xref: /openbmc/linux/drivers/md/md.c (revision bf800ef1816b4283a885e55ad38068aec9711e4d)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185 	/* 'bio' is a cloned bio which we need to trim to match
186 	 * the given offset and size.
187 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
188 	 */
189 	int i;
190 	struct bio_vec *bvec;
191 	int sofar = 0;
192 
193 	size <<= 9;
194 	if (offset == 0 && size == bio->bi_size)
195 		return;
196 
197 	bio->bi_sector += offset;
198 	bio->bi_size = size;
199 	offset <<= 9;
200 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201 
202 	while (bio->bi_idx < bio->bi_vcnt &&
203 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204 		/* remove this whole bio_vec */
205 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206 		bio->bi_idx++;
207 	}
208 	if (bio->bi_idx < bio->bi_vcnt) {
209 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211 	}
212 	/* avoid any complications with bi_idx being non-zero*/
213 	if (bio->bi_idx) {
214 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216 		bio->bi_vcnt -= bio->bi_idx;
217 		bio->bi_idx = 0;
218 	}
219 	/* Make sure vcnt and last bv are not too big */
220 	bio_for_each_segment(bvec, bio, i) {
221 		if (sofar + bvec->bv_len > size)
222 			bvec->bv_len = size - sofar;
223 		if (bvec->bv_len == 0) {
224 			bio->bi_vcnt = i;
225 			break;
226 		}
227 		sofar += bvec->bv_len;
228 	}
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231 
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246 	atomic_inc(&md_event_count);
247 	wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250 
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256 	atomic_inc(&md_event_count);
257 	wake_up(&md_event_waiters);
258 }
259 
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266 
267 
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)					\
276 									\
277 	for (({ spin_lock(&all_mddevs_lock); 				\
278 		_tmp = all_mddevs.next;					\
279 		_mddev = NULL;});					\
280 	     ({ if (_tmp != &all_mddevs)				\
281 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282 		spin_unlock(&all_mddevs_lock);				\
283 		if (_mddev) mddev_put(_mddev);				\
284 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
285 		_tmp != &all_mddevs;});					\
286 	     ({ spin_lock(&all_mddevs_lock);				\
287 		_tmp = _tmp->next;})					\
288 		)
289 
290 
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300 	const int rw = bio_data_dir(bio);
301 	struct mddev *mddev = q->queuedata;
302 	int cpu;
303 	unsigned int sectors;
304 
305 	if (mddev == NULL || mddev->pers == NULL
306 	    || !mddev->ready) {
307 		bio_io_error(bio);
308 		return;
309 	}
310 	smp_rmb(); /* Ensure implications of  'active' are visible */
311 	rcu_read_lock();
312 	if (mddev->suspended) {
313 		DEFINE_WAIT(__wait);
314 		for (;;) {
315 			prepare_to_wait(&mddev->sb_wait, &__wait,
316 					TASK_UNINTERRUPTIBLE);
317 			if (!mddev->suspended)
318 				break;
319 			rcu_read_unlock();
320 			schedule();
321 			rcu_read_lock();
322 		}
323 		finish_wait(&mddev->sb_wait, &__wait);
324 	}
325 	atomic_inc(&mddev->active_io);
326 	rcu_read_unlock();
327 
328 	/*
329 	 * save the sectors now since our bio can
330 	 * go away inside make_request
331 	 */
332 	sectors = bio_sectors(bio);
333 	mddev->pers->make_request(mddev, bio);
334 
335 	cpu = part_stat_lock();
336 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338 	part_stat_unlock();
339 
340 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341 		wake_up(&mddev->sb_wait);
342 }
343 
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352 	BUG_ON(mddev->suspended);
353 	mddev->suspended = 1;
354 	synchronize_rcu();
355 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356 	mddev->pers->quiesce(mddev, 1);
357 
358 	del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361 
362 void mddev_resume(struct mddev *mddev)
363 {
364 	mddev->suspended = 0;
365 	wake_up(&mddev->sb_wait);
366 	mddev->pers->quiesce(mddev, 0);
367 
368 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369 	md_wakeup_thread(mddev->thread);
370 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373 
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376 	return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379 
380 /*
381  * Generic flush handling for md
382  */
383 
384 static void md_end_flush(struct bio *bio, int err)
385 {
386 	struct md_rdev *rdev = bio->bi_private;
387 	struct mddev *mddev = rdev->mddev;
388 
389 	rdev_dec_pending(rdev, mddev);
390 
391 	if (atomic_dec_and_test(&mddev->flush_pending)) {
392 		/* The pre-request flush has finished */
393 		queue_work(md_wq, &mddev->flush_work);
394 	}
395 	bio_put(bio);
396 }
397 
398 static void md_submit_flush_data(struct work_struct *ws);
399 
400 static void submit_flushes(struct work_struct *ws)
401 {
402 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403 	struct md_rdev *rdev;
404 
405 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406 	atomic_set(&mddev->flush_pending, 1);
407 	rcu_read_lock();
408 	rdev_for_each_rcu(rdev, mddev)
409 		if (rdev->raid_disk >= 0 &&
410 		    !test_bit(Faulty, &rdev->flags)) {
411 			/* Take two references, one is dropped
412 			 * when request finishes, one after
413 			 * we reclaim rcu_read_lock
414 			 */
415 			struct bio *bi;
416 			atomic_inc(&rdev->nr_pending);
417 			atomic_inc(&rdev->nr_pending);
418 			rcu_read_unlock();
419 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420 			bi->bi_end_io = md_end_flush;
421 			bi->bi_private = rdev;
422 			bi->bi_bdev = rdev->bdev;
423 			atomic_inc(&mddev->flush_pending);
424 			submit_bio(WRITE_FLUSH, bi);
425 			rcu_read_lock();
426 			rdev_dec_pending(rdev, mddev);
427 		}
428 	rcu_read_unlock();
429 	if (atomic_dec_and_test(&mddev->flush_pending))
430 		queue_work(md_wq, &mddev->flush_work);
431 }
432 
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436 	struct bio *bio = mddev->flush_bio;
437 
438 	if (bio->bi_size == 0)
439 		/* an empty barrier - all done */
440 		bio_endio(bio, 0);
441 	else {
442 		bio->bi_rw &= ~REQ_FLUSH;
443 		mddev->pers->make_request(mddev, bio);
444 	}
445 
446 	mddev->flush_bio = NULL;
447 	wake_up(&mddev->sb_wait);
448 }
449 
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452 	spin_lock_irq(&mddev->write_lock);
453 	wait_event_lock_irq(mddev->sb_wait,
454 			    !mddev->flush_bio,
455 			    mddev->write_lock, /*nothing*/);
456 	mddev->flush_bio = bio;
457 	spin_unlock_irq(&mddev->write_lock);
458 
459 	INIT_WORK(&mddev->flush_work, submit_flushes);
460 	queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463 
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466 	struct mddev *mddev = cb->data;
467 	md_wakeup_thread(mddev->thread);
468 	kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471 
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474 	atomic_inc(&mddev->active);
475 	return mddev;
476 }
477 
478 static void mddev_delayed_delete(struct work_struct *ws);
479 
480 static void mddev_put(struct mddev *mddev)
481 {
482 	struct bio_set *bs = NULL;
483 
484 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485 		return;
486 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487 	    mddev->ctime == 0 && !mddev->hold_active) {
488 		/* Array is not configured at all, and not held active,
489 		 * so destroy it */
490 		list_del_init(&mddev->all_mddevs);
491 		bs = mddev->bio_set;
492 		mddev->bio_set = NULL;
493 		if (mddev->gendisk) {
494 			/* We did a probe so need to clean up.  Call
495 			 * queue_work inside the spinlock so that
496 			 * flush_workqueue() after mddev_find will
497 			 * succeed in waiting for the work to be done.
498 			 */
499 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500 			queue_work(md_misc_wq, &mddev->del_work);
501 		} else
502 			kfree(mddev);
503 	}
504 	spin_unlock(&all_mddevs_lock);
505 	if (bs)
506 		bioset_free(bs);
507 }
508 
509 void mddev_init(struct mddev *mddev)
510 {
511 	mutex_init(&mddev->open_mutex);
512 	mutex_init(&mddev->reconfig_mutex);
513 	mutex_init(&mddev->bitmap_info.mutex);
514 	INIT_LIST_HEAD(&mddev->disks);
515 	INIT_LIST_HEAD(&mddev->all_mddevs);
516 	init_timer(&mddev->safemode_timer);
517 	atomic_set(&mddev->active, 1);
518 	atomic_set(&mddev->openers, 0);
519 	atomic_set(&mddev->active_io, 0);
520 	spin_lock_init(&mddev->write_lock);
521 	atomic_set(&mddev->flush_pending, 0);
522 	init_waitqueue_head(&mddev->sb_wait);
523 	init_waitqueue_head(&mddev->recovery_wait);
524 	mddev->reshape_position = MaxSector;
525 	mddev->reshape_backwards = 0;
526 	mddev->resync_min = 0;
527 	mddev->resync_max = MaxSector;
528 	mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531 
532 static struct mddev * mddev_find(dev_t unit)
533 {
534 	struct mddev *mddev, *new = NULL;
535 
536 	if (unit && MAJOR(unit) != MD_MAJOR)
537 		unit &= ~((1<<MdpMinorShift)-1);
538 
539  retry:
540 	spin_lock(&all_mddevs_lock);
541 
542 	if (unit) {
543 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544 			if (mddev->unit == unit) {
545 				mddev_get(mddev);
546 				spin_unlock(&all_mddevs_lock);
547 				kfree(new);
548 				return mddev;
549 			}
550 
551 		if (new) {
552 			list_add(&new->all_mddevs, &all_mddevs);
553 			spin_unlock(&all_mddevs_lock);
554 			new->hold_active = UNTIL_IOCTL;
555 			return new;
556 		}
557 	} else if (new) {
558 		/* find an unused unit number */
559 		static int next_minor = 512;
560 		int start = next_minor;
561 		int is_free = 0;
562 		int dev = 0;
563 		while (!is_free) {
564 			dev = MKDEV(MD_MAJOR, next_minor);
565 			next_minor++;
566 			if (next_minor > MINORMASK)
567 				next_minor = 0;
568 			if (next_minor == start) {
569 				/* Oh dear, all in use. */
570 				spin_unlock(&all_mddevs_lock);
571 				kfree(new);
572 				return NULL;
573 			}
574 
575 			is_free = 1;
576 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577 				if (mddev->unit == dev) {
578 					is_free = 0;
579 					break;
580 				}
581 		}
582 		new->unit = dev;
583 		new->md_minor = MINOR(dev);
584 		new->hold_active = UNTIL_STOP;
585 		list_add(&new->all_mddevs, &all_mddevs);
586 		spin_unlock(&all_mddevs_lock);
587 		return new;
588 	}
589 	spin_unlock(&all_mddevs_lock);
590 
591 	new = kzalloc(sizeof(*new), GFP_KERNEL);
592 	if (!new)
593 		return NULL;
594 
595 	new->unit = unit;
596 	if (MAJOR(unit) == MD_MAJOR)
597 		new->md_minor = MINOR(unit);
598 	else
599 		new->md_minor = MINOR(unit) >> MdpMinorShift;
600 
601 	mddev_init(new);
602 
603 	goto retry;
604 }
605 
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610 
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613 	return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615 
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618 	return mutex_trylock(&mddev->reconfig_mutex);
619 }
620 
621 static struct attribute_group md_redundancy_group;
622 
623 static void mddev_unlock(struct mddev * mddev)
624 {
625 	if (mddev->to_remove) {
626 		/* These cannot be removed under reconfig_mutex as
627 		 * an access to the files will try to take reconfig_mutex
628 		 * while holding the file unremovable, which leads to
629 		 * a deadlock.
630 		 * So hold set sysfs_active while the remove in happeing,
631 		 * and anything else which might set ->to_remove or my
632 		 * otherwise change the sysfs namespace will fail with
633 		 * -EBUSY if sysfs_active is still set.
634 		 * We set sysfs_active under reconfig_mutex and elsewhere
635 		 * test it under the same mutex to ensure its correct value
636 		 * is seen.
637 		 */
638 		struct attribute_group *to_remove = mddev->to_remove;
639 		mddev->to_remove = NULL;
640 		mddev->sysfs_active = 1;
641 		mutex_unlock(&mddev->reconfig_mutex);
642 
643 		if (mddev->kobj.sd) {
644 			if (to_remove != &md_redundancy_group)
645 				sysfs_remove_group(&mddev->kobj, to_remove);
646 			if (mddev->pers == NULL ||
647 			    mddev->pers->sync_request == NULL) {
648 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649 				if (mddev->sysfs_action)
650 					sysfs_put(mddev->sysfs_action);
651 				mddev->sysfs_action = NULL;
652 			}
653 		}
654 		mddev->sysfs_active = 0;
655 	} else
656 		mutex_unlock(&mddev->reconfig_mutex);
657 
658 	/* As we've dropped the mutex we need a spinlock to
659 	 * make sure the thread doesn't disappear
660 	 */
661 	spin_lock(&pers_lock);
662 	md_wakeup_thread(mddev->thread);
663 	spin_unlock(&pers_lock);
664 }
665 
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668 	struct md_rdev *rdev;
669 
670 	rdev_for_each(rdev, mddev)
671 		if (rdev->desc_nr == nr)
672 			return rdev;
673 
674 	return NULL;
675 }
676 
677 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
678 {
679 	struct md_rdev *rdev;
680 
681 	rdev_for_each(rdev, mddev)
682 		if (rdev->bdev->bd_dev == dev)
683 			return rdev;
684 
685 	return NULL;
686 }
687 
688 static struct md_personality *find_pers(int level, char *clevel)
689 {
690 	struct md_personality *pers;
691 	list_for_each_entry(pers, &pers_list, list) {
692 		if (level != LEVEL_NONE && pers->level == level)
693 			return pers;
694 		if (strcmp(pers->name, clevel)==0)
695 			return pers;
696 	}
697 	return NULL;
698 }
699 
700 /* return the offset of the super block in 512byte sectors */
701 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
702 {
703 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
704 	return MD_NEW_SIZE_SECTORS(num_sectors);
705 }
706 
707 static int alloc_disk_sb(struct md_rdev * rdev)
708 {
709 	if (rdev->sb_page)
710 		MD_BUG();
711 
712 	rdev->sb_page = alloc_page(GFP_KERNEL);
713 	if (!rdev->sb_page) {
714 		printk(KERN_ALERT "md: out of memory.\n");
715 		return -ENOMEM;
716 	}
717 
718 	return 0;
719 }
720 
721 void md_rdev_clear(struct md_rdev *rdev)
722 {
723 	if (rdev->sb_page) {
724 		put_page(rdev->sb_page);
725 		rdev->sb_loaded = 0;
726 		rdev->sb_page = NULL;
727 		rdev->sb_start = 0;
728 		rdev->sectors = 0;
729 	}
730 	if (rdev->bb_page) {
731 		put_page(rdev->bb_page);
732 		rdev->bb_page = NULL;
733 	}
734 	kfree(rdev->badblocks.page);
735 	rdev->badblocks.page = NULL;
736 }
737 EXPORT_SYMBOL_GPL(md_rdev_clear);
738 
739 static void super_written(struct bio *bio, int error)
740 {
741 	struct md_rdev *rdev = bio->bi_private;
742 	struct mddev *mddev = rdev->mddev;
743 
744 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
745 		printk("md: super_written gets error=%d, uptodate=%d\n",
746 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
747 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
748 		md_error(mddev, rdev);
749 	}
750 
751 	if (atomic_dec_and_test(&mddev->pending_writes))
752 		wake_up(&mddev->sb_wait);
753 	bio_put(bio);
754 }
755 
756 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
757 		   sector_t sector, int size, struct page *page)
758 {
759 	/* write first size bytes of page to sector of rdev
760 	 * Increment mddev->pending_writes before returning
761 	 * and decrement it on completion, waking up sb_wait
762 	 * if zero is reached.
763 	 * If an error occurred, call md_error
764 	 */
765 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
766 
767 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
768 	bio->bi_sector = sector;
769 	bio_add_page(bio, page, size, 0);
770 	bio->bi_private = rdev;
771 	bio->bi_end_io = super_written;
772 
773 	atomic_inc(&mddev->pending_writes);
774 	submit_bio(WRITE_FLUSH_FUA, bio);
775 }
776 
777 void md_super_wait(struct mddev *mddev)
778 {
779 	/* wait for all superblock writes that were scheduled to complete */
780 	DEFINE_WAIT(wq);
781 	for(;;) {
782 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
783 		if (atomic_read(&mddev->pending_writes)==0)
784 			break;
785 		schedule();
786 	}
787 	finish_wait(&mddev->sb_wait, &wq);
788 }
789 
790 static void bi_complete(struct bio *bio, int error)
791 {
792 	complete((struct completion*)bio->bi_private);
793 }
794 
795 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
796 		 struct page *page, int rw, bool metadata_op)
797 {
798 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
799 	struct completion event;
800 	int ret;
801 
802 	rw |= REQ_SYNC;
803 
804 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
805 		rdev->meta_bdev : rdev->bdev;
806 	if (metadata_op)
807 		bio->bi_sector = sector + rdev->sb_start;
808 	else if (rdev->mddev->reshape_position != MaxSector &&
809 		 (rdev->mddev->reshape_backwards ==
810 		  (sector >= rdev->mddev->reshape_position)))
811 		bio->bi_sector = sector + rdev->new_data_offset;
812 	else
813 		bio->bi_sector = sector + rdev->data_offset;
814 	bio_add_page(bio, page, size, 0);
815 	init_completion(&event);
816 	bio->bi_private = &event;
817 	bio->bi_end_io = bi_complete;
818 	submit_bio(rw, bio);
819 	wait_for_completion(&event);
820 
821 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
822 	bio_put(bio);
823 	return ret;
824 }
825 EXPORT_SYMBOL_GPL(sync_page_io);
826 
827 static int read_disk_sb(struct md_rdev * rdev, int size)
828 {
829 	char b[BDEVNAME_SIZE];
830 	if (!rdev->sb_page) {
831 		MD_BUG();
832 		return -EINVAL;
833 	}
834 	if (rdev->sb_loaded)
835 		return 0;
836 
837 
838 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
839 		goto fail;
840 	rdev->sb_loaded = 1;
841 	return 0;
842 
843 fail:
844 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
845 		bdevname(rdev->bdev,b));
846 	return -EINVAL;
847 }
848 
849 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
850 {
851 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
852 		sb1->set_uuid1 == sb2->set_uuid1 &&
853 		sb1->set_uuid2 == sb2->set_uuid2 &&
854 		sb1->set_uuid3 == sb2->set_uuid3;
855 }
856 
857 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
858 {
859 	int ret;
860 	mdp_super_t *tmp1, *tmp2;
861 
862 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
863 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
864 
865 	if (!tmp1 || !tmp2) {
866 		ret = 0;
867 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
868 		goto abort;
869 	}
870 
871 	*tmp1 = *sb1;
872 	*tmp2 = *sb2;
873 
874 	/*
875 	 * nr_disks is not constant
876 	 */
877 	tmp1->nr_disks = 0;
878 	tmp2->nr_disks = 0;
879 
880 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
881 abort:
882 	kfree(tmp1);
883 	kfree(tmp2);
884 	return ret;
885 }
886 
887 
888 static u32 md_csum_fold(u32 csum)
889 {
890 	csum = (csum & 0xffff) + (csum >> 16);
891 	return (csum & 0xffff) + (csum >> 16);
892 }
893 
894 static unsigned int calc_sb_csum(mdp_super_t * sb)
895 {
896 	u64 newcsum = 0;
897 	u32 *sb32 = (u32*)sb;
898 	int i;
899 	unsigned int disk_csum, csum;
900 
901 	disk_csum = sb->sb_csum;
902 	sb->sb_csum = 0;
903 
904 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
905 		newcsum += sb32[i];
906 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
907 
908 
909 #ifdef CONFIG_ALPHA
910 	/* This used to use csum_partial, which was wrong for several
911 	 * reasons including that different results are returned on
912 	 * different architectures.  It isn't critical that we get exactly
913 	 * the same return value as before (we always csum_fold before
914 	 * testing, and that removes any differences).  However as we
915 	 * know that csum_partial always returned a 16bit value on
916 	 * alphas, do a fold to maximise conformity to previous behaviour.
917 	 */
918 	sb->sb_csum = md_csum_fold(disk_csum);
919 #else
920 	sb->sb_csum = disk_csum;
921 #endif
922 	return csum;
923 }
924 
925 
926 /*
927  * Handle superblock details.
928  * We want to be able to handle multiple superblock formats
929  * so we have a common interface to them all, and an array of
930  * different handlers.
931  * We rely on user-space to write the initial superblock, and support
932  * reading and updating of superblocks.
933  * Interface methods are:
934  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
935  *      loads and validates a superblock on dev.
936  *      if refdev != NULL, compare superblocks on both devices
937  *    Return:
938  *      0 - dev has a superblock that is compatible with refdev
939  *      1 - dev has a superblock that is compatible and newer than refdev
940  *          so dev should be used as the refdev in future
941  *     -EINVAL superblock incompatible or invalid
942  *     -othererror e.g. -EIO
943  *
944  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
945  *      Verify that dev is acceptable into mddev.
946  *       The first time, mddev->raid_disks will be 0, and data from
947  *       dev should be merged in.  Subsequent calls check that dev
948  *       is new enough.  Return 0 or -EINVAL
949  *
950  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
951  *     Update the superblock for rdev with data in mddev
952  *     This does not write to disc.
953  *
954  */
955 
956 struct super_type  {
957 	char		    *name;
958 	struct module	    *owner;
959 	int		    (*load_super)(struct md_rdev *rdev,
960 					  struct md_rdev *refdev,
961 					  int minor_version);
962 	int		    (*validate_super)(struct mddev *mddev,
963 					      struct md_rdev *rdev);
964 	void		    (*sync_super)(struct mddev *mddev,
965 					  struct md_rdev *rdev);
966 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
967 						sector_t num_sectors);
968 	int		    (*allow_new_offset)(struct md_rdev *rdev,
969 						unsigned long long new_offset);
970 };
971 
972 /*
973  * Check that the given mddev has no bitmap.
974  *
975  * This function is called from the run method of all personalities that do not
976  * support bitmaps. It prints an error message and returns non-zero if mddev
977  * has a bitmap. Otherwise, it returns 0.
978  *
979  */
980 int md_check_no_bitmap(struct mddev *mddev)
981 {
982 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
983 		return 0;
984 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
985 		mdname(mddev), mddev->pers->name);
986 	return 1;
987 }
988 EXPORT_SYMBOL(md_check_no_bitmap);
989 
990 /*
991  * load_super for 0.90.0
992  */
993 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
994 {
995 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
996 	mdp_super_t *sb;
997 	int ret;
998 
999 	/*
1000 	 * Calculate the position of the superblock (512byte sectors),
1001 	 * it's at the end of the disk.
1002 	 *
1003 	 * It also happens to be a multiple of 4Kb.
1004 	 */
1005 	rdev->sb_start = calc_dev_sboffset(rdev);
1006 
1007 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1008 	if (ret) return ret;
1009 
1010 	ret = -EINVAL;
1011 
1012 	bdevname(rdev->bdev, b);
1013 	sb = page_address(rdev->sb_page);
1014 
1015 	if (sb->md_magic != MD_SB_MAGIC) {
1016 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1017 		       b);
1018 		goto abort;
1019 	}
1020 
1021 	if (sb->major_version != 0 ||
1022 	    sb->minor_version < 90 ||
1023 	    sb->minor_version > 91) {
1024 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1025 			sb->major_version, sb->minor_version,
1026 			b);
1027 		goto abort;
1028 	}
1029 
1030 	if (sb->raid_disks <= 0)
1031 		goto abort;
1032 
1033 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1034 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1035 			b);
1036 		goto abort;
1037 	}
1038 
1039 	rdev->preferred_minor = sb->md_minor;
1040 	rdev->data_offset = 0;
1041 	rdev->new_data_offset = 0;
1042 	rdev->sb_size = MD_SB_BYTES;
1043 	rdev->badblocks.shift = -1;
1044 
1045 	if (sb->level == LEVEL_MULTIPATH)
1046 		rdev->desc_nr = -1;
1047 	else
1048 		rdev->desc_nr = sb->this_disk.number;
1049 
1050 	if (!refdev) {
1051 		ret = 1;
1052 	} else {
1053 		__u64 ev1, ev2;
1054 		mdp_super_t *refsb = page_address(refdev->sb_page);
1055 		if (!uuid_equal(refsb, sb)) {
1056 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1057 				b, bdevname(refdev->bdev,b2));
1058 			goto abort;
1059 		}
1060 		if (!sb_equal(refsb, sb)) {
1061 			printk(KERN_WARNING "md: %s has same UUID"
1062 			       " but different superblock to %s\n",
1063 			       b, bdevname(refdev->bdev, b2));
1064 			goto abort;
1065 		}
1066 		ev1 = md_event(sb);
1067 		ev2 = md_event(refsb);
1068 		if (ev1 > ev2)
1069 			ret = 1;
1070 		else
1071 			ret = 0;
1072 	}
1073 	rdev->sectors = rdev->sb_start;
1074 	/* Limit to 4TB as metadata cannot record more than that.
1075 	 * (not needed for Linear and RAID0 as metadata doesn't
1076 	 * record this size)
1077 	 */
1078 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1079 		rdev->sectors = (2ULL << 32) - 2;
1080 
1081 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1082 		/* "this cannot possibly happen" ... */
1083 		ret = -EINVAL;
1084 
1085  abort:
1086 	return ret;
1087 }
1088 
1089 /*
1090  * validate_super for 0.90.0
1091  */
1092 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1093 {
1094 	mdp_disk_t *desc;
1095 	mdp_super_t *sb = page_address(rdev->sb_page);
1096 	__u64 ev1 = md_event(sb);
1097 
1098 	rdev->raid_disk = -1;
1099 	clear_bit(Faulty, &rdev->flags);
1100 	clear_bit(In_sync, &rdev->flags);
1101 	clear_bit(WriteMostly, &rdev->flags);
1102 
1103 	if (mddev->raid_disks == 0) {
1104 		mddev->major_version = 0;
1105 		mddev->minor_version = sb->minor_version;
1106 		mddev->patch_version = sb->patch_version;
1107 		mddev->external = 0;
1108 		mddev->chunk_sectors = sb->chunk_size >> 9;
1109 		mddev->ctime = sb->ctime;
1110 		mddev->utime = sb->utime;
1111 		mddev->level = sb->level;
1112 		mddev->clevel[0] = 0;
1113 		mddev->layout = sb->layout;
1114 		mddev->raid_disks = sb->raid_disks;
1115 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1116 		mddev->events = ev1;
1117 		mddev->bitmap_info.offset = 0;
1118 		mddev->bitmap_info.space = 0;
1119 		/* bitmap can use 60 K after the 4K superblocks */
1120 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1121 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1122 		mddev->reshape_backwards = 0;
1123 
1124 		if (mddev->minor_version >= 91) {
1125 			mddev->reshape_position = sb->reshape_position;
1126 			mddev->delta_disks = sb->delta_disks;
1127 			mddev->new_level = sb->new_level;
1128 			mddev->new_layout = sb->new_layout;
1129 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1130 			if (mddev->delta_disks < 0)
1131 				mddev->reshape_backwards = 1;
1132 		} else {
1133 			mddev->reshape_position = MaxSector;
1134 			mddev->delta_disks = 0;
1135 			mddev->new_level = mddev->level;
1136 			mddev->new_layout = mddev->layout;
1137 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1138 		}
1139 
1140 		if (sb->state & (1<<MD_SB_CLEAN))
1141 			mddev->recovery_cp = MaxSector;
1142 		else {
1143 			if (sb->events_hi == sb->cp_events_hi &&
1144 				sb->events_lo == sb->cp_events_lo) {
1145 				mddev->recovery_cp = sb->recovery_cp;
1146 			} else
1147 				mddev->recovery_cp = 0;
1148 		}
1149 
1150 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1151 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1152 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1153 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1154 
1155 		mddev->max_disks = MD_SB_DISKS;
1156 
1157 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1158 		    mddev->bitmap_info.file == NULL) {
1159 			mddev->bitmap_info.offset =
1160 				mddev->bitmap_info.default_offset;
1161 			mddev->bitmap_info.space =
1162 				mddev->bitmap_info.space;
1163 		}
1164 
1165 	} else if (mddev->pers == NULL) {
1166 		/* Insist on good event counter while assembling, except
1167 		 * for spares (which don't need an event count) */
1168 		++ev1;
1169 		if (sb->disks[rdev->desc_nr].state & (
1170 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1171 			if (ev1 < mddev->events)
1172 				return -EINVAL;
1173 	} else if (mddev->bitmap) {
1174 		/* if adding to array with a bitmap, then we can accept an
1175 		 * older device ... but not too old.
1176 		 */
1177 		if (ev1 < mddev->bitmap->events_cleared)
1178 			return 0;
1179 	} else {
1180 		if (ev1 < mddev->events)
1181 			/* just a hot-add of a new device, leave raid_disk at -1 */
1182 			return 0;
1183 	}
1184 
1185 	if (mddev->level != LEVEL_MULTIPATH) {
1186 		desc = sb->disks + rdev->desc_nr;
1187 
1188 		if (desc->state & (1<<MD_DISK_FAULTY))
1189 			set_bit(Faulty, &rdev->flags);
1190 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1191 			    desc->raid_disk < mddev->raid_disks */) {
1192 			set_bit(In_sync, &rdev->flags);
1193 			rdev->raid_disk = desc->raid_disk;
1194 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1195 			/* active but not in sync implies recovery up to
1196 			 * reshape position.  We don't know exactly where
1197 			 * that is, so set to zero for now */
1198 			if (mddev->minor_version >= 91) {
1199 				rdev->recovery_offset = 0;
1200 				rdev->raid_disk = desc->raid_disk;
1201 			}
1202 		}
1203 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1204 			set_bit(WriteMostly, &rdev->flags);
1205 	} else /* MULTIPATH are always insync */
1206 		set_bit(In_sync, &rdev->flags);
1207 	return 0;
1208 }
1209 
1210 /*
1211  * sync_super for 0.90.0
1212  */
1213 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1214 {
1215 	mdp_super_t *sb;
1216 	struct md_rdev *rdev2;
1217 	int next_spare = mddev->raid_disks;
1218 
1219 
1220 	/* make rdev->sb match mddev data..
1221 	 *
1222 	 * 1/ zero out disks
1223 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1224 	 * 3/ any empty disks < next_spare become removed
1225 	 *
1226 	 * disks[0] gets initialised to REMOVED because
1227 	 * we cannot be sure from other fields if it has
1228 	 * been initialised or not.
1229 	 */
1230 	int i;
1231 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1232 
1233 	rdev->sb_size = MD_SB_BYTES;
1234 
1235 	sb = page_address(rdev->sb_page);
1236 
1237 	memset(sb, 0, sizeof(*sb));
1238 
1239 	sb->md_magic = MD_SB_MAGIC;
1240 	sb->major_version = mddev->major_version;
1241 	sb->patch_version = mddev->patch_version;
1242 	sb->gvalid_words  = 0; /* ignored */
1243 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1244 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1245 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1246 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1247 
1248 	sb->ctime = mddev->ctime;
1249 	sb->level = mddev->level;
1250 	sb->size = mddev->dev_sectors / 2;
1251 	sb->raid_disks = mddev->raid_disks;
1252 	sb->md_minor = mddev->md_minor;
1253 	sb->not_persistent = 0;
1254 	sb->utime = mddev->utime;
1255 	sb->state = 0;
1256 	sb->events_hi = (mddev->events>>32);
1257 	sb->events_lo = (u32)mddev->events;
1258 
1259 	if (mddev->reshape_position == MaxSector)
1260 		sb->minor_version = 90;
1261 	else {
1262 		sb->minor_version = 91;
1263 		sb->reshape_position = mddev->reshape_position;
1264 		sb->new_level = mddev->new_level;
1265 		sb->delta_disks = mddev->delta_disks;
1266 		sb->new_layout = mddev->new_layout;
1267 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1268 	}
1269 	mddev->minor_version = sb->minor_version;
1270 	if (mddev->in_sync)
1271 	{
1272 		sb->recovery_cp = mddev->recovery_cp;
1273 		sb->cp_events_hi = (mddev->events>>32);
1274 		sb->cp_events_lo = (u32)mddev->events;
1275 		if (mddev->recovery_cp == MaxSector)
1276 			sb->state = (1<< MD_SB_CLEAN);
1277 	} else
1278 		sb->recovery_cp = 0;
1279 
1280 	sb->layout = mddev->layout;
1281 	sb->chunk_size = mddev->chunk_sectors << 9;
1282 
1283 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1284 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1285 
1286 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1287 	rdev_for_each(rdev2, mddev) {
1288 		mdp_disk_t *d;
1289 		int desc_nr;
1290 		int is_active = test_bit(In_sync, &rdev2->flags);
1291 
1292 		if (rdev2->raid_disk >= 0 &&
1293 		    sb->minor_version >= 91)
1294 			/* we have nowhere to store the recovery_offset,
1295 			 * but if it is not below the reshape_position,
1296 			 * we can piggy-back on that.
1297 			 */
1298 			is_active = 1;
1299 		if (rdev2->raid_disk < 0 ||
1300 		    test_bit(Faulty, &rdev2->flags))
1301 			is_active = 0;
1302 		if (is_active)
1303 			desc_nr = rdev2->raid_disk;
1304 		else
1305 			desc_nr = next_spare++;
1306 		rdev2->desc_nr = desc_nr;
1307 		d = &sb->disks[rdev2->desc_nr];
1308 		nr_disks++;
1309 		d->number = rdev2->desc_nr;
1310 		d->major = MAJOR(rdev2->bdev->bd_dev);
1311 		d->minor = MINOR(rdev2->bdev->bd_dev);
1312 		if (is_active)
1313 			d->raid_disk = rdev2->raid_disk;
1314 		else
1315 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1316 		if (test_bit(Faulty, &rdev2->flags))
1317 			d->state = (1<<MD_DISK_FAULTY);
1318 		else if (is_active) {
1319 			d->state = (1<<MD_DISK_ACTIVE);
1320 			if (test_bit(In_sync, &rdev2->flags))
1321 				d->state |= (1<<MD_DISK_SYNC);
1322 			active++;
1323 			working++;
1324 		} else {
1325 			d->state = 0;
1326 			spare++;
1327 			working++;
1328 		}
1329 		if (test_bit(WriteMostly, &rdev2->flags))
1330 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1331 	}
1332 	/* now set the "removed" and "faulty" bits on any missing devices */
1333 	for (i=0 ; i < mddev->raid_disks ; i++) {
1334 		mdp_disk_t *d = &sb->disks[i];
1335 		if (d->state == 0 && d->number == 0) {
1336 			d->number = i;
1337 			d->raid_disk = i;
1338 			d->state = (1<<MD_DISK_REMOVED);
1339 			d->state |= (1<<MD_DISK_FAULTY);
1340 			failed++;
1341 		}
1342 	}
1343 	sb->nr_disks = nr_disks;
1344 	sb->active_disks = active;
1345 	sb->working_disks = working;
1346 	sb->failed_disks = failed;
1347 	sb->spare_disks = spare;
1348 
1349 	sb->this_disk = sb->disks[rdev->desc_nr];
1350 	sb->sb_csum = calc_sb_csum(sb);
1351 }
1352 
1353 /*
1354  * rdev_size_change for 0.90.0
1355  */
1356 static unsigned long long
1357 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1358 {
1359 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1360 		return 0; /* component must fit device */
1361 	if (rdev->mddev->bitmap_info.offset)
1362 		return 0; /* can't move bitmap */
1363 	rdev->sb_start = calc_dev_sboffset(rdev);
1364 	if (!num_sectors || num_sectors > rdev->sb_start)
1365 		num_sectors = rdev->sb_start;
1366 	/* Limit to 4TB as metadata cannot record more than that.
1367 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1368 	 */
1369 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1370 		num_sectors = (2ULL << 32) - 2;
1371 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1372 		       rdev->sb_page);
1373 	md_super_wait(rdev->mddev);
1374 	return num_sectors;
1375 }
1376 
1377 static int
1378 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1379 {
1380 	/* non-zero offset changes not possible with v0.90 */
1381 	return new_offset == 0;
1382 }
1383 
1384 /*
1385  * version 1 superblock
1386  */
1387 
1388 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1389 {
1390 	__le32 disk_csum;
1391 	u32 csum;
1392 	unsigned long long newcsum;
1393 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1394 	__le32 *isuper = (__le32*)sb;
1395 	int i;
1396 
1397 	disk_csum = sb->sb_csum;
1398 	sb->sb_csum = 0;
1399 	newcsum = 0;
1400 	for (i=0; size>=4; size -= 4 )
1401 		newcsum += le32_to_cpu(*isuper++);
1402 
1403 	if (size == 2)
1404 		newcsum += le16_to_cpu(*(__le16*) isuper);
1405 
1406 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1407 	sb->sb_csum = disk_csum;
1408 	return cpu_to_le32(csum);
1409 }
1410 
1411 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1412 			    int acknowledged);
1413 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1414 {
1415 	struct mdp_superblock_1 *sb;
1416 	int ret;
1417 	sector_t sb_start;
1418 	sector_t sectors;
1419 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1420 	int bmask;
1421 
1422 	/*
1423 	 * Calculate the position of the superblock in 512byte sectors.
1424 	 * It is always aligned to a 4K boundary and
1425 	 * depeding on minor_version, it can be:
1426 	 * 0: At least 8K, but less than 12K, from end of device
1427 	 * 1: At start of device
1428 	 * 2: 4K from start of device.
1429 	 */
1430 	switch(minor_version) {
1431 	case 0:
1432 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1433 		sb_start -= 8*2;
1434 		sb_start &= ~(sector_t)(4*2-1);
1435 		break;
1436 	case 1:
1437 		sb_start = 0;
1438 		break;
1439 	case 2:
1440 		sb_start = 8;
1441 		break;
1442 	default:
1443 		return -EINVAL;
1444 	}
1445 	rdev->sb_start = sb_start;
1446 
1447 	/* superblock is rarely larger than 1K, but it can be larger,
1448 	 * and it is safe to read 4k, so we do that
1449 	 */
1450 	ret = read_disk_sb(rdev, 4096);
1451 	if (ret) return ret;
1452 
1453 
1454 	sb = page_address(rdev->sb_page);
1455 
1456 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1457 	    sb->major_version != cpu_to_le32(1) ||
1458 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1459 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1460 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1461 		return -EINVAL;
1462 
1463 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1464 		printk("md: invalid superblock checksum on %s\n",
1465 			bdevname(rdev->bdev,b));
1466 		return -EINVAL;
1467 	}
1468 	if (le64_to_cpu(sb->data_size) < 10) {
1469 		printk("md: data_size too small on %s\n",
1470 		       bdevname(rdev->bdev,b));
1471 		return -EINVAL;
1472 	}
1473 	if (sb->pad0 ||
1474 	    sb->pad3[0] ||
1475 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1476 		/* Some padding is non-zero, might be a new feature */
1477 		return -EINVAL;
1478 
1479 	rdev->preferred_minor = 0xffff;
1480 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1481 	rdev->new_data_offset = rdev->data_offset;
1482 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1483 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1484 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1485 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1486 
1487 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1488 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1489 	if (rdev->sb_size & bmask)
1490 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1491 
1492 	if (minor_version
1493 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1494 		return -EINVAL;
1495 	if (minor_version
1496 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1497 		return -EINVAL;
1498 
1499 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1500 		rdev->desc_nr = -1;
1501 	else
1502 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1503 
1504 	if (!rdev->bb_page) {
1505 		rdev->bb_page = alloc_page(GFP_KERNEL);
1506 		if (!rdev->bb_page)
1507 			return -ENOMEM;
1508 	}
1509 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1510 	    rdev->badblocks.count == 0) {
1511 		/* need to load the bad block list.
1512 		 * Currently we limit it to one page.
1513 		 */
1514 		s32 offset;
1515 		sector_t bb_sector;
1516 		u64 *bbp;
1517 		int i;
1518 		int sectors = le16_to_cpu(sb->bblog_size);
1519 		if (sectors > (PAGE_SIZE / 512))
1520 			return -EINVAL;
1521 		offset = le32_to_cpu(sb->bblog_offset);
1522 		if (offset == 0)
1523 			return -EINVAL;
1524 		bb_sector = (long long)offset;
1525 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1526 				  rdev->bb_page, READ, true))
1527 			return -EIO;
1528 		bbp = (u64 *)page_address(rdev->bb_page);
1529 		rdev->badblocks.shift = sb->bblog_shift;
1530 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1531 			u64 bb = le64_to_cpu(*bbp);
1532 			int count = bb & (0x3ff);
1533 			u64 sector = bb >> 10;
1534 			sector <<= sb->bblog_shift;
1535 			count <<= sb->bblog_shift;
1536 			if (bb + 1 == 0)
1537 				break;
1538 			if (md_set_badblocks(&rdev->badblocks,
1539 					     sector, count, 1) == 0)
1540 				return -EINVAL;
1541 		}
1542 	} else if (sb->bblog_offset == 0)
1543 		rdev->badblocks.shift = -1;
1544 
1545 	if (!refdev) {
1546 		ret = 1;
1547 	} else {
1548 		__u64 ev1, ev2;
1549 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1550 
1551 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1552 		    sb->level != refsb->level ||
1553 		    sb->layout != refsb->layout ||
1554 		    sb->chunksize != refsb->chunksize) {
1555 			printk(KERN_WARNING "md: %s has strangely different"
1556 				" superblock to %s\n",
1557 				bdevname(rdev->bdev,b),
1558 				bdevname(refdev->bdev,b2));
1559 			return -EINVAL;
1560 		}
1561 		ev1 = le64_to_cpu(sb->events);
1562 		ev2 = le64_to_cpu(refsb->events);
1563 
1564 		if (ev1 > ev2)
1565 			ret = 1;
1566 		else
1567 			ret = 0;
1568 	}
1569 	if (minor_version) {
1570 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1571 		sectors -= rdev->data_offset;
1572 	} else
1573 		sectors = rdev->sb_start;
1574 	if (sectors < le64_to_cpu(sb->data_size))
1575 		return -EINVAL;
1576 	rdev->sectors = le64_to_cpu(sb->data_size);
1577 	return ret;
1578 }
1579 
1580 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1581 {
1582 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1583 	__u64 ev1 = le64_to_cpu(sb->events);
1584 
1585 	rdev->raid_disk = -1;
1586 	clear_bit(Faulty, &rdev->flags);
1587 	clear_bit(In_sync, &rdev->flags);
1588 	clear_bit(WriteMostly, &rdev->flags);
1589 
1590 	if (mddev->raid_disks == 0) {
1591 		mddev->major_version = 1;
1592 		mddev->patch_version = 0;
1593 		mddev->external = 0;
1594 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1595 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1596 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1597 		mddev->level = le32_to_cpu(sb->level);
1598 		mddev->clevel[0] = 0;
1599 		mddev->layout = le32_to_cpu(sb->layout);
1600 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1601 		mddev->dev_sectors = le64_to_cpu(sb->size);
1602 		mddev->events = ev1;
1603 		mddev->bitmap_info.offset = 0;
1604 		mddev->bitmap_info.space = 0;
1605 		/* Default location for bitmap is 1K after superblock
1606 		 * using 3K - total of 4K
1607 		 */
1608 		mddev->bitmap_info.default_offset = 1024 >> 9;
1609 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1610 		mddev->reshape_backwards = 0;
1611 
1612 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1613 		memcpy(mddev->uuid, sb->set_uuid, 16);
1614 
1615 		mddev->max_disks =  (4096-256)/2;
1616 
1617 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1618 		    mddev->bitmap_info.file == NULL) {
1619 			mddev->bitmap_info.offset =
1620 				(__s32)le32_to_cpu(sb->bitmap_offset);
1621 			/* Metadata doesn't record how much space is available.
1622 			 * For 1.0, we assume we can use up to the superblock
1623 			 * if before, else to 4K beyond superblock.
1624 			 * For others, assume no change is possible.
1625 			 */
1626 			if (mddev->minor_version > 0)
1627 				mddev->bitmap_info.space = 0;
1628 			else if (mddev->bitmap_info.offset > 0)
1629 				mddev->bitmap_info.space =
1630 					8 - mddev->bitmap_info.offset;
1631 			else
1632 				mddev->bitmap_info.space =
1633 					-mddev->bitmap_info.offset;
1634 		}
1635 
1636 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1637 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1638 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1639 			mddev->new_level = le32_to_cpu(sb->new_level);
1640 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1641 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1642 			if (mddev->delta_disks < 0 ||
1643 			    (mddev->delta_disks == 0 &&
1644 			     (le32_to_cpu(sb->feature_map)
1645 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1646 				mddev->reshape_backwards = 1;
1647 		} else {
1648 			mddev->reshape_position = MaxSector;
1649 			mddev->delta_disks = 0;
1650 			mddev->new_level = mddev->level;
1651 			mddev->new_layout = mddev->layout;
1652 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1653 		}
1654 
1655 	} else if (mddev->pers == NULL) {
1656 		/* Insist of good event counter while assembling, except for
1657 		 * spares (which don't need an event count) */
1658 		++ev1;
1659 		if (rdev->desc_nr >= 0 &&
1660 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1661 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1662 			if (ev1 < mddev->events)
1663 				return -EINVAL;
1664 	} else if (mddev->bitmap) {
1665 		/* If adding to array with a bitmap, then we can accept an
1666 		 * older device, but not too old.
1667 		 */
1668 		if (ev1 < mddev->bitmap->events_cleared)
1669 			return 0;
1670 	} else {
1671 		if (ev1 < mddev->events)
1672 			/* just a hot-add of a new device, leave raid_disk at -1 */
1673 			return 0;
1674 	}
1675 	if (mddev->level != LEVEL_MULTIPATH) {
1676 		int role;
1677 		if (rdev->desc_nr < 0 ||
1678 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1679 			role = 0xffff;
1680 			rdev->desc_nr = -1;
1681 		} else
1682 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1683 		switch(role) {
1684 		case 0xffff: /* spare */
1685 			break;
1686 		case 0xfffe: /* faulty */
1687 			set_bit(Faulty, &rdev->flags);
1688 			break;
1689 		default:
1690 			if ((le32_to_cpu(sb->feature_map) &
1691 			     MD_FEATURE_RECOVERY_OFFSET))
1692 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1693 			else
1694 				set_bit(In_sync, &rdev->flags);
1695 			rdev->raid_disk = role;
1696 			break;
1697 		}
1698 		if (sb->devflags & WriteMostly1)
1699 			set_bit(WriteMostly, &rdev->flags);
1700 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1701 			set_bit(Replacement, &rdev->flags);
1702 	} else /* MULTIPATH are always insync */
1703 		set_bit(In_sync, &rdev->flags);
1704 
1705 	return 0;
1706 }
1707 
1708 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1709 {
1710 	struct mdp_superblock_1 *sb;
1711 	struct md_rdev *rdev2;
1712 	int max_dev, i;
1713 	/* make rdev->sb match mddev and rdev data. */
1714 
1715 	sb = page_address(rdev->sb_page);
1716 
1717 	sb->feature_map = 0;
1718 	sb->pad0 = 0;
1719 	sb->recovery_offset = cpu_to_le64(0);
1720 	memset(sb->pad3, 0, sizeof(sb->pad3));
1721 
1722 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1723 	sb->events = cpu_to_le64(mddev->events);
1724 	if (mddev->in_sync)
1725 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1726 	else
1727 		sb->resync_offset = cpu_to_le64(0);
1728 
1729 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1730 
1731 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1732 	sb->size = cpu_to_le64(mddev->dev_sectors);
1733 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1734 	sb->level = cpu_to_le32(mddev->level);
1735 	sb->layout = cpu_to_le32(mddev->layout);
1736 
1737 	if (test_bit(WriteMostly, &rdev->flags))
1738 		sb->devflags |= WriteMostly1;
1739 	else
1740 		sb->devflags &= ~WriteMostly1;
1741 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1742 	sb->data_size = cpu_to_le64(rdev->sectors);
1743 
1744 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1745 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1746 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1747 	}
1748 
1749 	if (rdev->raid_disk >= 0 &&
1750 	    !test_bit(In_sync, &rdev->flags)) {
1751 		sb->feature_map |=
1752 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1753 		sb->recovery_offset =
1754 			cpu_to_le64(rdev->recovery_offset);
1755 	}
1756 	if (test_bit(Replacement, &rdev->flags))
1757 		sb->feature_map |=
1758 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1759 
1760 	if (mddev->reshape_position != MaxSector) {
1761 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1762 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1763 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1764 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1765 		sb->new_level = cpu_to_le32(mddev->new_level);
1766 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1767 		if (mddev->delta_disks == 0 &&
1768 		    mddev->reshape_backwards)
1769 			sb->feature_map
1770 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1771 		if (rdev->new_data_offset != rdev->data_offset) {
1772 			sb->feature_map
1773 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1774 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1775 							     - rdev->data_offset));
1776 		}
1777 	}
1778 
1779 	if (rdev->badblocks.count == 0)
1780 		/* Nothing to do for bad blocks*/ ;
1781 	else if (sb->bblog_offset == 0)
1782 		/* Cannot record bad blocks on this device */
1783 		md_error(mddev, rdev);
1784 	else {
1785 		struct badblocks *bb = &rdev->badblocks;
1786 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1787 		u64 *p = bb->page;
1788 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1789 		if (bb->changed) {
1790 			unsigned seq;
1791 
1792 retry:
1793 			seq = read_seqbegin(&bb->lock);
1794 
1795 			memset(bbp, 0xff, PAGE_SIZE);
1796 
1797 			for (i = 0 ; i < bb->count ; i++) {
1798 				u64 internal_bb = *p++;
1799 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1800 						| BB_LEN(internal_bb));
1801 				*bbp++ = cpu_to_le64(store_bb);
1802 			}
1803 			bb->changed = 0;
1804 			if (read_seqretry(&bb->lock, seq))
1805 				goto retry;
1806 
1807 			bb->sector = (rdev->sb_start +
1808 				      (int)le32_to_cpu(sb->bblog_offset));
1809 			bb->size = le16_to_cpu(sb->bblog_size);
1810 		}
1811 	}
1812 
1813 	max_dev = 0;
1814 	rdev_for_each(rdev2, mddev)
1815 		if (rdev2->desc_nr+1 > max_dev)
1816 			max_dev = rdev2->desc_nr+1;
1817 
1818 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1819 		int bmask;
1820 		sb->max_dev = cpu_to_le32(max_dev);
1821 		rdev->sb_size = max_dev * 2 + 256;
1822 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1823 		if (rdev->sb_size & bmask)
1824 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1825 	} else
1826 		max_dev = le32_to_cpu(sb->max_dev);
1827 
1828 	for (i=0; i<max_dev;i++)
1829 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1830 
1831 	rdev_for_each(rdev2, mddev) {
1832 		i = rdev2->desc_nr;
1833 		if (test_bit(Faulty, &rdev2->flags))
1834 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835 		else if (test_bit(In_sync, &rdev2->flags))
1836 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1837 		else if (rdev2->raid_disk >= 0)
1838 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1839 		else
1840 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1841 	}
1842 
1843 	sb->sb_csum = calc_sb_1_csum(sb);
1844 }
1845 
1846 static unsigned long long
1847 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1848 {
1849 	struct mdp_superblock_1 *sb;
1850 	sector_t max_sectors;
1851 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1852 		return 0; /* component must fit device */
1853 	if (rdev->data_offset != rdev->new_data_offset)
1854 		return 0; /* too confusing */
1855 	if (rdev->sb_start < rdev->data_offset) {
1856 		/* minor versions 1 and 2; superblock before data */
1857 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1858 		max_sectors -= rdev->data_offset;
1859 		if (!num_sectors || num_sectors > max_sectors)
1860 			num_sectors = max_sectors;
1861 	} else if (rdev->mddev->bitmap_info.offset) {
1862 		/* minor version 0 with bitmap we can't move */
1863 		return 0;
1864 	} else {
1865 		/* minor version 0; superblock after data */
1866 		sector_t sb_start;
1867 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1868 		sb_start &= ~(sector_t)(4*2 - 1);
1869 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1870 		if (!num_sectors || num_sectors > max_sectors)
1871 			num_sectors = max_sectors;
1872 		rdev->sb_start = sb_start;
1873 	}
1874 	sb = page_address(rdev->sb_page);
1875 	sb->data_size = cpu_to_le64(num_sectors);
1876 	sb->super_offset = rdev->sb_start;
1877 	sb->sb_csum = calc_sb_1_csum(sb);
1878 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1879 		       rdev->sb_page);
1880 	md_super_wait(rdev->mddev);
1881 	return num_sectors;
1882 
1883 }
1884 
1885 static int
1886 super_1_allow_new_offset(struct md_rdev *rdev,
1887 			 unsigned long long new_offset)
1888 {
1889 	/* All necessary checks on new >= old have been done */
1890 	struct bitmap *bitmap;
1891 	if (new_offset >= rdev->data_offset)
1892 		return 1;
1893 
1894 	/* with 1.0 metadata, there is no metadata to tread on
1895 	 * so we can always move back */
1896 	if (rdev->mddev->minor_version == 0)
1897 		return 1;
1898 
1899 	/* otherwise we must be sure not to step on
1900 	 * any metadata, so stay:
1901 	 * 36K beyond start of superblock
1902 	 * beyond end of badblocks
1903 	 * beyond write-intent bitmap
1904 	 */
1905 	if (rdev->sb_start + (32+4)*2 > new_offset)
1906 		return 0;
1907 	bitmap = rdev->mddev->bitmap;
1908 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1909 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1910 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1911 		return 0;
1912 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1913 		return 0;
1914 
1915 	return 1;
1916 }
1917 
1918 static struct super_type super_types[] = {
1919 	[0] = {
1920 		.name	= "0.90.0",
1921 		.owner	= THIS_MODULE,
1922 		.load_super	    = super_90_load,
1923 		.validate_super	    = super_90_validate,
1924 		.sync_super	    = super_90_sync,
1925 		.rdev_size_change   = super_90_rdev_size_change,
1926 		.allow_new_offset   = super_90_allow_new_offset,
1927 	},
1928 	[1] = {
1929 		.name	= "md-1",
1930 		.owner	= THIS_MODULE,
1931 		.load_super	    = super_1_load,
1932 		.validate_super	    = super_1_validate,
1933 		.sync_super	    = super_1_sync,
1934 		.rdev_size_change   = super_1_rdev_size_change,
1935 		.allow_new_offset   = super_1_allow_new_offset,
1936 	},
1937 };
1938 
1939 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1940 {
1941 	if (mddev->sync_super) {
1942 		mddev->sync_super(mddev, rdev);
1943 		return;
1944 	}
1945 
1946 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1947 
1948 	super_types[mddev->major_version].sync_super(mddev, rdev);
1949 }
1950 
1951 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1952 {
1953 	struct md_rdev *rdev, *rdev2;
1954 
1955 	rcu_read_lock();
1956 	rdev_for_each_rcu(rdev, mddev1)
1957 		rdev_for_each_rcu(rdev2, mddev2)
1958 			if (rdev->bdev->bd_contains ==
1959 			    rdev2->bdev->bd_contains) {
1960 				rcu_read_unlock();
1961 				return 1;
1962 			}
1963 	rcu_read_unlock();
1964 	return 0;
1965 }
1966 
1967 static LIST_HEAD(pending_raid_disks);
1968 
1969 /*
1970  * Try to register data integrity profile for an mddev
1971  *
1972  * This is called when an array is started and after a disk has been kicked
1973  * from the array. It only succeeds if all working and active component devices
1974  * are integrity capable with matching profiles.
1975  */
1976 int md_integrity_register(struct mddev *mddev)
1977 {
1978 	struct md_rdev *rdev, *reference = NULL;
1979 
1980 	if (list_empty(&mddev->disks))
1981 		return 0; /* nothing to do */
1982 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1983 		return 0; /* shouldn't register, or already is */
1984 	rdev_for_each(rdev, mddev) {
1985 		/* skip spares and non-functional disks */
1986 		if (test_bit(Faulty, &rdev->flags))
1987 			continue;
1988 		if (rdev->raid_disk < 0)
1989 			continue;
1990 		if (!reference) {
1991 			/* Use the first rdev as the reference */
1992 			reference = rdev;
1993 			continue;
1994 		}
1995 		/* does this rdev's profile match the reference profile? */
1996 		if (blk_integrity_compare(reference->bdev->bd_disk,
1997 				rdev->bdev->bd_disk) < 0)
1998 			return -EINVAL;
1999 	}
2000 	if (!reference || !bdev_get_integrity(reference->bdev))
2001 		return 0;
2002 	/*
2003 	 * All component devices are integrity capable and have matching
2004 	 * profiles, register the common profile for the md device.
2005 	 */
2006 	if (blk_integrity_register(mddev->gendisk,
2007 			bdev_get_integrity(reference->bdev)) != 0) {
2008 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2009 			mdname(mddev));
2010 		return -EINVAL;
2011 	}
2012 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2013 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2014 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2015 		       mdname(mddev));
2016 		return -EINVAL;
2017 	}
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(md_integrity_register);
2021 
2022 /* Disable data integrity if non-capable/non-matching disk is being added */
2023 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2026 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2027 
2028 	if (!bi_mddev) /* nothing to do */
2029 		return;
2030 	if (rdev->raid_disk < 0) /* skip spares */
2031 		return;
2032 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2033 					     rdev->bdev->bd_disk) >= 0)
2034 		return;
2035 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2036 	blk_integrity_unregister(mddev->gendisk);
2037 }
2038 EXPORT_SYMBOL(md_integrity_add_rdev);
2039 
2040 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2041 {
2042 	char b[BDEVNAME_SIZE];
2043 	struct kobject *ko;
2044 	char *s;
2045 	int err;
2046 
2047 	if (rdev->mddev) {
2048 		MD_BUG();
2049 		return -EINVAL;
2050 	}
2051 
2052 	/* prevent duplicates */
2053 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2054 		return -EEXIST;
2055 
2056 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2057 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2058 			rdev->sectors < mddev->dev_sectors)) {
2059 		if (mddev->pers) {
2060 			/* Cannot change size, so fail
2061 			 * If mddev->level <= 0, then we don't care
2062 			 * about aligning sizes (e.g. linear)
2063 			 */
2064 			if (mddev->level > 0)
2065 				return -ENOSPC;
2066 		} else
2067 			mddev->dev_sectors = rdev->sectors;
2068 	}
2069 
2070 	/* Verify rdev->desc_nr is unique.
2071 	 * If it is -1, assign a free number, else
2072 	 * check number is not in use
2073 	 */
2074 	if (rdev->desc_nr < 0) {
2075 		int choice = 0;
2076 		if (mddev->pers) choice = mddev->raid_disks;
2077 		while (find_rdev_nr(mddev, choice))
2078 			choice++;
2079 		rdev->desc_nr = choice;
2080 	} else {
2081 		if (find_rdev_nr(mddev, rdev->desc_nr))
2082 			return -EBUSY;
2083 	}
2084 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2085 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2086 		       mdname(mddev), mddev->max_disks);
2087 		return -EBUSY;
2088 	}
2089 	bdevname(rdev->bdev,b);
2090 	while ( (s=strchr(b, '/')) != NULL)
2091 		*s = '!';
2092 
2093 	rdev->mddev = mddev;
2094 	printk(KERN_INFO "md: bind<%s>\n", b);
2095 
2096 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2097 		goto fail;
2098 
2099 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2100 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2101 		/* failure here is OK */;
2102 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2103 
2104 	list_add_rcu(&rdev->same_set, &mddev->disks);
2105 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2106 
2107 	/* May as well allow recovery to be retried once */
2108 	mddev->recovery_disabled++;
2109 
2110 	return 0;
2111 
2112  fail:
2113 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2114 	       b, mdname(mddev));
2115 	return err;
2116 }
2117 
2118 static void md_delayed_delete(struct work_struct *ws)
2119 {
2120 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2121 	kobject_del(&rdev->kobj);
2122 	kobject_put(&rdev->kobj);
2123 }
2124 
2125 static void unbind_rdev_from_array(struct md_rdev * rdev)
2126 {
2127 	char b[BDEVNAME_SIZE];
2128 	if (!rdev->mddev) {
2129 		MD_BUG();
2130 		return;
2131 	}
2132 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2133 	list_del_rcu(&rdev->same_set);
2134 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2135 	rdev->mddev = NULL;
2136 	sysfs_remove_link(&rdev->kobj, "block");
2137 	sysfs_put(rdev->sysfs_state);
2138 	rdev->sysfs_state = NULL;
2139 	rdev->badblocks.count = 0;
2140 	/* We need to delay this, otherwise we can deadlock when
2141 	 * writing to 'remove' to "dev/state".  We also need
2142 	 * to delay it due to rcu usage.
2143 	 */
2144 	synchronize_rcu();
2145 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2146 	kobject_get(&rdev->kobj);
2147 	queue_work(md_misc_wq, &rdev->del_work);
2148 }
2149 
2150 /*
2151  * prevent the device from being mounted, repartitioned or
2152  * otherwise reused by a RAID array (or any other kernel
2153  * subsystem), by bd_claiming the device.
2154  */
2155 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2156 {
2157 	int err = 0;
2158 	struct block_device *bdev;
2159 	char b[BDEVNAME_SIZE];
2160 
2161 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2162 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2163 	if (IS_ERR(bdev)) {
2164 		printk(KERN_ERR "md: could not open %s.\n",
2165 			__bdevname(dev, b));
2166 		return PTR_ERR(bdev);
2167 	}
2168 	rdev->bdev = bdev;
2169 	return err;
2170 }
2171 
2172 static void unlock_rdev(struct md_rdev *rdev)
2173 {
2174 	struct block_device *bdev = rdev->bdev;
2175 	rdev->bdev = NULL;
2176 	if (!bdev)
2177 		MD_BUG();
2178 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2179 }
2180 
2181 void md_autodetect_dev(dev_t dev);
2182 
2183 static void export_rdev(struct md_rdev * rdev)
2184 {
2185 	char b[BDEVNAME_SIZE];
2186 	printk(KERN_INFO "md: export_rdev(%s)\n",
2187 		bdevname(rdev->bdev,b));
2188 	if (rdev->mddev)
2189 		MD_BUG();
2190 	md_rdev_clear(rdev);
2191 #ifndef MODULE
2192 	if (test_bit(AutoDetected, &rdev->flags))
2193 		md_autodetect_dev(rdev->bdev->bd_dev);
2194 #endif
2195 	unlock_rdev(rdev);
2196 	kobject_put(&rdev->kobj);
2197 }
2198 
2199 static void kick_rdev_from_array(struct md_rdev * rdev)
2200 {
2201 	unbind_rdev_from_array(rdev);
2202 	export_rdev(rdev);
2203 }
2204 
2205 static void export_array(struct mddev *mddev)
2206 {
2207 	struct md_rdev *rdev, *tmp;
2208 
2209 	rdev_for_each_safe(rdev, tmp, mddev) {
2210 		if (!rdev->mddev) {
2211 			MD_BUG();
2212 			continue;
2213 		}
2214 		kick_rdev_from_array(rdev);
2215 	}
2216 	if (!list_empty(&mddev->disks))
2217 		MD_BUG();
2218 	mddev->raid_disks = 0;
2219 	mddev->major_version = 0;
2220 }
2221 
2222 static void print_desc(mdp_disk_t *desc)
2223 {
2224 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2225 		desc->major,desc->minor,desc->raid_disk,desc->state);
2226 }
2227 
2228 static void print_sb_90(mdp_super_t *sb)
2229 {
2230 	int i;
2231 
2232 	printk(KERN_INFO
2233 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2234 		sb->major_version, sb->minor_version, sb->patch_version,
2235 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2236 		sb->ctime);
2237 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2238 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2239 		sb->md_minor, sb->layout, sb->chunk_size);
2240 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2241 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2242 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2243 		sb->failed_disks, sb->spare_disks,
2244 		sb->sb_csum, (unsigned long)sb->events_lo);
2245 
2246 	printk(KERN_INFO);
2247 	for (i = 0; i < MD_SB_DISKS; i++) {
2248 		mdp_disk_t *desc;
2249 
2250 		desc = sb->disks + i;
2251 		if (desc->number || desc->major || desc->minor ||
2252 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2253 			printk("     D %2d: ", i);
2254 			print_desc(desc);
2255 		}
2256 	}
2257 	printk(KERN_INFO "md:     THIS: ");
2258 	print_desc(&sb->this_disk);
2259 }
2260 
2261 static void print_sb_1(struct mdp_superblock_1 *sb)
2262 {
2263 	__u8 *uuid;
2264 
2265 	uuid = sb->set_uuid;
2266 	printk(KERN_INFO
2267 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2268 	       "md:    Name: \"%s\" CT:%llu\n",
2269 		le32_to_cpu(sb->major_version),
2270 		le32_to_cpu(sb->feature_map),
2271 		uuid,
2272 		sb->set_name,
2273 		(unsigned long long)le64_to_cpu(sb->ctime)
2274 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2275 
2276 	uuid = sb->device_uuid;
2277 	printk(KERN_INFO
2278 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2279 			" RO:%llu\n"
2280 	       "md:     Dev:%08x UUID: %pU\n"
2281 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2282 	       "md:         (MaxDev:%u) \n",
2283 		le32_to_cpu(sb->level),
2284 		(unsigned long long)le64_to_cpu(sb->size),
2285 		le32_to_cpu(sb->raid_disks),
2286 		le32_to_cpu(sb->layout),
2287 		le32_to_cpu(sb->chunksize),
2288 		(unsigned long long)le64_to_cpu(sb->data_offset),
2289 		(unsigned long long)le64_to_cpu(sb->data_size),
2290 		(unsigned long long)le64_to_cpu(sb->super_offset),
2291 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2292 		le32_to_cpu(sb->dev_number),
2293 		uuid,
2294 		sb->devflags,
2295 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2296 		(unsigned long long)le64_to_cpu(sb->events),
2297 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2298 		le32_to_cpu(sb->sb_csum),
2299 		le32_to_cpu(sb->max_dev)
2300 		);
2301 }
2302 
2303 static void print_rdev(struct md_rdev *rdev, int major_version)
2304 {
2305 	char b[BDEVNAME_SIZE];
2306 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2307 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2308 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2309 	        rdev->desc_nr);
2310 	if (rdev->sb_loaded) {
2311 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2312 		switch (major_version) {
2313 		case 0:
2314 			print_sb_90(page_address(rdev->sb_page));
2315 			break;
2316 		case 1:
2317 			print_sb_1(page_address(rdev->sb_page));
2318 			break;
2319 		}
2320 	} else
2321 		printk(KERN_INFO "md: no rdev superblock!\n");
2322 }
2323 
2324 static void md_print_devices(void)
2325 {
2326 	struct list_head *tmp;
2327 	struct md_rdev *rdev;
2328 	struct mddev *mddev;
2329 	char b[BDEVNAME_SIZE];
2330 
2331 	printk("\n");
2332 	printk("md:	**********************************\n");
2333 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2334 	printk("md:	**********************************\n");
2335 	for_each_mddev(mddev, tmp) {
2336 
2337 		if (mddev->bitmap)
2338 			bitmap_print_sb(mddev->bitmap);
2339 		else
2340 			printk("%s: ", mdname(mddev));
2341 		rdev_for_each(rdev, mddev)
2342 			printk("<%s>", bdevname(rdev->bdev,b));
2343 		printk("\n");
2344 
2345 		rdev_for_each(rdev, mddev)
2346 			print_rdev(rdev, mddev->major_version);
2347 	}
2348 	printk("md:	**********************************\n");
2349 	printk("\n");
2350 }
2351 
2352 
2353 static void sync_sbs(struct mddev * mddev, int nospares)
2354 {
2355 	/* Update each superblock (in-memory image), but
2356 	 * if we are allowed to, skip spares which already
2357 	 * have the right event counter, or have one earlier
2358 	 * (which would mean they aren't being marked as dirty
2359 	 * with the rest of the array)
2360 	 */
2361 	struct md_rdev *rdev;
2362 	rdev_for_each(rdev, mddev) {
2363 		if (rdev->sb_events == mddev->events ||
2364 		    (nospares &&
2365 		     rdev->raid_disk < 0 &&
2366 		     rdev->sb_events+1 == mddev->events)) {
2367 			/* Don't update this superblock */
2368 			rdev->sb_loaded = 2;
2369 		} else {
2370 			sync_super(mddev, rdev);
2371 			rdev->sb_loaded = 1;
2372 		}
2373 	}
2374 }
2375 
2376 static void md_update_sb(struct mddev * mddev, int force_change)
2377 {
2378 	struct md_rdev *rdev;
2379 	int sync_req;
2380 	int nospares = 0;
2381 	int any_badblocks_changed = 0;
2382 
2383 repeat:
2384 	/* First make sure individual recovery_offsets are correct */
2385 	rdev_for_each(rdev, mddev) {
2386 		if (rdev->raid_disk >= 0 &&
2387 		    mddev->delta_disks >= 0 &&
2388 		    !test_bit(In_sync, &rdev->flags) &&
2389 		    mddev->curr_resync_completed > rdev->recovery_offset)
2390 				rdev->recovery_offset = mddev->curr_resync_completed;
2391 
2392 	}
2393 	if (!mddev->persistent) {
2394 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2395 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2396 		if (!mddev->external) {
2397 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2398 			rdev_for_each(rdev, mddev) {
2399 				if (rdev->badblocks.changed) {
2400 					rdev->badblocks.changed = 0;
2401 					md_ack_all_badblocks(&rdev->badblocks);
2402 					md_error(mddev, rdev);
2403 				}
2404 				clear_bit(Blocked, &rdev->flags);
2405 				clear_bit(BlockedBadBlocks, &rdev->flags);
2406 				wake_up(&rdev->blocked_wait);
2407 			}
2408 		}
2409 		wake_up(&mddev->sb_wait);
2410 		return;
2411 	}
2412 
2413 	spin_lock_irq(&mddev->write_lock);
2414 
2415 	mddev->utime = get_seconds();
2416 
2417 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2418 		force_change = 1;
2419 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2420 		/* just a clean<-> dirty transition, possibly leave spares alone,
2421 		 * though if events isn't the right even/odd, we will have to do
2422 		 * spares after all
2423 		 */
2424 		nospares = 1;
2425 	if (force_change)
2426 		nospares = 0;
2427 	if (mddev->degraded)
2428 		/* If the array is degraded, then skipping spares is both
2429 		 * dangerous and fairly pointless.
2430 		 * Dangerous because a device that was removed from the array
2431 		 * might have a event_count that still looks up-to-date,
2432 		 * so it can be re-added without a resync.
2433 		 * Pointless because if there are any spares to skip,
2434 		 * then a recovery will happen and soon that array won't
2435 		 * be degraded any more and the spare can go back to sleep then.
2436 		 */
2437 		nospares = 0;
2438 
2439 	sync_req = mddev->in_sync;
2440 
2441 	/* If this is just a dirty<->clean transition, and the array is clean
2442 	 * and 'events' is odd, we can roll back to the previous clean state */
2443 	if (nospares
2444 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2445 	    && mddev->can_decrease_events
2446 	    && mddev->events != 1) {
2447 		mddev->events--;
2448 		mddev->can_decrease_events = 0;
2449 	} else {
2450 		/* otherwise we have to go forward and ... */
2451 		mddev->events ++;
2452 		mddev->can_decrease_events = nospares;
2453 	}
2454 
2455 	if (!mddev->events) {
2456 		/*
2457 		 * oops, this 64-bit counter should never wrap.
2458 		 * Either we are in around ~1 trillion A.C., assuming
2459 		 * 1 reboot per second, or we have a bug:
2460 		 */
2461 		MD_BUG();
2462 		mddev->events --;
2463 	}
2464 
2465 	rdev_for_each(rdev, mddev) {
2466 		if (rdev->badblocks.changed)
2467 			any_badblocks_changed++;
2468 		if (test_bit(Faulty, &rdev->flags))
2469 			set_bit(FaultRecorded, &rdev->flags);
2470 	}
2471 
2472 	sync_sbs(mddev, nospares);
2473 	spin_unlock_irq(&mddev->write_lock);
2474 
2475 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2476 		 mdname(mddev), mddev->in_sync);
2477 
2478 	bitmap_update_sb(mddev->bitmap);
2479 	rdev_for_each(rdev, mddev) {
2480 		char b[BDEVNAME_SIZE];
2481 
2482 		if (rdev->sb_loaded != 1)
2483 			continue; /* no noise on spare devices */
2484 
2485 		if (!test_bit(Faulty, &rdev->flags) &&
2486 		    rdev->saved_raid_disk == -1) {
2487 			md_super_write(mddev,rdev,
2488 				       rdev->sb_start, rdev->sb_size,
2489 				       rdev->sb_page);
2490 			pr_debug("md: (write) %s's sb offset: %llu\n",
2491 				 bdevname(rdev->bdev, b),
2492 				 (unsigned long long)rdev->sb_start);
2493 			rdev->sb_events = mddev->events;
2494 			if (rdev->badblocks.size) {
2495 				md_super_write(mddev, rdev,
2496 					       rdev->badblocks.sector,
2497 					       rdev->badblocks.size << 9,
2498 					       rdev->bb_page);
2499 				rdev->badblocks.size = 0;
2500 			}
2501 
2502 		} else if (test_bit(Faulty, &rdev->flags))
2503 			pr_debug("md: %s (skipping faulty)\n",
2504 				 bdevname(rdev->bdev, b));
2505 		else
2506 			pr_debug("(skipping incremental s/r ");
2507 
2508 		if (mddev->level == LEVEL_MULTIPATH)
2509 			/* only need to write one superblock... */
2510 			break;
2511 	}
2512 	md_super_wait(mddev);
2513 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2514 
2515 	spin_lock_irq(&mddev->write_lock);
2516 	if (mddev->in_sync != sync_req ||
2517 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2518 		/* have to write it out again */
2519 		spin_unlock_irq(&mddev->write_lock);
2520 		goto repeat;
2521 	}
2522 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2523 	spin_unlock_irq(&mddev->write_lock);
2524 	wake_up(&mddev->sb_wait);
2525 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2526 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2527 
2528 	rdev_for_each(rdev, mddev) {
2529 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2530 			clear_bit(Blocked, &rdev->flags);
2531 
2532 		if (any_badblocks_changed)
2533 			md_ack_all_badblocks(&rdev->badblocks);
2534 		clear_bit(BlockedBadBlocks, &rdev->flags);
2535 		wake_up(&rdev->blocked_wait);
2536 	}
2537 }
2538 
2539 /* words written to sysfs files may, or may not, be \n terminated.
2540  * We want to accept with case. For this we use cmd_match.
2541  */
2542 static int cmd_match(const char *cmd, const char *str)
2543 {
2544 	/* See if cmd, written into a sysfs file, matches
2545 	 * str.  They must either be the same, or cmd can
2546 	 * have a trailing newline
2547 	 */
2548 	while (*cmd && *str && *cmd == *str) {
2549 		cmd++;
2550 		str++;
2551 	}
2552 	if (*cmd == '\n')
2553 		cmd++;
2554 	if (*str || *cmd)
2555 		return 0;
2556 	return 1;
2557 }
2558 
2559 struct rdev_sysfs_entry {
2560 	struct attribute attr;
2561 	ssize_t (*show)(struct md_rdev *, char *);
2562 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2563 };
2564 
2565 static ssize_t
2566 state_show(struct md_rdev *rdev, char *page)
2567 {
2568 	char *sep = "";
2569 	size_t len = 0;
2570 
2571 	if (test_bit(Faulty, &rdev->flags) ||
2572 	    rdev->badblocks.unacked_exist) {
2573 		len+= sprintf(page+len, "%sfaulty",sep);
2574 		sep = ",";
2575 	}
2576 	if (test_bit(In_sync, &rdev->flags)) {
2577 		len += sprintf(page+len, "%sin_sync",sep);
2578 		sep = ",";
2579 	}
2580 	if (test_bit(WriteMostly, &rdev->flags)) {
2581 		len += sprintf(page+len, "%swrite_mostly",sep);
2582 		sep = ",";
2583 	}
2584 	if (test_bit(Blocked, &rdev->flags) ||
2585 	    (rdev->badblocks.unacked_exist
2586 	     && !test_bit(Faulty, &rdev->flags))) {
2587 		len += sprintf(page+len, "%sblocked", sep);
2588 		sep = ",";
2589 	}
2590 	if (!test_bit(Faulty, &rdev->flags) &&
2591 	    !test_bit(In_sync, &rdev->flags)) {
2592 		len += sprintf(page+len, "%sspare", sep);
2593 		sep = ",";
2594 	}
2595 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2596 		len += sprintf(page+len, "%swrite_error", sep);
2597 		sep = ",";
2598 	}
2599 	if (test_bit(WantReplacement, &rdev->flags)) {
2600 		len += sprintf(page+len, "%swant_replacement", sep);
2601 		sep = ",";
2602 	}
2603 	if (test_bit(Replacement, &rdev->flags)) {
2604 		len += sprintf(page+len, "%sreplacement", sep);
2605 		sep = ",";
2606 	}
2607 
2608 	return len+sprintf(page+len, "\n");
2609 }
2610 
2611 static ssize_t
2612 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2613 {
2614 	/* can write
2615 	 *  faulty  - simulates an error
2616 	 *  remove  - disconnects the device
2617 	 *  writemostly - sets write_mostly
2618 	 *  -writemostly - clears write_mostly
2619 	 *  blocked - sets the Blocked flags
2620 	 *  -blocked - clears the Blocked and possibly simulates an error
2621 	 *  insync - sets Insync providing device isn't active
2622 	 *  write_error - sets WriteErrorSeen
2623 	 *  -write_error - clears WriteErrorSeen
2624 	 */
2625 	int err = -EINVAL;
2626 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2627 		md_error(rdev->mddev, rdev);
2628 		if (test_bit(Faulty, &rdev->flags))
2629 			err = 0;
2630 		else
2631 			err = -EBUSY;
2632 	} else if (cmd_match(buf, "remove")) {
2633 		if (rdev->raid_disk >= 0)
2634 			err = -EBUSY;
2635 		else {
2636 			struct mddev *mddev = rdev->mddev;
2637 			kick_rdev_from_array(rdev);
2638 			if (mddev->pers)
2639 				md_update_sb(mddev, 1);
2640 			md_new_event(mddev);
2641 			err = 0;
2642 		}
2643 	} else if (cmd_match(buf, "writemostly")) {
2644 		set_bit(WriteMostly, &rdev->flags);
2645 		err = 0;
2646 	} else if (cmd_match(buf, "-writemostly")) {
2647 		clear_bit(WriteMostly, &rdev->flags);
2648 		err = 0;
2649 	} else if (cmd_match(buf, "blocked")) {
2650 		set_bit(Blocked, &rdev->flags);
2651 		err = 0;
2652 	} else if (cmd_match(buf, "-blocked")) {
2653 		if (!test_bit(Faulty, &rdev->flags) &&
2654 		    rdev->badblocks.unacked_exist) {
2655 			/* metadata handler doesn't understand badblocks,
2656 			 * so we need to fail the device
2657 			 */
2658 			md_error(rdev->mddev, rdev);
2659 		}
2660 		clear_bit(Blocked, &rdev->flags);
2661 		clear_bit(BlockedBadBlocks, &rdev->flags);
2662 		wake_up(&rdev->blocked_wait);
2663 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2664 		md_wakeup_thread(rdev->mddev->thread);
2665 
2666 		err = 0;
2667 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2668 		set_bit(In_sync, &rdev->flags);
2669 		err = 0;
2670 	} else if (cmd_match(buf, "write_error")) {
2671 		set_bit(WriteErrorSeen, &rdev->flags);
2672 		err = 0;
2673 	} else if (cmd_match(buf, "-write_error")) {
2674 		clear_bit(WriteErrorSeen, &rdev->flags);
2675 		err = 0;
2676 	} else if (cmd_match(buf, "want_replacement")) {
2677 		/* Any non-spare device that is not a replacement can
2678 		 * become want_replacement at any time, but we then need to
2679 		 * check if recovery is needed.
2680 		 */
2681 		if (rdev->raid_disk >= 0 &&
2682 		    !test_bit(Replacement, &rdev->flags))
2683 			set_bit(WantReplacement, &rdev->flags);
2684 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2685 		md_wakeup_thread(rdev->mddev->thread);
2686 		err = 0;
2687 	} else if (cmd_match(buf, "-want_replacement")) {
2688 		/* Clearing 'want_replacement' is always allowed.
2689 		 * Once replacements starts it is too late though.
2690 		 */
2691 		err = 0;
2692 		clear_bit(WantReplacement, &rdev->flags);
2693 	} else if (cmd_match(buf, "replacement")) {
2694 		/* Can only set a device as a replacement when array has not
2695 		 * yet been started.  Once running, replacement is automatic
2696 		 * from spares, or by assigning 'slot'.
2697 		 */
2698 		if (rdev->mddev->pers)
2699 			err = -EBUSY;
2700 		else {
2701 			set_bit(Replacement, &rdev->flags);
2702 			err = 0;
2703 		}
2704 	} else if (cmd_match(buf, "-replacement")) {
2705 		/* Similarly, can only clear Replacement before start */
2706 		if (rdev->mddev->pers)
2707 			err = -EBUSY;
2708 		else {
2709 			clear_bit(Replacement, &rdev->flags);
2710 			err = 0;
2711 		}
2712 	}
2713 	if (!err)
2714 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2715 	return err ? err : len;
2716 }
2717 static struct rdev_sysfs_entry rdev_state =
2718 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2719 
2720 static ssize_t
2721 errors_show(struct md_rdev *rdev, char *page)
2722 {
2723 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2724 }
2725 
2726 static ssize_t
2727 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2728 {
2729 	char *e;
2730 	unsigned long n = simple_strtoul(buf, &e, 10);
2731 	if (*buf && (*e == 0 || *e == '\n')) {
2732 		atomic_set(&rdev->corrected_errors, n);
2733 		return len;
2734 	}
2735 	return -EINVAL;
2736 }
2737 static struct rdev_sysfs_entry rdev_errors =
2738 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2739 
2740 static ssize_t
2741 slot_show(struct md_rdev *rdev, char *page)
2742 {
2743 	if (rdev->raid_disk < 0)
2744 		return sprintf(page, "none\n");
2745 	else
2746 		return sprintf(page, "%d\n", rdev->raid_disk);
2747 }
2748 
2749 static ssize_t
2750 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2751 {
2752 	char *e;
2753 	int err;
2754 	int slot = simple_strtoul(buf, &e, 10);
2755 	if (strncmp(buf, "none", 4)==0)
2756 		slot = -1;
2757 	else if (e==buf || (*e && *e!= '\n'))
2758 		return -EINVAL;
2759 	if (rdev->mddev->pers && slot == -1) {
2760 		/* Setting 'slot' on an active array requires also
2761 		 * updating the 'rd%d' link, and communicating
2762 		 * with the personality with ->hot_*_disk.
2763 		 * For now we only support removing
2764 		 * failed/spare devices.  This normally happens automatically,
2765 		 * but not when the metadata is externally managed.
2766 		 */
2767 		if (rdev->raid_disk == -1)
2768 			return -EEXIST;
2769 		/* personality does all needed checks */
2770 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2771 			return -EINVAL;
2772 		err = rdev->mddev->pers->
2773 			hot_remove_disk(rdev->mddev, rdev);
2774 		if (err)
2775 			return err;
2776 		sysfs_unlink_rdev(rdev->mddev, rdev);
2777 		rdev->raid_disk = -1;
2778 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2779 		md_wakeup_thread(rdev->mddev->thread);
2780 	} else if (rdev->mddev->pers) {
2781 		/* Activating a spare .. or possibly reactivating
2782 		 * if we ever get bitmaps working here.
2783 		 */
2784 
2785 		if (rdev->raid_disk != -1)
2786 			return -EBUSY;
2787 
2788 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2789 			return -EBUSY;
2790 
2791 		if (rdev->mddev->pers->hot_add_disk == NULL)
2792 			return -EINVAL;
2793 
2794 		if (slot >= rdev->mddev->raid_disks &&
2795 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2796 			return -ENOSPC;
2797 
2798 		rdev->raid_disk = slot;
2799 		if (test_bit(In_sync, &rdev->flags))
2800 			rdev->saved_raid_disk = slot;
2801 		else
2802 			rdev->saved_raid_disk = -1;
2803 		clear_bit(In_sync, &rdev->flags);
2804 		err = rdev->mddev->pers->
2805 			hot_add_disk(rdev->mddev, rdev);
2806 		if (err) {
2807 			rdev->raid_disk = -1;
2808 			return err;
2809 		} else
2810 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2811 		if (sysfs_link_rdev(rdev->mddev, rdev))
2812 			/* failure here is OK */;
2813 		/* don't wakeup anyone, leave that to userspace. */
2814 	} else {
2815 		if (slot >= rdev->mddev->raid_disks &&
2816 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2817 			return -ENOSPC;
2818 		rdev->raid_disk = slot;
2819 		/* assume it is working */
2820 		clear_bit(Faulty, &rdev->flags);
2821 		clear_bit(WriteMostly, &rdev->flags);
2822 		set_bit(In_sync, &rdev->flags);
2823 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2824 	}
2825 	return len;
2826 }
2827 
2828 
2829 static struct rdev_sysfs_entry rdev_slot =
2830 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2831 
2832 static ssize_t
2833 offset_show(struct md_rdev *rdev, char *page)
2834 {
2835 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2836 }
2837 
2838 static ssize_t
2839 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2840 {
2841 	unsigned long long offset;
2842 	if (strict_strtoull(buf, 10, &offset) < 0)
2843 		return -EINVAL;
2844 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2845 		return -EBUSY;
2846 	if (rdev->sectors && rdev->mddev->external)
2847 		/* Must set offset before size, so overlap checks
2848 		 * can be sane */
2849 		return -EBUSY;
2850 	rdev->data_offset = offset;
2851 	rdev->new_data_offset = offset;
2852 	return len;
2853 }
2854 
2855 static struct rdev_sysfs_entry rdev_offset =
2856 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2857 
2858 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2859 {
2860 	return sprintf(page, "%llu\n",
2861 		       (unsigned long long)rdev->new_data_offset);
2862 }
2863 
2864 static ssize_t new_offset_store(struct md_rdev *rdev,
2865 				const char *buf, size_t len)
2866 {
2867 	unsigned long long new_offset;
2868 	struct mddev *mddev = rdev->mddev;
2869 
2870 	if (strict_strtoull(buf, 10, &new_offset) < 0)
2871 		return -EINVAL;
2872 
2873 	if (mddev->sync_thread)
2874 		return -EBUSY;
2875 	if (new_offset == rdev->data_offset)
2876 		/* reset is always permitted */
2877 		;
2878 	else if (new_offset > rdev->data_offset) {
2879 		/* must not push array size beyond rdev_sectors */
2880 		if (new_offset - rdev->data_offset
2881 		    + mddev->dev_sectors > rdev->sectors)
2882 				return -E2BIG;
2883 	}
2884 	/* Metadata worries about other space details. */
2885 
2886 	/* decreasing the offset is inconsistent with a backwards
2887 	 * reshape.
2888 	 */
2889 	if (new_offset < rdev->data_offset &&
2890 	    mddev->reshape_backwards)
2891 		return -EINVAL;
2892 	/* Increasing offset is inconsistent with forwards
2893 	 * reshape.  reshape_direction should be set to
2894 	 * 'backwards' first.
2895 	 */
2896 	if (new_offset > rdev->data_offset &&
2897 	    !mddev->reshape_backwards)
2898 		return -EINVAL;
2899 
2900 	if (mddev->pers && mddev->persistent &&
2901 	    !super_types[mddev->major_version]
2902 	    .allow_new_offset(rdev, new_offset))
2903 		return -E2BIG;
2904 	rdev->new_data_offset = new_offset;
2905 	if (new_offset > rdev->data_offset)
2906 		mddev->reshape_backwards = 1;
2907 	else if (new_offset < rdev->data_offset)
2908 		mddev->reshape_backwards = 0;
2909 
2910 	return len;
2911 }
2912 static struct rdev_sysfs_entry rdev_new_offset =
2913 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2914 
2915 static ssize_t
2916 rdev_size_show(struct md_rdev *rdev, char *page)
2917 {
2918 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2919 }
2920 
2921 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2922 {
2923 	/* check if two start/length pairs overlap */
2924 	if (s1+l1 <= s2)
2925 		return 0;
2926 	if (s2+l2 <= s1)
2927 		return 0;
2928 	return 1;
2929 }
2930 
2931 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2932 {
2933 	unsigned long long blocks;
2934 	sector_t new;
2935 
2936 	if (strict_strtoull(buf, 10, &blocks) < 0)
2937 		return -EINVAL;
2938 
2939 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2940 		return -EINVAL; /* sector conversion overflow */
2941 
2942 	new = blocks * 2;
2943 	if (new != blocks * 2)
2944 		return -EINVAL; /* unsigned long long to sector_t overflow */
2945 
2946 	*sectors = new;
2947 	return 0;
2948 }
2949 
2950 static ssize_t
2951 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2952 {
2953 	struct mddev *my_mddev = rdev->mddev;
2954 	sector_t oldsectors = rdev->sectors;
2955 	sector_t sectors;
2956 
2957 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2958 		return -EINVAL;
2959 	if (rdev->data_offset != rdev->new_data_offset)
2960 		return -EINVAL; /* too confusing */
2961 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2962 		if (my_mddev->persistent) {
2963 			sectors = super_types[my_mddev->major_version].
2964 				rdev_size_change(rdev, sectors);
2965 			if (!sectors)
2966 				return -EBUSY;
2967 		} else if (!sectors)
2968 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2969 				rdev->data_offset;
2970 	}
2971 	if (sectors < my_mddev->dev_sectors)
2972 		return -EINVAL; /* component must fit device */
2973 
2974 	rdev->sectors = sectors;
2975 	if (sectors > oldsectors && my_mddev->external) {
2976 		/* need to check that all other rdevs with the same ->bdev
2977 		 * do not overlap.  We need to unlock the mddev to avoid
2978 		 * a deadlock.  We have already changed rdev->sectors, and if
2979 		 * we have to change it back, we will have the lock again.
2980 		 */
2981 		struct mddev *mddev;
2982 		int overlap = 0;
2983 		struct list_head *tmp;
2984 
2985 		mddev_unlock(my_mddev);
2986 		for_each_mddev(mddev, tmp) {
2987 			struct md_rdev *rdev2;
2988 
2989 			mddev_lock(mddev);
2990 			rdev_for_each(rdev2, mddev)
2991 				if (rdev->bdev == rdev2->bdev &&
2992 				    rdev != rdev2 &&
2993 				    overlaps(rdev->data_offset, rdev->sectors,
2994 					     rdev2->data_offset,
2995 					     rdev2->sectors)) {
2996 					overlap = 1;
2997 					break;
2998 				}
2999 			mddev_unlock(mddev);
3000 			if (overlap) {
3001 				mddev_put(mddev);
3002 				break;
3003 			}
3004 		}
3005 		mddev_lock(my_mddev);
3006 		if (overlap) {
3007 			/* Someone else could have slipped in a size
3008 			 * change here, but doing so is just silly.
3009 			 * We put oldsectors back because we *know* it is
3010 			 * safe, and trust userspace not to race with
3011 			 * itself
3012 			 */
3013 			rdev->sectors = oldsectors;
3014 			return -EBUSY;
3015 		}
3016 	}
3017 	return len;
3018 }
3019 
3020 static struct rdev_sysfs_entry rdev_size =
3021 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3022 
3023 
3024 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3025 {
3026 	unsigned long long recovery_start = rdev->recovery_offset;
3027 
3028 	if (test_bit(In_sync, &rdev->flags) ||
3029 	    recovery_start == MaxSector)
3030 		return sprintf(page, "none\n");
3031 
3032 	return sprintf(page, "%llu\n", recovery_start);
3033 }
3034 
3035 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3036 {
3037 	unsigned long long recovery_start;
3038 
3039 	if (cmd_match(buf, "none"))
3040 		recovery_start = MaxSector;
3041 	else if (strict_strtoull(buf, 10, &recovery_start))
3042 		return -EINVAL;
3043 
3044 	if (rdev->mddev->pers &&
3045 	    rdev->raid_disk >= 0)
3046 		return -EBUSY;
3047 
3048 	rdev->recovery_offset = recovery_start;
3049 	if (recovery_start == MaxSector)
3050 		set_bit(In_sync, &rdev->flags);
3051 	else
3052 		clear_bit(In_sync, &rdev->flags);
3053 	return len;
3054 }
3055 
3056 static struct rdev_sysfs_entry rdev_recovery_start =
3057 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3058 
3059 
3060 static ssize_t
3061 badblocks_show(struct badblocks *bb, char *page, int unack);
3062 static ssize_t
3063 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3064 
3065 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3066 {
3067 	return badblocks_show(&rdev->badblocks, page, 0);
3068 }
3069 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3070 {
3071 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3072 	/* Maybe that ack was all we needed */
3073 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3074 		wake_up(&rdev->blocked_wait);
3075 	return rv;
3076 }
3077 static struct rdev_sysfs_entry rdev_bad_blocks =
3078 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3079 
3080 
3081 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3082 {
3083 	return badblocks_show(&rdev->badblocks, page, 1);
3084 }
3085 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3086 {
3087 	return badblocks_store(&rdev->badblocks, page, len, 1);
3088 }
3089 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3090 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3091 
3092 static struct attribute *rdev_default_attrs[] = {
3093 	&rdev_state.attr,
3094 	&rdev_errors.attr,
3095 	&rdev_slot.attr,
3096 	&rdev_offset.attr,
3097 	&rdev_new_offset.attr,
3098 	&rdev_size.attr,
3099 	&rdev_recovery_start.attr,
3100 	&rdev_bad_blocks.attr,
3101 	&rdev_unack_bad_blocks.attr,
3102 	NULL,
3103 };
3104 static ssize_t
3105 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3106 {
3107 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3108 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3109 	struct mddev *mddev = rdev->mddev;
3110 	ssize_t rv;
3111 
3112 	if (!entry->show)
3113 		return -EIO;
3114 
3115 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3116 	if (!rv) {
3117 		if (rdev->mddev == NULL)
3118 			rv = -EBUSY;
3119 		else
3120 			rv = entry->show(rdev, page);
3121 		mddev_unlock(mddev);
3122 	}
3123 	return rv;
3124 }
3125 
3126 static ssize_t
3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3128 	      const char *page, size_t length)
3129 {
3130 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3131 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3132 	ssize_t rv;
3133 	struct mddev *mddev = rdev->mddev;
3134 
3135 	if (!entry->store)
3136 		return -EIO;
3137 	if (!capable(CAP_SYS_ADMIN))
3138 		return -EACCES;
3139 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3140 	if (!rv) {
3141 		if (rdev->mddev == NULL)
3142 			rv = -EBUSY;
3143 		else
3144 			rv = entry->store(rdev, page, length);
3145 		mddev_unlock(mddev);
3146 	}
3147 	return rv;
3148 }
3149 
3150 static void rdev_free(struct kobject *ko)
3151 {
3152 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3153 	kfree(rdev);
3154 }
3155 static const struct sysfs_ops rdev_sysfs_ops = {
3156 	.show		= rdev_attr_show,
3157 	.store		= rdev_attr_store,
3158 };
3159 static struct kobj_type rdev_ktype = {
3160 	.release	= rdev_free,
3161 	.sysfs_ops	= &rdev_sysfs_ops,
3162 	.default_attrs	= rdev_default_attrs,
3163 };
3164 
3165 int md_rdev_init(struct md_rdev *rdev)
3166 {
3167 	rdev->desc_nr = -1;
3168 	rdev->saved_raid_disk = -1;
3169 	rdev->raid_disk = -1;
3170 	rdev->flags = 0;
3171 	rdev->data_offset = 0;
3172 	rdev->new_data_offset = 0;
3173 	rdev->sb_events = 0;
3174 	rdev->last_read_error.tv_sec  = 0;
3175 	rdev->last_read_error.tv_nsec = 0;
3176 	rdev->sb_loaded = 0;
3177 	rdev->bb_page = NULL;
3178 	atomic_set(&rdev->nr_pending, 0);
3179 	atomic_set(&rdev->read_errors, 0);
3180 	atomic_set(&rdev->corrected_errors, 0);
3181 
3182 	INIT_LIST_HEAD(&rdev->same_set);
3183 	init_waitqueue_head(&rdev->blocked_wait);
3184 
3185 	/* Add space to store bad block list.
3186 	 * This reserves the space even on arrays where it cannot
3187 	 * be used - I wonder if that matters
3188 	 */
3189 	rdev->badblocks.count = 0;
3190 	rdev->badblocks.shift = 0;
3191 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3192 	seqlock_init(&rdev->badblocks.lock);
3193 	if (rdev->badblocks.page == NULL)
3194 		return -ENOMEM;
3195 
3196 	return 0;
3197 }
3198 EXPORT_SYMBOL_GPL(md_rdev_init);
3199 /*
3200  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3201  *
3202  * mark the device faulty if:
3203  *
3204  *   - the device is nonexistent (zero size)
3205  *   - the device has no valid superblock
3206  *
3207  * a faulty rdev _never_ has rdev->sb set.
3208  */
3209 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3210 {
3211 	char b[BDEVNAME_SIZE];
3212 	int err;
3213 	struct md_rdev *rdev;
3214 	sector_t size;
3215 
3216 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3217 	if (!rdev) {
3218 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3219 		return ERR_PTR(-ENOMEM);
3220 	}
3221 
3222 	err = md_rdev_init(rdev);
3223 	if (err)
3224 		goto abort_free;
3225 	err = alloc_disk_sb(rdev);
3226 	if (err)
3227 		goto abort_free;
3228 
3229 	err = lock_rdev(rdev, newdev, super_format == -2);
3230 	if (err)
3231 		goto abort_free;
3232 
3233 	kobject_init(&rdev->kobj, &rdev_ktype);
3234 
3235 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3236 	if (!size) {
3237 		printk(KERN_WARNING
3238 			"md: %s has zero or unknown size, marking faulty!\n",
3239 			bdevname(rdev->bdev,b));
3240 		err = -EINVAL;
3241 		goto abort_free;
3242 	}
3243 
3244 	if (super_format >= 0) {
3245 		err = super_types[super_format].
3246 			load_super(rdev, NULL, super_minor);
3247 		if (err == -EINVAL) {
3248 			printk(KERN_WARNING
3249 				"md: %s does not have a valid v%d.%d "
3250 			       "superblock, not importing!\n",
3251 				bdevname(rdev->bdev,b),
3252 			       super_format, super_minor);
3253 			goto abort_free;
3254 		}
3255 		if (err < 0) {
3256 			printk(KERN_WARNING
3257 				"md: could not read %s's sb, not importing!\n",
3258 				bdevname(rdev->bdev,b));
3259 			goto abort_free;
3260 		}
3261 	}
3262 	if (super_format == -1)
3263 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3264 		rdev->badblocks.shift = -1;
3265 
3266 	return rdev;
3267 
3268 abort_free:
3269 	if (rdev->bdev)
3270 		unlock_rdev(rdev);
3271 	md_rdev_clear(rdev);
3272 	kfree(rdev);
3273 	return ERR_PTR(err);
3274 }
3275 
3276 /*
3277  * Check a full RAID array for plausibility
3278  */
3279 
3280 
3281 static void analyze_sbs(struct mddev * mddev)
3282 {
3283 	int i;
3284 	struct md_rdev *rdev, *freshest, *tmp;
3285 	char b[BDEVNAME_SIZE];
3286 
3287 	freshest = NULL;
3288 	rdev_for_each_safe(rdev, tmp, mddev)
3289 		switch (super_types[mddev->major_version].
3290 			load_super(rdev, freshest, mddev->minor_version)) {
3291 		case 1:
3292 			freshest = rdev;
3293 			break;
3294 		case 0:
3295 			break;
3296 		default:
3297 			printk( KERN_ERR \
3298 				"md: fatal superblock inconsistency in %s"
3299 				" -- removing from array\n",
3300 				bdevname(rdev->bdev,b));
3301 			kick_rdev_from_array(rdev);
3302 		}
3303 
3304 
3305 	super_types[mddev->major_version].
3306 		validate_super(mddev, freshest);
3307 
3308 	i = 0;
3309 	rdev_for_each_safe(rdev, tmp, mddev) {
3310 		if (mddev->max_disks &&
3311 		    (rdev->desc_nr >= mddev->max_disks ||
3312 		     i > mddev->max_disks)) {
3313 			printk(KERN_WARNING
3314 			       "md: %s: %s: only %d devices permitted\n",
3315 			       mdname(mddev), bdevname(rdev->bdev, b),
3316 			       mddev->max_disks);
3317 			kick_rdev_from_array(rdev);
3318 			continue;
3319 		}
3320 		if (rdev != freshest)
3321 			if (super_types[mddev->major_version].
3322 			    validate_super(mddev, rdev)) {
3323 				printk(KERN_WARNING "md: kicking non-fresh %s"
3324 					" from array!\n",
3325 					bdevname(rdev->bdev,b));
3326 				kick_rdev_from_array(rdev);
3327 				continue;
3328 			}
3329 		if (mddev->level == LEVEL_MULTIPATH) {
3330 			rdev->desc_nr = i++;
3331 			rdev->raid_disk = rdev->desc_nr;
3332 			set_bit(In_sync, &rdev->flags);
3333 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3334 			rdev->raid_disk = -1;
3335 			clear_bit(In_sync, &rdev->flags);
3336 		}
3337 	}
3338 }
3339 
3340 /* Read a fixed-point number.
3341  * Numbers in sysfs attributes should be in "standard" units where
3342  * possible, so time should be in seconds.
3343  * However we internally use a a much smaller unit such as
3344  * milliseconds or jiffies.
3345  * This function takes a decimal number with a possible fractional
3346  * component, and produces an integer which is the result of
3347  * multiplying that number by 10^'scale'.
3348  * all without any floating-point arithmetic.
3349  */
3350 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3351 {
3352 	unsigned long result = 0;
3353 	long decimals = -1;
3354 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3355 		if (*cp == '.')
3356 			decimals = 0;
3357 		else if (decimals < scale) {
3358 			unsigned int value;
3359 			value = *cp - '0';
3360 			result = result * 10 + value;
3361 			if (decimals >= 0)
3362 				decimals++;
3363 		}
3364 		cp++;
3365 	}
3366 	if (*cp == '\n')
3367 		cp++;
3368 	if (*cp)
3369 		return -EINVAL;
3370 	if (decimals < 0)
3371 		decimals = 0;
3372 	while (decimals < scale) {
3373 		result *= 10;
3374 		decimals ++;
3375 	}
3376 	*res = result;
3377 	return 0;
3378 }
3379 
3380 
3381 static void md_safemode_timeout(unsigned long data);
3382 
3383 static ssize_t
3384 safe_delay_show(struct mddev *mddev, char *page)
3385 {
3386 	int msec = (mddev->safemode_delay*1000)/HZ;
3387 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3388 }
3389 static ssize_t
3390 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3391 {
3392 	unsigned long msec;
3393 
3394 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3395 		return -EINVAL;
3396 	if (msec == 0)
3397 		mddev->safemode_delay = 0;
3398 	else {
3399 		unsigned long old_delay = mddev->safemode_delay;
3400 		mddev->safemode_delay = (msec*HZ)/1000;
3401 		if (mddev->safemode_delay == 0)
3402 			mddev->safemode_delay = 1;
3403 		if (mddev->safemode_delay < old_delay)
3404 			md_safemode_timeout((unsigned long)mddev);
3405 	}
3406 	return len;
3407 }
3408 static struct md_sysfs_entry md_safe_delay =
3409 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3410 
3411 static ssize_t
3412 level_show(struct mddev *mddev, char *page)
3413 {
3414 	struct md_personality *p = mddev->pers;
3415 	if (p)
3416 		return sprintf(page, "%s\n", p->name);
3417 	else if (mddev->clevel[0])
3418 		return sprintf(page, "%s\n", mddev->clevel);
3419 	else if (mddev->level != LEVEL_NONE)
3420 		return sprintf(page, "%d\n", mddev->level);
3421 	else
3422 		return 0;
3423 }
3424 
3425 static ssize_t
3426 level_store(struct mddev *mddev, const char *buf, size_t len)
3427 {
3428 	char clevel[16];
3429 	ssize_t rv = len;
3430 	struct md_personality *pers;
3431 	long level;
3432 	void *priv;
3433 	struct md_rdev *rdev;
3434 
3435 	if (mddev->pers == NULL) {
3436 		if (len == 0)
3437 			return 0;
3438 		if (len >= sizeof(mddev->clevel))
3439 			return -ENOSPC;
3440 		strncpy(mddev->clevel, buf, len);
3441 		if (mddev->clevel[len-1] == '\n')
3442 			len--;
3443 		mddev->clevel[len] = 0;
3444 		mddev->level = LEVEL_NONE;
3445 		return rv;
3446 	}
3447 
3448 	/* request to change the personality.  Need to ensure:
3449 	 *  - array is not engaged in resync/recovery/reshape
3450 	 *  - old personality can be suspended
3451 	 *  - new personality will access other array.
3452 	 */
3453 
3454 	if (mddev->sync_thread ||
3455 	    mddev->reshape_position != MaxSector ||
3456 	    mddev->sysfs_active)
3457 		return -EBUSY;
3458 
3459 	if (!mddev->pers->quiesce) {
3460 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3461 		       mdname(mddev), mddev->pers->name);
3462 		return -EINVAL;
3463 	}
3464 
3465 	/* Now find the new personality */
3466 	if (len == 0 || len >= sizeof(clevel))
3467 		return -EINVAL;
3468 	strncpy(clevel, buf, len);
3469 	if (clevel[len-1] == '\n')
3470 		len--;
3471 	clevel[len] = 0;
3472 	if (strict_strtol(clevel, 10, &level))
3473 		level = LEVEL_NONE;
3474 
3475 	if (request_module("md-%s", clevel) != 0)
3476 		request_module("md-level-%s", clevel);
3477 	spin_lock(&pers_lock);
3478 	pers = find_pers(level, clevel);
3479 	if (!pers || !try_module_get(pers->owner)) {
3480 		spin_unlock(&pers_lock);
3481 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3482 		return -EINVAL;
3483 	}
3484 	spin_unlock(&pers_lock);
3485 
3486 	if (pers == mddev->pers) {
3487 		/* Nothing to do! */
3488 		module_put(pers->owner);
3489 		return rv;
3490 	}
3491 	if (!pers->takeover) {
3492 		module_put(pers->owner);
3493 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3494 		       mdname(mddev), clevel);
3495 		return -EINVAL;
3496 	}
3497 
3498 	rdev_for_each(rdev, mddev)
3499 		rdev->new_raid_disk = rdev->raid_disk;
3500 
3501 	/* ->takeover must set new_* and/or delta_disks
3502 	 * if it succeeds, and may set them when it fails.
3503 	 */
3504 	priv = pers->takeover(mddev);
3505 	if (IS_ERR(priv)) {
3506 		mddev->new_level = mddev->level;
3507 		mddev->new_layout = mddev->layout;
3508 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3509 		mddev->raid_disks -= mddev->delta_disks;
3510 		mddev->delta_disks = 0;
3511 		mddev->reshape_backwards = 0;
3512 		module_put(pers->owner);
3513 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3514 		       mdname(mddev), clevel);
3515 		return PTR_ERR(priv);
3516 	}
3517 
3518 	/* Looks like we have a winner */
3519 	mddev_suspend(mddev);
3520 	mddev->pers->stop(mddev);
3521 
3522 	if (mddev->pers->sync_request == NULL &&
3523 	    pers->sync_request != NULL) {
3524 		/* need to add the md_redundancy_group */
3525 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3526 			printk(KERN_WARNING
3527 			       "md: cannot register extra attributes for %s\n",
3528 			       mdname(mddev));
3529 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3530 	}
3531 	if (mddev->pers->sync_request != NULL &&
3532 	    pers->sync_request == NULL) {
3533 		/* need to remove the md_redundancy_group */
3534 		if (mddev->to_remove == NULL)
3535 			mddev->to_remove = &md_redundancy_group;
3536 	}
3537 
3538 	if (mddev->pers->sync_request == NULL &&
3539 	    mddev->external) {
3540 		/* We are converting from a no-redundancy array
3541 		 * to a redundancy array and metadata is managed
3542 		 * externally so we need to be sure that writes
3543 		 * won't block due to a need to transition
3544 		 *      clean->dirty
3545 		 * until external management is started.
3546 		 */
3547 		mddev->in_sync = 0;
3548 		mddev->safemode_delay = 0;
3549 		mddev->safemode = 0;
3550 	}
3551 
3552 	rdev_for_each(rdev, mddev) {
3553 		if (rdev->raid_disk < 0)
3554 			continue;
3555 		if (rdev->new_raid_disk >= mddev->raid_disks)
3556 			rdev->new_raid_disk = -1;
3557 		if (rdev->new_raid_disk == rdev->raid_disk)
3558 			continue;
3559 		sysfs_unlink_rdev(mddev, rdev);
3560 	}
3561 	rdev_for_each(rdev, mddev) {
3562 		if (rdev->raid_disk < 0)
3563 			continue;
3564 		if (rdev->new_raid_disk == rdev->raid_disk)
3565 			continue;
3566 		rdev->raid_disk = rdev->new_raid_disk;
3567 		if (rdev->raid_disk < 0)
3568 			clear_bit(In_sync, &rdev->flags);
3569 		else {
3570 			if (sysfs_link_rdev(mddev, rdev))
3571 				printk(KERN_WARNING "md: cannot register rd%d"
3572 				       " for %s after level change\n",
3573 				       rdev->raid_disk, mdname(mddev));
3574 		}
3575 	}
3576 
3577 	module_put(mddev->pers->owner);
3578 	mddev->pers = pers;
3579 	mddev->private = priv;
3580 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3581 	mddev->level = mddev->new_level;
3582 	mddev->layout = mddev->new_layout;
3583 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3584 	mddev->delta_disks = 0;
3585 	mddev->reshape_backwards = 0;
3586 	mddev->degraded = 0;
3587 	if (mddev->pers->sync_request == NULL) {
3588 		/* this is now an array without redundancy, so
3589 		 * it must always be in_sync
3590 		 */
3591 		mddev->in_sync = 1;
3592 		del_timer_sync(&mddev->safemode_timer);
3593 	}
3594 	pers->run(mddev);
3595 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3596 	mddev_resume(mddev);
3597 	sysfs_notify(&mddev->kobj, NULL, "level");
3598 	md_new_event(mddev);
3599 	return rv;
3600 }
3601 
3602 static struct md_sysfs_entry md_level =
3603 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3604 
3605 
3606 static ssize_t
3607 layout_show(struct mddev *mddev, char *page)
3608 {
3609 	/* just a number, not meaningful for all levels */
3610 	if (mddev->reshape_position != MaxSector &&
3611 	    mddev->layout != mddev->new_layout)
3612 		return sprintf(page, "%d (%d)\n",
3613 			       mddev->new_layout, mddev->layout);
3614 	return sprintf(page, "%d\n", mddev->layout);
3615 }
3616 
3617 static ssize_t
3618 layout_store(struct mddev *mddev, const char *buf, size_t len)
3619 {
3620 	char *e;
3621 	unsigned long n = simple_strtoul(buf, &e, 10);
3622 
3623 	if (!*buf || (*e && *e != '\n'))
3624 		return -EINVAL;
3625 
3626 	if (mddev->pers) {
3627 		int err;
3628 		if (mddev->pers->check_reshape == NULL)
3629 			return -EBUSY;
3630 		mddev->new_layout = n;
3631 		err = mddev->pers->check_reshape(mddev);
3632 		if (err) {
3633 			mddev->new_layout = mddev->layout;
3634 			return err;
3635 		}
3636 	} else {
3637 		mddev->new_layout = n;
3638 		if (mddev->reshape_position == MaxSector)
3639 			mddev->layout = n;
3640 	}
3641 	return len;
3642 }
3643 static struct md_sysfs_entry md_layout =
3644 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3645 
3646 
3647 static ssize_t
3648 raid_disks_show(struct mddev *mddev, char *page)
3649 {
3650 	if (mddev->raid_disks == 0)
3651 		return 0;
3652 	if (mddev->reshape_position != MaxSector &&
3653 	    mddev->delta_disks != 0)
3654 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3655 			       mddev->raid_disks - mddev->delta_disks);
3656 	return sprintf(page, "%d\n", mddev->raid_disks);
3657 }
3658 
3659 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3660 
3661 static ssize_t
3662 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3663 {
3664 	char *e;
3665 	int rv = 0;
3666 	unsigned long n = simple_strtoul(buf, &e, 10);
3667 
3668 	if (!*buf || (*e && *e != '\n'))
3669 		return -EINVAL;
3670 
3671 	if (mddev->pers)
3672 		rv = update_raid_disks(mddev, n);
3673 	else if (mddev->reshape_position != MaxSector) {
3674 		struct md_rdev *rdev;
3675 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3676 
3677 		rdev_for_each(rdev, mddev) {
3678 			if (olddisks < n &&
3679 			    rdev->data_offset < rdev->new_data_offset)
3680 				return -EINVAL;
3681 			if (olddisks > n &&
3682 			    rdev->data_offset > rdev->new_data_offset)
3683 				return -EINVAL;
3684 		}
3685 		mddev->delta_disks = n - olddisks;
3686 		mddev->raid_disks = n;
3687 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3688 	} else
3689 		mddev->raid_disks = n;
3690 	return rv ? rv : len;
3691 }
3692 static struct md_sysfs_entry md_raid_disks =
3693 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3694 
3695 static ssize_t
3696 chunk_size_show(struct mddev *mddev, char *page)
3697 {
3698 	if (mddev->reshape_position != MaxSector &&
3699 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3700 		return sprintf(page, "%d (%d)\n",
3701 			       mddev->new_chunk_sectors << 9,
3702 			       mddev->chunk_sectors << 9);
3703 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3704 }
3705 
3706 static ssize_t
3707 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3708 {
3709 	char *e;
3710 	unsigned long n = simple_strtoul(buf, &e, 10);
3711 
3712 	if (!*buf || (*e && *e != '\n'))
3713 		return -EINVAL;
3714 
3715 	if (mddev->pers) {
3716 		int err;
3717 		if (mddev->pers->check_reshape == NULL)
3718 			return -EBUSY;
3719 		mddev->new_chunk_sectors = n >> 9;
3720 		err = mddev->pers->check_reshape(mddev);
3721 		if (err) {
3722 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3723 			return err;
3724 		}
3725 	} else {
3726 		mddev->new_chunk_sectors = n >> 9;
3727 		if (mddev->reshape_position == MaxSector)
3728 			mddev->chunk_sectors = n >> 9;
3729 	}
3730 	return len;
3731 }
3732 static struct md_sysfs_entry md_chunk_size =
3733 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3734 
3735 static ssize_t
3736 resync_start_show(struct mddev *mddev, char *page)
3737 {
3738 	if (mddev->recovery_cp == MaxSector)
3739 		return sprintf(page, "none\n");
3740 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3741 }
3742 
3743 static ssize_t
3744 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 	char *e;
3747 	unsigned long long n = simple_strtoull(buf, &e, 10);
3748 
3749 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3750 		return -EBUSY;
3751 	if (cmd_match(buf, "none"))
3752 		n = MaxSector;
3753 	else if (!*buf || (*e && *e != '\n'))
3754 		return -EINVAL;
3755 
3756 	mddev->recovery_cp = n;
3757 	return len;
3758 }
3759 static struct md_sysfs_entry md_resync_start =
3760 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3761 
3762 /*
3763  * The array state can be:
3764  *
3765  * clear
3766  *     No devices, no size, no level
3767  *     Equivalent to STOP_ARRAY ioctl
3768  * inactive
3769  *     May have some settings, but array is not active
3770  *        all IO results in error
3771  *     When written, doesn't tear down array, but just stops it
3772  * suspended (not supported yet)
3773  *     All IO requests will block. The array can be reconfigured.
3774  *     Writing this, if accepted, will block until array is quiescent
3775  * readonly
3776  *     no resync can happen.  no superblocks get written.
3777  *     write requests fail
3778  * read-auto
3779  *     like readonly, but behaves like 'clean' on a write request.
3780  *
3781  * clean - no pending writes, but otherwise active.
3782  *     When written to inactive array, starts without resync
3783  *     If a write request arrives then
3784  *       if metadata is known, mark 'dirty' and switch to 'active'.
3785  *       if not known, block and switch to write-pending
3786  *     If written to an active array that has pending writes, then fails.
3787  * active
3788  *     fully active: IO and resync can be happening.
3789  *     When written to inactive array, starts with resync
3790  *
3791  * write-pending
3792  *     clean, but writes are blocked waiting for 'active' to be written.
3793  *
3794  * active-idle
3795  *     like active, but no writes have been seen for a while (100msec).
3796  *
3797  */
3798 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3799 		   write_pending, active_idle, bad_word};
3800 static char *array_states[] = {
3801 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3802 	"write-pending", "active-idle", NULL };
3803 
3804 static int match_word(const char *word, char **list)
3805 {
3806 	int n;
3807 	for (n=0; list[n]; n++)
3808 		if (cmd_match(word, list[n]))
3809 			break;
3810 	return n;
3811 }
3812 
3813 static ssize_t
3814 array_state_show(struct mddev *mddev, char *page)
3815 {
3816 	enum array_state st = inactive;
3817 
3818 	if (mddev->pers)
3819 		switch(mddev->ro) {
3820 		case 1:
3821 			st = readonly;
3822 			break;
3823 		case 2:
3824 			st = read_auto;
3825 			break;
3826 		case 0:
3827 			if (mddev->in_sync)
3828 				st = clean;
3829 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3830 				st = write_pending;
3831 			else if (mddev->safemode)
3832 				st = active_idle;
3833 			else
3834 				st = active;
3835 		}
3836 	else {
3837 		if (list_empty(&mddev->disks) &&
3838 		    mddev->raid_disks == 0 &&
3839 		    mddev->dev_sectors == 0)
3840 			st = clear;
3841 		else
3842 			st = inactive;
3843 	}
3844 	return sprintf(page, "%s\n", array_states[st]);
3845 }
3846 
3847 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3848 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3849 static int do_md_run(struct mddev * mddev);
3850 static int restart_array(struct mddev *mddev);
3851 
3852 static ssize_t
3853 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855 	int err = -EINVAL;
3856 	enum array_state st = match_word(buf, array_states);
3857 	switch(st) {
3858 	case bad_word:
3859 		break;
3860 	case clear:
3861 		/* stopping an active array */
3862 		err = do_md_stop(mddev, 0, NULL);
3863 		break;
3864 	case inactive:
3865 		/* stopping an active array */
3866 		if (mddev->pers)
3867 			err = do_md_stop(mddev, 2, NULL);
3868 		else
3869 			err = 0; /* already inactive */
3870 		break;
3871 	case suspended:
3872 		break; /* not supported yet */
3873 	case readonly:
3874 		if (mddev->pers)
3875 			err = md_set_readonly(mddev, NULL);
3876 		else {
3877 			mddev->ro = 1;
3878 			set_disk_ro(mddev->gendisk, 1);
3879 			err = do_md_run(mddev);
3880 		}
3881 		break;
3882 	case read_auto:
3883 		if (mddev->pers) {
3884 			if (mddev->ro == 0)
3885 				err = md_set_readonly(mddev, NULL);
3886 			else if (mddev->ro == 1)
3887 				err = restart_array(mddev);
3888 			if (err == 0) {
3889 				mddev->ro = 2;
3890 				set_disk_ro(mddev->gendisk, 0);
3891 			}
3892 		} else {
3893 			mddev->ro = 2;
3894 			err = do_md_run(mddev);
3895 		}
3896 		break;
3897 	case clean:
3898 		if (mddev->pers) {
3899 			restart_array(mddev);
3900 			spin_lock_irq(&mddev->write_lock);
3901 			if (atomic_read(&mddev->writes_pending) == 0) {
3902 				if (mddev->in_sync == 0) {
3903 					mddev->in_sync = 1;
3904 					if (mddev->safemode == 1)
3905 						mddev->safemode = 0;
3906 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3907 				}
3908 				err = 0;
3909 			} else
3910 				err = -EBUSY;
3911 			spin_unlock_irq(&mddev->write_lock);
3912 		} else
3913 			err = -EINVAL;
3914 		break;
3915 	case active:
3916 		if (mddev->pers) {
3917 			restart_array(mddev);
3918 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3919 			wake_up(&mddev->sb_wait);
3920 			err = 0;
3921 		} else {
3922 			mddev->ro = 0;
3923 			set_disk_ro(mddev->gendisk, 0);
3924 			err = do_md_run(mddev);
3925 		}
3926 		break;
3927 	case write_pending:
3928 	case active_idle:
3929 		/* these cannot be set */
3930 		break;
3931 	}
3932 	if (err)
3933 		return err;
3934 	else {
3935 		if (mddev->hold_active == UNTIL_IOCTL)
3936 			mddev->hold_active = 0;
3937 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3938 		return len;
3939 	}
3940 }
3941 static struct md_sysfs_entry md_array_state =
3942 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3943 
3944 static ssize_t
3945 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3946 	return sprintf(page, "%d\n",
3947 		       atomic_read(&mddev->max_corr_read_errors));
3948 }
3949 
3950 static ssize_t
3951 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3952 {
3953 	char *e;
3954 	unsigned long n = simple_strtoul(buf, &e, 10);
3955 
3956 	if (*buf && (*e == 0 || *e == '\n')) {
3957 		atomic_set(&mddev->max_corr_read_errors, n);
3958 		return len;
3959 	}
3960 	return -EINVAL;
3961 }
3962 
3963 static struct md_sysfs_entry max_corr_read_errors =
3964 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3965 	max_corrected_read_errors_store);
3966 
3967 static ssize_t
3968 null_show(struct mddev *mddev, char *page)
3969 {
3970 	return -EINVAL;
3971 }
3972 
3973 static ssize_t
3974 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3975 {
3976 	/* buf must be %d:%d\n? giving major and minor numbers */
3977 	/* The new device is added to the array.
3978 	 * If the array has a persistent superblock, we read the
3979 	 * superblock to initialise info and check validity.
3980 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3981 	 * which mainly checks size.
3982 	 */
3983 	char *e;
3984 	int major = simple_strtoul(buf, &e, 10);
3985 	int minor;
3986 	dev_t dev;
3987 	struct md_rdev *rdev;
3988 	int err;
3989 
3990 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3991 		return -EINVAL;
3992 	minor = simple_strtoul(e+1, &e, 10);
3993 	if (*e && *e != '\n')
3994 		return -EINVAL;
3995 	dev = MKDEV(major, minor);
3996 	if (major != MAJOR(dev) ||
3997 	    minor != MINOR(dev))
3998 		return -EOVERFLOW;
3999 
4000 
4001 	if (mddev->persistent) {
4002 		rdev = md_import_device(dev, mddev->major_version,
4003 					mddev->minor_version);
4004 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4005 			struct md_rdev *rdev0
4006 				= list_entry(mddev->disks.next,
4007 					     struct md_rdev, same_set);
4008 			err = super_types[mddev->major_version]
4009 				.load_super(rdev, rdev0, mddev->minor_version);
4010 			if (err < 0)
4011 				goto out;
4012 		}
4013 	} else if (mddev->external)
4014 		rdev = md_import_device(dev, -2, -1);
4015 	else
4016 		rdev = md_import_device(dev, -1, -1);
4017 
4018 	if (IS_ERR(rdev))
4019 		return PTR_ERR(rdev);
4020 	err = bind_rdev_to_array(rdev, mddev);
4021  out:
4022 	if (err)
4023 		export_rdev(rdev);
4024 	return err ? err : len;
4025 }
4026 
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029 
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 	char *end;
4034 	unsigned long chunk, end_chunk;
4035 
4036 	if (!mddev->bitmap)
4037 		goto out;
4038 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4039 	while (*buf) {
4040 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4041 		if (buf == end) break;
4042 		if (*end == '-') { /* range */
4043 			buf = end + 1;
4044 			end_chunk = simple_strtoul(buf, &end, 0);
4045 			if (buf == end) break;
4046 		}
4047 		if (*end && !isspace(*end)) break;
4048 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4049 		buf = skip_spaces(end);
4050 	}
4051 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4052 out:
4053 	return len;
4054 }
4055 
4056 static struct md_sysfs_entry md_bitmap =
4057 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4058 
4059 static ssize_t
4060 size_show(struct mddev *mddev, char *page)
4061 {
4062 	return sprintf(page, "%llu\n",
4063 		(unsigned long long)mddev->dev_sectors / 2);
4064 }
4065 
4066 static int update_size(struct mddev *mddev, sector_t num_sectors);
4067 
4068 static ssize_t
4069 size_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071 	/* If array is inactive, we can reduce the component size, but
4072 	 * not increase it (except from 0).
4073 	 * If array is active, we can try an on-line resize
4074 	 */
4075 	sector_t sectors;
4076 	int err = strict_blocks_to_sectors(buf, &sectors);
4077 
4078 	if (err < 0)
4079 		return err;
4080 	if (mddev->pers) {
4081 		err = update_size(mddev, sectors);
4082 		md_update_sb(mddev, 1);
4083 	} else {
4084 		if (mddev->dev_sectors == 0 ||
4085 		    mddev->dev_sectors > sectors)
4086 			mddev->dev_sectors = sectors;
4087 		else
4088 			err = -ENOSPC;
4089 	}
4090 	return err ? err : len;
4091 }
4092 
4093 static struct md_sysfs_entry md_size =
4094 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4095 
4096 
4097 /* Metdata version.
4098  * This is one of
4099  *   'none' for arrays with no metadata (good luck...)
4100  *   'external' for arrays with externally managed metadata,
4101  * or N.M for internally known formats
4102  */
4103 static ssize_t
4104 metadata_show(struct mddev *mddev, char *page)
4105 {
4106 	if (mddev->persistent)
4107 		return sprintf(page, "%d.%d\n",
4108 			       mddev->major_version, mddev->minor_version);
4109 	else if (mddev->external)
4110 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4111 	else
4112 		return sprintf(page, "none\n");
4113 }
4114 
4115 static ssize_t
4116 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4117 {
4118 	int major, minor;
4119 	char *e;
4120 	/* Changing the details of 'external' metadata is
4121 	 * always permitted.  Otherwise there must be
4122 	 * no devices attached to the array.
4123 	 */
4124 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4125 		;
4126 	else if (!list_empty(&mddev->disks))
4127 		return -EBUSY;
4128 
4129 	if (cmd_match(buf, "none")) {
4130 		mddev->persistent = 0;
4131 		mddev->external = 0;
4132 		mddev->major_version = 0;
4133 		mddev->minor_version = 90;
4134 		return len;
4135 	}
4136 	if (strncmp(buf, "external:", 9) == 0) {
4137 		size_t namelen = len-9;
4138 		if (namelen >= sizeof(mddev->metadata_type))
4139 			namelen = sizeof(mddev->metadata_type)-1;
4140 		strncpy(mddev->metadata_type, buf+9, namelen);
4141 		mddev->metadata_type[namelen] = 0;
4142 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4143 			mddev->metadata_type[--namelen] = 0;
4144 		mddev->persistent = 0;
4145 		mddev->external = 1;
4146 		mddev->major_version = 0;
4147 		mddev->minor_version = 90;
4148 		return len;
4149 	}
4150 	major = simple_strtoul(buf, &e, 10);
4151 	if (e==buf || *e != '.')
4152 		return -EINVAL;
4153 	buf = e+1;
4154 	minor = simple_strtoul(buf, &e, 10);
4155 	if (e==buf || (*e && *e != '\n') )
4156 		return -EINVAL;
4157 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4158 		return -ENOENT;
4159 	mddev->major_version = major;
4160 	mddev->minor_version = minor;
4161 	mddev->persistent = 1;
4162 	mddev->external = 0;
4163 	return len;
4164 }
4165 
4166 static struct md_sysfs_entry md_metadata =
4167 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4168 
4169 static ssize_t
4170 action_show(struct mddev *mddev, char *page)
4171 {
4172 	char *type = "idle";
4173 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4174 		type = "frozen";
4175 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4176 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4177 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4178 			type = "reshape";
4179 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4180 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4181 				type = "resync";
4182 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4183 				type = "check";
4184 			else
4185 				type = "repair";
4186 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4187 			type = "recover";
4188 	}
4189 	return sprintf(page, "%s\n", type);
4190 }
4191 
4192 static void reap_sync_thread(struct mddev *mddev);
4193 
4194 static ssize_t
4195 action_store(struct mddev *mddev, const char *page, size_t len)
4196 {
4197 	if (!mddev->pers || !mddev->pers->sync_request)
4198 		return -EINVAL;
4199 
4200 	if (cmd_match(page, "frozen"))
4201 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4202 	else
4203 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4204 
4205 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4206 		if (mddev->sync_thread) {
4207 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4208 			reap_sync_thread(mddev);
4209 		}
4210 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4211 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4212 		return -EBUSY;
4213 	else if (cmd_match(page, "resync"))
4214 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4215 	else if (cmd_match(page, "recover")) {
4216 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4217 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4218 	} else if (cmd_match(page, "reshape")) {
4219 		int err;
4220 		if (mddev->pers->start_reshape == NULL)
4221 			return -EINVAL;
4222 		err = mddev->pers->start_reshape(mddev);
4223 		if (err)
4224 			return err;
4225 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4226 	} else {
4227 		if (cmd_match(page, "check"))
4228 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4229 		else if (!cmd_match(page, "repair"))
4230 			return -EINVAL;
4231 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4232 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4233 	}
4234 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4235 	md_wakeup_thread(mddev->thread);
4236 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4237 	return len;
4238 }
4239 
4240 static ssize_t
4241 mismatch_cnt_show(struct mddev *mddev, char *page)
4242 {
4243 	return sprintf(page, "%llu\n",
4244 		       (unsigned long long) mddev->resync_mismatches);
4245 }
4246 
4247 static struct md_sysfs_entry md_scan_mode =
4248 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4249 
4250 
4251 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4252 
4253 static ssize_t
4254 sync_min_show(struct mddev *mddev, char *page)
4255 {
4256 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4257 		       mddev->sync_speed_min ? "local": "system");
4258 }
4259 
4260 static ssize_t
4261 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4262 {
4263 	int min;
4264 	char *e;
4265 	if (strncmp(buf, "system", 6)==0) {
4266 		mddev->sync_speed_min = 0;
4267 		return len;
4268 	}
4269 	min = simple_strtoul(buf, &e, 10);
4270 	if (buf == e || (*e && *e != '\n') || min <= 0)
4271 		return -EINVAL;
4272 	mddev->sync_speed_min = min;
4273 	return len;
4274 }
4275 
4276 static struct md_sysfs_entry md_sync_min =
4277 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4278 
4279 static ssize_t
4280 sync_max_show(struct mddev *mddev, char *page)
4281 {
4282 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4283 		       mddev->sync_speed_max ? "local": "system");
4284 }
4285 
4286 static ssize_t
4287 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4288 {
4289 	int max;
4290 	char *e;
4291 	if (strncmp(buf, "system", 6)==0) {
4292 		mddev->sync_speed_max = 0;
4293 		return len;
4294 	}
4295 	max = simple_strtoul(buf, &e, 10);
4296 	if (buf == e || (*e && *e != '\n') || max <= 0)
4297 		return -EINVAL;
4298 	mddev->sync_speed_max = max;
4299 	return len;
4300 }
4301 
4302 static struct md_sysfs_entry md_sync_max =
4303 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4304 
4305 static ssize_t
4306 degraded_show(struct mddev *mddev, char *page)
4307 {
4308 	return sprintf(page, "%d\n", mddev->degraded);
4309 }
4310 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4311 
4312 static ssize_t
4313 sync_force_parallel_show(struct mddev *mddev, char *page)
4314 {
4315 	return sprintf(page, "%d\n", mddev->parallel_resync);
4316 }
4317 
4318 static ssize_t
4319 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321 	long n;
4322 
4323 	if (strict_strtol(buf, 10, &n))
4324 		return -EINVAL;
4325 
4326 	if (n != 0 && n != 1)
4327 		return -EINVAL;
4328 
4329 	mddev->parallel_resync = n;
4330 
4331 	if (mddev->sync_thread)
4332 		wake_up(&resync_wait);
4333 
4334 	return len;
4335 }
4336 
4337 /* force parallel resync, even with shared block devices */
4338 static struct md_sysfs_entry md_sync_force_parallel =
4339 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4340        sync_force_parallel_show, sync_force_parallel_store);
4341 
4342 static ssize_t
4343 sync_speed_show(struct mddev *mddev, char *page)
4344 {
4345 	unsigned long resync, dt, db;
4346 	if (mddev->curr_resync == 0)
4347 		return sprintf(page, "none\n");
4348 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4349 	dt = (jiffies - mddev->resync_mark) / HZ;
4350 	if (!dt) dt++;
4351 	db = resync - mddev->resync_mark_cnt;
4352 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4353 }
4354 
4355 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4356 
4357 static ssize_t
4358 sync_completed_show(struct mddev *mddev, char *page)
4359 {
4360 	unsigned long long max_sectors, resync;
4361 
4362 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4363 		return sprintf(page, "none\n");
4364 
4365 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4366 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4367 		max_sectors = mddev->resync_max_sectors;
4368 	else
4369 		max_sectors = mddev->dev_sectors;
4370 
4371 	resync = mddev->curr_resync_completed;
4372 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4373 }
4374 
4375 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4376 
4377 static ssize_t
4378 min_sync_show(struct mddev *mddev, char *page)
4379 {
4380 	return sprintf(page, "%llu\n",
4381 		       (unsigned long long)mddev->resync_min);
4382 }
4383 static ssize_t
4384 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4385 {
4386 	unsigned long long min;
4387 	if (strict_strtoull(buf, 10, &min))
4388 		return -EINVAL;
4389 	if (min > mddev->resync_max)
4390 		return -EINVAL;
4391 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4392 		return -EBUSY;
4393 
4394 	/* Must be a multiple of chunk_size */
4395 	if (mddev->chunk_sectors) {
4396 		sector_t temp = min;
4397 		if (sector_div(temp, mddev->chunk_sectors))
4398 			return -EINVAL;
4399 	}
4400 	mddev->resync_min = min;
4401 
4402 	return len;
4403 }
4404 
4405 static struct md_sysfs_entry md_min_sync =
4406 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4407 
4408 static ssize_t
4409 max_sync_show(struct mddev *mddev, char *page)
4410 {
4411 	if (mddev->resync_max == MaxSector)
4412 		return sprintf(page, "max\n");
4413 	else
4414 		return sprintf(page, "%llu\n",
4415 			       (unsigned long long)mddev->resync_max);
4416 }
4417 static ssize_t
4418 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4419 {
4420 	if (strncmp(buf, "max", 3) == 0)
4421 		mddev->resync_max = MaxSector;
4422 	else {
4423 		unsigned long long max;
4424 		if (strict_strtoull(buf, 10, &max))
4425 			return -EINVAL;
4426 		if (max < mddev->resync_min)
4427 			return -EINVAL;
4428 		if (max < mddev->resync_max &&
4429 		    mddev->ro == 0 &&
4430 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4431 			return -EBUSY;
4432 
4433 		/* Must be a multiple of chunk_size */
4434 		if (mddev->chunk_sectors) {
4435 			sector_t temp = max;
4436 			if (sector_div(temp, mddev->chunk_sectors))
4437 				return -EINVAL;
4438 		}
4439 		mddev->resync_max = max;
4440 	}
4441 	wake_up(&mddev->recovery_wait);
4442 	return len;
4443 }
4444 
4445 static struct md_sysfs_entry md_max_sync =
4446 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4447 
4448 static ssize_t
4449 suspend_lo_show(struct mddev *mddev, char *page)
4450 {
4451 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4452 }
4453 
4454 static ssize_t
4455 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4456 {
4457 	char *e;
4458 	unsigned long long new = simple_strtoull(buf, &e, 10);
4459 	unsigned long long old = mddev->suspend_lo;
4460 
4461 	if (mddev->pers == NULL ||
4462 	    mddev->pers->quiesce == NULL)
4463 		return -EINVAL;
4464 	if (buf == e || (*e && *e != '\n'))
4465 		return -EINVAL;
4466 
4467 	mddev->suspend_lo = new;
4468 	if (new >= old)
4469 		/* Shrinking suspended region */
4470 		mddev->pers->quiesce(mddev, 2);
4471 	else {
4472 		/* Expanding suspended region - need to wait */
4473 		mddev->pers->quiesce(mddev, 1);
4474 		mddev->pers->quiesce(mddev, 0);
4475 	}
4476 	return len;
4477 }
4478 static struct md_sysfs_entry md_suspend_lo =
4479 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4480 
4481 
4482 static ssize_t
4483 suspend_hi_show(struct mddev *mddev, char *page)
4484 {
4485 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4486 }
4487 
4488 static ssize_t
4489 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4490 {
4491 	char *e;
4492 	unsigned long long new = simple_strtoull(buf, &e, 10);
4493 	unsigned long long old = mddev->suspend_hi;
4494 
4495 	if (mddev->pers == NULL ||
4496 	    mddev->pers->quiesce == NULL)
4497 		return -EINVAL;
4498 	if (buf == e || (*e && *e != '\n'))
4499 		return -EINVAL;
4500 
4501 	mddev->suspend_hi = new;
4502 	if (new <= old)
4503 		/* Shrinking suspended region */
4504 		mddev->pers->quiesce(mddev, 2);
4505 	else {
4506 		/* Expanding suspended region - need to wait */
4507 		mddev->pers->quiesce(mddev, 1);
4508 		mddev->pers->quiesce(mddev, 0);
4509 	}
4510 	return len;
4511 }
4512 static struct md_sysfs_entry md_suspend_hi =
4513 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4514 
4515 static ssize_t
4516 reshape_position_show(struct mddev *mddev, char *page)
4517 {
4518 	if (mddev->reshape_position != MaxSector)
4519 		return sprintf(page, "%llu\n",
4520 			       (unsigned long long)mddev->reshape_position);
4521 	strcpy(page, "none\n");
4522 	return 5;
4523 }
4524 
4525 static ssize_t
4526 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4527 {
4528 	struct md_rdev *rdev;
4529 	char *e;
4530 	unsigned long long new = simple_strtoull(buf, &e, 10);
4531 	if (mddev->pers)
4532 		return -EBUSY;
4533 	if (buf == e || (*e && *e != '\n'))
4534 		return -EINVAL;
4535 	mddev->reshape_position = new;
4536 	mddev->delta_disks = 0;
4537 	mddev->reshape_backwards = 0;
4538 	mddev->new_level = mddev->level;
4539 	mddev->new_layout = mddev->layout;
4540 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4541 	rdev_for_each(rdev, mddev)
4542 		rdev->new_data_offset = rdev->data_offset;
4543 	return len;
4544 }
4545 
4546 static struct md_sysfs_entry md_reshape_position =
4547 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4548        reshape_position_store);
4549 
4550 static ssize_t
4551 reshape_direction_show(struct mddev *mddev, char *page)
4552 {
4553 	return sprintf(page, "%s\n",
4554 		       mddev->reshape_backwards ? "backwards" : "forwards");
4555 }
4556 
4557 static ssize_t
4558 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 	int backwards = 0;
4561 	if (cmd_match(buf, "forwards"))
4562 		backwards = 0;
4563 	else if (cmd_match(buf, "backwards"))
4564 		backwards = 1;
4565 	else
4566 		return -EINVAL;
4567 	if (mddev->reshape_backwards == backwards)
4568 		return len;
4569 
4570 	/* check if we are allowed to change */
4571 	if (mddev->delta_disks)
4572 		return -EBUSY;
4573 
4574 	if (mddev->persistent &&
4575 	    mddev->major_version == 0)
4576 		return -EINVAL;
4577 
4578 	mddev->reshape_backwards = backwards;
4579 	return len;
4580 }
4581 
4582 static struct md_sysfs_entry md_reshape_direction =
4583 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4584        reshape_direction_store);
4585 
4586 static ssize_t
4587 array_size_show(struct mddev *mddev, char *page)
4588 {
4589 	if (mddev->external_size)
4590 		return sprintf(page, "%llu\n",
4591 			       (unsigned long long)mddev->array_sectors/2);
4592 	else
4593 		return sprintf(page, "default\n");
4594 }
4595 
4596 static ssize_t
4597 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4598 {
4599 	sector_t sectors;
4600 
4601 	if (strncmp(buf, "default", 7) == 0) {
4602 		if (mddev->pers)
4603 			sectors = mddev->pers->size(mddev, 0, 0);
4604 		else
4605 			sectors = mddev->array_sectors;
4606 
4607 		mddev->external_size = 0;
4608 	} else {
4609 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4610 			return -EINVAL;
4611 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4612 			return -E2BIG;
4613 
4614 		mddev->external_size = 1;
4615 	}
4616 
4617 	mddev->array_sectors = sectors;
4618 	if (mddev->pers) {
4619 		set_capacity(mddev->gendisk, mddev->array_sectors);
4620 		revalidate_disk(mddev->gendisk);
4621 	}
4622 	return len;
4623 }
4624 
4625 static struct md_sysfs_entry md_array_size =
4626 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4627        array_size_store);
4628 
4629 static struct attribute *md_default_attrs[] = {
4630 	&md_level.attr,
4631 	&md_layout.attr,
4632 	&md_raid_disks.attr,
4633 	&md_chunk_size.attr,
4634 	&md_size.attr,
4635 	&md_resync_start.attr,
4636 	&md_metadata.attr,
4637 	&md_new_device.attr,
4638 	&md_safe_delay.attr,
4639 	&md_array_state.attr,
4640 	&md_reshape_position.attr,
4641 	&md_reshape_direction.attr,
4642 	&md_array_size.attr,
4643 	&max_corr_read_errors.attr,
4644 	NULL,
4645 };
4646 
4647 static struct attribute *md_redundancy_attrs[] = {
4648 	&md_scan_mode.attr,
4649 	&md_mismatches.attr,
4650 	&md_sync_min.attr,
4651 	&md_sync_max.attr,
4652 	&md_sync_speed.attr,
4653 	&md_sync_force_parallel.attr,
4654 	&md_sync_completed.attr,
4655 	&md_min_sync.attr,
4656 	&md_max_sync.attr,
4657 	&md_suspend_lo.attr,
4658 	&md_suspend_hi.attr,
4659 	&md_bitmap.attr,
4660 	&md_degraded.attr,
4661 	NULL,
4662 };
4663 static struct attribute_group md_redundancy_group = {
4664 	.name = NULL,
4665 	.attrs = md_redundancy_attrs,
4666 };
4667 
4668 
4669 static ssize_t
4670 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4671 {
4672 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4673 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4674 	ssize_t rv;
4675 
4676 	if (!entry->show)
4677 		return -EIO;
4678 	spin_lock(&all_mddevs_lock);
4679 	if (list_empty(&mddev->all_mddevs)) {
4680 		spin_unlock(&all_mddevs_lock);
4681 		return -EBUSY;
4682 	}
4683 	mddev_get(mddev);
4684 	spin_unlock(&all_mddevs_lock);
4685 
4686 	rv = mddev_lock(mddev);
4687 	if (!rv) {
4688 		rv = entry->show(mddev, page);
4689 		mddev_unlock(mddev);
4690 	}
4691 	mddev_put(mddev);
4692 	return rv;
4693 }
4694 
4695 static ssize_t
4696 md_attr_store(struct kobject *kobj, struct attribute *attr,
4697 	      const char *page, size_t length)
4698 {
4699 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4700 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4701 	ssize_t rv;
4702 
4703 	if (!entry->store)
4704 		return -EIO;
4705 	if (!capable(CAP_SYS_ADMIN))
4706 		return -EACCES;
4707 	spin_lock(&all_mddevs_lock);
4708 	if (list_empty(&mddev->all_mddevs)) {
4709 		spin_unlock(&all_mddevs_lock);
4710 		return -EBUSY;
4711 	}
4712 	mddev_get(mddev);
4713 	spin_unlock(&all_mddevs_lock);
4714 	rv = mddev_lock(mddev);
4715 	if (!rv) {
4716 		rv = entry->store(mddev, page, length);
4717 		mddev_unlock(mddev);
4718 	}
4719 	mddev_put(mddev);
4720 	return rv;
4721 }
4722 
4723 static void md_free(struct kobject *ko)
4724 {
4725 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4726 
4727 	if (mddev->sysfs_state)
4728 		sysfs_put(mddev->sysfs_state);
4729 
4730 	if (mddev->gendisk) {
4731 		del_gendisk(mddev->gendisk);
4732 		put_disk(mddev->gendisk);
4733 	}
4734 	if (mddev->queue)
4735 		blk_cleanup_queue(mddev->queue);
4736 
4737 	kfree(mddev);
4738 }
4739 
4740 static const struct sysfs_ops md_sysfs_ops = {
4741 	.show	= md_attr_show,
4742 	.store	= md_attr_store,
4743 };
4744 static struct kobj_type md_ktype = {
4745 	.release	= md_free,
4746 	.sysfs_ops	= &md_sysfs_ops,
4747 	.default_attrs	= md_default_attrs,
4748 };
4749 
4750 int mdp_major = 0;
4751 
4752 static void mddev_delayed_delete(struct work_struct *ws)
4753 {
4754 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4755 
4756 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4757 	kobject_del(&mddev->kobj);
4758 	kobject_put(&mddev->kobj);
4759 }
4760 
4761 static int md_alloc(dev_t dev, char *name)
4762 {
4763 	static DEFINE_MUTEX(disks_mutex);
4764 	struct mddev *mddev = mddev_find(dev);
4765 	struct gendisk *disk;
4766 	int partitioned;
4767 	int shift;
4768 	int unit;
4769 	int error;
4770 
4771 	if (!mddev)
4772 		return -ENODEV;
4773 
4774 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4775 	shift = partitioned ? MdpMinorShift : 0;
4776 	unit = MINOR(mddev->unit) >> shift;
4777 
4778 	/* wait for any previous instance of this device to be
4779 	 * completely removed (mddev_delayed_delete).
4780 	 */
4781 	flush_workqueue(md_misc_wq);
4782 
4783 	mutex_lock(&disks_mutex);
4784 	error = -EEXIST;
4785 	if (mddev->gendisk)
4786 		goto abort;
4787 
4788 	if (name) {
4789 		/* Need to ensure that 'name' is not a duplicate.
4790 		 */
4791 		struct mddev *mddev2;
4792 		spin_lock(&all_mddevs_lock);
4793 
4794 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4795 			if (mddev2->gendisk &&
4796 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4797 				spin_unlock(&all_mddevs_lock);
4798 				goto abort;
4799 			}
4800 		spin_unlock(&all_mddevs_lock);
4801 	}
4802 
4803 	error = -ENOMEM;
4804 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4805 	if (!mddev->queue)
4806 		goto abort;
4807 	mddev->queue->queuedata = mddev;
4808 
4809 	blk_queue_make_request(mddev->queue, md_make_request);
4810 	blk_set_stacking_limits(&mddev->queue->limits);
4811 
4812 	disk = alloc_disk(1 << shift);
4813 	if (!disk) {
4814 		blk_cleanup_queue(mddev->queue);
4815 		mddev->queue = NULL;
4816 		goto abort;
4817 	}
4818 	disk->major = MAJOR(mddev->unit);
4819 	disk->first_minor = unit << shift;
4820 	if (name)
4821 		strcpy(disk->disk_name, name);
4822 	else if (partitioned)
4823 		sprintf(disk->disk_name, "md_d%d", unit);
4824 	else
4825 		sprintf(disk->disk_name, "md%d", unit);
4826 	disk->fops = &md_fops;
4827 	disk->private_data = mddev;
4828 	disk->queue = mddev->queue;
4829 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4830 	/* Allow extended partitions.  This makes the
4831 	 * 'mdp' device redundant, but we can't really
4832 	 * remove it now.
4833 	 */
4834 	disk->flags |= GENHD_FL_EXT_DEVT;
4835 	mddev->gendisk = disk;
4836 	/* As soon as we call add_disk(), another thread could get
4837 	 * through to md_open, so make sure it doesn't get too far
4838 	 */
4839 	mutex_lock(&mddev->open_mutex);
4840 	add_disk(disk);
4841 
4842 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4843 				     &disk_to_dev(disk)->kobj, "%s", "md");
4844 	if (error) {
4845 		/* This isn't possible, but as kobject_init_and_add is marked
4846 		 * __must_check, we must do something with the result
4847 		 */
4848 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4849 		       disk->disk_name);
4850 		error = 0;
4851 	}
4852 	if (mddev->kobj.sd &&
4853 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4854 		printk(KERN_DEBUG "pointless warning\n");
4855 	mutex_unlock(&mddev->open_mutex);
4856  abort:
4857 	mutex_unlock(&disks_mutex);
4858 	if (!error && mddev->kobj.sd) {
4859 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4860 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4861 	}
4862 	mddev_put(mddev);
4863 	return error;
4864 }
4865 
4866 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4867 {
4868 	md_alloc(dev, NULL);
4869 	return NULL;
4870 }
4871 
4872 static int add_named_array(const char *val, struct kernel_param *kp)
4873 {
4874 	/* val must be "md_*" where * is not all digits.
4875 	 * We allocate an array with a large free minor number, and
4876 	 * set the name to val.  val must not already be an active name.
4877 	 */
4878 	int len = strlen(val);
4879 	char buf[DISK_NAME_LEN];
4880 
4881 	while (len && val[len-1] == '\n')
4882 		len--;
4883 	if (len >= DISK_NAME_LEN)
4884 		return -E2BIG;
4885 	strlcpy(buf, val, len+1);
4886 	if (strncmp(buf, "md_", 3) != 0)
4887 		return -EINVAL;
4888 	return md_alloc(0, buf);
4889 }
4890 
4891 static void md_safemode_timeout(unsigned long data)
4892 {
4893 	struct mddev *mddev = (struct mddev *) data;
4894 
4895 	if (!atomic_read(&mddev->writes_pending)) {
4896 		mddev->safemode = 1;
4897 		if (mddev->external)
4898 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4899 	}
4900 	md_wakeup_thread(mddev->thread);
4901 }
4902 
4903 static int start_dirty_degraded;
4904 
4905 int md_run(struct mddev *mddev)
4906 {
4907 	int err;
4908 	struct md_rdev *rdev;
4909 	struct md_personality *pers;
4910 
4911 	if (list_empty(&mddev->disks))
4912 		/* cannot run an array with no devices.. */
4913 		return -EINVAL;
4914 
4915 	if (mddev->pers)
4916 		return -EBUSY;
4917 	/* Cannot run until previous stop completes properly */
4918 	if (mddev->sysfs_active)
4919 		return -EBUSY;
4920 
4921 	/*
4922 	 * Analyze all RAID superblock(s)
4923 	 */
4924 	if (!mddev->raid_disks) {
4925 		if (!mddev->persistent)
4926 			return -EINVAL;
4927 		analyze_sbs(mddev);
4928 	}
4929 
4930 	if (mddev->level != LEVEL_NONE)
4931 		request_module("md-level-%d", mddev->level);
4932 	else if (mddev->clevel[0])
4933 		request_module("md-%s", mddev->clevel);
4934 
4935 	/*
4936 	 * Drop all container device buffers, from now on
4937 	 * the only valid external interface is through the md
4938 	 * device.
4939 	 */
4940 	rdev_for_each(rdev, mddev) {
4941 		if (test_bit(Faulty, &rdev->flags))
4942 			continue;
4943 		sync_blockdev(rdev->bdev);
4944 		invalidate_bdev(rdev->bdev);
4945 
4946 		/* perform some consistency tests on the device.
4947 		 * We don't want the data to overlap the metadata,
4948 		 * Internal Bitmap issues have been handled elsewhere.
4949 		 */
4950 		if (rdev->meta_bdev) {
4951 			/* Nothing to check */;
4952 		} else if (rdev->data_offset < rdev->sb_start) {
4953 			if (mddev->dev_sectors &&
4954 			    rdev->data_offset + mddev->dev_sectors
4955 			    > rdev->sb_start) {
4956 				printk("md: %s: data overlaps metadata\n",
4957 				       mdname(mddev));
4958 				return -EINVAL;
4959 			}
4960 		} else {
4961 			if (rdev->sb_start + rdev->sb_size/512
4962 			    > rdev->data_offset) {
4963 				printk("md: %s: metadata overlaps data\n",
4964 				       mdname(mddev));
4965 				return -EINVAL;
4966 			}
4967 		}
4968 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4969 	}
4970 
4971 	if (mddev->bio_set == NULL)
4972 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4973 
4974 	spin_lock(&pers_lock);
4975 	pers = find_pers(mddev->level, mddev->clevel);
4976 	if (!pers || !try_module_get(pers->owner)) {
4977 		spin_unlock(&pers_lock);
4978 		if (mddev->level != LEVEL_NONE)
4979 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4980 			       mddev->level);
4981 		else
4982 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4983 			       mddev->clevel);
4984 		return -EINVAL;
4985 	}
4986 	mddev->pers = pers;
4987 	spin_unlock(&pers_lock);
4988 	if (mddev->level != pers->level) {
4989 		mddev->level = pers->level;
4990 		mddev->new_level = pers->level;
4991 	}
4992 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4993 
4994 	if (mddev->reshape_position != MaxSector &&
4995 	    pers->start_reshape == NULL) {
4996 		/* This personality cannot handle reshaping... */
4997 		mddev->pers = NULL;
4998 		module_put(pers->owner);
4999 		return -EINVAL;
5000 	}
5001 
5002 	if (pers->sync_request) {
5003 		/* Warn if this is a potentially silly
5004 		 * configuration.
5005 		 */
5006 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5007 		struct md_rdev *rdev2;
5008 		int warned = 0;
5009 
5010 		rdev_for_each(rdev, mddev)
5011 			rdev_for_each(rdev2, mddev) {
5012 				if (rdev < rdev2 &&
5013 				    rdev->bdev->bd_contains ==
5014 				    rdev2->bdev->bd_contains) {
5015 					printk(KERN_WARNING
5016 					       "%s: WARNING: %s appears to be"
5017 					       " on the same physical disk as"
5018 					       " %s.\n",
5019 					       mdname(mddev),
5020 					       bdevname(rdev->bdev,b),
5021 					       bdevname(rdev2->bdev,b2));
5022 					warned = 1;
5023 				}
5024 			}
5025 
5026 		if (warned)
5027 			printk(KERN_WARNING
5028 			       "True protection against single-disk"
5029 			       " failure might be compromised.\n");
5030 	}
5031 
5032 	mddev->recovery = 0;
5033 	/* may be over-ridden by personality */
5034 	mddev->resync_max_sectors = mddev->dev_sectors;
5035 
5036 	mddev->ok_start_degraded = start_dirty_degraded;
5037 
5038 	if (start_readonly && mddev->ro == 0)
5039 		mddev->ro = 2; /* read-only, but switch on first write */
5040 
5041 	err = mddev->pers->run(mddev);
5042 	if (err)
5043 		printk(KERN_ERR "md: pers->run() failed ...\n");
5044 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5045 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5046 			  " but 'external_size' not in effect?\n", __func__);
5047 		printk(KERN_ERR
5048 		       "md: invalid array_size %llu > default size %llu\n",
5049 		       (unsigned long long)mddev->array_sectors / 2,
5050 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5051 		err = -EINVAL;
5052 		mddev->pers->stop(mddev);
5053 	}
5054 	if (err == 0 && mddev->pers->sync_request &&
5055 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5056 		err = bitmap_create(mddev);
5057 		if (err) {
5058 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5059 			       mdname(mddev), err);
5060 			mddev->pers->stop(mddev);
5061 		}
5062 	}
5063 	if (err) {
5064 		module_put(mddev->pers->owner);
5065 		mddev->pers = NULL;
5066 		bitmap_destroy(mddev);
5067 		return err;
5068 	}
5069 	if (mddev->pers->sync_request) {
5070 		if (mddev->kobj.sd &&
5071 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5072 			printk(KERN_WARNING
5073 			       "md: cannot register extra attributes for %s\n",
5074 			       mdname(mddev));
5075 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5076 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5077 		mddev->ro = 0;
5078 
5079  	atomic_set(&mddev->writes_pending,0);
5080 	atomic_set(&mddev->max_corr_read_errors,
5081 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5082 	mddev->safemode = 0;
5083 	mddev->safemode_timer.function = md_safemode_timeout;
5084 	mddev->safemode_timer.data = (unsigned long) mddev;
5085 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5086 	mddev->in_sync = 1;
5087 	smp_wmb();
5088 	mddev->ready = 1;
5089 	rdev_for_each(rdev, mddev)
5090 		if (rdev->raid_disk >= 0)
5091 			if (sysfs_link_rdev(mddev, rdev))
5092 				/* failure here is OK */;
5093 
5094 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5095 
5096 	if (mddev->flags)
5097 		md_update_sb(mddev, 0);
5098 
5099 	md_new_event(mddev);
5100 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5101 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5102 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5103 	return 0;
5104 }
5105 EXPORT_SYMBOL_GPL(md_run);
5106 
5107 static int do_md_run(struct mddev *mddev)
5108 {
5109 	int err;
5110 
5111 	err = md_run(mddev);
5112 	if (err)
5113 		goto out;
5114 	err = bitmap_load(mddev);
5115 	if (err) {
5116 		bitmap_destroy(mddev);
5117 		goto out;
5118 	}
5119 
5120 	md_wakeup_thread(mddev->thread);
5121 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5122 
5123 	set_capacity(mddev->gendisk, mddev->array_sectors);
5124 	revalidate_disk(mddev->gendisk);
5125 	mddev->changed = 1;
5126 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5127 out:
5128 	return err;
5129 }
5130 
5131 static int restart_array(struct mddev *mddev)
5132 {
5133 	struct gendisk *disk = mddev->gendisk;
5134 
5135 	/* Complain if it has no devices */
5136 	if (list_empty(&mddev->disks))
5137 		return -ENXIO;
5138 	if (!mddev->pers)
5139 		return -EINVAL;
5140 	if (!mddev->ro)
5141 		return -EBUSY;
5142 	mddev->safemode = 0;
5143 	mddev->ro = 0;
5144 	set_disk_ro(disk, 0);
5145 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5146 		mdname(mddev));
5147 	/* Kick recovery or resync if necessary */
5148 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5149 	md_wakeup_thread(mddev->thread);
5150 	md_wakeup_thread(mddev->sync_thread);
5151 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 	return 0;
5153 }
5154 
5155 /* similar to deny_write_access, but accounts for our holding a reference
5156  * to the file ourselves */
5157 static int deny_bitmap_write_access(struct file * file)
5158 {
5159 	struct inode *inode = file->f_mapping->host;
5160 
5161 	spin_lock(&inode->i_lock);
5162 	if (atomic_read(&inode->i_writecount) > 1) {
5163 		spin_unlock(&inode->i_lock);
5164 		return -ETXTBSY;
5165 	}
5166 	atomic_set(&inode->i_writecount, -1);
5167 	spin_unlock(&inode->i_lock);
5168 
5169 	return 0;
5170 }
5171 
5172 void restore_bitmap_write_access(struct file *file)
5173 {
5174 	struct inode *inode = file->f_mapping->host;
5175 
5176 	spin_lock(&inode->i_lock);
5177 	atomic_set(&inode->i_writecount, 1);
5178 	spin_unlock(&inode->i_lock);
5179 }
5180 
5181 static void md_clean(struct mddev *mddev)
5182 {
5183 	mddev->array_sectors = 0;
5184 	mddev->external_size = 0;
5185 	mddev->dev_sectors = 0;
5186 	mddev->raid_disks = 0;
5187 	mddev->recovery_cp = 0;
5188 	mddev->resync_min = 0;
5189 	mddev->resync_max = MaxSector;
5190 	mddev->reshape_position = MaxSector;
5191 	mddev->external = 0;
5192 	mddev->persistent = 0;
5193 	mddev->level = LEVEL_NONE;
5194 	mddev->clevel[0] = 0;
5195 	mddev->flags = 0;
5196 	mddev->ro = 0;
5197 	mddev->metadata_type[0] = 0;
5198 	mddev->chunk_sectors = 0;
5199 	mddev->ctime = mddev->utime = 0;
5200 	mddev->layout = 0;
5201 	mddev->max_disks = 0;
5202 	mddev->events = 0;
5203 	mddev->can_decrease_events = 0;
5204 	mddev->delta_disks = 0;
5205 	mddev->reshape_backwards = 0;
5206 	mddev->new_level = LEVEL_NONE;
5207 	mddev->new_layout = 0;
5208 	mddev->new_chunk_sectors = 0;
5209 	mddev->curr_resync = 0;
5210 	mddev->resync_mismatches = 0;
5211 	mddev->suspend_lo = mddev->suspend_hi = 0;
5212 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5213 	mddev->recovery = 0;
5214 	mddev->in_sync = 0;
5215 	mddev->changed = 0;
5216 	mddev->degraded = 0;
5217 	mddev->safemode = 0;
5218 	mddev->merge_check_needed = 0;
5219 	mddev->bitmap_info.offset = 0;
5220 	mddev->bitmap_info.default_offset = 0;
5221 	mddev->bitmap_info.default_space = 0;
5222 	mddev->bitmap_info.chunksize = 0;
5223 	mddev->bitmap_info.daemon_sleep = 0;
5224 	mddev->bitmap_info.max_write_behind = 0;
5225 }
5226 
5227 static void __md_stop_writes(struct mddev *mddev)
5228 {
5229 	if (mddev->sync_thread) {
5230 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5231 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5232 		reap_sync_thread(mddev);
5233 	}
5234 
5235 	del_timer_sync(&mddev->safemode_timer);
5236 
5237 	bitmap_flush(mddev);
5238 	md_super_wait(mddev);
5239 
5240 	if (!mddev->in_sync || mddev->flags) {
5241 		/* mark array as shutdown cleanly */
5242 		mddev->in_sync = 1;
5243 		md_update_sb(mddev, 1);
5244 	}
5245 }
5246 
5247 void md_stop_writes(struct mddev *mddev)
5248 {
5249 	mddev_lock(mddev);
5250 	__md_stop_writes(mddev);
5251 	mddev_unlock(mddev);
5252 }
5253 EXPORT_SYMBOL_GPL(md_stop_writes);
5254 
5255 void md_stop(struct mddev *mddev)
5256 {
5257 	mddev->ready = 0;
5258 	mddev->pers->stop(mddev);
5259 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5260 		mddev->to_remove = &md_redundancy_group;
5261 	module_put(mddev->pers->owner);
5262 	mddev->pers = NULL;
5263 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5264 }
5265 EXPORT_SYMBOL_GPL(md_stop);
5266 
5267 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5268 {
5269 	int err = 0;
5270 	mutex_lock(&mddev->open_mutex);
5271 	if (atomic_read(&mddev->openers) > !!bdev) {
5272 		printk("md: %s still in use.\n",mdname(mddev));
5273 		err = -EBUSY;
5274 		goto out;
5275 	}
5276 	if (bdev)
5277 		sync_blockdev(bdev);
5278 	if (mddev->pers) {
5279 		__md_stop_writes(mddev);
5280 
5281 		err  = -ENXIO;
5282 		if (mddev->ro==1)
5283 			goto out;
5284 		mddev->ro = 1;
5285 		set_disk_ro(mddev->gendisk, 1);
5286 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5287 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5288 		err = 0;
5289 	}
5290 out:
5291 	mutex_unlock(&mddev->open_mutex);
5292 	return err;
5293 }
5294 
5295 /* mode:
5296  *   0 - completely stop and dis-assemble array
5297  *   2 - stop but do not disassemble array
5298  */
5299 static int do_md_stop(struct mddev * mddev, int mode,
5300 		      struct block_device *bdev)
5301 {
5302 	struct gendisk *disk = mddev->gendisk;
5303 	struct md_rdev *rdev;
5304 
5305 	mutex_lock(&mddev->open_mutex);
5306 	if (atomic_read(&mddev->openers) > !!bdev ||
5307 	    mddev->sysfs_active) {
5308 		printk("md: %s still in use.\n",mdname(mddev));
5309 		mutex_unlock(&mddev->open_mutex);
5310 		return -EBUSY;
5311 	}
5312 	if (bdev)
5313 		/* It is possible IO was issued on some other
5314 		 * open file which was closed before we took ->open_mutex.
5315 		 * As that was not the last close __blkdev_put will not
5316 		 * have called sync_blockdev, so we must.
5317 		 */
5318 		sync_blockdev(bdev);
5319 
5320 	if (mddev->pers) {
5321 		if (mddev->ro)
5322 			set_disk_ro(disk, 0);
5323 
5324 		__md_stop_writes(mddev);
5325 		md_stop(mddev);
5326 		mddev->queue->merge_bvec_fn = NULL;
5327 		mddev->queue->backing_dev_info.congested_fn = NULL;
5328 
5329 		/* tell userspace to handle 'inactive' */
5330 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5331 
5332 		rdev_for_each(rdev, mddev)
5333 			if (rdev->raid_disk >= 0)
5334 				sysfs_unlink_rdev(mddev, rdev);
5335 
5336 		set_capacity(disk, 0);
5337 		mutex_unlock(&mddev->open_mutex);
5338 		mddev->changed = 1;
5339 		revalidate_disk(disk);
5340 
5341 		if (mddev->ro)
5342 			mddev->ro = 0;
5343 	} else
5344 		mutex_unlock(&mddev->open_mutex);
5345 	/*
5346 	 * Free resources if final stop
5347 	 */
5348 	if (mode == 0) {
5349 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5350 
5351 		bitmap_destroy(mddev);
5352 		if (mddev->bitmap_info.file) {
5353 			restore_bitmap_write_access(mddev->bitmap_info.file);
5354 			fput(mddev->bitmap_info.file);
5355 			mddev->bitmap_info.file = NULL;
5356 		}
5357 		mddev->bitmap_info.offset = 0;
5358 
5359 		export_array(mddev);
5360 
5361 		md_clean(mddev);
5362 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5363 		if (mddev->hold_active == UNTIL_STOP)
5364 			mddev->hold_active = 0;
5365 	}
5366 	blk_integrity_unregister(disk);
5367 	md_new_event(mddev);
5368 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5369 	return 0;
5370 }
5371 
5372 #ifndef MODULE
5373 static void autorun_array(struct mddev *mddev)
5374 {
5375 	struct md_rdev *rdev;
5376 	int err;
5377 
5378 	if (list_empty(&mddev->disks))
5379 		return;
5380 
5381 	printk(KERN_INFO "md: running: ");
5382 
5383 	rdev_for_each(rdev, mddev) {
5384 		char b[BDEVNAME_SIZE];
5385 		printk("<%s>", bdevname(rdev->bdev,b));
5386 	}
5387 	printk("\n");
5388 
5389 	err = do_md_run(mddev);
5390 	if (err) {
5391 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5392 		do_md_stop(mddev, 0, NULL);
5393 	}
5394 }
5395 
5396 /*
5397  * lets try to run arrays based on all disks that have arrived
5398  * until now. (those are in pending_raid_disks)
5399  *
5400  * the method: pick the first pending disk, collect all disks with
5401  * the same UUID, remove all from the pending list and put them into
5402  * the 'same_array' list. Then order this list based on superblock
5403  * update time (freshest comes first), kick out 'old' disks and
5404  * compare superblocks. If everything's fine then run it.
5405  *
5406  * If "unit" is allocated, then bump its reference count
5407  */
5408 static void autorun_devices(int part)
5409 {
5410 	struct md_rdev *rdev0, *rdev, *tmp;
5411 	struct mddev *mddev;
5412 	char b[BDEVNAME_SIZE];
5413 
5414 	printk(KERN_INFO "md: autorun ...\n");
5415 	while (!list_empty(&pending_raid_disks)) {
5416 		int unit;
5417 		dev_t dev;
5418 		LIST_HEAD(candidates);
5419 		rdev0 = list_entry(pending_raid_disks.next,
5420 					 struct md_rdev, same_set);
5421 
5422 		printk(KERN_INFO "md: considering %s ...\n",
5423 			bdevname(rdev0->bdev,b));
5424 		INIT_LIST_HEAD(&candidates);
5425 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5426 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5427 				printk(KERN_INFO "md:  adding %s ...\n",
5428 					bdevname(rdev->bdev,b));
5429 				list_move(&rdev->same_set, &candidates);
5430 			}
5431 		/*
5432 		 * now we have a set of devices, with all of them having
5433 		 * mostly sane superblocks. It's time to allocate the
5434 		 * mddev.
5435 		 */
5436 		if (part) {
5437 			dev = MKDEV(mdp_major,
5438 				    rdev0->preferred_minor << MdpMinorShift);
5439 			unit = MINOR(dev) >> MdpMinorShift;
5440 		} else {
5441 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5442 			unit = MINOR(dev);
5443 		}
5444 		if (rdev0->preferred_minor != unit) {
5445 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5446 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5447 			break;
5448 		}
5449 
5450 		md_probe(dev, NULL, NULL);
5451 		mddev = mddev_find(dev);
5452 		if (!mddev || !mddev->gendisk) {
5453 			if (mddev)
5454 				mddev_put(mddev);
5455 			printk(KERN_ERR
5456 				"md: cannot allocate memory for md drive.\n");
5457 			break;
5458 		}
5459 		if (mddev_lock(mddev))
5460 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5461 			       mdname(mddev));
5462 		else if (mddev->raid_disks || mddev->major_version
5463 			 || !list_empty(&mddev->disks)) {
5464 			printk(KERN_WARNING
5465 				"md: %s already running, cannot run %s\n",
5466 				mdname(mddev), bdevname(rdev0->bdev,b));
5467 			mddev_unlock(mddev);
5468 		} else {
5469 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5470 			mddev->persistent = 1;
5471 			rdev_for_each_list(rdev, tmp, &candidates) {
5472 				list_del_init(&rdev->same_set);
5473 				if (bind_rdev_to_array(rdev, mddev))
5474 					export_rdev(rdev);
5475 			}
5476 			autorun_array(mddev);
5477 			mddev_unlock(mddev);
5478 		}
5479 		/* on success, candidates will be empty, on error
5480 		 * it won't...
5481 		 */
5482 		rdev_for_each_list(rdev, tmp, &candidates) {
5483 			list_del_init(&rdev->same_set);
5484 			export_rdev(rdev);
5485 		}
5486 		mddev_put(mddev);
5487 	}
5488 	printk(KERN_INFO "md: ... autorun DONE.\n");
5489 }
5490 #endif /* !MODULE */
5491 
5492 static int get_version(void __user * arg)
5493 {
5494 	mdu_version_t ver;
5495 
5496 	ver.major = MD_MAJOR_VERSION;
5497 	ver.minor = MD_MINOR_VERSION;
5498 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5499 
5500 	if (copy_to_user(arg, &ver, sizeof(ver)))
5501 		return -EFAULT;
5502 
5503 	return 0;
5504 }
5505 
5506 static int get_array_info(struct mddev * mddev, void __user * arg)
5507 {
5508 	mdu_array_info_t info;
5509 	int nr,working,insync,failed,spare;
5510 	struct md_rdev *rdev;
5511 
5512 	nr=working=insync=failed=spare=0;
5513 	rdev_for_each(rdev, mddev) {
5514 		nr++;
5515 		if (test_bit(Faulty, &rdev->flags))
5516 			failed++;
5517 		else {
5518 			working++;
5519 			if (test_bit(In_sync, &rdev->flags))
5520 				insync++;
5521 			else
5522 				spare++;
5523 		}
5524 	}
5525 
5526 	info.major_version = mddev->major_version;
5527 	info.minor_version = mddev->minor_version;
5528 	info.patch_version = MD_PATCHLEVEL_VERSION;
5529 	info.ctime         = mddev->ctime;
5530 	info.level         = mddev->level;
5531 	info.size          = mddev->dev_sectors / 2;
5532 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5533 		info.size = -1;
5534 	info.nr_disks      = nr;
5535 	info.raid_disks    = mddev->raid_disks;
5536 	info.md_minor      = mddev->md_minor;
5537 	info.not_persistent= !mddev->persistent;
5538 
5539 	info.utime         = mddev->utime;
5540 	info.state         = 0;
5541 	if (mddev->in_sync)
5542 		info.state = (1<<MD_SB_CLEAN);
5543 	if (mddev->bitmap && mddev->bitmap_info.offset)
5544 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5545 	info.active_disks  = insync;
5546 	info.working_disks = working;
5547 	info.failed_disks  = failed;
5548 	info.spare_disks   = spare;
5549 
5550 	info.layout        = mddev->layout;
5551 	info.chunk_size    = mddev->chunk_sectors << 9;
5552 
5553 	if (copy_to_user(arg, &info, sizeof(info)))
5554 		return -EFAULT;
5555 
5556 	return 0;
5557 }
5558 
5559 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5560 {
5561 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5562 	char *ptr, *buf = NULL;
5563 	int err = -ENOMEM;
5564 
5565 	if (md_allow_write(mddev))
5566 		file = kmalloc(sizeof(*file), GFP_NOIO);
5567 	else
5568 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5569 
5570 	if (!file)
5571 		goto out;
5572 
5573 	/* bitmap disabled, zero the first byte and copy out */
5574 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5575 		file->pathname[0] = '\0';
5576 		goto copy_out;
5577 	}
5578 
5579 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5580 	if (!buf)
5581 		goto out;
5582 
5583 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5584 		     buf, sizeof(file->pathname));
5585 	if (IS_ERR(ptr))
5586 		goto out;
5587 
5588 	strcpy(file->pathname, ptr);
5589 
5590 copy_out:
5591 	err = 0;
5592 	if (copy_to_user(arg, file, sizeof(*file)))
5593 		err = -EFAULT;
5594 out:
5595 	kfree(buf);
5596 	kfree(file);
5597 	return err;
5598 }
5599 
5600 static int get_disk_info(struct mddev * mddev, void __user * arg)
5601 {
5602 	mdu_disk_info_t info;
5603 	struct md_rdev *rdev;
5604 
5605 	if (copy_from_user(&info, arg, sizeof(info)))
5606 		return -EFAULT;
5607 
5608 	rdev = find_rdev_nr(mddev, info.number);
5609 	if (rdev) {
5610 		info.major = MAJOR(rdev->bdev->bd_dev);
5611 		info.minor = MINOR(rdev->bdev->bd_dev);
5612 		info.raid_disk = rdev->raid_disk;
5613 		info.state = 0;
5614 		if (test_bit(Faulty, &rdev->flags))
5615 			info.state |= (1<<MD_DISK_FAULTY);
5616 		else if (test_bit(In_sync, &rdev->flags)) {
5617 			info.state |= (1<<MD_DISK_ACTIVE);
5618 			info.state |= (1<<MD_DISK_SYNC);
5619 		}
5620 		if (test_bit(WriteMostly, &rdev->flags))
5621 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5622 	} else {
5623 		info.major = info.minor = 0;
5624 		info.raid_disk = -1;
5625 		info.state = (1<<MD_DISK_REMOVED);
5626 	}
5627 
5628 	if (copy_to_user(arg, &info, sizeof(info)))
5629 		return -EFAULT;
5630 
5631 	return 0;
5632 }
5633 
5634 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5635 {
5636 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5637 	struct md_rdev *rdev;
5638 	dev_t dev = MKDEV(info->major,info->minor);
5639 
5640 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5641 		return -EOVERFLOW;
5642 
5643 	if (!mddev->raid_disks) {
5644 		int err;
5645 		/* expecting a device which has a superblock */
5646 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5647 		if (IS_ERR(rdev)) {
5648 			printk(KERN_WARNING
5649 				"md: md_import_device returned %ld\n",
5650 				PTR_ERR(rdev));
5651 			return PTR_ERR(rdev);
5652 		}
5653 		if (!list_empty(&mddev->disks)) {
5654 			struct md_rdev *rdev0
5655 				= list_entry(mddev->disks.next,
5656 					     struct md_rdev, same_set);
5657 			err = super_types[mddev->major_version]
5658 				.load_super(rdev, rdev0, mddev->minor_version);
5659 			if (err < 0) {
5660 				printk(KERN_WARNING
5661 					"md: %s has different UUID to %s\n",
5662 					bdevname(rdev->bdev,b),
5663 					bdevname(rdev0->bdev,b2));
5664 				export_rdev(rdev);
5665 				return -EINVAL;
5666 			}
5667 		}
5668 		err = bind_rdev_to_array(rdev, mddev);
5669 		if (err)
5670 			export_rdev(rdev);
5671 		return err;
5672 	}
5673 
5674 	/*
5675 	 * add_new_disk can be used once the array is assembled
5676 	 * to add "hot spares".  They must already have a superblock
5677 	 * written
5678 	 */
5679 	if (mddev->pers) {
5680 		int err;
5681 		if (!mddev->pers->hot_add_disk) {
5682 			printk(KERN_WARNING
5683 				"%s: personality does not support diskops!\n",
5684 			       mdname(mddev));
5685 			return -EINVAL;
5686 		}
5687 		if (mddev->persistent)
5688 			rdev = md_import_device(dev, mddev->major_version,
5689 						mddev->minor_version);
5690 		else
5691 			rdev = md_import_device(dev, -1, -1);
5692 		if (IS_ERR(rdev)) {
5693 			printk(KERN_WARNING
5694 				"md: md_import_device returned %ld\n",
5695 				PTR_ERR(rdev));
5696 			return PTR_ERR(rdev);
5697 		}
5698 		/* set saved_raid_disk if appropriate */
5699 		if (!mddev->persistent) {
5700 			if (info->state & (1<<MD_DISK_SYNC)  &&
5701 			    info->raid_disk < mddev->raid_disks) {
5702 				rdev->raid_disk = info->raid_disk;
5703 				set_bit(In_sync, &rdev->flags);
5704 			} else
5705 				rdev->raid_disk = -1;
5706 		} else
5707 			super_types[mddev->major_version].
5708 				validate_super(mddev, rdev);
5709 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5710 		     rdev->raid_disk != info->raid_disk) {
5711 			/* This was a hot-add request, but events doesn't
5712 			 * match, so reject it.
5713 			 */
5714 			export_rdev(rdev);
5715 			return -EINVAL;
5716 		}
5717 
5718 		if (test_bit(In_sync, &rdev->flags))
5719 			rdev->saved_raid_disk = rdev->raid_disk;
5720 		else
5721 			rdev->saved_raid_disk = -1;
5722 
5723 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5724 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5725 			set_bit(WriteMostly, &rdev->flags);
5726 		else
5727 			clear_bit(WriteMostly, &rdev->flags);
5728 
5729 		rdev->raid_disk = -1;
5730 		err = bind_rdev_to_array(rdev, mddev);
5731 		if (!err && !mddev->pers->hot_remove_disk) {
5732 			/* If there is hot_add_disk but no hot_remove_disk
5733 			 * then added disks for geometry changes,
5734 			 * and should be added immediately.
5735 			 */
5736 			super_types[mddev->major_version].
5737 				validate_super(mddev, rdev);
5738 			err = mddev->pers->hot_add_disk(mddev, rdev);
5739 			if (err)
5740 				unbind_rdev_from_array(rdev);
5741 		}
5742 		if (err)
5743 			export_rdev(rdev);
5744 		else
5745 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5746 
5747 		md_update_sb(mddev, 1);
5748 		if (mddev->degraded)
5749 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5750 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5751 		if (!err)
5752 			md_new_event(mddev);
5753 		md_wakeup_thread(mddev->thread);
5754 		return err;
5755 	}
5756 
5757 	/* otherwise, add_new_disk is only allowed
5758 	 * for major_version==0 superblocks
5759 	 */
5760 	if (mddev->major_version != 0) {
5761 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5762 		       mdname(mddev));
5763 		return -EINVAL;
5764 	}
5765 
5766 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5767 		int err;
5768 		rdev = md_import_device(dev, -1, 0);
5769 		if (IS_ERR(rdev)) {
5770 			printk(KERN_WARNING
5771 				"md: error, md_import_device() returned %ld\n",
5772 				PTR_ERR(rdev));
5773 			return PTR_ERR(rdev);
5774 		}
5775 		rdev->desc_nr = info->number;
5776 		if (info->raid_disk < mddev->raid_disks)
5777 			rdev->raid_disk = info->raid_disk;
5778 		else
5779 			rdev->raid_disk = -1;
5780 
5781 		if (rdev->raid_disk < mddev->raid_disks)
5782 			if (info->state & (1<<MD_DISK_SYNC))
5783 				set_bit(In_sync, &rdev->flags);
5784 
5785 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5786 			set_bit(WriteMostly, &rdev->flags);
5787 
5788 		if (!mddev->persistent) {
5789 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5790 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5791 		} else
5792 			rdev->sb_start = calc_dev_sboffset(rdev);
5793 		rdev->sectors = rdev->sb_start;
5794 
5795 		err = bind_rdev_to_array(rdev, mddev);
5796 		if (err) {
5797 			export_rdev(rdev);
5798 			return err;
5799 		}
5800 	}
5801 
5802 	return 0;
5803 }
5804 
5805 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5806 {
5807 	char b[BDEVNAME_SIZE];
5808 	struct md_rdev *rdev;
5809 
5810 	rdev = find_rdev(mddev, dev);
5811 	if (!rdev)
5812 		return -ENXIO;
5813 
5814 	if (rdev->raid_disk >= 0)
5815 		goto busy;
5816 
5817 	kick_rdev_from_array(rdev);
5818 	md_update_sb(mddev, 1);
5819 	md_new_event(mddev);
5820 
5821 	return 0;
5822 busy:
5823 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5824 		bdevname(rdev->bdev,b), mdname(mddev));
5825 	return -EBUSY;
5826 }
5827 
5828 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5829 {
5830 	char b[BDEVNAME_SIZE];
5831 	int err;
5832 	struct md_rdev *rdev;
5833 
5834 	if (!mddev->pers)
5835 		return -ENODEV;
5836 
5837 	if (mddev->major_version != 0) {
5838 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5839 			" version-0 superblocks.\n",
5840 			mdname(mddev));
5841 		return -EINVAL;
5842 	}
5843 	if (!mddev->pers->hot_add_disk) {
5844 		printk(KERN_WARNING
5845 			"%s: personality does not support diskops!\n",
5846 			mdname(mddev));
5847 		return -EINVAL;
5848 	}
5849 
5850 	rdev = md_import_device(dev, -1, 0);
5851 	if (IS_ERR(rdev)) {
5852 		printk(KERN_WARNING
5853 			"md: error, md_import_device() returned %ld\n",
5854 			PTR_ERR(rdev));
5855 		return -EINVAL;
5856 	}
5857 
5858 	if (mddev->persistent)
5859 		rdev->sb_start = calc_dev_sboffset(rdev);
5860 	else
5861 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5862 
5863 	rdev->sectors = rdev->sb_start;
5864 
5865 	if (test_bit(Faulty, &rdev->flags)) {
5866 		printk(KERN_WARNING
5867 			"md: can not hot-add faulty %s disk to %s!\n",
5868 			bdevname(rdev->bdev,b), mdname(mddev));
5869 		err = -EINVAL;
5870 		goto abort_export;
5871 	}
5872 	clear_bit(In_sync, &rdev->flags);
5873 	rdev->desc_nr = -1;
5874 	rdev->saved_raid_disk = -1;
5875 	err = bind_rdev_to_array(rdev, mddev);
5876 	if (err)
5877 		goto abort_export;
5878 
5879 	/*
5880 	 * The rest should better be atomic, we can have disk failures
5881 	 * noticed in interrupt contexts ...
5882 	 */
5883 
5884 	rdev->raid_disk = -1;
5885 
5886 	md_update_sb(mddev, 1);
5887 
5888 	/*
5889 	 * Kick recovery, maybe this spare has to be added to the
5890 	 * array immediately.
5891 	 */
5892 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5893 	md_wakeup_thread(mddev->thread);
5894 	md_new_event(mddev);
5895 	return 0;
5896 
5897 abort_export:
5898 	export_rdev(rdev);
5899 	return err;
5900 }
5901 
5902 static int set_bitmap_file(struct mddev *mddev, int fd)
5903 {
5904 	int err;
5905 
5906 	if (mddev->pers) {
5907 		if (!mddev->pers->quiesce)
5908 			return -EBUSY;
5909 		if (mddev->recovery || mddev->sync_thread)
5910 			return -EBUSY;
5911 		/* we should be able to change the bitmap.. */
5912 	}
5913 
5914 
5915 	if (fd >= 0) {
5916 		if (mddev->bitmap)
5917 			return -EEXIST; /* cannot add when bitmap is present */
5918 		mddev->bitmap_info.file = fget(fd);
5919 
5920 		if (mddev->bitmap_info.file == NULL) {
5921 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5922 			       mdname(mddev));
5923 			return -EBADF;
5924 		}
5925 
5926 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5927 		if (err) {
5928 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5929 			       mdname(mddev));
5930 			fput(mddev->bitmap_info.file);
5931 			mddev->bitmap_info.file = NULL;
5932 			return err;
5933 		}
5934 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5935 	} else if (mddev->bitmap == NULL)
5936 		return -ENOENT; /* cannot remove what isn't there */
5937 	err = 0;
5938 	if (mddev->pers) {
5939 		mddev->pers->quiesce(mddev, 1);
5940 		if (fd >= 0) {
5941 			err = bitmap_create(mddev);
5942 			if (!err)
5943 				err = bitmap_load(mddev);
5944 		}
5945 		if (fd < 0 || err) {
5946 			bitmap_destroy(mddev);
5947 			fd = -1; /* make sure to put the file */
5948 		}
5949 		mddev->pers->quiesce(mddev, 0);
5950 	}
5951 	if (fd < 0) {
5952 		if (mddev->bitmap_info.file) {
5953 			restore_bitmap_write_access(mddev->bitmap_info.file);
5954 			fput(mddev->bitmap_info.file);
5955 		}
5956 		mddev->bitmap_info.file = NULL;
5957 	}
5958 
5959 	return err;
5960 }
5961 
5962 /*
5963  * set_array_info is used two different ways
5964  * The original usage is when creating a new array.
5965  * In this usage, raid_disks is > 0 and it together with
5966  *  level, size, not_persistent,layout,chunksize determine the
5967  *  shape of the array.
5968  *  This will always create an array with a type-0.90.0 superblock.
5969  * The newer usage is when assembling an array.
5970  *  In this case raid_disks will be 0, and the major_version field is
5971  *  use to determine which style super-blocks are to be found on the devices.
5972  *  The minor and patch _version numbers are also kept incase the
5973  *  super_block handler wishes to interpret them.
5974  */
5975 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5976 {
5977 
5978 	if (info->raid_disks == 0) {
5979 		/* just setting version number for superblock loading */
5980 		if (info->major_version < 0 ||
5981 		    info->major_version >= ARRAY_SIZE(super_types) ||
5982 		    super_types[info->major_version].name == NULL) {
5983 			/* maybe try to auto-load a module? */
5984 			printk(KERN_INFO
5985 				"md: superblock version %d not known\n",
5986 				info->major_version);
5987 			return -EINVAL;
5988 		}
5989 		mddev->major_version = info->major_version;
5990 		mddev->minor_version = info->minor_version;
5991 		mddev->patch_version = info->patch_version;
5992 		mddev->persistent = !info->not_persistent;
5993 		/* ensure mddev_put doesn't delete this now that there
5994 		 * is some minimal configuration.
5995 		 */
5996 		mddev->ctime         = get_seconds();
5997 		return 0;
5998 	}
5999 	mddev->major_version = MD_MAJOR_VERSION;
6000 	mddev->minor_version = MD_MINOR_VERSION;
6001 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6002 	mddev->ctime         = get_seconds();
6003 
6004 	mddev->level         = info->level;
6005 	mddev->clevel[0]     = 0;
6006 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6007 	mddev->raid_disks    = info->raid_disks;
6008 	/* don't set md_minor, it is determined by which /dev/md* was
6009 	 * openned
6010 	 */
6011 	if (info->state & (1<<MD_SB_CLEAN))
6012 		mddev->recovery_cp = MaxSector;
6013 	else
6014 		mddev->recovery_cp = 0;
6015 	mddev->persistent    = ! info->not_persistent;
6016 	mddev->external	     = 0;
6017 
6018 	mddev->layout        = info->layout;
6019 	mddev->chunk_sectors = info->chunk_size >> 9;
6020 
6021 	mddev->max_disks     = MD_SB_DISKS;
6022 
6023 	if (mddev->persistent)
6024 		mddev->flags         = 0;
6025 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6026 
6027 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6028 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6029 	mddev->bitmap_info.offset = 0;
6030 
6031 	mddev->reshape_position = MaxSector;
6032 
6033 	/*
6034 	 * Generate a 128 bit UUID
6035 	 */
6036 	get_random_bytes(mddev->uuid, 16);
6037 
6038 	mddev->new_level = mddev->level;
6039 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6040 	mddev->new_layout = mddev->layout;
6041 	mddev->delta_disks = 0;
6042 	mddev->reshape_backwards = 0;
6043 
6044 	return 0;
6045 }
6046 
6047 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6048 {
6049 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6050 
6051 	if (mddev->external_size)
6052 		return;
6053 
6054 	mddev->array_sectors = array_sectors;
6055 }
6056 EXPORT_SYMBOL(md_set_array_sectors);
6057 
6058 static int update_size(struct mddev *mddev, sector_t num_sectors)
6059 {
6060 	struct md_rdev *rdev;
6061 	int rv;
6062 	int fit = (num_sectors == 0);
6063 
6064 	if (mddev->pers->resize == NULL)
6065 		return -EINVAL;
6066 	/* The "num_sectors" is the number of sectors of each device that
6067 	 * is used.  This can only make sense for arrays with redundancy.
6068 	 * linear and raid0 always use whatever space is available. We can only
6069 	 * consider changing this number if no resync or reconstruction is
6070 	 * happening, and if the new size is acceptable. It must fit before the
6071 	 * sb_start or, if that is <data_offset, it must fit before the size
6072 	 * of each device.  If num_sectors is zero, we find the largest size
6073 	 * that fits.
6074 	 */
6075 	if (mddev->sync_thread)
6076 		return -EBUSY;
6077 
6078 	rdev_for_each(rdev, mddev) {
6079 		sector_t avail = rdev->sectors;
6080 
6081 		if (fit && (num_sectors == 0 || num_sectors > avail))
6082 			num_sectors = avail;
6083 		if (avail < num_sectors)
6084 			return -ENOSPC;
6085 	}
6086 	rv = mddev->pers->resize(mddev, num_sectors);
6087 	if (!rv)
6088 		revalidate_disk(mddev->gendisk);
6089 	return rv;
6090 }
6091 
6092 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6093 {
6094 	int rv;
6095 	struct md_rdev *rdev;
6096 	/* change the number of raid disks */
6097 	if (mddev->pers->check_reshape == NULL)
6098 		return -EINVAL;
6099 	if (raid_disks <= 0 ||
6100 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6101 		return -EINVAL;
6102 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6103 		return -EBUSY;
6104 
6105 	rdev_for_each(rdev, mddev) {
6106 		if (mddev->raid_disks < raid_disks &&
6107 		    rdev->data_offset < rdev->new_data_offset)
6108 			return -EINVAL;
6109 		if (mddev->raid_disks > raid_disks &&
6110 		    rdev->data_offset > rdev->new_data_offset)
6111 			return -EINVAL;
6112 	}
6113 
6114 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6115 	if (mddev->delta_disks < 0)
6116 		mddev->reshape_backwards = 1;
6117 	else if (mddev->delta_disks > 0)
6118 		mddev->reshape_backwards = 0;
6119 
6120 	rv = mddev->pers->check_reshape(mddev);
6121 	if (rv < 0) {
6122 		mddev->delta_disks = 0;
6123 		mddev->reshape_backwards = 0;
6124 	}
6125 	return rv;
6126 }
6127 
6128 
6129 /*
6130  * update_array_info is used to change the configuration of an
6131  * on-line array.
6132  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6133  * fields in the info are checked against the array.
6134  * Any differences that cannot be handled will cause an error.
6135  * Normally, only one change can be managed at a time.
6136  */
6137 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6138 {
6139 	int rv = 0;
6140 	int cnt = 0;
6141 	int state = 0;
6142 
6143 	/* calculate expected state,ignoring low bits */
6144 	if (mddev->bitmap && mddev->bitmap_info.offset)
6145 		state |= (1 << MD_SB_BITMAP_PRESENT);
6146 
6147 	if (mddev->major_version != info->major_version ||
6148 	    mddev->minor_version != info->minor_version ||
6149 /*	    mddev->patch_version != info->patch_version || */
6150 	    mddev->ctime         != info->ctime         ||
6151 	    mddev->level         != info->level         ||
6152 /*	    mddev->layout        != info->layout        || */
6153 	    !mddev->persistent	 != info->not_persistent||
6154 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6155 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6156 	    ((state^info->state) & 0xfffffe00)
6157 		)
6158 		return -EINVAL;
6159 	/* Check there is only one change */
6160 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6161 		cnt++;
6162 	if (mddev->raid_disks != info->raid_disks)
6163 		cnt++;
6164 	if (mddev->layout != info->layout)
6165 		cnt++;
6166 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6167 		cnt++;
6168 	if (cnt == 0)
6169 		return 0;
6170 	if (cnt > 1)
6171 		return -EINVAL;
6172 
6173 	if (mddev->layout != info->layout) {
6174 		/* Change layout
6175 		 * we don't need to do anything at the md level, the
6176 		 * personality will take care of it all.
6177 		 */
6178 		if (mddev->pers->check_reshape == NULL)
6179 			return -EINVAL;
6180 		else {
6181 			mddev->new_layout = info->layout;
6182 			rv = mddev->pers->check_reshape(mddev);
6183 			if (rv)
6184 				mddev->new_layout = mddev->layout;
6185 			return rv;
6186 		}
6187 	}
6188 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6189 		rv = update_size(mddev, (sector_t)info->size * 2);
6190 
6191 	if (mddev->raid_disks    != info->raid_disks)
6192 		rv = update_raid_disks(mddev, info->raid_disks);
6193 
6194 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6195 		if (mddev->pers->quiesce == NULL)
6196 			return -EINVAL;
6197 		if (mddev->recovery || mddev->sync_thread)
6198 			return -EBUSY;
6199 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6200 			/* add the bitmap */
6201 			if (mddev->bitmap)
6202 				return -EEXIST;
6203 			if (mddev->bitmap_info.default_offset == 0)
6204 				return -EINVAL;
6205 			mddev->bitmap_info.offset =
6206 				mddev->bitmap_info.default_offset;
6207 			mddev->bitmap_info.space =
6208 				mddev->bitmap_info.default_space;
6209 			mddev->pers->quiesce(mddev, 1);
6210 			rv = bitmap_create(mddev);
6211 			if (!rv)
6212 				rv = bitmap_load(mddev);
6213 			if (rv)
6214 				bitmap_destroy(mddev);
6215 			mddev->pers->quiesce(mddev, 0);
6216 		} else {
6217 			/* remove the bitmap */
6218 			if (!mddev->bitmap)
6219 				return -ENOENT;
6220 			if (mddev->bitmap->storage.file)
6221 				return -EINVAL;
6222 			mddev->pers->quiesce(mddev, 1);
6223 			bitmap_destroy(mddev);
6224 			mddev->pers->quiesce(mddev, 0);
6225 			mddev->bitmap_info.offset = 0;
6226 		}
6227 	}
6228 	md_update_sb(mddev, 1);
6229 	return rv;
6230 }
6231 
6232 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6233 {
6234 	struct md_rdev *rdev;
6235 
6236 	if (mddev->pers == NULL)
6237 		return -ENODEV;
6238 
6239 	rdev = find_rdev(mddev, dev);
6240 	if (!rdev)
6241 		return -ENODEV;
6242 
6243 	md_error(mddev, rdev);
6244 	if (!test_bit(Faulty, &rdev->flags))
6245 		return -EBUSY;
6246 	return 0;
6247 }
6248 
6249 /*
6250  * We have a problem here : there is no easy way to give a CHS
6251  * virtual geometry. We currently pretend that we have a 2 heads
6252  * 4 sectors (with a BIG number of cylinders...). This drives
6253  * dosfs just mad... ;-)
6254  */
6255 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6256 {
6257 	struct mddev *mddev = bdev->bd_disk->private_data;
6258 
6259 	geo->heads = 2;
6260 	geo->sectors = 4;
6261 	geo->cylinders = mddev->array_sectors / 8;
6262 	return 0;
6263 }
6264 
6265 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6266 			unsigned int cmd, unsigned long arg)
6267 {
6268 	int err = 0;
6269 	void __user *argp = (void __user *)arg;
6270 	struct mddev *mddev = NULL;
6271 	int ro;
6272 
6273 	switch (cmd) {
6274 	case RAID_VERSION:
6275 	case GET_ARRAY_INFO:
6276 	case GET_DISK_INFO:
6277 		break;
6278 	default:
6279 		if (!capable(CAP_SYS_ADMIN))
6280 			return -EACCES;
6281 	}
6282 
6283 	/*
6284 	 * Commands dealing with the RAID driver but not any
6285 	 * particular array:
6286 	 */
6287 	switch (cmd)
6288 	{
6289 		case RAID_VERSION:
6290 			err = get_version(argp);
6291 			goto done;
6292 
6293 		case PRINT_RAID_DEBUG:
6294 			err = 0;
6295 			md_print_devices();
6296 			goto done;
6297 
6298 #ifndef MODULE
6299 		case RAID_AUTORUN:
6300 			err = 0;
6301 			autostart_arrays(arg);
6302 			goto done;
6303 #endif
6304 		default:;
6305 	}
6306 
6307 	/*
6308 	 * Commands creating/starting a new array:
6309 	 */
6310 
6311 	mddev = bdev->bd_disk->private_data;
6312 
6313 	if (!mddev) {
6314 		BUG();
6315 		goto abort;
6316 	}
6317 
6318 	err = mddev_lock(mddev);
6319 	if (err) {
6320 		printk(KERN_INFO
6321 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6322 			err, cmd);
6323 		goto abort;
6324 	}
6325 
6326 	switch (cmd)
6327 	{
6328 		case SET_ARRAY_INFO:
6329 			{
6330 				mdu_array_info_t info;
6331 				if (!arg)
6332 					memset(&info, 0, sizeof(info));
6333 				else if (copy_from_user(&info, argp, sizeof(info))) {
6334 					err = -EFAULT;
6335 					goto abort_unlock;
6336 				}
6337 				if (mddev->pers) {
6338 					err = update_array_info(mddev, &info);
6339 					if (err) {
6340 						printk(KERN_WARNING "md: couldn't update"
6341 						       " array info. %d\n", err);
6342 						goto abort_unlock;
6343 					}
6344 					goto done_unlock;
6345 				}
6346 				if (!list_empty(&mddev->disks)) {
6347 					printk(KERN_WARNING
6348 					       "md: array %s already has disks!\n",
6349 					       mdname(mddev));
6350 					err = -EBUSY;
6351 					goto abort_unlock;
6352 				}
6353 				if (mddev->raid_disks) {
6354 					printk(KERN_WARNING
6355 					       "md: array %s already initialised!\n",
6356 					       mdname(mddev));
6357 					err = -EBUSY;
6358 					goto abort_unlock;
6359 				}
6360 				err = set_array_info(mddev, &info);
6361 				if (err) {
6362 					printk(KERN_WARNING "md: couldn't set"
6363 					       " array info. %d\n", err);
6364 					goto abort_unlock;
6365 				}
6366 			}
6367 			goto done_unlock;
6368 
6369 		default:;
6370 	}
6371 
6372 	/*
6373 	 * Commands querying/configuring an existing array:
6374 	 */
6375 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6376 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6377 	if ((!mddev->raid_disks && !mddev->external)
6378 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6379 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6380 	    && cmd != GET_BITMAP_FILE) {
6381 		err = -ENODEV;
6382 		goto abort_unlock;
6383 	}
6384 
6385 	/*
6386 	 * Commands even a read-only array can execute:
6387 	 */
6388 	switch (cmd)
6389 	{
6390 		case GET_ARRAY_INFO:
6391 			err = get_array_info(mddev, argp);
6392 			goto done_unlock;
6393 
6394 		case GET_BITMAP_FILE:
6395 			err = get_bitmap_file(mddev, argp);
6396 			goto done_unlock;
6397 
6398 		case GET_DISK_INFO:
6399 			err = get_disk_info(mddev, argp);
6400 			goto done_unlock;
6401 
6402 		case RESTART_ARRAY_RW:
6403 			err = restart_array(mddev);
6404 			goto done_unlock;
6405 
6406 		case STOP_ARRAY:
6407 			err = do_md_stop(mddev, 0, bdev);
6408 			goto done_unlock;
6409 
6410 		case STOP_ARRAY_RO:
6411 			err = md_set_readonly(mddev, bdev);
6412 			goto done_unlock;
6413 
6414 		case BLKROSET:
6415 			if (get_user(ro, (int __user *)(arg))) {
6416 				err = -EFAULT;
6417 				goto done_unlock;
6418 			}
6419 			err = -EINVAL;
6420 
6421 			/* if the bdev is going readonly the value of mddev->ro
6422 			 * does not matter, no writes are coming
6423 			 */
6424 			if (ro)
6425 				goto done_unlock;
6426 
6427 			/* are we are already prepared for writes? */
6428 			if (mddev->ro != 1)
6429 				goto done_unlock;
6430 
6431 			/* transitioning to readauto need only happen for
6432 			 * arrays that call md_write_start
6433 			 */
6434 			if (mddev->pers) {
6435 				err = restart_array(mddev);
6436 				if (err == 0) {
6437 					mddev->ro = 2;
6438 					set_disk_ro(mddev->gendisk, 0);
6439 				}
6440 			}
6441 			goto done_unlock;
6442 	}
6443 
6444 	/*
6445 	 * The remaining ioctls are changing the state of the
6446 	 * superblock, so we do not allow them on read-only arrays.
6447 	 * However non-MD ioctls (e.g. get-size) will still come through
6448 	 * here and hit the 'default' below, so only disallow
6449 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6450 	 */
6451 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6452 		if (mddev->ro == 2) {
6453 			mddev->ro = 0;
6454 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6455 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6456 			md_wakeup_thread(mddev->thread);
6457 		} else {
6458 			err = -EROFS;
6459 			goto abort_unlock;
6460 		}
6461 	}
6462 
6463 	switch (cmd)
6464 	{
6465 		case ADD_NEW_DISK:
6466 		{
6467 			mdu_disk_info_t info;
6468 			if (copy_from_user(&info, argp, sizeof(info)))
6469 				err = -EFAULT;
6470 			else
6471 				err = add_new_disk(mddev, &info);
6472 			goto done_unlock;
6473 		}
6474 
6475 		case HOT_REMOVE_DISK:
6476 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6477 			goto done_unlock;
6478 
6479 		case HOT_ADD_DISK:
6480 			err = hot_add_disk(mddev, new_decode_dev(arg));
6481 			goto done_unlock;
6482 
6483 		case SET_DISK_FAULTY:
6484 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6485 			goto done_unlock;
6486 
6487 		case RUN_ARRAY:
6488 			err = do_md_run(mddev);
6489 			goto done_unlock;
6490 
6491 		case SET_BITMAP_FILE:
6492 			err = set_bitmap_file(mddev, (int)arg);
6493 			goto done_unlock;
6494 
6495 		default:
6496 			err = -EINVAL;
6497 			goto abort_unlock;
6498 	}
6499 
6500 done_unlock:
6501 abort_unlock:
6502 	if (mddev->hold_active == UNTIL_IOCTL &&
6503 	    err != -EINVAL)
6504 		mddev->hold_active = 0;
6505 	mddev_unlock(mddev);
6506 
6507 	return err;
6508 done:
6509 	if (err)
6510 		MD_BUG();
6511 abort:
6512 	return err;
6513 }
6514 #ifdef CONFIG_COMPAT
6515 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6516 		    unsigned int cmd, unsigned long arg)
6517 {
6518 	switch (cmd) {
6519 	case HOT_REMOVE_DISK:
6520 	case HOT_ADD_DISK:
6521 	case SET_DISK_FAULTY:
6522 	case SET_BITMAP_FILE:
6523 		/* These take in integer arg, do not convert */
6524 		break;
6525 	default:
6526 		arg = (unsigned long)compat_ptr(arg);
6527 		break;
6528 	}
6529 
6530 	return md_ioctl(bdev, mode, cmd, arg);
6531 }
6532 #endif /* CONFIG_COMPAT */
6533 
6534 static int md_open(struct block_device *bdev, fmode_t mode)
6535 {
6536 	/*
6537 	 * Succeed if we can lock the mddev, which confirms that
6538 	 * it isn't being stopped right now.
6539 	 */
6540 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6541 	int err;
6542 
6543 	if (!mddev)
6544 		return -ENODEV;
6545 
6546 	if (mddev->gendisk != bdev->bd_disk) {
6547 		/* we are racing with mddev_put which is discarding this
6548 		 * bd_disk.
6549 		 */
6550 		mddev_put(mddev);
6551 		/* Wait until bdev->bd_disk is definitely gone */
6552 		flush_workqueue(md_misc_wq);
6553 		/* Then retry the open from the top */
6554 		return -ERESTARTSYS;
6555 	}
6556 	BUG_ON(mddev != bdev->bd_disk->private_data);
6557 
6558 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6559 		goto out;
6560 
6561 	err = 0;
6562 	atomic_inc(&mddev->openers);
6563 	mutex_unlock(&mddev->open_mutex);
6564 
6565 	check_disk_change(bdev);
6566  out:
6567 	return err;
6568 }
6569 
6570 static int md_release(struct gendisk *disk, fmode_t mode)
6571 {
6572  	struct mddev *mddev = disk->private_data;
6573 
6574 	BUG_ON(!mddev);
6575 	atomic_dec(&mddev->openers);
6576 	mddev_put(mddev);
6577 
6578 	return 0;
6579 }
6580 
6581 static int md_media_changed(struct gendisk *disk)
6582 {
6583 	struct mddev *mddev = disk->private_data;
6584 
6585 	return mddev->changed;
6586 }
6587 
6588 static int md_revalidate(struct gendisk *disk)
6589 {
6590 	struct mddev *mddev = disk->private_data;
6591 
6592 	mddev->changed = 0;
6593 	return 0;
6594 }
6595 static const struct block_device_operations md_fops =
6596 {
6597 	.owner		= THIS_MODULE,
6598 	.open		= md_open,
6599 	.release	= md_release,
6600 	.ioctl		= md_ioctl,
6601 #ifdef CONFIG_COMPAT
6602 	.compat_ioctl	= md_compat_ioctl,
6603 #endif
6604 	.getgeo		= md_getgeo,
6605 	.media_changed  = md_media_changed,
6606 	.revalidate_disk= md_revalidate,
6607 };
6608 
6609 static int md_thread(void * arg)
6610 {
6611 	struct md_thread *thread = arg;
6612 
6613 	/*
6614 	 * md_thread is a 'system-thread', it's priority should be very
6615 	 * high. We avoid resource deadlocks individually in each
6616 	 * raid personality. (RAID5 does preallocation) We also use RR and
6617 	 * the very same RT priority as kswapd, thus we will never get
6618 	 * into a priority inversion deadlock.
6619 	 *
6620 	 * we definitely have to have equal or higher priority than
6621 	 * bdflush, otherwise bdflush will deadlock if there are too
6622 	 * many dirty RAID5 blocks.
6623 	 */
6624 
6625 	allow_signal(SIGKILL);
6626 	while (!kthread_should_stop()) {
6627 
6628 		/* We need to wait INTERRUPTIBLE so that
6629 		 * we don't add to the load-average.
6630 		 * That means we need to be sure no signals are
6631 		 * pending
6632 		 */
6633 		if (signal_pending(current))
6634 			flush_signals(current);
6635 
6636 		wait_event_interruptible_timeout
6637 			(thread->wqueue,
6638 			 test_bit(THREAD_WAKEUP, &thread->flags)
6639 			 || kthread_should_stop(),
6640 			 thread->timeout);
6641 
6642 		clear_bit(THREAD_WAKEUP, &thread->flags);
6643 		if (!kthread_should_stop())
6644 			thread->run(thread->mddev);
6645 	}
6646 
6647 	return 0;
6648 }
6649 
6650 void md_wakeup_thread(struct md_thread *thread)
6651 {
6652 	if (thread) {
6653 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6654 		set_bit(THREAD_WAKEUP, &thread->flags);
6655 		wake_up(&thread->wqueue);
6656 	}
6657 }
6658 
6659 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6660 				 const char *name)
6661 {
6662 	struct md_thread *thread;
6663 
6664 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6665 	if (!thread)
6666 		return NULL;
6667 
6668 	init_waitqueue_head(&thread->wqueue);
6669 
6670 	thread->run = run;
6671 	thread->mddev = mddev;
6672 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6673 	thread->tsk = kthread_run(md_thread, thread,
6674 				  "%s_%s",
6675 				  mdname(thread->mddev),
6676 				  name);
6677 	if (IS_ERR(thread->tsk)) {
6678 		kfree(thread);
6679 		return NULL;
6680 	}
6681 	return thread;
6682 }
6683 
6684 void md_unregister_thread(struct md_thread **threadp)
6685 {
6686 	struct md_thread *thread = *threadp;
6687 	if (!thread)
6688 		return;
6689 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6690 	/* Locking ensures that mddev_unlock does not wake_up a
6691 	 * non-existent thread
6692 	 */
6693 	spin_lock(&pers_lock);
6694 	*threadp = NULL;
6695 	spin_unlock(&pers_lock);
6696 
6697 	kthread_stop(thread->tsk);
6698 	kfree(thread);
6699 }
6700 
6701 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6702 {
6703 	if (!mddev) {
6704 		MD_BUG();
6705 		return;
6706 	}
6707 
6708 	if (!rdev || test_bit(Faulty, &rdev->flags))
6709 		return;
6710 
6711 	if (!mddev->pers || !mddev->pers->error_handler)
6712 		return;
6713 	mddev->pers->error_handler(mddev,rdev);
6714 	if (mddev->degraded)
6715 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6716 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6717 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6718 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6719 	md_wakeup_thread(mddev->thread);
6720 	if (mddev->event_work.func)
6721 		queue_work(md_misc_wq, &mddev->event_work);
6722 	md_new_event_inintr(mddev);
6723 }
6724 
6725 /* seq_file implementation /proc/mdstat */
6726 
6727 static void status_unused(struct seq_file *seq)
6728 {
6729 	int i = 0;
6730 	struct md_rdev *rdev;
6731 
6732 	seq_printf(seq, "unused devices: ");
6733 
6734 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6735 		char b[BDEVNAME_SIZE];
6736 		i++;
6737 		seq_printf(seq, "%s ",
6738 			      bdevname(rdev->bdev,b));
6739 	}
6740 	if (!i)
6741 		seq_printf(seq, "<none>");
6742 
6743 	seq_printf(seq, "\n");
6744 }
6745 
6746 
6747 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6748 {
6749 	sector_t max_sectors, resync, res;
6750 	unsigned long dt, db;
6751 	sector_t rt;
6752 	int scale;
6753 	unsigned int per_milli;
6754 
6755 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6756 
6757 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6758 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6759 		max_sectors = mddev->resync_max_sectors;
6760 	else
6761 		max_sectors = mddev->dev_sectors;
6762 
6763 	/*
6764 	 * Should not happen.
6765 	 */
6766 	if (!max_sectors) {
6767 		MD_BUG();
6768 		return;
6769 	}
6770 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6771 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6772 	 * u32, as those are the requirements for sector_div.
6773 	 * Thus 'scale' must be at least 10
6774 	 */
6775 	scale = 10;
6776 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6777 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6778 			scale++;
6779 	}
6780 	res = (resync>>scale)*1000;
6781 	sector_div(res, (u32)((max_sectors>>scale)+1));
6782 
6783 	per_milli = res;
6784 	{
6785 		int i, x = per_milli/50, y = 20-x;
6786 		seq_printf(seq, "[");
6787 		for (i = 0; i < x; i++)
6788 			seq_printf(seq, "=");
6789 		seq_printf(seq, ">");
6790 		for (i = 0; i < y; i++)
6791 			seq_printf(seq, ".");
6792 		seq_printf(seq, "] ");
6793 	}
6794 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6795 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6796 		    "reshape" :
6797 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6798 		     "check" :
6799 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6800 		      "resync" : "recovery"))),
6801 		   per_milli/10, per_milli % 10,
6802 		   (unsigned long long) resync/2,
6803 		   (unsigned long long) max_sectors/2);
6804 
6805 	/*
6806 	 * dt: time from mark until now
6807 	 * db: blocks written from mark until now
6808 	 * rt: remaining time
6809 	 *
6810 	 * rt is a sector_t, so could be 32bit or 64bit.
6811 	 * So we divide before multiply in case it is 32bit and close
6812 	 * to the limit.
6813 	 * We scale the divisor (db) by 32 to avoid losing precision
6814 	 * near the end of resync when the number of remaining sectors
6815 	 * is close to 'db'.
6816 	 * We then divide rt by 32 after multiplying by db to compensate.
6817 	 * The '+1' avoids division by zero if db is very small.
6818 	 */
6819 	dt = ((jiffies - mddev->resync_mark) / HZ);
6820 	if (!dt) dt++;
6821 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6822 		- mddev->resync_mark_cnt;
6823 
6824 	rt = max_sectors - resync;    /* number of remaining sectors */
6825 	sector_div(rt, db/32+1);
6826 	rt *= dt;
6827 	rt >>= 5;
6828 
6829 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6830 		   ((unsigned long)rt % 60)/6);
6831 
6832 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6833 }
6834 
6835 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6836 {
6837 	struct list_head *tmp;
6838 	loff_t l = *pos;
6839 	struct mddev *mddev;
6840 
6841 	if (l >= 0x10000)
6842 		return NULL;
6843 	if (!l--)
6844 		/* header */
6845 		return (void*)1;
6846 
6847 	spin_lock(&all_mddevs_lock);
6848 	list_for_each(tmp,&all_mddevs)
6849 		if (!l--) {
6850 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6851 			mddev_get(mddev);
6852 			spin_unlock(&all_mddevs_lock);
6853 			return mddev;
6854 		}
6855 	spin_unlock(&all_mddevs_lock);
6856 	if (!l--)
6857 		return (void*)2;/* tail */
6858 	return NULL;
6859 }
6860 
6861 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6862 {
6863 	struct list_head *tmp;
6864 	struct mddev *next_mddev, *mddev = v;
6865 
6866 	++*pos;
6867 	if (v == (void*)2)
6868 		return NULL;
6869 
6870 	spin_lock(&all_mddevs_lock);
6871 	if (v == (void*)1)
6872 		tmp = all_mddevs.next;
6873 	else
6874 		tmp = mddev->all_mddevs.next;
6875 	if (tmp != &all_mddevs)
6876 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6877 	else {
6878 		next_mddev = (void*)2;
6879 		*pos = 0x10000;
6880 	}
6881 	spin_unlock(&all_mddevs_lock);
6882 
6883 	if (v != (void*)1)
6884 		mddev_put(mddev);
6885 	return next_mddev;
6886 
6887 }
6888 
6889 static void md_seq_stop(struct seq_file *seq, void *v)
6890 {
6891 	struct mddev *mddev = v;
6892 
6893 	if (mddev && v != (void*)1 && v != (void*)2)
6894 		mddev_put(mddev);
6895 }
6896 
6897 static int md_seq_show(struct seq_file *seq, void *v)
6898 {
6899 	struct mddev *mddev = v;
6900 	sector_t sectors;
6901 	struct md_rdev *rdev;
6902 
6903 	if (v == (void*)1) {
6904 		struct md_personality *pers;
6905 		seq_printf(seq, "Personalities : ");
6906 		spin_lock(&pers_lock);
6907 		list_for_each_entry(pers, &pers_list, list)
6908 			seq_printf(seq, "[%s] ", pers->name);
6909 
6910 		spin_unlock(&pers_lock);
6911 		seq_printf(seq, "\n");
6912 		seq->poll_event = atomic_read(&md_event_count);
6913 		return 0;
6914 	}
6915 	if (v == (void*)2) {
6916 		status_unused(seq);
6917 		return 0;
6918 	}
6919 
6920 	if (mddev_lock(mddev) < 0)
6921 		return -EINTR;
6922 
6923 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6924 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6925 						mddev->pers ? "" : "in");
6926 		if (mddev->pers) {
6927 			if (mddev->ro==1)
6928 				seq_printf(seq, " (read-only)");
6929 			if (mddev->ro==2)
6930 				seq_printf(seq, " (auto-read-only)");
6931 			seq_printf(seq, " %s", mddev->pers->name);
6932 		}
6933 
6934 		sectors = 0;
6935 		rdev_for_each(rdev, mddev) {
6936 			char b[BDEVNAME_SIZE];
6937 			seq_printf(seq, " %s[%d]",
6938 				bdevname(rdev->bdev,b), rdev->desc_nr);
6939 			if (test_bit(WriteMostly, &rdev->flags))
6940 				seq_printf(seq, "(W)");
6941 			if (test_bit(Faulty, &rdev->flags)) {
6942 				seq_printf(seq, "(F)");
6943 				continue;
6944 			}
6945 			if (rdev->raid_disk < 0)
6946 				seq_printf(seq, "(S)"); /* spare */
6947 			if (test_bit(Replacement, &rdev->flags))
6948 				seq_printf(seq, "(R)");
6949 			sectors += rdev->sectors;
6950 		}
6951 
6952 		if (!list_empty(&mddev->disks)) {
6953 			if (mddev->pers)
6954 				seq_printf(seq, "\n      %llu blocks",
6955 					   (unsigned long long)
6956 					   mddev->array_sectors / 2);
6957 			else
6958 				seq_printf(seq, "\n      %llu blocks",
6959 					   (unsigned long long)sectors / 2);
6960 		}
6961 		if (mddev->persistent) {
6962 			if (mddev->major_version != 0 ||
6963 			    mddev->minor_version != 90) {
6964 				seq_printf(seq," super %d.%d",
6965 					   mddev->major_version,
6966 					   mddev->minor_version);
6967 			}
6968 		} else if (mddev->external)
6969 			seq_printf(seq, " super external:%s",
6970 				   mddev->metadata_type);
6971 		else
6972 			seq_printf(seq, " super non-persistent");
6973 
6974 		if (mddev->pers) {
6975 			mddev->pers->status(seq, mddev);
6976 	 		seq_printf(seq, "\n      ");
6977 			if (mddev->pers->sync_request) {
6978 				if (mddev->curr_resync > 2) {
6979 					status_resync(seq, mddev);
6980 					seq_printf(seq, "\n      ");
6981 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6982 					seq_printf(seq, "\tresync=DELAYED\n      ");
6983 				else if (mddev->recovery_cp < MaxSector)
6984 					seq_printf(seq, "\tresync=PENDING\n      ");
6985 			}
6986 		} else
6987 			seq_printf(seq, "\n       ");
6988 
6989 		bitmap_status(seq, mddev->bitmap);
6990 
6991 		seq_printf(seq, "\n");
6992 	}
6993 	mddev_unlock(mddev);
6994 
6995 	return 0;
6996 }
6997 
6998 static const struct seq_operations md_seq_ops = {
6999 	.start  = md_seq_start,
7000 	.next   = md_seq_next,
7001 	.stop   = md_seq_stop,
7002 	.show   = md_seq_show,
7003 };
7004 
7005 static int md_seq_open(struct inode *inode, struct file *file)
7006 {
7007 	struct seq_file *seq;
7008 	int error;
7009 
7010 	error = seq_open(file, &md_seq_ops);
7011 	if (error)
7012 		return error;
7013 
7014 	seq = file->private_data;
7015 	seq->poll_event = atomic_read(&md_event_count);
7016 	return error;
7017 }
7018 
7019 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7020 {
7021 	struct seq_file *seq = filp->private_data;
7022 	int mask;
7023 
7024 	poll_wait(filp, &md_event_waiters, wait);
7025 
7026 	/* always allow read */
7027 	mask = POLLIN | POLLRDNORM;
7028 
7029 	if (seq->poll_event != atomic_read(&md_event_count))
7030 		mask |= POLLERR | POLLPRI;
7031 	return mask;
7032 }
7033 
7034 static const struct file_operations md_seq_fops = {
7035 	.owner		= THIS_MODULE,
7036 	.open           = md_seq_open,
7037 	.read           = seq_read,
7038 	.llseek         = seq_lseek,
7039 	.release	= seq_release_private,
7040 	.poll		= mdstat_poll,
7041 };
7042 
7043 int register_md_personality(struct md_personality *p)
7044 {
7045 	spin_lock(&pers_lock);
7046 	list_add_tail(&p->list, &pers_list);
7047 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7048 	spin_unlock(&pers_lock);
7049 	return 0;
7050 }
7051 
7052 int unregister_md_personality(struct md_personality *p)
7053 {
7054 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7055 	spin_lock(&pers_lock);
7056 	list_del_init(&p->list);
7057 	spin_unlock(&pers_lock);
7058 	return 0;
7059 }
7060 
7061 static int is_mddev_idle(struct mddev *mddev, int init)
7062 {
7063 	struct md_rdev * rdev;
7064 	int idle;
7065 	int curr_events;
7066 
7067 	idle = 1;
7068 	rcu_read_lock();
7069 	rdev_for_each_rcu(rdev, mddev) {
7070 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7071 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7072 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7073 			      atomic_read(&disk->sync_io);
7074 		/* sync IO will cause sync_io to increase before the disk_stats
7075 		 * as sync_io is counted when a request starts, and
7076 		 * disk_stats is counted when it completes.
7077 		 * So resync activity will cause curr_events to be smaller than
7078 		 * when there was no such activity.
7079 		 * non-sync IO will cause disk_stat to increase without
7080 		 * increasing sync_io so curr_events will (eventually)
7081 		 * be larger than it was before.  Once it becomes
7082 		 * substantially larger, the test below will cause
7083 		 * the array to appear non-idle, and resync will slow
7084 		 * down.
7085 		 * If there is a lot of outstanding resync activity when
7086 		 * we set last_event to curr_events, then all that activity
7087 		 * completing might cause the array to appear non-idle
7088 		 * and resync will be slowed down even though there might
7089 		 * not have been non-resync activity.  This will only
7090 		 * happen once though.  'last_events' will soon reflect
7091 		 * the state where there is little or no outstanding
7092 		 * resync requests, and further resync activity will
7093 		 * always make curr_events less than last_events.
7094 		 *
7095 		 */
7096 		if (init || curr_events - rdev->last_events > 64) {
7097 			rdev->last_events = curr_events;
7098 			idle = 0;
7099 		}
7100 	}
7101 	rcu_read_unlock();
7102 	return idle;
7103 }
7104 
7105 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7106 {
7107 	/* another "blocks" (512byte) blocks have been synced */
7108 	atomic_sub(blocks, &mddev->recovery_active);
7109 	wake_up(&mddev->recovery_wait);
7110 	if (!ok) {
7111 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7112 		md_wakeup_thread(mddev->thread);
7113 		// stop recovery, signal do_sync ....
7114 	}
7115 }
7116 
7117 
7118 /* md_write_start(mddev, bi)
7119  * If we need to update some array metadata (e.g. 'active' flag
7120  * in superblock) before writing, schedule a superblock update
7121  * and wait for it to complete.
7122  */
7123 void md_write_start(struct mddev *mddev, struct bio *bi)
7124 {
7125 	int did_change = 0;
7126 	if (bio_data_dir(bi) != WRITE)
7127 		return;
7128 
7129 	BUG_ON(mddev->ro == 1);
7130 	if (mddev->ro == 2) {
7131 		/* need to switch to read/write */
7132 		mddev->ro = 0;
7133 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7134 		md_wakeup_thread(mddev->thread);
7135 		md_wakeup_thread(mddev->sync_thread);
7136 		did_change = 1;
7137 	}
7138 	atomic_inc(&mddev->writes_pending);
7139 	if (mddev->safemode == 1)
7140 		mddev->safemode = 0;
7141 	if (mddev->in_sync) {
7142 		spin_lock_irq(&mddev->write_lock);
7143 		if (mddev->in_sync) {
7144 			mddev->in_sync = 0;
7145 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7146 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7147 			md_wakeup_thread(mddev->thread);
7148 			did_change = 1;
7149 		}
7150 		spin_unlock_irq(&mddev->write_lock);
7151 	}
7152 	if (did_change)
7153 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7154 	wait_event(mddev->sb_wait,
7155 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7156 }
7157 
7158 void md_write_end(struct mddev *mddev)
7159 {
7160 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7161 		if (mddev->safemode == 2)
7162 			md_wakeup_thread(mddev->thread);
7163 		else if (mddev->safemode_delay)
7164 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7165 	}
7166 }
7167 
7168 /* md_allow_write(mddev)
7169  * Calling this ensures that the array is marked 'active' so that writes
7170  * may proceed without blocking.  It is important to call this before
7171  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7172  * Must be called with mddev_lock held.
7173  *
7174  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7175  * is dropped, so return -EAGAIN after notifying userspace.
7176  */
7177 int md_allow_write(struct mddev *mddev)
7178 {
7179 	if (!mddev->pers)
7180 		return 0;
7181 	if (mddev->ro)
7182 		return 0;
7183 	if (!mddev->pers->sync_request)
7184 		return 0;
7185 
7186 	spin_lock_irq(&mddev->write_lock);
7187 	if (mddev->in_sync) {
7188 		mddev->in_sync = 0;
7189 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7190 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7191 		if (mddev->safemode_delay &&
7192 		    mddev->safemode == 0)
7193 			mddev->safemode = 1;
7194 		spin_unlock_irq(&mddev->write_lock);
7195 		md_update_sb(mddev, 0);
7196 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7197 	} else
7198 		spin_unlock_irq(&mddev->write_lock);
7199 
7200 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7201 		return -EAGAIN;
7202 	else
7203 		return 0;
7204 }
7205 EXPORT_SYMBOL_GPL(md_allow_write);
7206 
7207 #define SYNC_MARKS	10
7208 #define	SYNC_MARK_STEP	(3*HZ)
7209 void md_do_sync(struct mddev *mddev)
7210 {
7211 	struct mddev *mddev2;
7212 	unsigned int currspeed = 0,
7213 		 window;
7214 	sector_t max_sectors,j, io_sectors;
7215 	unsigned long mark[SYNC_MARKS];
7216 	sector_t mark_cnt[SYNC_MARKS];
7217 	int last_mark,m;
7218 	struct list_head *tmp;
7219 	sector_t last_check;
7220 	int skipped = 0;
7221 	struct md_rdev *rdev;
7222 	char *desc;
7223 	struct blk_plug plug;
7224 
7225 	/* just incase thread restarts... */
7226 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7227 		return;
7228 	if (mddev->ro) /* never try to sync a read-only array */
7229 		return;
7230 
7231 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7232 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7233 			desc = "data-check";
7234 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7235 			desc = "requested-resync";
7236 		else
7237 			desc = "resync";
7238 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7239 		desc = "reshape";
7240 	else
7241 		desc = "recovery";
7242 
7243 	/* we overload curr_resync somewhat here.
7244 	 * 0 == not engaged in resync at all
7245 	 * 2 == checking that there is no conflict with another sync
7246 	 * 1 == like 2, but have yielded to allow conflicting resync to
7247 	 *		commense
7248 	 * other == active in resync - this many blocks
7249 	 *
7250 	 * Before starting a resync we must have set curr_resync to
7251 	 * 2, and then checked that every "conflicting" array has curr_resync
7252 	 * less than ours.  When we find one that is the same or higher
7253 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7254 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7255 	 * This will mean we have to start checking from the beginning again.
7256 	 *
7257 	 */
7258 
7259 	do {
7260 		mddev->curr_resync = 2;
7261 
7262 	try_again:
7263 		if (kthread_should_stop())
7264 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7265 
7266 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7267 			goto skip;
7268 		for_each_mddev(mddev2, tmp) {
7269 			if (mddev2 == mddev)
7270 				continue;
7271 			if (!mddev->parallel_resync
7272 			&&  mddev2->curr_resync
7273 			&&  match_mddev_units(mddev, mddev2)) {
7274 				DEFINE_WAIT(wq);
7275 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7276 					/* arbitrarily yield */
7277 					mddev->curr_resync = 1;
7278 					wake_up(&resync_wait);
7279 				}
7280 				if (mddev > mddev2 && mddev->curr_resync == 1)
7281 					/* no need to wait here, we can wait the next
7282 					 * time 'round when curr_resync == 2
7283 					 */
7284 					continue;
7285 				/* We need to wait 'interruptible' so as not to
7286 				 * contribute to the load average, and not to
7287 				 * be caught by 'softlockup'
7288 				 */
7289 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7290 				if (!kthread_should_stop() &&
7291 				    mddev2->curr_resync >= mddev->curr_resync) {
7292 					printk(KERN_INFO "md: delaying %s of %s"
7293 					       " until %s has finished (they"
7294 					       " share one or more physical units)\n",
7295 					       desc, mdname(mddev), mdname(mddev2));
7296 					mddev_put(mddev2);
7297 					if (signal_pending(current))
7298 						flush_signals(current);
7299 					schedule();
7300 					finish_wait(&resync_wait, &wq);
7301 					goto try_again;
7302 				}
7303 				finish_wait(&resync_wait, &wq);
7304 			}
7305 		}
7306 	} while (mddev->curr_resync < 2);
7307 
7308 	j = 0;
7309 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7310 		/* resync follows the size requested by the personality,
7311 		 * which defaults to physical size, but can be virtual size
7312 		 */
7313 		max_sectors = mddev->resync_max_sectors;
7314 		mddev->resync_mismatches = 0;
7315 		/* we don't use the checkpoint if there's a bitmap */
7316 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7317 			j = mddev->resync_min;
7318 		else if (!mddev->bitmap)
7319 			j = mddev->recovery_cp;
7320 
7321 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7322 		max_sectors = mddev->resync_max_sectors;
7323 	else {
7324 		/* recovery follows the physical size of devices */
7325 		max_sectors = mddev->dev_sectors;
7326 		j = MaxSector;
7327 		rcu_read_lock();
7328 		rdev_for_each_rcu(rdev, mddev)
7329 			if (rdev->raid_disk >= 0 &&
7330 			    !test_bit(Faulty, &rdev->flags) &&
7331 			    !test_bit(In_sync, &rdev->flags) &&
7332 			    rdev->recovery_offset < j)
7333 				j = rdev->recovery_offset;
7334 		rcu_read_unlock();
7335 	}
7336 
7337 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7338 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7339 		" %d KB/sec/disk.\n", speed_min(mddev));
7340 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7341 	       "(but not more than %d KB/sec) for %s.\n",
7342 	       speed_max(mddev), desc);
7343 
7344 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7345 
7346 	io_sectors = 0;
7347 	for (m = 0; m < SYNC_MARKS; m++) {
7348 		mark[m] = jiffies;
7349 		mark_cnt[m] = io_sectors;
7350 	}
7351 	last_mark = 0;
7352 	mddev->resync_mark = mark[last_mark];
7353 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7354 
7355 	/*
7356 	 * Tune reconstruction:
7357 	 */
7358 	window = 32*(PAGE_SIZE/512);
7359 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7360 		window/2, (unsigned long long)max_sectors/2);
7361 
7362 	atomic_set(&mddev->recovery_active, 0);
7363 	last_check = 0;
7364 
7365 	if (j>2) {
7366 		printk(KERN_INFO
7367 		       "md: resuming %s of %s from checkpoint.\n",
7368 		       desc, mdname(mddev));
7369 		mddev->curr_resync = j;
7370 	}
7371 	mddev->curr_resync_completed = j;
7372 
7373 	blk_start_plug(&plug);
7374 	while (j < max_sectors) {
7375 		sector_t sectors;
7376 
7377 		skipped = 0;
7378 
7379 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7380 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7381 		      (mddev->curr_resync - mddev->curr_resync_completed)
7382 		      > (max_sectors >> 4)) ||
7383 		     (j - mddev->curr_resync_completed)*2
7384 		     >= mddev->resync_max - mddev->curr_resync_completed
7385 			    )) {
7386 			/* time to update curr_resync_completed */
7387 			wait_event(mddev->recovery_wait,
7388 				   atomic_read(&mddev->recovery_active) == 0);
7389 			mddev->curr_resync_completed = j;
7390 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7391 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7392 		}
7393 
7394 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7395 			/* As this condition is controlled by user-space,
7396 			 * we can block indefinitely, so use '_interruptible'
7397 			 * to avoid triggering warnings.
7398 			 */
7399 			flush_signals(current); /* just in case */
7400 			wait_event_interruptible(mddev->recovery_wait,
7401 						 mddev->resync_max > j
7402 						 || kthread_should_stop());
7403 		}
7404 
7405 		if (kthread_should_stop())
7406 			goto interrupted;
7407 
7408 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7409 						  currspeed < speed_min(mddev));
7410 		if (sectors == 0) {
7411 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7412 			goto out;
7413 		}
7414 
7415 		if (!skipped) { /* actual IO requested */
7416 			io_sectors += sectors;
7417 			atomic_add(sectors, &mddev->recovery_active);
7418 		}
7419 
7420 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7421 			break;
7422 
7423 		j += sectors;
7424 		if (j>1) mddev->curr_resync = j;
7425 		mddev->curr_mark_cnt = io_sectors;
7426 		if (last_check == 0)
7427 			/* this is the earliest that rebuild will be
7428 			 * visible in /proc/mdstat
7429 			 */
7430 			md_new_event(mddev);
7431 
7432 		if (last_check + window > io_sectors || j == max_sectors)
7433 			continue;
7434 
7435 		last_check = io_sectors;
7436 	repeat:
7437 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7438 			/* step marks */
7439 			int next = (last_mark+1) % SYNC_MARKS;
7440 
7441 			mddev->resync_mark = mark[next];
7442 			mddev->resync_mark_cnt = mark_cnt[next];
7443 			mark[next] = jiffies;
7444 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7445 			last_mark = next;
7446 		}
7447 
7448 
7449 		if (kthread_should_stop())
7450 			goto interrupted;
7451 
7452 
7453 		/*
7454 		 * this loop exits only if either when we are slower than
7455 		 * the 'hard' speed limit, or the system was IO-idle for
7456 		 * a jiffy.
7457 		 * the system might be non-idle CPU-wise, but we only care
7458 		 * about not overloading the IO subsystem. (things like an
7459 		 * e2fsck being done on the RAID array should execute fast)
7460 		 */
7461 		cond_resched();
7462 
7463 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7464 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7465 
7466 		if (currspeed > speed_min(mddev)) {
7467 			if ((currspeed > speed_max(mddev)) ||
7468 					!is_mddev_idle(mddev, 0)) {
7469 				msleep(500);
7470 				goto repeat;
7471 			}
7472 		}
7473 	}
7474 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7475 	/*
7476 	 * this also signals 'finished resyncing' to md_stop
7477 	 */
7478  out:
7479 	blk_finish_plug(&plug);
7480 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7481 
7482 	/* tell personality that we are finished */
7483 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7484 
7485 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7486 	    mddev->curr_resync > 2) {
7487 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7488 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7489 				if (mddev->curr_resync >= mddev->recovery_cp) {
7490 					printk(KERN_INFO
7491 					       "md: checkpointing %s of %s.\n",
7492 					       desc, mdname(mddev));
7493 					mddev->recovery_cp =
7494 						mddev->curr_resync_completed;
7495 				}
7496 			} else
7497 				mddev->recovery_cp = MaxSector;
7498 		} else {
7499 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7500 				mddev->curr_resync = MaxSector;
7501 			rcu_read_lock();
7502 			rdev_for_each_rcu(rdev, mddev)
7503 				if (rdev->raid_disk >= 0 &&
7504 				    mddev->delta_disks >= 0 &&
7505 				    !test_bit(Faulty, &rdev->flags) &&
7506 				    !test_bit(In_sync, &rdev->flags) &&
7507 				    rdev->recovery_offset < mddev->curr_resync)
7508 					rdev->recovery_offset = mddev->curr_resync;
7509 			rcu_read_unlock();
7510 		}
7511 	}
7512  skip:
7513 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7514 
7515 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7516 		/* We completed so min/max setting can be forgotten if used. */
7517 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7518 			mddev->resync_min = 0;
7519 		mddev->resync_max = MaxSector;
7520 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7521 		mddev->resync_min = mddev->curr_resync_completed;
7522 	mddev->curr_resync = 0;
7523 	wake_up(&resync_wait);
7524 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7525 	md_wakeup_thread(mddev->thread);
7526 	return;
7527 
7528  interrupted:
7529 	/*
7530 	 * got a signal, exit.
7531 	 */
7532 	printk(KERN_INFO
7533 	       "md: md_do_sync() got signal ... exiting\n");
7534 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7535 	goto out;
7536 
7537 }
7538 EXPORT_SYMBOL_GPL(md_do_sync);
7539 
7540 static int remove_and_add_spares(struct mddev *mddev)
7541 {
7542 	struct md_rdev *rdev;
7543 	int spares = 0;
7544 	int removed = 0;
7545 
7546 	mddev->curr_resync_completed = 0;
7547 
7548 	rdev_for_each(rdev, mddev)
7549 		if (rdev->raid_disk >= 0 &&
7550 		    !test_bit(Blocked, &rdev->flags) &&
7551 		    (test_bit(Faulty, &rdev->flags) ||
7552 		     ! test_bit(In_sync, &rdev->flags)) &&
7553 		    atomic_read(&rdev->nr_pending)==0) {
7554 			if (mddev->pers->hot_remove_disk(
7555 				    mddev, rdev) == 0) {
7556 				sysfs_unlink_rdev(mddev, rdev);
7557 				rdev->raid_disk = -1;
7558 				removed++;
7559 			}
7560 		}
7561 	if (removed)
7562 		sysfs_notify(&mddev->kobj, NULL,
7563 			     "degraded");
7564 
7565 
7566 	rdev_for_each(rdev, mddev) {
7567 		if (rdev->raid_disk >= 0 &&
7568 		    !test_bit(In_sync, &rdev->flags) &&
7569 		    !test_bit(Faulty, &rdev->flags))
7570 			spares++;
7571 		if (rdev->raid_disk < 0
7572 		    && !test_bit(Faulty, &rdev->flags)) {
7573 			rdev->recovery_offset = 0;
7574 			if (mddev->pers->
7575 			    hot_add_disk(mddev, rdev) == 0) {
7576 				if (sysfs_link_rdev(mddev, rdev))
7577 					/* failure here is OK */;
7578 				spares++;
7579 				md_new_event(mddev);
7580 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7581 			}
7582 		}
7583 	}
7584 	return spares;
7585 }
7586 
7587 static void reap_sync_thread(struct mddev *mddev)
7588 {
7589 	struct md_rdev *rdev;
7590 
7591 	/* resync has finished, collect result */
7592 	md_unregister_thread(&mddev->sync_thread);
7593 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7594 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7595 		/* success...*/
7596 		/* activate any spares */
7597 		if (mddev->pers->spare_active(mddev))
7598 			sysfs_notify(&mddev->kobj, NULL,
7599 				     "degraded");
7600 	}
7601 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7602 	    mddev->pers->finish_reshape)
7603 		mddev->pers->finish_reshape(mddev);
7604 
7605 	/* If array is no-longer degraded, then any saved_raid_disk
7606 	 * information must be scrapped.  Also if any device is now
7607 	 * In_sync we must scrape the saved_raid_disk for that device
7608 	 * do the superblock for an incrementally recovered device
7609 	 * written out.
7610 	 */
7611 	rdev_for_each(rdev, mddev)
7612 		if (!mddev->degraded ||
7613 		    test_bit(In_sync, &rdev->flags))
7614 			rdev->saved_raid_disk = -1;
7615 
7616 	md_update_sb(mddev, 1);
7617 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7618 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7619 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7620 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7621 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7622 	/* flag recovery needed just to double check */
7623 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7624 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7625 	md_new_event(mddev);
7626 	if (mddev->event_work.func)
7627 		queue_work(md_misc_wq, &mddev->event_work);
7628 }
7629 
7630 /*
7631  * This routine is regularly called by all per-raid-array threads to
7632  * deal with generic issues like resync and super-block update.
7633  * Raid personalities that don't have a thread (linear/raid0) do not
7634  * need this as they never do any recovery or update the superblock.
7635  *
7636  * It does not do any resync itself, but rather "forks" off other threads
7637  * to do that as needed.
7638  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7639  * "->recovery" and create a thread at ->sync_thread.
7640  * When the thread finishes it sets MD_RECOVERY_DONE
7641  * and wakeups up this thread which will reap the thread and finish up.
7642  * This thread also removes any faulty devices (with nr_pending == 0).
7643  *
7644  * The overall approach is:
7645  *  1/ if the superblock needs updating, update it.
7646  *  2/ If a recovery thread is running, don't do anything else.
7647  *  3/ If recovery has finished, clean up, possibly marking spares active.
7648  *  4/ If there are any faulty devices, remove them.
7649  *  5/ If array is degraded, try to add spares devices
7650  *  6/ If array has spares or is not in-sync, start a resync thread.
7651  */
7652 void md_check_recovery(struct mddev *mddev)
7653 {
7654 	if (mddev->suspended)
7655 		return;
7656 
7657 	if (mddev->bitmap)
7658 		bitmap_daemon_work(mddev);
7659 
7660 	if (signal_pending(current)) {
7661 		if (mddev->pers->sync_request && !mddev->external) {
7662 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7663 			       mdname(mddev));
7664 			mddev->safemode = 2;
7665 		}
7666 		flush_signals(current);
7667 	}
7668 
7669 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7670 		return;
7671 	if ( ! (
7672 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7673 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7674 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7675 		(mddev->external == 0 && mddev->safemode == 1) ||
7676 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7677 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7678 		))
7679 		return;
7680 
7681 	if (mddev_trylock(mddev)) {
7682 		int spares = 0;
7683 
7684 		if (mddev->ro) {
7685 			/* Only thing we do on a ro array is remove
7686 			 * failed devices.
7687 			 */
7688 			struct md_rdev *rdev;
7689 			rdev_for_each(rdev, mddev)
7690 				if (rdev->raid_disk >= 0 &&
7691 				    !test_bit(Blocked, &rdev->flags) &&
7692 				    test_bit(Faulty, &rdev->flags) &&
7693 				    atomic_read(&rdev->nr_pending)==0) {
7694 					if (mddev->pers->hot_remove_disk(
7695 						    mddev, rdev) == 0) {
7696 						sysfs_unlink_rdev(mddev, rdev);
7697 						rdev->raid_disk = -1;
7698 					}
7699 				}
7700 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7701 			goto unlock;
7702 		}
7703 
7704 		if (!mddev->external) {
7705 			int did_change = 0;
7706 			spin_lock_irq(&mddev->write_lock);
7707 			if (mddev->safemode &&
7708 			    !atomic_read(&mddev->writes_pending) &&
7709 			    !mddev->in_sync &&
7710 			    mddev->recovery_cp == MaxSector) {
7711 				mddev->in_sync = 1;
7712 				did_change = 1;
7713 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7714 			}
7715 			if (mddev->safemode == 1)
7716 				mddev->safemode = 0;
7717 			spin_unlock_irq(&mddev->write_lock);
7718 			if (did_change)
7719 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7720 		}
7721 
7722 		if (mddev->flags)
7723 			md_update_sb(mddev, 0);
7724 
7725 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7726 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7727 			/* resync/recovery still happening */
7728 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7729 			goto unlock;
7730 		}
7731 		if (mddev->sync_thread) {
7732 			reap_sync_thread(mddev);
7733 			goto unlock;
7734 		}
7735 		/* Set RUNNING before clearing NEEDED to avoid
7736 		 * any transients in the value of "sync_action".
7737 		 */
7738 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7739 		/* Clear some bits that don't mean anything, but
7740 		 * might be left set
7741 		 */
7742 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7743 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7744 
7745 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7746 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7747 			goto unlock;
7748 		/* no recovery is running.
7749 		 * remove any failed drives, then
7750 		 * add spares if possible.
7751 		 * Spare are also removed and re-added, to allow
7752 		 * the personality to fail the re-add.
7753 		 */
7754 
7755 		if (mddev->reshape_position != MaxSector) {
7756 			if (mddev->pers->check_reshape == NULL ||
7757 			    mddev->pers->check_reshape(mddev) != 0)
7758 				/* Cannot proceed */
7759 				goto unlock;
7760 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7761 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7762 		} else if ((spares = remove_and_add_spares(mddev))) {
7763 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7764 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7765 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7766 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7767 		} else if (mddev->recovery_cp < MaxSector) {
7768 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7769 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7770 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7771 			/* nothing to be done ... */
7772 			goto unlock;
7773 
7774 		if (mddev->pers->sync_request) {
7775 			if (spares) {
7776 				/* We are adding a device or devices to an array
7777 				 * which has the bitmap stored on all devices.
7778 				 * So make sure all bitmap pages get written
7779 				 */
7780 				bitmap_write_all(mddev->bitmap);
7781 			}
7782 			mddev->sync_thread = md_register_thread(md_do_sync,
7783 								mddev,
7784 								"resync");
7785 			if (!mddev->sync_thread) {
7786 				printk(KERN_ERR "%s: could not start resync"
7787 					" thread...\n",
7788 					mdname(mddev));
7789 				/* leave the spares where they are, it shouldn't hurt */
7790 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7791 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7792 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7793 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7794 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7795 			} else
7796 				md_wakeup_thread(mddev->sync_thread);
7797 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7798 			md_new_event(mddev);
7799 		}
7800 	unlock:
7801 		if (!mddev->sync_thread) {
7802 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7803 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7804 					       &mddev->recovery))
7805 				if (mddev->sysfs_action)
7806 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7807 		}
7808 		mddev_unlock(mddev);
7809 	}
7810 }
7811 
7812 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7813 {
7814 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7815 	wait_event_timeout(rdev->blocked_wait,
7816 			   !test_bit(Blocked, &rdev->flags) &&
7817 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7818 			   msecs_to_jiffies(5000));
7819 	rdev_dec_pending(rdev, mddev);
7820 }
7821 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7822 
7823 void md_finish_reshape(struct mddev *mddev)
7824 {
7825 	/* called be personality module when reshape completes. */
7826 	struct md_rdev *rdev;
7827 
7828 	rdev_for_each(rdev, mddev) {
7829 		if (rdev->data_offset > rdev->new_data_offset)
7830 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7831 		else
7832 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7833 		rdev->data_offset = rdev->new_data_offset;
7834 	}
7835 }
7836 EXPORT_SYMBOL(md_finish_reshape);
7837 
7838 /* Bad block management.
7839  * We can record which blocks on each device are 'bad' and so just
7840  * fail those blocks, or that stripe, rather than the whole device.
7841  * Entries in the bad-block table are 64bits wide.  This comprises:
7842  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7843  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7844  *  A 'shift' can be set so that larger blocks are tracked and
7845  *  consequently larger devices can be covered.
7846  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7847  *
7848  * Locking of the bad-block table uses a seqlock so md_is_badblock
7849  * might need to retry if it is very unlucky.
7850  * We will sometimes want to check for bad blocks in a bi_end_io function,
7851  * so we use the write_seqlock_irq variant.
7852  *
7853  * When looking for a bad block we specify a range and want to
7854  * know if any block in the range is bad.  So we binary-search
7855  * to the last range that starts at-or-before the given endpoint,
7856  * (or "before the sector after the target range")
7857  * then see if it ends after the given start.
7858  * We return
7859  *  0 if there are no known bad blocks in the range
7860  *  1 if there are known bad block which are all acknowledged
7861  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7862  * plus the start/length of the first bad section we overlap.
7863  */
7864 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7865 		   sector_t *first_bad, int *bad_sectors)
7866 {
7867 	int hi;
7868 	int lo = 0;
7869 	u64 *p = bb->page;
7870 	int rv = 0;
7871 	sector_t target = s + sectors;
7872 	unsigned seq;
7873 
7874 	if (bb->shift > 0) {
7875 		/* round the start down, and the end up */
7876 		s >>= bb->shift;
7877 		target += (1<<bb->shift) - 1;
7878 		target >>= bb->shift;
7879 		sectors = target - s;
7880 	}
7881 	/* 'target' is now the first block after the bad range */
7882 
7883 retry:
7884 	seq = read_seqbegin(&bb->lock);
7885 
7886 	hi = bb->count;
7887 
7888 	/* Binary search between lo and hi for 'target'
7889 	 * i.e. for the last range that starts before 'target'
7890 	 */
7891 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7892 	 * are known not to be the last range before target.
7893 	 * VARIANT: hi-lo is the number of possible
7894 	 * ranges, and decreases until it reaches 1
7895 	 */
7896 	while (hi - lo > 1) {
7897 		int mid = (lo + hi) / 2;
7898 		sector_t a = BB_OFFSET(p[mid]);
7899 		if (a < target)
7900 			/* This could still be the one, earlier ranges
7901 			 * could not. */
7902 			lo = mid;
7903 		else
7904 			/* This and later ranges are definitely out. */
7905 			hi = mid;
7906 	}
7907 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7908 	if (hi > lo) {
7909 		/* need to check all range that end after 's' to see if
7910 		 * any are unacknowledged.
7911 		 */
7912 		while (lo >= 0 &&
7913 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7914 			if (BB_OFFSET(p[lo]) < target) {
7915 				/* starts before the end, and finishes after
7916 				 * the start, so they must overlap
7917 				 */
7918 				if (rv != -1 && BB_ACK(p[lo]))
7919 					rv = 1;
7920 				else
7921 					rv = -1;
7922 				*first_bad = BB_OFFSET(p[lo]);
7923 				*bad_sectors = BB_LEN(p[lo]);
7924 			}
7925 			lo--;
7926 		}
7927 	}
7928 
7929 	if (read_seqretry(&bb->lock, seq))
7930 		goto retry;
7931 
7932 	return rv;
7933 }
7934 EXPORT_SYMBOL_GPL(md_is_badblock);
7935 
7936 /*
7937  * Add a range of bad blocks to the table.
7938  * This might extend the table, or might contract it
7939  * if two adjacent ranges can be merged.
7940  * We binary-search to find the 'insertion' point, then
7941  * decide how best to handle it.
7942  */
7943 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7944 			    int acknowledged)
7945 {
7946 	u64 *p;
7947 	int lo, hi;
7948 	int rv = 1;
7949 
7950 	if (bb->shift < 0)
7951 		/* badblocks are disabled */
7952 		return 0;
7953 
7954 	if (bb->shift) {
7955 		/* round the start down, and the end up */
7956 		sector_t next = s + sectors;
7957 		s >>= bb->shift;
7958 		next += (1<<bb->shift) - 1;
7959 		next >>= bb->shift;
7960 		sectors = next - s;
7961 	}
7962 
7963 	write_seqlock_irq(&bb->lock);
7964 
7965 	p = bb->page;
7966 	lo = 0;
7967 	hi = bb->count;
7968 	/* Find the last range that starts at-or-before 's' */
7969 	while (hi - lo > 1) {
7970 		int mid = (lo + hi) / 2;
7971 		sector_t a = BB_OFFSET(p[mid]);
7972 		if (a <= s)
7973 			lo = mid;
7974 		else
7975 			hi = mid;
7976 	}
7977 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7978 		hi = lo;
7979 
7980 	if (hi > lo) {
7981 		/* we found a range that might merge with the start
7982 		 * of our new range
7983 		 */
7984 		sector_t a = BB_OFFSET(p[lo]);
7985 		sector_t e = a + BB_LEN(p[lo]);
7986 		int ack = BB_ACK(p[lo]);
7987 		if (e >= s) {
7988 			/* Yes, we can merge with a previous range */
7989 			if (s == a && s + sectors >= e)
7990 				/* new range covers old */
7991 				ack = acknowledged;
7992 			else
7993 				ack = ack && acknowledged;
7994 
7995 			if (e < s + sectors)
7996 				e = s + sectors;
7997 			if (e - a <= BB_MAX_LEN) {
7998 				p[lo] = BB_MAKE(a, e-a, ack);
7999 				s = e;
8000 			} else {
8001 				/* does not all fit in one range,
8002 				 * make p[lo] maximal
8003 				 */
8004 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8005 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8006 				s = a + BB_MAX_LEN;
8007 			}
8008 			sectors = e - s;
8009 		}
8010 	}
8011 	if (sectors && hi < bb->count) {
8012 		/* 'hi' points to the first range that starts after 's'.
8013 		 * Maybe we can merge with the start of that range */
8014 		sector_t a = BB_OFFSET(p[hi]);
8015 		sector_t e = a + BB_LEN(p[hi]);
8016 		int ack = BB_ACK(p[hi]);
8017 		if (a <= s + sectors) {
8018 			/* merging is possible */
8019 			if (e <= s + sectors) {
8020 				/* full overlap */
8021 				e = s + sectors;
8022 				ack = acknowledged;
8023 			} else
8024 				ack = ack && acknowledged;
8025 
8026 			a = s;
8027 			if (e - a <= BB_MAX_LEN) {
8028 				p[hi] = BB_MAKE(a, e-a, ack);
8029 				s = e;
8030 			} else {
8031 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8032 				s = a + BB_MAX_LEN;
8033 			}
8034 			sectors = e - s;
8035 			lo = hi;
8036 			hi++;
8037 		}
8038 	}
8039 	if (sectors == 0 && hi < bb->count) {
8040 		/* we might be able to combine lo and hi */
8041 		/* Note: 's' is at the end of 'lo' */
8042 		sector_t a = BB_OFFSET(p[hi]);
8043 		int lolen = BB_LEN(p[lo]);
8044 		int hilen = BB_LEN(p[hi]);
8045 		int newlen = lolen + hilen - (s - a);
8046 		if (s >= a && newlen < BB_MAX_LEN) {
8047 			/* yes, we can combine them */
8048 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8049 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8050 			memmove(p + hi, p + hi + 1,
8051 				(bb->count - hi - 1) * 8);
8052 			bb->count--;
8053 		}
8054 	}
8055 	while (sectors) {
8056 		/* didn't merge (it all).
8057 		 * Need to add a range just before 'hi' */
8058 		if (bb->count >= MD_MAX_BADBLOCKS) {
8059 			/* No room for more */
8060 			rv = 0;
8061 			break;
8062 		} else {
8063 			int this_sectors = sectors;
8064 			memmove(p + hi + 1, p + hi,
8065 				(bb->count - hi) * 8);
8066 			bb->count++;
8067 
8068 			if (this_sectors > BB_MAX_LEN)
8069 				this_sectors = BB_MAX_LEN;
8070 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8071 			sectors -= this_sectors;
8072 			s += this_sectors;
8073 		}
8074 	}
8075 
8076 	bb->changed = 1;
8077 	if (!acknowledged)
8078 		bb->unacked_exist = 1;
8079 	write_sequnlock_irq(&bb->lock);
8080 
8081 	return rv;
8082 }
8083 
8084 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8085 		       int is_new)
8086 {
8087 	int rv;
8088 	if (is_new)
8089 		s += rdev->new_data_offset;
8090 	else
8091 		s += rdev->data_offset;
8092 	rv = md_set_badblocks(&rdev->badblocks,
8093 			      s, sectors, 0);
8094 	if (rv) {
8095 		/* Make sure they get written out promptly */
8096 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8097 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8098 		md_wakeup_thread(rdev->mddev->thread);
8099 	}
8100 	return rv;
8101 }
8102 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8103 
8104 /*
8105  * Remove a range of bad blocks from the table.
8106  * This may involve extending the table if we spilt a region,
8107  * but it must not fail.  So if the table becomes full, we just
8108  * drop the remove request.
8109  */
8110 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8111 {
8112 	u64 *p;
8113 	int lo, hi;
8114 	sector_t target = s + sectors;
8115 	int rv = 0;
8116 
8117 	if (bb->shift > 0) {
8118 		/* When clearing we round the start up and the end down.
8119 		 * This should not matter as the shift should align with
8120 		 * the block size and no rounding should ever be needed.
8121 		 * However it is better the think a block is bad when it
8122 		 * isn't than to think a block is not bad when it is.
8123 		 */
8124 		s += (1<<bb->shift) - 1;
8125 		s >>= bb->shift;
8126 		target >>= bb->shift;
8127 		sectors = target - s;
8128 	}
8129 
8130 	write_seqlock_irq(&bb->lock);
8131 
8132 	p = bb->page;
8133 	lo = 0;
8134 	hi = bb->count;
8135 	/* Find the last range that starts before 'target' */
8136 	while (hi - lo > 1) {
8137 		int mid = (lo + hi) / 2;
8138 		sector_t a = BB_OFFSET(p[mid]);
8139 		if (a < target)
8140 			lo = mid;
8141 		else
8142 			hi = mid;
8143 	}
8144 	if (hi > lo) {
8145 		/* p[lo] is the last range that could overlap the
8146 		 * current range.  Earlier ranges could also overlap,
8147 		 * but only this one can overlap the end of the range.
8148 		 */
8149 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8150 			/* Partial overlap, leave the tail of this range */
8151 			int ack = BB_ACK(p[lo]);
8152 			sector_t a = BB_OFFSET(p[lo]);
8153 			sector_t end = a + BB_LEN(p[lo]);
8154 
8155 			if (a < s) {
8156 				/* we need to split this range */
8157 				if (bb->count >= MD_MAX_BADBLOCKS) {
8158 					rv = 0;
8159 					goto out;
8160 				}
8161 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8162 				bb->count++;
8163 				p[lo] = BB_MAKE(a, s-a, ack);
8164 				lo++;
8165 			}
8166 			p[lo] = BB_MAKE(target, end - target, ack);
8167 			/* there is no longer an overlap */
8168 			hi = lo;
8169 			lo--;
8170 		}
8171 		while (lo >= 0 &&
8172 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8173 			/* This range does overlap */
8174 			if (BB_OFFSET(p[lo]) < s) {
8175 				/* Keep the early parts of this range. */
8176 				int ack = BB_ACK(p[lo]);
8177 				sector_t start = BB_OFFSET(p[lo]);
8178 				p[lo] = BB_MAKE(start, s - start, ack);
8179 				/* now low doesn't overlap, so.. */
8180 				break;
8181 			}
8182 			lo--;
8183 		}
8184 		/* 'lo' is strictly before, 'hi' is strictly after,
8185 		 * anything between needs to be discarded
8186 		 */
8187 		if (hi - lo > 1) {
8188 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8189 			bb->count -= (hi - lo - 1);
8190 		}
8191 	}
8192 
8193 	bb->changed = 1;
8194 out:
8195 	write_sequnlock_irq(&bb->lock);
8196 	return rv;
8197 }
8198 
8199 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8200 			 int is_new)
8201 {
8202 	if (is_new)
8203 		s += rdev->new_data_offset;
8204 	else
8205 		s += rdev->data_offset;
8206 	return md_clear_badblocks(&rdev->badblocks,
8207 				  s, sectors);
8208 }
8209 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8210 
8211 /*
8212  * Acknowledge all bad blocks in a list.
8213  * This only succeeds if ->changed is clear.  It is used by
8214  * in-kernel metadata updates
8215  */
8216 void md_ack_all_badblocks(struct badblocks *bb)
8217 {
8218 	if (bb->page == NULL || bb->changed)
8219 		/* no point even trying */
8220 		return;
8221 	write_seqlock_irq(&bb->lock);
8222 
8223 	if (bb->changed == 0 && bb->unacked_exist) {
8224 		u64 *p = bb->page;
8225 		int i;
8226 		for (i = 0; i < bb->count ; i++) {
8227 			if (!BB_ACK(p[i])) {
8228 				sector_t start = BB_OFFSET(p[i]);
8229 				int len = BB_LEN(p[i]);
8230 				p[i] = BB_MAKE(start, len, 1);
8231 			}
8232 		}
8233 		bb->unacked_exist = 0;
8234 	}
8235 	write_sequnlock_irq(&bb->lock);
8236 }
8237 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8238 
8239 /* sysfs access to bad-blocks list.
8240  * We present two files.
8241  * 'bad-blocks' lists sector numbers and lengths of ranges that
8242  *    are recorded as bad.  The list is truncated to fit within
8243  *    the one-page limit of sysfs.
8244  *    Writing "sector length" to this file adds an acknowledged
8245  *    bad block list.
8246  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8247  *    been acknowledged.  Writing to this file adds bad blocks
8248  *    without acknowledging them.  This is largely for testing.
8249  */
8250 
8251 static ssize_t
8252 badblocks_show(struct badblocks *bb, char *page, int unack)
8253 {
8254 	size_t len;
8255 	int i;
8256 	u64 *p = bb->page;
8257 	unsigned seq;
8258 
8259 	if (bb->shift < 0)
8260 		return 0;
8261 
8262 retry:
8263 	seq = read_seqbegin(&bb->lock);
8264 
8265 	len = 0;
8266 	i = 0;
8267 
8268 	while (len < PAGE_SIZE && i < bb->count) {
8269 		sector_t s = BB_OFFSET(p[i]);
8270 		unsigned int length = BB_LEN(p[i]);
8271 		int ack = BB_ACK(p[i]);
8272 		i++;
8273 
8274 		if (unack && ack)
8275 			continue;
8276 
8277 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8278 				(unsigned long long)s << bb->shift,
8279 				length << bb->shift);
8280 	}
8281 	if (unack && len == 0)
8282 		bb->unacked_exist = 0;
8283 
8284 	if (read_seqretry(&bb->lock, seq))
8285 		goto retry;
8286 
8287 	return len;
8288 }
8289 
8290 #define DO_DEBUG 1
8291 
8292 static ssize_t
8293 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8294 {
8295 	unsigned long long sector;
8296 	int length;
8297 	char newline;
8298 #ifdef DO_DEBUG
8299 	/* Allow clearing via sysfs *only* for testing/debugging.
8300 	 * Normally only a successful write may clear a badblock
8301 	 */
8302 	int clear = 0;
8303 	if (page[0] == '-') {
8304 		clear = 1;
8305 		page++;
8306 	}
8307 #endif /* DO_DEBUG */
8308 
8309 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8310 	case 3:
8311 		if (newline != '\n')
8312 			return -EINVAL;
8313 	case 2:
8314 		if (length <= 0)
8315 			return -EINVAL;
8316 		break;
8317 	default:
8318 		return -EINVAL;
8319 	}
8320 
8321 #ifdef DO_DEBUG
8322 	if (clear) {
8323 		md_clear_badblocks(bb, sector, length);
8324 		return len;
8325 	}
8326 #endif /* DO_DEBUG */
8327 	if (md_set_badblocks(bb, sector, length, !unack))
8328 		return len;
8329 	else
8330 		return -ENOSPC;
8331 }
8332 
8333 static int md_notify_reboot(struct notifier_block *this,
8334 			    unsigned long code, void *x)
8335 {
8336 	struct list_head *tmp;
8337 	struct mddev *mddev;
8338 	int need_delay = 0;
8339 
8340 	for_each_mddev(mddev, tmp) {
8341 		if (mddev_trylock(mddev)) {
8342 			if (mddev->pers)
8343 				__md_stop_writes(mddev);
8344 			mddev->safemode = 2;
8345 			mddev_unlock(mddev);
8346 		}
8347 		need_delay = 1;
8348 	}
8349 	/*
8350 	 * certain more exotic SCSI devices are known to be
8351 	 * volatile wrt too early system reboots. While the
8352 	 * right place to handle this issue is the given
8353 	 * driver, we do want to have a safe RAID driver ...
8354 	 */
8355 	if (need_delay)
8356 		mdelay(1000*1);
8357 
8358 	return NOTIFY_DONE;
8359 }
8360 
8361 static struct notifier_block md_notifier = {
8362 	.notifier_call	= md_notify_reboot,
8363 	.next		= NULL,
8364 	.priority	= INT_MAX, /* before any real devices */
8365 };
8366 
8367 static void md_geninit(void)
8368 {
8369 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8370 
8371 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8372 }
8373 
8374 static int __init md_init(void)
8375 {
8376 	int ret = -ENOMEM;
8377 
8378 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8379 	if (!md_wq)
8380 		goto err_wq;
8381 
8382 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8383 	if (!md_misc_wq)
8384 		goto err_misc_wq;
8385 
8386 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8387 		goto err_md;
8388 
8389 	if ((ret = register_blkdev(0, "mdp")) < 0)
8390 		goto err_mdp;
8391 	mdp_major = ret;
8392 
8393 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8394 			    md_probe, NULL, NULL);
8395 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8396 			    md_probe, NULL, NULL);
8397 
8398 	register_reboot_notifier(&md_notifier);
8399 	raid_table_header = register_sysctl_table(raid_root_table);
8400 
8401 	md_geninit();
8402 	return 0;
8403 
8404 err_mdp:
8405 	unregister_blkdev(MD_MAJOR, "md");
8406 err_md:
8407 	destroy_workqueue(md_misc_wq);
8408 err_misc_wq:
8409 	destroy_workqueue(md_wq);
8410 err_wq:
8411 	return ret;
8412 }
8413 
8414 #ifndef MODULE
8415 
8416 /*
8417  * Searches all registered partitions for autorun RAID arrays
8418  * at boot time.
8419  */
8420 
8421 static LIST_HEAD(all_detected_devices);
8422 struct detected_devices_node {
8423 	struct list_head list;
8424 	dev_t dev;
8425 };
8426 
8427 void md_autodetect_dev(dev_t dev)
8428 {
8429 	struct detected_devices_node *node_detected_dev;
8430 
8431 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8432 	if (node_detected_dev) {
8433 		node_detected_dev->dev = dev;
8434 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8435 	} else {
8436 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8437 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8438 	}
8439 }
8440 
8441 
8442 static void autostart_arrays(int part)
8443 {
8444 	struct md_rdev *rdev;
8445 	struct detected_devices_node *node_detected_dev;
8446 	dev_t dev;
8447 	int i_scanned, i_passed;
8448 
8449 	i_scanned = 0;
8450 	i_passed = 0;
8451 
8452 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8453 
8454 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8455 		i_scanned++;
8456 		node_detected_dev = list_entry(all_detected_devices.next,
8457 					struct detected_devices_node, list);
8458 		list_del(&node_detected_dev->list);
8459 		dev = node_detected_dev->dev;
8460 		kfree(node_detected_dev);
8461 		rdev = md_import_device(dev,0, 90);
8462 		if (IS_ERR(rdev))
8463 			continue;
8464 
8465 		if (test_bit(Faulty, &rdev->flags)) {
8466 			MD_BUG();
8467 			continue;
8468 		}
8469 		set_bit(AutoDetected, &rdev->flags);
8470 		list_add(&rdev->same_set, &pending_raid_disks);
8471 		i_passed++;
8472 	}
8473 
8474 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8475 						i_scanned, i_passed);
8476 
8477 	autorun_devices(part);
8478 }
8479 
8480 #endif /* !MODULE */
8481 
8482 static __exit void md_exit(void)
8483 {
8484 	struct mddev *mddev;
8485 	struct list_head *tmp;
8486 
8487 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8488 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8489 
8490 	unregister_blkdev(MD_MAJOR,"md");
8491 	unregister_blkdev(mdp_major, "mdp");
8492 	unregister_reboot_notifier(&md_notifier);
8493 	unregister_sysctl_table(raid_table_header);
8494 	remove_proc_entry("mdstat", NULL);
8495 	for_each_mddev(mddev, tmp) {
8496 		export_array(mddev);
8497 		mddev->hold_active = 0;
8498 	}
8499 	destroy_workqueue(md_misc_wq);
8500 	destroy_workqueue(md_wq);
8501 }
8502 
8503 subsys_initcall(md_init);
8504 module_exit(md_exit)
8505 
8506 static int get_ro(char *buffer, struct kernel_param *kp)
8507 {
8508 	return sprintf(buffer, "%d", start_readonly);
8509 }
8510 static int set_ro(const char *val, struct kernel_param *kp)
8511 {
8512 	char *e;
8513 	int num = simple_strtoul(val, &e, 10);
8514 	if (*val && (*e == '\0' || *e == '\n')) {
8515 		start_readonly = num;
8516 		return 0;
8517 	}
8518 	return -EINVAL;
8519 }
8520 
8521 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8522 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8523 
8524 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8525 
8526 EXPORT_SYMBOL(register_md_personality);
8527 EXPORT_SYMBOL(unregister_md_personality);
8528 EXPORT_SYMBOL(md_error);
8529 EXPORT_SYMBOL(md_done_sync);
8530 EXPORT_SYMBOL(md_write_start);
8531 EXPORT_SYMBOL(md_write_end);
8532 EXPORT_SYMBOL(md_register_thread);
8533 EXPORT_SYMBOL(md_unregister_thread);
8534 EXPORT_SYMBOL(md_wakeup_thread);
8535 EXPORT_SYMBOL(md_check_recovery);
8536 MODULE_LICENSE("GPL");
8537 MODULE_DESCRIPTION("MD RAID framework");
8538 MODULE_ALIAS("md");
8539 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8540