xref: /openbmc/linux/drivers/md/md.c (revision f98393a64ca1392130724c3acb4e3f325801d2b6)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/poll.h>
43 #include <linux/mutex.h>
44 #include <linux/ctype.h>
45 #include <linux/freezer.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 static void md_print_devices(void);
75 
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77 
78 /*
79  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80  * is 1000 KB/sec, so the extra system load does not show up that much.
81  * Increase it if you want to have more _guaranteed_ speed. Note that
82  * the RAID driver will use the maximum available bandwidth if the IO
83  * subsystem is idle. There is also an 'absolute maximum' reconstruction
84  * speed limit - in case reconstruction slows down your system despite
85  * idle IO detection.
86  *
87  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88  * or /sys/block/mdX/md/sync_speed_{min,max}
89  */
90 
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 	return mddev->sync_speed_min ?
96 		mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98 
99 static inline int speed_max(mddev_t *mddev)
100 {
101 	return mddev->sync_speed_max ?
102 		mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104 
105 static struct ctl_table_header *raid_table_header;
106 
107 static ctl_table raid_table[] = {
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
110 		.procname	= "speed_limit_min",
111 		.data		= &sysctl_speed_limit_min,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{
117 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
118 		.procname	= "speed_limit_max",
119 		.data		= &sysctl_speed_limit_max,
120 		.maxlen		= sizeof(int),
121 		.mode		= S_IRUGO|S_IWUSR,
122 		.proc_handler	= &proc_dointvec,
123 	},
124 	{ .ctl_name = 0 }
125 };
126 
127 static ctl_table raid_dir_table[] = {
128 	{
129 		.ctl_name	= DEV_RAID,
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ .ctl_name = 0 }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.ctl_name	= CTL_DEV,
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{ .ctl_name = 0 }
147 };
148 
149 static struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /*
154  * We have a system wide 'event count' that is incremented
155  * on any 'interesting' event, and readers of /proc/mdstat
156  * can use 'poll' or 'select' to find out when the event
157  * count increases.
158  *
159  * Events are:
160  *  start array, stop array, error, add device, remove device,
161  *  start build, activate spare
162  */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 	atomic_inc(&md_event_count);
168 	wake_up(&md_event_waiters);
169 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172 
173 /* Alternate version that can be called from interrupts
174  * when calling sysfs_notify isn't needed.
175  */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 	atomic_inc(&md_event_count);
179 	wake_up(&md_event_waiters);
180 }
181 
182 /*
183  * Enables to iterate over all existing md arrays
184  * all_mddevs_lock protects this list.
185  */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188 
189 
190 /*
191  * iterates through all used mddevs in the system.
192  * We take care to grab the all_mddevs_lock whenever navigating
193  * the list, and to always hold a refcount when unlocked.
194  * Any code which breaks out of this loop while own
195  * a reference to the current mddev and must mddev_put it.
196  */
197 #define ITERATE_MDDEV(mddev,tmp)					\
198 									\
199 	for (({ spin_lock(&all_mddevs_lock); 				\
200 		tmp = all_mddevs.next;					\
201 		mddev = NULL;});					\
202 	     ({ if (tmp != &all_mddevs)					\
203 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 		spin_unlock(&all_mddevs_lock);				\
205 		if (mddev) mddev_put(mddev);				\
206 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
207 		tmp != &all_mddevs;});					\
208 	     ({ spin_lock(&all_mddevs_lock);				\
209 		tmp = tmp->next;})					\
210 		)
211 
212 
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 	bio_io_error(bio, bio->bi_size);
216 	return 0;
217 }
218 
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 	atomic_inc(&mddev->active);
222 	return mddev;
223 }
224 
225 static void mddev_put(mddev_t *mddev)
226 {
227 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 		return;
229 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 		list_del(&mddev->all_mddevs);
231 		spin_unlock(&all_mddevs_lock);
232 		blk_cleanup_queue(mddev->queue);
233 		kobject_unregister(&mddev->kobj);
234 	} else
235 		spin_unlock(&all_mddevs_lock);
236 }
237 
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 	mddev_t *mddev, *new = NULL;
241 
242  retry:
243 	spin_lock(&all_mddevs_lock);
244 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 		if (mddev->unit == unit) {
246 			mddev_get(mddev);
247 			spin_unlock(&all_mddevs_lock);
248 			kfree(new);
249 			return mddev;
250 		}
251 
252 	if (new) {
253 		list_add(&new->all_mddevs, &all_mddevs);
254 		spin_unlock(&all_mddevs_lock);
255 		return new;
256 	}
257 	spin_unlock(&all_mddevs_lock);
258 
259 	new = kzalloc(sizeof(*new), GFP_KERNEL);
260 	if (!new)
261 		return NULL;
262 
263 	new->unit = unit;
264 	if (MAJOR(unit) == MD_MAJOR)
265 		new->md_minor = MINOR(unit);
266 	else
267 		new->md_minor = MINOR(unit) >> MdpMinorShift;
268 
269 	mutex_init(&new->reconfig_mutex);
270 	INIT_LIST_HEAD(&new->disks);
271 	INIT_LIST_HEAD(&new->all_mddevs);
272 	init_timer(&new->safemode_timer);
273 	atomic_set(&new->active, 1);
274 	spin_lock_init(&new->write_lock);
275 	init_waitqueue_head(&new->sb_wait);
276 
277 	new->queue = blk_alloc_queue(GFP_KERNEL);
278 	if (!new->queue) {
279 		kfree(new);
280 		return NULL;
281 	}
282 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283 
284 	blk_queue_make_request(new->queue, md_fail_request);
285 
286 	goto retry;
287 }
288 
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293 
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 	return mutex_trylock(&mddev->reconfig_mutex);
297 }
298 
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 	mutex_unlock(&mddev->reconfig_mutex);
302 
303 	md_wakeup_thread(mddev->thread);
304 }
305 
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 	mdk_rdev_t * rdev;
309 	struct list_head *tmp;
310 
311 	ITERATE_RDEV(mddev,rdev,tmp) {
312 		if (rdev->desc_nr == nr)
313 			return rdev;
314 	}
315 	return NULL;
316 }
317 
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 	struct list_head *tmp;
321 	mdk_rdev_t *rdev;
322 
323 	ITERATE_RDEV(mddev,rdev,tmp) {
324 		if (rdev->bdev->bd_dev == dev)
325 			return rdev;
326 	}
327 	return NULL;
328 }
329 
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 	struct mdk_personality *pers;
333 	list_for_each_entry(pers, &pers_list, list) {
334 		if (level != LEVEL_NONE && pers->level == level)
335 			return pers;
336 		if (strcmp(pers->name, clevel)==0)
337 			return pers;
338 	}
339 	return NULL;
340 }
341 
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 	return MD_NEW_SIZE_BLOCKS(size);
346 }
347 
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 	sector_t size;
351 
352 	size = rdev->sb_offset;
353 
354 	if (chunk_size)
355 		size &= ~((sector_t)chunk_size/1024 - 1);
356 	return size;
357 }
358 
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 	if (rdev->sb_page)
362 		MD_BUG();
363 
364 	rdev->sb_page = alloc_page(GFP_KERNEL);
365 	if (!rdev->sb_page) {
366 		printk(KERN_ALERT "md: out of memory.\n");
367 		return -EINVAL;
368 	}
369 
370 	return 0;
371 }
372 
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 	if (rdev->sb_page) {
376 		put_page(rdev->sb_page);
377 		rdev->sb_loaded = 0;
378 		rdev->sb_page = NULL;
379 		rdev->sb_offset = 0;
380 		rdev->size = 0;
381 	}
382 }
383 
384 
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 	mdk_rdev_t *rdev = bio->bi_private;
388 	mddev_t *mddev = rdev->mddev;
389 	if (bio->bi_size)
390 		return 1;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 		printk("md: super_written gets error=%d, uptodate=%d\n",
394 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		md_error(mddev, rdev);
397 	}
398 
399 	if (atomic_dec_and_test(&mddev->pending_writes))
400 		wake_up(&mddev->sb_wait);
401 	bio_put(bio);
402 	return 0;
403 }
404 
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
406 {
407 	struct bio *bio2 = bio->bi_private;
408 	mdk_rdev_t *rdev = bio2->bi_private;
409 	mddev_t *mddev = rdev->mddev;
410 	if (bio->bi_size)
411 		return 1;
412 
413 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 	    error == -EOPNOTSUPP) {
415 		unsigned long flags;
416 		/* barriers don't appear to be supported :-( */
417 		set_bit(BarriersNotsupp, &rdev->flags);
418 		mddev->barriers_work = 0;
419 		spin_lock_irqsave(&mddev->write_lock, flags);
420 		bio2->bi_next = mddev->biolist;
421 		mddev->biolist = bio2;
422 		spin_unlock_irqrestore(&mddev->write_lock, flags);
423 		wake_up(&mddev->sb_wait);
424 		bio_put(bio);
425 		return 0;
426 	}
427 	bio_put(bio2);
428 	bio->bi_private = rdev;
429 	return super_written(bio, bytes_done, error);
430 }
431 
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 		   sector_t sector, int size, struct page *page)
434 {
435 	/* write first size bytes of page to sector of rdev
436 	 * Increment mddev->pending_writes before returning
437 	 * and decrement it on completion, waking up sb_wait
438 	 * if zero is reached.
439 	 * If an error occurred, call md_error
440 	 *
441 	 * As we might need to resubmit the request if BIO_RW_BARRIER
442 	 * causes ENOTSUPP, we allocate a spare bio...
443 	 */
444 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446 
447 	bio->bi_bdev = rdev->bdev;
448 	bio->bi_sector = sector;
449 	bio_add_page(bio, page, size, 0);
450 	bio->bi_private = rdev;
451 	bio->bi_end_io = super_written;
452 	bio->bi_rw = rw;
453 
454 	atomic_inc(&mddev->pending_writes);
455 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 		struct bio *rbio;
457 		rw |= (1<<BIO_RW_BARRIER);
458 		rbio = bio_clone(bio, GFP_NOIO);
459 		rbio->bi_private = bio;
460 		rbio->bi_end_io = super_written_barrier;
461 		submit_bio(rw, rbio);
462 	} else
463 		submit_bio(rw, bio);
464 }
465 
466 void md_super_wait(mddev_t *mddev)
467 {
468 	/* wait for all superblock writes that were scheduled to complete.
469 	 * if any had to be retried (due to BARRIER problems), retry them
470 	 */
471 	DEFINE_WAIT(wq);
472 	for(;;) {
473 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 		if (atomic_read(&mddev->pending_writes)==0)
475 			break;
476 		while (mddev->biolist) {
477 			struct bio *bio;
478 			spin_lock_irq(&mddev->write_lock);
479 			bio = mddev->biolist;
480 			mddev->biolist = bio->bi_next ;
481 			bio->bi_next = NULL;
482 			spin_unlock_irq(&mddev->write_lock);
483 			submit_bio(bio->bi_rw, bio);
484 		}
485 		schedule();
486 	}
487 	finish_wait(&mddev->sb_wait, &wq);
488 }
489 
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
491 {
492 	if (bio->bi_size)
493 		return 1;
494 
495 	complete((struct completion*)bio->bi_private);
496 	return 0;
497 }
498 
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 		   struct page *page, int rw)
501 {
502 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 	struct completion event;
504 	int ret;
505 
506 	rw |= (1 << BIO_RW_SYNC);
507 
508 	bio->bi_bdev = bdev;
509 	bio->bi_sector = sector;
510 	bio_add_page(bio, page, size, 0);
511 	init_completion(&event);
512 	bio->bi_private = &event;
513 	bio->bi_end_io = bi_complete;
514 	submit_bio(rw, bio);
515 	wait_for_completion(&event);
516 
517 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 	bio_put(bio);
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(sync_page_io);
522 
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 {
525 	char b[BDEVNAME_SIZE];
526 	if (!rdev->sb_page) {
527 		MD_BUG();
528 		return -EINVAL;
529 	}
530 	if (rdev->sb_loaded)
531 		return 0;
532 
533 
534 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 		goto fail;
536 	rdev->sb_loaded = 1;
537 	return 0;
538 
539 fail:
540 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 		bdevname(rdev->bdev,b));
542 	return -EINVAL;
543 }
544 
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 {
547 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
548 		(sb1->set_uuid1 == sb2->set_uuid1) &&
549 		(sb1->set_uuid2 == sb2->set_uuid2) &&
550 		(sb1->set_uuid3 == sb2->set_uuid3))
551 
552 		return 1;
553 
554 	return 0;
555 }
556 
557 
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 {
560 	int ret;
561 	mdp_super_t *tmp1, *tmp2;
562 
563 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565 
566 	if (!tmp1 || !tmp2) {
567 		ret = 0;
568 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 		goto abort;
570 	}
571 
572 	*tmp1 = *sb1;
573 	*tmp2 = *sb2;
574 
575 	/*
576 	 * nr_disks is not constant
577 	 */
578 	tmp1->nr_disks = 0;
579 	tmp2->nr_disks = 0;
580 
581 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 		ret = 0;
583 	else
584 		ret = 1;
585 
586 abort:
587 	kfree(tmp1);
588 	kfree(tmp2);
589 	return ret;
590 }
591 
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 	unsigned int disk_csum, csum;
595 
596 	disk_csum = sb->sb_csum;
597 	sb->sb_csum = 0;
598 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 	sb->sb_csum = disk_csum;
600 	return csum;
601 }
602 
603 
604 /*
605  * Handle superblock details.
606  * We want to be able to handle multiple superblock formats
607  * so we have a common interface to them all, and an array of
608  * different handlers.
609  * We rely on user-space to write the initial superblock, and support
610  * reading and updating of superblocks.
611  * Interface methods are:
612  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613  *      loads and validates a superblock on dev.
614  *      if refdev != NULL, compare superblocks on both devices
615  *    Return:
616  *      0 - dev has a superblock that is compatible with refdev
617  *      1 - dev has a superblock that is compatible and newer than refdev
618  *          so dev should be used as the refdev in future
619  *     -EINVAL superblock incompatible or invalid
620  *     -othererror e.g. -EIO
621  *
622  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623  *      Verify that dev is acceptable into mddev.
624  *       The first time, mddev->raid_disks will be 0, and data from
625  *       dev should be merged in.  Subsequent calls check that dev
626  *       is new enough.  Return 0 or -EINVAL
627  *
628  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629  *     Update the superblock for rdev with data in mddev
630  *     This does not write to disc.
631  *
632  */
633 
634 struct super_type  {
635 	char 		*name;
636 	struct module	*owner;
637 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
640 };
641 
642 /*
643  * load_super for 0.90.0
644  */
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
646 {
647 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 	mdp_super_t *sb;
649 	int ret;
650 	sector_t sb_offset;
651 
652 	/*
653 	 * Calculate the position of the superblock,
654 	 * it's at the end of the disk.
655 	 *
656 	 * It also happens to be a multiple of 4Kb.
657 	 */
658 	sb_offset = calc_dev_sboffset(rdev->bdev);
659 	rdev->sb_offset = sb_offset;
660 
661 	ret = read_disk_sb(rdev, MD_SB_BYTES);
662 	if (ret) return ret;
663 
664 	ret = -EINVAL;
665 
666 	bdevname(rdev->bdev, b);
667 	sb = (mdp_super_t*)page_address(rdev->sb_page);
668 
669 	if (sb->md_magic != MD_SB_MAGIC) {
670 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
671 		       b);
672 		goto abort;
673 	}
674 
675 	if (sb->major_version != 0 ||
676 	    sb->minor_version < 90 ||
677 	    sb->minor_version > 91) {
678 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 			sb->major_version, sb->minor_version,
680 			b);
681 		goto abort;
682 	}
683 
684 	if (sb->raid_disks <= 0)
685 		goto abort;
686 
687 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
689 			b);
690 		goto abort;
691 	}
692 
693 	rdev->preferred_minor = sb->md_minor;
694 	rdev->data_offset = 0;
695 	rdev->sb_size = MD_SB_BYTES;
696 
697 	if (sb->level == LEVEL_MULTIPATH)
698 		rdev->desc_nr = -1;
699 	else
700 		rdev->desc_nr = sb->this_disk.number;
701 
702 	if (refdev == 0)
703 		ret = 1;
704 	else {
705 		__u64 ev1, ev2;
706 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 		if (!uuid_equal(refsb, sb)) {
708 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 				b, bdevname(refdev->bdev,b2));
710 			goto abort;
711 		}
712 		if (!sb_equal(refsb, sb)) {
713 			printk(KERN_WARNING "md: %s has same UUID"
714 			       " but different superblock to %s\n",
715 			       b, bdevname(refdev->bdev, b2));
716 			goto abort;
717 		}
718 		ev1 = md_event(sb);
719 		ev2 = md_event(refsb);
720 		if (ev1 > ev2)
721 			ret = 1;
722 		else
723 			ret = 0;
724 	}
725 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
726 
727 	if (rdev->size < sb->size && sb->level > 1)
728 		/* "this cannot possibly happen" ... */
729 		ret = -EINVAL;
730 
731  abort:
732 	return ret;
733 }
734 
735 /*
736  * validate_super for 0.90.0
737  */
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
739 {
740 	mdp_disk_t *desc;
741 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 	__u64 ev1 = md_event(sb);
743 
744 	rdev->raid_disk = -1;
745 	rdev->flags = 0;
746 	if (mddev->raid_disks == 0) {
747 		mddev->major_version = 0;
748 		mddev->minor_version = sb->minor_version;
749 		mddev->patch_version = sb->patch_version;
750 		mddev->persistent = ! sb->not_persistent;
751 		mddev->chunk_size = sb->chunk_size;
752 		mddev->ctime = sb->ctime;
753 		mddev->utime = sb->utime;
754 		mddev->level = sb->level;
755 		mddev->clevel[0] = 0;
756 		mddev->layout = sb->layout;
757 		mddev->raid_disks = sb->raid_disks;
758 		mddev->size = sb->size;
759 		mddev->events = ev1;
760 		mddev->bitmap_offset = 0;
761 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
762 
763 		if (mddev->minor_version >= 91) {
764 			mddev->reshape_position = sb->reshape_position;
765 			mddev->delta_disks = sb->delta_disks;
766 			mddev->new_level = sb->new_level;
767 			mddev->new_layout = sb->new_layout;
768 			mddev->new_chunk = sb->new_chunk;
769 		} else {
770 			mddev->reshape_position = MaxSector;
771 			mddev->delta_disks = 0;
772 			mddev->new_level = mddev->level;
773 			mddev->new_layout = mddev->layout;
774 			mddev->new_chunk = mddev->chunk_size;
775 		}
776 
777 		if (sb->state & (1<<MD_SB_CLEAN))
778 			mddev->recovery_cp = MaxSector;
779 		else {
780 			if (sb->events_hi == sb->cp_events_hi &&
781 				sb->events_lo == sb->cp_events_lo) {
782 				mddev->recovery_cp = sb->recovery_cp;
783 			} else
784 				mddev->recovery_cp = 0;
785 		}
786 
787 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
791 
792 		mddev->max_disks = MD_SB_DISKS;
793 
794 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 		    mddev->bitmap_file == NULL) {
796 			if (mddev->level != 1 && mddev->level != 4
797 			    && mddev->level != 5 && mddev->level != 6
798 			    && mddev->level != 10) {
799 				/* FIXME use a better test */
800 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 				return -EINVAL;
802 			}
803 			mddev->bitmap_offset = mddev->default_bitmap_offset;
804 		}
805 
806 	} else if (mddev->pers == NULL) {
807 		/* Insist on good event counter while assembling */
808 		++ev1;
809 		if (ev1 < mddev->events)
810 			return -EINVAL;
811 	} else if (mddev->bitmap) {
812 		/* if adding to array with a bitmap, then we can accept an
813 		 * older device ... but not too old.
814 		 */
815 		if (ev1 < mddev->bitmap->events_cleared)
816 			return 0;
817 	} else {
818 		if (ev1 < mddev->events)
819 			/* just a hot-add of a new device, leave raid_disk at -1 */
820 			return 0;
821 	}
822 
823 	if (mddev->level != LEVEL_MULTIPATH) {
824 		desc = sb->disks + rdev->desc_nr;
825 
826 		if (desc->state & (1<<MD_DISK_FAULTY))
827 			set_bit(Faulty, &rdev->flags);
828 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 			    desc->raid_disk < mddev->raid_disks */) {
830 			set_bit(In_sync, &rdev->flags);
831 			rdev->raid_disk = desc->raid_disk;
832 		}
833 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 			set_bit(WriteMostly, &rdev->flags);
835 	} else /* MULTIPATH are always insync */
836 		set_bit(In_sync, &rdev->flags);
837 	return 0;
838 }
839 
840 /*
841  * sync_super for 0.90.0
842  */
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
844 {
845 	mdp_super_t *sb;
846 	struct list_head *tmp;
847 	mdk_rdev_t *rdev2;
848 	int next_spare = mddev->raid_disks;
849 
850 
851 	/* make rdev->sb match mddev data..
852 	 *
853 	 * 1/ zero out disks
854 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 	 * 3/ any empty disks < next_spare become removed
856 	 *
857 	 * disks[0] gets initialised to REMOVED because
858 	 * we cannot be sure from other fields if it has
859 	 * been initialised or not.
860 	 */
861 	int i;
862 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
863 
864 	rdev->sb_size = MD_SB_BYTES;
865 
866 	sb = (mdp_super_t*)page_address(rdev->sb_page);
867 
868 	memset(sb, 0, sizeof(*sb));
869 
870 	sb->md_magic = MD_SB_MAGIC;
871 	sb->major_version = mddev->major_version;
872 	sb->patch_version = mddev->patch_version;
873 	sb->gvalid_words  = 0; /* ignored */
874 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
878 
879 	sb->ctime = mddev->ctime;
880 	sb->level = mddev->level;
881 	sb->size  = mddev->size;
882 	sb->raid_disks = mddev->raid_disks;
883 	sb->md_minor = mddev->md_minor;
884 	sb->not_persistent = !mddev->persistent;
885 	sb->utime = mddev->utime;
886 	sb->state = 0;
887 	sb->events_hi = (mddev->events>>32);
888 	sb->events_lo = (u32)mddev->events;
889 
890 	if (mddev->reshape_position == MaxSector)
891 		sb->minor_version = 90;
892 	else {
893 		sb->minor_version = 91;
894 		sb->reshape_position = mddev->reshape_position;
895 		sb->new_level = mddev->new_level;
896 		sb->delta_disks = mddev->delta_disks;
897 		sb->new_layout = mddev->new_layout;
898 		sb->new_chunk = mddev->new_chunk;
899 	}
900 	mddev->minor_version = sb->minor_version;
901 	if (mddev->in_sync)
902 	{
903 		sb->recovery_cp = mddev->recovery_cp;
904 		sb->cp_events_hi = (mddev->events>>32);
905 		sb->cp_events_lo = (u32)mddev->events;
906 		if (mddev->recovery_cp == MaxSector)
907 			sb->state = (1<< MD_SB_CLEAN);
908 	} else
909 		sb->recovery_cp = 0;
910 
911 	sb->layout = mddev->layout;
912 	sb->chunk_size = mddev->chunk_size;
913 
914 	if (mddev->bitmap && mddev->bitmap_file == NULL)
915 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
916 
917 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 	ITERATE_RDEV(mddev,rdev2,tmp) {
919 		mdp_disk_t *d;
920 		int desc_nr;
921 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 		    && !test_bit(Faulty, &rdev2->flags))
923 			desc_nr = rdev2->raid_disk;
924 		else
925 			desc_nr = next_spare++;
926 		rdev2->desc_nr = desc_nr;
927 		d = &sb->disks[rdev2->desc_nr];
928 		nr_disks++;
929 		d->number = rdev2->desc_nr;
930 		d->major = MAJOR(rdev2->bdev->bd_dev);
931 		d->minor = MINOR(rdev2->bdev->bd_dev);
932 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 		    && !test_bit(Faulty, &rdev2->flags))
934 			d->raid_disk = rdev2->raid_disk;
935 		else
936 			d->raid_disk = rdev2->desc_nr; /* compatibility */
937 		if (test_bit(Faulty, &rdev2->flags))
938 			d->state = (1<<MD_DISK_FAULTY);
939 		else if (test_bit(In_sync, &rdev2->flags)) {
940 			d->state = (1<<MD_DISK_ACTIVE);
941 			d->state |= (1<<MD_DISK_SYNC);
942 			active++;
943 			working++;
944 		} else {
945 			d->state = 0;
946 			spare++;
947 			working++;
948 		}
949 		if (test_bit(WriteMostly, &rdev2->flags))
950 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
951 	}
952 	/* now set the "removed" and "faulty" bits on any missing devices */
953 	for (i=0 ; i < mddev->raid_disks ; i++) {
954 		mdp_disk_t *d = &sb->disks[i];
955 		if (d->state == 0 && d->number == 0) {
956 			d->number = i;
957 			d->raid_disk = i;
958 			d->state = (1<<MD_DISK_REMOVED);
959 			d->state |= (1<<MD_DISK_FAULTY);
960 			failed++;
961 		}
962 	}
963 	sb->nr_disks = nr_disks;
964 	sb->active_disks = active;
965 	sb->working_disks = working;
966 	sb->failed_disks = failed;
967 	sb->spare_disks = spare;
968 
969 	sb->this_disk = sb->disks[rdev->desc_nr];
970 	sb->sb_csum = calc_sb_csum(sb);
971 }
972 
973 /*
974  * version 1 superblock
975  */
976 
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
978 {
979 	__le32 disk_csum;
980 	u32 csum;
981 	unsigned long long newcsum;
982 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 	__le32 *isuper = (__le32*)sb;
984 	int i;
985 
986 	disk_csum = sb->sb_csum;
987 	sb->sb_csum = 0;
988 	newcsum = 0;
989 	for (i=0; size>=4; size -= 4 )
990 		newcsum += le32_to_cpu(*isuper++);
991 
992 	if (size == 2)
993 		newcsum += le16_to_cpu(*(__le16*) isuper);
994 
995 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 	sb->sb_csum = disk_csum;
997 	return cpu_to_le32(csum);
998 }
999 
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1001 {
1002 	struct mdp_superblock_1 *sb;
1003 	int ret;
1004 	sector_t sb_offset;
1005 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 	int bmask;
1007 
1008 	/*
1009 	 * Calculate the position of the superblock.
1010 	 * It is always aligned to a 4K boundary and
1011 	 * depeding on minor_version, it can be:
1012 	 * 0: At least 8K, but less than 12K, from end of device
1013 	 * 1: At start of device
1014 	 * 2: 4K from start of device.
1015 	 */
1016 	switch(minor_version) {
1017 	case 0:
1018 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 		sb_offset -= 8*2;
1020 		sb_offset &= ~(sector_t)(4*2-1);
1021 		/* convert from sectors to K */
1022 		sb_offset /= 2;
1023 		break;
1024 	case 1:
1025 		sb_offset = 0;
1026 		break;
1027 	case 2:
1028 		sb_offset = 4;
1029 		break;
1030 	default:
1031 		return -EINVAL;
1032 	}
1033 	rdev->sb_offset = sb_offset;
1034 
1035 	/* superblock is rarely larger than 1K, but it can be larger,
1036 	 * and it is safe to read 4k, so we do that
1037 	 */
1038 	ret = read_disk_sb(rdev, 4096);
1039 	if (ret) return ret;
1040 
1041 
1042 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043 
1044 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 	    sb->major_version != cpu_to_le32(1) ||
1046 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 		return -EINVAL;
1050 
1051 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 		printk("md: invalid superblock checksum on %s\n",
1053 			bdevname(rdev->bdev,b));
1054 		return -EINVAL;
1055 	}
1056 	if (le64_to_cpu(sb->data_size) < 10) {
1057 		printk("md: data_size too small on %s\n",
1058 		       bdevname(rdev->bdev,b));
1059 		return -EINVAL;
1060 	}
1061 	rdev->preferred_minor = 0xffff;
1062 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1064 
1065 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 	if (rdev->sb_size & bmask)
1068 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1069 
1070 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 		rdev->desc_nr = -1;
1072 	else
1073 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1074 
1075 	if (refdev == 0)
1076 		ret = 1;
1077 	else {
1078 		__u64 ev1, ev2;
1079 		struct mdp_superblock_1 *refsb =
1080 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1081 
1082 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 		    sb->level != refsb->level ||
1084 		    sb->layout != refsb->layout ||
1085 		    sb->chunksize != refsb->chunksize) {
1086 			printk(KERN_WARNING "md: %s has strangely different"
1087 				" superblock to %s\n",
1088 				bdevname(rdev->bdev,b),
1089 				bdevname(refdev->bdev,b2));
1090 			return -EINVAL;
1091 		}
1092 		ev1 = le64_to_cpu(sb->events);
1093 		ev2 = le64_to_cpu(refsb->events);
1094 
1095 		if (ev1 > ev2)
1096 			ret = 1;
1097 		else
1098 			ret = 0;
1099 	}
1100 	if (minor_version)
1101 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 	else
1103 		rdev->size = rdev->sb_offset;
1104 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 		return -EINVAL;
1106 	rdev->size = le64_to_cpu(sb->data_size)/2;
1107 	if (le32_to_cpu(sb->chunksize))
1108 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1109 
1110 	if (le64_to_cpu(sb->size) > rdev->size*2)
1111 		return -EINVAL;
1112 	return ret;
1113 }
1114 
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1116 {
1117 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 	__u64 ev1 = le64_to_cpu(sb->events);
1119 
1120 	rdev->raid_disk = -1;
1121 	rdev->flags = 0;
1122 	if (mddev->raid_disks == 0) {
1123 		mddev->major_version = 1;
1124 		mddev->patch_version = 0;
1125 		mddev->persistent = 1;
1126 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 		mddev->level = le32_to_cpu(sb->level);
1130 		mddev->clevel[0] = 0;
1131 		mddev->layout = le32_to_cpu(sb->layout);
1132 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 		mddev->size = le64_to_cpu(sb->size)/2;
1134 		mddev->events = ev1;
1135 		mddev->bitmap_offset = 0;
1136 		mddev->default_bitmap_offset = 1024 >> 9;
1137 
1138 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 		memcpy(mddev->uuid, sb->set_uuid, 16);
1140 
1141 		mddev->max_disks =  (4096-256)/2;
1142 
1143 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 		    mddev->bitmap_file == NULL ) {
1145 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 			    && mddev->level != 10) {
1147 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 				return -EINVAL;
1149 			}
1150 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1151 		}
1152 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 			mddev->new_level = le32_to_cpu(sb->new_level);
1156 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 		} else {
1159 			mddev->reshape_position = MaxSector;
1160 			mddev->delta_disks = 0;
1161 			mddev->new_level = mddev->level;
1162 			mddev->new_layout = mddev->layout;
1163 			mddev->new_chunk = mddev->chunk_size;
1164 		}
1165 
1166 	} else if (mddev->pers == NULL) {
1167 		/* Insist of good event counter while assembling */
1168 		++ev1;
1169 		if (ev1 < mddev->events)
1170 			return -EINVAL;
1171 	} else if (mddev->bitmap) {
1172 		/* If adding to array with a bitmap, then we can accept an
1173 		 * older device, but not too old.
1174 		 */
1175 		if (ev1 < mddev->bitmap->events_cleared)
1176 			return 0;
1177 	} else {
1178 		if (ev1 < mddev->events)
1179 			/* just a hot-add of a new device, leave raid_disk at -1 */
1180 			return 0;
1181 	}
1182 	if (mddev->level != LEVEL_MULTIPATH) {
1183 		int role;
1184 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 		switch(role) {
1186 		case 0xffff: /* spare */
1187 			break;
1188 		case 0xfffe: /* faulty */
1189 			set_bit(Faulty, &rdev->flags);
1190 			break;
1191 		default:
1192 			if ((le32_to_cpu(sb->feature_map) &
1193 			     MD_FEATURE_RECOVERY_OFFSET))
1194 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 			else
1196 				set_bit(In_sync, &rdev->flags);
1197 			rdev->raid_disk = role;
1198 			break;
1199 		}
1200 		if (sb->devflags & WriteMostly1)
1201 			set_bit(WriteMostly, &rdev->flags);
1202 	} else /* MULTIPATH are always insync */
1203 		set_bit(In_sync, &rdev->flags);
1204 
1205 	return 0;
1206 }
1207 
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1209 {
1210 	struct mdp_superblock_1 *sb;
1211 	struct list_head *tmp;
1212 	mdk_rdev_t *rdev2;
1213 	int max_dev, i;
1214 	/* make rdev->sb match mddev and rdev data. */
1215 
1216 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1217 
1218 	sb->feature_map = 0;
1219 	sb->pad0 = 0;
1220 	sb->recovery_offset = cpu_to_le64(0);
1221 	memset(sb->pad1, 0, sizeof(sb->pad1));
1222 	memset(sb->pad2, 0, sizeof(sb->pad2));
1223 	memset(sb->pad3, 0, sizeof(sb->pad3));
1224 
1225 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 	sb->events = cpu_to_le64(mddev->events);
1227 	if (mddev->in_sync)
1228 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 	else
1230 		sb->resync_offset = cpu_to_le64(0);
1231 
1232 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1233 
1234 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 	sb->size = cpu_to_le64(mddev->size<<1);
1236 
1237 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1240 	}
1241 
1242 	if (rdev->raid_disk >= 0 &&
1243 	    !test_bit(In_sync, &rdev->flags) &&
1244 	    rdev->recovery_offset > 0) {
1245 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1247 	}
1248 
1249 	if (mddev->reshape_position != MaxSector) {
1250 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 		sb->new_level = cpu_to_le32(mddev->new_level);
1255 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1256 	}
1257 
1258 	max_dev = 0;
1259 	ITERATE_RDEV(mddev,rdev2,tmp)
1260 		if (rdev2->desc_nr+1 > max_dev)
1261 			max_dev = rdev2->desc_nr+1;
1262 
1263 	sb->max_dev = cpu_to_le32(max_dev);
1264 	for (i=0; i<max_dev;i++)
1265 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266 
1267 	ITERATE_RDEV(mddev,rdev2,tmp) {
1268 		i = rdev2->desc_nr;
1269 		if (test_bit(Faulty, &rdev2->flags))
1270 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 		else if (test_bit(In_sync, &rdev2->flags))
1272 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 		else
1276 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1277 	}
1278 
1279 	sb->sb_csum = calc_sb_1_csum(sb);
1280 }
1281 
1282 
1283 static struct super_type super_types[] = {
1284 	[0] = {
1285 		.name	= "0.90.0",
1286 		.owner	= THIS_MODULE,
1287 		.load_super	= super_90_load,
1288 		.validate_super	= super_90_validate,
1289 		.sync_super	= super_90_sync,
1290 	},
1291 	[1] = {
1292 		.name	= "md-1",
1293 		.owner	= THIS_MODULE,
1294 		.load_super	= super_1_load,
1295 		.validate_super	= super_1_validate,
1296 		.sync_super	= super_1_sync,
1297 	},
1298 };
1299 
1300 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1301 {
1302 	struct list_head *tmp, *tmp2;
1303 	mdk_rdev_t *rdev, *rdev2;
1304 
1305 	ITERATE_RDEV(mddev1,rdev,tmp)
1306 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1307 			if (rdev->bdev->bd_contains ==
1308 			    rdev2->bdev->bd_contains)
1309 				return 1;
1310 
1311 	return 0;
1312 }
1313 
1314 static LIST_HEAD(pending_raid_disks);
1315 
1316 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1317 {
1318 	char b[BDEVNAME_SIZE];
1319 	struct kobject *ko;
1320 	char *s;
1321 	int err;
1322 
1323 	if (rdev->mddev) {
1324 		MD_BUG();
1325 		return -EINVAL;
1326 	}
1327 	/* make sure rdev->size exceeds mddev->size */
1328 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1329 		if (mddev->pers)
1330 			/* Cannot change size, so fail */
1331 			return -ENOSPC;
1332 		else
1333 			mddev->size = rdev->size;
1334 	}
1335 
1336 	/* Verify rdev->desc_nr is unique.
1337 	 * If it is -1, assign a free number, else
1338 	 * check number is not in use
1339 	 */
1340 	if (rdev->desc_nr < 0) {
1341 		int choice = 0;
1342 		if (mddev->pers) choice = mddev->raid_disks;
1343 		while (find_rdev_nr(mddev, choice))
1344 			choice++;
1345 		rdev->desc_nr = choice;
1346 	} else {
1347 		if (find_rdev_nr(mddev, rdev->desc_nr))
1348 			return -EBUSY;
1349 	}
1350 	bdevname(rdev->bdev,b);
1351 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1352 		return -ENOMEM;
1353 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1354 		*s = '!';
1355 
1356 	rdev->mddev = mddev;
1357 	printk(KERN_INFO "md: bind<%s>\n", b);
1358 
1359 	rdev->kobj.parent = &mddev->kobj;
1360 	if ((err = kobject_add(&rdev->kobj)))
1361 		goto fail;
1362 
1363 	if (rdev->bdev->bd_part)
1364 		ko = &rdev->bdev->bd_part->kobj;
1365 	else
1366 		ko = &rdev->bdev->bd_disk->kobj;
1367 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1368 		kobject_del(&rdev->kobj);
1369 		goto fail;
1370 	}
1371 	list_add(&rdev->same_set, &mddev->disks);
1372 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1373 	return 0;
1374 
1375  fail:
1376 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1377 	       b, mdname(mddev));
1378 	return err;
1379 }
1380 
1381 static void delayed_delete(struct work_struct *ws)
1382 {
1383 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1384 	kobject_del(&rdev->kobj);
1385 }
1386 
1387 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1388 {
1389 	char b[BDEVNAME_SIZE];
1390 	if (!rdev->mddev) {
1391 		MD_BUG();
1392 		return;
1393 	}
1394 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1395 	list_del_init(&rdev->same_set);
1396 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1397 	rdev->mddev = NULL;
1398 	sysfs_remove_link(&rdev->kobj, "block");
1399 
1400 	/* We need to delay this, otherwise we can deadlock when
1401 	 * writing to 'remove' to "dev/state"
1402 	 */
1403 	INIT_WORK(&rdev->del_work, delayed_delete);
1404 	schedule_work(&rdev->del_work);
1405 }
1406 
1407 /*
1408  * prevent the device from being mounted, repartitioned or
1409  * otherwise reused by a RAID array (or any other kernel
1410  * subsystem), by bd_claiming the device.
1411  */
1412 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1413 {
1414 	int err = 0;
1415 	struct block_device *bdev;
1416 	char b[BDEVNAME_SIZE];
1417 
1418 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1419 	if (IS_ERR(bdev)) {
1420 		printk(KERN_ERR "md: could not open %s.\n",
1421 			__bdevname(dev, b));
1422 		return PTR_ERR(bdev);
1423 	}
1424 	err = bd_claim(bdev, rdev);
1425 	if (err) {
1426 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1427 			bdevname(bdev, b));
1428 		blkdev_put(bdev);
1429 		return err;
1430 	}
1431 	rdev->bdev = bdev;
1432 	return err;
1433 }
1434 
1435 static void unlock_rdev(mdk_rdev_t *rdev)
1436 {
1437 	struct block_device *bdev = rdev->bdev;
1438 	rdev->bdev = NULL;
1439 	if (!bdev)
1440 		MD_BUG();
1441 	bd_release(bdev);
1442 	blkdev_put(bdev);
1443 }
1444 
1445 void md_autodetect_dev(dev_t dev);
1446 
1447 static void export_rdev(mdk_rdev_t * rdev)
1448 {
1449 	char b[BDEVNAME_SIZE];
1450 	printk(KERN_INFO "md: export_rdev(%s)\n",
1451 		bdevname(rdev->bdev,b));
1452 	if (rdev->mddev)
1453 		MD_BUG();
1454 	free_disk_sb(rdev);
1455 	list_del_init(&rdev->same_set);
1456 #ifndef MODULE
1457 	md_autodetect_dev(rdev->bdev->bd_dev);
1458 #endif
1459 	unlock_rdev(rdev);
1460 	kobject_put(&rdev->kobj);
1461 }
1462 
1463 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1464 {
1465 	unbind_rdev_from_array(rdev);
1466 	export_rdev(rdev);
1467 }
1468 
1469 static void export_array(mddev_t *mddev)
1470 {
1471 	struct list_head *tmp;
1472 	mdk_rdev_t *rdev;
1473 
1474 	ITERATE_RDEV(mddev,rdev,tmp) {
1475 		if (!rdev->mddev) {
1476 			MD_BUG();
1477 			continue;
1478 		}
1479 		kick_rdev_from_array(rdev);
1480 	}
1481 	if (!list_empty(&mddev->disks))
1482 		MD_BUG();
1483 	mddev->raid_disks = 0;
1484 	mddev->major_version = 0;
1485 }
1486 
1487 static void print_desc(mdp_disk_t *desc)
1488 {
1489 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1490 		desc->major,desc->minor,desc->raid_disk,desc->state);
1491 }
1492 
1493 static void print_sb(mdp_super_t *sb)
1494 {
1495 	int i;
1496 
1497 	printk(KERN_INFO
1498 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1499 		sb->major_version, sb->minor_version, sb->patch_version,
1500 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1501 		sb->ctime);
1502 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1503 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1504 		sb->md_minor, sb->layout, sb->chunk_size);
1505 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1506 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1507 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1508 		sb->failed_disks, sb->spare_disks,
1509 		sb->sb_csum, (unsigned long)sb->events_lo);
1510 
1511 	printk(KERN_INFO);
1512 	for (i = 0; i < MD_SB_DISKS; i++) {
1513 		mdp_disk_t *desc;
1514 
1515 		desc = sb->disks + i;
1516 		if (desc->number || desc->major || desc->minor ||
1517 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1518 			printk("     D %2d: ", i);
1519 			print_desc(desc);
1520 		}
1521 	}
1522 	printk(KERN_INFO "md:     THIS: ");
1523 	print_desc(&sb->this_disk);
1524 
1525 }
1526 
1527 static void print_rdev(mdk_rdev_t *rdev)
1528 {
1529 	char b[BDEVNAME_SIZE];
1530 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1531 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1532 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1533 	        rdev->desc_nr);
1534 	if (rdev->sb_loaded) {
1535 		printk(KERN_INFO "md: rdev superblock:\n");
1536 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1537 	} else
1538 		printk(KERN_INFO "md: no rdev superblock!\n");
1539 }
1540 
1541 static void md_print_devices(void)
1542 {
1543 	struct list_head *tmp, *tmp2;
1544 	mdk_rdev_t *rdev;
1545 	mddev_t *mddev;
1546 	char b[BDEVNAME_SIZE];
1547 
1548 	printk("\n");
1549 	printk("md:	**********************************\n");
1550 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1551 	printk("md:	**********************************\n");
1552 	ITERATE_MDDEV(mddev,tmp) {
1553 
1554 		if (mddev->bitmap)
1555 			bitmap_print_sb(mddev->bitmap);
1556 		else
1557 			printk("%s: ", mdname(mddev));
1558 		ITERATE_RDEV(mddev,rdev,tmp2)
1559 			printk("<%s>", bdevname(rdev->bdev,b));
1560 		printk("\n");
1561 
1562 		ITERATE_RDEV(mddev,rdev,tmp2)
1563 			print_rdev(rdev);
1564 	}
1565 	printk("md:	**********************************\n");
1566 	printk("\n");
1567 }
1568 
1569 
1570 static void sync_sbs(mddev_t * mddev, int nospares)
1571 {
1572 	/* Update each superblock (in-memory image), but
1573 	 * if we are allowed to, skip spares which already
1574 	 * have the right event counter, or have one earlier
1575 	 * (which would mean they aren't being marked as dirty
1576 	 * with the rest of the array)
1577 	 */
1578 	mdk_rdev_t *rdev;
1579 	struct list_head *tmp;
1580 
1581 	ITERATE_RDEV(mddev,rdev,tmp) {
1582 		if (rdev->sb_events == mddev->events ||
1583 		    (nospares &&
1584 		     rdev->raid_disk < 0 &&
1585 		     (rdev->sb_events&1)==0 &&
1586 		     rdev->sb_events+1 == mddev->events)) {
1587 			/* Don't update this superblock */
1588 			rdev->sb_loaded = 2;
1589 		} else {
1590 			super_types[mddev->major_version].
1591 				sync_super(mddev, rdev);
1592 			rdev->sb_loaded = 1;
1593 		}
1594 	}
1595 }
1596 
1597 static void md_update_sb(mddev_t * mddev, int force_change)
1598 {
1599 	int err;
1600 	struct list_head *tmp;
1601 	mdk_rdev_t *rdev;
1602 	int sync_req;
1603 	int nospares = 0;
1604 
1605 repeat:
1606 	spin_lock_irq(&mddev->write_lock);
1607 
1608 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1609 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1610 		force_change = 1;
1611 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1612 		/* just a clean<-> dirty transition, possibly leave spares alone,
1613 		 * though if events isn't the right even/odd, we will have to do
1614 		 * spares after all
1615 		 */
1616 		nospares = 1;
1617 	if (force_change)
1618 		nospares = 0;
1619 	if (mddev->degraded)
1620 		/* If the array is degraded, then skipping spares is both
1621 		 * dangerous and fairly pointless.
1622 		 * Dangerous because a device that was removed from the array
1623 		 * might have a event_count that still looks up-to-date,
1624 		 * so it can be re-added without a resync.
1625 		 * Pointless because if there are any spares to skip,
1626 		 * then a recovery will happen and soon that array won't
1627 		 * be degraded any more and the spare can go back to sleep then.
1628 		 */
1629 		nospares = 0;
1630 
1631 	sync_req = mddev->in_sync;
1632 	mddev->utime = get_seconds();
1633 
1634 	/* If this is just a dirty<->clean transition, and the array is clean
1635 	 * and 'events' is odd, we can roll back to the previous clean state */
1636 	if (nospares
1637 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1638 	    && (mddev->events & 1)
1639 	    && mddev->events != 1)
1640 		mddev->events--;
1641 	else {
1642 		/* otherwise we have to go forward and ... */
1643 		mddev->events ++;
1644 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1645 			/* .. if the array isn't clean, insist on an odd 'events' */
1646 			if ((mddev->events&1)==0) {
1647 				mddev->events++;
1648 				nospares = 0;
1649 			}
1650 		} else {
1651 			/* otherwise insist on an even 'events' (for clean states) */
1652 			if ((mddev->events&1)) {
1653 				mddev->events++;
1654 				nospares = 0;
1655 			}
1656 		}
1657 	}
1658 
1659 	if (!mddev->events) {
1660 		/*
1661 		 * oops, this 64-bit counter should never wrap.
1662 		 * Either we are in around ~1 trillion A.C., assuming
1663 		 * 1 reboot per second, or we have a bug:
1664 		 */
1665 		MD_BUG();
1666 		mddev->events --;
1667 	}
1668 	sync_sbs(mddev, nospares);
1669 
1670 	/*
1671 	 * do not write anything to disk if using
1672 	 * nonpersistent superblocks
1673 	 */
1674 	if (!mddev->persistent) {
1675 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1676 		spin_unlock_irq(&mddev->write_lock);
1677 		wake_up(&mddev->sb_wait);
1678 		return;
1679 	}
1680 	spin_unlock_irq(&mddev->write_lock);
1681 
1682 	dprintk(KERN_INFO
1683 		"md: updating %s RAID superblock on device (in sync %d)\n",
1684 		mdname(mddev),mddev->in_sync);
1685 
1686 	err = bitmap_update_sb(mddev->bitmap);
1687 	ITERATE_RDEV(mddev,rdev,tmp) {
1688 		char b[BDEVNAME_SIZE];
1689 		dprintk(KERN_INFO "md: ");
1690 		if (rdev->sb_loaded != 1)
1691 			continue; /* no noise on spare devices */
1692 		if (test_bit(Faulty, &rdev->flags))
1693 			dprintk("(skipping faulty ");
1694 
1695 		dprintk("%s ", bdevname(rdev->bdev,b));
1696 		if (!test_bit(Faulty, &rdev->flags)) {
1697 			md_super_write(mddev,rdev,
1698 				       rdev->sb_offset<<1, rdev->sb_size,
1699 				       rdev->sb_page);
1700 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1701 				bdevname(rdev->bdev,b),
1702 				(unsigned long long)rdev->sb_offset);
1703 			rdev->sb_events = mddev->events;
1704 
1705 		} else
1706 			dprintk(")\n");
1707 		if (mddev->level == LEVEL_MULTIPATH)
1708 			/* only need to write one superblock... */
1709 			break;
1710 	}
1711 	md_super_wait(mddev);
1712 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1713 
1714 	spin_lock_irq(&mddev->write_lock);
1715 	if (mddev->in_sync != sync_req ||
1716 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1717 		/* have to write it out again */
1718 		spin_unlock_irq(&mddev->write_lock);
1719 		goto repeat;
1720 	}
1721 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1722 	spin_unlock_irq(&mddev->write_lock);
1723 	wake_up(&mddev->sb_wait);
1724 
1725 }
1726 
1727 /* words written to sysfs files may, or my not, be \n terminated.
1728  * We want to accept with case. For this we use cmd_match.
1729  */
1730 static int cmd_match(const char *cmd, const char *str)
1731 {
1732 	/* See if cmd, written into a sysfs file, matches
1733 	 * str.  They must either be the same, or cmd can
1734 	 * have a trailing newline
1735 	 */
1736 	while (*cmd && *str && *cmd == *str) {
1737 		cmd++;
1738 		str++;
1739 	}
1740 	if (*cmd == '\n')
1741 		cmd++;
1742 	if (*str || *cmd)
1743 		return 0;
1744 	return 1;
1745 }
1746 
1747 struct rdev_sysfs_entry {
1748 	struct attribute attr;
1749 	ssize_t (*show)(mdk_rdev_t *, char *);
1750 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1751 };
1752 
1753 static ssize_t
1754 state_show(mdk_rdev_t *rdev, char *page)
1755 {
1756 	char *sep = "";
1757 	int len=0;
1758 
1759 	if (test_bit(Faulty, &rdev->flags)) {
1760 		len+= sprintf(page+len, "%sfaulty",sep);
1761 		sep = ",";
1762 	}
1763 	if (test_bit(In_sync, &rdev->flags)) {
1764 		len += sprintf(page+len, "%sin_sync",sep);
1765 		sep = ",";
1766 	}
1767 	if (test_bit(WriteMostly, &rdev->flags)) {
1768 		len += sprintf(page+len, "%swrite_mostly",sep);
1769 		sep = ",";
1770 	}
1771 	if (!test_bit(Faulty, &rdev->flags) &&
1772 	    !test_bit(In_sync, &rdev->flags)) {
1773 		len += sprintf(page+len, "%sspare", sep);
1774 		sep = ",";
1775 	}
1776 	return len+sprintf(page+len, "\n");
1777 }
1778 
1779 static ssize_t
1780 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1781 {
1782 	/* can write
1783 	 *  faulty  - simulates and error
1784 	 *  remove  - disconnects the device
1785 	 *  writemostly - sets write_mostly
1786 	 *  -writemostly - clears write_mostly
1787 	 */
1788 	int err = -EINVAL;
1789 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1790 		md_error(rdev->mddev, rdev);
1791 		err = 0;
1792 	} else if (cmd_match(buf, "remove")) {
1793 		if (rdev->raid_disk >= 0)
1794 			err = -EBUSY;
1795 		else {
1796 			mddev_t *mddev = rdev->mddev;
1797 			kick_rdev_from_array(rdev);
1798 			if (mddev->pers)
1799 				md_update_sb(mddev, 1);
1800 			md_new_event(mddev);
1801 			err = 0;
1802 		}
1803 	} else if (cmd_match(buf, "writemostly")) {
1804 		set_bit(WriteMostly, &rdev->flags);
1805 		err = 0;
1806 	} else if (cmd_match(buf, "-writemostly")) {
1807 		clear_bit(WriteMostly, &rdev->flags);
1808 		err = 0;
1809 	}
1810 	return err ? err : len;
1811 }
1812 static struct rdev_sysfs_entry rdev_state =
1813 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1814 
1815 static ssize_t
1816 super_show(mdk_rdev_t *rdev, char *page)
1817 {
1818 	if (rdev->sb_loaded && rdev->sb_size) {
1819 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1820 		return rdev->sb_size;
1821 	} else
1822 		return 0;
1823 }
1824 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1825 
1826 static ssize_t
1827 errors_show(mdk_rdev_t *rdev, char *page)
1828 {
1829 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1830 }
1831 
1832 static ssize_t
1833 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1834 {
1835 	char *e;
1836 	unsigned long n = simple_strtoul(buf, &e, 10);
1837 	if (*buf && (*e == 0 || *e == '\n')) {
1838 		atomic_set(&rdev->corrected_errors, n);
1839 		return len;
1840 	}
1841 	return -EINVAL;
1842 }
1843 static struct rdev_sysfs_entry rdev_errors =
1844 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1845 
1846 static ssize_t
1847 slot_show(mdk_rdev_t *rdev, char *page)
1848 {
1849 	if (rdev->raid_disk < 0)
1850 		return sprintf(page, "none\n");
1851 	else
1852 		return sprintf(page, "%d\n", rdev->raid_disk);
1853 }
1854 
1855 static ssize_t
1856 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1857 {
1858 	char *e;
1859 	int slot = simple_strtoul(buf, &e, 10);
1860 	if (strncmp(buf, "none", 4)==0)
1861 		slot = -1;
1862 	else if (e==buf || (*e && *e!= '\n'))
1863 		return -EINVAL;
1864 	if (rdev->mddev->pers)
1865 		/* Cannot set slot in active array (yet) */
1866 		return -EBUSY;
1867 	if (slot >= rdev->mddev->raid_disks)
1868 		return -ENOSPC;
1869 	rdev->raid_disk = slot;
1870 	/* assume it is working */
1871 	rdev->flags = 0;
1872 	set_bit(In_sync, &rdev->flags);
1873 	return len;
1874 }
1875 
1876 
1877 static struct rdev_sysfs_entry rdev_slot =
1878 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1879 
1880 static ssize_t
1881 offset_show(mdk_rdev_t *rdev, char *page)
1882 {
1883 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1884 }
1885 
1886 static ssize_t
1887 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1888 {
1889 	char *e;
1890 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1891 	if (e==buf || (*e && *e != '\n'))
1892 		return -EINVAL;
1893 	if (rdev->mddev->pers)
1894 		return -EBUSY;
1895 	rdev->data_offset = offset;
1896 	return len;
1897 }
1898 
1899 static struct rdev_sysfs_entry rdev_offset =
1900 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1901 
1902 static ssize_t
1903 rdev_size_show(mdk_rdev_t *rdev, char *page)
1904 {
1905 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1906 }
1907 
1908 static ssize_t
1909 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1910 {
1911 	char *e;
1912 	unsigned long long size = simple_strtoull(buf, &e, 10);
1913 	if (e==buf || (*e && *e != '\n'))
1914 		return -EINVAL;
1915 	if (rdev->mddev->pers)
1916 		return -EBUSY;
1917 	rdev->size = size;
1918 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1919 		rdev->mddev->size = size;
1920 	return len;
1921 }
1922 
1923 static struct rdev_sysfs_entry rdev_size =
1924 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1925 
1926 static struct attribute *rdev_default_attrs[] = {
1927 	&rdev_state.attr,
1928 	&rdev_super.attr,
1929 	&rdev_errors.attr,
1930 	&rdev_slot.attr,
1931 	&rdev_offset.attr,
1932 	&rdev_size.attr,
1933 	NULL,
1934 };
1935 static ssize_t
1936 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1937 {
1938 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1939 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1940 
1941 	if (!entry->show)
1942 		return -EIO;
1943 	return entry->show(rdev, page);
1944 }
1945 
1946 static ssize_t
1947 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1948 	      const char *page, size_t length)
1949 {
1950 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1951 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1952 
1953 	if (!entry->store)
1954 		return -EIO;
1955 	if (!capable(CAP_SYS_ADMIN))
1956 		return -EACCES;
1957 	return entry->store(rdev, page, length);
1958 }
1959 
1960 static void rdev_free(struct kobject *ko)
1961 {
1962 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1963 	kfree(rdev);
1964 }
1965 static struct sysfs_ops rdev_sysfs_ops = {
1966 	.show		= rdev_attr_show,
1967 	.store		= rdev_attr_store,
1968 };
1969 static struct kobj_type rdev_ktype = {
1970 	.release	= rdev_free,
1971 	.sysfs_ops	= &rdev_sysfs_ops,
1972 	.default_attrs	= rdev_default_attrs,
1973 };
1974 
1975 /*
1976  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1977  *
1978  * mark the device faulty if:
1979  *
1980  *   - the device is nonexistent (zero size)
1981  *   - the device has no valid superblock
1982  *
1983  * a faulty rdev _never_ has rdev->sb set.
1984  */
1985 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1986 {
1987 	char b[BDEVNAME_SIZE];
1988 	int err;
1989 	mdk_rdev_t *rdev;
1990 	sector_t size;
1991 
1992 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1993 	if (!rdev) {
1994 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1995 		return ERR_PTR(-ENOMEM);
1996 	}
1997 
1998 	if ((err = alloc_disk_sb(rdev)))
1999 		goto abort_free;
2000 
2001 	err = lock_rdev(rdev, newdev);
2002 	if (err)
2003 		goto abort_free;
2004 
2005 	rdev->kobj.parent = NULL;
2006 	rdev->kobj.ktype = &rdev_ktype;
2007 	kobject_init(&rdev->kobj);
2008 
2009 	rdev->desc_nr = -1;
2010 	rdev->saved_raid_disk = -1;
2011 	rdev->raid_disk = -1;
2012 	rdev->flags = 0;
2013 	rdev->data_offset = 0;
2014 	rdev->sb_events = 0;
2015 	atomic_set(&rdev->nr_pending, 0);
2016 	atomic_set(&rdev->read_errors, 0);
2017 	atomic_set(&rdev->corrected_errors, 0);
2018 
2019 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2020 	if (!size) {
2021 		printk(KERN_WARNING
2022 			"md: %s has zero or unknown size, marking faulty!\n",
2023 			bdevname(rdev->bdev,b));
2024 		err = -EINVAL;
2025 		goto abort_free;
2026 	}
2027 
2028 	if (super_format >= 0) {
2029 		err = super_types[super_format].
2030 			load_super(rdev, NULL, super_minor);
2031 		if (err == -EINVAL) {
2032 			printk(KERN_WARNING
2033 				"md: %s has invalid sb, not importing!\n",
2034 				bdevname(rdev->bdev,b));
2035 			goto abort_free;
2036 		}
2037 		if (err < 0) {
2038 			printk(KERN_WARNING
2039 				"md: could not read %s's sb, not importing!\n",
2040 				bdevname(rdev->bdev,b));
2041 			goto abort_free;
2042 		}
2043 	}
2044 	INIT_LIST_HEAD(&rdev->same_set);
2045 
2046 	return rdev;
2047 
2048 abort_free:
2049 	if (rdev->sb_page) {
2050 		if (rdev->bdev)
2051 			unlock_rdev(rdev);
2052 		free_disk_sb(rdev);
2053 	}
2054 	kfree(rdev);
2055 	return ERR_PTR(err);
2056 }
2057 
2058 /*
2059  * Check a full RAID array for plausibility
2060  */
2061 
2062 
2063 static void analyze_sbs(mddev_t * mddev)
2064 {
2065 	int i;
2066 	struct list_head *tmp;
2067 	mdk_rdev_t *rdev, *freshest;
2068 	char b[BDEVNAME_SIZE];
2069 
2070 	freshest = NULL;
2071 	ITERATE_RDEV(mddev,rdev,tmp)
2072 		switch (super_types[mddev->major_version].
2073 			load_super(rdev, freshest, mddev->minor_version)) {
2074 		case 1:
2075 			freshest = rdev;
2076 			break;
2077 		case 0:
2078 			break;
2079 		default:
2080 			printk( KERN_ERR \
2081 				"md: fatal superblock inconsistency in %s"
2082 				" -- removing from array\n",
2083 				bdevname(rdev->bdev,b));
2084 			kick_rdev_from_array(rdev);
2085 		}
2086 
2087 
2088 	super_types[mddev->major_version].
2089 		validate_super(mddev, freshest);
2090 
2091 	i = 0;
2092 	ITERATE_RDEV(mddev,rdev,tmp) {
2093 		if (rdev != freshest)
2094 			if (super_types[mddev->major_version].
2095 			    validate_super(mddev, rdev)) {
2096 				printk(KERN_WARNING "md: kicking non-fresh %s"
2097 					" from array!\n",
2098 					bdevname(rdev->bdev,b));
2099 				kick_rdev_from_array(rdev);
2100 				continue;
2101 			}
2102 		if (mddev->level == LEVEL_MULTIPATH) {
2103 			rdev->desc_nr = i++;
2104 			rdev->raid_disk = rdev->desc_nr;
2105 			set_bit(In_sync, &rdev->flags);
2106 		}
2107 	}
2108 
2109 
2110 
2111 	if (mddev->recovery_cp != MaxSector &&
2112 	    mddev->level >= 1)
2113 		printk(KERN_ERR "md: %s: raid array is not clean"
2114 		       " -- starting background reconstruction\n",
2115 		       mdname(mddev));
2116 
2117 }
2118 
2119 static ssize_t
2120 safe_delay_show(mddev_t *mddev, char *page)
2121 {
2122 	int msec = (mddev->safemode_delay*1000)/HZ;
2123 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2124 }
2125 static ssize_t
2126 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2127 {
2128 	int scale=1;
2129 	int dot=0;
2130 	int i;
2131 	unsigned long msec;
2132 	char buf[30];
2133 	char *e;
2134 	/* remove a period, and count digits after it */
2135 	if (len >= sizeof(buf))
2136 		return -EINVAL;
2137 	strlcpy(buf, cbuf, len);
2138 	buf[len] = 0;
2139 	for (i=0; i<len; i++) {
2140 		if (dot) {
2141 			if (isdigit(buf[i])) {
2142 				buf[i-1] = buf[i];
2143 				scale *= 10;
2144 			}
2145 			buf[i] = 0;
2146 		} else if (buf[i] == '.') {
2147 			dot=1;
2148 			buf[i] = 0;
2149 		}
2150 	}
2151 	msec = simple_strtoul(buf, &e, 10);
2152 	if (e == buf || (*e && *e != '\n'))
2153 		return -EINVAL;
2154 	msec = (msec * 1000) / scale;
2155 	if (msec == 0)
2156 		mddev->safemode_delay = 0;
2157 	else {
2158 		mddev->safemode_delay = (msec*HZ)/1000;
2159 		if (mddev->safemode_delay == 0)
2160 			mddev->safemode_delay = 1;
2161 	}
2162 	return len;
2163 }
2164 static struct md_sysfs_entry md_safe_delay =
2165 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2166 
2167 static ssize_t
2168 level_show(mddev_t *mddev, char *page)
2169 {
2170 	struct mdk_personality *p = mddev->pers;
2171 	if (p)
2172 		return sprintf(page, "%s\n", p->name);
2173 	else if (mddev->clevel[0])
2174 		return sprintf(page, "%s\n", mddev->clevel);
2175 	else if (mddev->level != LEVEL_NONE)
2176 		return sprintf(page, "%d\n", mddev->level);
2177 	else
2178 		return 0;
2179 }
2180 
2181 static ssize_t
2182 level_store(mddev_t *mddev, const char *buf, size_t len)
2183 {
2184 	int rv = len;
2185 	if (mddev->pers)
2186 		return -EBUSY;
2187 	if (len == 0)
2188 		return 0;
2189 	if (len >= sizeof(mddev->clevel))
2190 		return -ENOSPC;
2191 	strncpy(mddev->clevel, buf, len);
2192 	if (mddev->clevel[len-1] == '\n')
2193 		len--;
2194 	mddev->clevel[len] = 0;
2195 	mddev->level = LEVEL_NONE;
2196 	return rv;
2197 }
2198 
2199 static struct md_sysfs_entry md_level =
2200 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2201 
2202 
2203 static ssize_t
2204 layout_show(mddev_t *mddev, char *page)
2205 {
2206 	/* just a number, not meaningful for all levels */
2207 	return sprintf(page, "%d\n", mddev->layout);
2208 }
2209 
2210 static ssize_t
2211 layout_store(mddev_t *mddev, const char *buf, size_t len)
2212 {
2213 	char *e;
2214 	unsigned long n = simple_strtoul(buf, &e, 10);
2215 	if (mddev->pers)
2216 		return -EBUSY;
2217 
2218 	if (!*buf || (*e && *e != '\n'))
2219 		return -EINVAL;
2220 
2221 	mddev->layout = n;
2222 	return len;
2223 }
2224 static struct md_sysfs_entry md_layout =
2225 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2226 
2227 
2228 static ssize_t
2229 raid_disks_show(mddev_t *mddev, char *page)
2230 {
2231 	if (mddev->raid_disks == 0)
2232 		return 0;
2233 	return sprintf(page, "%d\n", mddev->raid_disks);
2234 }
2235 
2236 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2237 
2238 static ssize_t
2239 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2240 {
2241 	char *e;
2242 	int rv = 0;
2243 	unsigned long n = simple_strtoul(buf, &e, 10);
2244 
2245 	if (!*buf || (*e && *e != '\n'))
2246 		return -EINVAL;
2247 
2248 	if (mddev->pers)
2249 		rv = update_raid_disks(mddev, n);
2250 	else
2251 		mddev->raid_disks = n;
2252 	return rv ? rv : len;
2253 }
2254 static struct md_sysfs_entry md_raid_disks =
2255 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2256 
2257 static ssize_t
2258 chunk_size_show(mddev_t *mddev, char *page)
2259 {
2260 	return sprintf(page, "%d\n", mddev->chunk_size);
2261 }
2262 
2263 static ssize_t
2264 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2265 {
2266 	/* can only set chunk_size if array is not yet active */
2267 	char *e;
2268 	unsigned long n = simple_strtoul(buf, &e, 10);
2269 
2270 	if (mddev->pers)
2271 		return -EBUSY;
2272 	if (!*buf || (*e && *e != '\n'))
2273 		return -EINVAL;
2274 
2275 	mddev->chunk_size = n;
2276 	return len;
2277 }
2278 static struct md_sysfs_entry md_chunk_size =
2279 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2280 
2281 static ssize_t
2282 resync_start_show(mddev_t *mddev, char *page)
2283 {
2284 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2285 }
2286 
2287 static ssize_t
2288 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2289 {
2290 	/* can only set chunk_size if array is not yet active */
2291 	char *e;
2292 	unsigned long long n = simple_strtoull(buf, &e, 10);
2293 
2294 	if (mddev->pers)
2295 		return -EBUSY;
2296 	if (!*buf || (*e && *e != '\n'))
2297 		return -EINVAL;
2298 
2299 	mddev->recovery_cp = n;
2300 	return len;
2301 }
2302 static struct md_sysfs_entry md_resync_start =
2303 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2304 
2305 /*
2306  * The array state can be:
2307  *
2308  * clear
2309  *     No devices, no size, no level
2310  *     Equivalent to STOP_ARRAY ioctl
2311  * inactive
2312  *     May have some settings, but array is not active
2313  *        all IO results in error
2314  *     When written, doesn't tear down array, but just stops it
2315  * suspended (not supported yet)
2316  *     All IO requests will block. The array can be reconfigured.
2317  *     Writing this, if accepted, will block until array is quiessent
2318  * readonly
2319  *     no resync can happen.  no superblocks get written.
2320  *     write requests fail
2321  * read-auto
2322  *     like readonly, but behaves like 'clean' on a write request.
2323  *
2324  * clean - no pending writes, but otherwise active.
2325  *     When written to inactive array, starts without resync
2326  *     If a write request arrives then
2327  *       if metadata is known, mark 'dirty' and switch to 'active'.
2328  *       if not known, block and switch to write-pending
2329  *     If written to an active array that has pending writes, then fails.
2330  * active
2331  *     fully active: IO and resync can be happening.
2332  *     When written to inactive array, starts with resync
2333  *
2334  * write-pending
2335  *     clean, but writes are blocked waiting for 'active' to be written.
2336  *
2337  * active-idle
2338  *     like active, but no writes have been seen for a while (100msec).
2339  *
2340  */
2341 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2342 		   write_pending, active_idle, bad_word};
2343 static char *array_states[] = {
2344 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2345 	"write-pending", "active-idle", NULL };
2346 
2347 static int match_word(const char *word, char **list)
2348 {
2349 	int n;
2350 	for (n=0; list[n]; n++)
2351 		if (cmd_match(word, list[n]))
2352 			break;
2353 	return n;
2354 }
2355 
2356 static ssize_t
2357 array_state_show(mddev_t *mddev, char *page)
2358 {
2359 	enum array_state st = inactive;
2360 
2361 	if (mddev->pers)
2362 		switch(mddev->ro) {
2363 		case 1:
2364 			st = readonly;
2365 			break;
2366 		case 2:
2367 			st = read_auto;
2368 			break;
2369 		case 0:
2370 			if (mddev->in_sync)
2371 				st = clean;
2372 			else if (mddev->safemode)
2373 				st = active_idle;
2374 			else
2375 				st = active;
2376 		}
2377 	else {
2378 		if (list_empty(&mddev->disks) &&
2379 		    mddev->raid_disks == 0 &&
2380 		    mddev->size == 0)
2381 			st = clear;
2382 		else
2383 			st = inactive;
2384 	}
2385 	return sprintf(page, "%s\n", array_states[st]);
2386 }
2387 
2388 static int do_md_stop(mddev_t * mddev, int ro);
2389 static int do_md_run(mddev_t * mddev);
2390 static int restart_array(mddev_t *mddev);
2391 
2392 static ssize_t
2393 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2394 {
2395 	int err = -EINVAL;
2396 	enum array_state st = match_word(buf, array_states);
2397 	switch(st) {
2398 	case bad_word:
2399 		break;
2400 	case clear:
2401 		/* stopping an active array */
2402 		if (mddev->pers) {
2403 			if (atomic_read(&mddev->active) > 1)
2404 				return -EBUSY;
2405 			err = do_md_stop(mddev, 0);
2406 		}
2407 		break;
2408 	case inactive:
2409 		/* stopping an active array */
2410 		if (mddev->pers) {
2411 			if (atomic_read(&mddev->active) > 1)
2412 				return -EBUSY;
2413 			err = do_md_stop(mddev, 2);
2414 		}
2415 		break;
2416 	case suspended:
2417 		break; /* not supported yet */
2418 	case readonly:
2419 		if (mddev->pers)
2420 			err = do_md_stop(mddev, 1);
2421 		else {
2422 			mddev->ro = 1;
2423 			err = do_md_run(mddev);
2424 		}
2425 		break;
2426 	case read_auto:
2427 		/* stopping an active array */
2428 		if (mddev->pers) {
2429 			err = do_md_stop(mddev, 1);
2430 			if (err == 0)
2431 				mddev->ro = 2; /* FIXME mark devices writable */
2432 		} else {
2433 			mddev->ro = 2;
2434 			err = do_md_run(mddev);
2435 		}
2436 		break;
2437 	case clean:
2438 		if (mddev->pers) {
2439 			restart_array(mddev);
2440 			spin_lock_irq(&mddev->write_lock);
2441 			if (atomic_read(&mddev->writes_pending) == 0) {
2442 				mddev->in_sync = 1;
2443 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2444 			}
2445 			spin_unlock_irq(&mddev->write_lock);
2446 		} else {
2447 			mddev->ro = 0;
2448 			mddev->recovery_cp = MaxSector;
2449 			err = do_md_run(mddev);
2450 		}
2451 		break;
2452 	case active:
2453 		if (mddev->pers) {
2454 			restart_array(mddev);
2455 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2456 			wake_up(&mddev->sb_wait);
2457 			err = 0;
2458 		} else {
2459 			mddev->ro = 0;
2460 			err = do_md_run(mddev);
2461 		}
2462 		break;
2463 	case write_pending:
2464 	case active_idle:
2465 		/* these cannot be set */
2466 		break;
2467 	}
2468 	if (err)
2469 		return err;
2470 	else
2471 		return len;
2472 }
2473 static struct md_sysfs_entry md_array_state =
2474 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2475 
2476 static ssize_t
2477 null_show(mddev_t *mddev, char *page)
2478 {
2479 	return -EINVAL;
2480 }
2481 
2482 static ssize_t
2483 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2484 {
2485 	/* buf must be %d:%d\n? giving major and minor numbers */
2486 	/* The new device is added to the array.
2487 	 * If the array has a persistent superblock, we read the
2488 	 * superblock to initialise info and check validity.
2489 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2490 	 * which mainly checks size.
2491 	 */
2492 	char *e;
2493 	int major = simple_strtoul(buf, &e, 10);
2494 	int minor;
2495 	dev_t dev;
2496 	mdk_rdev_t *rdev;
2497 	int err;
2498 
2499 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2500 		return -EINVAL;
2501 	minor = simple_strtoul(e+1, &e, 10);
2502 	if (*e && *e != '\n')
2503 		return -EINVAL;
2504 	dev = MKDEV(major, minor);
2505 	if (major != MAJOR(dev) ||
2506 	    minor != MINOR(dev))
2507 		return -EOVERFLOW;
2508 
2509 
2510 	if (mddev->persistent) {
2511 		rdev = md_import_device(dev, mddev->major_version,
2512 					mddev->minor_version);
2513 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2514 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2515 						       mdk_rdev_t, same_set);
2516 			err = super_types[mddev->major_version]
2517 				.load_super(rdev, rdev0, mddev->minor_version);
2518 			if (err < 0)
2519 				goto out;
2520 		}
2521 	} else
2522 		rdev = md_import_device(dev, -1, -1);
2523 
2524 	if (IS_ERR(rdev))
2525 		return PTR_ERR(rdev);
2526 	err = bind_rdev_to_array(rdev, mddev);
2527  out:
2528 	if (err)
2529 		export_rdev(rdev);
2530 	return err ? err : len;
2531 }
2532 
2533 static struct md_sysfs_entry md_new_device =
2534 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2535 
2536 static ssize_t
2537 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2538 {
2539 	char *end;
2540 	unsigned long chunk, end_chunk;
2541 
2542 	if (!mddev->bitmap)
2543 		goto out;
2544 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2545 	while (*buf) {
2546 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2547 		if (buf == end) break;
2548 		if (*end == '-') { /* range */
2549 			buf = end + 1;
2550 			end_chunk = simple_strtoul(buf, &end, 0);
2551 			if (buf == end) break;
2552 		}
2553 		if (*end && !isspace(*end)) break;
2554 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2555 		buf = end;
2556 		while (isspace(*buf)) buf++;
2557 	}
2558 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2559 out:
2560 	return len;
2561 }
2562 
2563 static struct md_sysfs_entry md_bitmap =
2564 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2565 
2566 static ssize_t
2567 size_show(mddev_t *mddev, char *page)
2568 {
2569 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2570 }
2571 
2572 static int update_size(mddev_t *mddev, unsigned long size);
2573 
2574 static ssize_t
2575 size_store(mddev_t *mddev, const char *buf, size_t len)
2576 {
2577 	/* If array is inactive, we can reduce the component size, but
2578 	 * not increase it (except from 0).
2579 	 * If array is active, we can try an on-line resize
2580 	 */
2581 	char *e;
2582 	int err = 0;
2583 	unsigned long long size = simple_strtoull(buf, &e, 10);
2584 	if (!*buf || *buf == '\n' ||
2585 	    (*e && *e != '\n'))
2586 		return -EINVAL;
2587 
2588 	if (mddev->pers) {
2589 		err = update_size(mddev, size);
2590 		md_update_sb(mddev, 1);
2591 	} else {
2592 		if (mddev->size == 0 ||
2593 		    mddev->size > size)
2594 			mddev->size = size;
2595 		else
2596 			err = -ENOSPC;
2597 	}
2598 	return err ? err : len;
2599 }
2600 
2601 static struct md_sysfs_entry md_size =
2602 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2603 
2604 
2605 /* Metdata version.
2606  * This is either 'none' for arrays with externally managed metadata,
2607  * or N.M for internally known formats
2608  */
2609 static ssize_t
2610 metadata_show(mddev_t *mddev, char *page)
2611 {
2612 	if (mddev->persistent)
2613 		return sprintf(page, "%d.%d\n",
2614 			       mddev->major_version, mddev->minor_version);
2615 	else
2616 		return sprintf(page, "none\n");
2617 }
2618 
2619 static ssize_t
2620 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2621 {
2622 	int major, minor;
2623 	char *e;
2624 	if (!list_empty(&mddev->disks))
2625 		return -EBUSY;
2626 
2627 	if (cmd_match(buf, "none")) {
2628 		mddev->persistent = 0;
2629 		mddev->major_version = 0;
2630 		mddev->minor_version = 90;
2631 		return len;
2632 	}
2633 	major = simple_strtoul(buf, &e, 10);
2634 	if (e==buf || *e != '.')
2635 		return -EINVAL;
2636 	buf = e+1;
2637 	minor = simple_strtoul(buf, &e, 10);
2638 	if (e==buf || (*e && *e != '\n') )
2639 		return -EINVAL;
2640 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2641 	    super_types[major].name == NULL)
2642 		return -ENOENT;
2643 	mddev->major_version = major;
2644 	mddev->minor_version = minor;
2645 	mddev->persistent = 1;
2646 	return len;
2647 }
2648 
2649 static struct md_sysfs_entry md_metadata =
2650 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2651 
2652 static ssize_t
2653 action_show(mddev_t *mddev, char *page)
2654 {
2655 	char *type = "idle";
2656 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2657 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2658 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2659 			type = "reshape";
2660 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2661 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2662 				type = "resync";
2663 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2664 				type = "check";
2665 			else
2666 				type = "repair";
2667 		} else
2668 			type = "recover";
2669 	}
2670 	return sprintf(page, "%s\n", type);
2671 }
2672 
2673 static ssize_t
2674 action_store(mddev_t *mddev, const char *page, size_t len)
2675 {
2676 	if (!mddev->pers || !mddev->pers->sync_request)
2677 		return -EINVAL;
2678 
2679 	if (cmd_match(page, "idle")) {
2680 		if (mddev->sync_thread) {
2681 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2682 			md_unregister_thread(mddev->sync_thread);
2683 			mddev->sync_thread = NULL;
2684 			mddev->recovery = 0;
2685 		}
2686 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2687 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2688 		return -EBUSY;
2689 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2690 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2691 	else if (cmd_match(page, "reshape")) {
2692 		int err;
2693 		if (mddev->pers->start_reshape == NULL)
2694 			return -EINVAL;
2695 		err = mddev->pers->start_reshape(mddev);
2696 		if (err)
2697 			return err;
2698 	} else {
2699 		if (cmd_match(page, "check"))
2700 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2701 		else if (!cmd_match(page, "repair"))
2702 			return -EINVAL;
2703 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2704 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2705 	}
2706 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2707 	md_wakeup_thread(mddev->thread);
2708 	return len;
2709 }
2710 
2711 static ssize_t
2712 mismatch_cnt_show(mddev_t *mddev, char *page)
2713 {
2714 	return sprintf(page, "%llu\n",
2715 		       (unsigned long long) mddev->resync_mismatches);
2716 }
2717 
2718 static struct md_sysfs_entry md_scan_mode =
2719 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2720 
2721 
2722 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2723 
2724 static ssize_t
2725 sync_min_show(mddev_t *mddev, char *page)
2726 {
2727 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2728 		       mddev->sync_speed_min ? "local": "system");
2729 }
2730 
2731 static ssize_t
2732 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2733 {
2734 	int min;
2735 	char *e;
2736 	if (strncmp(buf, "system", 6)==0) {
2737 		mddev->sync_speed_min = 0;
2738 		return len;
2739 	}
2740 	min = simple_strtoul(buf, &e, 10);
2741 	if (buf == e || (*e && *e != '\n') || min <= 0)
2742 		return -EINVAL;
2743 	mddev->sync_speed_min = min;
2744 	return len;
2745 }
2746 
2747 static struct md_sysfs_entry md_sync_min =
2748 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2749 
2750 static ssize_t
2751 sync_max_show(mddev_t *mddev, char *page)
2752 {
2753 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2754 		       mddev->sync_speed_max ? "local": "system");
2755 }
2756 
2757 static ssize_t
2758 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2759 {
2760 	int max;
2761 	char *e;
2762 	if (strncmp(buf, "system", 6)==0) {
2763 		mddev->sync_speed_max = 0;
2764 		return len;
2765 	}
2766 	max = simple_strtoul(buf, &e, 10);
2767 	if (buf == e || (*e && *e != '\n') || max <= 0)
2768 		return -EINVAL;
2769 	mddev->sync_speed_max = max;
2770 	return len;
2771 }
2772 
2773 static struct md_sysfs_entry md_sync_max =
2774 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2775 
2776 
2777 static ssize_t
2778 sync_speed_show(mddev_t *mddev, char *page)
2779 {
2780 	unsigned long resync, dt, db;
2781 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2782 	dt = ((jiffies - mddev->resync_mark) / HZ);
2783 	if (!dt) dt++;
2784 	db = resync - (mddev->resync_mark_cnt);
2785 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2786 }
2787 
2788 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2789 
2790 static ssize_t
2791 sync_completed_show(mddev_t *mddev, char *page)
2792 {
2793 	unsigned long max_blocks, resync;
2794 
2795 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2796 		max_blocks = mddev->resync_max_sectors;
2797 	else
2798 		max_blocks = mddev->size << 1;
2799 
2800 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2801 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2802 }
2803 
2804 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2805 
2806 static ssize_t
2807 suspend_lo_show(mddev_t *mddev, char *page)
2808 {
2809 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2810 }
2811 
2812 static ssize_t
2813 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2814 {
2815 	char *e;
2816 	unsigned long long new = simple_strtoull(buf, &e, 10);
2817 
2818 	if (mddev->pers->quiesce == NULL)
2819 		return -EINVAL;
2820 	if (buf == e || (*e && *e != '\n'))
2821 		return -EINVAL;
2822 	if (new >= mddev->suspend_hi ||
2823 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2824 		mddev->suspend_lo = new;
2825 		mddev->pers->quiesce(mddev, 2);
2826 		return len;
2827 	} else
2828 		return -EINVAL;
2829 }
2830 static struct md_sysfs_entry md_suspend_lo =
2831 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2832 
2833 
2834 static ssize_t
2835 suspend_hi_show(mddev_t *mddev, char *page)
2836 {
2837 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2838 }
2839 
2840 static ssize_t
2841 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2842 {
2843 	char *e;
2844 	unsigned long long new = simple_strtoull(buf, &e, 10);
2845 
2846 	if (mddev->pers->quiesce == NULL)
2847 		return -EINVAL;
2848 	if (buf == e || (*e && *e != '\n'))
2849 		return -EINVAL;
2850 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2851 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2852 		mddev->suspend_hi = new;
2853 		mddev->pers->quiesce(mddev, 1);
2854 		mddev->pers->quiesce(mddev, 0);
2855 		return len;
2856 	} else
2857 		return -EINVAL;
2858 }
2859 static struct md_sysfs_entry md_suspend_hi =
2860 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2861 
2862 
2863 static struct attribute *md_default_attrs[] = {
2864 	&md_level.attr,
2865 	&md_layout.attr,
2866 	&md_raid_disks.attr,
2867 	&md_chunk_size.attr,
2868 	&md_size.attr,
2869 	&md_resync_start.attr,
2870 	&md_metadata.attr,
2871 	&md_new_device.attr,
2872 	&md_safe_delay.attr,
2873 	&md_array_state.attr,
2874 	NULL,
2875 };
2876 
2877 static struct attribute *md_redundancy_attrs[] = {
2878 	&md_scan_mode.attr,
2879 	&md_mismatches.attr,
2880 	&md_sync_min.attr,
2881 	&md_sync_max.attr,
2882 	&md_sync_speed.attr,
2883 	&md_sync_completed.attr,
2884 	&md_suspend_lo.attr,
2885 	&md_suspend_hi.attr,
2886 	&md_bitmap.attr,
2887 	NULL,
2888 };
2889 static struct attribute_group md_redundancy_group = {
2890 	.name = NULL,
2891 	.attrs = md_redundancy_attrs,
2892 };
2893 
2894 
2895 static ssize_t
2896 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2897 {
2898 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2899 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2900 	ssize_t rv;
2901 
2902 	if (!entry->show)
2903 		return -EIO;
2904 	rv = mddev_lock(mddev);
2905 	if (!rv) {
2906 		rv = entry->show(mddev, page);
2907 		mddev_unlock(mddev);
2908 	}
2909 	return rv;
2910 }
2911 
2912 static ssize_t
2913 md_attr_store(struct kobject *kobj, struct attribute *attr,
2914 	      const char *page, size_t length)
2915 {
2916 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2917 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2918 	ssize_t rv;
2919 
2920 	if (!entry->store)
2921 		return -EIO;
2922 	if (!capable(CAP_SYS_ADMIN))
2923 		return -EACCES;
2924 	rv = mddev_lock(mddev);
2925 	if (!rv) {
2926 		rv = entry->store(mddev, page, length);
2927 		mddev_unlock(mddev);
2928 	}
2929 	return rv;
2930 }
2931 
2932 static void md_free(struct kobject *ko)
2933 {
2934 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2935 	kfree(mddev);
2936 }
2937 
2938 static struct sysfs_ops md_sysfs_ops = {
2939 	.show	= md_attr_show,
2940 	.store	= md_attr_store,
2941 };
2942 static struct kobj_type md_ktype = {
2943 	.release	= md_free,
2944 	.sysfs_ops	= &md_sysfs_ops,
2945 	.default_attrs	= md_default_attrs,
2946 };
2947 
2948 int mdp_major = 0;
2949 
2950 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2951 {
2952 	static DEFINE_MUTEX(disks_mutex);
2953 	mddev_t *mddev = mddev_find(dev);
2954 	struct gendisk *disk;
2955 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2956 	int shift = partitioned ? MdpMinorShift : 0;
2957 	int unit = MINOR(dev) >> shift;
2958 
2959 	if (!mddev)
2960 		return NULL;
2961 
2962 	mutex_lock(&disks_mutex);
2963 	if (mddev->gendisk) {
2964 		mutex_unlock(&disks_mutex);
2965 		mddev_put(mddev);
2966 		return NULL;
2967 	}
2968 	disk = alloc_disk(1 << shift);
2969 	if (!disk) {
2970 		mutex_unlock(&disks_mutex);
2971 		mddev_put(mddev);
2972 		return NULL;
2973 	}
2974 	disk->major = MAJOR(dev);
2975 	disk->first_minor = unit << shift;
2976 	if (partitioned)
2977 		sprintf(disk->disk_name, "md_d%d", unit);
2978 	else
2979 		sprintf(disk->disk_name, "md%d", unit);
2980 	disk->fops = &md_fops;
2981 	disk->private_data = mddev;
2982 	disk->queue = mddev->queue;
2983 	add_disk(disk);
2984 	mddev->gendisk = disk;
2985 	mutex_unlock(&disks_mutex);
2986 	mddev->kobj.parent = &disk->kobj;
2987 	mddev->kobj.k_name = NULL;
2988 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2989 	mddev->kobj.ktype = &md_ktype;
2990 	if (kobject_register(&mddev->kobj))
2991 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
2992 		       disk->disk_name);
2993 	return NULL;
2994 }
2995 
2996 static void md_safemode_timeout(unsigned long data)
2997 {
2998 	mddev_t *mddev = (mddev_t *) data;
2999 
3000 	mddev->safemode = 1;
3001 	md_wakeup_thread(mddev->thread);
3002 }
3003 
3004 static int start_dirty_degraded;
3005 
3006 static int do_md_run(mddev_t * mddev)
3007 {
3008 	int err;
3009 	int chunk_size;
3010 	struct list_head *tmp;
3011 	mdk_rdev_t *rdev;
3012 	struct gendisk *disk;
3013 	struct mdk_personality *pers;
3014 	char b[BDEVNAME_SIZE];
3015 
3016 	if (list_empty(&mddev->disks))
3017 		/* cannot run an array with no devices.. */
3018 		return -EINVAL;
3019 
3020 	if (mddev->pers)
3021 		return -EBUSY;
3022 
3023 	/*
3024 	 * Analyze all RAID superblock(s)
3025 	 */
3026 	if (!mddev->raid_disks)
3027 		analyze_sbs(mddev);
3028 
3029 	chunk_size = mddev->chunk_size;
3030 
3031 	if (chunk_size) {
3032 		if (chunk_size > MAX_CHUNK_SIZE) {
3033 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3034 				chunk_size, MAX_CHUNK_SIZE);
3035 			return -EINVAL;
3036 		}
3037 		/*
3038 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3039 		 */
3040 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3041 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3042 			return -EINVAL;
3043 		}
3044 		if (chunk_size < PAGE_SIZE) {
3045 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3046 				chunk_size, PAGE_SIZE);
3047 			return -EINVAL;
3048 		}
3049 
3050 		/* devices must have minimum size of one chunk */
3051 		ITERATE_RDEV(mddev,rdev,tmp) {
3052 			if (test_bit(Faulty, &rdev->flags))
3053 				continue;
3054 			if (rdev->size < chunk_size / 1024) {
3055 				printk(KERN_WARNING
3056 					"md: Dev %s smaller than chunk_size:"
3057 					" %lluk < %dk\n",
3058 					bdevname(rdev->bdev,b),
3059 					(unsigned long long)rdev->size,
3060 					chunk_size / 1024);
3061 				return -EINVAL;
3062 			}
3063 		}
3064 	}
3065 
3066 #ifdef CONFIG_KMOD
3067 	if (mddev->level != LEVEL_NONE)
3068 		request_module("md-level-%d", mddev->level);
3069 	else if (mddev->clevel[0])
3070 		request_module("md-%s", mddev->clevel);
3071 #endif
3072 
3073 	/*
3074 	 * Drop all container device buffers, from now on
3075 	 * the only valid external interface is through the md
3076 	 * device.
3077 	 * Also find largest hardsector size
3078 	 */
3079 	ITERATE_RDEV(mddev,rdev,tmp) {
3080 		if (test_bit(Faulty, &rdev->flags))
3081 			continue;
3082 		sync_blockdev(rdev->bdev);
3083 		invalidate_bdev(rdev->bdev);
3084 	}
3085 
3086 	md_probe(mddev->unit, NULL, NULL);
3087 	disk = mddev->gendisk;
3088 	if (!disk)
3089 		return -ENOMEM;
3090 
3091 	spin_lock(&pers_lock);
3092 	pers = find_pers(mddev->level, mddev->clevel);
3093 	if (!pers || !try_module_get(pers->owner)) {
3094 		spin_unlock(&pers_lock);
3095 		if (mddev->level != LEVEL_NONE)
3096 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3097 			       mddev->level);
3098 		else
3099 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3100 			       mddev->clevel);
3101 		return -EINVAL;
3102 	}
3103 	mddev->pers = pers;
3104 	spin_unlock(&pers_lock);
3105 	mddev->level = pers->level;
3106 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3107 
3108 	if (mddev->reshape_position != MaxSector &&
3109 	    pers->start_reshape == NULL) {
3110 		/* This personality cannot handle reshaping... */
3111 		mddev->pers = NULL;
3112 		module_put(pers->owner);
3113 		return -EINVAL;
3114 	}
3115 
3116 	if (pers->sync_request) {
3117 		/* Warn if this is a potentially silly
3118 		 * configuration.
3119 		 */
3120 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3121 		mdk_rdev_t *rdev2;
3122 		struct list_head *tmp2;
3123 		int warned = 0;
3124 		ITERATE_RDEV(mddev, rdev, tmp) {
3125 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3126 				if (rdev < rdev2 &&
3127 				    rdev->bdev->bd_contains ==
3128 				    rdev2->bdev->bd_contains) {
3129 					printk(KERN_WARNING
3130 					       "%s: WARNING: %s appears to be"
3131 					       " on the same physical disk as"
3132 					       " %s.\n",
3133 					       mdname(mddev),
3134 					       bdevname(rdev->bdev,b),
3135 					       bdevname(rdev2->bdev,b2));
3136 					warned = 1;
3137 				}
3138 			}
3139 		}
3140 		if (warned)
3141 			printk(KERN_WARNING
3142 			       "True protection against single-disk"
3143 			       " failure might be compromised.\n");
3144 	}
3145 
3146 	mddev->recovery = 0;
3147 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3148 	mddev->barriers_work = 1;
3149 	mddev->ok_start_degraded = start_dirty_degraded;
3150 
3151 	if (start_readonly)
3152 		mddev->ro = 2; /* read-only, but switch on first write */
3153 
3154 	err = mddev->pers->run(mddev);
3155 	if (!err && mddev->pers->sync_request) {
3156 		err = bitmap_create(mddev);
3157 		if (err) {
3158 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3159 			       mdname(mddev), err);
3160 			mddev->pers->stop(mddev);
3161 		}
3162 	}
3163 	if (err) {
3164 		printk(KERN_ERR "md: pers->run() failed ...\n");
3165 		module_put(mddev->pers->owner);
3166 		mddev->pers = NULL;
3167 		bitmap_destroy(mddev);
3168 		return err;
3169 	}
3170 	if (mddev->pers->sync_request) {
3171 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3172 			printk(KERN_WARNING
3173 			       "md: cannot register extra attributes for %s\n",
3174 			       mdname(mddev));
3175 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3176 		mddev->ro = 0;
3177 
3178  	atomic_set(&mddev->writes_pending,0);
3179 	mddev->safemode = 0;
3180 	mddev->safemode_timer.function = md_safemode_timeout;
3181 	mddev->safemode_timer.data = (unsigned long) mddev;
3182 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3183 	mddev->in_sync = 1;
3184 
3185 	ITERATE_RDEV(mddev,rdev,tmp)
3186 		if (rdev->raid_disk >= 0) {
3187 			char nm[20];
3188 			sprintf(nm, "rd%d", rdev->raid_disk);
3189 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3190 				printk("md: cannot register %s for %s\n",
3191 				       nm, mdname(mddev));
3192 		}
3193 
3194 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3195 
3196 	if (mddev->flags)
3197 		md_update_sb(mddev, 0);
3198 
3199 	set_capacity(disk, mddev->array_size<<1);
3200 
3201 	/* If we call blk_queue_make_request here, it will
3202 	 * re-initialise max_sectors etc which may have been
3203 	 * refined inside -> run.  So just set the bits we need to set.
3204 	 * Most initialisation happended when we called
3205 	 * blk_queue_make_request(..., md_fail_request)
3206 	 * earlier.
3207 	 */
3208 	mddev->queue->queuedata = mddev;
3209 	mddev->queue->make_request_fn = mddev->pers->make_request;
3210 
3211 	/* If there is a partially-recovered drive we need to
3212 	 * start recovery here.  If we leave it to md_check_recovery,
3213 	 * it will remove the drives and not do the right thing
3214 	 */
3215 	if (mddev->degraded && !mddev->sync_thread) {
3216 		struct list_head *rtmp;
3217 		int spares = 0;
3218 		ITERATE_RDEV(mddev,rdev,rtmp)
3219 			if (rdev->raid_disk >= 0 &&
3220 			    !test_bit(In_sync, &rdev->flags) &&
3221 			    !test_bit(Faulty, &rdev->flags))
3222 				/* complete an interrupted recovery */
3223 				spares++;
3224 		if (spares && mddev->pers->sync_request) {
3225 			mddev->recovery = 0;
3226 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3227 			mddev->sync_thread = md_register_thread(md_do_sync,
3228 								mddev,
3229 								"%s_resync");
3230 			if (!mddev->sync_thread) {
3231 				printk(KERN_ERR "%s: could not start resync"
3232 				       " thread...\n",
3233 				       mdname(mddev));
3234 				/* leave the spares where they are, it shouldn't hurt */
3235 				mddev->recovery = 0;
3236 			}
3237 		}
3238 	}
3239 	md_wakeup_thread(mddev->thread);
3240 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3241 
3242 	mddev->changed = 1;
3243 	md_new_event(mddev);
3244 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3245 	return 0;
3246 }
3247 
3248 static int restart_array(mddev_t *mddev)
3249 {
3250 	struct gendisk *disk = mddev->gendisk;
3251 	int err;
3252 
3253 	/*
3254 	 * Complain if it has no devices
3255 	 */
3256 	err = -ENXIO;
3257 	if (list_empty(&mddev->disks))
3258 		goto out;
3259 
3260 	if (mddev->pers) {
3261 		err = -EBUSY;
3262 		if (!mddev->ro)
3263 			goto out;
3264 
3265 		mddev->safemode = 0;
3266 		mddev->ro = 0;
3267 		set_disk_ro(disk, 0);
3268 
3269 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3270 			mdname(mddev));
3271 		/*
3272 		 * Kick recovery or resync if necessary
3273 		 */
3274 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3275 		md_wakeup_thread(mddev->thread);
3276 		md_wakeup_thread(mddev->sync_thread);
3277 		err = 0;
3278 	} else
3279 		err = -EINVAL;
3280 
3281 out:
3282 	return err;
3283 }
3284 
3285 /* similar to deny_write_access, but accounts for our holding a reference
3286  * to the file ourselves */
3287 static int deny_bitmap_write_access(struct file * file)
3288 {
3289 	struct inode *inode = file->f_mapping->host;
3290 
3291 	spin_lock(&inode->i_lock);
3292 	if (atomic_read(&inode->i_writecount) > 1) {
3293 		spin_unlock(&inode->i_lock);
3294 		return -ETXTBSY;
3295 	}
3296 	atomic_set(&inode->i_writecount, -1);
3297 	spin_unlock(&inode->i_lock);
3298 
3299 	return 0;
3300 }
3301 
3302 static void restore_bitmap_write_access(struct file *file)
3303 {
3304 	struct inode *inode = file->f_mapping->host;
3305 
3306 	spin_lock(&inode->i_lock);
3307 	atomic_set(&inode->i_writecount, 1);
3308 	spin_unlock(&inode->i_lock);
3309 }
3310 
3311 /* mode:
3312  *   0 - completely stop and dis-assemble array
3313  *   1 - switch to readonly
3314  *   2 - stop but do not disassemble array
3315  */
3316 static int do_md_stop(mddev_t * mddev, int mode)
3317 {
3318 	int err = 0;
3319 	struct gendisk *disk = mddev->gendisk;
3320 
3321 	if (mddev->pers) {
3322 		if (atomic_read(&mddev->active)>2) {
3323 			printk("md: %s still in use.\n",mdname(mddev));
3324 			return -EBUSY;
3325 		}
3326 
3327 		if (mddev->sync_thread) {
3328 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3329 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3330 			md_unregister_thread(mddev->sync_thread);
3331 			mddev->sync_thread = NULL;
3332 		}
3333 
3334 		del_timer_sync(&mddev->safemode_timer);
3335 
3336 		invalidate_partition(disk, 0);
3337 
3338 		switch(mode) {
3339 		case 1: /* readonly */
3340 			err  = -ENXIO;
3341 			if (mddev->ro==1)
3342 				goto out;
3343 			mddev->ro = 1;
3344 			break;
3345 		case 0: /* disassemble */
3346 		case 2: /* stop */
3347 			bitmap_flush(mddev);
3348 			md_super_wait(mddev);
3349 			if (mddev->ro)
3350 				set_disk_ro(disk, 0);
3351 			blk_queue_make_request(mddev->queue, md_fail_request);
3352 			mddev->pers->stop(mddev);
3353 			mddev->queue->merge_bvec_fn = NULL;
3354 			mddev->queue->unplug_fn = NULL;
3355 			mddev->queue->issue_flush_fn = NULL;
3356 			mddev->queue->backing_dev_info.congested_fn = NULL;
3357 			if (mddev->pers->sync_request)
3358 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3359 
3360 			module_put(mddev->pers->owner);
3361 			mddev->pers = NULL;
3362 
3363 			set_capacity(disk, 0);
3364 			mddev->changed = 1;
3365 
3366 			if (mddev->ro)
3367 				mddev->ro = 0;
3368 		}
3369 		if (!mddev->in_sync || mddev->flags) {
3370 			/* mark array as shutdown cleanly */
3371 			mddev->in_sync = 1;
3372 			md_update_sb(mddev, 1);
3373 		}
3374 		if (mode == 1)
3375 			set_disk_ro(disk, 1);
3376 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3377 	}
3378 
3379 	/*
3380 	 * Free resources if final stop
3381 	 */
3382 	if (mode == 0) {
3383 		mdk_rdev_t *rdev;
3384 		struct list_head *tmp;
3385 
3386 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3387 
3388 		bitmap_destroy(mddev);
3389 		if (mddev->bitmap_file) {
3390 			restore_bitmap_write_access(mddev->bitmap_file);
3391 			fput(mddev->bitmap_file);
3392 			mddev->bitmap_file = NULL;
3393 		}
3394 		mddev->bitmap_offset = 0;
3395 
3396 		ITERATE_RDEV(mddev,rdev,tmp)
3397 			if (rdev->raid_disk >= 0) {
3398 				char nm[20];
3399 				sprintf(nm, "rd%d", rdev->raid_disk);
3400 				sysfs_remove_link(&mddev->kobj, nm);
3401 			}
3402 
3403 		/* make sure all delayed_delete calls have finished */
3404 		flush_scheduled_work();
3405 
3406 		export_array(mddev);
3407 
3408 		mddev->array_size = 0;
3409 		mddev->size = 0;
3410 		mddev->raid_disks = 0;
3411 		mddev->recovery_cp = 0;
3412 
3413 	} else if (mddev->pers)
3414 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3415 			mdname(mddev));
3416 	err = 0;
3417 	md_new_event(mddev);
3418 out:
3419 	return err;
3420 }
3421 
3422 #ifndef MODULE
3423 static void autorun_array(mddev_t *mddev)
3424 {
3425 	mdk_rdev_t *rdev;
3426 	struct list_head *tmp;
3427 	int err;
3428 
3429 	if (list_empty(&mddev->disks))
3430 		return;
3431 
3432 	printk(KERN_INFO "md: running: ");
3433 
3434 	ITERATE_RDEV(mddev,rdev,tmp) {
3435 		char b[BDEVNAME_SIZE];
3436 		printk("<%s>", bdevname(rdev->bdev,b));
3437 	}
3438 	printk("\n");
3439 
3440 	err = do_md_run (mddev);
3441 	if (err) {
3442 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3443 		do_md_stop (mddev, 0);
3444 	}
3445 }
3446 
3447 /*
3448  * lets try to run arrays based on all disks that have arrived
3449  * until now. (those are in pending_raid_disks)
3450  *
3451  * the method: pick the first pending disk, collect all disks with
3452  * the same UUID, remove all from the pending list and put them into
3453  * the 'same_array' list. Then order this list based on superblock
3454  * update time (freshest comes first), kick out 'old' disks and
3455  * compare superblocks. If everything's fine then run it.
3456  *
3457  * If "unit" is allocated, then bump its reference count
3458  */
3459 static void autorun_devices(int part)
3460 {
3461 	struct list_head *tmp;
3462 	mdk_rdev_t *rdev0, *rdev;
3463 	mddev_t *mddev;
3464 	char b[BDEVNAME_SIZE];
3465 
3466 	printk(KERN_INFO "md: autorun ...\n");
3467 	while (!list_empty(&pending_raid_disks)) {
3468 		int unit;
3469 		dev_t dev;
3470 		LIST_HEAD(candidates);
3471 		rdev0 = list_entry(pending_raid_disks.next,
3472 					 mdk_rdev_t, same_set);
3473 
3474 		printk(KERN_INFO "md: considering %s ...\n",
3475 			bdevname(rdev0->bdev,b));
3476 		INIT_LIST_HEAD(&candidates);
3477 		ITERATE_RDEV_PENDING(rdev,tmp)
3478 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3479 				printk(KERN_INFO "md:  adding %s ...\n",
3480 					bdevname(rdev->bdev,b));
3481 				list_move(&rdev->same_set, &candidates);
3482 			}
3483 		/*
3484 		 * now we have a set of devices, with all of them having
3485 		 * mostly sane superblocks. It's time to allocate the
3486 		 * mddev.
3487 		 */
3488 		if (part) {
3489 			dev = MKDEV(mdp_major,
3490 				    rdev0->preferred_minor << MdpMinorShift);
3491 			unit = MINOR(dev) >> MdpMinorShift;
3492 		} else {
3493 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3494 			unit = MINOR(dev);
3495 		}
3496 		if (rdev0->preferred_minor != unit) {
3497 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3498 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3499 			break;
3500 		}
3501 
3502 		md_probe(dev, NULL, NULL);
3503 		mddev = mddev_find(dev);
3504 		if (!mddev) {
3505 			printk(KERN_ERR
3506 				"md: cannot allocate memory for md drive.\n");
3507 			break;
3508 		}
3509 		if (mddev_lock(mddev))
3510 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3511 			       mdname(mddev));
3512 		else if (mddev->raid_disks || mddev->major_version
3513 			 || !list_empty(&mddev->disks)) {
3514 			printk(KERN_WARNING
3515 				"md: %s already running, cannot run %s\n",
3516 				mdname(mddev), bdevname(rdev0->bdev,b));
3517 			mddev_unlock(mddev);
3518 		} else {
3519 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3520 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3521 				list_del_init(&rdev->same_set);
3522 				if (bind_rdev_to_array(rdev, mddev))
3523 					export_rdev(rdev);
3524 			}
3525 			autorun_array(mddev);
3526 			mddev_unlock(mddev);
3527 		}
3528 		/* on success, candidates will be empty, on error
3529 		 * it won't...
3530 		 */
3531 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3532 			export_rdev(rdev);
3533 		mddev_put(mddev);
3534 	}
3535 	printk(KERN_INFO "md: ... autorun DONE.\n");
3536 }
3537 #endif /* !MODULE */
3538 
3539 static int get_version(void __user * arg)
3540 {
3541 	mdu_version_t ver;
3542 
3543 	ver.major = MD_MAJOR_VERSION;
3544 	ver.minor = MD_MINOR_VERSION;
3545 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3546 
3547 	if (copy_to_user(arg, &ver, sizeof(ver)))
3548 		return -EFAULT;
3549 
3550 	return 0;
3551 }
3552 
3553 static int get_array_info(mddev_t * mddev, void __user * arg)
3554 {
3555 	mdu_array_info_t info;
3556 	int nr,working,active,failed,spare;
3557 	mdk_rdev_t *rdev;
3558 	struct list_head *tmp;
3559 
3560 	nr=working=active=failed=spare=0;
3561 	ITERATE_RDEV(mddev,rdev,tmp) {
3562 		nr++;
3563 		if (test_bit(Faulty, &rdev->flags))
3564 			failed++;
3565 		else {
3566 			working++;
3567 			if (test_bit(In_sync, &rdev->flags))
3568 				active++;
3569 			else
3570 				spare++;
3571 		}
3572 	}
3573 
3574 	info.major_version = mddev->major_version;
3575 	info.minor_version = mddev->minor_version;
3576 	info.patch_version = MD_PATCHLEVEL_VERSION;
3577 	info.ctime         = mddev->ctime;
3578 	info.level         = mddev->level;
3579 	info.size          = mddev->size;
3580 	if (info.size != mddev->size) /* overflow */
3581 		info.size = -1;
3582 	info.nr_disks      = nr;
3583 	info.raid_disks    = mddev->raid_disks;
3584 	info.md_minor      = mddev->md_minor;
3585 	info.not_persistent= !mddev->persistent;
3586 
3587 	info.utime         = mddev->utime;
3588 	info.state         = 0;
3589 	if (mddev->in_sync)
3590 		info.state = (1<<MD_SB_CLEAN);
3591 	if (mddev->bitmap && mddev->bitmap_offset)
3592 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3593 	info.active_disks  = active;
3594 	info.working_disks = working;
3595 	info.failed_disks  = failed;
3596 	info.spare_disks   = spare;
3597 
3598 	info.layout        = mddev->layout;
3599 	info.chunk_size    = mddev->chunk_size;
3600 
3601 	if (copy_to_user(arg, &info, sizeof(info)))
3602 		return -EFAULT;
3603 
3604 	return 0;
3605 }
3606 
3607 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3608 {
3609 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3610 	char *ptr, *buf = NULL;
3611 	int err = -ENOMEM;
3612 
3613 	md_allow_write(mddev);
3614 
3615 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3616 	if (!file)
3617 		goto out;
3618 
3619 	/* bitmap disabled, zero the first byte and copy out */
3620 	if (!mddev->bitmap || !mddev->bitmap->file) {
3621 		file->pathname[0] = '\0';
3622 		goto copy_out;
3623 	}
3624 
3625 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3626 	if (!buf)
3627 		goto out;
3628 
3629 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3630 	if (!ptr)
3631 		goto out;
3632 
3633 	strcpy(file->pathname, ptr);
3634 
3635 copy_out:
3636 	err = 0;
3637 	if (copy_to_user(arg, file, sizeof(*file)))
3638 		err = -EFAULT;
3639 out:
3640 	kfree(buf);
3641 	kfree(file);
3642 	return err;
3643 }
3644 
3645 static int get_disk_info(mddev_t * mddev, void __user * arg)
3646 {
3647 	mdu_disk_info_t info;
3648 	unsigned int nr;
3649 	mdk_rdev_t *rdev;
3650 
3651 	if (copy_from_user(&info, arg, sizeof(info)))
3652 		return -EFAULT;
3653 
3654 	nr = info.number;
3655 
3656 	rdev = find_rdev_nr(mddev, nr);
3657 	if (rdev) {
3658 		info.major = MAJOR(rdev->bdev->bd_dev);
3659 		info.minor = MINOR(rdev->bdev->bd_dev);
3660 		info.raid_disk = rdev->raid_disk;
3661 		info.state = 0;
3662 		if (test_bit(Faulty, &rdev->flags))
3663 			info.state |= (1<<MD_DISK_FAULTY);
3664 		else if (test_bit(In_sync, &rdev->flags)) {
3665 			info.state |= (1<<MD_DISK_ACTIVE);
3666 			info.state |= (1<<MD_DISK_SYNC);
3667 		}
3668 		if (test_bit(WriteMostly, &rdev->flags))
3669 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3670 	} else {
3671 		info.major = info.minor = 0;
3672 		info.raid_disk = -1;
3673 		info.state = (1<<MD_DISK_REMOVED);
3674 	}
3675 
3676 	if (copy_to_user(arg, &info, sizeof(info)))
3677 		return -EFAULT;
3678 
3679 	return 0;
3680 }
3681 
3682 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3683 {
3684 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3685 	mdk_rdev_t *rdev;
3686 	dev_t dev = MKDEV(info->major,info->minor);
3687 
3688 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3689 		return -EOVERFLOW;
3690 
3691 	if (!mddev->raid_disks) {
3692 		int err;
3693 		/* expecting a device which has a superblock */
3694 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3695 		if (IS_ERR(rdev)) {
3696 			printk(KERN_WARNING
3697 				"md: md_import_device returned %ld\n",
3698 				PTR_ERR(rdev));
3699 			return PTR_ERR(rdev);
3700 		}
3701 		if (!list_empty(&mddev->disks)) {
3702 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3703 							mdk_rdev_t, same_set);
3704 			int err = super_types[mddev->major_version]
3705 				.load_super(rdev, rdev0, mddev->minor_version);
3706 			if (err < 0) {
3707 				printk(KERN_WARNING
3708 					"md: %s has different UUID to %s\n",
3709 					bdevname(rdev->bdev,b),
3710 					bdevname(rdev0->bdev,b2));
3711 				export_rdev(rdev);
3712 				return -EINVAL;
3713 			}
3714 		}
3715 		err = bind_rdev_to_array(rdev, mddev);
3716 		if (err)
3717 			export_rdev(rdev);
3718 		return err;
3719 	}
3720 
3721 	/*
3722 	 * add_new_disk can be used once the array is assembled
3723 	 * to add "hot spares".  They must already have a superblock
3724 	 * written
3725 	 */
3726 	if (mddev->pers) {
3727 		int err;
3728 		if (!mddev->pers->hot_add_disk) {
3729 			printk(KERN_WARNING
3730 				"%s: personality does not support diskops!\n",
3731 			       mdname(mddev));
3732 			return -EINVAL;
3733 		}
3734 		if (mddev->persistent)
3735 			rdev = md_import_device(dev, mddev->major_version,
3736 						mddev->minor_version);
3737 		else
3738 			rdev = md_import_device(dev, -1, -1);
3739 		if (IS_ERR(rdev)) {
3740 			printk(KERN_WARNING
3741 				"md: md_import_device returned %ld\n",
3742 				PTR_ERR(rdev));
3743 			return PTR_ERR(rdev);
3744 		}
3745 		/* set save_raid_disk if appropriate */
3746 		if (!mddev->persistent) {
3747 			if (info->state & (1<<MD_DISK_SYNC)  &&
3748 			    info->raid_disk < mddev->raid_disks)
3749 				rdev->raid_disk = info->raid_disk;
3750 			else
3751 				rdev->raid_disk = -1;
3752 		} else
3753 			super_types[mddev->major_version].
3754 				validate_super(mddev, rdev);
3755 		rdev->saved_raid_disk = rdev->raid_disk;
3756 
3757 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3758 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3759 			set_bit(WriteMostly, &rdev->flags);
3760 
3761 		rdev->raid_disk = -1;
3762 		err = bind_rdev_to_array(rdev, mddev);
3763 		if (!err && !mddev->pers->hot_remove_disk) {
3764 			/* If there is hot_add_disk but no hot_remove_disk
3765 			 * then added disks for geometry changes,
3766 			 * and should be added immediately.
3767 			 */
3768 			super_types[mddev->major_version].
3769 				validate_super(mddev, rdev);
3770 			err = mddev->pers->hot_add_disk(mddev, rdev);
3771 			if (err)
3772 				unbind_rdev_from_array(rdev);
3773 		}
3774 		if (err)
3775 			export_rdev(rdev);
3776 
3777 		md_update_sb(mddev, 1);
3778 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3779 		md_wakeup_thread(mddev->thread);
3780 		return err;
3781 	}
3782 
3783 	/* otherwise, add_new_disk is only allowed
3784 	 * for major_version==0 superblocks
3785 	 */
3786 	if (mddev->major_version != 0) {
3787 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3788 		       mdname(mddev));
3789 		return -EINVAL;
3790 	}
3791 
3792 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3793 		int err;
3794 		rdev = md_import_device (dev, -1, 0);
3795 		if (IS_ERR(rdev)) {
3796 			printk(KERN_WARNING
3797 				"md: error, md_import_device() returned %ld\n",
3798 				PTR_ERR(rdev));
3799 			return PTR_ERR(rdev);
3800 		}
3801 		rdev->desc_nr = info->number;
3802 		if (info->raid_disk < mddev->raid_disks)
3803 			rdev->raid_disk = info->raid_disk;
3804 		else
3805 			rdev->raid_disk = -1;
3806 
3807 		rdev->flags = 0;
3808 
3809 		if (rdev->raid_disk < mddev->raid_disks)
3810 			if (info->state & (1<<MD_DISK_SYNC))
3811 				set_bit(In_sync, &rdev->flags);
3812 
3813 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3814 			set_bit(WriteMostly, &rdev->flags);
3815 
3816 		if (!mddev->persistent) {
3817 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3818 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3819 		} else
3820 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3821 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3822 
3823 		err = bind_rdev_to_array(rdev, mddev);
3824 		if (err) {
3825 			export_rdev(rdev);
3826 			return err;
3827 		}
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3834 {
3835 	char b[BDEVNAME_SIZE];
3836 	mdk_rdev_t *rdev;
3837 
3838 	if (!mddev->pers)
3839 		return -ENODEV;
3840 
3841 	rdev = find_rdev(mddev, dev);
3842 	if (!rdev)
3843 		return -ENXIO;
3844 
3845 	if (rdev->raid_disk >= 0)
3846 		goto busy;
3847 
3848 	kick_rdev_from_array(rdev);
3849 	md_update_sb(mddev, 1);
3850 	md_new_event(mddev);
3851 
3852 	return 0;
3853 busy:
3854 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3855 		bdevname(rdev->bdev,b), mdname(mddev));
3856 	return -EBUSY;
3857 }
3858 
3859 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3860 {
3861 	char b[BDEVNAME_SIZE];
3862 	int err;
3863 	unsigned int size;
3864 	mdk_rdev_t *rdev;
3865 
3866 	if (!mddev->pers)
3867 		return -ENODEV;
3868 
3869 	if (mddev->major_version != 0) {
3870 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3871 			" version-0 superblocks.\n",
3872 			mdname(mddev));
3873 		return -EINVAL;
3874 	}
3875 	if (!mddev->pers->hot_add_disk) {
3876 		printk(KERN_WARNING
3877 			"%s: personality does not support diskops!\n",
3878 			mdname(mddev));
3879 		return -EINVAL;
3880 	}
3881 
3882 	rdev = md_import_device (dev, -1, 0);
3883 	if (IS_ERR(rdev)) {
3884 		printk(KERN_WARNING
3885 			"md: error, md_import_device() returned %ld\n",
3886 			PTR_ERR(rdev));
3887 		return -EINVAL;
3888 	}
3889 
3890 	if (mddev->persistent)
3891 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3892 	else
3893 		rdev->sb_offset =
3894 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3895 
3896 	size = calc_dev_size(rdev, mddev->chunk_size);
3897 	rdev->size = size;
3898 
3899 	if (test_bit(Faulty, &rdev->flags)) {
3900 		printk(KERN_WARNING
3901 			"md: can not hot-add faulty %s disk to %s!\n",
3902 			bdevname(rdev->bdev,b), mdname(mddev));
3903 		err = -EINVAL;
3904 		goto abort_export;
3905 	}
3906 	clear_bit(In_sync, &rdev->flags);
3907 	rdev->desc_nr = -1;
3908 	rdev->saved_raid_disk = -1;
3909 	err = bind_rdev_to_array(rdev, mddev);
3910 	if (err)
3911 		goto abort_export;
3912 
3913 	/*
3914 	 * The rest should better be atomic, we can have disk failures
3915 	 * noticed in interrupt contexts ...
3916 	 */
3917 
3918 	if (rdev->desc_nr == mddev->max_disks) {
3919 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3920 			mdname(mddev));
3921 		err = -EBUSY;
3922 		goto abort_unbind_export;
3923 	}
3924 
3925 	rdev->raid_disk = -1;
3926 
3927 	md_update_sb(mddev, 1);
3928 
3929 	/*
3930 	 * Kick recovery, maybe this spare has to be added to the
3931 	 * array immediately.
3932 	 */
3933 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3934 	md_wakeup_thread(mddev->thread);
3935 	md_new_event(mddev);
3936 	return 0;
3937 
3938 abort_unbind_export:
3939 	unbind_rdev_from_array(rdev);
3940 
3941 abort_export:
3942 	export_rdev(rdev);
3943 	return err;
3944 }
3945 
3946 static int set_bitmap_file(mddev_t *mddev, int fd)
3947 {
3948 	int err;
3949 
3950 	if (mddev->pers) {
3951 		if (!mddev->pers->quiesce)
3952 			return -EBUSY;
3953 		if (mddev->recovery || mddev->sync_thread)
3954 			return -EBUSY;
3955 		/* we should be able to change the bitmap.. */
3956 	}
3957 
3958 
3959 	if (fd >= 0) {
3960 		if (mddev->bitmap)
3961 			return -EEXIST; /* cannot add when bitmap is present */
3962 		mddev->bitmap_file = fget(fd);
3963 
3964 		if (mddev->bitmap_file == NULL) {
3965 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3966 			       mdname(mddev));
3967 			return -EBADF;
3968 		}
3969 
3970 		err = deny_bitmap_write_access(mddev->bitmap_file);
3971 		if (err) {
3972 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3973 			       mdname(mddev));
3974 			fput(mddev->bitmap_file);
3975 			mddev->bitmap_file = NULL;
3976 			return err;
3977 		}
3978 		mddev->bitmap_offset = 0; /* file overrides offset */
3979 	} else if (mddev->bitmap == NULL)
3980 		return -ENOENT; /* cannot remove what isn't there */
3981 	err = 0;
3982 	if (mddev->pers) {
3983 		mddev->pers->quiesce(mddev, 1);
3984 		if (fd >= 0)
3985 			err = bitmap_create(mddev);
3986 		if (fd < 0 || err) {
3987 			bitmap_destroy(mddev);
3988 			fd = -1; /* make sure to put the file */
3989 		}
3990 		mddev->pers->quiesce(mddev, 0);
3991 	}
3992 	if (fd < 0) {
3993 		if (mddev->bitmap_file) {
3994 			restore_bitmap_write_access(mddev->bitmap_file);
3995 			fput(mddev->bitmap_file);
3996 		}
3997 		mddev->bitmap_file = NULL;
3998 	}
3999 
4000 	return err;
4001 }
4002 
4003 /*
4004  * set_array_info is used two different ways
4005  * The original usage is when creating a new array.
4006  * In this usage, raid_disks is > 0 and it together with
4007  *  level, size, not_persistent,layout,chunksize determine the
4008  *  shape of the array.
4009  *  This will always create an array with a type-0.90.0 superblock.
4010  * The newer usage is when assembling an array.
4011  *  In this case raid_disks will be 0, and the major_version field is
4012  *  use to determine which style super-blocks are to be found on the devices.
4013  *  The minor and patch _version numbers are also kept incase the
4014  *  super_block handler wishes to interpret them.
4015  */
4016 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4017 {
4018 
4019 	if (info->raid_disks == 0) {
4020 		/* just setting version number for superblock loading */
4021 		if (info->major_version < 0 ||
4022 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
4023 		    super_types[info->major_version].name == NULL) {
4024 			/* maybe try to auto-load a module? */
4025 			printk(KERN_INFO
4026 				"md: superblock version %d not known\n",
4027 				info->major_version);
4028 			return -EINVAL;
4029 		}
4030 		mddev->major_version = info->major_version;
4031 		mddev->minor_version = info->minor_version;
4032 		mddev->patch_version = info->patch_version;
4033 		mddev->persistent = !info->not_persistent;
4034 		return 0;
4035 	}
4036 	mddev->major_version = MD_MAJOR_VERSION;
4037 	mddev->minor_version = MD_MINOR_VERSION;
4038 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4039 	mddev->ctime         = get_seconds();
4040 
4041 	mddev->level         = info->level;
4042 	mddev->clevel[0]     = 0;
4043 	mddev->size          = info->size;
4044 	mddev->raid_disks    = info->raid_disks;
4045 	/* don't set md_minor, it is determined by which /dev/md* was
4046 	 * openned
4047 	 */
4048 	if (info->state & (1<<MD_SB_CLEAN))
4049 		mddev->recovery_cp = MaxSector;
4050 	else
4051 		mddev->recovery_cp = 0;
4052 	mddev->persistent    = ! info->not_persistent;
4053 
4054 	mddev->layout        = info->layout;
4055 	mddev->chunk_size    = info->chunk_size;
4056 
4057 	mddev->max_disks     = MD_SB_DISKS;
4058 
4059 	mddev->flags         = 0;
4060 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4061 
4062 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4063 	mddev->bitmap_offset = 0;
4064 
4065 	mddev->reshape_position = MaxSector;
4066 
4067 	/*
4068 	 * Generate a 128 bit UUID
4069 	 */
4070 	get_random_bytes(mddev->uuid, 16);
4071 
4072 	mddev->new_level = mddev->level;
4073 	mddev->new_chunk = mddev->chunk_size;
4074 	mddev->new_layout = mddev->layout;
4075 	mddev->delta_disks = 0;
4076 
4077 	return 0;
4078 }
4079 
4080 static int update_size(mddev_t *mddev, unsigned long size)
4081 {
4082 	mdk_rdev_t * rdev;
4083 	int rv;
4084 	struct list_head *tmp;
4085 	int fit = (size == 0);
4086 
4087 	if (mddev->pers->resize == NULL)
4088 		return -EINVAL;
4089 	/* The "size" is the amount of each device that is used.
4090 	 * This can only make sense for arrays with redundancy.
4091 	 * linear and raid0 always use whatever space is available
4092 	 * We can only consider changing the size if no resync
4093 	 * or reconstruction is happening, and if the new size
4094 	 * is acceptable. It must fit before the sb_offset or,
4095 	 * if that is <data_offset, it must fit before the
4096 	 * size of each device.
4097 	 * If size is zero, we find the largest size that fits.
4098 	 */
4099 	if (mddev->sync_thread)
4100 		return -EBUSY;
4101 	ITERATE_RDEV(mddev,rdev,tmp) {
4102 		sector_t avail;
4103 		avail = rdev->size * 2;
4104 
4105 		if (fit && (size == 0 || size > avail/2))
4106 			size = avail/2;
4107 		if (avail < ((sector_t)size << 1))
4108 			return -ENOSPC;
4109 	}
4110 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4111 	if (!rv) {
4112 		struct block_device *bdev;
4113 
4114 		bdev = bdget_disk(mddev->gendisk, 0);
4115 		if (bdev) {
4116 			mutex_lock(&bdev->bd_inode->i_mutex);
4117 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4118 			mutex_unlock(&bdev->bd_inode->i_mutex);
4119 			bdput(bdev);
4120 		}
4121 	}
4122 	return rv;
4123 }
4124 
4125 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4126 {
4127 	int rv;
4128 	/* change the number of raid disks */
4129 	if (mddev->pers->check_reshape == NULL)
4130 		return -EINVAL;
4131 	if (raid_disks <= 0 ||
4132 	    raid_disks >= mddev->max_disks)
4133 		return -EINVAL;
4134 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4135 		return -EBUSY;
4136 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4137 
4138 	rv = mddev->pers->check_reshape(mddev);
4139 	return rv;
4140 }
4141 
4142 
4143 /*
4144  * update_array_info is used to change the configuration of an
4145  * on-line array.
4146  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4147  * fields in the info are checked against the array.
4148  * Any differences that cannot be handled will cause an error.
4149  * Normally, only one change can be managed at a time.
4150  */
4151 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4152 {
4153 	int rv = 0;
4154 	int cnt = 0;
4155 	int state = 0;
4156 
4157 	/* calculate expected state,ignoring low bits */
4158 	if (mddev->bitmap && mddev->bitmap_offset)
4159 		state |= (1 << MD_SB_BITMAP_PRESENT);
4160 
4161 	if (mddev->major_version != info->major_version ||
4162 	    mddev->minor_version != info->minor_version ||
4163 /*	    mddev->patch_version != info->patch_version || */
4164 	    mddev->ctime         != info->ctime         ||
4165 	    mddev->level         != info->level         ||
4166 /*	    mddev->layout        != info->layout        || */
4167 	    !mddev->persistent	 != info->not_persistent||
4168 	    mddev->chunk_size    != info->chunk_size    ||
4169 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4170 	    ((state^info->state) & 0xfffffe00)
4171 		)
4172 		return -EINVAL;
4173 	/* Check there is only one change */
4174 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4175 	if (mddev->raid_disks != info->raid_disks) cnt++;
4176 	if (mddev->layout != info->layout) cnt++;
4177 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4178 	if (cnt == 0) return 0;
4179 	if (cnt > 1) return -EINVAL;
4180 
4181 	if (mddev->layout != info->layout) {
4182 		/* Change layout
4183 		 * we don't need to do anything at the md level, the
4184 		 * personality will take care of it all.
4185 		 */
4186 		if (mddev->pers->reconfig == NULL)
4187 			return -EINVAL;
4188 		else
4189 			return mddev->pers->reconfig(mddev, info->layout, -1);
4190 	}
4191 	if (info->size >= 0 && mddev->size != info->size)
4192 		rv = update_size(mddev, info->size);
4193 
4194 	if (mddev->raid_disks    != info->raid_disks)
4195 		rv = update_raid_disks(mddev, info->raid_disks);
4196 
4197 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4198 		if (mddev->pers->quiesce == NULL)
4199 			return -EINVAL;
4200 		if (mddev->recovery || mddev->sync_thread)
4201 			return -EBUSY;
4202 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4203 			/* add the bitmap */
4204 			if (mddev->bitmap)
4205 				return -EEXIST;
4206 			if (mddev->default_bitmap_offset == 0)
4207 				return -EINVAL;
4208 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4209 			mddev->pers->quiesce(mddev, 1);
4210 			rv = bitmap_create(mddev);
4211 			if (rv)
4212 				bitmap_destroy(mddev);
4213 			mddev->pers->quiesce(mddev, 0);
4214 		} else {
4215 			/* remove the bitmap */
4216 			if (!mddev->bitmap)
4217 				return -ENOENT;
4218 			if (mddev->bitmap->file)
4219 				return -EINVAL;
4220 			mddev->pers->quiesce(mddev, 1);
4221 			bitmap_destroy(mddev);
4222 			mddev->pers->quiesce(mddev, 0);
4223 			mddev->bitmap_offset = 0;
4224 		}
4225 	}
4226 	md_update_sb(mddev, 1);
4227 	return rv;
4228 }
4229 
4230 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4231 {
4232 	mdk_rdev_t *rdev;
4233 
4234 	if (mddev->pers == NULL)
4235 		return -ENODEV;
4236 
4237 	rdev = find_rdev(mddev, dev);
4238 	if (!rdev)
4239 		return -ENODEV;
4240 
4241 	md_error(mddev, rdev);
4242 	return 0;
4243 }
4244 
4245 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4246 {
4247 	mddev_t *mddev = bdev->bd_disk->private_data;
4248 
4249 	geo->heads = 2;
4250 	geo->sectors = 4;
4251 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4252 	return 0;
4253 }
4254 
4255 static int md_ioctl(struct inode *inode, struct file *file,
4256 			unsigned int cmd, unsigned long arg)
4257 {
4258 	int err = 0;
4259 	void __user *argp = (void __user *)arg;
4260 	mddev_t *mddev = NULL;
4261 
4262 	if (!capable(CAP_SYS_ADMIN))
4263 		return -EACCES;
4264 
4265 	/*
4266 	 * Commands dealing with the RAID driver but not any
4267 	 * particular array:
4268 	 */
4269 	switch (cmd)
4270 	{
4271 		case RAID_VERSION:
4272 			err = get_version(argp);
4273 			goto done;
4274 
4275 		case PRINT_RAID_DEBUG:
4276 			err = 0;
4277 			md_print_devices();
4278 			goto done;
4279 
4280 #ifndef MODULE
4281 		case RAID_AUTORUN:
4282 			err = 0;
4283 			autostart_arrays(arg);
4284 			goto done;
4285 #endif
4286 		default:;
4287 	}
4288 
4289 	/*
4290 	 * Commands creating/starting a new array:
4291 	 */
4292 
4293 	mddev = inode->i_bdev->bd_disk->private_data;
4294 
4295 	if (!mddev) {
4296 		BUG();
4297 		goto abort;
4298 	}
4299 
4300 	err = mddev_lock(mddev);
4301 	if (err) {
4302 		printk(KERN_INFO
4303 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4304 			err, cmd);
4305 		goto abort;
4306 	}
4307 
4308 	switch (cmd)
4309 	{
4310 		case SET_ARRAY_INFO:
4311 			{
4312 				mdu_array_info_t info;
4313 				if (!arg)
4314 					memset(&info, 0, sizeof(info));
4315 				else if (copy_from_user(&info, argp, sizeof(info))) {
4316 					err = -EFAULT;
4317 					goto abort_unlock;
4318 				}
4319 				if (mddev->pers) {
4320 					err = update_array_info(mddev, &info);
4321 					if (err) {
4322 						printk(KERN_WARNING "md: couldn't update"
4323 						       " array info. %d\n", err);
4324 						goto abort_unlock;
4325 					}
4326 					goto done_unlock;
4327 				}
4328 				if (!list_empty(&mddev->disks)) {
4329 					printk(KERN_WARNING
4330 					       "md: array %s already has disks!\n",
4331 					       mdname(mddev));
4332 					err = -EBUSY;
4333 					goto abort_unlock;
4334 				}
4335 				if (mddev->raid_disks) {
4336 					printk(KERN_WARNING
4337 					       "md: array %s already initialised!\n",
4338 					       mdname(mddev));
4339 					err = -EBUSY;
4340 					goto abort_unlock;
4341 				}
4342 				err = set_array_info(mddev, &info);
4343 				if (err) {
4344 					printk(KERN_WARNING "md: couldn't set"
4345 					       " array info. %d\n", err);
4346 					goto abort_unlock;
4347 				}
4348 			}
4349 			goto done_unlock;
4350 
4351 		default:;
4352 	}
4353 
4354 	/*
4355 	 * Commands querying/configuring an existing array:
4356 	 */
4357 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4358 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4359 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4360 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4361 	    		&& cmd != GET_BITMAP_FILE) {
4362 		err = -ENODEV;
4363 		goto abort_unlock;
4364 	}
4365 
4366 	/*
4367 	 * Commands even a read-only array can execute:
4368 	 */
4369 	switch (cmd)
4370 	{
4371 		case GET_ARRAY_INFO:
4372 			err = get_array_info(mddev, argp);
4373 			goto done_unlock;
4374 
4375 		case GET_BITMAP_FILE:
4376 			err = get_bitmap_file(mddev, argp);
4377 			goto done_unlock;
4378 
4379 		case GET_DISK_INFO:
4380 			err = get_disk_info(mddev, argp);
4381 			goto done_unlock;
4382 
4383 		case RESTART_ARRAY_RW:
4384 			err = restart_array(mddev);
4385 			goto done_unlock;
4386 
4387 		case STOP_ARRAY:
4388 			err = do_md_stop (mddev, 0);
4389 			goto done_unlock;
4390 
4391 		case STOP_ARRAY_RO:
4392 			err = do_md_stop (mddev, 1);
4393 			goto done_unlock;
4394 
4395 	/*
4396 	 * We have a problem here : there is no easy way to give a CHS
4397 	 * virtual geometry. We currently pretend that we have a 2 heads
4398 	 * 4 sectors (with a BIG number of cylinders...). This drives
4399 	 * dosfs just mad... ;-)
4400 	 */
4401 	}
4402 
4403 	/*
4404 	 * The remaining ioctls are changing the state of the
4405 	 * superblock, so we do not allow them on read-only arrays.
4406 	 * However non-MD ioctls (e.g. get-size) will still come through
4407 	 * here and hit the 'default' below, so only disallow
4408 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4409 	 */
4410 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4411 	    mddev->ro && mddev->pers) {
4412 		if (mddev->ro == 2) {
4413 			mddev->ro = 0;
4414 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4415 		md_wakeup_thread(mddev->thread);
4416 
4417 		} else {
4418 			err = -EROFS;
4419 			goto abort_unlock;
4420 		}
4421 	}
4422 
4423 	switch (cmd)
4424 	{
4425 		case ADD_NEW_DISK:
4426 		{
4427 			mdu_disk_info_t info;
4428 			if (copy_from_user(&info, argp, sizeof(info)))
4429 				err = -EFAULT;
4430 			else
4431 				err = add_new_disk(mddev, &info);
4432 			goto done_unlock;
4433 		}
4434 
4435 		case HOT_REMOVE_DISK:
4436 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4437 			goto done_unlock;
4438 
4439 		case HOT_ADD_DISK:
4440 			err = hot_add_disk(mddev, new_decode_dev(arg));
4441 			goto done_unlock;
4442 
4443 		case SET_DISK_FAULTY:
4444 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4445 			goto done_unlock;
4446 
4447 		case RUN_ARRAY:
4448 			err = do_md_run (mddev);
4449 			goto done_unlock;
4450 
4451 		case SET_BITMAP_FILE:
4452 			err = set_bitmap_file(mddev, (int)arg);
4453 			goto done_unlock;
4454 
4455 		default:
4456 			err = -EINVAL;
4457 			goto abort_unlock;
4458 	}
4459 
4460 done_unlock:
4461 abort_unlock:
4462 	mddev_unlock(mddev);
4463 
4464 	return err;
4465 done:
4466 	if (err)
4467 		MD_BUG();
4468 abort:
4469 	return err;
4470 }
4471 
4472 static int md_open(struct inode *inode, struct file *file)
4473 {
4474 	/*
4475 	 * Succeed if we can lock the mddev, which confirms that
4476 	 * it isn't being stopped right now.
4477 	 */
4478 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4479 	int err;
4480 
4481 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4482 		goto out;
4483 
4484 	err = 0;
4485 	mddev_get(mddev);
4486 	mddev_unlock(mddev);
4487 
4488 	check_disk_change(inode->i_bdev);
4489  out:
4490 	return err;
4491 }
4492 
4493 static int md_release(struct inode *inode, struct file * file)
4494 {
4495  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4496 
4497 	BUG_ON(!mddev);
4498 	mddev_put(mddev);
4499 
4500 	return 0;
4501 }
4502 
4503 static int md_media_changed(struct gendisk *disk)
4504 {
4505 	mddev_t *mddev = disk->private_data;
4506 
4507 	return mddev->changed;
4508 }
4509 
4510 static int md_revalidate(struct gendisk *disk)
4511 {
4512 	mddev_t *mddev = disk->private_data;
4513 
4514 	mddev->changed = 0;
4515 	return 0;
4516 }
4517 static struct block_device_operations md_fops =
4518 {
4519 	.owner		= THIS_MODULE,
4520 	.open		= md_open,
4521 	.release	= md_release,
4522 	.ioctl		= md_ioctl,
4523 	.getgeo		= md_getgeo,
4524 	.media_changed	= md_media_changed,
4525 	.revalidate_disk= md_revalidate,
4526 };
4527 
4528 static int md_thread(void * arg)
4529 {
4530 	mdk_thread_t *thread = arg;
4531 
4532 	/*
4533 	 * md_thread is a 'system-thread', it's priority should be very
4534 	 * high. We avoid resource deadlocks individually in each
4535 	 * raid personality. (RAID5 does preallocation) We also use RR and
4536 	 * the very same RT priority as kswapd, thus we will never get
4537 	 * into a priority inversion deadlock.
4538 	 *
4539 	 * we definitely have to have equal or higher priority than
4540 	 * bdflush, otherwise bdflush will deadlock if there are too
4541 	 * many dirty RAID5 blocks.
4542 	 */
4543 
4544 	current->flags |= PF_NOFREEZE;
4545 	allow_signal(SIGKILL);
4546 	while (!kthread_should_stop()) {
4547 
4548 		/* We need to wait INTERRUPTIBLE so that
4549 		 * we don't add to the load-average.
4550 		 * That means we need to be sure no signals are
4551 		 * pending
4552 		 */
4553 		if (signal_pending(current))
4554 			flush_signals(current);
4555 
4556 		wait_event_interruptible_timeout
4557 			(thread->wqueue,
4558 			 test_bit(THREAD_WAKEUP, &thread->flags)
4559 			 || kthread_should_stop(),
4560 			 thread->timeout);
4561 
4562 		clear_bit(THREAD_WAKEUP, &thread->flags);
4563 
4564 		thread->run(thread->mddev);
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 void md_wakeup_thread(mdk_thread_t *thread)
4571 {
4572 	if (thread) {
4573 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4574 		set_bit(THREAD_WAKEUP, &thread->flags);
4575 		wake_up(&thread->wqueue);
4576 	}
4577 }
4578 
4579 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4580 				 const char *name)
4581 {
4582 	mdk_thread_t *thread;
4583 
4584 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4585 	if (!thread)
4586 		return NULL;
4587 
4588 	init_waitqueue_head(&thread->wqueue);
4589 
4590 	thread->run = run;
4591 	thread->mddev = mddev;
4592 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4593 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4594 	if (IS_ERR(thread->tsk)) {
4595 		kfree(thread);
4596 		return NULL;
4597 	}
4598 	return thread;
4599 }
4600 
4601 void md_unregister_thread(mdk_thread_t *thread)
4602 {
4603 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4604 
4605 	kthread_stop(thread->tsk);
4606 	kfree(thread);
4607 }
4608 
4609 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4610 {
4611 	if (!mddev) {
4612 		MD_BUG();
4613 		return;
4614 	}
4615 
4616 	if (!rdev || test_bit(Faulty, &rdev->flags))
4617 		return;
4618 /*
4619 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4620 		mdname(mddev),
4621 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4622 		__builtin_return_address(0),__builtin_return_address(1),
4623 		__builtin_return_address(2),__builtin_return_address(3));
4624 */
4625 	if (!mddev->pers)
4626 		return;
4627 	if (!mddev->pers->error_handler)
4628 		return;
4629 	mddev->pers->error_handler(mddev,rdev);
4630 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4631 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4632 	md_wakeup_thread(mddev->thread);
4633 	md_new_event_inintr(mddev);
4634 }
4635 
4636 /* seq_file implementation /proc/mdstat */
4637 
4638 static void status_unused(struct seq_file *seq)
4639 {
4640 	int i = 0;
4641 	mdk_rdev_t *rdev;
4642 	struct list_head *tmp;
4643 
4644 	seq_printf(seq, "unused devices: ");
4645 
4646 	ITERATE_RDEV_PENDING(rdev,tmp) {
4647 		char b[BDEVNAME_SIZE];
4648 		i++;
4649 		seq_printf(seq, "%s ",
4650 			      bdevname(rdev->bdev,b));
4651 	}
4652 	if (!i)
4653 		seq_printf(seq, "<none>");
4654 
4655 	seq_printf(seq, "\n");
4656 }
4657 
4658 
4659 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4660 {
4661 	sector_t max_blocks, resync, res;
4662 	unsigned long dt, db, rt;
4663 	int scale;
4664 	unsigned int per_milli;
4665 
4666 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4667 
4668 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4669 		max_blocks = mddev->resync_max_sectors >> 1;
4670 	else
4671 		max_blocks = mddev->size;
4672 
4673 	/*
4674 	 * Should not happen.
4675 	 */
4676 	if (!max_blocks) {
4677 		MD_BUG();
4678 		return;
4679 	}
4680 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4681 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4682 	 * u32, as those are the requirements for sector_div.
4683 	 * Thus 'scale' must be at least 10
4684 	 */
4685 	scale = 10;
4686 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4687 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4688 			scale++;
4689 	}
4690 	res = (resync>>scale)*1000;
4691 	sector_div(res, (u32)((max_blocks>>scale)+1));
4692 
4693 	per_milli = res;
4694 	{
4695 		int i, x = per_milli/50, y = 20-x;
4696 		seq_printf(seq, "[");
4697 		for (i = 0; i < x; i++)
4698 			seq_printf(seq, "=");
4699 		seq_printf(seq, ">");
4700 		for (i = 0; i < y; i++)
4701 			seq_printf(seq, ".");
4702 		seq_printf(seq, "] ");
4703 	}
4704 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4705 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4706 		    "reshape" :
4707 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4708 		     "check" :
4709 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4710 		      "resync" : "recovery"))),
4711 		   per_milli/10, per_milli % 10,
4712 		   (unsigned long long) resync,
4713 		   (unsigned long long) max_blocks);
4714 
4715 	/*
4716 	 * We do not want to overflow, so the order of operands and
4717 	 * the * 100 / 100 trick are important. We do a +1 to be
4718 	 * safe against division by zero. We only estimate anyway.
4719 	 *
4720 	 * dt: time from mark until now
4721 	 * db: blocks written from mark until now
4722 	 * rt: remaining time
4723 	 */
4724 	dt = ((jiffies - mddev->resync_mark) / HZ);
4725 	if (!dt) dt++;
4726 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4727 		- mddev->resync_mark_cnt;
4728 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4729 
4730 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4731 
4732 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4733 }
4734 
4735 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4736 {
4737 	struct list_head *tmp;
4738 	loff_t l = *pos;
4739 	mddev_t *mddev;
4740 
4741 	if (l >= 0x10000)
4742 		return NULL;
4743 	if (!l--)
4744 		/* header */
4745 		return (void*)1;
4746 
4747 	spin_lock(&all_mddevs_lock);
4748 	list_for_each(tmp,&all_mddevs)
4749 		if (!l--) {
4750 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4751 			mddev_get(mddev);
4752 			spin_unlock(&all_mddevs_lock);
4753 			return mddev;
4754 		}
4755 	spin_unlock(&all_mddevs_lock);
4756 	if (!l--)
4757 		return (void*)2;/* tail */
4758 	return NULL;
4759 }
4760 
4761 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4762 {
4763 	struct list_head *tmp;
4764 	mddev_t *next_mddev, *mddev = v;
4765 
4766 	++*pos;
4767 	if (v == (void*)2)
4768 		return NULL;
4769 
4770 	spin_lock(&all_mddevs_lock);
4771 	if (v == (void*)1)
4772 		tmp = all_mddevs.next;
4773 	else
4774 		tmp = mddev->all_mddevs.next;
4775 	if (tmp != &all_mddevs)
4776 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4777 	else {
4778 		next_mddev = (void*)2;
4779 		*pos = 0x10000;
4780 	}
4781 	spin_unlock(&all_mddevs_lock);
4782 
4783 	if (v != (void*)1)
4784 		mddev_put(mddev);
4785 	return next_mddev;
4786 
4787 }
4788 
4789 static void md_seq_stop(struct seq_file *seq, void *v)
4790 {
4791 	mddev_t *mddev = v;
4792 
4793 	if (mddev && v != (void*)1 && v != (void*)2)
4794 		mddev_put(mddev);
4795 }
4796 
4797 struct mdstat_info {
4798 	int event;
4799 };
4800 
4801 static int md_seq_show(struct seq_file *seq, void *v)
4802 {
4803 	mddev_t *mddev = v;
4804 	sector_t size;
4805 	struct list_head *tmp2;
4806 	mdk_rdev_t *rdev;
4807 	struct mdstat_info *mi = seq->private;
4808 	struct bitmap *bitmap;
4809 
4810 	if (v == (void*)1) {
4811 		struct mdk_personality *pers;
4812 		seq_printf(seq, "Personalities : ");
4813 		spin_lock(&pers_lock);
4814 		list_for_each_entry(pers, &pers_list, list)
4815 			seq_printf(seq, "[%s] ", pers->name);
4816 
4817 		spin_unlock(&pers_lock);
4818 		seq_printf(seq, "\n");
4819 		mi->event = atomic_read(&md_event_count);
4820 		return 0;
4821 	}
4822 	if (v == (void*)2) {
4823 		status_unused(seq);
4824 		return 0;
4825 	}
4826 
4827 	if (mddev_lock(mddev) < 0)
4828 		return -EINTR;
4829 
4830 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4831 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4832 						mddev->pers ? "" : "in");
4833 		if (mddev->pers) {
4834 			if (mddev->ro==1)
4835 				seq_printf(seq, " (read-only)");
4836 			if (mddev->ro==2)
4837 				seq_printf(seq, "(auto-read-only)");
4838 			seq_printf(seq, " %s", mddev->pers->name);
4839 		}
4840 
4841 		size = 0;
4842 		ITERATE_RDEV(mddev,rdev,tmp2) {
4843 			char b[BDEVNAME_SIZE];
4844 			seq_printf(seq, " %s[%d]",
4845 				bdevname(rdev->bdev,b), rdev->desc_nr);
4846 			if (test_bit(WriteMostly, &rdev->flags))
4847 				seq_printf(seq, "(W)");
4848 			if (test_bit(Faulty, &rdev->flags)) {
4849 				seq_printf(seq, "(F)");
4850 				continue;
4851 			} else if (rdev->raid_disk < 0)
4852 				seq_printf(seq, "(S)"); /* spare */
4853 			size += rdev->size;
4854 		}
4855 
4856 		if (!list_empty(&mddev->disks)) {
4857 			if (mddev->pers)
4858 				seq_printf(seq, "\n      %llu blocks",
4859 					(unsigned long long)mddev->array_size);
4860 			else
4861 				seq_printf(seq, "\n      %llu blocks",
4862 					(unsigned long long)size);
4863 		}
4864 		if (mddev->persistent) {
4865 			if (mddev->major_version != 0 ||
4866 			    mddev->minor_version != 90) {
4867 				seq_printf(seq," super %d.%d",
4868 					   mddev->major_version,
4869 					   mddev->minor_version);
4870 			}
4871 		} else
4872 			seq_printf(seq, " super non-persistent");
4873 
4874 		if (mddev->pers) {
4875 			mddev->pers->status (seq, mddev);
4876 	 		seq_printf(seq, "\n      ");
4877 			if (mddev->pers->sync_request) {
4878 				if (mddev->curr_resync > 2) {
4879 					status_resync (seq, mddev);
4880 					seq_printf(seq, "\n      ");
4881 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4882 					seq_printf(seq, "\tresync=DELAYED\n      ");
4883 				else if (mddev->recovery_cp < MaxSector)
4884 					seq_printf(seq, "\tresync=PENDING\n      ");
4885 			}
4886 		} else
4887 			seq_printf(seq, "\n       ");
4888 
4889 		if ((bitmap = mddev->bitmap)) {
4890 			unsigned long chunk_kb;
4891 			unsigned long flags;
4892 			spin_lock_irqsave(&bitmap->lock, flags);
4893 			chunk_kb = bitmap->chunksize >> 10;
4894 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4895 				"%lu%s chunk",
4896 				bitmap->pages - bitmap->missing_pages,
4897 				bitmap->pages,
4898 				(bitmap->pages - bitmap->missing_pages)
4899 					<< (PAGE_SHIFT - 10),
4900 				chunk_kb ? chunk_kb : bitmap->chunksize,
4901 				chunk_kb ? "KB" : "B");
4902 			if (bitmap->file) {
4903 				seq_printf(seq, ", file: ");
4904 				seq_path(seq, bitmap->file->f_path.mnt,
4905 					 bitmap->file->f_path.dentry," \t\n");
4906 			}
4907 
4908 			seq_printf(seq, "\n");
4909 			spin_unlock_irqrestore(&bitmap->lock, flags);
4910 		}
4911 
4912 		seq_printf(seq, "\n");
4913 	}
4914 	mddev_unlock(mddev);
4915 
4916 	return 0;
4917 }
4918 
4919 static struct seq_operations md_seq_ops = {
4920 	.start  = md_seq_start,
4921 	.next   = md_seq_next,
4922 	.stop   = md_seq_stop,
4923 	.show   = md_seq_show,
4924 };
4925 
4926 static int md_seq_open(struct inode *inode, struct file *file)
4927 {
4928 	int error;
4929 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4930 	if (mi == NULL)
4931 		return -ENOMEM;
4932 
4933 	error = seq_open(file, &md_seq_ops);
4934 	if (error)
4935 		kfree(mi);
4936 	else {
4937 		struct seq_file *p = file->private_data;
4938 		p->private = mi;
4939 		mi->event = atomic_read(&md_event_count);
4940 	}
4941 	return error;
4942 }
4943 
4944 static int md_seq_release(struct inode *inode, struct file *file)
4945 {
4946 	struct seq_file *m = file->private_data;
4947 	struct mdstat_info *mi = m->private;
4948 	m->private = NULL;
4949 	kfree(mi);
4950 	return seq_release(inode, file);
4951 }
4952 
4953 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4954 {
4955 	struct seq_file *m = filp->private_data;
4956 	struct mdstat_info *mi = m->private;
4957 	int mask;
4958 
4959 	poll_wait(filp, &md_event_waiters, wait);
4960 
4961 	/* always allow read */
4962 	mask = POLLIN | POLLRDNORM;
4963 
4964 	if (mi->event != atomic_read(&md_event_count))
4965 		mask |= POLLERR | POLLPRI;
4966 	return mask;
4967 }
4968 
4969 static const struct file_operations md_seq_fops = {
4970 	.owner		= THIS_MODULE,
4971 	.open           = md_seq_open,
4972 	.read           = seq_read,
4973 	.llseek         = seq_lseek,
4974 	.release	= md_seq_release,
4975 	.poll		= mdstat_poll,
4976 };
4977 
4978 int register_md_personality(struct mdk_personality *p)
4979 {
4980 	spin_lock(&pers_lock);
4981 	list_add_tail(&p->list, &pers_list);
4982 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4983 	spin_unlock(&pers_lock);
4984 	return 0;
4985 }
4986 
4987 int unregister_md_personality(struct mdk_personality *p)
4988 {
4989 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4990 	spin_lock(&pers_lock);
4991 	list_del_init(&p->list);
4992 	spin_unlock(&pers_lock);
4993 	return 0;
4994 }
4995 
4996 static int is_mddev_idle(mddev_t *mddev)
4997 {
4998 	mdk_rdev_t * rdev;
4999 	struct list_head *tmp;
5000 	int idle;
5001 	unsigned long curr_events;
5002 
5003 	idle = 1;
5004 	ITERATE_RDEV(mddev,rdev,tmp) {
5005 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5006 		curr_events = disk_stat_read(disk, sectors[0]) +
5007 				disk_stat_read(disk, sectors[1]) -
5008 				atomic_read(&disk->sync_io);
5009 		/* The difference between curr_events and last_events
5010 		 * will be affected by any new non-sync IO (making
5011 		 * curr_events bigger) and any difference in the amount of
5012 		 * in-flight syncio (making current_events bigger or smaller)
5013 		 * The amount in-flight is currently limited to
5014 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
5015 		 * which is at most 4096 sectors.
5016 		 * These numbers are fairly fragile and should be made
5017 		 * more robust, probably by enforcing the
5018 		 * 'window size' that md_do_sync sort-of uses.
5019 		 *
5020 		 * Note: the following is an unsigned comparison.
5021 		 */
5022 		if ((curr_events - rdev->last_events + 4096) > 8192) {
5023 			rdev->last_events = curr_events;
5024 			idle = 0;
5025 		}
5026 	}
5027 	return idle;
5028 }
5029 
5030 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5031 {
5032 	/* another "blocks" (512byte) blocks have been synced */
5033 	atomic_sub(blocks, &mddev->recovery_active);
5034 	wake_up(&mddev->recovery_wait);
5035 	if (!ok) {
5036 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5037 		md_wakeup_thread(mddev->thread);
5038 		// stop recovery, signal do_sync ....
5039 	}
5040 }
5041 
5042 
5043 /* md_write_start(mddev, bi)
5044  * If we need to update some array metadata (e.g. 'active' flag
5045  * in superblock) before writing, schedule a superblock update
5046  * and wait for it to complete.
5047  */
5048 void md_write_start(mddev_t *mddev, struct bio *bi)
5049 {
5050 	if (bio_data_dir(bi) != WRITE)
5051 		return;
5052 
5053 	BUG_ON(mddev->ro == 1);
5054 	if (mddev->ro == 2) {
5055 		/* need to switch to read/write */
5056 		mddev->ro = 0;
5057 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5058 		md_wakeup_thread(mddev->thread);
5059 	}
5060 	atomic_inc(&mddev->writes_pending);
5061 	if (mddev->in_sync) {
5062 		spin_lock_irq(&mddev->write_lock);
5063 		if (mddev->in_sync) {
5064 			mddev->in_sync = 0;
5065 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5066 			md_wakeup_thread(mddev->thread);
5067 		}
5068 		spin_unlock_irq(&mddev->write_lock);
5069 	}
5070 	wait_event(mddev->sb_wait, mddev->flags==0);
5071 }
5072 
5073 void md_write_end(mddev_t *mddev)
5074 {
5075 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5076 		if (mddev->safemode == 2)
5077 			md_wakeup_thread(mddev->thread);
5078 		else if (mddev->safemode_delay)
5079 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5080 	}
5081 }
5082 
5083 /* md_allow_write(mddev)
5084  * Calling this ensures that the array is marked 'active' so that writes
5085  * may proceed without blocking.  It is important to call this before
5086  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5087  * Must be called with mddev_lock held.
5088  */
5089 void md_allow_write(mddev_t *mddev)
5090 {
5091 	if (!mddev->pers)
5092 		return;
5093 	if (mddev->ro)
5094 		return;
5095 
5096 	spin_lock_irq(&mddev->write_lock);
5097 	if (mddev->in_sync) {
5098 		mddev->in_sync = 0;
5099 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5100 		if (mddev->safemode_delay &&
5101 		    mddev->safemode == 0)
5102 			mddev->safemode = 1;
5103 		spin_unlock_irq(&mddev->write_lock);
5104 		md_update_sb(mddev, 0);
5105 	} else
5106 		spin_unlock_irq(&mddev->write_lock);
5107 }
5108 EXPORT_SYMBOL_GPL(md_allow_write);
5109 
5110 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5111 
5112 #define SYNC_MARKS	10
5113 #define	SYNC_MARK_STEP	(3*HZ)
5114 void md_do_sync(mddev_t *mddev)
5115 {
5116 	mddev_t *mddev2;
5117 	unsigned int currspeed = 0,
5118 		 window;
5119 	sector_t max_sectors,j, io_sectors;
5120 	unsigned long mark[SYNC_MARKS];
5121 	sector_t mark_cnt[SYNC_MARKS];
5122 	int last_mark,m;
5123 	struct list_head *tmp;
5124 	sector_t last_check;
5125 	int skipped = 0;
5126 	struct list_head *rtmp;
5127 	mdk_rdev_t *rdev;
5128 	char *desc;
5129 
5130 	/* just incase thread restarts... */
5131 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5132 		return;
5133 	if (mddev->ro) /* never try to sync a read-only array */
5134 		return;
5135 
5136 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5137 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5138 			desc = "data-check";
5139 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5140 			desc = "requested-resync";
5141 		else
5142 			desc = "resync";
5143 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5144 		desc = "reshape";
5145 	else
5146 		desc = "recovery";
5147 
5148 	/* we overload curr_resync somewhat here.
5149 	 * 0 == not engaged in resync at all
5150 	 * 2 == checking that there is no conflict with another sync
5151 	 * 1 == like 2, but have yielded to allow conflicting resync to
5152 	 *		commense
5153 	 * other == active in resync - this many blocks
5154 	 *
5155 	 * Before starting a resync we must have set curr_resync to
5156 	 * 2, and then checked that every "conflicting" array has curr_resync
5157 	 * less than ours.  When we find one that is the same or higher
5158 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5159 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5160 	 * This will mean we have to start checking from the beginning again.
5161 	 *
5162 	 */
5163 
5164 	do {
5165 		mddev->curr_resync = 2;
5166 
5167 	try_again:
5168 		if (kthread_should_stop()) {
5169 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5170 			goto skip;
5171 		}
5172 		ITERATE_MDDEV(mddev2,tmp) {
5173 			if (mddev2 == mddev)
5174 				continue;
5175 			if (mddev2->curr_resync &&
5176 			    match_mddev_units(mddev,mddev2)) {
5177 				DEFINE_WAIT(wq);
5178 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5179 					/* arbitrarily yield */
5180 					mddev->curr_resync = 1;
5181 					wake_up(&resync_wait);
5182 				}
5183 				if (mddev > mddev2 && mddev->curr_resync == 1)
5184 					/* no need to wait here, we can wait the next
5185 					 * time 'round when curr_resync == 2
5186 					 */
5187 					continue;
5188 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5189 				if (!kthread_should_stop() &&
5190 				    mddev2->curr_resync >= mddev->curr_resync) {
5191 					printk(KERN_INFO "md: delaying %s of %s"
5192 					       " until %s has finished (they"
5193 					       " share one or more physical units)\n",
5194 					       desc, mdname(mddev), mdname(mddev2));
5195 					mddev_put(mddev2);
5196 					schedule();
5197 					finish_wait(&resync_wait, &wq);
5198 					goto try_again;
5199 				}
5200 				finish_wait(&resync_wait, &wq);
5201 			}
5202 		}
5203 	} while (mddev->curr_resync < 2);
5204 
5205 	j = 0;
5206 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5207 		/* resync follows the size requested by the personality,
5208 		 * which defaults to physical size, but can be virtual size
5209 		 */
5210 		max_sectors = mddev->resync_max_sectors;
5211 		mddev->resync_mismatches = 0;
5212 		/* we don't use the checkpoint if there's a bitmap */
5213 		if (!mddev->bitmap &&
5214 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5215 			j = mddev->recovery_cp;
5216 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5217 		max_sectors = mddev->size << 1;
5218 	else {
5219 		/* recovery follows the physical size of devices */
5220 		max_sectors = mddev->size << 1;
5221 		j = MaxSector;
5222 		ITERATE_RDEV(mddev,rdev,rtmp)
5223 			if (rdev->raid_disk >= 0 &&
5224 			    !test_bit(Faulty, &rdev->flags) &&
5225 			    !test_bit(In_sync, &rdev->flags) &&
5226 			    rdev->recovery_offset < j)
5227 				j = rdev->recovery_offset;
5228 	}
5229 
5230 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5231 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5232 		" %d KB/sec/disk.\n", speed_min(mddev));
5233 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5234 	       "(but not more than %d KB/sec) for %s.\n",
5235 	       speed_max(mddev), desc);
5236 
5237 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5238 
5239 	io_sectors = 0;
5240 	for (m = 0; m < SYNC_MARKS; m++) {
5241 		mark[m] = jiffies;
5242 		mark_cnt[m] = io_sectors;
5243 	}
5244 	last_mark = 0;
5245 	mddev->resync_mark = mark[last_mark];
5246 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5247 
5248 	/*
5249 	 * Tune reconstruction:
5250 	 */
5251 	window = 32*(PAGE_SIZE/512);
5252 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5253 		window/2,(unsigned long long) max_sectors/2);
5254 
5255 	atomic_set(&mddev->recovery_active, 0);
5256 	init_waitqueue_head(&mddev->recovery_wait);
5257 	last_check = 0;
5258 
5259 	if (j>2) {
5260 		printk(KERN_INFO
5261 		       "md: resuming %s of %s from checkpoint.\n",
5262 		       desc, mdname(mddev));
5263 		mddev->curr_resync = j;
5264 	}
5265 
5266 	while (j < max_sectors) {
5267 		sector_t sectors;
5268 
5269 		skipped = 0;
5270 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5271 					    currspeed < speed_min(mddev));
5272 		if (sectors == 0) {
5273 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5274 			goto out;
5275 		}
5276 
5277 		if (!skipped) { /* actual IO requested */
5278 			io_sectors += sectors;
5279 			atomic_add(sectors, &mddev->recovery_active);
5280 		}
5281 
5282 		j += sectors;
5283 		if (j>1) mddev->curr_resync = j;
5284 		mddev->curr_mark_cnt = io_sectors;
5285 		if (last_check == 0)
5286 			/* this is the earliers that rebuilt will be
5287 			 * visible in /proc/mdstat
5288 			 */
5289 			md_new_event(mddev);
5290 
5291 		if (last_check + window > io_sectors || j == max_sectors)
5292 			continue;
5293 
5294 		last_check = io_sectors;
5295 
5296 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5297 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5298 			break;
5299 
5300 	repeat:
5301 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5302 			/* step marks */
5303 			int next = (last_mark+1) % SYNC_MARKS;
5304 
5305 			mddev->resync_mark = mark[next];
5306 			mddev->resync_mark_cnt = mark_cnt[next];
5307 			mark[next] = jiffies;
5308 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5309 			last_mark = next;
5310 		}
5311 
5312 
5313 		if (kthread_should_stop()) {
5314 			/*
5315 			 * got a signal, exit.
5316 			 */
5317 			printk(KERN_INFO
5318 				"md: md_do_sync() got signal ... exiting\n");
5319 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5320 			goto out;
5321 		}
5322 
5323 		/*
5324 		 * this loop exits only if either when we are slower than
5325 		 * the 'hard' speed limit, or the system was IO-idle for
5326 		 * a jiffy.
5327 		 * the system might be non-idle CPU-wise, but we only care
5328 		 * about not overloading the IO subsystem. (things like an
5329 		 * e2fsck being done on the RAID array should execute fast)
5330 		 */
5331 		mddev->queue->unplug_fn(mddev->queue);
5332 		cond_resched();
5333 
5334 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5335 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5336 
5337 		if (currspeed > speed_min(mddev)) {
5338 			if ((currspeed > speed_max(mddev)) ||
5339 					!is_mddev_idle(mddev)) {
5340 				msleep(500);
5341 				goto repeat;
5342 			}
5343 		}
5344 	}
5345 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5346 	/*
5347 	 * this also signals 'finished resyncing' to md_stop
5348 	 */
5349  out:
5350 	mddev->queue->unplug_fn(mddev->queue);
5351 
5352 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5353 
5354 	/* tell personality that we are finished */
5355 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5356 
5357 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5358 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5359 	    mddev->curr_resync > 2) {
5360 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5361 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5362 				if (mddev->curr_resync >= mddev->recovery_cp) {
5363 					printk(KERN_INFO
5364 					       "md: checkpointing %s of %s.\n",
5365 					       desc, mdname(mddev));
5366 					mddev->recovery_cp = mddev->curr_resync;
5367 				}
5368 			} else
5369 				mddev->recovery_cp = MaxSector;
5370 		} else {
5371 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5372 				mddev->curr_resync = MaxSector;
5373 			ITERATE_RDEV(mddev,rdev,rtmp)
5374 				if (rdev->raid_disk >= 0 &&
5375 				    !test_bit(Faulty, &rdev->flags) &&
5376 				    !test_bit(In_sync, &rdev->flags) &&
5377 				    rdev->recovery_offset < mddev->curr_resync)
5378 					rdev->recovery_offset = mddev->curr_resync;
5379 		}
5380 	}
5381 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5382 
5383  skip:
5384 	mddev->curr_resync = 0;
5385 	wake_up(&resync_wait);
5386 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5387 	md_wakeup_thread(mddev->thread);
5388 }
5389 EXPORT_SYMBOL_GPL(md_do_sync);
5390 
5391 
5392 static int remove_and_add_spares(mddev_t *mddev)
5393 {
5394 	mdk_rdev_t *rdev;
5395 	struct list_head *rtmp;
5396 	int spares = 0;
5397 
5398 	ITERATE_RDEV(mddev,rdev,rtmp)
5399 		if (rdev->raid_disk >= 0 &&
5400 		    (test_bit(Faulty, &rdev->flags) ||
5401 		     ! test_bit(In_sync, &rdev->flags)) &&
5402 		    atomic_read(&rdev->nr_pending)==0) {
5403 			if (mddev->pers->hot_remove_disk(
5404 				    mddev, rdev->raid_disk)==0) {
5405 				char nm[20];
5406 				sprintf(nm,"rd%d", rdev->raid_disk);
5407 				sysfs_remove_link(&mddev->kobj, nm);
5408 				rdev->raid_disk = -1;
5409 			}
5410 		}
5411 
5412 	if (mddev->degraded) {
5413 		ITERATE_RDEV(mddev,rdev,rtmp)
5414 			if (rdev->raid_disk < 0
5415 			    && !test_bit(Faulty, &rdev->flags)) {
5416 				rdev->recovery_offset = 0;
5417 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5418 					char nm[20];
5419 					sprintf(nm, "rd%d", rdev->raid_disk);
5420 					if (sysfs_create_link(&mddev->kobj,
5421 							      &rdev->kobj, nm))
5422 						printk(KERN_WARNING
5423 						       "md: cannot register "
5424 						       "%s for %s\n",
5425 						       nm, mdname(mddev));
5426 					spares++;
5427 					md_new_event(mddev);
5428 				} else
5429 					break;
5430 			}
5431 	}
5432 	return spares;
5433 }
5434 /*
5435  * This routine is regularly called by all per-raid-array threads to
5436  * deal with generic issues like resync and super-block update.
5437  * Raid personalities that don't have a thread (linear/raid0) do not
5438  * need this as they never do any recovery or update the superblock.
5439  *
5440  * It does not do any resync itself, but rather "forks" off other threads
5441  * to do that as needed.
5442  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5443  * "->recovery" and create a thread at ->sync_thread.
5444  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5445  * and wakeups up this thread which will reap the thread and finish up.
5446  * This thread also removes any faulty devices (with nr_pending == 0).
5447  *
5448  * The overall approach is:
5449  *  1/ if the superblock needs updating, update it.
5450  *  2/ If a recovery thread is running, don't do anything else.
5451  *  3/ If recovery has finished, clean up, possibly marking spares active.
5452  *  4/ If there are any faulty devices, remove them.
5453  *  5/ If array is degraded, try to add spares devices
5454  *  6/ If array has spares or is not in-sync, start a resync thread.
5455  */
5456 void md_check_recovery(mddev_t *mddev)
5457 {
5458 	mdk_rdev_t *rdev;
5459 	struct list_head *rtmp;
5460 
5461 
5462 	if (mddev->bitmap)
5463 		bitmap_daemon_work(mddev->bitmap);
5464 
5465 	if (mddev->ro)
5466 		return;
5467 
5468 	if (signal_pending(current)) {
5469 		if (mddev->pers->sync_request) {
5470 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5471 			       mdname(mddev));
5472 			mddev->safemode = 2;
5473 		}
5474 		flush_signals(current);
5475 	}
5476 
5477 	if ( ! (
5478 		mddev->flags ||
5479 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5480 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5481 		(mddev->safemode == 1) ||
5482 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5483 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5484 		))
5485 		return;
5486 
5487 	if (mddev_trylock(mddev)) {
5488 		int spares = 0;
5489 
5490 		spin_lock_irq(&mddev->write_lock);
5491 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5492 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5493 			mddev->in_sync = 1;
5494 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5495 		}
5496 		if (mddev->safemode == 1)
5497 			mddev->safemode = 0;
5498 		spin_unlock_irq(&mddev->write_lock);
5499 
5500 		if (mddev->flags)
5501 			md_update_sb(mddev, 0);
5502 
5503 
5504 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5505 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5506 			/* resync/recovery still happening */
5507 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5508 			goto unlock;
5509 		}
5510 		if (mddev->sync_thread) {
5511 			/* resync has finished, collect result */
5512 			md_unregister_thread(mddev->sync_thread);
5513 			mddev->sync_thread = NULL;
5514 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5515 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5516 				/* success...*/
5517 				/* activate any spares */
5518 				mddev->pers->spare_active(mddev);
5519 			}
5520 			md_update_sb(mddev, 1);
5521 
5522 			/* if array is no-longer degraded, then any saved_raid_disk
5523 			 * information must be scrapped
5524 			 */
5525 			if (!mddev->degraded)
5526 				ITERATE_RDEV(mddev,rdev,rtmp)
5527 					rdev->saved_raid_disk = -1;
5528 
5529 			mddev->recovery = 0;
5530 			/* flag recovery needed just to double check */
5531 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5532 			md_new_event(mddev);
5533 			goto unlock;
5534 		}
5535 		/* Clear some bits that don't mean anything, but
5536 		 * might be left set
5537 		 */
5538 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5539 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5540 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5541 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5542 
5543 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5544 			goto unlock;
5545 		/* no recovery is running.
5546 		 * remove any failed drives, then
5547 		 * add spares if possible.
5548 		 * Spare are also removed and re-added, to allow
5549 		 * the personality to fail the re-add.
5550 		 */
5551 
5552 		if (mddev->reshape_position != MaxSector) {
5553 			if (mddev->pers->check_reshape(mddev) != 0)
5554 				/* Cannot proceed */
5555 				goto unlock;
5556 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5557 		} else if ((spares = remove_and_add_spares(mddev))) {
5558 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5559 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5560 		} else if (mddev->recovery_cp < MaxSector) {
5561 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5562 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5563 			/* nothing to be done ... */
5564 			goto unlock;
5565 
5566 		if (mddev->pers->sync_request) {
5567 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5568 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5569 				/* We are adding a device or devices to an array
5570 				 * which has the bitmap stored on all devices.
5571 				 * So make sure all bitmap pages get written
5572 				 */
5573 				bitmap_write_all(mddev->bitmap);
5574 			}
5575 			mddev->sync_thread = md_register_thread(md_do_sync,
5576 								mddev,
5577 								"%s_resync");
5578 			if (!mddev->sync_thread) {
5579 				printk(KERN_ERR "%s: could not start resync"
5580 					" thread...\n",
5581 					mdname(mddev));
5582 				/* leave the spares where they are, it shouldn't hurt */
5583 				mddev->recovery = 0;
5584 			} else
5585 				md_wakeup_thread(mddev->sync_thread);
5586 			md_new_event(mddev);
5587 		}
5588 	unlock:
5589 		mddev_unlock(mddev);
5590 	}
5591 }
5592 
5593 static int md_notify_reboot(struct notifier_block *this,
5594 			    unsigned long code, void *x)
5595 {
5596 	struct list_head *tmp;
5597 	mddev_t *mddev;
5598 
5599 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5600 
5601 		printk(KERN_INFO "md: stopping all md devices.\n");
5602 
5603 		ITERATE_MDDEV(mddev,tmp)
5604 			if (mddev_trylock(mddev)) {
5605 				do_md_stop (mddev, 1);
5606 				mddev_unlock(mddev);
5607 			}
5608 		/*
5609 		 * certain more exotic SCSI devices are known to be
5610 		 * volatile wrt too early system reboots. While the
5611 		 * right place to handle this issue is the given
5612 		 * driver, we do want to have a safe RAID driver ...
5613 		 */
5614 		mdelay(1000*1);
5615 	}
5616 	return NOTIFY_DONE;
5617 }
5618 
5619 static struct notifier_block md_notifier = {
5620 	.notifier_call	= md_notify_reboot,
5621 	.next		= NULL,
5622 	.priority	= INT_MAX, /* before any real devices */
5623 };
5624 
5625 static void md_geninit(void)
5626 {
5627 	struct proc_dir_entry *p;
5628 
5629 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5630 
5631 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5632 	if (p)
5633 		p->proc_fops = &md_seq_fops;
5634 }
5635 
5636 static int __init md_init(void)
5637 {
5638 	if (register_blkdev(MAJOR_NR, "md"))
5639 		return -1;
5640 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5641 		unregister_blkdev(MAJOR_NR, "md");
5642 		return -1;
5643 	}
5644 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5645 			    md_probe, NULL, NULL);
5646 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5647 			    md_probe, NULL, NULL);
5648 
5649 	register_reboot_notifier(&md_notifier);
5650 	raid_table_header = register_sysctl_table(raid_root_table);
5651 
5652 	md_geninit();
5653 	return (0);
5654 }
5655 
5656 
5657 #ifndef MODULE
5658 
5659 /*
5660  * Searches all registered partitions for autorun RAID arrays
5661  * at boot time.
5662  */
5663 static dev_t detected_devices[128];
5664 static int dev_cnt;
5665 
5666 void md_autodetect_dev(dev_t dev)
5667 {
5668 	if (dev_cnt >= 0 && dev_cnt < 127)
5669 		detected_devices[dev_cnt++] = dev;
5670 }
5671 
5672 
5673 static void autostart_arrays(int part)
5674 {
5675 	mdk_rdev_t *rdev;
5676 	int i;
5677 
5678 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5679 
5680 	for (i = 0; i < dev_cnt; i++) {
5681 		dev_t dev = detected_devices[i];
5682 
5683 		rdev = md_import_device(dev,0, 0);
5684 		if (IS_ERR(rdev))
5685 			continue;
5686 
5687 		if (test_bit(Faulty, &rdev->flags)) {
5688 			MD_BUG();
5689 			continue;
5690 		}
5691 		list_add(&rdev->same_set, &pending_raid_disks);
5692 	}
5693 	dev_cnt = 0;
5694 
5695 	autorun_devices(part);
5696 }
5697 
5698 #endif /* !MODULE */
5699 
5700 static __exit void md_exit(void)
5701 {
5702 	mddev_t *mddev;
5703 	struct list_head *tmp;
5704 
5705 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5706 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5707 
5708 	unregister_blkdev(MAJOR_NR,"md");
5709 	unregister_blkdev(mdp_major, "mdp");
5710 	unregister_reboot_notifier(&md_notifier);
5711 	unregister_sysctl_table(raid_table_header);
5712 	remove_proc_entry("mdstat", NULL);
5713 	ITERATE_MDDEV(mddev,tmp) {
5714 		struct gendisk *disk = mddev->gendisk;
5715 		if (!disk)
5716 			continue;
5717 		export_array(mddev);
5718 		del_gendisk(disk);
5719 		put_disk(disk);
5720 		mddev->gendisk = NULL;
5721 		mddev_put(mddev);
5722 	}
5723 }
5724 
5725 module_init(md_init)
5726 module_exit(md_exit)
5727 
5728 static int get_ro(char *buffer, struct kernel_param *kp)
5729 {
5730 	return sprintf(buffer, "%d", start_readonly);
5731 }
5732 static int set_ro(const char *val, struct kernel_param *kp)
5733 {
5734 	char *e;
5735 	int num = simple_strtoul(val, &e, 10);
5736 	if (*val && (*e == '\0' || *e == '\n')) {
5737 		start_readonly = num;
5738 		return 0;
5739 	}
5740 	return -EINVAL;
5741 }
5742 
5743 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5744 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5745 
5746 
5747 EXPORT_SYMBOL(register_md_personality);
5748 EXPORT_SYMBOL(unregister_md_personality);
5749 EXPORT_SYMBOL(md_error);
5750 EXPORT_SYMBOL(md_done_sync);
5751 EXPORT_SYMBOL(md_write_start);
5752 EXPORT_SYMBOL(md_write_end);
5753 EXPORT_SYMBOL(md_register_thread);
5754 EXPORT_SYMBOL(md_unregister_thread);
5755 EXPORT_SYMBOL(md_wakeup_thread);
5756 EXPORT_SYMBOL(md_check_recovery);
5757 MODULE_LICENSE("GPL");
5758 MODULE_ALIAS("md");
5759 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5760