp_events_hi = (mddev->events>>32); 905 sb->cp_events_lo = (u32)mddev->events; 906 if (mddev->recovery_cp == MaxSector) 907 sb->state = (1<< MD_SB_CLEAN); 908 } else 909 sb->recovery_cp = 0; 910 911 sb->layout = mddev->layout; 912 sb->chunk_size = mddev->chunk_size; 913 914 if (mddev->bitmap && mddev->bitmap_file == NULL) 915 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 916 917 sb->disks[0].state = (1<<MD_DISK_REMOVED); 918 ITERATE_RDEV(mddev,rdev2,tmp) { 919 mdp_disk_t *d; 920 int desc_nr; 921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 922 && !test_bit(Faulty, &rdev2->flags)) 923 desc_nr = rdev2->raid_disk; 924 else 925 desc_nr = next_spare++; 926 rdev2->desc_nr = desc_nr; 927 d = &sb->disks[rdev2->desc_nr]; 928 nr_disks++; 929 d->number = rdev2->desc_nr; 930 d->major = MAJOR(rdev2->bdev->bd_dev); 931 d->minor = MINOR(rdev2->bdev->bd_dev); 932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 933 && !test_bit(Faulty, &rdev2->flags)) 934 d->raid_disk = rdev2->raid_disk; 935 else 936 d->raid_disk = rdev2->desc_nr; /* compatibility */ 937 if (test_bit(Faulty, &rdev2->flags)) 938 d->state = (1<<MD_DISK_FAULTY); 939 else if (test_bit(In_sync, &rdev2->flags)) { 940 d->state = (1<<MD_DISK_ACTIVE); 941 d->state |= (1<<MD_DISK_SYNC); 942 active++; 943 working++; 944 } else { 945 d->state = 0; 946 spare++; 947 working++; 948 } 949 if (test_bit(WriteMostly, &rdev2->flags)) 950 d->state |= (1<<MD_DISK_WRITEMOSTLY); 951 } 952 /* now set the "removed" and "faulty" bits on any missing devices */ 953 for (i=0 ; i < mddev->raid_disks ; i++) { 954 mdp_disk_t *d = &sb->disks[i]; 955 if (d->state == 0 && d->number == 0) { 956 d->number = i; 957 d->raid_disk = i; 958 d->state = (1<<MD_DISK_REMOVED); 959 d->state |= (1<<MD_DISK_FAULTY); 960 failed++; 961 } 962 } 963 sb->nr_disks = nr_disks; 964 sb->active_disks = active; 965 sb->working_disks = working; 966 sb->failed_disks = failed; 967 sb->spare_disks = spare; 968 969 sb->this_disk = sb->disks[rdev->desc_nr]; 970 sb->sb_csum = calc_sb_csum(sb); 971 } 972 973 /* 974 * version 1 superblock 975 */ 976 977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 978 { 979 __le32 disk_csum; 980 u32 csum; 981 unsigned long long newcsum; 982 int size = 256 + le32_to_cpu(sb->max_dev)*2; 983 __le32 *isuper = (__le32*)sb; 984 int i; 985 986 disk_csum = sb->sb_csum; 987 sb->sb_csum = 0; 988 newcsum = 0; 989 for (i=0; size>=4; size -= 4 ) 990 newcsum += le32_to_cpu(*isuper++); 991 992 if (size == 2) 993 newcsum += le16_to_cpu(*(__le16*) isuper); 994 995 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 996 sb->sb_csum = disk_csum; 997 return cpu_to_le32(csum); 998 } 999 1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1001 { 1002 struct mdp_superblock_1 *sb; 1003 int ret; 1004 sector_t sb_offset; 1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1006 int bmask; 1007 1008 /* 1009 * Calculate the position of the superblock. 1010 * It is always aligned to a 4K boundary and 1011 * depeding on minor_version, it can be: 1012 * 0: At least 8K, but less than 12K, from end of device 1013 * 1: At start of device 1014 * 2: 4K from start of device. 1015 */ 1016 switch(minor_version) { 1017 case 0: 1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 1019 sb_offset -= 8*2; 1020 sb_offset &= ~(sector_t)(4*2-1); 1021 /* convert from sectors to K */ 1022 sb_offset /= 2; 1023 break; 1024 case 1: 1025 sb_offset = 0; 1026 break; 1027 case 2: 1028 sb_offset = 4; 1029 break; 1030 default: 1031 return -EINVAL; 1032 } 1033 rdev->sb_offset = sb_offset; 1034 1035 /* superblock is rarely larger than 1K, but it can be larger, 1036 * and it is safe to read 4k, so we do that 1037 */ 1038 ret = read_disk_sb(rdev, 4096); 1039 if (ret) return ret; 1040 1041 1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1043 1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1045 sb->major_version != cpu_to_le32(1) || 1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1049 return -EINVAL; 1050 1051 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1052 printk("md: invalid superblock checksum on %s\n", 1053 bdevname(rdev->bdev,b)); 1054 return -EINVAL; 1055 } 1056 if (le64_to_cpu(sb->data_size) < 10) { 1057 printk("md: data_size too small on %s\n", 1058 bdevname(rdev->bdev,b)); 1059 return -EINVAL; 1060 } 1061 rdev->preferred_minor = 0xffff; 1062 rdev->data_offset = le64_to_cpu(sb->data_offset); 1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1064 1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1067 if (rdev->sb_size & bmask) 1068 rdev-> sb_size = (rdev->sb_size | bmask)+1; 1069 1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1071 rdev->desc_nr = -1; 1072 else 1073 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1074 1075 if (refdev == 0) 1076 ret = 1; 1077 else { 1078 __u64 ev1, ev2; 1079 struct mdp_superblock_1 *refsb = 1080 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1081 1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1083 sb->level != refsb->level || 1084 sb->layout != refsb->layout || 1085 sb->chunksize != refsb->chunksize) { 1086 printk(KERN_WARNING "md: %s has strangely different" 1087 " superblock to %s\n", 1088 bdevname(rdev->bdev,b), 1089 bdevname(refdev->bdev,b2)); 1090 return -EINVAL; 1091 } 1092 ev1 = le64_to_cpu(sb->events); 1093 ev2 = le64_to_cpu(refsb->events); 1094 1095 if (ev1 > ev2) 1096 ret = 1; 1097 else 1098 ret = 0; 1099 } 1100 if (minor_version) 1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1102 else 1103 rdev->size = rdev->sb_offset; 1104 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1105 return -EINVAL; 1106 rdev->size = le64_to_cpu(sb->data_size)/2; 1107 if (le32_to_cpu(sb->chunksize)) 1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1109 1110 if (le64_to_cpu(sb->size) > rdev->size*2) 1111 return -EINVAL; 1112 return ret; 1113 } 1114 1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1116 { 1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1118 __u64 ev1 = le64_to_cpu(sb->events); 1119 1120 rdev->raid_disk = -1; 1121 rdev->flags = 0; 1122 if (mddev->raid_disks == 0) { 1123 mddev->major_version = 1; 1124 mddev->patch_version = 0; 1125 mddev->persistent = 1; 1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1129 mddev->level = le32_to_cpu(sb->level); 1130 mddev->clevel[0] = 0; 1131 mddev->layout = le32_to_cpu(sb->layout); 1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1133 mddev->size = le64_to_cpu(sb->size)/2; 1134 mddev->events = ev1; 1135 mddev->bitmap_offset = 0; 1136 mddev->default_bitmap_offset = 1024 >> 9; 1137 1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1139 memcpy(mddev->uuid, sb->set_uuid, 16); 1140 1141 mddev->max_disks = (4096-256)/2; 1142 1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1144 mddev->bitmap_file == NULL ) { 1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6 1146 && mddev->level != 10) { 1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); 1148 return -EINVAL; 1149 } 1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1151 } 1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1155 mddev->new_level = le32_to_cpu(sb->new_level); 1156 mddev->new_layout = le32_to_cpu(sb->new_layout); 1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1158 } else { 1159 mddev->reshape_position = MaxSector; 1160 mddev->delta_disks = 0; 1161 mddev->new_level = mddev->level; 1162 mddev->new_layout = mddev->layout; 1163 mddev->new_chunk = mddev->chunk_size; 1164 } 1165 1166 } else if (mddev->pers == NULL) { 1167 /* Insist of good event counter while assembling */ 1168 ++ev1; 1169 if (ev1 < mddev->events) 1170 return -EINVAL; 1171 } else if (mddev->bitmap) { 1172 /* If adding to array with a bitmap, then we can accept an 1173 * older device, but not too old. 1174 */ 1175 if (ev1 < mddev->bitmap->events_cleared) 1176 return 0; 1177 } else { 1178 if (ev1 < mddev->events) 1179 /* just a hot-add of a new device, leave raid_disk at -1 */ 1180 return 0; 1181 } 1182 if (mddev->level != LEVEL_MULTIPATH) { 1183 int role; 1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1185 switch(role) { 1186 case 0xffff: /* spare */ 1187 break; 1188 case 0xfffe: /* faulty */ 1189 set_bit(Faulty, &rdev->flags); 1190 break; 1191 default: 1192 if ((le32_to_cpu(sb->feature_map) & 1193 MD_FEATURE_RECOVERY_OFFSET)) 1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1195 else 1196 set_bit(In_sync, &rdev->flags); 1197 rdev->raid_disk = role; 1198 break; 1199 } 1200 if (sb->devflags & WriteMostly1) 1201 set_bit(WriteMostly, &rdev->flags); 1202 } else /* MULTIPATH are always insync */ 1203 set_bit(In_sync, &rdev->flags); 1204 1205 return 0; 1206 } 1207 1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1209 { 1210 struct mdp_superblock_1 *sb; 1211 struct list_head *tmp; 1212 mdk_rdev_t *rdev2; 1213 int max_dev, i; 1214 /* make rdev->sb match mddev and rdev data. */ 1215 1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1217 1218 sb->feature_map = 0; 1219 sb->pad0 = 0; 1220 sb->recovery_offset = cpu_to_le64(0); 1221 memset(sb->pad1, 0, sizeof(sb->pad1)); 1222 memset(sb->pad2, 0, sizeof(sb->pad2)); 1223 memset(sb->pad3, 0, sizeof(sb->pad3)); 1224 1225 sb->utime = cpu_to_le64((__u64)mddev->utime); 1226 sb->events = cpu_to_le64(mddev->events); 1227 if (mddev->in_sync) 1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1229 else 1230 sb->resync_offset = cpu_to_le64(0); 1231 1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1233 1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1235 sb->size = cpu_to_le64(mddev->size<<1); 1236 1237 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1240 } 1241 1242 if (rdev->raid_disk >= 0 && 1243 !test_bit(In_sync, &rdev->flags) && 1244 rdev->recovery_offset > 0) { 1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1247 } 1248 1249 if (mddev->reshape_position != MaxSector) { 1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1252 sb->new_layout = cpu_to_le32(mddev->new_layout); 1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1254 sb->new_level = cpu_to_le32(mddev->new_level); 1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1256 } 1257 1258 max_dev = 0; 1259 ITERATE_RDEV(mddev,rdev2,tmp) 1260 if (rdev2->desc_nr+1 > max_dev) 1261 max_dev = rdev2->desc_nr+1; 1262 1263 sb->max_dev = cpu_to_le32(max_dev); 1264 for (i=0; i<max_dev;i++) 1265 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1266 1267 ITERATE_RDEV(mddev,rdev2,tmp) { 1268 i = rdev2->desc_nr; 1269 if (test_bit(Faulty, &rdev2->flags)) 1270 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1271 else if (test_bit(In_sync, &rdev2->flags)) 1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1275 else 1276 sb->dev_roles[i] = cpu_to_le16(0xffff); 1277 } 1278 1279 sb->sb_csum = calc_sb_1_csum(sb); 1280 } 1281 1282 1283 static struct super_type super_types[] = { 1284 [0] = { 1285 .name = "0.90.0", 1286 .owner = THIS_MODULE, 1287 .load_super = super_90_load, 1288 .validate_super = super_90_validate, 1289 .sync_super = super_90_sync, 1290 }, 1291 [1] = { 1292 .name = "md-1", 1293 .owner = THIS_MODULE, 1294 .load_super = super_1_load, 1295 .validate_super = super_1_validate, 1296 .sync_super = super_1_sync, 1297 }, 1298 }; 1299 1300 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1301 { 1302 struct list_head *tmp, *tmp2; 1303 mdk_rdev_t *rdev, *rdev2; 1304 1305 ITERATE_RDEV(mddev1,rdev,tmp) 1306 ITERATE_RDEV(mddev2, rdev2, tmp2) 1307 if (rdev->bdev->bd_contains == 1308 rdev2->bdev->bd_contains) 1309 return 1; 1310 1311 return 0; 1312 } 1313 1314 static LIST_HEAD(pending_raid_disks); 1315 1316 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1317 { 1318 char b[BDEVNAME_SIZE]; 1319 struct kobject *ko; 1320 char *s; 1321 int err; 1322 1323 if (rdev->mddev) { 1324 MD_BUG(); 1325 return -EINVAL; 1326 } 1327 /* make sure rdev->size exceeds mddev->size */ 1328 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1329 if (mddev->pers) 1330 /* Cannot change size, so fail */ 1331 return -ENOSPC; 1332 else 1333 mddev->size = rdev->size; 1334 } 1335 1336 /* Verify rdev->desc_nr is unique. 1337 * If it is -1, assign a free number, else 1338 * check number is not in use 1339 */ 1340 if (rdev->desc_nr < 0) { 1341 int choice = 0; 1342 if (mddev->pers) choice = mddev->raid_disks; 1343 while (find_rdev_nr(mddev, choice)) 1344 choice++; 1345 rdev->desc_nr = choice; 1346 } else { 1347 if (find_rdev_nr(mddev, rdev->desc_nr)) 1348 return -EBUSY; 1349 } 1350 bdevname(rdev->bdev,b); 1351 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0) 1352 return -ENOMEM; 1353 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL) 1354 *s = '!'; 1355 1356 rdev->mddev = mddev; 1357 printk(KERN_INFO "md: bind<%s>\n", b); 1358 1359 rdev->kobj.parent = &mddev->kobj; 1360 if ((err = kobject_add(&rdev->kobj))) 1361 goto fail; 1362 1363 if (rdev->bdev->bd_part) 1364 ko = &rdev->bdev->bd_part->kobj; 1365 else 1366 ko = &rdev->bdev->bd_disk->kobj; 1367 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1368 kobject_del(&rdev->kobj); 1369 goto fail; 1370 } 1371 list_add(&rdev->same_set, &mddev->disks); 1372 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk); 1373 return 0; 1374 1375 fail: 1376 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1377 b, mdname(mddev)); 1378 return err; 1379 } 1380 1381 static void delayed_delete(struct work_struct *ws) 1382 { 1383 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1384 kobject_del(&rdev->kobj); 1385 } 1386 1387 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1388 { 1389 char b[BDEVNAME_SIZE]; 1390 if (!rdev->mddev) { 1391 MD_BUG(); 1392 return; 1393 } 1394 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1395 list_del_init(&rdev->same_set); 1396 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1397 rdev->mddev = NULL; 1398 sysfs_remove_link(&rdev->kobj, "block"); 1399 1400 /* We need to delay this, otherwise we can deadlock when 1401 * writing to 'remove' to "dev/state" 1402 */ 1403 INIT_WORK(&rdev->del_work, delayed_delete); 1404 schedule_work(&rdev->del_work); 1405 } 1406 1407 /* 1408 * prevent the device from being mounted, repartitioned or 1409 * otherwise reused by a RAID array (or any other kernel 1410 * subsystem), by bd_claiming the device. 1411 */ 1412 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) 1413 { 1414 int err = 0; 1415 struct block_device *bdev; 1416 char b[BDEVNAME_SIZE]; 1417 1418 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1419 if (IS_ERR(bdev)) { 1420 printk(KERN_ERR "md: could not open %s.\n", 1421 __bdevname(dev, b)); 1422 return PTR_ERR(bdev); 1423 } 1424 err = bd_claim(bdev, rdev); 1425 if (err) { 1426 printk(KERN_ERR "md: could not bd_claim %s.\n", 1427 bdevname(bdev, b)); 1428 blkdev_put(bdev); 1429 return err; 1430 } 1431 rdev->bdev = bdev; 1432 return err; 1433 } 1434 1435 static void unlock_rdev(mdk_rdev_t *rdev) 1436 { 1437 struct block_device *bdev = rdev->bdev; 1438 rdev->bdev = NULL; 1439 if (!bdev) 1440 MD_BUG(); 1441 bd_release(bdev); 1442 blkdev_put(bdev); 1443 } 1444 1445 void md_autodetect_dev(dev_t dev); 1446 1447 static void export_rdev(mdk_rdev_t * rdev) 1448 { 1449 char b[BDEVNAME_SIZE]; 1450 printk(KERN_INFO "md: export_rdev(%s)\n", 1451 bdevname(rdev->bdev,b)); 1452 if (rdev->mddev) 1453 MD_BUG(); 1454 free_disk_sb(rdev); 1455 list_del_init(&rdev->same_set); 1456 #ifndef MODULE 1457 md_autodetect_dev(rdev->bdev->bd_dev); 1458 #endif 1459 unlock_rdev(rdev); 1460 kobject_put(&rdev->kobj); 1461 } 1462 1463 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1464 { 1465 unbind_rdev_from_array(rdev); 1466 export_rdev(rdev); 1467 } 1468 1469 static void export_array(mddev_t *mddev) 1470 { 1471 struct list_head *tmp; 1472 mdk_rdev_t *rdev; 1473 1474 ITERATE_RDEV(mddev,rdev,tmp) { 1475 if (!rdev->mddev) { 1476 MD_BUG(); 1477 continue; 1478 } 1479 kick_rdev_from_array(rdev); 1480 } 1481 if (!list_empty(&mddev->disks)) 1482 MD_BUG(); 1483 mddev->raid_disks = 0; 1484 mddev->major_version = 0; 1485 } 1486 1487 static void print_desc(mdp_disk_t *desc) 1488 { 1489 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1490 desc->major,desc->minor,desc->raid_disk,desc->state); 1491 } 1492 1493 static void print_sb(mdp_super_t *sb) 1494 { 1495 int i; 1496 1497 printk(KERN_INFO 1498 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1499 sb->major_version, sb->minor_version, sb->patch_version, 1500 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1501 sb->ctime); 1502 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1503 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1504 sb->md_minor, sb->layout, sb->chunk_size); 1505 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1506 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1507 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1508 sb->failed_disks, sb->spare_disks, 1509 sb->sb_csum, (unsigned long)sb->events_lo); 1510 1511 printk(KERN_INFO); 1512 for (i = 0; i < MD_SB_DISKS; i++) { 1513 mdp_disk_t *desc; 1514 1515 desc = sb->disks + i; 1516 if (desc->number || desc->major || desc->minor || 1517 desc->raid_disk || (desc->state && (desc->state != 4))) { 1518 printk(" D %2d: ", i); 1519 print_desc(desc); 1520 } 1521 } 1522 printk(KERN_INFO "md: THIS: "); 1523 print_desc(&sb->this_disk); 1524 1525 } 1526 1527 static void print_rdev(mdk_rdev_t *rdev) 1528 { 1529 char b[BDEVNAME_SIZE]; 1530 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1531 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1532 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1533 rdev->desc_nr); 1534 if (rdev->sb_loaded) { 1535 printk(KERN_INFO "md: rdev superblock:\n"); 1536 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1537 } else 1538 printk(KERN_INFO "md: no rdev superblock!\n"); 1539 } 1540 1541 static void md_print_devices(void) 1542 { 1543 struct list_head *tmp, *tmp2; 1544 mdk_rdev_t *rdev; 1545 mddev_t *mddev; 1546 char b[BDEVNAME_SIZE]; 1547 1548 printk("\n"); 1549 printk("md: **********************************\n"); 1550 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1551 printk("md: **********************************\n"); 1552 ITERATE_MDDEV(mddev,tmp) { 1553 1554 if (mddev->bitmap) 1555 bitmap_print_sb(mddev->bitmap); 1556 else 1557 printk("%s: ", mdname(mddev)); 1558 ITERATE_RDEV(mddev,rdev,tmp2) 1559 printk("<%s>", bdevname(rdev->bdev,b)); 1560 printk("\n"); 1561 1562 ITERATE_RDEV(mddev,rdev,tmp2) 1563 print_rdev(rdev); 1564 } 1565 printk("md: **********************************\n"); 1566 printk("\n"); 1567 } 1568 1569 1570 static void sync_sbs(mddev_t * mddev, int nospares) 1571 { 1572 /* Update each superblock (in-memory image), but 1573 * if we are allowed to, skip spares which already 1574 * have the right event counter, or have one earlier 1575 * (which would mean they aren't being marked as dirty 1576 * with the rest of the array) 1577 */ 1578 mdk_rdev_t *rdev; 1579 struct list_head *tmp; 1580 1581 ITERATE_RDEV(mddev,rdev,tmp) { 1582 if (rdev->sb_events == mddev->events || 1583 (nospares && 1584 rdev->raid_disk < 0 && 1585 (rdev->sb_events&1)==0 && 1586 rdev->sb_events+1 == mddev->events)) { 1587 /* Don't update this superblock */ 1588 rdev->sb_loaded = 2; 1589 } else { 1590 super_types[mddev->major_version]. 1591 sync_super(mddev, rdev); 1592 rdev->sb_loaded = 1; 1593 } 1594 } 1595 } 1596 1597 static void md_update_sb(mddev_t * mddev, int force_change) 1598 { 1599 int err; 1600 struct list_head *tmp; 1601 mdk_rdev_t *rdev; 1602 int sync_req; 1603 int nospares = 0; 1604 1605 repeat: 1606 spin_lock_irq(&mddev->write_lock); 1607 1608 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1609 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1610 force_change = 1; 1611 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1612 /* just a clean<-> dirty transition, possibly leave spares alone, 1613 * though if events isn't the right even/odd, we will have to do 1614 * spares after all 1615 */ 1616 nospares = 1; 1617 if (force_change) 1618 nospares = 0; 1619 if (mddev->degraded) 1620 /* If the array is degraded, then skipping spares is both 1621 * dangerous and fairly pointless. 1622 * Dangerous because a device that was removed from the array 1623 * might have a event_count that still looks up-to-date, 1624 * so it can be re-added without a resync. 1625 * Pointless because if there are any spares to skip, 1626 * then a recovery will happen and soon that array won't 1627 * be degraded any more and the spare can go back to sleep then. 1628 */ 1629 nospares = 0; 1630 1631 sync_req = mddev->in_sync; 1632 mddev->utime = get_seconds(); 1633 1634 /* If this is just a dirty<->clean transition, and the array is clean 1635 * and 'events' is odd, we can roll back to the previous clean state */ 1636 if (nospares 1637 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1638 && (mddev->events & 1) 1639 && mddev->events != 1) 1640 mddev->events--; 1641 else { 1642 /* otherwise we have to go forward and ... */ 1643 mddev->events ++; 1644 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1645 /* .. if the array isn't clean, insist on an odd 'events' */ 1646 if ((mddev->events&1)==0) { 1647 mddev->events++; 1648 nospares = 0; 1649 } 1650 } else { 1651 /* otherwise insist on an even 'events' (for clean states) */ 1652 if ((mddev->events&1)) { 1653 mddev->events++; 1654 nospares = 0; 1655 } 1656 } 1657 } 1658 1659 if (!mddev->events) { 1660 /* 1661 * oops, this 64-bit counter should never wrap. 1662 * Either we are in around ~1 trillion A.C., assuming 1663 * 1 reboot per second, or we have a bug: 1664 */ 1665 MD_BUG(); 1666 mddev->events --; 1667 } 1668 sync_sbs(mddev, nospares); 1669 1670 /* 1671 * do not write anything to disk if using 1672 * nonpersistent superblocks 1673 */ 1674 if (!mddev->persistent) { 1675 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1676 spin_unlock_irq(&mddev->write_lock); 1677 wake_up(&mddev->sb_wait); 1678 return; 1679 } 1680 spin_unlock_irq(&mddev->write_lock); 1681 1682 dprintk(KERN_INFO 1683 "md: updating %s RAID superblock on device (in sync %d)\n", 1684 mdname(mddev),mddev->in_sync); 1685 1686 err = bitmap_update_sb(mddev->bitmap); 1687 ITERATE_RDEV(mddev,rdev,tmp) { 1688 char b[BDEVNAME_SIZE]; 1689 dprintk(KERN_INFO "md: "); 1690 if (rdev->sb_loaded != 1) 1691 continue; /* no noise on spare devices */ 1692 if (test_bit(Faulty, &rdev->flags)) 1693 dprintk("(skipping faulty "); 1694 1695 dprintk("%s ", bdevname(rdev->bdev,b)); 1696 if (!test_bit(Faulty, &rdev->flags)) { 1697 md_super_write(mddev,rdev, 1698 rdev->sb_offset<<1, rdev->sb_size, 1699 rdev->sb_page); 1700 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1701 bdevname(rdev->bdev,b), 1702 (unsigned long long)rdev->sb_offset); 1703 rdev->sb_events = mddev->events; 1704 1705 } else 1706 dprintk(")\n"); 1707 if (mddev->level == LEVEL_MULTIPATH) 1708 /* only need to write one superblock... */ 1709 break; 1710 } 1711 md_super_wait(mddev); 1712 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1713 1714 spin_lock_irq(&mddev->write_lock); 1715 if (mddev->in_sync != sync_req || 1716 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1717 /* have to write it out again */ 1718 spin_unlock_irq(&mddev->write_lock); 1719 goto repeat; 1720 } 1721 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1722 spin_unlock_irq(&mddev->write_lock); 1723 wake_up(&mddev->sb_wait); 1724 1725 } 1726 1727 /* words written to sysfs files may, or my not, be \n terminated. 1728 * We want to accept with case. For this we use cmd_match. 1729 */ 1730 static int cmd_match(const char *cmd, const char *str) 1731 { 1732 /* See if cmd, written into a sysfs file, matches 1733 * str. They must either be the same, or cmd can 1734 * have a trailing newline 1735 */ 1736 while (*cmd && *str && *cmd == *str) { 1737 cmd++; 1738 str++; 1739 } 1740 if (*cmd == '\n') 1741 cmd++; 1742 if (*str || *cmd) 1743 return 0; 1744 return 1; 1745 } 1746 1747 struct rdev_sysfs_entry { 1748 struct attribute attr; 1749 ssize_t (*show)(mdk_rdev_t *, char *); 1750 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1751 }; 1752 1753 static ssize_t 1754 state_show(mdk_rdev_t *rdev, char *page) 1755 { 1756 char *sep = ""; 1757 int len=0; 1758 1759 if (test_bit(Faulty, &rdev->flags)) { 1760 len+= sprintf(page+len, "%sfaulty",sep); 1761 sep = ","; 1762 } 1763 if (test_bit(In_sync, &rdev->flags)) { 1764 len += sprintf(page+len, "%sin_sync",sep); 1765 sep = ","; 1766 } 1767 if (test_bit(WriteMostly, &rdev->flags)) { 1768 len += sprintf(page+len, "%swrite_mostly",sep); 1769 sep = ","; 1770 } 1771 if (!test_bit(Faulty, &rdev->flags) && 1772 !test_bit(In_sync, &rdev->flags)) { 1773 len += sprintf(page+len, "%sspare", sep); 1774 sep = ","; 1775 } 1776 return len+sprintf(page+len, "\n"); 1777 } 1778 1779 static ssize_t 1780 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1781 { 1782 /* can write 1783 * faulty - simulates and error 1784 * remove - disconnects the device 1785 * writemostly - sets write_mostly 1786 * -writemostly - clears write_mostly 1787 */ 1788 int err = -EINVAL; 1789 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1790 md_error(rdev->mddev, rdev); 1791 err = 0; 1792 } else if (cmd_match(buf, "remove")) { 1793 if (rdev->raid_disk >= 0) 1794 err = -EBUSY; 1795 else { 1796 mddev_t *mddev = rdev->mddev; 1797 kick_rdev_from_array(rdev); 1798 if (mddev->pers) 1799 md_update_sb(mddev, 1); 1800 md_new_event(mddev); 1801 err = 0; 1802 } 1803 } else if (cmd_match(buf, "writemostly")) { 1804 set_bit(WriteMostly, &rdev->flags); 1805 err = 0; 1806 } else if (cmd_match(buf, "-writemostly")) { 1807 clear_bit(WriteMostly, &rdev->flags); 1808 err = 0; 1809 } 1810 return err ? err : len; 1811 } 1812 static struct rdev_sysfs_entry rdev_state = 1813 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1814 1815 static ssize_t 1816 super_show(mdk_rdev_t *rdev, char *page) 1817 { 1818 if (rdev->sb_loaded && rdev->sb_size) { 1819 memcpy(page, page_address(rdev->sb_page), rdev->sb_size); 1820 return rdev->sb_size; 1821 } else 1822 return 0; 1823 } 1824 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super); 1825 1826 static ssize_t 1827 errors_show(mdk_rdev_t *rdev, char *page) 1828 { 1829 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1830 } 1831 1832 static ssize_t 1833 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1834 { 1835 char *e; 1836 unsigned long n = simple_strtoul(buf, &e, 10); 1837 if (*buf && (*e == 0 || *e == '\n')) { 1838 atomic_set(&rdev->corrected_errors, n); 1839 return len; 1840 } 1841 return -EINVAL; 1842 } 1843 static struct rdev_sysfs_entry rdev_errors = 1844 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1845 1846 static ssize_t 1847 slot_show(mdk_rdev_t *rdev, char *page) 1848 { 1849 if (rdev->raid_disk < 0) 1850 return sprintf(page, "none\n"); 1851 else 1852 return sprintf(page, "%d\n", rdev->raid_disk); 1853 } 1854 1855 static ssize_t 1856 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1857 { 1858 char *e; 1859 int slot = simple_strtoul(buf, &e, 10); 1860 if (strncmp(buf, "none", 4)==0) 1861 slot = -1; 1862 else if (e==buf || (*e && *e!= '\n')) 1863 return -EINVAL; 1864 if (rdev->mddev->pers) 1865 /* Cannot set slot in active array (yet) */ 1866 return -EBUSY; 1867 if (slot >= rdev->mddev->raid_disks) 1868 return -ENOSPC; 1869 rdev->raid_disk = slot; 1870 /* assume it is working */ 1871 rdev->flags = 0; 1872 set_bit(In_sync, &rdev->flags); 1873 return len; 1874 } 1875 1876 1877 static struct rdev_sysfs_entry rdev_slot = 1878 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 1879 1880 static ssize_t 1881 offset_show(mdk_rdev_t *rdev, char *page) 1882 { 1883 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 1884 } 1885 1886 static ssize_t 1887 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1888 { 1889 char *e; 1890 unsigned long long offset = simple_strtoull(buf, &e, 10); 1891 if (e==buf || (*e && *e != '\n')) 1892 return -EINVAL; 1893 if (rdev->mddev->pers) 1894 return -EBUSY; 1895 rdev->data_offset = offset; 1896 return len; 1897 } 1898 1899 static struct rdev_sysfs_entry rdev_offset = 1900 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 1901 1902 static ssize_t 1903 rdev_size_show(mdk_rdev_t *rdev, char *page) 1904 { 1905 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 1906 } 1907 1908 static ssize_t 1909 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1910 { 1911 char *e; 1912 unsigned long long size = simple_strtoull(buf, &e, 10); 1913 if (e==buf || (*e && *e != '\n')) 1914 return -EINVAL; 1915 if (rdev->mddev->pers) 1916 return -EBUSY; 1917 rdev->size = size; 1918 if (size < rdev->mddev->size || rdev->mddev->size == 0) 1919 rdev->mddev->size = size; 1920 return len; 1921 } 1922 1923 static struct rdev_sysfs_entry rdev_size = 1924 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 1925 1926 static struct attribute *rdev_default_attrs[] = { 1927 &rdev_state.attr, 1928 &rdev_super.attr, 1929 &rdev_errors.attr, 1930 &rdev_slot.attr, 1931 &rdev_offset.attr, 1932 &rdev_size.attr, 1933 NULL, 1934 }; 1935 static ssize_t 1936 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 1937 { 1938 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1939 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1940 1941 if (!entry->show) 1942 return -EIO; 1943 return entry->show(rdev, page); 1944 } 1945 1946 static ssize_t 1947 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 1948 const char *page, size_t length) 1949 { 1950 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1951 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1952 1953 if (!entry->store) 1954 return -EIO; 1955 if (!capable(CAP_SYS_ADMIN)) 1956 return -EACCES; 1957 return entry->store(rdev, page, length); 1958 } 1959 1960 static void rdev_free(struct kobject *ko) 1961 { 1962 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 1963 kfree(rdev); 1964 } 1965 static struct sysfs_ops rdev_sysfs_ops = { 1966 .show = rdev_attr_show, 1967 .store = rdev_attr_store, 1968 }; 1969 static struct kobj_type rdev_ktype = { 1970 .release = rdev_free, 1971 .sysfs_ops = &rdev_sysfs_ops, 1972 .default_attrs = rdev_default_attrs, 1973 }; 1974 1975 /* 1976 * Import a device. If 'super_format' >= 0, then sanity check the superblock 1977 * 1978 * mark the device faulty if: 1979 * 1980 * - the device is nonexistent (zero size) 1981 * - the device has no valid superblock 1982 * 1983 * a faulty rdev _never_ has rdev->sb set. 1984 */ 1985 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 1986 { 1987 char b[BDEVNAME_SIZE]; 1988 int err; 1989 mdk_rdev_t *rdev; 1990 sector_t size; 1991 1992 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 1993 if (!rdev) { 1994 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 1995 return ERR_PTR(-ENOMEM); 1996 } 1997 1998 if ((err = alloc_disk_sb(rdev))) 1999 goto abort_free; 2000 2001 err = lock_rdev(rdev, newdev); 2002 if (err) 2003 goto abort_free; 2004 2005 rdev->kobj.parent = NULL; 2006 rdev->kobj.ktype = &rdev_ktype; 2007 kobject_init(&rdev->kobj); 2008 2009 rdev->desc_nr = -1; 2010 rdev->saved_raid_disk = -1; 2011 rdev->raid_disk = -1; 2012 rdev->flags = 0; 2013 rdev->data_offset = 0; 2014 rdev->sb_events = 0; 2015 atomic_set(&rdev->nr_pending, 0); 2016 atomic_set(&rdev->read_errors, 0); 2017 atomic_set(&rdev->corrected_errors, 0); 2018 2019 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2020 if (!size) { 2021 printk(KERN_WARNING 2022 "md: %s has zero or unknown size, marking faulty!\n", 2023 bdevname(rdev->bdev,b)); 2024 err = -EINVAL; 2025 goto abort_free; 2026 } 2027 2028 if (super_format >= 0) { 2029 err = super_types[super_format]. 2030 load_super(rdev, NULL, super_minor); 2031 if (err == -EINVAL) { 2032 printk(KERN_WARNING 2033 "md: %s has invalid sb, not importing!\n", 2034 bdevname(rdev->bdev,b)); 2035 goto abort_free; 2036 } 2037 if (err < 0) { 2038 printk(KERN_WARNING 2039 "md: could not read %s's sb, not importing!\n", 2040 bdevname(rdev->bdev,b)); 2041 goto abort_free; 2042 } 2043 } 2044 INIT_LIST_HEAD(&rdev->same_set); 2045 2046 return rdev; 2047 2048 abort_free: 2049 if (rdev->sb_page) { 2050 if (rdev->bdev) 2051 unlock_rdev(rdev); 2052 free_disk_sb(rdev); 2053 } 2054 kfree(rdev); 2055 return ERR_PTR(err); 2056 } 2057 2058 /* 2059 * Check a full RAID array for plausibility 2060 */ 2061 2062 2063 static void analyze_sbs(mddev_t * mddev) 2064 { 2065 int i; 2066 struct list_head *tmp; 2067 mdk_rdev_t *rdev, *freshest; 2068 char b[BDEVNAME_SIZE]; 2069 2070 freshest = NULL; 2071 ITERATE_RDEV(mddev,rdev,tmp) 2072 switch (super_types[mddev->major_version]. 2073 load_super(rdev, freshest, mddev->minor_version)) { 2074 case 1: 2075 freshest = rdev; 2076 break; 2077 case 0: 2078 break; 2079 default: 2080 printk( KERN_ERR \ 2081 "md: fatal superblock inconsistency in %s" 2082 " -- removing from array\n", 2083 bdevname(rdev->bdev,b)); 2084 kick_rdev_from_array(rdev); 2085 } 2086 2087 2088 super_types[mddev->major_version]. 2089 validate_super(mddev, freshest); 2090 2091 i = 0; 2092 ITERATE_RDEV(mddev,rdev,tmp) { 2093 if (rdev != freshest) 2094 if (super_types[mddev->major_version]. 2095 validate_super(mddev, rdev)) { 2096 printk(KERN_WARNING "md: kicking non-fresh %s" 2097 " from array!\n", 2098 bdevname(rdev->bdev,b)); 2099 kick_rdev_from_array(rdev); 2100 continue; 2101 } 2102 if (mddev->level == LEVEL_MULTIPATH) { 2103 rdev->desc_nr = i++; 2104 rdev->raid_disk = rdev->desc_nr; 2105 set_bit(In_sync, &rdev->flags); 2106 } 2107 } 2108 2109 2110 2111 if (mddev->recovery_cp != MaxSector && 2112 mddev->level >= 1) 2113 printk(KERN_ERR "md: %s: raid array is not clean" 2114 " -- starting background reconstruction\n", 2115 mdname(mddev)); 2116 2117 } 2118 2119 static ssize_t 2120 safe_delay_show(mddev_t *mddev, char *page) 2121 { 2122 int msec = (mddev->safemode_delay*1000)/HZ; 2123 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2124 } 2125 static ssize_t 2126 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2127 { 2128 int scale=1; 2129 int dot=0; 2130 int i; 2131 unsigned long msec; 2132 char buf[30]; 2133 char *e; 2134 /* remove a period, and count digits after it */ 2135 if (len >= sizeof(buf)) 2136 return -EINVAL; 2137 strlcpy(buf, cbuf, len); 2138 buf[len] = 0; 2139 for (i=0; i<len; i++) { 2140 if (dot) { 2141 if (isdigit(buf[i])) { 2142 buf[i-1] = buf[i]; 2143 scale *= 10; 2144 } 2145 buf[i] = 0; 2146 } else if (buf[i] == '.') { 2147 dot=1; 2148 buf[i] = 0; 2149 } 2150 } 2151 msec = simple_strtoul(buf, &e, 10); 2152 if (e == buf || (*e && *e != '\n')) 2153 return -EINVAL; 2154 msec = (msec * 1000) / scale; 2155 if (msec == 0) 2156 mddev->safemode_delay = 0; 2157 else { 2158 mddev->safemode_delay = (msec*HZ)/1000; 2159 if (mddev->safemode_delay == 0) 2160 mddev->safemode_delay = 1; 2161 } 2162 return len; 2163 } 2164 static struct md_sysfs_entry md_safe_delay = 2165 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2166 2167 static ssize_t 2168 level_show(mddev_t *mddev, char *page) 2169 { 2170 struct mdk_personality *p = mddev->pers; 2171 if (p) 2172 return sprintf(page, "%s\n", p->name); 2173 else if (mddev->clevel[0]) 2174 return sprintf(page, "%s\n", mddev->clevel); 2175 else if (mddev->level != LEVEL_NONE) 2176 return sprintf(page, "%d\n", mddev->level); 2177 else 2178 return 0; 2179 } 2180 2181 static ssize_t 2182 level_store(mddev_t *mddev, const char *buf, size_t len) 2183 { 2184 int rv = len; 2185 if (mddev->pers) 2186 return -EBUSY; 2187 if (len == 0) 2188 return 0; 2189 if (len >= sizeof(mddev->clevel)) 2190 return -ENOSPC; 2191 strncpy(mddev->clevel, buf, len); 2192 if (mddev->clevel[len-1] == '\n') 2193 len--; 2194 mddev->clevel[len] = 0; 2195 mddev->level = LEVEL_NONE; 2196 return rv; 2197 } 2198 2199 static struct md_sysfs_entry md_level = 2200 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2201 2202 2203 static ssize_t 2204 layout_show(mddev_t *mddev, char *page) 2205 { 2206 /* just a number, not meaningful for all levels */ 2207 return sprintf(page, "%d\n", mddev->layout); 2208 } 2209 2210 static ssize_t 2211 layout_store(mddev_t *mddev, const char *buf, size_t len) 2212 { 2213 char *e; 2214 unsigned long n = simple_strtoul(buf, &e, 10); 2215 if (mddev->pers) 2216 return -EBUSY; 2217 2218 if (!*buf || (*e && *e != '\n')) 2219 return -EINVAL; 2220 2221 mddev->layout = n; 2222 return len; 2223 } 2224 static struct md_sysfs_entry md_layout = 2225 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2226 2227 2228 static ssize_t 2229 raid_disks_show(mddev_t *mddev, char *page) 2230 { 2231 if (mddev->raid_disks == 0) 2232 return 0; 2233 return sprintf(page, "%d\n", mddev->raid_disks); 2234 } 2235 2236 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2237 2238 static ssize_t 2239 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2240 { 2241 char *e; 2242 int rv = 0; 2243 unsigned long n = simple_strtoul(buf, &e, 10); 2244 2245 if (!*buf || (*e && *e != '\n')) 2246 return -EINVAL; 2247 2248 if (mddev->pers) 2249 rv = update_raid_disks(mddev, n); 2250 else 2251 mddev->raid_disks = n; 2252 return rv ? rv : len; 2253 } 2254 static struct md_sysfs_entry md_raid_disks = 2255 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2256 2257 static ssize_t 2258 chunk_size_show(mddev_t *mddev, char *page) 2259 { 2260 return sprintf(page, "%d\n", mddev->chunk_size); 2261 } 2262 2263 static ssize_t 2264 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2265 { 2266 /* can only set chunk_size if array is not yet active */ 2267 char *e; 2268 unsigned long n = simple_strtoul(buf, &e, 10); 2269 2270 if (mddev->pers) 2271 return -EBUSY; 2272 if (!*buf || (*e && *e != '\n')) 2273 return -EINVAL; 2274 2275 mddev->chunk_size = n; 2276 return len; 2277 } 2278 static struct md_sysfs_entry md_chunk_size = 2279 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2280 2281 static ssize_t 2282 resync_start_show(mddev_t *mddev, char *page) 2283 { 2284 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2285 } 2286 2287 static ssize_t 2288 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2289 { 2290 /* can only set chunk_size if array is not yet active */ 2291 char *e; 2292 unsigned long long n = simple_strtoull(buf, &e, 10); 2293 2294 if (mddev->pers) 2295 return -EBUSY; 2296 if (!*buf || (*e && *e != '\n')) 2297 return -EINVAL; 2298 2299 mddev->recovery_cp = n; 2300 return len; 2301 } 2302 static struct md_sysfs_entry md_resync_start = 2303 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2304 2305 /* 2306 * The array state can be: 2307 * 2308 * clear 2309 * No devices, no size, no level 2310 * Equivalent to STOP_ARRAY ioctl 2311 * inactive 2312 * May have some settings, but array is not active 2313 * all IO results in error 2314 * When written, doesn't tear down array, but just stops it 2315 * suspended (not supported yet) 2316 * All IO requests will block. The array can be reconfigured. 2317 * Writing this, if accepted, will block until array is quiessent 2318 * readonly 2319 * no resync can happen. no superblocks get written. 2320 * write requests fail 2321 * read-auto 2322 * like readonly, but behaves like 'clean' on a write request. 2323 * 2324 * clean - no pending writes, but otherwise active. 2325 * When written to inactive array, starts without resync 2326 * If a write request arrives then 2327 * if metadata is known, mark 'dirty' and switch to 'active'. 2328 * if not known, block and switch to write-pending 2329 * If written to an active array that has pending writes, then fails. 2330 * active 2331 * fully active: IO and resync can be happening. 2332 * When written to inactive array, starts with resync 2333 * 2334 * write-pending 2335 * clean, but writes are blocked waiting for 'active' to be written. 2336 * 2337 * active-idle 2338 * like active, but no writes have been seen for a while (100msec). 2339 * 2340 */ 2341 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2342 write_pending, active_idle, bad_word}; 2343 static char *array_states[] = { 2344 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2345 "write-pending", "active-idle", NULL }; 2346 2347 static int match_word(const char *word, char **list) 2348 { 2349 int n; 2350 for (n=0; list[n]; n++) 2351 if (cmd_match(word, list[n])) 2352 break; 2353 return n; 2354 } 2355 2356 static ssize_t 2357 array_state_show(mddev_t *mddev, char *page) 2358 { 2359 enum array_state st = inactive; 2360 2361 if (mddev->pers) 2362 switch(mddev->ro) { 2363 case 1: 2364 st = readonly; 2365 break; 2366 case 2: 2367 st = read_auto; 2368 break; 2369 case 0: 2370 if (mddev->in_sync) 2371 st = clean; 2372 else if (mddev->safemode) 2373 st = active_idle; 2374 else 2375 st = active; 2376 } 2377 else { 2378 if (list_empty(&mddev->disks) && 2379 mddev->raid_disks == 0 && 2380 mddev->size == 0) 2381 st = clear; 2382 else 2383 st = inactive; 2384 } 2385 return sprintf(page, "%s\n", array_states[st]); 2386 } 2387 2388 static int do_md_stop(mddev_t * mddev, int ro); 2389 static int do_md_run(mddev_t * mddev); 2390 static int restart_array(mddev_t *mddev); 2391 2392 static ssize_t 2393 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2394 { 2395 int err = -EINVAL; 2396 enum array_state st = match_word(buf, array_states); 2397 switch(st) { 2398 case bad_word: 2399 break; 2400 case clear: 2401 /* stopping an active array */ 2402 if (mddev->pers) { 2403 if (atomic_read(&mddev->active) > 1) 2404 return -EBUSY; 2405 err = do_md_stop(mddev, 0); 2406 } 2407 break; 2408 case inactive: 2409 /* stopping an active array */ 2410 if (mddev->pers) { 2411 if (atomic_read(&mddev->active) > 1) 2412 return -EBUSY; 2413 err = do_md_stop(mddev, 2); 2414 } 2415 break; 2416 case suspended: 2417 break; /* not supported yet */ 2418 case readonly: 2419 if (mddev->pers) 2420 err = do_md_stop(mddev, 1); 2421 else { 2422 mddev->ro = 1; 2423 err = do_md_run(mddev); 2424 } 2425 break; 2426 case read_auto: 2427 /* stopping an active array */ 2428 if (mddev->pers) { 2429 err = do_md_stop(mddev, 1); 2430 if (err == 0) 2431 mddev->ro = 2; /* FIXME mark devices writable */ 2432 } else { 2433 mddev->ro = 2; 2434 err = do_md_run(mddev); 2435 } 2436 break; 2437 case clean: 2438 if (mddev->pers) { 2439 restart_array(mddev); 2440 spin_lock_irq(&mddev->write_lock); 2441 if (atomic_read(&mddev->writes_pending) == 0) { 2442 mddev->in_sync = 1; 2443 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 2444 } 2445 spin_unlock_irq(&mddev->write_lock); 2446 } else { 2447 mddev->ro = 0; 2448 mddev->recovery_cp = MaxSector; 2449 err = do_md_run(mddev); 2450 } 2451 break; 2452 case active: 2453 if (mddev->pers) { 2454 restart_array(mddev); 2455 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2456 wake_up(&mddev->sb_wait); 2457 err = 0; 2458 } else { 2459 mddev->ro = 0; 2460 err = do_md_run(mddev); 2461 } 2462 break; 2463 case write_pending: 2464 case active_idle: 2465 /* these cannot be set */ 2466 break; 2467 } 2468 if (err) 2469 return err; 2470 else 2471 return len; 2472 } 2473 static struct md_sysfs_entry md_array_state = 2474 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2475 2476 static ssize_t 2477 null_show(mddev_t *mddev, char *page) 2478 { 2479 return -EINVAL; 2480 } 2481 2482 static ssize_t 2483 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2484 { 2485 /* buf must be %d:%d\n? giving major and minor numbers */ 2486 /* The new device is added to the array. 2487 * If the array has a persistent superblock, we read the 2488 * superblock to initialise info and check validity. 2489 * Otherwise, only checking done is that in bind_rdev_to_array, 2490 * which mainly checks size. 2491 */ 2492 char *e; 2493 int major = simple_strtoul(buf, &e, 10); 2494 int minor; 2495 dev_t dev; 2496 mdk_rdev_t *rdev; 2497 int err; 2498 2499 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2500 return -EINVAL; 2501 minor = simple_strtoul(e+1, &e, 10); 2502 if (*e && *e != '\n') 2503 return -EINVAL; 2504 dev = MKDEV(major, minor); 2505 if (major != MAJOR(dev) || 2506 minor != MINOR(dev)) 2507 return -EOVERFLOW; 2508 2509 2510 if (mddev->persistent) { 2511 rdev = md_import_device(dev, mddev->major_version, 2512 mddev->minor_version); 2513 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2514 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2515 mdk_rdev_t, same_set); 2516 err = super_types[mddev->major_version] 2517 .load_super(rdev, rdev0, mddev->minor_version); 2518 if (err < 0) 2519 goto out; 2520 } 2521 } else 2522 rdev = md_import_device(dev, -1, -1); 2523 2524 if (IS_ERR(rdev)) 2525 return PTR_ERR(rdev); 2526 err = bind_rdev_to_array(rdev, mddev); 2527 out: 2528 if (err) 2529 export_rdev(rdev); 2530 return err ? err : len; 2531 } 2532 2533 static struct md_sysfs_entry md_new_device = 2534 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2535 2536 static ssize_t 2537 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2538 { 2539 char *end; 2540 unsigned long chunk, end_chunk; 2541 2542 if (!mddev->bitmap) 2543 goto out; 2544 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2545 while (*buf) { 2546 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2547 if (buf == end) break; 2548 if (*end == '-') { /* range */ 2549 buf = end + 1; 2550 end_chunk = simple_strtoul(buf, &end, 0); 2551 if (buf == end) break; 2552 } 2553 if (*end && !isspace(*end)) break; 2554 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2555 buf = end; 2556 while (isspace(*buf)) buf++; 2557 } 2558 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2559 out: 2560 return len; 2561 } 2562 2563 static struct md_sysfs_entry md_bitmap = 2564 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2565 2566 static ssize_t 2567 size_show(mddev_t *mddev, char *page) 2568 { 2569 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2570 } 2571 2572 static int update_size(mddev_t *mddev, unsigned long size); 2573 2574 static ssize_t 2575 size_store(mddev_t *mddev, const char *buf, size_t len) 2576 { 2577 /* If array is inactive, we can reduce the component size, but 2578 * not increase it (except from 0). 2579 * If array is active, we can try an on-line resize 2580 */ 2581 char *e; 2582 int err = 0; 2583 unsigned long long size = simple_strtoull(buf, &e, 10); 2584 if (!*buf || *buf == '\n' || 2585 (*e && *e != '\n')) 2586 return -EINVAL; 2587 2588 if (mddev->pers) { 2589 err = update_size(mddev, size); 2590 md_update_sb(mddev, 1); 2591 } else { 2592 if (mddev->size == 0 || 2593 mddev->size > size) 2594 mddev->size = size; 2595 else 2596 err = -ENOSPC; 2597 } 2598 return err ? err : len; 2599 } 2600 2601 static struct md_sysfs_entry md_size = 2602 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2603 2604 2605 /* Metdata version. 2606 * This is either 'none' for arrays with externally managed metadata, 2607 * or N.M for internally known formats 2608 */ 2609 static ssize_t 2610 metadata_show(mddev_t *mddev, char *page) 2611 { 2612 if (mddev->persistent) 2613 return sprintf(page, "%d.%d\n", 2614 mddev->major_version, mddev->minor_version); 2615 else 2616 return sprintf(page, "none\n"); 2617 } 2618 2619 static ssize_t 2620 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2621 { 2622 int major, minor; 2623 char *e; 2624 if (!list_empty(&mddev->disks)) 2625 return -EBUSY; 2626 2627 if (cmd_match(buf, "none")) { 2628 mddev->persistent = 0; 2629 mddev->major_version = 0; 2630 mddev->minor_version = 90; 2631 return len; 2632 } 2633 major = simple_strtoul(buf, &e, 10); 2634 if (e==buf || *e != '.') 2635 return -EINVAL; 2636 buf = e+1; 2637 minor = simple_strtoul(buf, &e, 10); 2638 if (e==buf || (*e && *e != '\n') ) 2639 return -EINVAL; 2640 if (major >= sizeof(super_types)/sizeof(super_types[0]) || 2641 super_types[major].name == NULL) 2642 return -ENOENT; 2643 mddev->major_version = major; 2644 mddev->minor_version = minor; 2645 mddev->persistent = 1; 2646 return len; 2647 } 2648 2649 static struct md_sysfs_entry md_metadata = 2650 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2651 2652 static ssize_t 2653 action_show(mddev_t *mddev, char *page) 2654 { 2655 char *type = "idle"; 2656 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2657 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) { 2658 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2659 type = "reshape"; 2660 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2661 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2662 type = "resync"; 2663 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2664 type = "check"; 2665 else 2666 type = "repair"; 2667 } else 2668 type = "recover"; 2669 } 2670 return sprintf(page, "%s\n", type); 2671 } 2672 2673 static ssize_t 2674 action_store(mddev_t *mddev, const char *page, size_t len) 2675 { 2676 if (!mddev->pers || !mddev->pers->sync_request) 2677 return -EINVAL; 2678 2679 if (cmd_match(page, "idle")) { 2680 if (mddev->sync_thread) { 2681 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2682 md_unregister_thread(mddev->sync_thread); 2683 mddev->sync_thread = NULL; 2684 mddev->recovery = 0; 2685 } 2686 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2687 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 2688 return -EBUSY; 2689 else if (cmd_match(page, "resync") || cmd_match(page, "recover")) 2690 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2691 else if (cmd_match(page, "reshape")) { 2692 int err; 2693 if (mddev->pers->start_reshape == NULL) 2694 return -EINVAL; 2695 err = mddev->pers->start_reshape(mddev); 2696 if (err) 2697 return err; 2698 } else { 2699 if (cmd_match(page, "check")) 2700 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2701 else if (!cmd_match(page, "repair")) 2702 return -EINVAL; 2703 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 2704 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2705 } 2706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2707 md_wakeup_thread(mddev->thread); 2708 return len; 2709 } 2710 2711 static ssize_t 2712 mismatch_cnt_show(mddev_t *mddev, char *page) 2713 { 2714 return sprintf(page, "%llu\n", 2715 (unsigned long long) mddev->resync_mismatches); 2716 } 2717 2718 static struct md_sysfs_entry md_scan_mode = 2719 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 2720 2721 2722 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 2723 2724 static ssize_t 2725 sync_min_show(mddev_t *mddev, char *page) 2726 { 2727 return sprintf(page, "%d (%s)\n", speed_min(mddev), 2728 mddev->sync_speed_min ? "local": "system"); 2729 } 2730 2731 static ssize_t 2732 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 2733 { 2734 int min; 2735 char *e; 2736 if (strncmp(buf, "system", 6)==0) { 2737 mddev->sync_speed_min = 0; 2738 return len; 2739 } 2740 min = simple_strtoul(buf, &e, 10); 2741 if (buf == e || (*e && *e != '\n') || min <= 0) 2742 return -EINVAL; 2743 mddev->sync_speed_min = min; 2744 return len; 2745 } 2746 2747 static struct md_sysfs_entry md_sync_min = 2748 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 2749 2750 static ssize_t 2751 sync_max_show(mddev_t *mddev, char *page) 2752 { 2753 return sprintf(page, "%d (%s)\n", speed_max(mddev), 2754 mddev->sync_speed_max ? "local": "system"); 2755 } 2756 2757 static ssize_t 2758 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 2759 { 2760 int max; 2761 char *e; 2762 if (strncmp(buf, "system", 6)==0) { 2763 mddev->sync_speed_max = 0; 2764 return len; 2765 } 2766 max = simple_strtoul(buf, &e, 10); 2767 if (buf == e || (*e && *e != '\n') || max <= 0) 2768 return -EINVAL; 2769 mddev->sync_speed_max = max; 2770 return len; 2771 } 2772 2773 static struct md_sysfs_entry md_sync_max = 2774 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 2775 2776 2777 static ssize_t 2778 sync_speed_show(mddev_t *mddev, char *page) 2779 { 2780 unsigned long resync, dt, db; 2781 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)); 2782 dt = ((jiffies - mddev->resync_mark) / HZ); 2783 if (!dt) dt++; 2784 db = resync - (mddev->resync_mark_cnt); 2785 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ 2786 } 2787 2788 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 2789 2790 static ssize_t 2791 sync_completed_show(mddev_t *mddev, char *page) 2792 { 2793 unsigned long max_blocks, resync; 2794 2795 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2796 max_blocks = mddev->resync_max_sectors; 2797 else 2798 max_blocks = mddev->size << 1; 2799 2800 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 2801 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 2802 } 2803 2804 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 2805 2806 static ssize_t 2807 suspend_lo_show(mddev_t *mddev, char *page) 2808 { 2809 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 2810 } 2811 2812 static ssize_t 2813 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 2814 { 2815 char *e; 2816 unsigned long long new = simple_strtoull(buf, &e, 10); 2817 2818 if (mddev->pers->quiesce == NULL) 2819 return -EINVAL; 2820 if (buf == e || (*e && *e != '\n')) 2821 return -EINVAL; 2822 if (new >= mddev->suspend_hi || 2823 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 2824 mddev->suspend_lo = new; 2825 mddev->pers->quiesce(mddev, 2); 2826 return len; 2827 } else 2828 return -EINVAL; 2829 } 2830 static struct md_sysfs_entry md_suspend_lo = 2831 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 2832 2833 2834 static ssize_t 2835 suspend_hi_show(mddev_t *mddev, char *page) 2836 { 2837 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 2838 } 2839 2840 static ssize_t 2841 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 2842 { 2843 char *e; 2844 unsigned long long new = simple_strtoull(buf, &e, 10); 2845 2846 if (mddev->pers->quiesce == NULL) 2847 return -EINVAL; 2848 if (buf == e || (*e && *e != '\n')) 2849 return -EINVAL; 2850 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 2851 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 2852 mddev->suspend_hi = new; 2853 mddev->pers->quiesce(mddev, 1); 2854 mddev->pers->quiesce(mddev, 0); 2855 return len; 2856 } else 2857 return -EINVAL; 2858 } 2859 static struct md_sysfs_entry md_suspend_hi = 2860 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 2861 2862 2863 static struct attribute *md_default_attrs[] = { 2864 &md_level.attr, 2865 &md_layout.attr, 2866 &md_raid_disks.attr, 2867 &md_chunk_size.attr, 2868 &md_size.attr, 2869 &md_resync_start.attr, 2870 &md_metadata.attr, 2871 &md_new_device.attr, 2872 &md_safe_delay.attr, 2873 &md_array_state.attr, 2874 NULL, 2875 }; 2876 2877 static struct attribute *md_redundancy_attrs[] = { 2878 &md_scan_mode.attr, 2879 &md_mismatches.attr, 2880 &md_sync_min.attr, 2881 &md_sync_max.attr, 2882 &md_sync_speed.attr, 2883 &md_sync_completed.attr, 2884 &md_suspend_lo.attr, 2885 &md_suspend_hi.attr, 2886 &md_bitmap.attr, 2887 NULL, 2888 }; 2889 static struct attribute_group md_redundancy_group = { 2890 .name = NULL, 2891 .attrs = md_redundancy_attrs, 2892 }; 2893 2894 2895 static ssize_t 2896 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2897 { 2898 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2899 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2900 ssize_t rv; 2901 2902 if (!entry->show) 2903 return -EIO; 2904 rv = mddev_lock(mddev); 2905 if (!rv) { 2906 rv = entry->show(mddev, page); 2907 mddev_unlock(mddev); 2908 } 2909 return rv; 2910 } 2911 2912 static ssize_t 2913 md_attr_store(struct kobject *kobj, struct attribute *attr, 2914 const char *page, size_t length) 2915 { 2916 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2917 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2918 ssize_t rv; 2919 2920 if (!entry->store) 2921 return -EIO; 2922 if (!capable(CAP_SYS_ADMIN)) 2923 return -EACCES; 2924 rv = mddev_lock(mddev); 2925 if (!rv) { 2926 rv = entry->store(mddev, page, length); 2927 mddev_unlock(mddev); 2928 } 2929 return rv; 2930 } 2931 2932 static void md_free(struct kobject *ko) 2933 { 2934 mddev_t *mddev = container_of(ko, mddev_t, kobj); 2935 kfree(mddev); 2936 } 2937 2938 static struct sysfs_ops md_sysfs_ops = { 2939 .show = md_attr_show, 2940 .store = md_attr_store, 2941 }; 2942 static struct kobj_type md_ktype = { 2943 .release = md_free, 2944 .sysfs_ops = &md_sysfs_ops, 2945 .default_attrs = md_default_attrs, 2946 }; 2947 2948 int mdp_major = 0; 2949 2950 static struct kobject *md_probe(dev_t dev, int *part, void *data) 2951 { 2952 static DEFINE_MUTEX(disks_mutex); 2953 mddev_t *mddev = mddev_find(dev); 2954 struct gendisk *disk; 2955 int partitioned = (MAJOR(dev) != MD_MAJOR); 2956 int shift = partitioned ? MdpMinorShift : 0; 2957 int unit = MINOR(dev) >> shift; 2958 2959 if (!mddev) 2960 return NULL; 2961 2962 mutex_lock(&disks_mutex); 2963 if (mddev->gendisk) { 2964 mutex_unlock(&disks_mutex); 2965 mddev_put(mddev); 2966 return NULL; 2967 } 2968 disk = alloc_disk(1 << shift); 2969 if (!disk) { 2970 mutex_unlock(&disks_mutex); 2971 mddev_put(mddev); 2972 return NULL; 2973 } 2974 disk->major = MAJOR(dev); 2975 disk->first_minor = unit << shift; 2976 if (partitioned) 2977 sprintf(disk->disk_name, "md_d%d", unit); 2978 else 2979 sprintf(disk->disk_name, "md%d", unit); 2980 disk->fops = &md_fops; 2981 disk->private_data = mddev; 2982 disk->queue = mddev->queue; 2983 add_disk(disk); 2984 mddev->gendisk = disk; 2985 mutex_unlock(&disks_mutex); 2986 mddev->kobj.parent = &disk->kobj; 2987 mddev->kobj.k_name = NULL; 2988 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md"); 2989 mddev->kobj.ktype = &md_ktype; 2990 if (kobject_register(&mddev->kobj)) 2991 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 2992 disk->disk_name); 2993 return NULL; 2994 } 2995 2996 static void md_safemode_timeout(unsigned long data) 2997 { 2998 mddev_t *mddev = (mddev_t *) data; 2999 3000 mddev->safemode = 1; 3001 md_wakeup_thread(mddev->thread); 3002 } 3003 3004 static int start_dirty_degraded; 3005 3006 static int do_md_run(mddev_t * mddev) 3007 { 3008 int err; 3009 int chunk_size; 3010 struct list_head *tmp; 3011 mdk_rdev_t *rdev; 3012 struct gendisk *disk; 3013 struct mdk_personality *pers; 3014 char b[BDEVNAME_SIZE]; 3015 3016 if (list_empty(&mddev->disks)) 3017 /* cannot run an array with no devices.. */ 3018 return -EINVAL; 3019 3020 if (mddev->pers) 3021 return -EBUSY; 3022 3023 /* 3024 * Analyze all RAID superblock(s) 3025 */ 3026 if (!mddev->raid_disks) 3027 analyze_sbs(mddev); 3028 3029 chunk_size = mddev->chunk_size; 3030 3031 if (chunk_size) { 3032 if (chunk_size > MAX_CHUNK_SIZE) { 3033 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3034 chunk_size, MAX_CHUNK_SIZE); 3035 return -EINVAL; 3036 } 3037 /* 3038 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3039 */ 3040 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3041 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3042 return -EINVAL; 3043 } 3044 if (chunk_size < PAGE_SIZE) { 3045 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3046 chunk_size, PAGE_SIZE); 3047 return -EINVAL; 3048 } 3049 3050 /* devices must have minimum size of one chunk */ 3051 ITERATE_RDEV(mddev,rdev,tmp) { 3052 if (test_bit(Faulty, &rdev->flags)) 3053 continue; 3054 if (rdev->size < chunk_size / 1024) { 3055 printk(KERN_WARNING 3056 "md: Dev %s smaller than chunk_size:" 3057 " %lluk < %dk\n", 3058 bdevname(rdev->bdev,b), 3059 (unsigned long long)rdev->size, 3060 chunk_size / 1024); 3061 return -EINVAL; 3062 } 3063 } 3064 } 3065 3066 #ifdef CONFIG_KMOD 3067 if (mddev->level != LEVEL_NONE) 3068 request_module("md-level-%d", mddev->level); 3069 else if (mddev->clevel[0]) 3070 request_module("md-%s", mddev->clevel); 3071 #endif 3072 3073 /* 3074 * Drop all container device buffers, from now on 3075 * the only valid external interface is through the md 3076 * device. 3077 * Also find largest hardsector size 3078 */ 3079 ITERATE_RDEV(mddev,rdev,tmp) { 3080 if (test_bit(Faulty, &rdev->flags)) 3081 continue; 3082 sync_blockdev(rdev->bdev); 3083 invalidate_bdev(rdev->bdev); 3084 } 3085 3086 md_probe(mddev->unit, NULL, NULL); 3087 disk = mddev->gendisk; 3088 if (!disk) 3089 return -ENOMEM; 3090 3091 spin_lock(&pers_lock); 3092 pers = find_pers(mddev->level, mddev->clevel); 3093 if (!pers || !try_module_get(pers->owner)) { 3094 spin_unlock(&pers_lock); 3095 if (mddev->level != LEVEL_NONE) 3096 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3097 mddev->level); 3098 else 3099 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3100 mddev->clevel); 3101 return -EINVAL; 3102 } 3103 mddev->pers = pers; 3104 spin_unlock(&pers_lock); 3105 mddev->level = pers->level; 3106 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3107 3108 if (mddev->reshape_position != MaxSector && 3109 pers->start_reshape == NULL) { 3110 /* This personality cannot handle reshaping... */ 3111 mddev->pers = NULL; 3112 module_put(pers->owner); 3113 return -EINVAL; 3114 } 3115 3116 if (pers->sync_request) { 3117 /* Warn if this is a potentially silly 3118 * configuration. 3119 */ 3120 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3121 mdk_rdev_t *rdev2; 3122 struct list_head *tmp2; 3123 int warned = 0; 3124 ITERATE_RDEV(mddev, rdev, tmp) { 3125 ITERATE_RDEV(mddev, rdev2, tmp2) { 3126 if (rdev < rdev2 && 3127 rdev->bdev->bd_contains == 3128 rdev2->bdev->bd_contains) { 3129 printk(KERN_WARNING 3130 "%s: WARNING: %s appears to be" 3131 " on the same physical disk as" 3132 " %s.\n", 3133 mdname(mddev), 3134 bdevname(rdev->bdev,b), 3135 bdevname(rdev2->bdev,b2)); 3136 warned = 1; 3137 } 3138 } 3139 } 3140 if (warned) 3141 printk(KERN_WARNING 3142 "True protection against single-disk" 3143 " failure might be compromised.\n"); 3144 } 3145 3146 mddev->recovery = 0; 3147 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3148 mddev->barriers_work = 1; 3149 mddev->ok_start_degraded = start_dirty_degraded; 3150 3151 if (start_readonly) 3152 mddev->ro = 2; /* read-only, but switch on first write */ 3153 3154 err = mddev->pers->run(mddev); 3155 if (!err && mddev->pers->sync_request) { 3156 err = bitmap_create(mddev); 3157 if (err) { 3158 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3159 mdname(mddev), err); 3160 mddev->pers->stop(mddev); 3161 } 3162 } 3163 if (err) { 3164 printk(KERN_ERR "md: pers->run() failed ...\n"); 3165 module_put(mddev->pers->owner); 3166 mddev->pers = NULL; 3167 bitmap_destroy(mddev); 3168 return err; 3169 } 3170 if (mddev->pers->sync_request) { 3171 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3172 printk(KERN_WARNING 3173 "md: cannot register extra attributes for %s\n", 3174 mdname(mddev)); 3175 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3176 mddev->ro = 0; 3177 3178 atomic_set(&mddev->writes_pending,0); 3179 mddev->safemode = 0; 3180 mddev->safemode_timer.function = md_safemode_timeout; 3181 mddev->safemode_timer.data = (unsigned long) mddev; 3182 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3183 mddev->in_sync = 1; 3184 3185 ITERATE_RDEV(mddev,rdev,tmp) 3186 if (rdev->raid_disk >= 0) { 3187 char nm[20]; 3188 sprintf(nm, "rd%d", rdev->raid_disk); 3189 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3190 printk("md: cannot register %s for %s\n", 3191 nm, mdname(mddev)); 3192 } 3193 3194 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3195 3196 if (mddev->flags) 3197 md_update_sb(mddev, 0); 3198 3199 set_capacity(disk, mddev->array_size<<1); 3200 3201 /* If we call blk_queue_make_request here, it will 3202 * re-initialise max_sectors etc which may have been 3203 * refined inside -> run. So just set the bits we need to set. 3204 * Most initialisation happended when we called 3205 * blk_queue_make_request(..., md_fail_request) 3206 * earlier. 3207 */ 3208 mddev->queue->queuedata = mddev; 3209 mddev->queue->make_request_fn = mddev->pers->make_request; 3210 3211 /* If there is a partially-recovered drive we need to 3212 * start recovery here. If we leave it to md_check_recovery, 3213 * it will remove the drives and not do the right thing 3214 */ 3215 if (mddev->degraded && !mddev->sync_thread) { 3216 struct list_head *rtmp; 3217 int spares = 0; 3218 ITERATE_RDEV(mddev,rdev,rtmp) 3219 if (rdev->raid_disk >= 0 && 3220 !test_bit(In_sync, &rdev->flags) && 3221 !test_bit(Faulty, &rdev->flags)) 3222 /* complete an interrupted recovery */ 3223 spares++; 3224 if (spares && mddev->pers->sync_request) { 3225 mddev->recovery = 0; 3226 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3227 mddev->sync_thread = md_register_thread(md_do_sync, 3228 mddev, 3229 "%s_resync"); 3230 if (!mddev->sync_thread) { 3231 printk(KERN_ERR "%s: could not start resync" 3232 " thread...\n", 3233 mdname(mddev)); 3234 /* leave the spares where they are, it shouldn't hurt */ 3235 mddev->recovery = 0; 3236 } 3237 } 3238 } 3239 md_wakeup_thread(mddev->thread); 3240 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3241 3242 mddev->changed = 1; 3243 md_new_event(mddev); 3244 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE); 3245 return 0; 3246 } 3247 3248 static int restart_array(mddev_t *mddev) 3249 { 3250 struct gendisk *disk = mddev->gendisk; 3251 int err; 3252 3253 /* 3254 * Complain if it has no devices 3255 */ 3256 err = -ENXIO; 3257 if (list_empty(&mddev->disks)) 3258 goto out; 3259 3260 if (mddev->pers) { 3261 err = -EBUSY; 3262 if (!mddev->ro) 3263 goto out; 3264 3265 mddev->safemode = 0; 3266 mddev->ro = 0; 3267 set_disk_ro(disk, 0); 3268 3269 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3270 mdname(mddev)); 3271 /* 3272 * Kick recovery or resync if necessary 3273 */ 3274 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3275 md_wakeup_thread(mddev->thread); 3276 md_wakeup_thread(mddev->sync_thread); 3277 err = 0; 3278 } else 3279 err = -EINVAL; 3280 3281 out: 3282 return err; 3283 } 3284 3285 /* similar to deny_write_access, but accounts for our holding a reference 3286 * to the file ourselves */ 3287 static int deny_bitmap_write_access(struct file * file) 3288 { 3289 struct inode *inode = file->f_mapping->host; 3290 3291 spin_lock(&inode->i_lock); 3292 if (atomic_read(&inode->i_writecount) > 1) { 3293 spin_unlock(&inode->i_lock); 3294 return -ETXTBSY; 3295 } 3296 atomic_set(&inode->i_writecount, -1); 3297 spin_unlock(&inode->i_lock); 3298 3299 return 0; 3300 } 3301 3302 static void restore_bitmap_write_access(struct file *file) 3303 { 3304 struct inode *inode = file->f_mapping->host; 3305 3306 spin_lock(&inode->i_lock); 3307 atomic_set(&inode->i_writecount, 1); 3308 spin_unlock(&inode->i_lock); 3309 } 3310 3311 /* mode: 3312 * 0 - completely stop and dis-assemble array 3313 * 1 - switch to readonly 3314 * 2 - stop but do not disassemble array 3315 */ 3316 static int do_md_stop(mddev_t * mddev, int mode) 3317 { 3318 int err = 0; 3319 struct gendisk *disk = mddev->gendisk; 3320 3321 if (mddev->pers) { 3322 if (atomic_read(&mddev->active)>2) { 3323 printk("md: %s still in use.\n",mdname(mddev)); 3324 return -EBUSY; 3325 } 3326 3327 if (mddev->sync_thread) { 3328 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3329 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3330 md_unregister_thread(mddev->sync_thread); 3331 mddev->sync_thread = NULL; 3332 } 3333 3334 del_timer_sync(&mddev->safemode_timer); 3335 3336 invalidate_partition(disk, 0); 3337 3338 switch(mode) { 3339 case 1: /* readonly */ 3340 err = -ENXIO; 3341 if (mddev->ro==1) 3342 goto out; 3343 mddev->ro = 1; 3344 break; 3345 case 0: /* disassemble */ 3346 case 2: /* stop */ 3347 bitmap_flush(mddev); 3348 md_super_wait(mddev); 3349 if (mddev->ro) 3350 set_disk_ro(disk, 0); 3351 blk_queue_make_request(mddev->queue, md_fail_request); 3352 mddev->pers->stop(mddev); 3353 mddev->queue->merge_bvec_fn = NULL; 3354 mddev->queue->unplug_fn = NULL; 3355 mddev->queue->issue_flush_fn = NULL; 3356 mddev->queue->backing_dev_info.congested_fn = NULL; 3357 if (mddev->pers->sync_request) 3358 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3359 3360 module_put(mddev->pers->owner); 3361 mddev->pers = NULL; 3362 3363 set_capacity(disk, 0); 3364 mddev->changed = 1; 3365 3366 if (mddev->ro) 3367 mddev->ro = 0; 3368 } 3369 if (!mddev->in_sync || mddev->flags) { 3370 /* mark array as shutdown cleanly */ 3371 mddev->in_sync = 1; 3372 md_update_sb(mddev, 1); 3373 } 3374 if (mode == 1) 3375 set_disk_ro(disk, 1); 3376 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3377 } 3378 3379 /* 3380 * Free resources if final stop 3381 */ 3382 if (mode == 0) { 3383 mdk_rdev_t *rdev; 3384 struct list_head *tmp; 3385 3386 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3387 3388 bitmap_destroy(mddev); 3389 if (mddev->bitmap_file) { 3390 restore_bitmap_write_access(mddev->bitmap_file); 3391 fput(mddev->bitmap_file); 3392 mddev->bitmap_file = NULL; 3393 } 3394 mddev->bitmap_offset = 0; 3395 3396 ITERATE_RDEV(mddev,rdev,tmp) 3397 if (rdev->raid_disk >= 0) { 3398 char nm[20]; 3399 sprintf(nm, "rd%d", rdev->raid_disk); 3400 sysfs_remove_link(&mddev->kobj, nm); 3401 } 3402 3403 /* make sure all delayed_delete calls have finished */ 3404 flush_scheduled_work(); 3405 3406 export_array(mddev); 3407 3408 mddev->array_size = 0; 3409 mddev->size = 0; 3410 mddev->raid_disks = 0; 3411 mddev->recovery_cp = 0; 3412 3413 } else if (mddev->pers) 3414 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3415 mdname(mddev)); 3416 err = 0; 3417 md_new_event(mddev); 3418 out: 3419 return err; 3420 } 3421 3422 #ifndef MODULE 3423 static void autorun_array(mddev_t *mddev) 3424 { 3425 mdk_rdev_t *rdev; 3426 struct list_head *tmp; 3427 int err; 3428 3429 if (list_empty(&mddev->disks)) 3430 return; 3431 3432 printk(KERN_INFO "md: running: "); 3433 3434 ITERATE_RDEV(mddev,rdev,tmp) { 3435 char b[BDEVNAME_SIZE]; 3436 printk("<%s>", bdevname(rdev->bdev,b)); 3437 } 3438 printk("\n"); 3439 3440 err = do_md_run (mddev); 3441 if (err) { 3442 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3443 do_md_stop (mddev, 0); 3444 } 3445 } 3446 3447 /* 3448 * lets try to run arrays based on all disks that have arrived 3449 * until now. (those are in pending_raid_disks) 3450 * 3451 * the method: pick the first pending disk, collect all disks with 3452 * the same UUID, remove all from the pending list and put them into 3453 * the 'same_array' list. Then order this list based on superblock 3454 * update time (freshest comes first), kick out 'old' disks and 3455 * compare superblocks. If everything's fine then run it. 3456 * 3457 * If "unit" is allocated, then bump its reference count 3458 */ 3459 static void autorun_devices(int part) 3460 { 3461 struct list_head *tmp; 3462 mdk_rdev_t *rdev0, *rdev; 3463 mddev_t *mddev; 3464 char b[BDEVNAME_SIZE]; 3465 3466 printk(KERN_INFO "md: autorun ...\n"); 3467 while (!list_empty(&pending_raid_disks)) { 3468 int unit; 3469 dev_t dev; 3470 LIST_HEAD(candidates); 3471 rdev0 = list_entry(pending_raid_disks.next, 3472 mdk_rdev_t, same_set); 3473 3474 printk(KERN_INFO "md: considering %s ...\n", 3475 bdevname(rdev0->bdev,b)); 3476 INIT_LIST_HEAD(&candidates); 3477 ITERATE_RDEV_PENDING(rdev,tmp) 3478 if (super_90_load(rdev, rdev0, 0) >= 0) { 3479 printk(KERN_INFO "md: adding %s ...\n", 3480 bdevname(rdev->bdev,b)); 3481 list_move(&rdev->same_set, &candidates); 3482 } 3483 /* 3484 * now we have a set of devices, with all of them having 3485 * mostly sane superblocks. It's time to allocate the 3486 * mddev. 3487 */ 3488 if (part) { 3489 dev = MKDEV(mdp_major, 3490 rdev0->preferred_minor << MdpMinorShift); 3491 unit = MINOR(dev) >> MdpMinorShift; 3492 } else { 3493 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 3494 unit = MINOR(dev); 3495 } 3496 if (rdev0->preferred_minor != unit) { 3497 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 3498 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 3499 break; 3500 } 3501 3502 md_probe(dev, NULL, NULL); 3503 mddev = mddev_find(dev); 3504 if (!mddev) { 3505 printk(KERN_ERR 3506 "md: cannot allocate memory for md drive.\n"); 3507 break; 3508 } 3509 if (mddev_lock(mddev)) 3510 printk(KERN_WARNING "md: %s locked, cannot run\n", 3511 mdname(mddev)); 3512 else if (mddev->raid_disks || mddev->major_version 3513 || !list_empty(&mddev->disks)) { 3514 printk(KERN_WARNING 3515 "md: %s already running, cannot run %s\n", 3516 mdname(mddev), bdevname(rdev0->bdev,b)); 3517 mddev_unlock(mddev); 3518 } else { 3519 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 3520 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { 3521 list_del_init(&rdev->same_set); 3522 if (bind_rdev_to_array(rdev, mddev)) 3523 export_rdev(rdev); 3524 } 3525 autorun_array(mddev); 3526 mddev_unlock(mddev); 3527 } 3528 /* on success, candidates will be empty, on error 3529 * it won't... 3530 */ 3531 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) 3532 export_rdev(rdev); 3533 mddev_put(mddev); 3534 } 3535 printk(KERN_INFO "md: ... autorun DONE.\n"); 3536 } 3537 #endif /* !MODULE */ 3538 3539 static int get_version(void __user * arg) 3540 { 3541 mdu_version_t ver; 3542 3543 ver.major = MD_MAJOR_VERSION; 3544 ver.minor = MD_MINOR_VERSION; 3545 ver.patchlevel = MD_PATCHLEVEL_VERSION; 3546 3547 if (copy_to_user(arg, &ver, sizeof(ver))) 3548 return -EFAULT; 3549 3550 return 0; 3551 } 3552 3553 static int get_array_info(mddev_t * mddev, void __user * arg) 3554 { 3555 mdu_array_info_t info; 3556 int nr,working,active,failed,spare; 3557 mdk_rdev_t *rdev; 3558 struct list_head *tmp; 3559 3560 nr=working=active=failed=spare=0; 3561 ITERATE_RDEV(mddev,rdev,tmp) { 3562 nr++; 3563 if (test_bit(Faulty, &rdev->flags)) 3564 failed++; 3565 else { 3566 working++; 3567 if (test_bit(In_sync, &rdev->flags)) 3568 active++; 3569 else 3570 spare++; 3571 } 3572 } 3573 3574 info.major_version = mddev->major_version; 3575 info.minor_version = mddev->minor_version; 3576 info.patch_version = MD_PATCHLEVEL_VERSION; 3577 info.ctime = mddev->ctime; 3578 info.level = mddev->level; 3579 info.size = mddev->size; 3580 if (info.size != mddev->size) /* overflow */ 3581 info.size = -1; 3582 info.nr_disks = nr; 3583 info.raid_disks = mddev->raid_disks; 3584 info.md_minor = mddev->md_minor; 3585 info.not_persistent= !mddev->persistent; 3586 3587 info.utime = mddev->utime; 3588 info.state = 0; 3589 if (mddev->in_sync) 3590 info.state = (1<<MD_SB_CLEAN); 3591 if (mddev->bitmap && mddev->bitmap_offset) 3592 info.state = (1<<MD_SB_BITMAP_PRESENT); 3593 info.active_disks = active; 3594 info.working_disks = working; 3595 info.failed_disks = failed; 3596 info.spare_disks = spare; 3597 3598 info.layout = mddev->layout; 3599 info.chunk_size = mddev->chunk_size; 3600 3601 if (copy_to_user(arg, &info, sizeof(info))) 3602 return -EFAULT; 3603 3604 return 0; 3605 } 3606 3607 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 3608 { 3609 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 3610 char *ptr, *buf = NULL; 3611 int err = -ENOMEM; 3612 3613 md_allow_write(mddev); 3614 3615 file = kmalloc(sizeof(*file), GFP_KERNEL); 3616 if (!file) 3617 goto out; 3618 3619 /* bitmap disabled, zero the first byte and copy out */ 3620 if (!mddev->bitmap || !mddev->bitmap->file) { 3621 file->pathname[0] = '\0'; 3622 goto copy_out; 3623 } 3624 3625 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 3626 if (!buf) 3627 goto out; 3628 3629 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 3630 if (!ptr) 3631 goto out; 3632 3633 strcpy(file->pathname, ptr); 3634 3635 copy_out: 3636 err = 0; 3637 if (copy_to_user(arg, file, sizeof(*file))) 3638 err = -EFAULT; 3639 out: 3640 kfree(buf); 3641 kfree(file); 3642 return err; 3643 } 3644 3645 static int get_disk_info(mddev_t * mddev, void __user * arg) 3646 { 3647 mdu_disk_info_t info; 3648 unsigned int nr; 3649 mdk_rdev_t *rdev; 3650 3651 if (copy_from_user(&info, arg, sizeof(info))) 3652 return -EFAULT; 3653 3654 nr = info.number; 3655 3656 rdev = find_rdev_nr(mddev, nr); 3657 if (rdev) { 3658 info.major = MAJOR(rdev->bdev->bd_dev); 3659 info.minor = MINOR(rdev->bdev->bd_dev); 3660 info.raid_disk = rdev->raid_disk; 3661 info.state = 0; 3662 if (test_bit(Faulty, &rdev->flags)) 3663 info.state |= (1<<MD_DISK_FAULTY); 3664 else if (test_bit(In_sync, &rdev->flags)) { 3665 info.state |= (1<<MD_DISK_ACTIVE); 3666 info.state |= (1<<MD_DISK_SYNC); 3667 } 3668 if (test_bit(WriteMostly, &rdev->flags)) 3669 info.state |= (1<<MD_DISK_WRITEMOSTLY); 3670 } else { 3671 info.major = info.minor = 0; 3672 info.raid_disk = -1; 3673 info.state = (1<<MD_DISK_REMOVED); 3674 } 3675 3676 if (copy_to_user(arg, &info, sizeof(info))) 3677 return -EFAULT; 3678 3679 return 0; 3680 } 3681 3682 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 3683 { 3684 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3685 mdk_rdev_t *rdev; 3686 dev_t dev = MKDEV(info->major,info->minor); 3687 3688 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 3689 return -EOVERFLOW; 3690 3691 if (!mddev->raid_disks) { 3692 int err; 3693 /* expecting a device which has a superblock */ 3694 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 3695 if (IS_ERR(rdev)) { 3696 printk(KERN_WARNING 3697 "md: md_import_device returned %ld\n", 3698 PTR_ERR(rdev)); 3699 return PTR_ERR(rdev); 3700 } 3701 if (!list_empty(&mddev->disks)) { 3702 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3703 mdk_rdev_t, same_set); 3704 int err = super_types[mddev->major_version] 3705 .load_super(rdev, rdev0, mddev->minor_version); 3706 if (err < 0) { 3707 printk(KERN_WARNING 3708 "md: %s has different UUID to %s\n", 3709 bdevname(rdev->bdev,b), 3710 bdevname(rdev0->bdev,b2)); 3711 export_rdev(rdev); 3712 return -EINVAL; 3713 } 3714 } 3715 err = bind_rdev_to_array(rdev, mddev); 3716 if (err) 3717 export_rdev(rdev); 3718 return err; 3719 } 3720 3721 /* 3722 * add_new_disk can be used once the array is assembled 3723 * to add "hot spares". They must already have a superblock 3724 * written 3725 */ 3726 if (mddev->pers) { 3727 int err; 3728 if (!mddev->pers->hot_add_disk) { 3729 printk(KERN_WARNING 3730 "%s: personality does not support diskops!\n", 3731 mdname(mddev)); 3732 return -EINVAL; 3733 } 3734 if (mddev->persistent) 3735 rdev = md_import_device(dev, mddev->major_version, 3736 mddev->minor_version); 3737 else 3738 rdev = md_import_device(dev, -1, -1); 3739 if (IS_ERR(rdev)) { 3740 printk(KERN_WARNING 3741 "md: md_import_device returned %ld\n", 3742 PTR_ERR(rdev)); 3743 return PTR_ERR(rdev); 3744 } 3745 /* set save_raid_disk if appropriate */ 3746 if (!mddev->persistent) { 3747 if (info->state & (1<<MD_DISK_SYNC) && 3748 info->raid_disk < mddev->raid_disks) 3749 rdev->raid_disk = info->raid_disk; 3750 else 3751 rdev->raid_disk = -1; 3752 } else 3753 super_types[mddev->major_version]. 3754 validate_super(mddev, rdev); 3755 rdev->saved_raid_disk = rdev->raid_disk; 3756 3757 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 3758 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3759 set_bit(WriteMostly, &rdev->flags); 3760 3761 rdev->raid_disk = -1; 3762 err = bind_rdev_to_array(rdev, mddev); 3763 if (!err && !mddev->pers->hot_remove_disk) { 3764 /* If there is hot_add_disk but no hot_remove_disk 3765 * then added disks for geometry changes, 3766 * and should be added immediately. 3767 */ 3768 super_types[mddev->major_version]. 3769 validate_super(mddev, rdev); 3770 err = mddev->pers->hot_add_disk(mddev, rdev); 3771 if (err) 3772 unbind_rdev_from_array(rdev); 3773 } 3774 if (err) 3775 export_rdev(rdev); 3776 3777 md_update_sb(mddev, 1); 3778 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3779 md_wakeup_thread(mddev->thread); 3780 return err; 3781 } 3782 3783 /* otherwise, add_new_disk is only allowed 3784 * for major_version==0 superblocks 3785 */ 3786 if (mddev->major_version != 0) { 3787 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 3788 mdname(mddev)); 3789 return -EINVAL; 3790 } 3791 3792 if (!(info->state & (1<<MD_DISK_FAULTY))) { 3793 int err; 3794 rdev = md_import_device (dev, -1, 0); 3795 if (IS_ERR(rdev)) { 3796 printk(KERN_WARNING 3797 "md: error, md_import_device() returned %ld\n", 3798 PTR_ERR(rdev)); 3799 return PTR_ERR(rdev); 3800 } 3801 rdev->desc_nr = info->number; 3802 if (info->raid_disk < mddev->raid_disks) 3803 rdev->raid_disk = info->raid_disk; 3804 else 3805 rdev->raid_disk = -1; 3806 3807 rdev->flags = 0; 3808 3809 if (rdev->raid_disk < mddev->raid_disks) 3810 if (info->state & (1<<MD_DISK_SYNC)) 3811 set_bit(In_sync, &rdev->flags); 3812 3813 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3814 set_bit(WriteMostly, &rdev->flags); 3815 3816 if (!mddev->persistent) { 3817 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 3818 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3819 } else 3820 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3821 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 3822 3823 err = bind_rdev_to_array(rdev, mddev); 3824 if (err) { 3825 export_rdev(rdev); 3826 return err; 3827 } 3828 } 3829 3830 return 0; 3831 } 3832 3833 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 3834 { 3835 char b[BDEVNAME_SIZE]; 3836 mdk_rdev_t *rdev; 3837 3838 if (!mddev->pers) 3839 return -ENODEV; 3840 3841 rdev = find_rdev(mddev, dev); 3842 if (!rdev) 3843 return -ENXIO; 3844 3845 if (rdev->raid_disk >= 0) 3846 goto busy; 3847 3848 kick_rdev_from_array(rdev); 3849 md_update_sb(mddev, 1); 3850 md_new_event(mddev); 3851 3852 return 0; 3853 busy: 3854 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", 3855 bdevname(rdev->bdev,b), mdname(mddev)); 3856 return -EBUSY; 3857 } 3858 3859 static int hot_add_disk(mddev_t * mddev, dev_t dev) 3860 { 3861 char b[BDEVNAME_SIZE]; 3862 int err; 3863 unsigned int size; 3864 mdk_rdev_t *rdev; 3865 3866 if (!mddev->pers) 3867 return -ENODEV; 3868 3869 if (mddev->major_version != 0) { 3870 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 3871 " version-0 superblocks.\n", 3872 mdname(mddev)); 3873 return -EINVAL; 3874 } 3875 if (!mddev->pers->hot_add_disk) { 3876 printk(KERN_WARNING 3877 "%s: personality does not support diskops!\n", 3878 mdname(mddev)); 3879 return -EINVAL; 3880 } 3881 3882 rdev = md_import_device (dev, -1, 0); 3883 if (IS_ERR(rdev)) { 3884 printk(KERN_WARNING 3885 "md: error, md_import_device() returned %ld\n", 3886 PTR_ERR(rdev)); 3887 return -EINVAL; 3888 } 3889 3890 if (mddev->persistent) 3891 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3892 else 3893 rdev->sb_offset = 3894 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3895 3896 size = calc_dev_size(rdev, mddev->chunk_size); 3897 rdev->size = size; 3898 3899 if (test_bit(Faulty, &rdev->flags)) { 3900 printk(KERN_WARNING 3901 "md: can not hot-add faulty %s disk to %s!\n", 3902 bdevname(rdev->bdev,b), mdname(mddev)); 3903 err = -EINVAL; 3904 goto abort_export; 3905 } 3906 clear_bit(In_sync, &rdev->flags); 3907 rdev->desc_nr = -1; 3908 rdev->saved_raid_disk = -1; 3909 err = bind_rdev_to_array(rdev, mddev); 3910 if (err) 3911 goto abort_export; 3912 3913 /* 3914 * The rest should better be atomic, we can have disk failures 3915 * noticed in interrupt contexts ... 3916 */ 3917 3918 if (rdev->desc_nr == mddev->max_disks) { 3919 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 3920 mdname(mddev)); 3921 err = -EBUSY; 3922 goto abort_unbind_export; 3923 } 3924 3925 rdev->raid_disk = -1; 3926 3927 md_update_sb(mddev, 1); 3928 3929 /* 3930 * Kick recovery, maybe this spare has to be added to the 3931 * array immediately. 3932 */ 3933 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3934 md_wakeup_thread(mddev->thread); 3935 md_new_event(mddev); 3936 return 0; 3937 3938 abort_unbind_export: 3939 unbind_rdev_from_array(rdev); 3940 3941 abort_export: 3942 export_rdev(rdev); 3943 return err; 3944 } 3945 3946 static int set_bitmap_file(mddev_t *mddev, int fd) 3947 { 3948 int err; 3949 3950 if (mddev->pers) { 3951 if (!mddev->pers->quiesce) 3952 return -EBUSY; 3953 if (mddev->recovery || mddev->sync_thread) 3954 return -EBUSY; 3955 /* we should be able to change the bitmap.. */ 3956 } 3957 3958 3959 if (fd >= 0) { 3960 if (mddev->bitmap) 3961 return -EEXIST; /* cannot add when bitmap is present */ 3962 mddev->bitmap_file = fget(fd); 3963 3964 if (mddev->bitmap_file == NULL) { 3965 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 3966 mdname(mddev)); 3967 return -EBADF; 3968 } 3969 3970 err = deny_bitmap_write_access(mddev->bitmap_file); 3971 if (err) { 3972 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 3973 mdname(mddev)); 3974 fput(mddev->bitmap_file); 3975 mddev->bitmap_file = NULL; 3976 return err; 3977 } 3978 mddev->bitmap_offset = 0; /* file overrides offset */ 3979 } else if (mddev->bitmap == NULL) 3980 return -ENOENT; /* cannot remove what isn't there */ 3981 err = 0; 3982 if (mddev->pers) { 3983 mddev->pers->quiesce(mddev, 1); 3984 if (fd >= 0) 3985 err = bitmap_create(mddev); 3986 if (fd < 0 || err) { 3987 bitmap_destroy(mddev); 3988 fd = -1; /* make sure to put the file */ 3989 } 3990 mddev->pers->quiesce(mddev, 0); 3991 } 3992 if (fd < 0) { 3993 if (mddev->bitmap_file) { 3994 restore_bitmap_write_access(mddev->bitmap_file); 3995 fput(mddev->bitmap_file); 3996 } 3997 mddev->bitmap_file = NULL; 3998 } 3999 4000 return err; 4001 } 4002 4003 /* 4004 * set_array_info is used two different ways 4005 * The original usage is when creating a new array. 4006 * In this usage, raid_disks is > 0 and it together with 4007 * level, size, not_persistent,layout,chunksize determine the 4008 * shape of the array. 4009 * This will always create an array with a type-0.90.0 superblock. 4010 * The newer usage is when assembling an array. 4011 * In this case raid_disks will be 0, and the major_version field is 4012 * use to determine which style super-blocks are to be found on the devices. 4013 * The minor and patch _version numbers are also kept incase the 4014 * super_block handler wishes to interpret them. 4015 */ 4016 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4017 { 4018 4019 if (info->raid_disks == 0) { 4020 /* just setting version number for superblock loading */ 4021 if (info->major_version < 0 || 4022 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) || 4023 super_types[info->major_version].name == NULL) { 4024 /* maybe try to auto-load a module? */ 4025 printk(KERN_INFO 4026 "md: superblock version %d not known\n", 4027 info->major_version); 4028 return -EINVAL; 4029 } 4030 mddev->major_version = info->major_version; 4031 mddev->minor_version = info->minor_version; 4032 mddev->patch_version = info->patch_version; 4033 mddev->persistent = !info->not_persistent; 4034 return 0; 4035 } 4036 mddev->major_version = MD_MAJOR_VERSION; 4037 mddev->minor_version = MD_MINOR_VERSION; 4038 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4039 mddev->ctime = get_seconds(); 4040 4041 mddev->level = info->level; 4042 mddev->clevel[0] = 0; 4043 mddev->size = info->size; 4044 mddev->raid_disks = info->raid_disks; 4045 /* don't set md_minor, it is determined by which /dev/md* was 4046 * openned 4047 */ 4048 if (info->state & (1<<MD_SB_CLEAN)) 4049 mddev->recovery_cp = MaxSector; 4050 else 4051 mddev->recovery_cp = 0; 4052 mddev->persistent = ! info->not_persistent; 4053 4054 mddev->layout = info->layout; 4055 mddev->chunk_size = info->chunk_size; 4056 4057 mddev->max_disks = MD_SB_DISKS; 4058 4059 mddev->flags = 0; 4060 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4061 4062 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4063 mddev->bitmap_offset = 0; 4064 4065 mddev->reshape_position = MaxSector; 4066 4067 /* 4068 * Generate a 128 bit UUID 4069 */ 4070 get_random_bytes(mddev->uuid, 16); 4071 4072 mddev->new_level = mddev->level; 4073 mddev->new_chunk = mddev->chunk_size; 4074 mddev->new_layout = mddev->layout; 4075 mddev->delta_disks = 0; 4076 4077 return 0; 4078 } 4079 4080 static int update_size(mddev_t *mddev, unsigned long size) 4081 { 4082 mdk_rdev_t * rdev; 4083 int rv; 4084 struct list_head *tmp; 4085 int fit = (size == 0); 4086 4087 if (mddev->pers->resize == NULL) 4088 return -EINVAL; 4089 /* The "size" is the amount of each device that is used. 4090 * This can only make sense for arrays with redundancy. 4091 * linear and raid0 always use whatever space is available 4092 * We can only consider changing the size if no resync 4093 * or reconstruction is happening, and if the new size 4094 * is acceptable. It must fit before the sb_offset or, 4095 * if that is <data_offset, it must fit before the 4096 * size of each device. 4097 * If size is zero, we find the largest size that fits. 4098 */ 4099 if (mddev->sync_thread) 4100 return -EBUSY; 4101 ITERATE_RDEV(mddev,rdev,tmp) { 4102 sector_t avail; 4103 avail = rdev->size * 2; 4104 4105 if (fit && (size == 0 || size > avail/2)) 4106 size = avail/2; 4107 if (avail < ((sector_t)size << 1)) 4108 return -ENOSPC; 4109 } 4110 rv = mddev->pers->resize(mddev, (sector_t)size *2); 4111 if (!rv) { 4112 struct block_device *bdev; 4113 4114 bdev = bdget_disk(mddev->gendisk, 0); 4115 if (bdev) { 4116 mutex_lock(&bdev->bd_inode->i_mutex); 4117 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10); 4118 mutex_unlock(&bdev->bd_inode->i_mutex); 4119 bdput(bdev); 4120 } 4121 } 4122 return rv; 4123 } 4124 4125 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4126 { 4127 int rv; 4128 /* change the number of raid disks */ 4129 if (mddev->pers->check_reshape == NULL) 4130 return -EINVAL; 4131 if (raid_disks <= 0 || 4132 raid_disks >= mddev->max_disks) 4133 return -EINVAL; 4134 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4135 return -EBUSY; 4136 mddev->delta_disks = raid_disks - mddev->raid_disks; 4137 4138 rv = mddev->pers->check_reshape(mddev); 4139 return rv; 4140 } 4141 4142 4143 /* 4144 * update_array_info is used to change the configuration of an 4145 * on-line array. 4146 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4147 * fields in the info are checked against the array. 4148 * Any differences that cannot be handled will cause an error. 4149 * Normally, only one change can be managed at a time. 4150 */ 4151 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4152 { 4153 int rv = 0; 4154 int cnt = 0; 4155 int state = 0; 4156 4157 /* calculate expected state,ignoring low bits */ 4158 if (mddev->bitmap && mddev->bitmap_offset) 4159 state |= (1 << MD_SB_BITMAP_PRESENT); 4160 4161 if (mddev->major_version != info->major_version || 4162 mddev->minor_version != info->minor_version || 4163 /* mddev->patch_version != info->patch_version || */ 4164 mddev->ctime != info->ctime || 4165 mddev->level != info->level || 4166 /* mddev->layout != info->layout || */ 4167 !mddev->persistent != info->not_persistent|| 4168 mddev->chunk_size != info->chunk_size || 4169 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4170 ((state^info->state) & 0xfffffe00) 4171 ) 4172 return -EINVAL; 4173 /* Check there is only one change */ 4174 if (info->size >= 0 && mddev->size != info->size) cnt++; 4175 if (mddev->raid_disks != info->raid_disks) cnt++; 4176 if (mddev->layout != info->layout) cnt++; 4177 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4178 if (cnt == 0) return 0; 4179 if (cnt > 1) return -EINVAL; 4180 4181 if (mddev->layout != info->layout) { 4182 /* Change layout 4183 * we don't need to do anything at the md level, the 4184 * personality will take care of it all. 4185 */ 4186 if (mddev->pers->reconfig == NULL) 4187 return -EINVAL; 4188 else 4189 return mddev->pers->reconfig(mddev, info->layout, -1); 4190 } 4191 if (info->size >= 0 && mddev->size != info->size) 4192 rv = update_size(mddev, info->size); 4193 4194 if (mddev->raid_disks != info->raid_disks) 4195 rv = update_raid_disks(mddev, info->raid_disks); 4196 4197 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4198 if (mddev->pers->quiesce == NULL) 4199 return -EINVAL; 4200 if (mddev->recovery || mddev->sync_thread) 4201 return -EBUSY; 4202 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4203 /* add the bitmap */ 4204 if (mddev->bitmap) 4205 return -EEXIST; 4206 if (mddev->default_bitmap_offset == 0) 4207 return -EINVAL; 4208 mddev->bitmap_offset = mddev->default_bitmap_offset; 4209 mddev->pers->quiesce(mddev, 1); 4210 rv = bitmap_create(mddev); 4211 if (rv) 4212 bitmap_destroy(mddev); 4213 mddev->pers->quiesce(mddev, 0); 4214 } else { 4215 /* remove the bitmap */ 4216 if (!mddev->bitmap) 4217 return -ENOENT; 4218 if (mddev->bitmap->file) 4219 return -EINVAL; 4220 mddev->pers->quiesce(mddev, 1); 4221 bitmap_destroy(mddev); 4222 mddev->pers->quiesce(mddev, 0); 4223 mddev->bitmap_offset = 0; 4224 } 4225 } 4226 md_update_sb(mddev, 1); 4227 return rv; 4228 } 4229 4230 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4231 { 4232 mdk_rdev_t *rdev; 4233 4234 if (mddev->pers == NULL) 4235 return -ENODEV; 4236 4237 rdev = find_rdev(mddev, dev); 4238 if (!rdev) 4239 return -ENODEV; 4240 4241 md_error(mddev, rdev); 4242 return 0; 4243 } 4244 4245 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4246 { 4247 mddev_t *mddev = bdev->bd_disk->private_data; 4248 4249 geo->heads = 2; 4250 geo->sectors = 4; 4251 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4252 return 0; 4253 } 4254 4255 static int md_ioctl(struct inode *inode, struct file *file, 4256 unsigned int cmd, unsigned long arg) 4257 { 4258 int err = 0; 4259 void __user *argp = (void __user *)arg; 4260 mddev_t *mddev = NULL; 4261 4262 if (!capable(CAP_SYS_ADMIN)) 4263 return -EACCES; 4264 4265 /* 4266 * Commands dealing with the RAID driver but not any 4267 * particular array: 4268 */ 4269 switch (cmd) 4270 { 4271 case RAID_VERSION: 4272 err = get_version(argp); 4273 goto done; 4274 4275 case PRINT_RAID_DEBUG: 4276 err = 0; 4277 md_print_devices(); 4278 goto done; 4279 4280 #ifndef MODULE 4281 case RAID_AUTORUN: 4282 err = 0; 4283 autostart_arrays(arg); 4284 goto done; 4285 #endif 4286 default:; 4287 } 4288 4289 /* 4290 * Commands creating/starting a new array: 4291 */ 4292 4293 mddev = inode->i_bdev->bd_disk->private_data; 4294 4295 if (!mddev) { 4296 BUG(); 4297 goto abort; 4298 } 4299 4300 err = mddev_lock(mddev); 4301 if (err) { 4302 printk(KERN_INFO 4303 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4304 err, cmd); 4305 goto abort; 4306 } 4307 4308 switch (cmd) 4309 { 4310 case SET_ARRAY_INFO: 4311 { 4312 mdu_array_info_t info; 4313 if (!arg) 4314 memset(&info, 0, sizeof(info)); 4315 else if (copy_from_user(&info, argp, sizeof(info))) { 4316 err = -EFAULT; 4317 goto abort_unlock; 4318 } 4319 if (mddev->pers) { 4320 err = update_array_info(mddev, &info); 4321 if (err) { 4322 printk(KERN_WARNING "md: couldn't update" 4323 " array info. %d\n", err); 4324 goto abort_unlock; 4325 } 4326 goto done_unlock; 4327 } 4328 if (!list_empty(&mddev->disks)) { 4329 printk(KERN_WARNING 4330 "md: array %s already has disks!\n", 4331 mdname(mddev)); 4332 err = -EBUSY; 4333 goto abort_unlock; 4334 } 4335 if (mddev->raid_disks) { 4336 printk(KERN_WARNING 4337 "md: array %s already initialised!\n", 4338 mdname(mddev)); 4339 err = -EBUSY; 4340 goto abort_unlock; 4341 } 4342 err = set_array_info(mddev, &info); 4343 if (err) { 4344 printk(KERN_WARNING "md: couldn't set" 4345 " array info. %d\n", err); 4346 goto abort_unlock; 4347 } 4348 } 4349 goto done_unlock; 4350 4351 default:; 4352 } 4353 4354 /* 4355 * Commands querying/configuring an existing array: 4356 */ 4357 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4358 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4359 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4360 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4361 && cmd != GET_BITMAP_FILE) { 4362 err = -ENODEV; 4363 goto abort_unlock; 4364 } 4365 4366 /* 4367 * Commands even a read-only array can execute: 4368 */ 4369 switch (cmd) 4370 { 4371 case GET_ARRAY_INFO: 4372 err = get_array_info(mddev, argp); 4373 goto done_unlock; 4374 4375 case GET_BITMAP_FILE: 4376 err = get_bitmap_file(mddev, argp); 4377 goto done_unlock; 4378 4379 case GET_DISK_INFO: 4380 err = get_disk_info(mddev, argp); 4381 goto done_unlock; 4382 4383 case RESTART_ARRAY_RW: 4384 err = restart_array(mddev); 4385 goto done_unlock; 4386 4387 case STOP_ARRAY: 4388 err = do_md_stop (mddev, 0); 4389 goto done_unlock; 4390 4391 case STOP_ARRAY_RO: 4392 err = do_md_stop (mddev, 1); 4393 goto done_unlock; 4394 4395 /* 4396 * We have a problem here : there is no easy way to give a CHS 4397 * virtual geometry. We currently pretend that we have a 2 heads 4398 * 4 sectors (with a BIG number of cylinders...). This drives 4399 * dosfs just mad... ;-) 4400 */ 4401 } 4402 4403 /* 4404 * The remaining ioctls are changing the state of the 4405 * superblock, so we do not allow them on read-only arrays. 4406 * However non-MD ioctls (e.g. get-size) will still come through 4407 * here and hit the 'default' below, so only disallow 4408 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4409 */ 4410 if (_IOC_TYPE(cmd) == MD_MAJOR && 4411 mddev->ro && mddev->pers) { 4412 if (mddev->ro == 2) { 4413 mddev->ro = 0; 4414 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4415 md_wakeup_thread(mddev->thread); 4416 4417 } else { 4418 err = -EROFS; 4419 goto abort_unlock; 4420 } 4421 } 4422 4423 switch (cmd) 4424 { 4425 case ADD_NEW_DISK: 4426 { 4427 mdu_disk_info_t info; 4428 if (copy_from_user(&info, argp, sizeof(info))) 4429 err = -EFAULT; 4430 else 4431 err = add_new_disk(mddev, &info); 4432 goto done_unlock; 4433 } 4434 4435 case HOT_REMOVE_DISK: 4436 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4437 goto done_unlock; 4438 4439 case HOT_ADD_DISK: 4440 err = hot_add_disk(mddev, new_decode_dev(arg)); 4441 goto done_unlock; 4442 4443 case SET_DISK_FAULTY: 4444 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4445 goto done_unlock; 4446 4447 case RUN_ARRAY: 4448 err = do_md_run (mddev); 4449 goto done_unlock; 4450 4451 case SET_BITMAP_FILE: 4452 err = set_bitmap_file(mddev, (int)arg); 4453 goto done_unlock; 4454 4455 default: 4456 err = -EINVAL; 4457 goto abort_unlock; 4458 } 4459 4460 done_unlock: 4461 abort_unlock: 4462 mddev_unlock(mddev); 4463 4464 return err; 4465 done: 4466 if (err) 4467 MD_BUG(); 4468 abort: 4469 return err; 4470 } 4471 4472 static int md_open(struct inode *inode, struct file *file) 4473 { 4474 /* 4475 * Succeed if we can lock the mddev, which confirms that 4476 * it isn't being stopped right now. 4477 */ 4478 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4479 int err; 4480 4481 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 4482 goto out; 4483 4484 err = 0; 4485 mddev_get(mddev); 4486 mddev_unlock(mddev); 4487 4488 check_disk_change(inode->i_bdev); 4489 out: 4490 return err; 4491 } 4492 4493 static int md_release(struct inode *inode, struct file * file) 4494 { 4495 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4496 4497 BUG_ON(!mddev); 4498 mddev_put(mddev); 4499 4500 return 0; 4501 } 4502 4503 static int md_media_changed(struct gendisk *disk) 4504 { 4505 mddev_t *mddev = disk->private_data; 4506 4507 return mddev->changed; 4508 } 4509 4510 static int md_revalidate(struct gendisk *disk) 4511 { 4512 mddev_t *mddev = disk->private_data; 4513 4514 mddev->changed = 0; 4515 return 0; 4516 } 4517 static struct block_device_operations md_fops = 4518 { 4519 .owner = THIS_MODULE, 4520 .open = md_open, 4521 .release = md_release, 4522 .ioctl = md_ioctl, 4523 .getgeo = md_getgeo, 4524 .media_changed = md_media_changed, 4525 .revalidate_disk= md_revalidate, 4526 }; 4527 4528 static int md_thread(void * arg) 4529 { 4530 mdk_thread_t *thread = arg; 4531 4532 /* 4533 * md_thread is a 'system-thread', it's priority should be very 4534 * high. We avoid resource deadlocks individually in each 4535 * raid personality. (RAID5 does preallocation) We also use RR and 4536 * the very same RT priority as kswapd, thus we will never get 4537 * into a priority inversion deadlock. 4538 * 4539 * we definitely have to have equal or higher priority than 4540 * bdflush, otherwise bdflush will deadlock if there are too 4541 * many dirty RAID5 blocks. 4542 */ 4543 4544 current->flags |= PF_NOFREEZE; 4545 allow_signal(SIGKILL); 4546 while (!kthread_should_stop()) { 4547 4548 /* We need to wait INTERRUPTIBLE so that 4549 * we don't add to the load-average. 4550 * That means we need to be sure no signals are 4551 * pending 4552 */ 4553 if (signal_pending(current)) 4554 flush_signals(current); 4555 4556 wait_event_interruptible_timeout 4557 (thread->wqueue, 4558 test_bit(THREAD_WAKEUP, &thread->flags) 4559 || kthread_should_stop(), 4560 thread->timeout); 4561 4562 clear_bit(THREAD_WAKEUP, &thread->flags); 4563 4564 thread->run(thread->mddev); 4565 } 4566 4567 return 0; 4568 } 4569 4570 void md_wakeup_thread(mdk_thread_t *thread) 4571 { 4572 if (thread) { 4573 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 4574 set_bit(THREAD_WAKEUP, &thread->flags); 4575 wake_up(&thread->wqueue); 4576 } 4577 } 4578 4579 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 4580 const char *name) 4581 { 4582 mdk_thread_t *thread; 4583 4584 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 4585 if (!thread) 4586 return NULL; 4587 4588 init_waitqueue_head(&thread->wqueue); 4589 4590 thread->run = run; 4591 thread->mddev = mddev; 4592 thread->timeout = MAX_SCHEDULE_TIMEOUT; 4593 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 4594 if (IS_ERR(thread->tsk)) { 4595 kfree(thread); 4596 return NULL; 4597 } 4598 return thread; 4599 } 4600 4601 void md_unregister_thread(mdk_thread_t *thread) 4602 { 4603 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); 4604 4605 kthread_stop(thread->tsk); 4606 kfree(thread); 4607 } 4608 4609 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 4610 { 4611 if (!mddev) { 4612 MD_BUG(); 4613 return; 4614 } 4615 4616 if (!rdev || test_bit(Faulty, &rdev->flags)) 4617 return; 4618 /* 4619 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 4620 mdname(mddev), 4621 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 4622 __builtin_return_address(0),__builtin_return_address(1), 4623 __builtin_return_address(2),__builtin_return_address(3)); 4624 */ 4625 if (!mddev->pers) 4626 return; 4627 if (!mddev->pers->error_handler) 4628 return; 4629 mddev->pers->error_handler(mddev,rdev); 4630 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4631 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4632 md_wakeup_thread(mddev->thread); 4633 md_new_event_inintr(mddev); 4634 } 4635 4636 /* seq_file implementation /proc/mdstat */ 4637 4638 static void status_unused(struct seq_file *seq) 4639 { 4640 int i = 0; 4641 mdk_rdev_t *rdev; 4642 struct list_head *tmp; 4643 4644 seq_printf(seq, "unused devices: "); 4645 4646 ITERATE_RDEV_PENDING(rdev,tmp) { 4647 char b[BDEVNAME_SIZE]; 4648 i++; 4649 seq_printf(seq, "%s ", 4650 bdevname(rdev->bdev,b)); 4651 } 4652 if (!i) 4653 seq_printf(seq, "<none>"); 4654 4655 seq_printf(seq, "\n"); 4656 } 4657 4658 4659 static void status_resync(struct seq_file *seq, mddev_t * mddev) 4660 { 4661 sector_t max_blocks, resync, res; 4662 unsigned long dt, db, rt; 4663 int scale; 4664 unsigned int per_milli; 4665 4666 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 4667 4668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 4669 max_blocks = mddev->resync_max_sectors >> 1; 4670 else 4671 max_blocks = mddev->size; 4672 4673 /* 4674 * Should not happen. 4675 */ 4676 if (!max_blocks) { 4677 MD_BUG(); 4678 return; 4679 } 4680 /* Pick 'scale' such that (resync>>scale)*1000 will fit 4681 * in a sector_t, and (max_blocks>>scale) will fit in a 4682 * u32, as those are the requirements for sector_div. 4683 * Thus 'scale' must be at least 10 4684 */ 4685 scale = 10; 4686 if (sizeof(sector_t) > sizeof(unsigned long)) { 4687 while ( max_blocks/2 > (1ULL<<(scale+32))) 4688 scale++; 4689 } 4690 res = (resync>>scale)*1000; 4691 sector_div(res, (u32)((max_blocks>>scale)+1)); 4692 4693 per_milli = res; 4694 { 4695 int i, x = per_milli/50, y = 20-x; 4696 seq_printf(seq, "["); 4697 for (i = 0; i < x; i++) 4698 seq_printf(seq, "="); 4699 seq_printf(seq, ">"); 4700 for (i = 0; i < y; i++) 4701 seq_printf(seq, "."); 4702 seq_printf(seq, "] "); 4703 } 4704 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 4705 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 4706 "reshape" : 4707 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 4708 "check" : 4709 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 4710 "resync" : "recovery"))), 4711 per_milli/10, per_milli % 10, 4712 (unsigned long long) resync, 4713 (unsigned long long) max_blocks); 4714 4715 /* 4716 * We do not want to overflow, so the order of operands and 4717 * the * 100 / 100 trick are important. We do a +1 to be 4718 * safe against division by zero. We only estimate anyway. 4719 * 4720 * dt: time from mark until now 4721 * db: blocks written from mark until now 4722 * rt: remaining time 4723 */ 4724 dt = ((jiffies - mddev->resync_mark) / HZ); 4725 if (!dt) dt++; 4726 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 4727 - mddev->resync_mark_cnt; 4728 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 4729 4730 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 4731 4732 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 4733 } 4734 4735 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 4736 { 4737 struct list_head *tmp; 4738 loff_t l = *pos; 4739 mddev_t *mddev; 4740 4741 if (l >= 0x10000) 4742 return NULL; 4743 if (!l--) 4744 /* header */ 4745 return (void*)1; 4746 4747 spin_lock(&all_mddevs_lock); 4748 list_for_each(tmp,&all_mddevs) 4749 if (!l--) { 4750 mddev = list_entry(tmp, mddev_t, all_mddevs); 4751 mddev_get(mddev); 4752 spin_unlock(&all_mddevs_lock); 4753 return mddev; 4754 } 4755 spin_unlock(&all_mddevs_lock); 4756 if (!l--) 4757 return (void*)2;/* tail */ 4758 return NULL; 4759 } 4760 4761 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4762 { 4763 struct list_head *tmp; 4764 mddev_t *next_mddev, *mddev = v; 4765 4766 ++*pos; 4767 if (v == (void*)2) 4768 return NULL; 4769 4770 spin_lock(&all_mddevs_lock); 4771 if (v == (void*)1) 4772 tmp = all_mddevs.next; 4773 else 4774 tmp = mddev->all_mddevs.next; 4775 if (tmp != &all_mddevs) 4776 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 4777 else { 4778 next_mddev = (void*)2; 4779 *pos = 0x10000; 4780 } 4781 spin_unlock(&all_mddevs_lock); 4782 4783 if (v != (void*)1) 4784 mddev_put(mddev); 4785 return next_mddev; 4786 4787 } 4788 4789 static void md_seq_stop(struct seq_file *seq, void *v) 4790 { 4791 mddev_t *mddev = v; 4792 4793 if (mddev && v != (void*)1 && v != (void*)2) 4794 mddev_put(mddev); 4795 } 4796 4797 struct mdstat_info { 4798 int event; 4799 }; 4800 4801 static int md_seq_show(struct seq_file *seq, void *v) 4802 { 4803 mddev_t *mddev = v; 4804 sector_t size; 4805 struct list_head *tmp2; 4806 mdk_rdev_t *rdev; 4807 struct mdstat_info *mi = seq->private; 4808 struct bitmap *bitmap; 4809 4810 if (v == (void*)1) { 4811 struct mdk_personality *pers; 4812 seq_printf(seq, "Personalities : "); 4813 spin_lock(&pers_lock); 4814 list_for_each_entry(pers, &pers_list, list) 4815 seq_printf(seq, "[%s] ", pers->name); 4816 4817 spin_unlock(&pers_lock); 4818 seq_printf(seq, "\n"); 4819 mi->event = atomic_read(&md_event_count); 4820 return 0; 4821 } 4822 if (v == (void*)2) { 4823 status_unused(seq); 4824 return 0; 4825 } 4826 4827 if (mddev_lock(mddev) < 0) 4828 return -EINTR; 4829 4830 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 4831 seq_printf(seq, "%s : %sactive", mdname(mddev), 4832 mddev->pers ? "" : "in"); 4833 if (mddev->pers) { 4834 if (mddev->ro==1) 4835 seq_printf(seq, " (read-only)"); 4836 if (mddev->ro==2) 4837 seq_printf(seq, "(auto-read-only)"); 4838 seq_printf(seq, " %s", mddev->pers->name); 4839 } 4840 4841 size = 0; 4842 ITERATE_RDEV(mddev,rdev,tmp2) { 4843 char b[BDEVNAME_SIZE]; 4844 seq_printf(seq, " %s[%d]", 4845 bdevname(rdev->bdev,b), rdev->desc_nr); 4846 if (test_bit(WriteMostly, &rdev->flags)) 4847 seq_printf(seq, "(W)"); 4848 if (test_bit(Faulty, &rdev->flags)) { 4849 seq_printf(seq, "(F)"); 4850 continue; 4851 } else if (rdev->raid_disk < 0) 4852 seq_printf(seq, "(S)"); /* spare */ 4853 size += rdev->size; 4854 } 4855 4856 if (!list_empty(&mddev->disks)) { 4857 if (mddev->pers) 4858 seq_printf(seq, "\n %llu blocks", 4859 (unsigned long long)mddev->array_size); 4860 else 4861 seq_printf(seq, "\n %llu blocks", 4862 (unsigned long long)size); 4863 } 4864 if (mddev->persistent) { 4865 if (mddev->major_version != 0 || 4866 mddev->minor_version != 90) { 4867 seq_printf(seq," super %d.%d", 4868 mddev->major_version, 4869 mddev->minor_version); 4870 } 4871 } else 4872 seq_printf(seq, " super non-persistent"); 4873 4874 if (mddev->pers) { 4875 mddev->pers->status (seq, mddev); 4876 seq_printf(seq, "\n "); 4877 if (mddev->pers->sync_request) { 4878 if (mddev->curr_resync > 2) { 4879 status_resync (seq, mddev); 4880 seq_printf(seq, "\n "); 4881 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 4882 seq_printf(seq, "\tresync=DELAYED\n "); 4883 else if (mddev->recovery_cp < MaxSector) 4884 seq_printf(seq, "\tresync=PENDING\n "); 4885 } 4886 } else 4887 seq_printf(seq, "\n "); 4888 4889 if ((bitmap = mddev->bitmap)) { 4890 unsigned long chunk_kb; 4891 unsigned long flags; 4892 spin_lock_irqsave(&bitmap->lock, flags); 4893 chunk_kb = bitmap->chunksize >> 10; 4894 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 4895 "%lu%s chunk", 4896 bitmap->pages - bitmap->missing_pages, 4897 bitmap->pages, 4898 (bitmap->pages - bitmap->missing_pages) 4899 << (PAGE_SHIFT - 10), 4900 chunk_kb ? chunk_kb : bitmap->chunksize, 4901 chunk_kb ? "KB" : "B"); 4902 if (bitmap->file) { 4903 seq_printf(seq, ", file: "); 4904 seq_path(seq, bitmap->file->f_path.mnt, 4905 bitmap->file->f_path.dentry," \t\n"); 4906 } 4907 4908 seq_printf(seq, "\n"); 4909 spin_unlock_irqrestore(&bitmap->lock, flags); 4910 } 4911 4912 seq_printf(seq, "\n"); 4913 } 4914 mddev_unlock(mddev); 4915 4916 return 0; 4917 } 4918 4919 static struct seq_operations md_seq_ops = { 4920 .start = md_seq_start, 4921 .next = md_seq_next, 4922 .stop = md_seq_stop, 4923 .show = md_seq_show, 4924 }; 4925 4926 static int md_seq_open(struct inode *inode, struct file *file) 4927 { 4928 int error; 4929 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 4930 if (mi == NULL) 4931 return -ENOMEM; 4932 4933 error = seq_open(file, &md_seq_ops); 4934 if (error) 4935 kfree(mi); 4936 else { 4937 struct seq_file *p = file->private_data; 4938 p->private = mi; 4939 mi->event = atomic_read(&md_event_count); 4940 } 4941 return error; 4942 } 4943 4944 static int md_seq_release(struct inode *inode, struct file *file) 4945 { 4946 struct seq_file *m = file->private_data; 4947 struct mdstat_info *mi = m->private; 4948 m->private = NULL; 4949 kfree(mi); 4950 return seq_release(inode, file); 4951 } 4952 4953 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 4954 { 4955 struct seq_file *m = filp->private_data; 4956 struct mdstat_info *mi = m->private; 4957 int mask; 4958 4959 poll_wait(filp, &md_event_waiters, wait); 4960 4961 /* always allow read */ 4962 mask = POLLIN | POLLRDNORM; 4963 4964 if (mi->event != atomic_read(&md_event_count)) 4965 mask |= POLLERR | POLLPRI; 4966 return mask; 4967 } 4968 4969 static const struct file_operations md_seq_fops = { 4970 .owner = THIS_MODULE, 4971 .open = md_seq_open, 4972 .read = seq_read, 4973 .llseek = seq_lseek, 4974 .release = md_seq_release, 4975 .poll = mdstat_poll, 4976 }; 4977 4978 int register_md_personality(struct mdk_personality *p) 4979 { 4980 spin_lock(&pers_lock); 4981 list_add_tail(&p->list, &pers_list); 4982 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 4983 spin_unlock(&pers_lock); 4984 return 0; 4985 } 4986 4987 int unregister_md_personality(struct mdk_personality *p) 4988 { 4989 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 4990 spin_lock(&pers_lock); 4991 list_del_init(&p->list); 4992 spin_unlock(&pers_lock); 4993 return 0; 4994 } 4995 4996 static int is_mddev_idle(mddev_t *mddev) 4997 { 4998 mdk_rdev_t * rdev; 4999 struct list_head *tmp; 5000 int idle; 5001 unsigned long curr_events; 5002 5003 idle = 1; 5004 ITERATE_RDEV(mddev,rdev,tmp) { 5005 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5006 curr_events = disk_stat_read(disk, sectors[0]) + 5007 disk_stat_read(disk, sectors[1]) - 5008 atomic_read(&disk->sync_io); 5009 /* The difference between curr_events and last_events 5010 * will be affected by any new non-sync IO (making 5011 * curr_events bigger) and any difference in the amount of 5012 * in-flight syncio (making current_events bigger or smaller) 5013 * The amount in-flight is currently limited to 5014 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6 5015 * which is at most 4096 sectors. 5016 * These numbers are fairly fragile and should be made 5017 * more robust, probably by enforcing the 5018 * 'window size' that md_do_sync sort-of uses. 5019 * 5020 * Note: the following is an unsigned comparison. 5021 */ 5022 if ((curr_events - rdev->last_events + 4096) > 8192) { 5023 rdev->last_events = curr_events; 5024 idle = 0; 5025 } 5026 } 5027 return idle; 5028 } 5029 5030 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5031 { 5032 /* another "blocks" (512byte) blocks have been synced */ 5033 atomic_sub(blocks, &mddev->recovery_active); 5034 wake_up(&mddev->recovery_wait); 5035 if (!ok) { 5036 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5037 md_wakeup_thread(mddev->thread); 5038 // stop recovery, signal do_sync .... 5039 } 5040 } 5041 5042 5043 /* md_write_start(mddev, bi) 5044 * If we need to update some array metadata (e.g. 'active' flag 5045 * in superblock) before writing, schedule a superblock update 5046 * and wait for it to complete. 5047 */ 5048 void md_write_start(mddev_t *mddev, struct bio *bi) 5049 { 5050 if (bio_data_dir(bi) != WRITE) 5051 return; 5052 5053 BUG_ON(mddev->ro == 1); 5054 if (mddev->ro == 2) { 5055 /* need to switch to read/write */ 5056 mddev->ro = 0; 5057 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5058 md_wakeup_thread(mddev->thread); 5059 } 5060 atomic_inc(&mddev->writes_pending); 5061 if (mddev->in_sync) { 5062 spin_lock_irq(&mddev->write_lock); 5063 if (mddev->in_sync) { 5064 mddev->in_sync = 0; 5065 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5066 md_wakeup_thread(mddev->thread); 5067 } 5068 spin_unlock_irq(&mddev->write_lock); 5069 } 5070 wait_event(mddev->sb_wait, mddev->flags==0); 5071 } 5072 5073 void md_write_end(mddev_t *mddev) 5074 { 5075 if (atomic_dec_and_test(&mddev->writes_pending)) { 5076 if (mddev->safemode == 2) 5077 md_wakeup_thread(mddev->thread); 5078 else if (mddev->safemode_delay) 5079 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5080 } 5081 } 5082 5083 /* md_allow_write(mddev) 5084 * Calling this ensures that the array is marked 'active' so that writes 5085 * may proceed without blocking. It is important to call this before 5086 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5087 * Must be called with mddev_lock held. 5088 */ 5089 void md_allow_write(mddev_t *mddev) 5090 { 5091 if (!mddev->pers) 5092 return; 5093 if (mddev->ro) 5094 return; 5095 5096 spin_lock_irq(&mddev->write_lock); 5097 if (mddev->in_sync) { 5098 mddev->in_sync = 0; 5099 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5100 if (mddev->safemode_delay && 5101 mddev->safemode == 0) 5102 mddev->safemode = 1; 5103 spin_unlock_irq(&mddev->write_lock); 5104 md_update_sb(mddev, 0); 5105 } else 5106 spin_unlock_irq(&mddev->write_lock); 5107 } 5108 EXPORT_SYMBOL_GPL(md_allow_write); 5109 5110 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 5111 5112 #define SYNC_MARKS 10 5113 #define SYNC_MARK_STEP (3*HZ) 5114 void md_do_sync(mddev_t *mddev) 5115 { 5116 mddev_t *mddev2; 5117 unsigned int currspeed = 0, 5118 window; 5119 sector_t max_sectors,j, io_sectors; 5120 unsigned long mark[SYNC_MARKS]; 5121 sector_t mark_cnt[SYNC_MARKS]; 5122 int last_mark,m; 5123 struct list_head *tmp; 5124 sector_t last_check; 5125 int skipped = 0; 5126 struct list_head *rtmp; 5127 mdk_rdev_t *rdev; 5128 char *desc; 5129 5130 /* just incase thread restarts... */ 5131 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5132 return; 5133 if (mddev->ro) /* never try to sync a read-only array */ 5134 return; 5135 5136 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5137 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5138 desc = "data-check"; 5139 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5140 desc = "requested-resync"; 5141 else 5142 desc = "resync"; 5143 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5144 desc = "reshape"; 5145 else 5146 desc = "recovery"; 5147 5148 /* we overload curr_resync somewhat here. 5149 * 0 == not engaged in resync at all 5150 * 2 == checking that there is no conflict with another sync 5151 * 1 == like 2, but have yielded to allow conflicting resync to 5152 * commense 5153 * other == active in resync - this many blocks 5154 * 5155 * Before starting a resync we must have set curr_resync to 5156 * 2, and then checked that every "conflicting" array has curr_resync 5157 * less than ours. When we find one that is the same or higher 5158 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5159 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5160 * This will mean we have to start checking from the beginning again. 5161 * 5162 */ 5163 5164 do { 5165 mddev->curr_resync = 2; 5166 5167 try_again: 5168 if (kthread_should_stop()) { 5169 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5170 goto skip; 5171 } 5172 ITERATE_MDDEV(mddev2,tmp) { 5173 if (mddev2 == mddev) 5174 continue; 5175 if (mddev2->curr_resync && 5176 match_mddev_units(mddev,mddev2)) { 5177 DEFINE_WAIT(wq); 5178 if (mddev < mddev2 && mddev->curr_resync == 2) { 5179 /* arbitrarily yield */ 5180 mddev->curr_resync = 1; 5181 wake_up(&resync_wait); 5182 } 5183 if (mddev > mddev2 && mddev->curr_resync == 1) 5184 /* no need to wait here, we can wait the next 5185 * time 'round when curr_resync == 2 5186 */ 5187 continue; 5188 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5189 if (!kthread_should_stop() && 5190 mddev2->curr_resync >= mddev->curr_resync) { 5191 printk(KERN_INFO "md: delaying %s of %s" 5192 " until %s has finished (they" 5193 " share one or more physical units)\n", 5194 desc, mdname(mddev), mdname(mddev2)); 5195 mddev_put(mddev2); 5196 schedule(); 5197 finish_wait(&resync_wait, &wq); 5198 goto try_again; 5199 } 5200 finish_wait(&resync_wait, &wq); 5201 } 5202 } 5203 } while (mddev->curr_resync < 2); 5204 5205 j = 0; 5206 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5207 /* resync follows the size requested by the personality, 5208 * which defaults to physical size, but can be virtual size 5209 */ 5210 max_sectors = mddev->resync_max_sectors; 5211 mddev->resync_mismatches = 0; 5212 /* we don't use the checkpoint if there's a bitmap */ 5213 if (!mddev->bitmap && 5214 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5215 j = mddev->recovery_cp; 5216 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5217 max_sectors = mddev->size << 1; 5218 else { 5219 /* recovery follows the physical size of devices */ 5220 max_sectors = mddev->size << 1; 5221 j = MaxSector; 5222 ITERATE_RDEV(mddev,rdev,rtmp) 5223 if (rdev->raid_disk >= 0 && 5224 !test_bit(Faulty, &rdev->flags) && 5225 !test_bit(In_sync, &rdev->flags) && 5226 rdev->recovery_offset < j) 5227 j = rdev->recovery_offset; 5228 } 5229 5230 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5231 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5232 " %d KB/sec/disk.\n", speed_min(mddev)); 5233 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5234 "(but not more than %d KB/sec) for %s.\n", 5235 speed_max(mddev), desc); 5236 5237 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5238 5239 io_sectors = 0; 5240 for (m = 0; m < SYNC_MARKS; m++) { 5241 mark[m] = jiffies; 5242 mark_cnt[m] = io_sectors; 5243 } 5244 last_mark = 0; 5245 mddev->resync_mark = mark[last_mark]; 5246 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5247 5248 /* 5249 * Tune reconstruction: 5250 */ 5251 window = 32*(PAGE_SIZE/512); 5252 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5253 window/2,(unsigned long long) max_sectors/2); 5254 5255 atomic_set(&mddev->recovery_active, 0); 5256 init_waitqueue_head(&mddev->recovery_wait); 5257 last_check = 0; 5258 5259 if (j>2) { 5260 printk(KERN_INFO 5261 "md: resuming %s of %s from checkpoint.\n", 5262 desc, mdname(mddev)); 5263 mddev->curr_resync = j; 5264 } 5265 5266 while (j < max_sectors) { 5267 sector_t sectors; 5268 5269 skipped = 0; 5270 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5271 currspeed < speed_min(mddev)); 5272 if (sectors == 0) { 5273 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5274 goto out; 5275 } 5276 5277 if (!skipped) { /* actual IO requested */ 5278 io_sectors += sectors; 5279 atomic_add(sectors, &mddev->recovery_active); 5280 } 5281 5282 j += sectors; 5283 if (j>1) mddev->curr_resync = j; 5284 mddev->curr_mark_cnt = io_sectors; 5285 if (last_check == 0) 5286 /* this is the earliers that rebuilt will be 5287 * visible in /proc/mdstat 5288 */ 5289 md_new_event(mddev); 5290 5291 if (last_check + window > io_sectors || j == max_sectors) 5292 continue; 5293 5294 last_check = io_sectors; 5295 5296 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 5297 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 5298 break; 5299 5300 repeat: 5301 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5302 /* step marks */ 5303 int next = (last_mark+1) % SYNC_MARKS; 5304 5305 mddev->resync_mark = mark[next]; 5306 mddev->resync_mark_cnt = mark_cnt[next]; 5307 mark[next] = jiffies; 5308 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5309 last_mark = next; 5310 } 5311 5312 5313 if (kthread_should_stop()) { 5314 /* 5315 * got a signal, exit. 5316 */ 5317 printk(KERN_INFO 5318 "md: md_do_sync() got signal ... exiting\n"); 5319 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5320 goto out; 5321 } 5322 5323 /* 5324 * this loop exits only if either when we are slower than 5325 * the 'hard' speed limit, or the system was IO-idle for 5326 * a jiffy. 5327 * the system might be non-idle CPU-wise, but we only care 5328 * about not overloading the IO subsystem. (things like an 5329 * e2fsck being done on the RAID array should execute fast) 5330 */ 5331 mddev->queue->unplug_fn(mddev->queue); 5332 cond_resched(); 5333 5334 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5335 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5336 5337 if (currspeed > speed_min(mddev)) { 5338 if ((currspeed > speed_max(mddev)) || 5339 !is_mddev_idle(mddev)) { 5340 msleep(500); 5341 goto repeat; 5342 } 5343 } 5344 } 5345 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5346 /* 5347 * this also signals 'finished resyncing' to md_stop 5348 */ 5349 out: 5350 mddev->queue->unplug_fn(mddev->queue); 5351 5352 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5353 5354 /* tell personality that we are finished */ 5355 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5356 5357 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5358 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5359 mddev->curr_resync > 2) { 5360 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5361 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5362 if (mddev->curr_resync >= mddev->recovery_cp) { 5363 printk(KERN_INFO 5364 "md: checkpointing %s of %s.\n", 5365 desc, mdname(mddev)); 5366 mddev->recovery_cp = mddev->curr_resync; 5367 } 5368 } else 5369 mddev->recovery_cp = MaxSector; 5370 } else { 5371 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5372 mddev->curr_resync = MaxSector; 5373 ITERATE_RDEV(mddev,rdev,rtmp) 5374 if (rdev->raid_disk >= 0 && 5375 !test_bit(Faulty, &rdev->flags) && 5376 !test_bit(In_sync, &rdev->flags) && 5377 rdev->recovery_offset < mddev->curr_resync) 5378 rdev->recovery_offset = mddev->curr_resync; 5379 } 5380 } 5381 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5382 5383 skip: 5384 mddev->curr_resync = 0; 5385 wake_up(&resync_wait); 5386 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5387 md_wakeup_thread(mddev->thread); 5388 } 5389 EXPORT_SYMBOL_GPL(md_do_sync); 5390 5391 5392 static int remove_and_add_spares(mddev_t *mddev) 5393 { 5394 mdk_rdev_t *rdev; 5395 struct list_head *rtmp; 5396 int spares = 0; 5397 5398 ITERATE_RDEV(mddev,rdev,rtmp) 5399 if (rdev->raid_disk >= 0 && 5400 (test_bit(Faulty, &rdev->flags) || 5401 ! test_bit(In_sync, &rdev->flags)) && 5402 atomic_read(&rdev->nr_pending)==0) { 5403 if (mddev->pers->hot_remove_disk( 5404 mddev, rdev->raid_disk)==0) { 5405 char nm[20]; 5406 sprintf(nm,"rd%d", rdev->raid_disk); 5407 sysfs_remove_link(&mddev->kobj, nm); 5408 rdev->raid_disk = -1; 5409 } 5410 } 5411 5412 if (mddev->degraded) { 5413 ITERATE_RDEV(mddev,rdev,rtmp) 5414 if (rdev->raid_disk < 0 5415 && !test_bit(Faulty, &rdev->flags)) { 5416 rdev->recovery_offset = 0; 5417 if (mddev->pers->hot_add_disk(mddev,rdev)) { 5418 char nm[20]; 5419 sprintf(nm, "rd%d", rdev->raid_disk); 5420 if (sysfs_create_link(&mddev->kobj, 5421 &rdev->kobj, nm)) 5422 printk(KERN_WARNING 5423 "md: cannot register " 5424 "%s for %s\n", 5425 nm, mdname(mddev)); 5426 spares++; 5427 md_new_event(mddev); 5428 } else 5429 break; 5430 } 5431 } 5432 return spares; 5433 } 5434 /* 5435 * This routine is regularly called by all per-raid-array threads to 5436 * deal with generic issues like resync and super-block update. 5437 * Raid personalities that don't have a thread (linear/raid0) do not 5438 * need this as they never do any recovery or update the superblock. 5439 * 5440 * It does not do any resync itself, but rather "forks" off other threads 5441 * to do that as needed. 5442 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 5443 * "->recovery" and create a thread at ->sync_thread. 5444 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 5445 * and wakeups up this thread which will reap the thread and finish up. 5446 * This thread also removes any faulty devices (with nr_pending == 0). 5447 * 5448 * The overall approach is: 5449 * 1/ if the superblock needs updating, update it. 5450 * 2/ If a recovery thread is running, don't do anything else. 5451 * 3/ If recovery has finished, clean up, possibly marking spares active. 5452 * 4/ If there are any faulty devices, remove them. 5453 * 5/ If array is degraded, try to add spares devices 5454 * 6/ If array has spares or is not in-sync, start a resync thread. 5455 */ 5456 void md_check_recovery(mddev_t *mddev) 5457 { 5458 mdk_rdev_t *rdev; 5459 struct list_head *rtmp; 5460 5461 5462 if (mddev->bitmap) 5463 bitmap_daemon_work(mddev->bitmap); 5464 5465 if (mddev->ro) 5466 return; 5467 5468 if (signal_pending(current)) { 5469 if (mddev->pers->sync_request) { 5470 printk(KERN_INFO "md: %s in immediate safe mode\n", 5471 mdname(mddev)); 5472 mddev->safemode = 2; 5473 } 5474 flush_signals(current); 5475 } 5476 5477 if ( ! ( 5478 mddev->flags || 5479 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 5480 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 5481 (mddev->safemode == 1) || 5482 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 5483 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 5484 )) 5485 return; 5486 5487 if (mddev_trylock(mddev)) { 5488 int spares = 0; 5489 5490 spin_lock_irq(&mddev->write_lock); 5491 if (mddev->safemode && !atomic_read(&mddev->writes_pending) && 5492 !mddev->in_sync && mddev->recovery_cp == MaxSector) { 5493 mddev->in_sync = 1; 5494 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5495 } 5496 if (mddev->safemode == 1) 5497 mddev->safemode = 0; 5498 spin_unlock_irq(&mddev->write_lock); 5499 5500 if (mddev->flags) 5501 md_update_sb(mddev, 0); 5502 5503 5504 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5505 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 5506 /* resync/recovery still happening */ 5507 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5508 goto unlock; 5509 } 5510 if (mddev->sync_thread) { 5511 /* resync has finished, collect result */ 5512 md_unregister_thread(mddev->sync_thread); 5513 mddev->sync_thread = NULL; 5514 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5515 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5516 /* success...*/ 5517 /* activate any spares */ 5518 mddev->pers->spare_active(mddev); 5519 } 5520 md_update_sb(mddev, 1); 5521 5522 /* if array is no-longer degraded, then any saved_raid_disk 5523 * information must be scrapped 5524 */ 5525 if (!mddev->degraded) 5526 ITERATE_RDEV(mddev,rdev,rtmp) 5527 rdev->saved_raid_disk = -1; 5528 5529 mddev->recovery = 0; 5530 /* flag recovery needed just to double check */ 5531 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5532 md_new_event(mddev); 5533 goto unlock; 5534 } 5535 /* Clear some bits that don't mean anything, but 5536 * might be left set 5537 */ 5538 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5539 clear_bit(MD_RECOVERY_ERR, &mddev->recovery); 5540 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 5541 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 5542 5543 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 5544 goto unlock; 5545 /* no recovery is running. 5546 * remove any failed drives, then 5547 * add spares if possible. 5548 * Spare are also removed and re-added, to allow 5549 * the personality to fail the re-add. 5550 */ 5551 5552 if (mddev->reshape_position != MaxSector) { 5553 if (mddev->pers->check_reshape(mddev) != 0) 5554 /* Cannot proceed */ 5555 goto unlock; 5556 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5557 } else if ((spares = remove_and_add_spares(mddev))) { 5558 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5559 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5560 } else if (mddev->recovery_cp < MaxSector) { 5561 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5562 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5563 /* nothing to be done ... */ 5564 goto unlock; 5565 5566 if (mddev->pers->sync_request) { 5567 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5568 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 5569 /* We are adding a device or devices to an array 5570 * which has the bitmap stored on all devices. 5571 * So make sure all bitmap pages get written 5572 */ 5573 bitmap_write_all(mddev->bitmap); 5574 } 5575 mddev->sync_thread = md_register_thread(md_do_sync, 5576 mddev, 5577 "%s_resync"); 5578 if (!mddev->sync_thread) { 5579 printk(KERN_ERR "%s: could not start resync" 5580 " thread...\n", 5581 mdname(mddev)); 5582 /* leave the spares where they are, it shouldn't hurt */ 5583 mddev->recovery = 0; 5584 } else 5585 md_wakeup_thread(mddev->sync_thread); 5586 md_new_event(mddev); 5587 } 5588 unlock: 5589 mddev_unlock(mddev); 5590 } 5591 } 5592 5593 static int md_notify_reboot(struct notifier_block *this, 5594 unsigned long code, void *x) 5595 { 5596 struct list_head *tmp; 5597 mddev_t *mddev; 5598 5599 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 5600 5601 printk(KERN_INFO "md: stopping all md devices.\n"); 5602 5603 ITERATE_MDDEV(mddev,tmp) 5604 if (mddev_trylock(mddev)) { 5605 do_md_stop (mddev, 1); 5606 mddev_unlock(mddev); 5607 } 5608 /* 5609 * certain more exotic SCSI devices are known to be 5610 * volatile wrt too early system reboots. While the 5611 * right place to handle this issue is the given 5612 * driver, we do want to have a safe RAID driver ... 5613 */ 5614 mdelay(1000*1); 5615 } 5616 return NOTIFY_DONE; 5617 } 5618 5619 static struct notifier_block md_notifier = { 5620 .notifier_call = md_notify_reboot, 5621 .next = NULL, 5622 .priority = INT_MAX, /* before any real devices */ 5623 }; 5624 5625 static void md_geninit(void) 5626 { 5627 struct proc_dir_entry *p; 5628 5629 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 5630 5631 p = create_proc_entry("mdstat", S_IRUGO, NULL); 5632 if (p) 5633 p->proc_fops = &md_seq_fops; 5634 } 5635 5636 static int __init md_init(void) 5637 { 5638 if (register_blkdev(MAJOR_NR, "md")) 5639 return -1; 5640 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 5641 unregister_blkdev(MAJOR_NR, "md"); 5642 return -1; 5643 } 5644 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 5645 md_probe, NULL, NULL); 5646 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 5647 md_probe, NULL, NULL); 5648 5649 register_reboot_notifier(&md_notifier); 5650 raid_table_header = register_sysctl_table(raid_root_table); 5651 5652 md_geninit(); 5653 return (0); 5654 } 5655 5656 5657 #ifndef MODULE 5658 5659 /* 5660 * Searches all registered partitions for autorun RAID arrays 5661 * at boot time. 5662 */ 5663 static dev_t detected_devices[128]; 5664 static int dev_cnt; 5665 5666 void md_autodetect_dev(dev_t dev) 5667 { 5668 if (dev_cnt >= 0 && dev_cnt < 127) 5669 detected_devices[dev_cnt++] = dev; 5670 } 5671 5672 5673 static void autostart_arrays(int part) 5674 { 5675 mdk_rdev_t *rdev; 5676 int i; 5677 5678 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 5679 5680 for (i = 0; i < dev_cnt; i++) { 5681 dev_t dev = detected_devices[i]; 5682 5683 rdev = md_import_device(dev,0, 0); 5684 if (IS_ERR(rdev)) 5685 continue; 5686 5687 if (test_bit(Faulty, &rdev->flags)) { 5688 MD_BUG(); 5689 continue; 5690 } 5691 list_add(&rdev->same_set, &pending_raid_disks); 5692 } 5693 dev_cnt = 0; 5694 5695 autorun_devices(part); 5696 } 5697 5698 #endif /* !MODULE */ 5699 5700 static __exit void md_exit(void) 5701 { 5702 mddev_t *mddev; 5703 struct list_head *tmp; 5704 5705 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 5706 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 5707 5708 unregister_blkdev(MAJOR_NR,"md"); 5709 unregister_blkdev(mdp_major, "mdp"); 5710 unregister_reboot_notifier(&md_notifier); 5711 unregister_sysctl_table(raid_table_header); 5712 remove_proc_entry("mdstat", NULL); 5713 ITERATE_MDDEV(mddev,tmp) { 5714 struct gendisk *disk = mddev->gendisk; 5715 if (!disk) 5716 continue; 5717 export_array(mddev); 5718 del_gendisk(disk); 5719 put_disk(disk); 5720 mddev->gendisk = NULL; 5721 mddev_put(mddev); 5722 } 5723 } 5724 5725 module_init(md_init) 5726 module_exit(md_exit) 5727 5728 static int get_ro(char *buffer, struct kernel_param *kp) 5729 { 5730 return sprintf(buffer, "%d", start_readonly); 5731 } 5732 static int set_ro(const char *val, struct kernel_param *kp) 5733 { 5734 char *e; 5735 int num = simple_strtoul(val, &e, 10); 5736 if (*val && (*e == '\0' || *e == '\n')) { 5737 start_readonly = num; 5738 return 0; 5739 } 5740 return -EINVAL; 5741 } 5742 5743 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 5744 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 5745 5746 5747 EXPORT_SYMBOL(register_md_personality); 5748 EXPORT_SYMBOL(unregister_md_personality); 5749 EXPORT_SYMBOL(md_error); 5750 EXPORT_SYMBOL(md_done_sync); 5751 EXPORT_SYMBOL(md_write_start); 5752 EXPORT_SYMBOL(md_write_end); 5753 EXPORT_SYMBOL(md_register_thread); 5754 EXPORT_SYMBOL(md_unregister_thread); 5755 EXPORT_SYMBOL(md_wakeup_thread); 5756 EXPORT_SYMBOL(md_check_recovery); 5757 MODULE_LICENSE("GPL"); 5758 MODULE_ALIAS("md"); 5759 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 5760