1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 159 struct mddev *mddev) 160 { 161 struct bio *b; 162 163 if (!mddev || !mddev->bio_set) 164 return bio_alloc(gfp_mask, nr_iovecs); 165 166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 167 if (!b) 168 return NULL; 169 return b; 170 } 171 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 172 173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 174 struct mddev *mddev) 175 { 176 if (!mddev || !mddev->bio_set) 177 return bio_clone(bio, gfp_mask); 178 179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 180 } 181 EXPORT_SYMBOL_GPL(bio_clone_mddev); 182 183 void md_trim_bio(struct bio *bio, int offset, int size) 184 { 185 /* 'bio' is a cloned bio which we need to trim to match 186 * the given offset and size. 187 * This requires adjusting bi_sector, bi_size, and bi_io_vec 188 */ 189 int i; 190 struct bio_vec *bvec; 191 int sofar = 0; 192 193 size <<= 9; 194 if (offset == 0 && size == bio->bi_size) 195 return; 196 197 bio->bi_sector += offset; 198 bio->bi_size = size; 199 offset <<= 9; 200 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 201 202 while (bio->bi_idx < bio->bi_vcnt && 203 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 204 /* remove this whole bio_vec */ 205 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 206 bio->bi_idx++; 207 } 208 if (bio->bi_idx < bio->bi_vcnt) { 209 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 210 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 211 } 212 /* avoid any complications with bi_idx being non-zero*/ 213 if (bio->bi_idx) { 214 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 215 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 216 bio->bi_vcnt -= bio->bi_idx; 217 bio->bi_idx = 0; 218 } 219 /* Make sure vcnt and last bv are not too big */ 220 bio_for_each_segment(bvec, bio, i) { 221 if (sofar + bvec->bv_len > size) 222 bvec->bv_len = size - sofar; 223 if (bvec->bv_len == 0) { 224 bio->bi_vcnt = i; 225 break; 226 } 227 sofar += bvec->bv_len; 228 } 229 } 230 EXPORT_SYMBOL_GPL(md_trim_bio); 231 232 /* 233 * We have a system wide 'event count' that is incremented 234 * on any 'interesting' event, and readers of /proc/mdstat 235 * can use 'poll' or 'select' to find out when the event 236 * count increases. 237 * 238 * Events are: 239 * start array, stop array, error, add device, remove device, 240 * start build, activate spare 241 */ 242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 243 static atomic_t md_event_count; 244 void md_new_event(struct mddev *mddev) 245 { 246 atomic_inc(&md_event_count); 247 wake_up(&md_event_waiters); 248 } 249 EXPORT_SYMBOL_GPL(md_new_event); 250 251 /* Alternate version that can be called from interrupts 252 * when calling sysfs_notify isn't needed. 253 */ 254 static void md_new_event_inintr(struct mddev *mddev) 255 { 256 atomic_inc(&md_event_count); 257 wake_up(&md_event_waiters); 258 } 259 260 /* 261 * Enables to iterate over all existing md arrays 262 * all_mddevs_lock protects this list. 263 */ 264 static LIST_HEAD(all_mddevs); 265 static DEFINE_SPINLOCK(all_mddevs_lock); 266 267 268 /* 269 * iterates through all used mddevs in the system. 270 * We take care to grab the all_mddevs_lock whenever navigating 271 * the list, and to always hold a refcount when unlocked. 272 * Any code which breaks out of this loop while own 273 * a reference to the current mddev and must mddev_put it. 274 */ 275 #define for_each_mddev(_mddev,_tmp) \ 276 \ 277 for (({ spin_lock(&all_mddevs_lock); \ 278 _tmp = all_mddevs.next; \ 279 _mddev = NULL;}); \ 280 ({ if (_tmp != &all_mddevs) \ 281 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 282 spin_unlock(&all_mddevs_lock); \ 283 if (_mddev) mddev_put(_mddev); \ 284 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 285 _tmp != &all_mddevs;}); \ 286 ({ spin_lock(&all_mddevs_lock); \ 287 _tmp = _tmp->next;}) \ 288 ) 289 290 291 /* Rather than calling directly into the personality make_request function, 292 * IO requests come here first so that we can check if the device is 293 * being suspended pending a reconfiguration. 294 * We hold a refcount over the call to ->make_request. By the time that 295 * call has finished, the bio has been linked into some internal structure 296 * and so is visible to ->quiesce(), so we don't need the refcount any more. 297 */ 298 static void md_make_request(struct request_queue *q, struct bio *bio) 299 { 300 const int rw = bio_data_dir(bio); 301 struct mddev *mddev = q->queuedata; 302 int cpu; 303 unsigned int sectors; 304 305 if (mddev == NULL || mddev->pers == NULL 306 || !mddev->ready) { 307 bio_io_error(bio); 308 return; 309 } 310 smp_rmb(); /* Ensure implications of 'active' are visible */ 311 rcu_read_lock(); 312 if (mddev->suspended) { 313 DEFINE_WAIT(__wait); 314 for (;;) { 315 prepare_to_wait(&mddev->sb_wait, &__wait, 316 TASK_UNINTERRUPTIBLE); 317 if (!mddev->suspended) 318 break; 319 rcu_read_unlock(); 320 schedule(); 321 rcu_read_lock(); 322 } 323 finish_wait(&mddev->sb_wait, &__wait); 324 } 325 atomic_inc(&mddev->active_io); 326 rcu_read_unlock(); 327 328 /* 329 * save the sectors now since our bio can 330 * go away inside make_request 331 */ 332 sectors = bio_sectors(bio); 333 mddev->pers->make_request(mddev, bio); 334 335 cpu = part_stat_lock(); 336 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 337 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 338 part_stat_unlock(); 339 340 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 341 wake_up(&mddev->sb_wait); 342 } 343 344 /* mddev_suspend makes sure no new requests are submitted 345 * to the device, and that any requests that have been submitted 346 * are completely handled. 347 * Once ->stop is called and completes, the module will be completely 348 * unused. 349 */ 350 void mddev_suspend(struct mddev *mddev) 351 { 352 BUG_ON(mddev->suspended); 353 mddev->suspended = 1; 354 synchronize_rcu(); 355 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 356 mddev->pers->quiesce(mddev, 1); 357 358 del_timer_sync(&mddev->safemode_timer); 359 } 360 EXPORT_SYMBOL_GPL(mddev_suspend); 361 362 void mddev_resume(struct mddev *mddev) 363 { 364 mddev->suspended = 0; 365 wake_up(&mddev->sb_wait); 366 mddev->pers->quiesce(mddev, 0); 367 368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 369 md_wakeup_thread(mddev->thread); 370 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 371 } 372 EXPORT_SYMBOL_GPL(mddev_resume); 373 374 int mddev_congested(struct mddev *mddev, int bits) 375 { 376 return mddev->suspended; 377 } 378 EXPORT_SYMBOL(mddev_congested); 379 380 /* 381 * Generic flush handling for md 382 */ 383 384 static void md_end_flush(struct bio *bio, int err) 385 { 386 struct md_rdev *rdev = bio->bi_private; 387 struct mddev *mddev = rdev->mddev; 388 389 rdev_dec_pending(rdev, mddev); 390 391 if (atomic_dec_and_test(&mddev->flush_pending)) { 392 /* The pre-request flush has finished */ 393 queue_work(md_wq, &mddev->flush_work); 394 } 395 bio_put(bio); 396 } 397 398 static void md_submit_flush_data(struct work_struct *ws); 399 400 static void submit_flushes(struct work_struct *ws) 401 { 402 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 403 struct md_rdev *rdev; 404 405 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 406 atomic_set(&mddev->flush_pending, 1); 407 rcu_read_lock(); 408 rdev_for_each_rcu(rdev, mddev) 409 if (rdev->raid_disk >= 0 && 410 !test_bit(Faulty, &rdev->flags)) { 411 /* Take two references, one is dropped 412 * when request finishes, one after 413 * we reclaim rcu_read_lock 414 */ 415 struct bio *bi; 416 atomic_inc(&rdev->nr_pending); 417 atomic_inc(&rdev->nr_pending); 418 rcu_read_unlock(); 419 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 420 bi->bi_end_io = md_end_flush; 421 bi->bi_private = rdev; 422 bi->bi_bdev = rdev->bdev; 423 atomic_inc(&mddev->flush_pending); 424 submit_bio(WRITE_FLUSH, bi); 425 rcu_read_lock(); 426 rdev_dec_pending(rdev, mddev); 427 } 428 rcu_read_unlock(); 429 if (atomic_dec_and_test(&mddev->flush_pending)) 430 queue_work(md_wq, &mddev->flush_work); 431 } 432 433 static void md_submit_flush_data(struct work_struct *ws) 434 { 435 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 436 struct bio *bio = mddev->flush_bio; 437 438 if (bio->bi_size == 0) 439 /* an empty barrier - all done */ 440 bio_endio(bio, 0); 441 else { 442 bio->bi_rw &= ~REQ_FLUSH; 443 mddev->pers->make_request(mddev, bio); 444 } 445 446 mddev->flush_bio = NULL; 447 wake_up(&mddev->sb_wait); 448 } 449 450 void md_flush_request(struct mddev *mddev, struct bio *bio) 451 { 452 spin_lock_irq(&mddev->write_lock); 453 wait_event_lock_irq(mddev->sb_wait, 454 !mddev->flush_bio, 455 mddev->write_lock, /*nothing*/); 456 mddev->flush_bio = bio; 457 spin_unlock_irq(&mddev->write_lock); 458 459 INIT_WORK(&mddev->flush_work, submit_flushes); 460 queue_work(md_wq, &mddev->flush_work); 461 } 462 EXPORT_SYMBOL(md_flush_request); 463 464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 465 { 466 struct mddev *mddev = cb->data; 467 md_wakeup_thread(mddev->thread); 468 kfree(cb); 469 } 470 EXPORT_SYMBOL(md_unplug); 471 472 static inline struct mddev *mddev_get(struct mddev *mddev) 473 { 474 atomic_inc(&mddev->active); 475 return mddev; 476 } 477 478 static void mddev_delayed_delete(struct work_struct *ws); 479 480 static void mddev_put(struct mddev *mddev) 481 { 482 struct bio_set *bs = NULL; 483 484 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 485 return; 486 if (!mddev->raid_disks && list_empty(&mddev->disks) && 487 mddev->ctime == 0 && !mddev->hold_active) { 488 /* Array is not configured at all, and not held active, 489 * so destroy it */ 490 list_del_init(&mddev->all_mddevs); 491 bs = mddev->bio_set; 492 mddev->bio_set = NULL; 493 if (mddev->gendisk) { 494 /* We did a probe so need to clean up. Call 495 * queue_work inside the spinlock so that 496 * flush_workqueue() after mddev_find will 497 * succeed in waiting for the work to be done. 498 */ 499 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 500 queue_work(md_misc_wq, &mddev->del_work); 501 } else 502 kfree(mddev); 503 } 504 spin_unlock(&all_mddevs_lock); 505 if (bs) 506 bioset_free(bs); 507 } 508 509 void mddev_init(struct mddev *mddev) 510 { 511 mutex_init(&mddev->open_mutex); 512 mutex_init(&mddev->reconfig_mutex); 513 mutex_init(&mddev->bitmap_info.mutex); 514 INIT_LIST_HEAD(&mddev->disks); 515 INIT_LIST_HEAD(&mddev->all_mddevs); 516 init_timer(&mddev->safemode_timer); 517 atomic_set(&mddev->active, 1); 518 atomic_set(&mddev->openers, 0); 519 atomic_set(&mddev->active_io, 0); 520 spin_lock_init(&mddev->write_lock); 521 atomic_set(&mddev->flush_pending, 0); 522 init_waitqueue_head(&mddev->sb_wait); 523 init_waitqueue_head(&mddev->recovery_wait); 524 mddev->reshape_position = MaxSector; 525 mddev->reshape_backwards = 0; 526 mddev->resync_min = 0; 527 mddev->resync_max = MaxSector; 528 mddev->level = LEVEL_NONE; 529 } 530 EXPORT_SYMBOL_GPL(mddev_init); 531 532 static struct mddev * mddev_find(dev_t unit) 533 { 534 struct mddev *mddev, *new = NULL; 535 536 if (unit && MAJOR(unit) != MD_MAJOR) 537 unit &= ~((1<<MdpMinorShift)-1); 538 539 retry: 540 spin_lock(&all_mddevs_lock); 541 542 if (unit) { 543 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 544 if (mddev->unit == unit) { 545 mddev_get(mddev); 546 spin_unlock(&all_mddevs_lock); 547 kfree(new); 548 return mddev; 549 } 550 551 if (new) { 552 list_add(&new->all_mddevs, &all_mddevs); 553 spin_unlock(&all_mddevs_lock); 554 new->hold_active = UNTIL_IOCTL; 555 return new; 556 } 557 } else if (new) { 558 /* find an unused unit number */ 559 static int next_minor = 512; 560 int start = next_minor; 561 int is_free = 0; 562 int dev = 0; 563 while (!is_free) { 564 dev = MKDEV(MD_MAJOR, next_minor); 565 next_minor++; 566 if (next_minor > MINORMASK) 567 next_minor = 0; 568 if (next_minor == start) { 569 /* Oh dear, all in use. */ 570 spin_unlock(&all_mddevs_lock); 571 kfree(new); 572 return NULL; 573 } 574 575 is_free = 1; 576 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 577 if (mddev->unit == dev) { 578 is_free = 0; 579 break; 580 } 581 } 582 new->unit = dev; 583 new->md_minor = MINOR(dev); 584 new->hold_active = UNTIL_STOP; 585 list_add(&new->all_mddevs, &all_mddevs); 586 spin_unlock(&all_mddevs_lock); 587 return new; 588 } 589 spin_unlock(&all_mddevs_lock); 590 591 new = kzalloc(sizeof(*new), GFP_KERNEL); 592 if (!new) 593 return NULL; 594 595 new->unit = unit; 596 if (MAJOR(unit) == MD_MAJOR) 597 new->md_minor = MINOR(unit); 598 else 599 new->md_minor = MINOR(unit) >> MdpMinorShift; 600 601 mddev_init(new); 602 603 goto retry; 604 } 605 606 static inline int mddev_lock(struct mddev * mddev) 607 { 608 return mutex_lock_interruptible(&mddev->reconfig_mutex); 609 } 610 611 static inline int mddev_is_locked(struct mddev *mddev) 612 { 613 return mutex_is_locked(&mddev->reconfig_mutex); 614 } 615 616 static inline int mddev_trylock(struct mddev * mddev) 617 { 618 return mutex_trylock(&mddev->reconfig_mutex); 619 } 620 621 static struct attribute_group md_redundancy_group; 622 623 static void mddev_unlock(struct mddev * mddev) 624 { 625 if (mddev->to_remove) { 626 /* These cannot be removed under reconfig_mutex as 627 * an access to the files will try to take reconfig_mutex 628 * while holding the file unremovable, which leads to 629 * a deadlock. 630 * So hold set sysfs_active while the remove in happeing, 631 * and anything else which might set ->to_remove or my 632 * otherwise change the sysfs namespace will fail with 633 * -EBUSY if sysfs_active is still set. 634 * We set sysfs_active under reconfig_mutex and elsewhere 635 * test it under the same mutex to ensure its correct value 636 * is seen. 637 */ 638 struct attribute_group *to_remove = mddev->to_remove; 639 mddev->to_remove = NULL; 640 mddev->sysfs_active = 1; 641 mutex_unlock(&mddev->reconfig_mutex); 642 643 if (mddev->kobj.sd) { 644 if (to_remove != &md_redundancy_group) 645 sysfs_remove_group(&mddev->kobj, to_remove); 646 if (mddev->pers == NULL || 647 mddev->pers->sync_request == NULL) { 648 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 649 if (mddev->sysfs_action) 650 sysfs_put(mddev->sysfs_action); 651 mddev->sysfs_action = NULL; 652 } 653 } 654 mddev->sysfs_active = 0; 655 } else 656 mutex_unlock(&mddev->reconfig_mutex); 657 658 /* As we've dropped the mutex we need a spinlock to 659 * make sure the thread doesn't disappear 660 */ 661 spin_lock(&pers_lock); 662 md_wakeup_thread(mddev->thread); 663 spin_unlock(&pers_lock); 664 } 665 666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 667 { 668 struct md_rdev *rdev; 669 670 rdev_for_each(rdev, mddev) 671 if (rdev->desc_nr == nr) 672 return rdev; 673 674 return NULL; 675 } 676 677 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev) 678 { 679 struct md_rdev *rdev; 680 681 rdev_for_each(rdev, mddev) 682 if (rdev->bdev->bd_dev == dev) 683 return rdev; 684 685 return NULL; 686 } 687 688 static struct md_personality *find_pers(int level, char *clevel) 689 { 690 struct md_personality *pers; 691 list_for_each_entry(pers, &pers_list, list) { 692 if (level != LEVEL_NONE && pers->level == level) 693 return pers; 694 if (strcmp(pers->name, clevel)==0) 695 return pers; 696 } 697 return NULL; 698 } 699 700 /* return the offset of the super block in 512byte sectors */ 701 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 702 { 703 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 704 return MD_NEW_SIZE_SECTORS(num_sectors); 705 } 706 707 static int alloc_disk_sb(struct md_rdev * rdev) 708 { 709 if (rdev->sb_page) 710 MD_BUG(); 711 712 rdev->sb_page = alloc_page(GFP_KERNEL); 713 if (!rdev->sb_page) { 714 printk(KERN_ALERT "md: out of memory.\n"); 715 return -ENOMEM; 716 } 717 718 return 0; 719 } 720 721 void md_rdev_clear(struct md_rdev *rdev) 722 { 723 if (rdev->sb_page) { 724 put_page(rdev->sb_page); 725 rdev->sb_loaded = 0; 726 rdev->sb_page = NULL; 727 rdev->sb_start = 0; 728 rdev->sectors = 0; 729 } 730 if (rdev->bb_page) { 731 put_page(rdev->bb_page); 732 rdev->bb_page = NULL; 733 } 734 kfree(rdev->badblocks.page); 735 rdev->badblocks.page = NULL; 736 } 737 EXPORT_SYMBOL_GPL(md_rdev_clear); 738 739 static void super_written(struct bio *bio, int error) 740 { 741 struct md_rdev *rdev = bio->bi_private; 742 struct mddev *mddev = rdev->mddev; 743 744 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 745 printk("md: super_written gets error=%d, uptodate=%d\n", 746 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 747 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 748 md_error(mddev, rdev); 749 } 750 751 if (atomic_dec_and_test(&mddev->pending_writes)) 752 wake_up(&mddev->sb_wait); 753 bio_put(bio); 754 } 755 756 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 757 sector_t sector, int size, struct page *page) 758 { 759 /* write first size bytes of page to sector of rdev 760 * Increment mddev->pending_writes before returning 761 * and decrement it on completion, waking up sb_wait 762 * if zero is reached. 763 * If an error occurred, call md_error 764 */ 765 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 766 767 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 768 bio->bi_sector = sector; 769 bio_add_page(bio, page, size, 0); 770 bio->bi_private = rdev; 771 bio->bi_end_io = super_written; 772 773 atomic_inc(&mddev->pending_writes); 774 submit_bio(WRITE_FLUSH_FUA, bio); 775 } 776 777 void md_super_wait(struct mddev *mddev) 778 { 779 /* wait for all superblock writes that were scheduled to complete */ 780 DEFINE_WAIT(wq); 781 for(;;) { 782 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 783 if (atomic_read(&mddev->pending_writes)==0) 784 break; 785 schedule(); 786 } 787 finish_wait(&mddev->sb_wait, &wq); 788 } 789 790 static void bi_complete(struct bio *bio, int error) 791 { 792 complete((struct completion*)bio->bi_private); 793 } 794 795 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 796 struct page *page, int rw, bool metadata_op) 797 { 798 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 799 struct completion event; 800 int ret; 801 802 rw |= REQ_SYNC; 803 804 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 805 rdev->meta_bdev : rdev->bdev; 806 if (metadata_op) 807 bio->bi_sector = sector + rdev->sb_start; 808 else if (rdev->mddev->reshape_position != MaxSector && 809 (rdev->mddev->reshape_backwards == 810 (sector >= rdev->mddev->reshape_position))) 811 bio->bi_sector = sector + rdev->new_data_offset; 812 else 813 bio->bi_sector = sector + rdev->data_offset; 814 bio_add_page(bio, page, size, 0); 815 init_completion(&event); 816 bio->bi_private = &event; 817 bio->bi_end_io = bi_complete; 818 submit_bio(rw, bio); 819 wait_for_completion(&event); 820 821 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 822 bio_put(bio); 823 return ret; 824 } 825 EXPORT_SYMBOL_GPL(sync_page_io); 826 827 static int read_disk_sb(struct md_rdev * rdev, int size) 828 { 829 char b[BDEVNAME_SIZE]; 830 if (!rdev->sb_page) { 831 MD_BUG(); 832 return -EINVAL; 833 } 834 if (rdev->sb_loaded) 835 return 0; 836 837 838 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 839 goto fail; 840 rdev->sb_loaded = 1; 841 return 0; 842 843 fail: 844 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 845 bdevname(rdev->bdev,b)); 846 return -EINVAL; 847 } 848 849 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 850 { 851 return sb1->set_uuid0 == sb2->set_uuid0 && 852 sb1->set_uuid1 == sb2->set_uuid1 && 853 sb1->set_uuid2 == sb2->set_uuid2 && 854 sb1->set_uuid3 == sb2->set_uuid3; 855 } 856 857 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 858 { 859 int ret; 860 mdp_super_t *tmp1, *tmp2; 861 862 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 863 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 864 865 if (!tmp1 || !tmp2) { 866 ret = 0; 867 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 868 goto abort; 869 } 870 871 *tmp1 = *sb1; 872 *tmp2 = *sb2; 873 874 /* 875 * nr_disks is not constant 876 */ 877 tmp1->nr_disks = 0; 878 tmp2->nr_disks = 0; 879 880 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 881 abort: 882 kfree(tmp1); 883 kfree(tmp2); 884 return ret; 885 } 886 887 888 static u32 md_csum_fold(u32 csum) 889 { 890 csum = (csum & 0xffff) + (csum >> 16); 891 return (csum & 0xffff) + (csum >> 16); 892 } 893 894 static unsigned int calc_sb_csum(mdp_super_t * sb) 895 { 896 u64 newcsum = 0; 897 u32 *sb32 = (u32*)sb; 898 int i; 899 unsigned int disk_csum, csum; 900 901 disk_csum = sb->sb_csum; 902 sb->sb_csum = 0; 903 904 for (i = 0; i < MD_SB_BYTES/4 ; i++) 905 newcsum += sb32[i]; 906 csum = (newcsum & 0xffffffff) + (newcsum>>32); 907 908 909 #ifdef CONFIG_ALPHA 910 /* This used to use csum_partial, which was wrong for several 911 * reasons including that different results are returned on 912 * different architectures. It isn't critical that we get exactly 913 * the same return value as before (we always csum_fold before 914 * testing, and that removes any differences). However as we 915 * know that csum_partial always returned a 16bit value on 916 * alphas, do a fold to maximise conformity to previous behaviour. 917 */ 918 sb->sb_csum = md_csum_fold(disk_csum); 919 #else 920 sb->sb_csum = disk_csum; 921 #endif 922 return csum; 923 } 924 925 926 /* 927 * Handle superblock details. 928 * We want to be able to handle multiple superblock formats 929 * so we have a common interface to them all, and an array of 930 * different handlers. 931 * We rely on user-space to write the initial superblock, and support 932 * reading and updating of superblocks. 933 * Interface methods are: 934 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 935 * loads and validates a superblock on dev. 936 * if refdev != NULL, compare superblocks on both devices 937 * Return: 938 * 0 - dev has a superblock that is compatible with refdev 939 * 1 - dev has a superblock that is compatible and newer than refdev 940 * so dev should be used as the refdev in future 941 * -EINVAL superblock incompatible or invalid 942 * -othererror e.g. -EIO 943 * 944 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 945 * Verify that dev is acceptable into mddev. 946 * The first time, mddev->raid_disks will be 0, and data from 947 * dev should be merged in. Subsequent calls check that dev 948 * is new enough. Return 0 or -EINVAL 949 * 950 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 951 * Update the superblock for rdev with data in mddev 952 * This does not write to disc. 953 * 954 */ 955 956 struct super_type { 957 char *name; 958 struct module *owner; 959 int (*load_super)(struct md_rdev *rdev, 960 struct md_rdev *refdev, 961 int minor_version); 962 int (*validate_super)(struct mddev *mddev, 963 struct md_rdev *rdev); 964 void (*sync_super)(struct mddev *mddev, 965 struct md_rdev *rdev); 966 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 967 sector_t num_sectors); 968 int (*allow_new_offset)(struct md_rdev *rdev, 969 unsigned long long new_offset); 970 }; 971 972 /* 973 * Check that the given mddev has no bitmap. 974 * 975 * This function is called from the run method of all personalities that do not 976 * support bitmaps. It prints an error message and returns non-zero if mddev 977 * has a bitmap. Otherwise, it returns 0. 978 * 979 */ 980 int md_check_no_bitmap(struct mddev *mddev) 981 { 982 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 983 return 0; 984 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 985 mdname(mddev), mddev->pers->name); 986 return 1; 987 } 988 EXPORT_SYMBOL(md_check_no_bitmap); 989 990 /* 991 * load_super for 0.90.0 992 */ 993 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 994 { 995 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 996 mdp_super_t *sb; 997 int ret; 998 999 /* 1000 * Calculate the position of the superblock (512byte sectors), 1001 * it's at the end of the disk. 1002 * 1003 * It also happens to be a multiple of 4Kb. 1004 */ 1005 rdev->sb_start = calc_dev_sboffset(rdev); 1006 1007 ret = read_disk_sb(rdev, MD_SB_BYTES); 1008 if (ret) return ret; 1009 1010 ret = -EINVAL; 1011 1012 bdevname(rdev->bdev, b); 1013 sb = page_address(rdev->sb_page); 1014 1015 if (sb->md_magic != MD_SB_MAGIC) { 1016 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1017 b); 1018 goto abort; 1019 } 1020 1021 if (sb->major_version != 0 || 1022 sb->minor_version < 90 || 1023 sb->minor_version > 91) { 1024 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1025 sb->major_version, sb->minor_version, 1026 b); 1027 goto abort; 1028 } 1029 1030 if (sb->raid_disks <= 0) 1031 goto abort; 1032 1033 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1034 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1035 b); 1036 goto abort; 1037 } 1038 1039 rdev->preferred_minor = sb->md_minor; 1040 rdev->data_offset = 0; 1041 rdev->new_data_offset = 0; 1042 rdev->sb_size = MD_SB_BYTES; 1043 rdev->badblocks.shift = -1; 1044 1045 if (sb->level == LEVEL_MULTIPATH) 1046 rdev->desc_nr = -1; 1047 else 1048 rdev->desc_nr = sb->this_disk.number; 1049 1050 if (!refdev) { 1051 ret = 1; 1052 } else { 1053 __u64 ev1, ev2; 1054 mdp_super_t *refsb = page_address(refdev->sb_page); 1055 if (!uuid_equal(refsb, sb)) { 1056 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1057 b, bdevname(refdev->bdev,b2)); 1058 goto abort; 1059 } 1060 if (!sb_equal(refsb, sb)) { 1061 printk(KERN_WARNING "md: %s has same UUID" 1062 " but different superblock to %s\n", 1063 b, bdevname(refdev->bdev, b2)); 1064 goto abort; 1065 } 1066 ev1 = md_event(sb); 1067 ev2 = md_event(refsb); 1068 if (ev1 > ev2) 1069 ret = 1; 1070 else 1071 ret = 0; 1072 } 1073 rdev->sectors = rdev->sb_start; 1074 /* Limit to 4TB as metadata cannot record more than that. 1075 * (not needed for Linear and RAID0 as metadata doesn't 1076 * record this size) 1077 */ 1078 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1079 rdev->sectors = (2ULL << 32) - 2; 1080 1081 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1082 /* "this cannot possibly happen" ... */ 1083 ret = -EINVAL; 1084 1085 abort: 1086 return ret; 1087 } 1088 1089 /* 1090 * validate_super for 0.90.0 1091 */ 1092 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1093 { 1094 mdp_disk_t *desc; 1095 mdp_super_t *sb = page_address(rdev->sb_page); 1096 __u64 ev1 = md_event(sb); 1097 1098 rdev->raid_disk = -1; 1099 clear_bit(Faulty, &rdev->flags); 1100 clear_bit(In_sync, &rdev->flags); 1101 clear_bit(WriteMostly, &rdev->flags); 1102 1103 if (mddev->raid_disks == 0) { 1104 mddev->major_version = 0; 1105 mddev->minor_version = sb->minor_version; 1106 mddev->patch_version = sb->patch_version; 1107 mddev->external = 0; 1108 mddev->chunk_sectors = sb->chunk_size >> 9; 1109 mddev->ctime = sb->ctime; 1110 mddev->utime = sb->utime; 1111 mddev->level = sb->level; 1112 mddev->clevel[0] = 0; 1113 mddev->layout = sb->layout; 1114 mddev->raid_disks = sb->raid_disks; 1115 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1116 mddev->events = ev1; 1117 mddev->bitmap_info.offset = 0; 1118 mddev->bitmap_info.space = 0; 1119 /* bitmap can use 60 K after the 4K superblocks */ 1120 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1121 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1122 mddev->reshape_backwards = 0; 1123 1124 if (mddev->minor_version >= 91) { 1125 mddev->reshape_position = sb->reshape_position; 1126 mddev->delta_disks = sb->delta_disks; 1127 mddev->new_level = sb->new_level; 1128 mddev->new_layout = sb->new_layout; 1129 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1130 if (mddev->delta_disks < 0) 1131 mddev->reshape_backwards = 1; 1132 } else { 1133 mddev->reshape_position = MaxSector; 1134 mddev->delta_disks = 0; 1135 mddev->new_level = mddev->level; 1136 mddev->new_layout = mddev->layout; 1137 mddev->new_chunk_sectors = mddev->chunk_sectors; 1138 } 1139 1140 if (sb->state & (1<<MD_SB_CLEAN)) 1141 mddev->recovery_cp = MaxSector; 1142 else { 1143 if (sb->events_hi == sb->cp_events_hi && 1144 sb->events_lo == sb->cp_events_lo) { 1145 mddev->recovery_cp = sb->recovery_cp; 1146 } else 1147 mddev->recovery_cp = 0; 1148 } 1149 1150 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1151 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1152 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1153 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1154 1155 mddev->max_disks = MD_SB_DISKS; 1156 1157 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1158 mddev->bitmap_info.file == NULL) { 1159 mddev->bitmap_info.offset = 1160 mddev->bitmap_info.default_offset; 1161 mddev->bitmap_info.space = 1162 mddev->bitmap_info.space; 1163 } 1164 1165 } else if (mddev->pers == NULL) { 1166 /* Insist on good event counter while assembling, except 1167 * for spares (which don't need an event count) */ 1168 ++ev1; 1169 if (sb->disks[rdev->desc_nr].state & ( 1170 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1171 if (ev1 < mddev->events) 1172 return -EINVAL; 1173 } else if (mddev->bitmap) { 1174 /* if adding to array with a bitmap, then we can accept an 1175 * older device ... but not too old. 1176 */ 1177 if (ev1 < mddev->bitmap->events_cleared) 1178 return 0; 1179 } else { 1180 if (ev1 < mddev->events) 1181 /* just a hot-add of a new device, leave raid_disk at -1 */ 1182 return 0; 1183 } 1184 1185 if (mddev->level != LEVEL_MULTIPATH) { 1186 desc = sb->disks + rdev->desc_nr; 1187 1188 if (desc->state & (1<<MD_DISK_FAULTY)) 1189 set_bit(Faulty, &rdev->flags); 1190 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1191 desc->raid_disk < mddev->raid_disks */) { 1192 set_bit(In_sync, &rdev->flags); 1193 rdev->raid_disk = desc->raid_disk; 1194 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1195 /* active but not in sync implies recovery up to 1196 * reshape position. We don't know exactly where 1197 * that is, so set to zero for now */ 1198 if (mddev->minor_version >= 91) { 1199 rdev->recovery_offset = 0; 1200 rdev->raid_disk = desc->raid_disk; 1201 } 1202 } 1203 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1204 set_bit(WriteMostly, &rdev->flags); 1205 } else /* MULTIPATH are always insync */ 1206 set_bit(In_sync, &rdev->flags); 1207 return 0; 1208 } 1209 1210 /* 1211 * sync_super for 0.90.0 1212 */ 1213 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1214 { 1215 mdp_super_t *sb; 1216 struct md_rdev *rdev2; 1217 int next_spare = mddev->raid_disks; 1218 1219 1220 /* make rdev->sb match mddev data.. 1221 * 1222 * 1/ zero out disks 1223 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1224 * 3/ any empty disks < next_spare become removed 1225 * 1226 * disks[0] gets initialised to REMOVED because 1227 * we cannot be sure from other fields if it has 1228 * been initialised or not. 1229 */ 1230 int i; 1231 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1232 1233 rdev->sb_size = MD_SB_BYTES; 1234 1235 sb = page_address(rdev->sb_page); 1236 1237 memset(sb, 0, sizeof(*sb)); 1238 1239 sb->md_magic = MD_SB_MAGIC; 1240 sb->major_version = mddev->major_version; 1241 sb->patch_version = mddev->patch_version; 1242 sb->gvalid_words = 0; /* ignored */ 1243 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1244 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1245 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1246 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1247 1248 sb->ctime = mddev->ctime; 1249 sb->level = mddev->level; 1250 sb->size = mddev->dev_sectors / 2; 1251 sb->raid_disks = mddev->raid_disks; 1252 sb->md_minor = mddev->md_minor; 1253 sb->not_persistent = 0; 1254 sb->utime = mddev->utime; 1255 sb->state = 0; 1256 sb->events_hi = (mddev->events>>32); 1257 sb->events_lo = (u32)mddev->events; 1258 1259 if (mddev->reshape_position == MaxSector) 1260 sb->minor_version = 90; 1261 else { 1262 sb->minor_version = 91; 1263 sb->reshape_position = mddev->reshape_position; 1264 sb->new_level = mddev->new_level; 1265 sb->delta_disks = mddev->delta_disks; 1266 sb->new_layout = mddev->new_layout; 1267 sb->new_chunk = mddev->new_chunk_sectors << 9; 1268 } 1269 mddev->minor_version = sb->minor_version; 1270 if (mddev->in_sync) 1271 { 1272 sb->recovery_cp = mddev->recovery_cp; 1273 sb->cp_events_hi = (mddev->events>>32); 1274 sb->cp_events_lo = (u32)mddev->events; 1275 if (mddev->recovery_cp == MaxSector) 1276 sb->state = (1<< MD_SB_CLEAN); 1277 } else 1278 sb->recovery_cp = 0; 1279 1280 sb->layout = mddev->layout; 1281 sb->chunk_size = mddev->chunk_sectors << 9; 1282 1283 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1284 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1285 1286 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1287 rdev_for_each(rdev2, mddev) { 1288 mdp_disk_t *d; 1289 int desc_nr; 1290 int is_active = test_bit(In_sync, &rdev2->flags); 1291 1292 if (rdev2->raid_disk >= 0 && 1293 sb->minor_version >= 91) 1294 /* we have nowhere to store the recovery_offset, 1295 * but if it is not below the reshape_position, 1296 * we can piggy-back on that. 1297 */ 1298 is_active = 1; 1299 if (rdev2->raid_disk < 0 || 1300 test_bit(Faulty, &rdev2->flags)) 1301 is_active = 0; 1302 if (is_active) 1303 desc_nr = rdev2->raid_disk; 1304 else 1305 desc_nr = next_spare++; 1306 rdev2->desc_nr = desc_nr; 1307 d = &sb->disks[rdev2->desc_nr]; 1308 nr_disks++; 1309 d->number = rdev2->desc_nr; 1310 d->major = MAJOR(rdev2->bdev->bd_dev); 1311 d->minor = MINOR(rdev2->bdev->bd_dev); 1312 if (is_active) 1313 d->raid_disk = rdev2->raid_disk; 1314 else 1315 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1316 if (test_bit(Faulty, &rdev2->flags)) 1317 d->state = (1<<MD_DISK_FAULTY); 1318 else if (is_active) { 1319 d->state = (1<<MD_DISK_ACTIVE); 1320 if (test_bit(In_sync, &rdev2->flags)) 1321 d->state |= (1<<MD_DISK_SYNC); 1322 active++; 1323 working++; 1324 } else { 1325 d->state = 0; 1326 spare++; 1327 working++; 1328 } 1329 if (test_bit(WriteMostly, &rdev2->flags)) 1330 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1331 } 1332 /* now set the "removed" and "faulty" bits on any missing devices */ 1333 for (i=0 ; i < mddev->raid_disks ; i++) { 1334 mdp_disk_t *d = &sb->disks[i]; 1335 if (d->state == 0 && d->number == 0) { 1336 d->number = i; 1337 d->raid_disk = i; 1338 d->state = (1<<MD_DISK_REMOVED); 1339 d->state |= (1<<MD_DISK_FAULTY); 1340 failed++; 1341 } 1342 } 1343 sb->nr_disks = nr_disks; 1344 sb->active_disks = active; 1345 sb->working_disks = working; 1346 sb->failed_disks = failed; 1347 sb->spare_disks = spare; 1348 1349 sb->this_disk = sb->disks[rdev->desc_nr]; 1350 sb->sb_csum = calc_sb_csum(sb); 1351 } 1352 1353 /* 1354 * rdev_size_change for 0.90.0 1355 */ 1356 static unsigned long long 1357 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1358 { 1359 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1360 return 0; /* component must fit device */ 1361 if (rdev->mddev->bitmap_info.offset) 1362 return 0; /* can't move bitmap */ 1363 rdev->sb_start = calc_dev_sboffset(rdev); 1364 if (!num_sectors || num_sectors > rdev->sb_start) 1365 num_sectors = rdev->sb_start; 1366 /* Limit to 4TB as metadata cannot record more than that. 1367 * 4TB == 2^32 KB, or 2*2^32 sectors. 1368 */ 1369 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1370 num_sectors = (2ULL << 32) - 2; 1371 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1372 rdev->sb_page); 1373 md_super_wait(rdev->mddev); 1374 return num_sectors; 1375 } 1376 1377 static int 1378 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1379 { 1380 /* non-zero offset changes not possible with v0.90 */ 1381 return new_offset == 0; 1382 } 1383 1384 /* 1385 * version 1 superblock 1386 */ 1387 1388 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1389 { 1390 __le32 disk_csum; 1391 u32 csum; 1392 unsigned long long newcsum; 1393 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1394 __le32 *isuper = (__le32*)sb; 1395 int i; 1396 1397 disk_csum = sb->sb_csum; 1398 sb->sb_csum = 0; 1399 newcsum = 0; 1400 for (i=0; size>=4; size -= 4 ) 1401 newcsum += le32_to_cpu(*isuper++); 1402 1403 if (size == 2) 1404 newcsum += le16_to_cpu(*(__le16*) isuper); 1405 1406 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1407 sb->sb_csum = disk_csum; 1408 return cpu_to_le32(csum); 1409 } 1410 1411 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1412 int acknowledged); 1413 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1414 { 1415 struct mdp_superblock_1 *sb; 1416 int ret; 1417 sector_t sb_start; 1418 sector_t sectors; 1419 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1420 int bmask; 1421 1422 /* 1423 * Calculate the position of the superblock in 512byte sectors. 1424 * It is always aligned to a 4K boundary and 1425 * depeding on minor_version, it can be: 1426 * 0: At least 8K, but less than 12K, from end of device 1427 * 1: At start of device 1428 * 2: 4K from start of device. 1429 */ 1430 switch(minor_version) { 1431 case 0: 1432 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1433 sb_start -= 8*2; 1434 sb_start &= ~(sector_t)(4*2-1); 1435 break; 1436 case 1: 1437 sb_start = 0; 1438 break; 1439 case 2: 1440 sb_start = 8; 1441 break; 1442 default: 1443 return -EINVAL; 1444 } 1445 rdev->sb_start = sb_start; 1446 1447 /* superblock is rarely larger than 1K, but it can be larger, 1448 * and it is safe to read 4k, so we do that 1449 */ 1450 ret = read_disk_sb(rdev, 4096); 1451 if (ret) return ret; 1452 1453 1454 sb = page_address(rdev->sb_page); 1455 1456 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1457 sb->major_version != cpu_to_le32(1) || 1458 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1459 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1460 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1461 return -EINVAL; 1462 1463 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1464 printk("md: invalid superblock checksum on %s\n", 1465 bdevname(rdev->bdev,b)); 1466 return -EINVAL; 1467 } 1468 if (le64_to_cpu(sb->data_size) < 10) { 1469 printk("md: data_size too small on %s\n", 1470 bdevname(rdev->bdev,b)); 1471 return -EINVAL; 1472 } 1473 if (sb->pad0 || 1474 sb->pad3[0] || 1475 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1476 /* Some padding is non-zero, might be a new feature */ 1477 return -EINVAL; 1478 1479 rdev->preferred_minor = 0xffff; 1480 rdev->data_offset = le64_to_cpu(sb->data_offset); 1481 rdev->new_data_offset = rdev->data_offset; 1482 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1483 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1484 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1485 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1486 1487 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1488 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1489 if (rdev->sb_size & bmask) 1490 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1491 1492 if (minor_version 1493 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1494 return -EINVAL; 1495 if (minor_version 1496 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1497 return -EINVAL; 1498 1499 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1500 rdev->desc_nr = -1; 1501 else 1502 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1503 1504 if (!rdev->bb_page) { 1505 rdev->bb_page = alloc_page(GFP_KERNEL); 1506 if (!rdev->bb_page) 1507 return -ENOMEM; 1508 } 1509 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1510 rdev->badblocks.count == 0) { 1511 /* need to load the bad block list. 1512 * Currently we limit it to one page. 1513 */ 1514 s32 offset; 1515 sector_t bb_sector; 1516 u64 *bbp; 1517 int i; 1518 int sectors = le16_to_cpu(sb->bblog_size); 1519 if (sectors > (PAGE_SIZE / 512)) 1520 return -EINVAL; 1521 offset = le32_to_cpu(sb->bblog_offset); 1522 if (offset == 0) 1523 return -EINVAL; 1524 bb_sector = (long long)offset; 1525 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1526 rdev->bb_page, READ, true)) 1527 return -EIO; 1528 bbp = (u64 *)page_address(rdev->bb_page); 1529 rdev->badblocks.shift = sb->bblog_shift; 1530 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1531 u64 bb = le64_to_cpu(*bbp); 1532 int count = bb & (0x3ff); 1533 u64 sector = bb >> 10; 1534 sector <<= sb->bblog_shift; 1535 count <<= sb->bblog_shift; 1536 if (bb + 1 == 0) 1537 break; 1538 if (md_set_badblocks(&rdev->badblocks, 1539 sector, count, 1) == 0) 1540 return -EINVAL; 1541 } 1542 } else if (sb->bblog_offset == 0) 1543 rdev->badblocks.shift = -1; 1544 1545 if (!refdev) { 1546 ret = 1; 1547 } else { 1548 __u64 ev1, ev2; 1549 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1550 1551 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1552 sb->level != refsb->level || 1553 sb->layout != refsb->layout || 1554 sb->chunksize != refsb->chunksize) { 1555 printk(KERN_WARNING "md: %s has strangely different" 1556 " superblock to %s\n", 1557 bdevname(rdev->bdev,b), 1558 bdevname(refdev->bdev,b2)); 1559 return -EINVAL; 1560 } 1561 ev1 = le64_to_cpu(sb->events); 1562 ev2 = le64_to_cpu(refsb->events); 1563 1564 if (ev1 > ev2) 1565 ret = 1; 1566 else 1567 ret = 0; 1568 } 1569 if (minor_version) { 1570 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1571 sectors -= rdev->data_offset; 1572 } else 1573 sectors = rdev->sb_start; 1574 if (sectors < le64_to_cpu(sb->data_size)) 1575 return -EINVAL; 1576 rdev->sectors = le64_to_cpu(sb->data_size); 1577 return ret; 1578 } 1579 1580 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1581 { 1582 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1583 __u64 ev1 = le64_to_cpu(sb->events); 1584 1585 rdev->raid_disk = -1; 1586 clear_bit(Faulty, &rdev->flags); 1587 clear_bit(In_sync, &rdev->flags); 1588 clear_bit(WriteMostly, &rdev->flags); 1589 1590 if (mddev->raid_disks == 0) { 1591 mddev->major_version = 1; 1592 mddev->patch_version = 0; 1593 mddev->external = 0; 1594 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1595 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1596 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1597 mddev->level = le32_to_cpu(sb->level); 1598 mddev->clevel[0] = 0; 1599 mddev->layout = le32_to_cpu(sb->layout); 1600 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1601 mddev->dev_sectors = le64_to_cpu(sb->size); 1602 mddev->events = ev1; 1603 mddev->bitmap_info.offset = 0; 1604 mddev->bitmap_info.space = 0; 1605 /* Default location for bitmap is 1K after superblock 1606 * using 3K - total of 4K 1607 */ 1608 mddev->bitmap_info.default_offset = 1024 >> 9; 1609 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1610 mddev->reshape_backwards = 0; 1611 1612 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1613 memcpy(mddev->uuid, sb->set_uuid, 16); 1614 1615 mddev->max_disks = (4096-256)/2; 1616 1617 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1618 mddev->bitmap_info.file == NULL) { 1619 mddev->bitmap_info.offset = 1620 (__s32)le32_to_cpu(sb->bitmap_offset); 1621 /* Metadata doesn't record how much space is available. 1622 * For 1.0, we assume we can use up to the superblock 1623 * if before, else to 4K beyond superblock. 1624 * For others, assume no change is possible. 1625 */ 1626 if (mddev->minor_version > 0) 1627 mddev->bitmap_info.space = 0; 1628 else if (mddev->bitmap_info.offset > 0) 1629 mddev->bitmap_info.space = 1630 8 - mddev->bitmap_info.offset; 1631 else 1632 mddev->bitmap_info.space = 1633 -mddev->bitmap_info.offset; 1634 } 1635 1636 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1637 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1638 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1639 mddev->new_level = le32_to_cpu(sb->new_level); 1640 mddev->new_layout = le32_to_cpu(sb->new_layout); 1641 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1642 if (mddev->delta_disks < 0 || 1643 (mddev->delta_disks == 0 && 1644 (le32_to_cpu(sb->feature_map) 1645 & MD_FEATURE_RESHAPE_BACKWARDS))) 1646 mddev->reshape_backwards = 1; 1647 } else { 1648 mddev->reshape_position = MaxSector; 1649 mddev->delta_disks = 0; 1650 mddev->new_level = mddev->level; 1651 mddev->new_layout = mddev->layout; 1652 mddev->new_chunk_sectors = mddev->chunk_sectors; 1653 } 1654 1655 } else if (mddev->pers == NULL) { 1656 /* Insist of good event counter while assembling, except for 1657 * spares (which don't need an event count) */ 1658 ++ev1; 1659 if (rdev->desc_nr >= 0 && 1660 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1661 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1662 if (ev1 < mddev->events) 1663 return -EINVAL; 1664 } else if (mddev->bitmap) { 1665 /* If adding to array with a bitmap, then we can accept an 1666 * older device, but not too old. 1667 */ 1668 if (ev1 < mddev->bitmap->events_cleared) 1669 return 0; 1670 } else { 1671 if (ev1 < mddev->events) 1672 /* just a hot-add of a new device, leave raid_disk at -1 */ 1673 return 0; 1674 } 1675 if (mddev->level != LEVEL_MULTIPATH) { 1676 int role; 1677 if (rdev->desc_nr < 0 || 1678 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1679 role = 0xffff; 1680 rdev->desc_nr = -1; 1681 } else 1682 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1683 switch(role) { 1684 case 0xffff: /* spare */ 1685 break; 1686 case 0xfffe: /* faulty */ 1687 set_bit(Faulty, &rdev->flags); 1688 break; 1689 default: 1690 if ((le32_to_cpu(sb->feature_map) & 1691 MD_FEATURE_RECOVERY_OFFSET)) 1692 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1693 else 1694 set_bit(In_sync, &rdev->flags); 1695 rdev->raid_disk = role; 1696 break; 1697 } 1698 if (sb->devflags & WriteMostly1) 1699 set_bit(WriteMostly, &rdev->flags); 1700 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1701 set_bit(Replacement, &rdev->flags); 1702 } else /* MULTIPATH are always insync */ 1703 set_bit(In_sync, &rdev->flags); 1704 1705 return 0; 1706 } 1707 1708 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1709 { 1710 struct mdp_superblock_1 *sb; 1711 struct md_rdev *rdev2; 1712 int max_dev, i; 1713 /* make rdev->sb match mddev and rdev data. */ 1714 1715 sb = page_address(rdev->sb_page); 1716 1717 sb->feature_map = 0; 1718 sb->pad0 = 0; 1719 sb->recovery_offset = cpu_to_le64(0); 1720 memset(sb->pad3, 0, sizeof(sb->pad3)); 1721 1722 sb->utime = cpu_to_le64((__u64)mddev->utime); 1723 sb->events = cpu_to_le64(mddev->events); 1724 if (mddev->in_sync) 1725 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1726 else 1727 sb->resync_offset = cpu_to_le64(0); 1728 1729 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1730 1731 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1732 sb->size = cpu_to_le64(mddev->dev_sectors); 1733 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1734 sb->level = cpu_to_le32(mddev->level); 1735 sb->layout = cpu_to_le32(mddev->layout); 1736 1737 if (test_bit(WriteMostly, &rdev->flags)) 1738 sb->devflags |= WriteMostly1; 1739 else 1740 sb->devflags &= ~WriteMostly1; 1741 sb->data_offset = cpu_to_le64(rdev->data_offset); 1742 sb->data_size = cpu_to_le64(rdev->sectors); 1743 1744 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1745 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1746 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1747 } 1748 1749 if (rdev->raid_disk >= 0 && 1750 !test_bit(In_sync, &rdev->flags)) { 1751 sb->feature_map |= 1752 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1753 sb->recovery_offset = 1754 cpu_to_le64(rdev->recovery_offset); 1755 } 1756 if (test_bit(Replacement, &rdev->flags)) 1757 sb->feature_map |= 1758 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1759 1760 if (mddev->reshape_position != MaxSector) { 1761 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1762 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1763 sb->new_layout = cpu_to_le32(mddev->new_layout); 1764 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1765 sb->new_level = cpu_to_le32(mddev->new_level); 1766 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1767 if (mddev->delta_disks == 0 && 1768 mddev->reshape_backwards) 1769 sb->feature_map 1770 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1771 if (rdev->new_data_offset != rdev->data_offset) { 1772 sb->feature_map 1773 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1774 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1775 - rdev->data_offset)); 1776 } 1777 } 1778 1779 if (rdev->badblocks.count == 0) 1780 /* Nothing to do for bad blocks*/ ; 1781 else if (sb->bblog_offset == 0) 1782 /* Cannot record bad blocks on this device */ 1783 md_error(mddev, rdev); 1784 else { 1785 struct badblocks *bb = &rdev->badblocks; 1786 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1787 u64 *p = bb->page; 1788 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1789 if (bb->changed) { 1790 unsigned seq; 1791 1792 retry: 1793 seq = read_seqbegin(&bb->lock); 1794 1795 memset(bbp, 0xff, PAGE_SIZE); 1796 1797 for (i = 0 ; i < bb->count ; i++) { 1798 u64 internal_bb = *p++; 1799 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1800 | BB_LEN(internal_bb)); 1801 *bbp++ = cpu_to_le64(store_bb); 1802 } 1803 bb->changed = 0; 1804 if (read_seqretry(&bb->lock, seq)) 1805 goto retry; 1806 1807 bb->sector = (rdev->sb_start + 1808 (int)le32_to_cpu(sb->bblog_offset)); 1809 bb->size = le16_to_cpu(sb->bblog_size); 1810 } 1811 } 1812 1813 max_dev = 0; 1814 rdev_for_each(rdev2, mddev) 1815 if (rdev2->desc_nr+1 > max_dev) 1816 max_dev = rdev2->desc_nr+1; 1817 1818 if (max_dev > le32_to_cpu(sb->max_dev)) { 1819 int bmask; 1820 sb->max_dev = cpu_to_le32(max_dev); 1821 rdev->sb_size = max_dev * 2 + 256; 1822 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1823 if (rdev->sb_size & bmask) 1824 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1825 } else 1826 max_dev = le32_to_cpu(sb->max_dev); 1827 1828 for (i=0; i<max_dev;i++) 1829 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1830 1831 rdev_for_each(rdev2, mddev) { 1832 i = rdev2->desc_nr; 1833 if (test_bit(Faulty, &rdev2->flags)) 1834 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1835 else if (test_bit(In_sync, &rdev2->flags)) 1836 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1837 else if (rdev2->raid_disk >= 0) 1838 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1839 else 1840 sb->dev_roles[i] = cpu_to_le16(0xffff); 1841 } 1842 1843 sb->sb_csum = calc_sb_1_csum(sb); 1844 } 1845 1846 static unsigned long long 1847 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1848 { 1849 struct mdp_superblock_1 *sb; 1850 sector_t max_sectors; 1851 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1852 return 0; /* component must fit device */ 1853 if (rdev->data_offset != rdev->new_data_offset) 1854 return 0; /* too confusing */ 1855 if (rdev->sb_start < rdev->data_offset) { 1856 /* minor versions 1 and 2; superblock before data */ 1857 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1858 max_sectors -= rdev->data_offset; 1859 if (!num_sectors || num_sectors > max_sectors) 1860 num_sectors = max_sectors; 1861 } else if (rdev->mddev->bitmap_info.offset) { 1862 /* minor version 0 with bitmap we can't move */ 1863 return 0; 1864 } else { 1865 /* minor version 0; superblock after data */ 1866 sector_t sb_start; 1867 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1868 sb_start &= ~(sector_t)(4*2 - 1); 1869 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1870 if (!num_sectors || num_sectors > max_sectors) 1871 num_sectors = max_sectors; 1872 rdev->sb_start = sb_start; 1873 } 1874 sb = page_address(rdev->sb_page); 1875 sb->data_size = cpu_to_le64(num_sectors); 1876 sb->super_offset = rdev->sb_start; 1877 sb->sb_csum = calc_sb_1_csum(sb); 1878 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1879 rdev->sb_page); 1880 md_super_wait(rdev->mddev); 1881 return num_sectors; 1882 1883 } 1884 1885 static int 1886 super_1_allow_new_offset(struct md_rdev *rdev, 1887 unsigned long long new_offset) 1888 { 1889 /* All necessary checks on new >= old have been done */ 1890 struct bitmap *bitmap; 1891 if (new_offset >= rdev->data_offset) 1892 return 1; 1893 1894 /* with 1.0 metadata, there is no metadata to tread on 1895 * so we can always move back */ 1896 if (rdev->mddev->minor_version == 0) 1897 return 1; 1898 1899 /* otherwise we must be sure not to step on 1900 * any metadata, so stay: 1901 * 36K beyond start of superblock 1902 * beyond end of badblocks 1903 * beyond write-intent bitmap 1904 */ 1905 if (rdev->sb_start + (32+4)*2 > new_offset) 1906 return 0; 1907 bitmap = rdev->mddev->bitmap; 1908 if (bitmap && !rdev->mddev->bitmap_info.file && 1909 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1910 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1911 return 0; 1912 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1913 return 0; 1914 1915 return 1; 1916 } 1917 1918 static struct super_type super_types[] = { 1919 [0] = { 1920 .name = "0.90.0", 1921 .owner = THIS_MODULE, 1922 .load_super = super_90_load, 1923 .validate_super = super_90_validate, 1924 .sync_super = super_90_sync, 1925 .rdev_size_change = super_90_rdev_size_change, 1926 .allow_new_offset = super_90_allow_new_offset, 1927 }, 1928 [1] = { 1929 .name = "md-1", 1930 .owner = THIS_MODULE, 1931 .load_super = super_1_load, 1932 .validate_super = super_1_validate, 1933 .sync_super = super_1_sync, 1934 .rdev_size_change = super_1_rdev_size_change, 1935 .allow_new_offset = super_1_allow_new_offset, 1936 }, 1937 }; 1938 1939 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1940 { 1941 if (mddev->sync_super) { 1942 mddev->sync_super(mddev, rdev); 1943 return; 1944 } 1945 1946 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1947 1948 super_types[mddev->major_version].sync_super(mddev, rdev); 1949 } 1950 1951 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1952 { 1953 struct md_rdev *rdev, *rdev2; 1954 1955 rcu_read_lock(); 1956 rdev_for_each_rcu(rdev, mddev1) 1957 rdev_for_each_rcu(rdev2, mddev2) 1958 if (rdev->bdev->bd_contains == 1959 rdev2->bdev->bd_contains) { 1960 rcu_read_unlock(); 1961 return 1; 1962 } 1963 rcu_read_unlock(); 1964 return 0; 1965 } 1966 1967 static LIST_HEAD(pending_raid_disks); 1968 1969 /* 1970 * Try to register data integrity profile for an mddev 1971 * 1972 * This is called when an array is started and after a disk has been kicked 1973 * from the array. It only succeeds if all working and active component devices 1974 * are integrity capable with matching profiles. 1975 */ 1976 int md_integrity_register(struct mddev *mddev) 1977 { 1978 struct md_rdev *rdev, *reference = NULL; 1979 1980 if (list_empty(&mddev->disks)) 1981 return 0; /* nothing to do */ 1982 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1983 return 0; /* shouldn't register, or already is */ 1984 rdev_for_each(rdev, mddev) { 1985 /* skip spares and non-functional disks */ 1986 if (test_bit(Faulty, &rdev->flags)) 1987 continue; 1988 if (rdev->raid_disk < 0) 1989 continue; 1990 if (!reference) { 1991 /* Use the first rdev as the reference */ 1992 reference = rdev; 1993 continue; 1994 } 1995 /* does this rdev's profile match the reference profile? */ 1996 if (blk_integrity_compare(reference->bdev->bd_disk, 1997 rdev->bdev->bd_disk) < 0) 1998 return -EINVAL; 1999 } 2000 if (!reference || !bdev_get_integrity(reference->bdev)) 2001 return 0; 2002 /* 2003 * All component devices are integrity capable and have matching 2004 * profiles, register the common profile for the md device. 2005 */ 2006 if (blk_integrity_register(mddev->gendisk, 2007 bdev_get_integrity(reference->bdev)) != 0) { 2008 printk(KERN_ERR "md: failed to register integrity for %s\n", 2009 mdname(mddev)); 2010 return -EINVAL; 2011 } 2012 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2013 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2014 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2015 mdname(mddev)); 2016 return -EINVAL; 2017 } 2018 return 0; 2019 } 2020 EXPORT_SYMBOL(md_integrity_register); 2021 2022 /* Disable data integrity if non-capable/non-matching disk is being added */ 2023 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2024 { 2025 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 2026 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 2027 2028 if (!bi_mddev) /* nothing to do */ 2029 return; 2030 if (rdev->raid_disk < 0) /* skip spares */ 2031 return; 2032 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2033 rdev->bdev->bd_disk) >= 0) 2034 return; 2035 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2036 blk_integrity_unregister(mddev->gendisk); 2037 } 2038 EXPORT_SYMBOL(md_integrity_add_rdev); 2039 2040 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2041 { 2042 char b[BDEVNAME_SIZE]; 2043 struct kobject *ko; 2044 char *s; 2045 int err; 2046 2047 if (rdev->mddev) { 2048 MD_BUG(); 2049 return -EINVAL; 2050 } 2051 2052 /* prevent duplicates */ 2053 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2054 return -EEXIST; 2055 2056 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2057 if (rdev->sectors && (mddev->dev_sectors == 0 || 2058 rdev->sectors < mddev->dev_sectors)) { 2059 if (mddev->pers) { 2060 /* Cannot change size, so fail 2061 * If mddev->level <= 0, then we don't care 2062 * about aligning sizes (e.g. linear) 2063 */ 2064 if (mddev->level > 0) 2065 return -ENOSPC; 2066 } else 2067 mddev->dev_sectors = rdev->sectors; 2068 } 2069 2070 /* Verify rdev->desc_nr is unique. 2071 * If it is -1, assign a free number, else 2072 * check number is not in use 2073 */ 2074 if (rdev->desc_nr < 0) { 2075 int choice = 0; 2076 if (mddev->pers) choice = mddev->raid_disks; 2077 while (find_rdev_nr(mddev, choice)) 2078 choice++; 2079 rdev->desc_nr = choice; 2080 } else { 2081 if (find_rdev_nr(mddev, rdev->desc_nr)) 2082 return -EBUSY; 2083 } 2084 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2085 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2086 mdname(mddev), mddev->max_disks); 2087 return -EBUSY; 2088 } 2089 bdevname(rdev->bdev,b); 2090 while ( (s=strchr(b, '/')) != NULL) 2091 *s = '!'; 2092 2093 rdev->mddev = mddev; 2094 printk(KERN_INFO "md: bind<%s>\n", b); 2095 2096 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2097 goto fail; 2098 2099 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2100 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2101 /* failure here is OK */; 2102 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2103 2104 list_add_rcu(&rdev->same_set, &mddev->disks); 2105 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2106 2107 /* May as well allow recovery to be retried once */ 2108 mddev->recovery_disabled++; 2109 2110 return 0; 2111 2112 fail: 2113 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2114 b, mdname(mddev)); 2115 return err; 2116 } 2117 2118 static void md_delayed_delete(struct work_struct *ws) 2119 { 2120 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2121 kobject_del(&rdev->kobj); 2122 kobject_put(&rdev->kobj); 2123 } 2124 2125 static void unbind_rdev_from_array(struct md_rdev * rdev) 2126 { 2127 char b[BDEVNAME_SIZE]; 2128 if (!rdev->mddev) { 2129 MD_BUG(); 2130 return; 2131 } 2132 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2133 list_del_rcu(&rdev->same_set); 2134 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2135 rdev->mddev = NULL; 2136 sysfs_remove_link(&rdev->kobj, "block"); 2137 sysfs_put(rdev->sysfs_state); 2138 rdev->sysfs_state = NULL; 2139 rdev->badblocks.count = 0; 2140 /* We need to delay this, otherwise we can deadlock when 2141 * writing to 'remove' to "dev/state". We also need 2142 * to delay it due to rcu usage. 2143 */ 2144 synchronize_rcu(); 2145 INIT_WORK(&rdev->del_work, md_delayed_delete); 2146 kobject_get(&rdev->kobj); 2147 queue_work(md_misc_wq, &rdev->del_work); 2148 } 2149 2150 /* 2151 * prevent the device from being mounted, repartitioned or 2152 * otherwise reused by a RAID array (or any other kernel 2153 * subsystem), by bd_claiming the device. 2154 */ 2155 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2156 { 2157 int err = 0; 2158 struct block_device *bdev; 2159 char b[BDEVNAME_SIZE]; 2160 2161 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2162 shared ? (struct md_rdev *)lock_rdev : rdev); 2163 if (IS_ERR(bdev)) { 2164 printk(KERN_ERR "md: could not open %s.\n", 2165 __bdevname(dev, b)); 2166 return PTR_ERR(bdev); 2167 } 2168 rdev->bdev = bdev; 2169 return err; 2170 } 2171 2172 static void unlock_rdev(struct md_rdev *rdev) 2173 { 2174 struct block_device *bdev = rdev->bdev; 2175 rdev->bdev = NULL; 2176 if (!bdev) 2177 MD_BUG(); 2178 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2179 } 2180 2181 void md_autodetect_dev(dev_t dev); 2182 2183 static void export_rdev(struct md_rdev * rdev) 2184 { 2185 char b[BDEVNAME_SIZE]; 2186 printk(KERN_INFO "md: export_rdev(%s)\n", 2187 bdevname(rdev->bdev,b)); 2188 if (rdev->mddev) 2189 MD_BUG(); 2190 md_rdev_clear(rdev); 2191 #ifndef MODULE 2192 if (test_bit(AutoDetected, &rdev->flags)) 2193 md_autodetect_dev(rdev->bdev->bd_dev); 2194 #endif 2195 unlock_rdev(rdev); 2196 kobject_put(&rdev->kobj); 2197 } 2198 2199 static void kick_rdev_from_array(struct md_rdev * rdev) 2200 { 2201 unbind_rdev_from_array(rdev); 2202 export_rdev(rdev); 2203 } 2204 2205 static void export_array(struct mddev *mddev) 2206 { 2207 struct md_rdev *rdev, *tmp; 2208 2209 rdev_for_each_safe(rdev, tmp, mddev) { 2210 if (!rdev->mddev) { 2211 MD_BUG(); 2212 continue; 2213 } 2214 kick_rdev_from_array(rdev); 2215 } 2216 if (!list_empty(&mddev->disks)) 2217 MD_BUG(); 2218 mddev->raid_disks = 0; 2219 mddev->major_version = 0; 2220 } 2221 2222 static void print_desc(mdp_disk_t *desc) 2223 { 2224 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2225 desc->major,desc->minor,desc->raid_disk,desc->state); 2226 } 2227 2228 static void print_sb_90(mdp_super_t *sb) 2229 { 2230 int i; 2231 2232 printk(KERN_INFO 2233 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2234 sb->major_version, sb->minor_version, sb->patch_version, 2235 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2236 sb->ctime); 2237 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2238 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2239 sb->md_minor, sb->layout, sb->chunk_size); 2240 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2241 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2242 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2243 sb->failed_disks, sb->spare_disks, 2244 sb->sb_csum, (unsigned long)sb->events_lo); 2245 2246 printk(KERN_INFO); 2247 for (i = 0; i < MD_SB_DISKS; i++) { 2248 mdp_disk_t *desc; 2249 2250 desc = sb->disks + i; 2251 if (desc->number || desc->major || desc->minor || 2252 desc->raid_disk || (desc->state && (desc->state != 4))) { 2253 printk(" D %2d: ", i); 2254 print_desc(desc); 2255 } 2256 } 2257 printk(KERN_INFO "md: THIS: "); 2258 print_desc(&sb->this_disk); 2259 } 2260 2261 static void print_sb_1(struct mdp_superblock_1 *sb) 2262 { 2263 __u8 *uuid; 2264 2265 uuid = sb->set_uuid; 2266 printk(KERN_INFO 2267 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2268 "md: Name: \"%s\" CT:%llu\n", 2269 le32_to_cpu(sb->major_version), 2270 le32_to_cpu(sb->feature_map), 2271 uuid, 2272 sb->set_name, 2273 (unsigned long long)le64_to_cpu(sb->ctime) 2274 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2275 2276 uuid = sb->device_uuid; 2277 printk(KERN_INFO 2278 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2279 " RO:%llu\n" 2280 "md: Dev:%08x UUID: %pU\n" 2281 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2282 "md: (MaxDev:%u) \n", 2283 le32_to_cpu(sb->level), 2284 (unsigned long long)le64_to_cpu(sb->size), 2285 le32_to_cpu(sb->raid_disks), 2286 le32_to_cpu(sb->layout), 2287 le32_to_cpu(sb->chunksize), 2288 (unsigned long long)le64_to_cpu(sb->data_offset), 2289 (unsigned long long)le64_to_cpu(sb->data_size), 2290 (unsigned long long)le64_to_cpu(sb->super_offset), 2291 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2292 le32_to_cpu(sb->dev_number), 2293 uuid, 2294 sb->devflags, 2295 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2296 (unsigned long long)le64_to_cpu(sb->events), 2297 (unsigned long long)le64_to_cpu(sb->resync_offset), 2298 le32_to_cpu(sb->sb_csum), 2299 le32_to_cpu(sb->max_dev) 2300 ); 2301 } 2302 2303 static void print_rdev(struct md_rdev *rdev, int major_version) 2304 { 2305 char b[BDEVNAME_SIZE]; 2306 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2307 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2308 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2309 rdev->desc_nr); 2310 if (rdev->sb_loaded) { 2311 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2312 switch (major_version) { 2313 case 0: 2314 print_sb_90(page_address(rdev->sb_page)); 2315 break; 2316 case 1: 2317 print_sb_1(page_address(rdev->sb_page)); 2318 break; 2319 } 2320 } else 2321 printk(KERN_INFO "md: no rdev superblock!\n"); 2322 } 2323 2324 static void md_print_devices(void) 2325 { 2326 struct list_head *tmp; 2327 struct md_rdev *rdev; 2328 struct mddev *mddev; 2329 char b[BDEVNAME_SIZE]; 2330 2331 printk("\n"); 2332 printk("md: **********************************\n"); 2333 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2334 printk("md: **********************************\n"); 2335 for_each_mddev(mddev, tmp) { 2336 2337 if (mddev->bitmap) 2338 bitmap_print_sb(mddev->bitmap); 2339 else 2340 printk("%s: ", mdname(mddev)); 2341 rdev_for_each(rdev, mddev) 2342 printk("<%s>", bdevname(rdev->bdev,b)); 2343 printk("\n"); 2344 2345 rdev_for_each(rdev, mddev) 2346 print_rdev(rdev, mddev->major_version); 2347 } 2348 printk("md: **********************************\n"); 2349 printk("\n"); 2350 } 2351 2352 2353 static void sync_sbs(struct mddev * mddev, int nospares) 2354 { 2355 /* Update each superblock (in-memory image), but 2356 * if we are allowed to, skip spares which already 2357 * have the right event counter, or have one earlier 2358 * (which would mean they aren't being marked as dirty 2359 * with the rest of the array) 2360 */ 2361 struct md_rdev *rdev; 2362 rdev_for_each(rdev, mddev) { 2363 if (rdev->sb_events == mddev->events || 2364 (nospares && 2365 rdev->raid_disk < 0 && 2366 rdev->sb_events+1 == mddev->events)) { 2367 /* Don't update this superblock */ 2368 rdev->sb_loaded = 2; 2369 } else { 2370 sync_super(mddev, rdev); 2371 rdev->sb_loaded = 1; 2372 } 2373 } 2374 } 2375 2376 static void md_update_sb(struct mddev * mddev, int force_change) 2377 { 2378 struct md_rdev *rdev; 2379 int sync_req; 2380 int nospares = 0; 2381 int any_badblocks_changed = 0; 2382 2383 repeat: 2384 /* First make sure individual recovery_offsets are correct */ 2385 rdev_for_each(rdev, mddev) { 2386 if (rdev->raid_disk >= 0 && 2387 mddev->delta_disks >= 0 && 2388 !test_bit(In_sync, &rdev->flags) && 2389 mddev->curr_resync_completed > rdev->recovery_offset) 2390 rdev->recovery_offset = mddev->curr_resync_completed; 2391 2392 } 2393 if (!mddev->persistent) { 2394 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2395 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2396 if (!mddev->external) { 2397 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2398 rdev_for_each(rdev, mddev) { 2399 if (rdev->badblocks.changed) { 2400 rdev->badblocks.changed = 0; 2401 md_ack_all_badblocks(&rdev->badblocks); 2402 md_error(mddev, rdev); 2403 } 2404 clear_bit(Blocked, &rdev->flags); 2405 clear_bit(BlockedBadBlocks, &rdev->flags); 2406 wake_up(&rdev->blocked_wait); 2407 } 2408 } 2409 wake_up(&mddev->sb_wait); 2410 return; 2411 } 2412 2413 spin_lock_irq(&mddev->write_lock); 2414 2415 mddev->utime = get_seconds(); 2416 2417 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2418 force_change = 1; 2419 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2420 /* just a clean<-> dirty transition, possibly leave spares alone, 2421 * though if events isn't the right even/odd, we will have to do 2422 * spares after all 2423 */ 2424 nospares = 1; 2425 if (force_change) 2426 nospares = 0; 2427 if (mddev->degraded) 2428 /* If the array is degraded, then skipping spares is both 2429 * dangerous and fairly pointless. 2430 * Dangerous because a device that was removed from the array 2431 * might have a event_count that still looks up-to-date, 2432 * so it can be re-added without a resync. 2433 * Pointless because if there are any spares to skip, 2434 * then a recovery will happen and soon that array won't 2435 * be degraded any more and the spare can go back to sleep then. 2436 */ 2437 nospares = 0; 2438 2439 sync_req = mddev->in_sync; 2440 2441 /* If this is just a dirty<->clean transition, and the array is clean 2442 * and 'events' is odd, we can roll back to the previous clean state */ 2443 if (nospares 2444 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2445 && mddev->can_decrease_events 2446 && mddev->events != 1) { 2447 mddev->events--; 2448 mddev->can_decrease_events = 0; 2449 } else { 2450 /* otherwise we have to go forward and ... */ 2451 mddev->events ++; 2452 mddev->can_decrease_events = nospares; 2453 } 2454 2455 if (!mddev->events) { 2456 /* 2457 * oops, this 64-bit counter should never wrap. 2458 * Either we are in around ~1 trillion A.C., assuming 2459 * 1 reboot per second, or we have a bug: 2460 */ 2461 MD_BUG(); 2462 mddev->events --; 2463 } 2464 2465 rdev_for_each(rdev, mddev) { 2466 if (rdev->badblocks.changed) 2467 any_badblocks_changed++; 2468 if (test_bit(Faulty, &rdev->flags)) 2469 set_bit(FaultRecorded, &rdev->flags); 2470 } 2471 2472 sync_sbs(mddev, nospares); 2473 spin_unlock_irq(&mddev->write_lock); 2474 2475 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2476 mdname(mddev), mddev->in_sync); 2477 2478 bitmap_update_sb(mddev->bitmap); 2479 rdev_for_each(rdev, mddev) { 2480 char b[BDEVNAME_SIZE]; 2481 2482 if (rdev->sb_loaded != 1) 2483 continue; /* no noise on spare devices */ 2484 2485 if (!test_bit(Faulty, &rdev->flags) && 2486 rdev->saved_raid_disk == -1) { 2487 md_super_write(mddev,rdev, 2488 rdev->sb_start, rdev->sb_size, 2489 rdev->sb_page); 2490 pr_debug("md: (write) %s's sb offset: %llu\n", 2491 bdevname(rdev->bdev, b), 2492 (unsigned long long)rdev->sb_start); 2493 rdev->sb_events = mddev->events; 2494 if (rdev->badblocks.size) { 2495 md_super_write(mddev, rdev, 2496 rdev->badblocks.sector, 2497 rdev->badblocks.size << 9, 2498 rdev->bb_page); 2499 rdev->badblocks.size = 0; 2500 } 2501 2502 } else if (test_bit(Faulty, &rdev->flags)) 2503 pr_debug("md: %s (skipping faulty)\n", 2504 bdevname(rdev->bdev, b)); 2505 else 2506 pr_debug("(skipping incremental s/r "); 2507 2508 if (mddev->level == LEVEL_MULTIPATH) 2509 /* only need to write one superblock... */ 2510 break; 2511 } 2512 md_super_wait(mddev); 2513 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2514 2515 spin_lock_irq(&mddev->write_lock); 2516 if (mddev->in_sync != sync_req || 2517 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2518 /* have to write it out again */ 2519 spin_unlock_irq(&mddev->write_lock); 2520 goto repeat; 2521 } 2522 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2523 spin_unlock_irq(&mddev->write_lock); 2524 wake_up(&mddev->sb_wait); 2525 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2526 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2527 2528 rdev_for_each(rdev, mddev) { 2529 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2530 clear_bit(Blocked, &rdev->flags); 2531 2532 if (any_badblocks_changed) 2533 md_ack_all_badblocks(&rdev->badblocks); 2534 clear_bit(BlockedBadBlocks, &rdev->flags); 2535 wake_up(&rdev->blocked_wait); 2536 } 2537 } 2538 2539 /* words written to sysfs files may, or may not, be \n terminated. 2540 * We want to accept with case. For this we use cmd_match. 2541 */ 2542 static int cmd_match(const char *cmd, const char *str) 2543 { 2544 /* See if cmd, written into a sysfs file, matches 2545 * str. They must either be the same, or cmd can 2546 * have a trailing newline 2547 */ 2548 while (*cmd && *str && *cmd == *str) { 2549 cmd++; 2550 str++; 2551 } 2552 if (*cmd == '\n') 2553 cmd++; 2554 if (*str || *cmd) 2555 return 0; 2556 return 1; 2557 } 2558 2559 struct rdev_sysfs_entry { 2560 struct attribute attr; 2561 ssize_t (*show)(struct md_rdev *, char *); 2562 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2563 }; 2564 2565 static ssize_t 2566 state_show(struct md_rdev *rdev, char *page) 2567 { 2568 char *sep = ""; 2569 size_t len = 0; 2570 2571 if (test_bit(Faulty, &rdev->flags) || 2572 rdev->badblocks.unacked_exist) { 2573 len+= sprintf(page+len, "%sfaulty",sep); 2574 sep = ","; 2575 } 2576 if (test_bit(In_sync, &rdev->flags)) { 2577 len += sprintf(page+len, "%sin_sync",sep); 2578 sep = ","; 2579 } 2580 if (test_bit(WriteMostly, &rdev->flags)) { 2581 len += sprintf(page+len, "%swrite_mostly",sep); 2582 sep = ","; 2583 } 2584 if (test_bit(Blocked, &rdev->flags) || 2585 (rdev->badblocks.unacked_exist 2586 && !test_bit(Faulty, &rdev->flags))) { 2587 len += sprintf(page+len, "%sblocked", sep); 2588 sep = ","; 2589 } 2590 if (!test_bit(Faulty, &rdev->flags) && 2591 !test_bit(In_sync, &rdev->flags)) { 2592 len += sprintf(page+len, "%sspare", sep); 2593 sep = ","; 2594 } 2595 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2596 len += sprintf(page+len, "%swrite_error", sep); 2597 sep = ","; 2598 } 2599 if (test_bit(WantReplacement, &rdev->flags)) { 2600 len += sprintf(page+len, "%swant_replacement", sep); 2601 sep = ","; 2602 } 2603 if (test_bit(Replacement, &rdev->flags)) { 2604 len += sprintf(page+len, "%sreplacement", sep); 2605 sep = ","; 2606 } 2607 2608 return len+sprintf(page+len, "\n"); 2609 } 2610 2611 static ssize_t 2612 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2613 { 2614 /* can write 2615 * faulty - simulates an error 2616 * remove - disconnects the device 2617 * writemostly - sets write_mostly 2618 * -writemostly - clears write_mostly 2619 * blocked - sets the Blocked flags 2620 * -blocked - clears the Blocked and possibly simulates an error 2621 * insync - sets Insync providing device isn't active 2622 * write_error - sets WriteErrorSeen 2623 * -write_error - clears WriteErrorSeen 2624 */ 2625 int err = -EINVAL; 2626 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2627 md_error(rdev->mddev, rdev); 2628 if (test_bit(Faulty, &rdev->flags)) 2629 err = 0; 2630 else 2631 err = -EBUSY; 2632 } else if (cmd_match(buf, "remove")) { 2633 if (rdev->raid_disk >= 0) 2634 err = -EBUSY; 2635 else { 2636 struct mddev *mddev = rdev->mddev; 2637 kick_rdev_from_array(rdev); 2638 if (mddev->pers) 2639 md_update_sb(mddev, 1); 2640 md_new_event(mddev); 2641 err = 0; 2642 } 2643 } else if (cmd_match(buf, "writemostly")) { 2644 set_bit(WriteMostly, &rdev->flags); 2645 err = 0; 2646 } else if (cmd_match(buf, "-writemostly")) { 2647 clear_bit(WriteMostly, &rdev->flags); 2648 err = 0; 2649 } else if (cmd_match(buf, "blocked")) { 2650 set_bit(Blocked, &rdev->flags); 2651 err = 0; 2652 } else if (cmd_match(buf, "-blocked")) { 2653 if (!test_bit(Faulty, &rdev->flags) && 2654 rdev->badblocks.unacked_exist) { 2655 /* metadata handler doesn't understand badblocks, 2656 * so we need to fail the device 2657 */ 2658 md_error(rdev->mddev, rdev); 2659 } 2660 clear_bit(Blocked, &rdev->flags); 2661 clear_bit(BlockedBadBlocks, &rdev->flags); 2662 wake_up(&rdev->blocked_wait); 2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2664 md_wakeup_thread(rdev->mddev->thread); 2665 2666 err = 0; 2667 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2668 set_bit(In_sync, &rdev->flags); 2669 err = 0; 2670 } else if (cmd_match(buf, "write_error")) { 2671 set_bit(WriteErrorSeen, &rdev->flags); 2672 err = 0; 2673 } else if (cmd_match(buf, "-write_error")) { 2674 clear_bit(WriteErrorSeen, &rdev->flags); 2675 err = 0; 2676 } else if (cmd_match(buf, "want_replacement")) { 2677 /* Any non-spare device that is not a replacement can 2678 * become want_replacement at any time, but we then need to 2679 * check if recovery is needed. 2680 */ 2681 if (rdev->raid_disk >= 0 && 2682 !test_bit(Replacement, &rdev->flags)) 2683 set_bit(WantReplacement, &rdev->flags); 2684 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2685 md_wakeup_thread(rdev->mddev->thread); 2686 err = 0; 2687 } else if (cmd_match(buf, "-want_replacement")) { 2688 /* Clearing 'want_replacement' is always allowed. 2689 * Once replacements starts it is too late though. 2690 */ 2691 err = 0; 2692 clear_bit(WantReplacement, &rdev->flags); 2693 } else if (cmd_match(buf, "replacement")) { 2694 /* Can only set a device as a replacement when array has not 2695 * yet been started. Once running, replacement is automatic 2696 * from spares, or by assigning 'slot'. 2697 */ 2698 if (rdev->mddev->pers) 2699 err = -EBUSY; 2700 else { 2701 set_bit(Replacement, &rdev->flags); 2702 err = 0; 2703 } 2704 } else if (cmd_match(buf, "-replacement")) { 2705 /* Similarly, can only clear Replacement before start */ 2706 if (rdev->mddev->pers) 2707 err = -EBUSY; 2708 else { 2709 clear_bit(Replacement, &rdev->flags); 2710 err = 0; 2711 } 2712 } 2713 if (!err) 2714 sysfs_notify_dirent_safe(rdev->sysfs_state); 2715 return err ? err : len; 2716 } 2717 static struct rdev_sysfs_entry rdev_state = 2718 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2719 2720 static ssize_t 2721 errors_show(struct md_rdev *rdev, char *page) 2722 { 2723 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2724 } 2725 2726 static ssize_t 2727 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2728 { 2729 char *e; 2730 unsigned long n = simple_strtoul(buf, &e, 10); 2731 if (*buf && (*e == 0 || *e == '\n')) { 2732 atomic_set(&rdev->corrected_errors, n); 2733 return len; 2734 } 2735 return -EINVAL; 2736 } 2737 static struct rdev_sysfs_entry rdev_errors = 2738 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2739 2740 static ssize_t 2741 slot_show(struct md_rdev *rdev, char *page) 2742 { 2743 if (rdev->raid_disk < 0) 2744 return sprintf(page, "none\n"); 2745 else 2746 return sprintf(page, "%d\n", rdev->raid_disk); 2747 } 2748 2749 static ssize_t 2750 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2751 { 2752 char *e; 2753 int err; 2754 int slot = simple_strtoul(buf, &e, 10); 2755 if (strncmp(buf, "none", 4)==0) 2756 slot = -1; 2757 else if (e==buf || (*e && *e!= '\n')) 2758 return -EINVAL; 2759 if (rdev->mddev->pers && slot == -1) { 2760 /* Setting 'slot' on an active array requires also 2761 * updating the 'rd%d' link, and communicating 2762 * with the personality with ->hot_*_disk. 2763 * For now we only support removing 2764 * failed/spare devices. This normally happens automatically, 2765 * but not when the metadata is externally managed. 2766 */ 2767 if (rdev->raid_disk == -1) 2768 return -EEXIST; 2769 /* personality does all needed checks */ 2770 if (rdev->mddev->pers->hot_remove_disk == NULL) 2771 return -EINVAL; 2772 err = rdev->mddev->pers-> 2773 hot_remove_disk(rdev->mddev, rdev); 2774 if (err) 2775 return err; 2776 sysfs_unlink_rdev(rdev->mddev, rdev); 2777 rdev->raid_disk = -1; 2778 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2779 md_wakeup_thread(rdev->mddev->thread); 2780 } else if (rdev->mddev->pers) { 2781 /* Activating a spare .. or possibly reactivating 2782 * if we ever get bitmaps working here. 2783 */ 2784 2785 if (rdev->raid_disk != -1) 2786 return -EBUSY; 2787 2788 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2789 return -EBUSY; 2790 2791 if (rdev->mddev->pers->hot_add_disk == NULL) 2792 return -EINVAL; 2793 2794 if (slot >= rdev->mddev->raid_disks && 2795 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2796 return -ENOSPC; 2797 2798 rdev->raid_disk = slot; 2799 if (test_bit(In_sync, &rdev->flags)) 2800 rdev->saved_raid_disk = slot; 2801 else 2802 rdev->saved_raid_disk = -1; 2803 clear_bit(In_sync, &rdev->flags); 2804 err = rdev->mddev->pers-> 2805 hot_add_disk(rdev->mddev, rdev); 2806 if (err) { 2807 rdev->raid_disk = -1; 2808 return err; 2809 } else 2810 sysfs_notify_dirent_safe(rdev->sysfs_state); 2811 if (sysfs_link_rdev(rdev->mddev, rdev)) 2812 /* failure here is OK */; 2813 /* don't wakeup anyone, leave that to userspace. */ 2814 } else { 2815 if (slot >= rdev->mddev->raid_disks && 2816 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2817 return -ENOSPC; 2818 rdev->raid_disk = slot; 2819 /* assume it is working */ 2820 clear_bit(Faulty, &rdev->flags); 2821 clear_bit(WriteMostly, &rdev->flags); 2822 set_bit(In_sync, &rdev->flags); 2823 sysfs_notify_dirent_safe(rdev->sysfs_state); 2824 } 2825 return len; 2826 } 2827 2828 2829 static struct rdev_sysfs_entry rdev_slot = 2830 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2831 2832 static ssize_t 2833 offset_show(struct md_rdev *rdev, char *page) 2834 { 2835 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2836 } 2837 2838 static ssize_t 2839 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2840 { 2841 unsigned long long offset; 2842 if (strict_strtoull(buf, 10, &offset) < 0) 2843 return -EINVAL; 2844 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2845 return -EBUSY; 2846 if (rdev->sectors && rdev->mddev->external) 2847 /* Must set offset before size, so overlap checks 2848 * can be sane */ 2849 return -EBUSY; 2850 rdev->data_offset = offset; 2851 rdev->new_data_offset = offset; 2852 return len; 2853 } 2854 2855 static struct rdev_sysfs_entry rdev_offset = 2856 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2857 2858 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2859 { 2860 return sprintf(page, "%llu\n", 2861 (unsigned long long)rdev->new_data_offset); 2862 } 2863 2864 static ssize_t new_offset_store(struct md_rdev *rdev, 2865 const char *buf, size_t len) 2866 { 2867 unsigned long long new_offset; 2868 struct mddev *mddev = rdev->mddev; 2869 2870 if (strict_strtoull(buf, 10, &new_offset) < 0) 2871 return -EINVAL; 2872 2873 if (mddev->sync_thread) 2874 return -EBUSY; 2875 if (new_offset == rdev->data_offset) 2876 /* reset is always permitted */ 2877 ; 2878 else if (new_offset > rdev->data_offset) { 2879 /* must not push array size beyond rdev_sectors */ 2880 if (new_offset - rdev->data_offset 2881 + mddev->dev_sectors > rdev->sectors) 2882 return -E2BIG; 2883 } 2884 /* Metadata worries about other space details. */ 2885 2886 /* decreasing the offset is inconsistent with a backwards 2887 * reshape. 2888 */ 2889 if (new_offset < rdev->data_offset && 2890 mddev->reshape_backwards) 2891 return -EINVAL; 2892 /* Increasing offset is inconsistent with forwards 2893 * reshape. reshape_direction should be set to 2894 * 'backwards' first. 2895 */ 2896 if (new_offset > rdev->data_offset && 2897 !mddev->reshape_backwards) 2898 return -EINVAL; 2899 2900 if (mddev->pers && mddev->persistent && 2901 !super_types[mddev->major_version] 2902 .allow_new_offset(rdev, new_offset)) 2903 return -E2BIG; 2904 rdev->new_data_offset = new_offset; 2905 if (new_offset > rdev->data_offset) 2906 mddev->reshape_backwards = 1; 2907 else if (new_offset < rdev->data_offset) 2908 mddev->reshape_backwards = 0; 2909 2910 return len; 2911 } 2912 static struct rdev_sysfs_entry rdev_new_offset = 2913 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2914 2915 static ssize_t 2916 rdev_size_show(struct md_rdev *rdev, char *page) 2917 { 2918 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2919 } 2920 2921 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2922 { 2923 /* check if two start/length pairs overlap */ 2924 if (s1+l1 <= s2) 2925 return 0; 2926 if (s2+l2 <= s1) 2927 return 0; 2928 return 1; 2929 } 2930 2931 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2932 { 2933 unsigned long long blocks; 2934 sector_t new; 2935 2936 if (strict_strtoull(buf, 10, &blocks) < 0) 2937 return -EINVAL; 2938 2939 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2940 return -EINVAL; /* sector conversion overflow */ 2941 2942 new = blocks * 2; 2943 if (new != blocks * 2) 2944 return -EINVAL; /* unsigned long long to sector_t overflow */ 2945 2946 *sectors = new; 2947 return 0; 2948 } 2949 2950 static ssize_t 2951 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2952 { 2953 struct mddev *my_mddev = rdev->mddev; 2954 sector_t oldsectors = rdev->sectors; 2955 sector_t sectors; 2956 2957 if (strict_blocks_to_sectors(buf, §ors) < 0) 2958 return -EINVAL; 2959 if (rdev->data_offset != rdev->new_data_offset) 2960 return -EINVAL; /* too confusing */ 2961 if (my_mddev->pers && rdev->raid_disk >= 0) { 2962 if (my_mddev->persistent) { 2963 sectors = super_types[my_mddev->major_version]. 2964 rdev_size_change(rdev, sectors); 2965 if (!sectors) 2966 return -EBUSY; 2967 } else if (!sectors) 2968 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2969 rdev->data_offset; 2970 } 2971 if (sectors < my_mddev->dev_sectors) 2972 return -EINVAL; /* component must fit device */ 2973 2974 rdev->sectors = sectors; 2975 if (sectors > oldsectors && my_mddev->external) { 2976 /* need to check that all other rdevs with the same ->bdev 2977 * do not overlap. We need to unlock the mddev to avoid 2978 * a deadlock. We have already changed rdev->sectors, and if 2979 * we have to change it back, we will have the lock again. 2980 */ 2981 struct mddev *mddev; 2982 int overlap = 0; 2983 struct list_head *tmp; 2984 2985 mddev_unlock(my_mddev); 2986 for_each_mddev(mddev, tmp) { 2987 struct md_rdev *rdev2; 2988 2989 mddev_lock(mddev); 2990 rdev_for_each(rdev2, mddev) 2991 if (rdev->bdev == rdev2->bdev && 2992 rdev != rdev2 && 2993 overlaps(rdev->data_offset, rdev->sectors, 2994 rdev2->data_offset, 2995 rdev2->sectors)) { 2996 overlap = 1; 2997 break; 2998 } 2999 mddev_unlock(mddev); 3000 if (overlap) { 3001 mddev_put(mddev); 3002 break; 3003 } 3004 } 3005 mddev_lock(my_mddev); 3006 if (overlap) { 3007 /* Someone else could have slipped in a size 3008 * change here, but doing so is just silly. 3009 * We put oldsectors back because we *know* it is 3010 * safe, and trust userspace not to race with 3011 * itself 3012 */ 3013 rdev->sectors = oldsectors; 3014 return -EBUSY; 3015 } 3016 } 3017 return len; 3018 } 3019 3020 static struct rdev_sysfs_entry rdev_size = 3021 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3022 3023 3024 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3025 { 3026 unsigned long long recovery_start = rdev->recovery_offset; 3027 3028 if (test_bit(In_sync, &rdev->flags) || 3029 recovery_start == MaxSector) 3030 return sprintf(page, "none\n"); 3031 3032 return sprintf(page, "%llu\n", recovery_start); 3033 } 3034 3035 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3036 { 3037 unsigned long long recovery_start; 3038 3039 if (cmd_match(buf, "none")) 3040 recovery_start = MaxSector; 3041 else if (strict_strtoull(buf, 10, &recovery_start)) 3042 return -EINVAL; 3043 3044 if (rdev->mddev->pers && 3045 rdev->raid_disk >= 0) 3046 return -EBUSY; 3047 3048 rdev->recovery_offset = recovery_start; 3049 if (recovery_start == MaxSector) 3050 set_bit(In_sync, &rdev->flags); 3051 else 3052 clear_bit(In_sync, &rdev->flags); 3053 return len; 3054 } 3055 3056 static struct rdev_sysfs_entry rdev_recovery_start = 3057 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3058 3059 3060 static ssize_t 3061 badblocks_show(struct badblocks *bb, char *page, int unack); 3062 static ssize_t 3063 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3064 3065 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3066 { 3067 return badblocks_show(&rdev->badblocks, page, 0); 3068 } 3069 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3070 { 3071 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3072 /* Maybe that ack was all we needed */ 3073 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3074 wake_up(&rdev->blocked_wait); 3075 return rv; 3076 } 3077 static struct rdev_sysfs_entry rdev_bad_blocks = 3078 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3079 3080 3081 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3082 { 3083 return badblocks_show(&rdev->badblocks, page, 1); 3084 } 3085 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3086 { 3087 return badblocks_store(&rdev->badblocks, page, len, 1); 3088 } 3089 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3090 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3091 3092 static struct attribute *rdev_default_attrs[] = { 3093 &rdev_state.attr, 3094 &rdev_errors.attr, 3095 &rdev_slot.attr, 3096 &rdev_offset.attr, 3097 &rdev_new_offset.attr, 3098 &rdev_size.attr, 3099 &rdev_recovery_start.attr, 3100 &rdev_bad_blocks.attr, 3101 &rdev_unack_bad_blocks.attr, 3102 NULL, 3103 }; 3104 static ssize_t 3105 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3106 { 3107 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3108 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3109 struct mddev *mddev = rdev->mddev; 3110 ssize_t rv; 3111 3112 if (!entry->show) 3113 return -EIO; 3114 3115 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3116 if (!rv) { 3117 if (rdev->mddev == NULL) 3118 rv = -EBUSY; 3119 else 3120 rv = entry->show(rdev, page); 3121 mddev_unlock(mddev); 3122 } 3123 return rv; 3124 } 3125 3126 static ssize_t 3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3128 const char *page, size_t length) 3129 { 3130 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3131 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3132 ssize_t rv; 3133 struct mddev *mddev = rdev->mddev; 3134 3135 if (!entry->store) 3136 return -EIO; 3137 if (!capable(CAP_SYS_ADMIN)) 3138 return -EACCES; 3139 rv = mddev ? mddev_lock(mddev): -EBUSY; 3140 if (!rv) { 3141 if (rdev->mddev == NULL) 3142 rv = -EBUSY; 3143 else 3144 rv = entry->store(rdev, page, length); 3145 mddev_unlock(mddev); 3146 } 3147 return rv; 3148 } 3149 3150 static void rdev_free(struct kobject *ko) 3151 { 3152 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3153 kfree(rdev); 3154 } 3155 static const struct sysfs_ops rdev_sysfs_ops = { 3156 .show = rdev_attr_show, 3157 .store = rdev_attr_store, 3158 }; 3159 static struct kobj_type rdev_ktype = { 3160 .release = rdev_free, 3161 .sysfs_ops = &rdev_sysfs_ops, 3162 .default_attrs = rdev_default_attrs, 3163 }; 3164 3165 int md_rdev_init(struct md_rdev *rdev) 3166 { 3167 rdev->desc_nr = -1; 3168 rdev->saved_raid_disk = -1; 3169 rdev->raid_disk = -1; 3170 rdev->flags = 0; 3171 rdev->data_offset = 0; 3172 rdev->new_data_offset = 0; 3173 rdev->sb_events = 0; 3174 rdev->last_read_error.tv_sec = 0; 3175 rdev->last_read_error.tv_nsec = 0; 3176 rdev->sb_loaded = 0; 3177 rdev->bb_page = NULL; 3178 atomic_set(&rdev->nr_pending, 0); 3179 atomic_set(&rdev->read_errors, 0); 3180 atomic_set(&rdev->corrected_errors, 0); 3181 3182 INIT_LIST_HEAD(&rdev->same_set); 3183 init_waitqueue_head(&rdev->blocked_wait); 3184 3185 /* Add space to store bad block list. 3186 * This reserves the space even on arrays where it cannot 3187 * be used - I wonder if that matters 3188 */ 3189 rdev->badblocks.count = 0; 3190 rdev->badblocks.shift = 0; 3191 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3192 seqlock_init(&rdev->badblocks.lock); 3193 if (rdev->badblocks.page == NULL) 3194 return -ENOMEM; 3195 3196 return 0; 3197 } 3198 EXPORT_SYMBOL_GPL(md_rdev_init); 3199 /* 3200 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3201 * 3202 * mark the device faulty if: 3203 * 3204 * - the device is nonexistent (zero size) 3205 * - the device has no valid superblock 3206 * 3207 * a faulty rdev _never_ has rdev->sb set. 3208 */ 3209 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3210 { 3211 char b[BDEVNAME_SIZE]; 3212 int err; 3213 struct md_rdev *rdev; 3214 sector_t size; 3215 3216 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3217 if (!rdev) { 3218 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3219 return ERR_PTR(-ENOMEM); 3220 } 3221 3222 err = md_rdev_init(rdev); 3223 if (err) 3224 goto abort_free; 3225 err = alloc_disk_sb(rdev); 3226 if (err) 3227 goto abort_free; 3228 3229 err = lock_rdev(rdev, newdev, super_format == -2); 3230 if (err) 3231 goto abort_free; 3232 3233 kobject_init(&rdev->kobj, &rdev_ktype); 3234 3235 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3236 if (!size) { 3237 printk(KERN_WARNING 3238 "md: %s has zero or unknown size, marking faulty!\n", 3239 bdevname(rdev->bdev,b)); 3240 err = -EINVAL; 3241 goto abort_free; 3242 } 3243 3244 if (super_format >= 0) { 3245 err = super_types[super_format]. 3246 load_super(rdev, NULL, super_minor); 3247 if (err == -EINVAL) { 3248 printk(KERN_WARNING 3249 "md: %s does not have a valid v%d.%d " 3250 "superblock, not importing!\n", 3251 bdevname(rdev->bdev,b), 3252 super_format, super_minor); 3253 goto abort_free; 3254 } 3255 if (err < 0) { 3256 printk(KERN_WARNING 3257 "md: could not read %s's sb, not importing!\n", 3258 bdevname(rdev->bdev,b)); 3259 goto abort_free; 3260 } 3261 } 3262 if (super_format == -1) 3263 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3264 rdev->badblocks.shift = -1; 3265 3266 return rdev; 3267 3268 abort_free: 3269 if (rdev->bdev) 3270 unlock_rdev(rdev); 3271 md_rdev_clear(rdev); 3272 kfree(rdev); 3273 return ERR_PTR(err); 3274 } 3275 3276 /* 3277 * Check a full RAID array for plausibility 3278 */ 3279 3280 3281 static void analyze_sbs(struct mddev * mddev) 3282 { 3283 int i; 3284 struct md_rdev *rdev, *freshest, *tmp; 3285 char b[BDEVNAME_SIZE]; 3286 3287 freshest = NULL; 3288 rdev_for_each_safe(rdev, tmp, mddev) 3289 switch (super_types[mddev->major_version]. 3290 load_super(rdev, freshest, mddev->minor_version)) { 3291 case 1: 3292 freshest = rdev; 3293 break; 3294 case 0: 3295 break; 3296 default: 3297 printk( KERN_ERR \ 3298 "md: fatal superblock inconsistency in %s" 3299 " -- removing from array\n", 3300 bdevname(rdev->bdev,b)); 3301 kick_rdev_from_array(rdev); 3302 } 3303 3304 3305 super_types[mddev->major_version]. 3306 validate_super(mddev, freshest); 3307 3308 i = 0; 3309 rdev_for_each_safe(rdev, tmp, mddev) { 3310 if (mddev->max_disks && 3311 (rdev->desc_nr >= mddev->max_disks || 3312 i > mddev->max_disks)) { 3313 printk(KERN_WARNING 3314 "md: %s: %s: only %d devices permitted\n", 3315 mdname(mddev), bdevname(rdev->bdev, b), 3316 mddev->max_disks); 3317 kick_rdev_from_array(rdev); 3318 continue; 3319 } 3320 if (rdev != freshest) 3321 if (super_types[mddev->major_version]. 3322 validate_super(mddev, rdev)) { 3323 printk(KERN_WARNING "md: kicking non-fresh %s" 3324 " from array!\n", 3325 bdevname(rdev->bdev,b)); 3326 kick_rdev_from_array(rdev); 3327 continue; 3328 } 3329 if (mddev->level == LEVEL_MULTIPATH) { 3330 rdev->desc_nr = i++; 3331 rdev->raid_disk = rdev->desc_nr; 3332 set_bit(In_sync, &rdev->flags); 3333 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3334 rdev->raid_disk = -1; 3335 clear_bit(In_sync, &rdev->flags); 3336 } 3337 } 3338 } 3339 3340 /* Read a fixed-point number. 3341 * Numbers in sysfs attributes should be in "standard" units where 3342 * possible, so time should be in seconds. 3343 * However we internally use a a much smaller unit such as 3344 * milliseconds or jiffies. 3345 * This function takes a decimal number with a possible fractional 3346 * component, and produces an integer which is the result of 3347 * multiplying that number by 10^'scale'. 3348 * all without any floating-point arithmetic. 3349 */ 3350 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3351 { 3352 unsigned long result = 0; 3353 long decimals = -1; 3354 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3355 if (*cp == '.') 3356 decimals = 0; 3357 else if (decimals < scale) { 3358 unsigned int value; 3359 value = *cp - '0'; 3360 result = result * 10 + value; 3361 if (decimals >= 0) 3362 decimals++; 3363 } 3364 cp++; 3365 } 3366 if (*cp == '\n') 3367 cp++; 3368 if (*cp) 3369 return -EINVAL; 3370 if (decimals < 0) 3371 decimals = 0; 3372 while (decimals < scale) { 3373 result *= 10; 3374 decimals ++; 3375 } 3376 *res = result; 3377 return 0; 3378 } 3379 3380 3381 static void md_safemode_timeout(unsigned long data); 3382 3383 static ssize_t 3384 safe_delay_show(struct mddev *mddev, char *page) 3385 { 3386 int msec = (mddev->safemode_delay*1000)/HZ; 3387 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3388 } 3389 static ssize_t 3390 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3391 { 3392 unsigned long msec; 3393 3394 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3395 return -EINVAL; 3396 if (msec == 0) 3397 mddev->safemode_delay = 0; 3398 else { 3399 unsigned long old_delay = mddev->safemode_delay; 3400 mddev->safemode_delay = (msec*HZ)/1000; 3401 if (mddev->safemode_delay == 0) 3402 mddev->safemode_delay = 1; 3403 if (mddev->safemode_delay < old_delay) 3404 md_safemode_timeout((unsigned long)mddev); 3405 } 3406 return len; 3407 } 3408 static struct md_sysfs_entry md_safe_delay = 3409 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3410 3411 static ssize_t 3412 level_show(struct mddev *mddev, char *page) 3413 { 3414 struct md_personality *p = mddev->pers; 3415 if (p) 3416 return sprintf(page, "%s\n", p->name); 3417 else if (mddev->clevel[0]) 3418 return sprintf(page, "%s\n", mddev->clevel); 3419 else if (mddev->level != LEVEL_NONE) 3420 return sprintf(page, "%d\n", mddev->level); 3421 else 3422 return 0; 3423 } 3424 3425 static ssize_t 3426 level_store(struct mddev *mddev, const char *buf, size_t len) 3427 { 3428 char clevel[16]; 3429 ssize_t rv = len; 3430 struct md_personality *pers; 3431 long level; 3432 void *priv; 3433 struct md_rdev *rdev; 3434 3435 if (mddev->pers == NULL) { 3436 if (len == 0) 3437 return 0; 3438 if (len >= sizeof(mddev->clevel)) 3439 return -ENOSPC; 3440 strncpy(mddev->clevel, buf, len); 3441 if (mddev->clevel[len-1] == '\n') 3442 len--; 3443 mddev->clevel[len] = 0; 3444 mddev->level = LEVEL_NONE; 3445 return rv; 3446 } 3447 3448 /* request to change the personality. Need to ensure: 3449 * - array is not engaged in resync/recovery/reshape 3450 * - old personality can be suspended 3451 * - new personality will access other array. 3452 */ 3453 3454 if (mddev->sync_thread || 3455 mddev->reshape_position != MaxSector || 3456 mddev->sysfs_active) 3457 return -EBUSY; 3458 3459 if (!mddev->pers->quiesce) { 3460 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3461 mdname(mddev), mddev->pers->name); 3462 return -EINVAL; 3463 } 3464 3465 /* Now find the new personality */ 3466 if (len == 0 || len >= sizeof(clevel)) 3467 return -EINVAL; 3468 strncpy(clevel, buf, len); 3469 if (clevel[len-1] == '\n') 3470 len--; 3471 clevel[len] = 0; 3472 if (strict_strtol(clevel, 10, &level)) 3473 level = LEVEL_NONE; 3474 3475 if (request_module("md-%s", clevel) != 0) 3476 request_module("md-level-%s", clevel); 3477 spin_lock(&pers_lock); 3478 pers = find_pers(level, clevel); 3479 if (!pers || !try_module_get(pers->owner)) { 3480 spin_unlock(&pers_lock); 3481 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3482 return -EINVAL; 3483 } 3484 spin_unlock(&pers_lock); 3485 3486 if (pers == mddev->pers) { 3487 /* Nothing to do! */ 3488 module_put(pers->owner); 3489 return rv; 3490 } 3491 if (!pers->takeover) { 3492 module_put(pers->owner); 3493 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3494 mdname(mddev), clevel); 3495 return -EINVAL; 3496 } 3497 3498 rdev_for_each(rdev, mddev) 3499 rdev->new_raid_disk = rdev->raid_disk; 3500 3501 /* ->takeover must set new_* and/or delta_disks 3502 * if it succeeds, and may set them when it fails. 3503 */ 3504 priv = pers->takeover(mddev); 3505 if (IS_ERR(priv)) { 3506 mddev->new_level = mddev->level; 3507 mddev->new_layout = mddev->layout; 3508 mddev->new_chunk_sectors = mddev->chunk_sectors; 3509 mddev->raid_disks -= mddev->delta_disks; 3510 mddev->delta_disks = 0; 3511 mddev->reshape_backwards = 0; 3512 module_put(pers->owner); 3513 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3514 mdname(mddev), clevel); 3515 return PTR_ERR(priv); 3516 } 3517 3518 /* Looks like we have a winner */ 3519 mddev_suspend(mddev); 3520 mddev->pers->stop(mddev); 3521 3522 if (mddev->pers->sync_request == NULL && 3523 pers->sync_request != NULL) { 3524 /* need to add the md_redundancy_group */ 3525 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3526 printk(KERN_WARNING 3527 "md: cannot register extra attributes for %s\n", 3528 mdname(mddev)); 3529 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3530 } 3531 if (mddev->pers->sync_request != NULL && 3532 pers->sync_request == NULL) { 3533 /* need to remove the md_redundancy_group */ 3534 if (mddev->to_remove == NULL) 3535 mddev->to_remove = &md_redundancy_group; 3536 } 3537 3538 if (mddev->pers->sync_request == NULL && 3539 mddev->external) { 3540 /* We are converting from a no-redundancy array 3541 * to a redundancy array and metadata is managed 3542 * externally so we need to be sure that writes 3543 * won't block due to a need to transition 3544 * clean->dirty 3545 * until external management is started. 3546 */ 3547 mddev->in_sync = 0; 3548 mddev->safemode_delay = 0; 3549 mddev->safemode = 0; 3550 } 3551 3552 rdev_for_each(rdev, mddev) { 3553 if (rdev->raid_disk < 0) 3554 continue; 3555 if (rdev->new_raid_disk >= mddev->raid_disks) 3556 rdev->new_raid_disk = -1; 3557 if (rdev->new_raid_disk == rdev->raid_disk) 3558 continue; 3559 sysfs_unlink_rdev(mddev, rdev); 3560 } 3561 rdev_for_each(rdev, mddev) { 3562 if (rdev->raid_disk < 0) 3563 continue; 3564 if (rdev->new_raid_disk == rdev->raid_disk) 3565 continue; 3566 rdev->raid_disk = rdev->new_raid_disk; 3567 if (rdev->raid_disk < 0) 3568 clear_bit(In_sync, &rdev->flags); 3569 else { 3570 if (sysfs_link_rdev(mddev, rdev)) 3571 printk(KERN_WARNING "md: cannot register rd%d" 3572 " for %s after level change\n", 3573 rdev->raid_disk, mdname(mddev)); 3574 } 3575 } 3576 3577 module_put(mddev->pers->owner); 3578 mddev->pers = pers; 3579 mddev->private = priv; 3580 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3581 mddev->level = mddev->new_level; 3582 mddev->layout = mddev->new_layout; 3583 mddev->chunk_sectors = mddev->new_chunk_sectors; 3584 mddev->delta_disks = 0; 3585 mddev->reshape_backwards = 0; 3586 mddev->degraded = 0; 3587 if (mddev->pers->sync_request == NULL) { 3588 /* this is now an array without redundancy, so 3589 * it must always be in_sync 3590 */ 3591 mddev->in_sync = 1; 3592 del_timer_sync(&mddev->safemode_timer); 3593 } 3594 pers->run(mddev); 3595 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3596 mddev_resume(mddev); 3597 sysfs_notify(&mddev->kobj, NULL, "level"); 3598 md_new_event(mddev); 3599 return rv; 3600 } 3601 3602 static struct md_sysfs_entry md_level = 3603 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3604 3605 3606 static ssize_t 3607 layout_show(struct mddev *mddev, char *page) 3608 { 3609 /* just a number, not meaningful for all levels */ 3610 if (mddev->reshape_position != MaxSector && 3611 mddev->layout != mddev->new_layout) 3612 return sprintf(page, "%d (%d)\n", 3613 mddev->new_layout, mddev->layout); 3614 return sprintf(page, "%d\n", mddev->layout); 3615 } 3616 3617 static ssize_t 3618 layout_store(struct mddev *mddev, const char *buf, size_t len) 3619 { 3620 char *e; 3621 unsigned long n = simple_strtoul(buf, &e, 10); 3622 3623 if (!*buf || (*e && *e != '\n')) 3624 return -EINVAL; 3625 3626 if (mddev->pers) { 3627 int err; 3628 if (mddev->pers->check_reshape == NULL) 3629 return -EBUSY; 3630 mddev->new_layout = n; 3631 err = mddev->pers->check_reshape(mddev); 3632 if (err) { 3633 mddev->new_layout = mddev->layout; 3634 return err; 3635 } 3636 } else { 3637 mddev->new_layout = n; 3638 if (mddev->reshape_position == MaxSector) 3639 mddev->layout = n; 3640 } 3641 return len; 3642 } 3643 static struct md_sysfs_entry md_layout = 3644 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3645 3646 3647 static ssize_t 3648 raid_disks_show(struct mddev *mddev, char *page) 3649 { 3650 if (mddev->raid_disks == 0) 3651 return 0; 3652 if (mddev->reshape_position != MaxSector && 3653 mddev->delta_disks != 0) 3654 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3655 mddev->raid_disks - mddev->delta_disks); 3656 return sprintf(page, "%d\n", mddev->raid_disks); 3657 } 3658 3659 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3660 3661 static ssize_t 3662 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3663 { 3664 char *e; 3665 int rv = 0; 3666 unsigned long n = simple_strtoul(buf, &e, 10); 3667 3668 if (!*buf || (*e && *e != '\n')) 3669 return -EINVAL; 3670 3671 if (mddev->pers) 3672 rv = update_raid_disks(mddev, n); 3673 else if (mddev->reshape_position != MaxSector) { 3674 struct md_rdev *rdev; 3675 int olddisks = mddev->raid_disks - mddev->delta_disks; 3676 3677 rdev_for_each(rdev, mddev) { 3678 if (olddisks < n && 3679 rdev->data_offset < rdev->new_data_offset) 3680 return -EINVAL; 3681 if (olddisks > n && 3682 rdev->data_offset > rdev->new_data_offset) 3683 return -EINVAL; 3684 } 3685 mddev->delta_disks = n - olddisks; 3686 mddev->raid_disks = n; 3687 mddev->reshape_backwards = (mddev->delta_disks < 0); 3688 } else 3689 mddev->raid_disks = n; 3690 return rv ? rv : len; 3691 } 3692 static struct md_sysfs_entry md_raid_disks = 3693 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3694 3695 static ssize_t 3696 chunk_size_show(struct mddev *mddev, char *page) 3697 { 3698 if (mddev->reshape_position != MaxSector && 3699 mddev->chunk_sectors != mddev->new_chunk_sectors) 3700 return sprintf(page, "%d (%d)\n", 3701 mddev->new_chunk_sectors << 9, 3702 mddev->chunk_sectors << 9); 3703 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3704 } 3705 3706 static ssize_t 3707 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3708 { 3709 char *e; 3710 unsigned long n = simple_strtoul(buf, &e, 10); 3711 3712 if (!*buf || (*e && *e != '\n')) 3713 return -EINVAL; 3714 3715 if (mddev->pers) { 3716 int err; 3717 if (mddev->pers->check_reshape == NULL) 3718 return -EBUSY; 3719 mddev->new_chunk_sectors = n >> 9; 3720 err = mddev->pers->check_reshape(mddev); 3721 if (err) { 3722 mddev->new_chunk_sectors = mddev->chunk_sectors; 3723 return err; 3724 } 3725 } else { 3726 mddev->new_chunk_sectors = n >> 9; 3727 if (mddev->reshape_position == MaxSector) 3728 mddev->chunk_sectors = n >> 9; 3729 } 3730 return len; 3731 } 3732 static struct md_sysfs_entry md_chunk_size = 3733 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3734 3735 static ssize_t 3736 resync_start_show(struct mddev *mddev, char *page) 3737 { 3738 if (mddev->recovery_cp == MaxSector) 3739 return sprintf(page, "none\n"); 3740 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3741 } 3742 3743 static ssize_t 3744 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3745 { 3746 char *e; 3747 unsigned long long n = simple_strtoull(buf, &e, 10); 3748 3749 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3750 return -EBUSY; 3751 if (cmd_match(buf, "none")) 3752 n = MaxSector; 3753 else if (!*buf || (*e && *e != '\n')) 3754 return -EINVAL; 3755 3756 mddev->recovery_cp = n; 3757 return len; 3758 } 3759 static struct md_sysfs_entry md_resync_start = 3760 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3761 3762 /* 3763 * The array state can be: 3764 * 3765 * clear 3766 * No devices, no size, no level 3767 * Equivalent to STOP_ARRAY ioctl 3768 * inactive 3769 * May have some settings, but array is not active 3770 * all IO results in error 3771 * When written, doesn't tear down array, but just stops it 3772 * suspended (not supported yet) 3773 * All IO requests will block. The array can be reconfigured. 3774 * Writing this, if accepted, will block until array is quiescent 3775 * readonly 3776 * no resync can happen. no superblocks get written. 3777 * write requests fail 3778 * read-auto 3779 * like readonly, but behaves like 'clean' on a write request. 3780 * 3781 * clean - no pending writes, but otherwise active. 3782 * When written to inactive array, starts without resync 3783 * If a write request arrives then 3784 * if metadata is known, mark 'dirty' and switch to 'active'. 3785 * if not known, block and switch to write-pending 3786 * If written to an active array that has pending writes, then fails. 3787 * active 3788 * fully active: IO and resync can be happening. 3789 * When written to inactive array, starts with resync 3790 * 3791 * write-pending 3792 * clean, but writes are blocked waiting for 'active' to be written. 3793 * 3794 * active-idle 3795 * like active, but no writes have been seen for a while (100msec). 3796 * 3797 */ 3798 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3799 write_pending, active_idle, bad_word}; 3800 static char *array_states[] = { 3801 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3802 "write-pending", "active-idle", NULL }; 3803 3804 static int match_word(const char *word, char **list) 3805 { 3806 int n; 3807 for (n=0; list[n]; n++) 3808 if (cmd_match(word, list[n])) 3809 break; 3810 return n; 3811 } 3812 3813 static ssize_t 3814 array_state_show(struct mddev *mddev, char *page) 3815 { 3816 enum array_state st = inactive; 3817 3818 if (mddev->pers) 3819 switch(mddev->ro) { 3820 case 1: 3821 st = readonly; 3822 break; 3823 case 2: 3824 st = read_auto; 3825 break; 3826 case 0: 3827 if (mddev->in_sync) 3828 st = clean; 3829 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3830 st = write_pending; 3831 else if (mddev->safemode) 3832 st = active_idle; 3833 else 3834 st = active; 3835 } 3836 else { 3837 if (list_empty(&mddev->disks) && 3838 mddev->raid_disks == 0 && 3839 mddev->dev_sectors == 0) 3840 st = clear; 3841 else 3842 st = inactive; 3843 } 3844 return sprintf(page, "%s\n", array_states[st]); 3845 } 3846 3847 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3848 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3849 static int do_md_run(struct mddev * mddev); 3850 static int restart_array(struct mddev *mddev); 3851 3852 static ssize_t 3853 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3854 { 3855 int err = -EINVAL; 3856 enum array_state st = match_word(buf, array_states); 3857 switch(st) { 3858 case bad_word: 3859 break; 3860 case clear: 3861 /* stopping an active array */ 3862 err = do_md_stop(mddev, 0, NULL); 3863 break; 3864 case inactive: 3865 /* stopping an active array */ 3866 if (mddev->pers) 3867 err = do_md_stop(mddev, 2, NULL); 3868 else 3869 err = 0; /* already inactive */ 3870 break; 3871 case suspended: 3872 break; /* not supported yet */ 3873 case readonly: 3874 if (mddev->pers) 3875 err = md_set_readonly(mddev, NULL); 3876 else { 3877 mddev->ro = 1; 3878 set_disk_ro(mddev->gendisk, 1); 3879 err = do_md_run(mddev); 3880 } 3881 break; 3882 case read_auto: 3883 if (mddev->pers) { 3884 if (mddev->ro == 0) 3885 err = md_set_readonly(mddev, NULL); 3886 else if (mddev->ro == 1) 3887 err = restart_array(mddev); 3888 if (err == 0) { 3889 mddev->ro = 2; 3890 set_disk_ro(mddev->gendisk, 0); 3891 } 3892 } else { 3893 mddev->ro = 2; 3894 err = do_md_run(mddev); 3895 } 3896 break; 3897 case clean: 3898 if (mddev->pers) { 3899 restart_array(mddev); 3900 spin_lock_irq(&mddev->write_lock); 3901 if (atomic_read(&mddev->writes_pending) == 0) { 3902 if (mddev->in_sync == 0) { 3903 mddev->in_sync = 1; 3904 if (mddev->safemode == 1) 3905 mddev->safemode = 0; 3906 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3907 } 3908 err = 0; 3909 } else 3910 err = -EBUSY; 3911 spin_unlock_irq(&mddev->write_lock); 3912 } else 3913 err = -EINVAL; 3914 break; 3915 case active: 3916 if (mddev->pers) { 3917 restart_array(mddev); 3918 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3919 wake_up(&mddev->sb_wait); 3920 err = 0; 3921 } else { 3922 mddev->ro = 0; 3923 set_disk_ro(mddev->gendisk, 0); 3924 err = do_md_run(mddev); 3925 } 3926 break; 3927 case write_pending: 3928 case active_idle: 3929 /* these cannot be set */ 3930 break; 3931 } 3932 if (err) 3933 return err; 3934 else { 3935 if (mddev->hold_active == UNTIL_IOCTL) 3936 mddev->hold_active = 0; 3937 sysfs_notify_dirent_safe(mddev->sysfs_state); 3938 return len; 3939 } 3940 } 3941 static struct md_sysfs_entry md_array_state = 3942 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3943 3944 static ssize_t 3945 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3946 return sprintf(page, "%d\n", 3947 atomic_read(&mddev->max_corr_read_errors)); 3948 } 3949 3950 static ssize_t 3951 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3952 { 3953 char *e; 3954 unsigned long n = simple_strtoul(buf, &e, 10); 3955 3956 if (*buf && (*e == 0 || *e == '\n')) { 3957 atomic_set(&mddev->max_corr_read_errors, n); 3958 return len; 3959 } 3960 return -EINVAL; 3961 } 3962 3963 static struct md_sysfs_entry max_corr_read_errors = 3964 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3965 max_corrected_read_errors_store); 3966 3967 static ssize_t 3968 null_show(struct mddev *mddev, char *page) 3969 { 3970 return -EINVAL; 3971 } 3972 3973 static ssize_t 3974 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3975 { 3976 /* buf must be %d:%d\n? giving major and minor numbers */ 3977 /* The new device is added to the array. 3978 * If the array has a persistent superblock, we read the 3979 * superblock to initialise info and check validity. 3980 * Otherwise, only checking done is that in bind_rdev_to_array, 3981 * which mainly checks size. 3982 */ 3983 char *e; 3984 int major = simple_strtoul(buf, &e, 10); 3985 int minor; 3986 dev_t dev; 3987 struct md_rdev *rdev; 3988 int err; 3989 3990 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3991 return -EINVAL; 3992 minor = simple_strtoul(e+1, &e, 10); 3993 if (*e && *e != '\n') 3994 return -EINVAL; 3995 dev = MKDEV(major, minor); 3996 if (major != MAJOR(dev) || 3997 minor != MINOR(dev)) 3998 return -EOVERFLOW; 3999 4000 4001 if (mddev->persistent) { 4002 rdev = md_import_device(dev, mddev->major_version, 4003 mddev->minor_version); 4004 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4005 struct md_rdev *rdev0 4006 = list_entry(mddev->disks.next, 4007 struct md_rdev, same_set); 4008 err = super_types[mddev->major_version] 4009 .load_super(rdev, rdev0, mddev->minor_version); 4010 if (err < 0) 4011 goto out; 4012 } 4013 } else if (mddev->external) 4014 rdev = md_import_device(dev, -2, -1); 4015 else 4016 rdev = md_import_device(dev, -1, -1); 4017 4018 if (IS_ERR(rdev)) 4019 return PTR_ERR(rdev); 4020 err = bind_rdev_to_array(rdev, mddev); 4021 out: 4022 if (err) 4023 export_rdev(rdev); 4024 return err ? err : len; 4025 } 4026 4027 static struct md_sysfs_entry md_new_device = 4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4029 4030 static ssize_t 4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4032 { 4033 char *end; 4034 unsigned long chunk, end_chunk; 4035 4036 if (!mddev->bitmap) 4037 goto out; 4038 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4039 while (*buf) { 4040 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4041 if (buf == end) break; 4042 if (*end == '-') { /* range */ 4043 buf = end + 1; 4044 end_chunk = simple_strtoul(buf, &end, 0); 4045 if (buf == end) break; 4046 } 4047 if (*end && !isspace(*end)) break; 4048 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4049 buf = skip_spaces(end); 4050 } 4051 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4052 out: 4053 return len; 4054 } 4055 4056 static struct md_sysfs_entry md_bitmap = 4057 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4058 4059 static ssize_t 4060 size_show(struct mddev *mddev, char *page) 4061 { 4062 return sprintf(page, "%llu\n", 4063 (unsigned long long)mddev->dev_sectors / 2); 4064 } 4065 4066 static int update_size(struct mddev *mddev, sector_t num_sectors); 4067 4068 static ssize_t 4069 size_store(struct mddev *mddev, const char *buf, size_t len) 4070 { 4071 /* If array is inactive, we can reduce the component size, but 4072 * not increase it (except from 0). 4073 * If array is active, we can try an on-line resize 4074 */ 4075 sector_t sectors; 4076 int err = strict_blocks_to_sectors(buf, §ors); 4077 4078 if (err < 0) 4079 return err; 4080 if (mddev->pers) { 4081 err = update_size(mddev, sectors); 4082 md_update_sb(mddev, 1); 4083 } else { 4084 if (mddev->dev_sectors == 0 || 4085 mddev->dev_sectors > sectors) 4086 mddev->dev_sectors = sectors; 4087 else 4088 err = -ENOSPC; 4089 } 4090 return err ? err : len; 4091 } 4092 4093 static struct md_sysfs_entry md_size = 4094 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4095 4096 4097 /* Metdata version. 4098 * This is one of 4099 * 'none' for arrays with no metadata (good luck...) 4100 * 'external' for arrays with externally managed metadata, 4101 * or N.M for internally known formats 4102 */ 4103 static ssize_t 4104 metadata_show(struct mddev *mddev, char *page) 4105 { 4106 if (mddev->persistent) 4107 return sprintf(page, "%d.%d\n", 4108 mddev->major_version, mddev->minor_version); 4109 else if (mddev->external) 4110 return sprintf(page, "external:%s\n", mddev->metadata_type); 4111 else 4112 return sprintf(page, "none\n"); 4113 } 4114 4115 static ssize_t 4116 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4117 { 4118 int major, minor; 4119 char *e; 4120 /* Changing the details of 'external' metadata is 4121 * always permitted. Otherwise there must be 4122 * no devices attached to the array. 4123 */ 4124 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4125 ; 4126 else if (!list_empty(&mddev->disks)) 4127 return -EBUSY; 4128 4129 if (cmd_match(buf, "none")) { 4130 mddev->persistent = 0; 4131 mddev->external = 0; 4132 mddev->major_version = 0; 4133 mddev->minor_version = 90; 4134 return len; 4135 } 4136 if (strncmp(buf, "external:", 9) == 0) { 4137 size_t namelen = len-9; 4138 if (namelen >= sizeof(mddev->metadata_type)) 4139 namelen = sizeof(mddev->metadata_type)-1; 4140 strncpy(mddev->metadata_type, buf+9, namelen); 4141 mddev->metadata_type[namelen] = 0; 4142 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4143 mddev->metadata_type[--namelen] = 0; 4144 mddev->persistent = 0; 4145 mddev->external = 1; 4146 mddev->major_version = 0; 4147 mddev->minor_version = 90; 4148 return len; 4149 } 4150 major = simple_strtoul(buf, &e, 10); 4151 if (e==buf || *e != '.') 4152 return -EINVAL; 4153 buf = e+1; 4154 minor = simple_strtoul(buf, &e, 10); 4155 if (e==buf || (*e && *e != '\n') ) 4156 return -EINVAL; 4157 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4158 return -ENOENT; 4159 mddev->major_version = major; 4160 mddev->minor_version = minor; 4161 mddev->persistent = 1; 4162 mddev->external = 0; 4163 return len; 4164 } 4165 4166 static struct md_sysfs_entry md_metadata = 4167 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4168 4169 static ssize_t 4170 action_show(struct mddev *mddev, char *page) 4171 { 4172 char *type = "idle"; 4173 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4174 type = "frozen"; 4175 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4176 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4177 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4178 type = "reshape"; 4179 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4180 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4181 type = "resync"; 4182 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4183 type = "check"; 4184 else 4185 type = "repair"; 4186 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4187 type = "recover"; 4188 } 4189 return sprintf(page, "%s\n", type); 4190 } 4191 4192 static void reap_sync_thread(struct mddev *mddev); 4193 4194 static ssize_t 4195 action_store(struct mddev *mddev, const char *page, size_t len) 4196 { 4197 if (!mddev->pers || !mddev->pers->sync_request) 4198 return -EINVAL; 4199 4200 if (cmd_match(page, "frozen")) 4201 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4202 else 4203 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4204 4205 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4206 if (mddev->sync_thread) { 4207 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4208 reap_sync_thread(mddev); 4209 } 4210 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4211 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4212 return -EBUSY; 4213 else if (cmd_match(page, "resync")) 4214 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4215 else if (cmd_match(page, "recover")) { 4216 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4218 } else if (cmd_match(page, "reshape")) { 4219 int err; 4220 if (mddev->pers->start_reshape == NULL) 4221 return -EINVAL; 4222 err = mddev->pers->start_reshape(mddev); 4223 if (err) 4224 return err; 4225 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4226 } else { 4227 if (cmd_match(page, "check")) 4228 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4229 else if (!cmd_match(page, "repair")) 4230 return -EINVAL; 4231 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4232 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4233 } 4234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4235 md_wakeup_thread(mddev->thread); 4236 sysfs_notify_dirent_safe(mddev->sysfs_action); 4237 return len; 4238 } 4239 4240 static ssize_t 4241 mismatch_cnt_show(struct mddev *mddev, char *page) 4242 { 4243 return sprintf(page, "%llu\n", 4244 (unsigned long long) mddev->resync_mismatches); 4245 } 4246 4247 static struct md_sysfs_entry md_scan_mode = 4248 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4249 4250 4251 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4252 4253 static ssize_t 4254 sync_min_show(struct mddev *mddev, char *page) 4255 { 4256 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4257 mddev->sync_speed_min ? "local": "system"); 4258 } 4259 4260 static ssize_t 4261 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4262 { 4263 int min; 4264 char *e; 4265 if (strncmp(buf, "system", 6)==0) { 4266 mddev->sync_speed_min = 0; 4267 return len; 4268 } 4269 min = simple_strtoul(buf, &e, 10); 4270 if (buf == e || (*e && *e != '\n') || min <= 0) 4271 return -EINVAL; 4272 mddev->sync_speed_min = min; 4273 return len; 4274 } 4275 4276 static struct md_sysfs_entry md_sync_min = 4277 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4278 4279 static ssize_t 4280 sync_max_show(struct mddev *mddev, char *page) 4281 { 4282 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4283 mddev->sync_speed_max ? "local": "system"); 4284 } 4285 4286 static ssize_t 4287 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4288 { 4289 int max; 4290 char *e; 4291 if (strncmp(buf, "system", 6)==0) { 4292 mddev->sync_speed_max = 0; 4293 return len; 4294 } 4295 max = simple_strtoul(buf, &e, 10); 4296 if (buf == e || (*e && *e != '\n') || max <= 0) 4297 return -EINVAL; 4298 mddev->sync_speed_max = max; 4299 return len; 4300 } 4301 4302 static struct md_sysfs_entry md_sync_max = 4303 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4304 4305 static ssize_t 4306 degraded_show(struct mddev *mddev, char *page) 4307 { 4308 return sprintf(page, "%d\n", mddev->degraded); 4309 } 4310 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4311 4312 static ssize_t 4313 sync_force_parallel_show(struct mddev *mddev, char *page) 4314 { 4315 return sprintf(page, "%d\n", mddev->parallel_resync); 4316 } 4317 4318 static ssize_t 4319 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4320 { 4321 long n; 4322 4323 if (strict_strtol(buf, 10, &n)) 4324 return -EINVAL; 4325 4326 if (n != 0 && n != 1) 4327 return -EINVAL; 4328 4329 mddev->parallel_resync = n; 4330 4331 if (mddev->sync_thread) 4332 wake_up(&resync_wait); 4333 4334 return len; 4335 } 4336 4337 /* force parallel resync, even with shared block devices */ 4338 static struct md_sysfs_entry md_sync_force_parallel = 4339 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4340 sync_force_parallel_show, sync_force_parallel_store); 4341 4342 static ssize_t 4343 sync_speed_show(struct mddev *mddev, char *page) 4344 { 4345 unsigned long resync, dt, db; 4346 if (mddev->curr_resync == 0) 4347 return sprintf(page, "none\n"); 4348 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4349 dt = (jiffies - mddev->resync_mark) / HZ; 4350 if (!dt) dt++; 4351 db = resync - mddev->resync_mark_cnt; 4352 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4353 } 4354 4355 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4356 4357 static ssize_t 4358 sync_completed_show(struct mddev *mddev, char *page) 4359 { 4360 unsigned long long max_sectors, resync; 4361 4362 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4363 return sprintf(page, "none\n"); 4364 4365 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4366 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4367 max_sectors = mddev->resync_max_sectors; 4368 else 4369 max_sectors = mddev->dev_sectors; 4370 4371 resync = mddev->curr_resync_completed; 4372 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4373 } 4374 4375 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4376 4377 static ssize_t 4378 min_sync_show(struct mddev *mddev, char *page) 4379 { 4380 return sprintf(page, "%llu\n", 4381 (unsigned long long)mddev->resync_min); 4382 } 4383 static ssize_t 4384 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4385 { 4386 unsigned long long min; 4387 if (strict_strtoull(buf, 10, &min)) 4388 return -EINVAL; 4389 if (min > mddev->resync_max) 4390 return -EINVAL; 4391 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4392 return -EBUSY; 4393 4394 /* Must be a multiple of chunk_size */ 4395 if (mddev->chunk_sectors) { 4396 sector_t temp = min; 4397 if (sector_div(temp, mddev->chunk_sectors)) 4398 return -EINVAL; 4399 } 4400 mddev->resync_min = min; 4401 4402 return len; 4403 } 4404 4405 static struct md_sysfs_entry md_min_sync = 4406 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4407 4408 static ssize_t 4409 max_sync_show(struct mddev *mddev, char *page) 4410 { 4411 if (mddev->resync_max == MaxSector) 4412 return sprintf(page, "max\n"); 4413 else 4414 return sprintf(page, "%llu\n", 4415 (unsigned long long)mddev->resync_max); 4416 } 4417 static ssize_t 4418 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4419 { 4420 if (strncmp(buf, "max", 3) == 0) 4421 mddev->resync_max = MaxSector; 4422 else { 4423 unsigned long long max; 4424 if (strict_strtoull(buf, 10, &max)) 4425 return -EINVAL; 4426 if (max < mddev->resync_min) 4427 return -EINVAL; 4428 if (max < mddev->resync_max && 4429 mddev->ro == 0 && 4430 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4431 return -EBUSY; 4432 4433 /* Must be a multiple of chunk_size */ 4434 if (mddev->chunk_sectors) { 4435 sector_t temp = max; 4436 if (sector_div(temp, mddev->chunk_sectors)) 4437 return -EINVAL; 4438 } 4439 mddev->resync_max = max; 4440 } 4441 wake_up(&mddev->recovery_wait); 4442 return len; 4443 } 4444 4445 static struct md_sysfs_entry md_max_sync = 4446 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4447 4448 static ssize_t 4449 suspend_lo_show(struct mddev *mddev, char *page) 4450 { 4451 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4452 } 4453 4454 static ssize_t 4455 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4456 { 4457 char *e; 4458 unsigned long long new = simple_strtoull(buf, &e, 10); 4459 unsigned long long old = mddev->suspend_lo; 4460 4461 if (mddev->pers == NULL || 4462 mddev->pers->quiesce == NULL) 4463 return -EINVAL; 4464 if (buf == e || (*e && *e != '\n')) 4465 return -EINVAL; 4466 4467 mddev->suspend_lo = new; 4468 if (new >= old) 4469 /* Shrinking suspended region */ 4470 mddev->pers->quiesce(mddev, 2); 4471 else { 4472 /* Expanding suspended region - need to wait */ 4473 mddev->pers->quiesce(mddev, 1); 4474 mddev->pers->quiesce(mddev, 0); 4475 } 4476 return len; 4477 } 4478 static struct md_sysfs_entry md_suspend_lo = 4479 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4480 4481 4482 static ssize_t 4483 suspend_hi_show(struct mddev *mddev, char *page) 4484 { 4485 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4486 } 4487 4488 static ssize_t 4489 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4490 { 4491 char *e; 4492 unsigned long long new = simple_strtoull(buf, &e, 10); 4493 unsigned long long old = mddev->suspend_hi; 4494 4495 if (mddev->pers == NULL || 4496 mddev->pers->quiesce == NULL) 4497 return -EINVAL; 4498 if (buf == e || (*e && *e != '\n')) 4499 return -EINVAL; 4500 4501 mddev->suspend_hi = new; 4502 if (new <= old) 4503 /* Shrinking suspended region */ 4504 mddev->pers->quiesce(mddev, 2); 4505 else { 4506 /* Expanding suspended region - need to wait */ 4507 mddev->pers->quiesce(mddev, 1); 4508 mddev->pers->quiesce(mddev, 0); 4509 } 4510 return len; 4511 } 4512 static struct md_sysfs_entry md_suspend_hi = 4513 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4514 4515 static ssize_t 4516 reshape_position_show(struct mddev *mddev, char *page) 4517 { 4518 if (mddev->reshape_position != MaxSector) 4519 return sprintf(page, "%llu\n", 4520 (unsigned long long)mddev->reshape_position); 4521 strcpy(page, "none\n"); 4522 return 5; 4523 } 4524 4525 static ssize_t 4526 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4527 { 4528 struct md_rdev *rdev; 4529 char *e; 4530 unsigned long long new = simple_strtoull(buf, &e, 10); 4531 if (mddev->pers) 4532 return -EBUSY; 4533 if (buf == e || (*e && *e != '\n')) 4534 return -EINVAL; 4535 mddev->reshape_position = new; 4536 mddev->delta_disks = 0; 4537 mddev->reshape_backwards = 0; 4538 mddev->new_level = mddev->level; 4539 mddev->new_layout = mddev->layout; 4540 mddev->new_chunk_sectors = mddev->chunk_sectors; 4541 rdev_for_each(rdev, mddev) 4542 rdev->new_data_offset = rdev->data_offset; 4543 return len; 4544 } 4545 4546 static struct md_sysfs_entry md_reshape_position = 4547 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4548 reshape_position_store); 4549 4550 static ssize_t 4551 reshape_direction_show(struct mddev *mddev, char *page) 4552 { 4553 return sprintf(page, "%s\n", 4554 mddev->reshape_backwards ? "backwards" : "forwards"); 4555 } 4556 4557 static ssize_t 4558 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4559 { 4560 int backwards = 0; 4561 if (cmd_match(buf, "forwards")) 4562 backwards = 0; 4563 else if (cmd_match(buf, "backwards")) 4564 backwards = 1; 4565 else 4566 return -EINVAL; 4567 if (mddev->reshape_backwards == backwards) 4568 return len; 4569 4570 /* check if we are allowed to change */ 4571 if (mddev->delta_disks) 4572 return -EBUSY; 4573 4574 if (mddev->persistent && 4575 mddev->major_version == 0) 4576 return -EINVAL; 4577 4578 mddev->reshape_backwards = backwards; 4579 return len; 4580 } 4581 4582 static struct md_sysfs_entry md_reshape_direction = 4583 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4584 reshape_direction_store); 4585 4586 static ssize_t 4587 array_size_show(struct mddev *mddev, char *page) 4588 { 4589 if (mddev->external_size) 4590 return sprintf(page, "%llu\n", 4591 (unsigned long long)mddev->array_sectors/2); 4592 else 4593 return sprintf(page, "default\n"); 4594 } 4595 4596 static ssize_t 4597 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4598 { 4599 sector_t sectors; 4600 4601 if (strncmp(buf, "default", 7) == 0) { 4602 if (mddev->pers) 4603 sectors = mddev->pers->size(mddev, 0, 0); 4604 else 4605 sectors = mddev->array_sectors; 4606 4607 mddev->external_size = 0; 4608 } else { 4609 if (strict_blocks_to_sectors(buf, §ors) < 0) 4610 return -EINVAL; 4611 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4612 return -E2BIG; 4613 4614 mddev->external_size = 1; 4615 } 4616 4617 mddev->array_sectors = sectors; 4618 if (mddev->pers) { 4619 set_capacity(mddev->gendisk, mddev->array_sectors); 4620 revalidate_disk(mddev->gendisk); 4621 } 4622 return len; 4623 } 4624 4625 static struct md_sysfs_entry md_array_size = 4626 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4627 array_size_store); 4628 4629 static struct attribute *md_default_attrs[] = { 4630 &md_level.attr, 4631 &md_layout.attr, 4632 &md_raid_disks.attr, 4633 &md_chunk_size.attr, 4634 &md_size.attr, 4635 &md_resync_start.attr, 4636 &md_metadata.attr, 4637 &md_new_device.attr, 4638 &md_safe_delay.attr, 4639 &md_array_state.attr, 4640 &md_reshape_position.attr, 4641 &md_reshape_direction.attr, 4642 &md_array_size.attr, 4643 &max_corr_read_errors.attr, 4644 NULL, 4645 }; 4646 4647 static struct attribute *md_redundancy_attrs[] = { 4648 &md_scan_mode.attr, 4649 &md_mismatches.attr, 4650 &md_sync_min.attr, 4651 &md_sync_max.attr, 4652 &md_sync_speed.attr, 4653 &md_sync_force_parallel.attr, 4654 &md_sync_completed.attr, 4655 &md_min_sync.attr, 4656 &md_max_sync.attr, 4657 &md_suspend_lo.attr, 4658 &md_suspend_hi.attr, 4659 &md_bitmap.attr, 4660 &md_degraded.attr, 4661 NULL, 4662 }; 4663 static struct attribute_group md_redundancy_group = { 4664 .name = NULL, 4665 .attrs = md_redundancy_attrs, 4666 }; 4667 4668 4669 static ssize_t 4670 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4671 { 4672 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4673 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4674 ssize_t rv; 4675 4676 if (!entry->show) 4677 return -EIO; 4678 spin_lock(&all_mddevs_lock); 4679 if (list_empty(&mddev->all_mddevs)) { 4680 spin_unlock(&all_mddevs_lock); 4681 return -EBUSY; 4682 } 4683 mddev_get(mddev); 4684 spin_unlock(&all_mddevs_lock); 4685 4686 rv = mddev_lock(mddev); 4687 if (!rv) { 4688 rv = entry->show(mddev, page); 4689 mddev_unlock(mddev); 4690 } 4691 mddev_put(mddev); 4692 return rv; 4693 } 4694 4695 static ssize_t 4696 md_attr_store(struct kobject *kobj, struct attribute *attr, 4697 const char *page, size_t length) 4698 { 4699 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4700 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4701 ssize_t rv; 4702 4703 if (!entry->store) 4704 return -EIO; 4705 if (!capable(CAP_SYS_ADMIN)) 4706 return -EACCES; 4707 spin_lock(&all_mddevs_lock); 4708 if (list_empty(&mddev->all_mddevs)) { 4709 spin_unlock(&all_mddevs_lock); 4710 return -EBUSY; 4711 } 4712 mddev_get(mddev); 4713 spin_unlock(&all_mddevs_lock); 4714 rv = mddev_lock(mddev); 4715 if (!rv) { 4716 rv = entry->store(mddev, page, length); 4717 mddev_unlock(mddev); 4718 } 4719 mddev_put(mddev); 4720 return rv; 4721 } 4722 4723 static void md_free(struct kobject *ko) 4724 { 4725 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4726 4727 if (mddev->sysfs_state) 4728 sysfs_put(mddev->sysfs_state); 4729 4730 if (mddev->gendisk) { 4731 del_gendisk(mddev->gendisk); 4732 put_disk(mddev->gendisk); 4733 } 4734 if (mddev->queue) 4735 blk_cleanup_queue(mddev->queue); 4736 4737 kfree(mddev); 4738 } 4739 4740 static const struct sysfs_ops md_sysfs_ops = { 4741 .show = md_attr_show, 4742 .store = md_attr_store, 4743 }; 4744 static struct kobj_type md_ktype = { 4745 .release = md_free, 4746 .sysfs_ops = &md_sysfs_ops, 4747 .default_attrs = md_default_attrs, 4748 }; 4749 4750 int mdp_major = 0; 4751 4752 static void mddev_delayed_delete(struct work_struct *ws) 4753 { 4754 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4755 4756 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4757 kobject_del(&mddev->kobj); 4758 kobject_put(&mddev->kobj); 4759 } 4760 4761 static int md_alloc(dev_t dev, char *name) 4762 { 4763 static DEFINE_MUTEX(disks_mutex); 4764 struct mddev *mddev = mddev_find(dev); 4765 struct gendisk *disk; 4766 int partitioned; 4767 int shift; 4768 int unit; 4769 int error; 4770 4771 if (!mddev) 4772 return -ENODEV; 4773 4774 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4775 shift = partitioned ? MdpMinorShift : 0; 4776 unit = MINOR(mddev->unit) >> shift; 4777 4778 /* wait for any previous instance of this device to be 4779 * completely removed (mddev_delayed_delete). 4780 */ 4781 flush_workqueue(md_misc_wq); 4782 4783 mutex_lock(&disks_mutex); 4784 error = -EEXIST; 4785 if (mddev->gendisk) 4786 goto abort; 4787 4788 if (name) { 4789 /* Need to ensure that 'name' is not a duplicate. 4790 */ 4791 struct mddev *mddev2; 4792 spin_lock(&all_mddevs_lock); 4793 4794 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4795 if (mddev2->gendisk && 4796 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4797 spin_unlock(&all_mddevs_lock); 4798 goto abort; 4799 } 4800 spin_unlock(&all_mddevs_lock); 4801 } 4802 4803 error = -ENOMEM; 4804 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4805 if (!mddev->queue) 4806 goto abort; 4807 mddev->queue->queuedata = mddev; 4808 4809 blk_queue_make_request(mddev->queue, md_make_request); 4810 blk_set_stacking_limits(&mddev->queue->limits); 4811 4812 disk = alloc_disk(1 << shift); 4813 if (!disk) { 4814 blk_cleanup_queue(mddev->queue); 4815 mddev->queue = NULL; 4816 goto abort; 4817 } 4818 disk->major = MAJOR(mddev->unit); 4819 disk->first_minor = unit << shift; 4820 if (name) 4821 strcpy(disk->disk_name, name); 4822 else if (partitioned) 4823 sprintf(disk->disk_name, "md_d%d", unit); 4824 else 4825 sprintf(disk->disk_name, "md%d", unit); 4826 disk->fops = &md_fops; 4827 disk->private_data = mddev; 4828 disk->queue = mddev->queue; 4829 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4830 /* Allow extended partitions. This makes the 4831 * 'mdp' device redundant, but we can't really 4832 * remove it now. 4833 */ 4834 disk->flags |= GENHD_FL_EXT_DEVT; 4835 mddev->gendisk = disk; 4836 /* As soon as we call add_disk(), another thread could get 4837 * through to md_open, so make sure it doesn't get too far 4838 */ 4839 mutex_lock(&mddev->open_mutex); 4840 add_disk(disk); 4841 4842 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4843 &disk_to_dev(disk)->kobj, "%s", "md"); 4844 if (error) { 4845 /* This isn't possible, but as kobject_init_and_add is marked 4846 * __must_check, we must do something with the result 4847 */ 4848 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4849 disk->disk_name); 4850 error = 0; 4851 } 4852 if (mddev->kobj.sd && 4853 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4854 printk(KERN_DEBUG "pointless warning\n"); 4855 mutex_unlock(&mddev->open_mutex); 4856 abort: 4857 mutex_unlock(&disks_mutex); 4858 if (!error && mddev->kobj.sd) { 4859 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4860 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4861 } 4862 mddev_put(mddev); 4863 return error; 4864 } 4865 4866 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4867 { 4868 md_alloc(dev, NULL); 4869 return NULL; 4870 } 4871 4872 static int add_named_array(const char *val, struct kernel_param *kp) 4873 { 4874 /* val must be "md_*" where * is not all digits. 4875 * We allocate an array with a large free minor number, and 4876 * set the name to val. val must not already be an active name. 4877 */ 4878 int len = strlen(val); 4879 char buf[DISK_NAME_LEN]; 4880 4881 while (len && val[len-1] == '\n') 4882 len--; 4883 if (len >= DISK_NAME_LEN) 4884 return -E2BIG; 4885 strlcpy(buf, val, len+1); 4886 if (strncmp(buf, "md_", 3) != 0) 4887 return -EINVAL; 4888 return md_alloc(0, buf); 4889 } 4890 4891 static void md_safemode_timeout(unsigned long data) 4892 { 4893 struct mddev *mddev = (struct mddev *) data; 4894 4895 if (!atomic_read(&mddev->writes_pending)) { 4896 mddev->safemode = 1; 4897 if (mddev->external) 4898 sysfs_notify_dirent_safe(mddev->sysfs_state); 4899 } 4900 md_wakeup_thread(mddev->thread); 4901 } 4902 4903 static int start_dirty_degraded; 4904 4905 int md_run(struct mddev *mddev) 4906 { 4907 int err; 4908 struct md_rdev *rdev; 4909 struct md_personality *pers; 4910 4911 if (list_empty(&mddev->disks)) 4912 /* cannot run an array with no devices.. */ 4913 return -EINVAL; 4914 4915 if (mddev->pers) 4916 return -EBUSY; 4917 /* Cannot run until previous stop completes properly */ 4918 if (mddev->sysfs_active) 4919 return -EBUSY; 4920 4921 /* 4922 * Analyze all RAID superblock(s) 4923 */ 4924 if (!mddev->raid_disks) { 4925 if (!mddev->persistent) 4926 return -EINVAL; 4927 analyze_sbs(mddev); 4928 } 4929 4930 if (mddev->level != LEVEL_NONE) 4931 request_module("md-level-%d", mddev->level); 4932 else if (mddev->clevel[0]) 4933 request_module("md-%s", mddev->clevel); 4934 4935 /* 4936 * Drop all container device buffers, from now on 4937 * the only valid external interface is through the md 4938 * device. 4939 */ 4940 rdev_for_each(rdev, mddev) { 4941 if (test_bit(Faulty, &rdev->flags)) 4942 continue; 4943 sync_blockdev(rdev->bdev); 4944 invalidate_bdev(rdev->bdev); 4945 4946 /* perform some consistency tests on the device. 4947 * We don't want the data to overlap the metadata, 4948 * Internal Bitmap issues have been handled elsewhere. 4949 */ 4950 if (rdev->meta_bdev) { 4951 /* Nothing to check */; 4952 } else if (rdev->data_offset < rdev->sb_start) { 4953 if (mddev->dev_sectors && 4954 rdev->data_offset + mddev->dev_sectors 4955 > rdev->sb_start) { 4956 printk("md: %s: data overlaps metadata\n", 4957 mdname(mddev)); 4958 return -EINVAL; 4959 } 4960 } else { 4961 if (rdev->sb_start + rdev->sb_size/512 4962 > rdev->data_offset) { 4963 printk("md: %s: metadata overlaps data\n", 4964 mdname(mddev)); 4965 return -EINVAL; 4966 } 4967 } 4968 sysfs_notify_dirent_safe(rdev->sysfs_state); 4969 } 4970 4971 if (mddev->bio_set == NULL) 4972 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 4973 4974 spin_lock(&pers_lock); 4975 pers = find_pers(mddev->level, mddev->clevel); 4976 if (!pers || !try_module_get(pers->owner)) { 4977 spin_unlock(&pers_lock); 4978 if (mddev->level != LEVEL_NONE) 4979 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4980 mddev->level); 4981 else 4982 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4983 mddev->clevel); 4984 return -EINVAL; 4985 } 4986 mddev->pers = pers; 4987 spin_unlock(&pers_lock); 4988 if (mddev->level != pers->level) { 4989 mddev->level = pers->level; 4990 mddev->new_level = pers->level; 4991 } 4992 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4993 4994 if (mddev->reshape_position != MaxSector && 4995 pers->start_reshape == NULL) { 4996 /* This personality cannot handle reshaping... */ 4997 mddev->pers = NULL; 4998 module_put(pers->owner); 4999 return -EINVAL; 5000 } 5001 5002 if (pers->sync_request) { 5003 /* Warn if this is a potentially silly 5004 * configuration. 5005 */ 5006 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5007 struct md_rdev *rdev2; 5008 int warned = 0; 5009 5010 rdev_for_each(rdev, mddev) 5011 rdev_for_each(rdev2, mddev) { 5012 if (rdev < rdev2 && 5013 rdev->bdev->bd_contains == 5014 rdev2->bdev->bd_contains) { 5015 printk(KERN_WARNING 5016 "%s: WARNING: %s appears to be" 5017 " on the same physical disk as" 5018 " %s.\n", 5019 mdname(mddev), 5020 bdevname(rdev->bdev,b), 5021 bdevname(rdev2->bdev,b2)); 5022 warned = 1; 5023 } 5024 } 5025 5026 if (warned) 5027 printk(KERN_WARNING 5028 "True protection against single-disk" 5029 " failure might be compromised.\n"); 5030 } 5031 5032 mddev->recovery = 0; 5033 /* may be over-ridden by personality */ 5034 mddev->resync_max_sectors = mddev->dev_sectors; 5035 5036 mddev->ok_start_degraded = start_dirty_degraded; 5037 5038 if (start_readonly && mddev->ro == 0) 5039 mddev->ro = 2; /* read-only, but switch on first write */ 5040 5041 err = mddev->pers->run(mddev); 5042 if (err) 5043 printk(KERN_ERR "md: pers->run() failed ...\n"); 5044 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5045 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5046 " but 'external_size' not in effect?\n", __func__); 5047 printk(KERN_ERR 5048 "md: invalid array_size %llu > default size %llu\n", 5049 (unsigned long long)mddev->array_sectors / 2, 5050 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5051 err = -EINVAL; 5052 mddev->pers->stop(mddev); 5053 } 5054 if (err == 0 && mddev->pers->sync_request && 5055 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5056 err = bitmap_create(mddev); 5057 if (err) { 5058 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5059 mdname(mddev), err); 5060 mddev->pers->stop(mddev); 5061 } 5062 } 5063 if (err) { 5064 module_put(mddev->pers->owner); 5065 mddev->pers = NULL; 5066 bitmap_destroy(mddev); 5067 return err; 5068 } 5069 if (mddev->pers->sync_request) { 5070 if (mddev->kobj.sd && 5071 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5072 printk(KERN_WARNING 5073 "md: cannot register extra attributes for %s\n", 5074 mdname(mddev)); 5075 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5076 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5077 mddev->ro = 0; 5078 5079 atomic_set(&mddev->writes_pending,0); 5080 atomic_set(&mddev->max_corr_read_errors, 5081 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5082 mddev->safemode = 0; 5083 mddev->safemode_timer.function = md_safemode_timeout; 5084 mddev->safemode_timer.data = (unsigned long) mddev; 5085 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5086 mddev->in_sync = 1; 5087 smp_wmb(); 5088 mddev->ready = 1; 5089 rdev_for_each(rdev, mddev) 5090 if (rdev->raid_disk >= 0) 5091 if (sysfs_link_rdev(mddev, rdev)) 5092 /* failure here is OK */; 5093 5094 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5095 5096 if (mddev->flags) 5097 md_update_sb(mddev, 0); 5098 5099 md_new_event(mddev); 5100 sysfs_notify_dirent_safe(mddev->sysfs_state); 5101 sysfs_notify_dirent_safe(mddev->sysfs_action); 5102 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5103 return 0; 5104 } 5105 EXPORT_SYMBOL_GPL(md_run); 5106 5107 static int do_md_run(struct mddev *mddev) 5108 { 5109 int err; 5110 5111 err = md_run(mddev); 5112 if (err) 5113 goto out; 5114 err = bitmap_load(mddev); 5115 if (err) { 5116 bitmap_destroy(mddev); 5117 goto out; 5118 } 5119 5120 md_wakeup_thread(mddev->thread); 5121 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5122 5123 set_capacity(mddev->gendisk, mddev->array_sectors); 5124 revalidate_disk(mddev->gendisk); 5125 mddev->changed = 1; 5126 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5127 out: 5128 return err; 5129 } 5130 5131 static int restart_array(struct mddev *mddev) 5132 { 5133 struct gendisk *disk = mddev->gendisk; 5134 5135 /* Complain if it has no devices */ 5136 if (list_empty(&mddev->disks)) 5137 return -ENXIO; 5138 if (!mddev->pers) 5139 return -EINVAL; 5140 if (!mddev->ro) 5141 return -EBUSY; 5142 mddev->safemode = 0; 5143 mddev->ro = 0; 5144 set_disk_ro(disk, 0); 5145 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5146 mdname(mddev)); 5147 /* Kick recovery or resync if necessary */ 5148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5149 md_wakeup_thread(mddev->thread); 5150 md_wakeup_thread(mddev->sync_thread); 5151 sysfs_notify_dirent_safe(mddev->sysfs_state); 5152 return 0; 5153 } 5154 5155 /* similar to deny_write_access, but accounts for our holding a reference 5156 * to the file ourselves */ 5157 static int deny_bitmap_write_access(struct file * file) 5158 { 5159 struct inode *inode = file->f_mapping->host; 5160 5161 spin_lock(&inode->i_lock); 5162 if (atomic_read(&inode->i_writecount) > 1) { 5163 spin_unlock(&inode->i_lock); 5164 return -ETXTBSY; 5165 } 5166 atomic_set(&inode->i_writecount, -1); 5167 spin_unlock(&inode->i_lock); 5168 5169 return 0; 5170 } 5171 5172 void restore_bitmap_write_access(struct file *file) 5173 { 5174 struct inode *inode = file->f_mapping->host; 5175 5176 spin_lock(&inode->i_lock); 5177 atomic_set(&inode->i_writecount, 1); 5178 spin_unlock(&inode->i_lock); 5179 } 5180 5181 static void md_clean(struct mddev *mddev) 5182 { 5183 mddev->array_sectors = 0; 5184 mddev->external_size = 0; 5185 mddev->dev_sectors = 0; 5186 mddev->raid_disks = 0; 5187 mddev->recovery_cp = 0; 5188 mddev->resync_min = 0; 5189 mddev->resync_max = MaxSector; 5190 mddev->reshape_position = MaxSector; 5191 mddev->external = 0; 5192 mddev->persistent = 0; 5193 mddev->level = LEVEL_NONE; 5194 mddev->clevel[0] = 0; 5195 mddev->flags = 0; 5196 mddev->ro = 0; 5197 mddev->metadata_type[0] = 0; 5198 mddev->chunk_sectors = 0; 5199 mddev->ctime = mddev->utime = 0; 5200 mddev->layout = 0; 5201 mddev->max_disks = 0; 5202 mddev->events = 0; 5203 mddev->can_decrease_events = 0; 5204 mddev->delta_disks = 0; 5205 mddev->reshape_backwards = 0; 5206 mddev->new_level = LEVEL_NONE; 5207 mddev->new_layout = 0; 5208 mddev->new_chunk_sectors = 0; 5209 mddev->curr_resync = 0; 5210 mddev->resync_mismatches = 0; 5211 mddev->suspend_lo = mddev->suspend_hi = 0; 5212 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5213 mddev->recovery = 0; 5214 mddev->in_sync = 0; 5215 mddev->changed = 0; 5216 mddev->degraded = 0; 5217 mddev->safemode = 0; 5218 mddev->merge_check_needed = 0; 5219 mddev->bitmap_info.offset = 0; 5220 mddev->bitmap_info.default_offset = 0; 5221 mddev->bitmap_info.default_space = 0; 5222 mddev->bitmap_info.chunksize = 0; 5223 mddev->bitmap_info.daemon_sleep = 0; 5224 mddev->bitmap_info.max_write_behind = 0; 5225 } 5226 5227 static void __md_stop_writes(struct mddev *mddev) 5228 { 5229 if (mddev->sync_thread) { 5230 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5231 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5232 reap_sync_thread(mddev); 5233 } 5234 5235 del_timer_sync(&mddev->safemode_timer); 5236 5237 bitmap_flush(mddev); 5238 md_super_wait(mddev); 5239 5240 if (!mddev->in_sync || mddev->flags) { 5241 /* mark array as shutdown cleanly */ 5242 mddev->in_sync = 1; 5243 md_update_sb(mddev, 1); 5244 } 5245 } 5246 5247 void md_stop_writes(struct mddev *mddev) 5248 { 5249 mddev_lock(mddev); 5250 __md_stop_writes(mddev); 5251 mddev_unlock(mddev); 5252 } 5253 EXPORT_SYMBOL_GPL(md_stop_writes); 5254 5255 void md_stop(struct mddev *mddev) 5256 { 5257 mddev->ready = 0; 5258 mddev->pers->stop(mddev); 5259 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5260 mddev->to_remove = &md_redundancy_group; 5261 module_put(mddev->pers->owner); 5262 mddev->pers = NULL; 5263 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5264 } 5265 EXPORT_SYMBOL_GPL(md_stop); 5266 5267 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5268 { 5269 int err = 0; 5270 mutex_lock(&mddev->open_mutex); 5271 if (atomic_read(&mddev->openers) > !!bdev) { 5272 printk("md: %s still in use.\n",mdname(mddev)); 5273 err = -EBUSY; 5274 goto out; 5275 } 5276 if (bdev) 5277 sync_blockdev(bdev); 5278 if (mddev->pers) { 5279 __md_stop_writes(mddev); 5280 5281 err = -ENXIO; 5282 if (mddev->ro==1) 5283 goto out; 5284 mddev->ro = 1; 5285 set_disk_ro(mddev->gendisk, 1); 5286 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5287 sysfs_notify_dirent_safe(mddev->sysfs_state); 5288 err = 0; 5289 } 5290 out: 5291 mutex_unlock(&mddev->open_mutex); 5292 return err; 5293 } 5294 5295 /* mode: 5296 * 0 - completely stop and dis-assemble array 5297 * 2 - stop but do not disassemble array 5298 */ 5299 static int do_md_stop(struct mddev * mddev, int mode, 5300 struct block_device *bdev) 5301 { 5302 struct gendisk *disk = mddev->gendisk; 5303 struct md_rdev *rdev; 5304 5305 mutex_lock(&mddev->open_mutex); 5306 if (atomic_read(&mddev->openers) > !!bdev || 5307 mddev->sysfs_active) { 5308 printk("md: %s still in use.\n",mdname(mddev)); 5309 mutex_unlock(&mddev->open_mutex); 5310 return -EBUSY; 5311 } 5312 if (bdev) 5313 /* It is possible IO was issued on some other 5314 * open file which was closed before we took ->open_mutex. 5315 * As that was not the last close __blkdev_put will not 5316 * have called sync_blockdev, so we must. 5317 */ 5318 sync_blockdev(bdev); 5319 5320 if (mddev->pers) { 5321 if (mddev->ro) 5322 set_disk_ro(disk, 0); 5323 5324 __md_stop_writes(mddev); 5325 md_stop(mddev); 5326 mddev->queue->merge_bvec_fn = NULL; 5327 mddev->queue->backing_dev_info.congested_fn = NULL; 5328 5329 /* tell userspace to handle 'inactive' */ 5330 sysfs_notify_dirent_safe(mddev->sysfs_state); 5331 5332 rdev_for_each(rdev, mddev) 5333 if (rdev->raid_disk >= 0) 5334 sysfs_unlink_rdev(mddev, rdev); 5335 5336 set_capacity(disk, 0); 5337 mutex_unlock(&mddev->open_mutex); 5338 mddev->changed = 1; 5339 revalidate_disk(disk); 5340 5341 if (mddev->ro) 5342 mddev->ro = 0; 5343 } else 5344 mutex_unlock(&mddev->open_mutex); 5345 /* 5346 * Free resources if final stop 5347 */ 5348 if (mode == 0) { 5349 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5350 5351 bitmap_destroy(mddev); 5352 if (mddev->bitmap_info.file) { 5353 restore_bitmap_write_access(mddev->bitmap_info.file); 5354 fput(mddev->bitmap_info.file); 5355 mddev->bitmap_info.file = NULL; 5356 } 5357 mddev->bitmap_info.offset = 0; 5358 5359 export_array(mddev); 5360 5361 md_clean(mddev); 5362 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5363 if (mddev->hold_active == UNTIL_STOP) 5364 mddev->hold_active = 0; 5365 } 5366 blk_integrity_unregister(disk); 5367 md_new_event(mddev); 5368 sysfs_notify_dirent_safe(mddev->sysfs_state); 5369 return 0; 5370 } 5371 5372 #ifndef MODULE 5373 static void autorun_array(struct mddev *mddev) 5374 { 5375 struct md_rdev *rdev; 5376 int err; 5377 5378 if (list_empty(&mddev->disks)) 5379 return; 5380 5381 printk(KERN_INFO "md: running: "); 5382 5383 rdev_for_each(rdev, mddev) { 5384 char b[BDEVNAME_SIZE]; 5385 printk("<%s>", bdevname(rdev->bdev,b)); 5386 } 5387 printk("\n"); 5388 5389 err = do_md_run(mddev); 5390 if (err) { 5391 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5392 do_md_stop(mddev, 0, NULL); 5393 } 5394 } 5395 5396 /* 5397 * lets try to run arrays based on all disks that have arrived 5398 * until now. (those are in pending_raid_disks) 5399 * 5400 * the method: pick the first pending disk, collect all disks with 5401 * the same UUID, remove all from the pending list and put them into 5402 * the 'same_array' list. Then order this list based on superblock 5403 * update time (freshest comes first), kick out 'old' disks and 5404 * compare superblocks. If everything's fine then run it. 5405 * 5406 * If "unit" is allocated, then bump its reference count 5407 */ 5408 static void autorun_devices(int part) 5409 { 5410 struct md_rdev *rdev0, *rdev, *tmp; 5411 struct mddev *mddev; 5412 char b[BDEVNAME_SIZE]; 5413 5414 printk(KERN_INFO "md: autorun ...\n"); 5415 while (!list_empty(&pending_raid_disks)) { 5416 int unit; 5417 dev_t dev; 5418 LIST_HEAD(candidates); 5419 rdev0 = list_entry(pending_raid_disks.next, 5420 struct md_rdev, same_set); 5421 5422 printk(KERN_INFO "md: considering %s ...\n", 5423 bdevname(rdev0->bdev,b)); 5424 INIT_LIST_HEAD(&candidates); 5425 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5426 if (super_90_load(rdev, rdev0, 0) >= 0) { 5427 printk(KERN_INFO "md: adding %s ...\n", 5428 bdevname(rdev->bdev,b)); 5429 list_move(&rdev->same_set, &candidates); 5430 } 5431 /* 5432 * now we have a set of devices, with all of them having 5433 * mostly sane superblocks. It's time to allocate the 5434 * mddev. 5435 */ 5436 if (part) { 5437 dev = MKDEV(mdp_major, 5438 rdev0->preferred_minor << MdpMinorShift); 5439 unit = MINOR(dev) >> MdpMinorShift; 5440 } else { 5441 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5442 unit = MINOR(dev); 5443 } 5444 if (rdev0->preferred_minor != unit) { 5445 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5446 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5447 break; 5448 } 5449 5450 md_probe(dev, NULL, NULL); 5451 mddev = mddev_find(dev); 5452 if (!mddev || !mddev->gendisk) { 5453 if (mddev) 5454 mddev_put(mddev); 5455 printk(KERN_ERR 5456 "md: cannot allocate memory for md drive.\n"); 5457 break; 5458 } 5459 if (mddev_lock(mddev)) 5460 printk(KERN_WARNING "md: %s locked, cannot run\n", 5461 mdname(mddev)); 5462 else if (mddev->raid_disks || mddev->major_version 5463 || !list_empty(&mddev->disks)) { 5464 printk(KERN_WARNING 5465 "md: %s already running, cannot run %s\n", 5466 mdname(mddev), bdevname(rdev0->bdev,b)); 5467 mddev_unlock(mddev); 5468 } else { 5469 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5470 mddev->persistent = 1; 5471 rdev_for_each_list(rdev, tmp, &candidates) { 5472 list_del_init(&rdev->same_set); 5473 if (bind_rdev_to_array(rdev, mddev)) 5474 export_rdev(rdev); 5475 } 5476 autorun_array(mddev); 5477 mddev_unlock(mddev); 5478 } 5479 /* on success, candidates will be empty, on error 5480 * it won't... 5481 */ 5482 rdev_for_each_list(rdev, tmp, &candidates) { 5483 list_del_init(&rdev->same_set); 5484 export_rdev(rdev); 5485 } 5486 mddev_put(mddev); 5487 } 5488 printk(KERN_INFO "md: ... autorun DONE.\n"); 5489 } 5490 #endif /* !MODULE */ 5491 5492 static int get_version(void __user * arg) 5493 { 5494 mdu_version_t ver; 5495 5496 ver.major = MD_MAJOR_VERSION; 5497 ver.minor = MD_MINOR_VERSION; 5498 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5499 5500 if (copy_to_user(arg, &ver, sizeof(ver))) 5501 return -EFAULT; 5502 5503 return 0; 5504 } 5505 5506 static int get_array_info(struct mddev * mddev, void __user * arg) 5507 { 5508 mdu_array_info_t info; 5509 int nr,working,insync,failed,spare; 5510 struct md_rdev *rdev; 5511 5512 nr=working=insync=failed=spare=0; 5513 rdev_for_each(rdev, mddev) { 5514 nr++; 5515 if (test_bit(Faulty, &rdev->flags)) 5516 failed++; 5517 else { 5518 working++; 5519 if (test_bit(In_sync, &rdev->flags)) 5520 insync++; 5521 else 5522 spare++; 5523 } 5524 } 5525 5526 info.major_version = mddev->major_version; 5527 info.minor_version = mddev->minor_version; 5528 info.patch_version = MD_PATCHLEVEL_VERSION; 5529 info.ctime = mddev->ctime; 5530 info.level = mddev->level; 5531 info.size = mddev->dev_sectors / 2; 5532 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5533 info.size = -1; 5534 info.nr_disks = nr; 5535 info.raid_disks = mddev->raid_disks; 5536 info.md_minor = mddev->md_minor; 5537 info.not_persistent= !mddev->persistent; 5538 5539 info.utime = mddev->utime; 5540 info.state = 0; 5541 if (mddev->in_sync) 5542 info.state = (1<<MD_SB_CLEAN); 5543 if (mddev->bitmap && mddev->bitmap_info.offset) 5544 info.state = (1<<MD_SB_BITMAP_PRESENT); 5545 info.active_disks = insync; 5546 info.working_disks = working; 5547 info.failed_disks = failed; 5548 info.spare_disks = spare; 5549 5550 info.layout = mddev->layout; 5551 info.chunk_size = mddev->chunk_sectors << 9; 5552 5553 if (copy_to_user(arg, &info, sizeof(info))) 5554 return -EFAULT; 5555 5556 return 0; 5557 } 5558 5559 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5560 { 5561 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5562 char *ptr, *buf = NULL; 5563 int err = -ENOMEM; 5564 5565 if (md_allow_write(mddev)) 5566 file = kmalloc(sizeof(*file), GFP_NOIO); 5567 else 5568 file = kmalloc(sizeof(*file), GFP_KERNEL); 5569 5570 if (!file) 5571 goto out; 5572 5573 /* bitmap disabled, zero the first byte and copy out */ 5574 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5575 file->pathname[0] = '\0'; 5576 goto copy_out; 5577 } 5578 5579 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5580 if (!buf) 5581 goto out; 5582 5583 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5584 buf, sizeof(file->pathname)); 5585 if (IS_ERR(ptr)) 5586 goto out; 5587 5588 strcpy(file->pathname, ptr); 5589 5590 copy_out: 5591 err = 0; 5592 if (copy_to_user(arg, file, sizeof(*file))) 5593 err = -EFAULT; 5594 out: 5595 kfree(buf); 5596 kfree(file); 5597 return err; 5598 } 5599 5600 static int get_disk_info(struct mddev * mddev, void __user * arg) 5601 { 5602 mdu_disk_info_t info; 5603 struct md_rdev *rdev; 5604 5605 if (copy_from_user(&info, arg, sizeof(info))) 5606 return -EFAULT; 5607 5608 rdev = find_rdev_nr(mddev, info.number); 5609 if (rdev) { 5610 info.major = MAJOR(rdev->bdev->bd_dev); 5611 info.minor = MINOR(rdev->bdev->bd_dev); 5612 info.raid_disk = rdev->raid_disk; 5613 info.state = 0; 5614 if (test_bit(Faulty, &rdev->flags)) 5615 info.state |= (1<<MD_DISK_FAULTY); 5616 else if (test_bit(In_sync, &rdev->flags)) { 5617 info.state |= (1<<MD_DISK_ACTIVE); 5618 info.state |= (1<<MD_DISK_SYNC); 5619 } 5620 if (test_bit(WriteMostly, &rdev->flags)) 5621 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5622 } else { 5623 info.major = info.minor = 0; 5624 info.raid_disk = -1; 5625 info.state = (1<<MD_DISK_REMOVED); 5626 } 5627 5628 if (copy_to_user(arg, &info, sizeof(info))) 5629 return -EFAULT; 5630 5631 return 0; 5632 } 5633 5634 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5635 { 5636 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5637 struct md_rdev *rdev; 5638 dev_t dev = MKDEV(info->major,info->minor); 5639 5640 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5641 return -EOVERFLOW; 5642 5643 if (!mddev->raid_disks) { 5644 int err; 5645 /* expecting a device which has a superblock */ 5646 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5647 if (IS_ERR(rdev)) { 5648 printk(KERN_WARNING 5649 "md: md_import_device returned %ld\n", 5650 PTR_ERR(rdev)); 5651 return PTR_ERR(rdev); 5652 } 5653 if (!list_empty(&mddev->disks)) { 5654 struct md_rdev *rdev0 5655 = list_entry(mddev->disks.next, 5656 struct md_rdev, same_set); 5657 err = super_types[mddev->major_version] 5658 .load_super(rdev, rdev0, mddev->minor_version); 5659 if (err < 0) { 5660 printk(KERN_WARNING 5661 "md: %s has different UUID to %s\n", 5662 bdevname(rdev->bdev,b), 5663 bdevname(rdev0->bdev,b2)); 5664 export_rdev(rdev); 5665 return -EINVAL; 5666 } 5667 } 5668 err = bind_rdev_to_array(rdev, mddev); 5669 if (err) 5670 export_rdev(rdev); 5671 return err; 5672 } 5673 5674 /* 5675 * add_new_disk can be used once the array is assembled 5676 * to add "hot spares". They must already have a superblock 5677 * written 5678 */ 5679 if (mddev->pers) { 5680 int err; 5681 if (!mddev->pers->hot_add_disk) { 5682 printk(KERN_WARNING 5683 "%s: personality does not support diskops!\n", 5684 mdname(mddev)); 5685 return -EINVAL; 5686 } 5687 if (mddev->persistent) 5688 rdev = md_import_device(dev, mddev->major_version, 5689 mddev->minor_version); 5690 else 5691 rdev = md_import_device(dev, -1, -1); 5692 if (IS_ERR(rdev)) { 5693 printk(KERN_WARNING 5694 "md: md_import_device returned %ld\n", 5695 PTR_ERR(rdev)); 5696 return PTR_ERR(rdev); 5697 } 5698 /* set saved_raid_disk if appropriate */ 5699 if (!mddev->persistent) { 5700 if (info->state & (1<<MD_DISK_SYNC) && 5701 info->raid_disk < mddev->raid_disks) { 5702 rdev->raid_disk = info->raid_disk; 5703 set_bit(In_sync, &rdev->flags); 5704 } else 5705 rdev->raid_disk = -1; 5706 } else 5707 super_types[mddev->major_version]. 5708 validate_super(mddev, rdev); 5709 if ((info->state & (1<<MD_DISK_SYNC)) && 5710 rdev->raid_disk != info->raid_disk) { 5711 /* This was a hot-add request, but events doesn't 5712 * match, so reject it. 5713 */ 5714 export_rdev(rdev); 5715 return -EINVAL; 5716 } 5717 5718 if (test_bit(In_sync, &rdev->flags)) 5719 rdev->saved_raid_disk = rdev->raid_disk; 5720 else 5721 rdev->saved_raid_disk = -1; 5722 5723 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5724 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5725 set_bit(WriteMostly, &rdev->flags); 5726 else 5727 clear_bit(WriteMostly, &rdev->flags); 5728 5729 rdev->raid_disk = -1; 5730 err = bind_rdev_to_array(rdev, mddev); 5731 if (!err && !mddev->pers->hot_remove_disk) { 5732 /* If there is hot_add_disk but no hot_remove_disk 5733 * then added disks for geometry changes, 5734 * and should be added immediately. 5735 */ 5736 super_types[mddev->major_version]. 5737 validate_super(mddev, rdev); 5738 err = mddev->pers->hot_add_disk(mddev, rdev); 5739 if (err) 5740 unbind_rdev_from_array(rdev); 5741 } 5742 if (err) 5743 export_rdev(rdev); 5744 else 5745 sysfs_notify_dirent_safe(rdev->sysfs_state); 5746 5747 md_update_sb(mddev, 1); 5748 if (mddev->degraded) 5749 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5750 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5751 if (!err) 5752 md_new_event(mddev); 5753 md_wakeup_thread(mddev->thread); 5754 return err; 5755 } 5756 5757 /* otherwise, add_new_disk is only allowed 5758 * for major_version==0 superblocks 5759 */ 5760 if (mddev->major_version != 0) { 5761 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5762 mdname(mddev)); 5763 return -EINVAL; 5764 } 5765 5766 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5767 int err; 5768 rdev = md_import_device(dev, -1, 0); 5769 if (IS_ERR(rdev)) { 5770 printk(KERN_WARNING 5771 "md: error, md_import_device() returned %ld\n", 5772 PTR_ERR(rdev)); 5773 return PTR_ERR(rdev); 5774 } 5775 rdev->desc_nr = info->number; 5776 if (info->raid_disk < mddev->raid_disks) 5777 rdev->raid_disk = info->raid_disk; 5778 else 5779 rdev->raid_disk = -1; 5780 5781 if (rdev->raid_disk < mddev->raid_disks) 5782 if (info->state & (1<<MD_DISK_SYNC)) 5783 set_bit(In_sync, &rdev->flags); 5784 5785 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5786 set_bit(WriteMostly, &rdev->flags); 5787 5788 if (!mddev->persistent) { 5789 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5790 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5791 } else 5792 rdev->sb_start = calc_dev_sboffset(rdev); 5793 rdev->sectors = rdev->sb_start; 5794 5795 err = bind_rdev_to_array(rdev, mddev); 5796 if (err) { 5797 export_rdev(rdev); 5798 return err; 5799 } 5800 } 5801 5802 return 0; 5803 } 5804 5805 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5806 { 5807 char b[BDEVNAME_SIZE]; 5808 struct md_rdev *rdev; 5809 5810 rdev = find_rdev(mddev, dev); 5811 if (!rdev) 5812 return -ENXIO; 5813 5814 if (rdev->raid_disk >= 0) 5815 goto busy; 5816 5817 kick_rdev_from_array(rdev); 5818 md_update_sb(mddev, 1); 5819 md_new_event(mddev); 5820 5821 return 0; 5822 busy: 5823 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5824 bdevname(rdev->bdev,b), mdname(mddev)); 5825 return -EBUSY; 5826 } 5827 5828 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5829 { 5830 char b[BDEVNAME_SIZE]; 5831 int err; 5832 struct md_rdev *rdev; 5833 5834 if (!mddev->pers) 5835 return -ENODEV; 5836 5837 if (mddev->major_version != 0) { 5838 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5839 " version-0 superblocks.\n", 5840 mdname(mddev)); 5841 return -EINVAL; 5842 } 5843 if (!mddev->pers->hot_add_disk) { 5844 printk(KERN_WARNING 5845 "%s: personality does not support diskops!\n", 5846 mdname(mddev)); 5847 return -EINVAL; 5848 } 5849 5850 rdev = md_import_device(dev, -1, 0); 5851 if (IS_ERR(rdev)) { 5852 printk(KERN_WARNING 5853 "md: error, md_import_device() returned %ld\n", 5854 PTR_ERR(rdev)); 5855 return -EINVAL; 5856 } 5857 5858 if (mddev->persistent) 5859 rdev->sb_start = calc_dev_sboffset(rdev); 5860 else 5861 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5862 5863 rdev->sectors = rdev->sb_start; 5864 5865 if (test_bit(Faulty, &rdev->flags)) { 5866 printk(KERN_WARNING 5867 "md: can not hot-add faulty %s disk to %s!\n", 5868 bdevname(rdev->bdev,b), mdname(mddev)); 5869 err = -EINVAL; 5870 goto abort_export; 5871 } 5872 clear_bit(In_sync, &rdev->flags); 5873 rdev->desc_nr = -1; 5874 rdev->saved_raid_disk = -1; 5875 err = bind_rdev_to_array(rdev, mddev); 5876 if (err) 5877 goto abort_export; 5878 5879 /* 5880 * The rest should better be atomic, we can have disk failures 5881 * noticed in interrupt contexts ... 5882 */ 5883 5884 rdev->raid_disk = -1; 5885 5886 md_update_sb(mddev, 1); 5887 5888 /* 5889 * Kick recovery, maybe this spare has to be added to the 5890 * array immediately. 5891 */ 5892 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5893 md_wakeup_thread(mddev->thread); 5894 md_new_event(mddev); 5895 return 0; 5896 5897 abort_export: 5898 export_rdev(rdev); 5899 return err; 5900 } 5901 5902 static int set_bitmap_file(struct mddev *mddev, int fd) 5903 { 5904 int err; 5905 5906 if (mddev->pers) { 5907 if (!mddev->pers->quiesce) 5908 return -EBUSY; 5909 if (mddev->recovery || mddev->sync_thread) 5910 return -EBUSY; 5911 /* we should be able to change the bitmap.. */ 5912 } 5913 5914 5915 if (fd >= 0) { 5916 if (mddev->bitmap) 5917 return -EEXIST; /* cannot add when bitmap is present */ 5918 mddev->bitmap_info.file = fget(fd); 5919 5920 if (mddev->bitmap_info.file == NULL) { 5921 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5922 mdname(mddev)); 5923 return -EBADF; 5924 } 5925 5926 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5927 if (err) { 5928 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5929 mdname(mddev)); 5930 fput(mddev->bitmap_info.file); 5931 mddev->bitmap_info.file = NULL; 5932 return err; 5933 } 5934 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5935 } else if (mddev->bitmap == NULL) 5936 return -ENOENT; /* cannot remove what isn't there */ 5937 err = 0; 5938 if (mddev->pers) { 5939 mddev->pers->quiesce(mddev, 1); 5940 if (fd >= 0) { 5941 err = bitmap_create(mddev); 5942 if (!err) 5943 err = bitmap_load(mddev); 5944 } 5945 if (fd < 0 || err) { 5946 bitmap_destroy(mddev); 5947 fd = -1; /* make sure to put the file */ 5948 } 5949 mddev->pers->quiesce(mddev, 0); 5950 } 5951 if (fd < 0) { 5952 if (mddev->bitmap_info.file) { 5953 restore_bitmap_write_access(mddev->bitmap_info.file); 5954 fput(mddev->bitmap_info.file); 5955 } 5956 mddev->bitmap_info.file = NULL; 5957 } 5958 5959 return err; 5960 } 5961 5962 /* 5963 * set_array_info is used two different ways 5964 * The original usage is when creating a new array. 5965 * In this usage, raid_disks is > 0 and it together with 5966 * level, size, not_persistent,layout,chunksize determine the 5967 * shape of the array. 5968 * This will always create an array with a type-0.90.0 superblock. 5969 * The newer usage is when assembling an array. 5970 * In this case raid_disks will be 0, and the major_version field is 5971 * use to determine which style super-blocks are to be found on the devices. 5972 * The minor and patch _version numbers are also kept incase the 5973 * super_block handler wishes to interpret them. 5974 */ 5975 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 5976 { 5977 5978 if (info->raid_disks == 0) { 5979 /* just setting version number for superblock loading */ 5980 if (info->major_version < 0 || 5981 info->major_version >= ARRAY_SIZE(super_types) || 5982 super_types[info->major_version].name == NULL) { 5983 /* maybe try to auto-load a module? */ 5984 printk(KERN_INFO 5985 "md: superblock version %d not known\n", 5986 info->major_version); 5987 return -EINVAL; 5988 } 5989 mddev->major_version = info->major_version; 5990 mddev->minor_version = info->minor_version; 5991 mddev->patch_version = info->patch_version; 5992 mddev->persistent = !info->not_persistent; 5993 /* ensure mddev_put doesn't delete this now that there 5994 * is some minimal configuration. 5995 */ 5996 mddev->ctime = get_seconds(); 5997 return 0; 5998 } 5999 mddev->major_version = MD_MAJOR_VERSION; 6000 mddev->minor_version = MD_MINOR_VERSION; 6001 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6002 mddev->ctime = get_seconds(); 6003 6004 mddev->level = info->level; 6005 mddev->clevel[0] = 0; 6006 mddev->dev_sectors = 2 * (sector_t)info->size; 6007 mddev->raid_disks = info->raid_disks; 6008 /* don't set md_minor, it is determined by which /dev/md* was 6009 * openned 6010 */ 6011 if (info->state & (1<<MD_SB_CLEAN)) 6012 mddev->recovery_cp = MaxSector; 6013 else 6014 mddev->recovery_cp = 0; 6015 mddev->persistent = ! info->not_persistent; 6016 mddev->external = 0; 6017 6018 mddev->layout = info->layout; 6019 mddev->chunk_sectors = info->chunk_size >> 9; 6020 6021 mddev->max_disks = MD_SB_DISKS; 6022 6023 if (mddev->persistent) 6024 mddev->flags = 0; 6025 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6026 6027 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6028 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6029 mddev->bitmap_info.offset = 0; 6030 6031 mddev->reshape_position = MaxSector; 6032 6033 /* 6034 * Generate a 128 bit UUID 6035 */ 6036 get_random_bytes(mddev->uuid, 16); 6037 6038 mddev->new_level = mddev->level; 6039 mddev->new_chunk_sectors = mddev->chunk_sectors; 6040 mddev->new_layout = mddev->layout; 6041 mddev->delta_disks = 0; 6042 mddev->reshape_backwards = 0; 6043 6044 return 0; 6045 } 6046 6047 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6048 { 6049 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6050 6051 if (mddev->external_size) 6052 return; 6053 6054 mddev->array_sectors = array_sectors; 6055 } 6056 EXPORT_SYMBOL(md_set_array_sectors); 6057 6058 static int update_size(struct mddev *mddev, sector_t num_sectors) 6059 { 6060 struct md_rdev *rdev; 6061 int rv; 6062 int fit = (num_sectors == 0); 6063 6064 if (mddev->pers->resize == NULL) 6065 return -EINVAL; 6066 /* The "num_sectors" is the number of sectors of each device that 6067 * is used. This can only make sense for arrays with redundancy. 6068 * linear and raid0 always use whatever space is available. We can only 6069 * consider changing this number if no resync or reconstruction is 6070 * happening, and if the new size is acceptable. It must fit before the 6071 * sb_start or, if that is <data_offset, it must fit before the size 6072 * of each device. If num_sectors is zero, we find the largest size 6073 * that fits. 6074 */ 6075 if (mddev->sync_thread) 6076 return -EBUSY; 6077 6078 rdev_for_each(rdev, mddev) { 6079 sector_t avail = rdev->sectors; 6080 6081 if (fit && (num_sectors == 0 || num_sectors > avail)) 6082 num_sectors = avail; 6083 if (avail < num_sectors) 6084 return -ENOSPC; 6085 } 6086 rv = mddev->pers->resize(mddev, num_sectors); 6087 if (!rv) 6088 revalidate_disk(mddev->gendisk); 6089 return rv; 6090 } 6091 6092 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6093 { 6094 int rv; 6095 struct md_rdev *rdev; 6096 /* change the number of raid disks */ 6097 if (mddev->pers->check_reshape == NULL) 6098 return -EINVAL; 6099 if (raid_disks <= 0 || 6100 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6101 return -EINVAL; 6102 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6103 return -EBUSY; 6104 6105 rdev_for_each(rdev, mddev) { 6106 if (mddev->raid_disks < raid_disks && 6107 rdev->data_offset < rdev->new_data_offset) 6108 return -EINVAL; 6109 if (mddev->raid_disks > raid_disks && 6110 rdev->data_offset > rdev->new_data_offset) 6111 return -EINVAL; 6112 } 6113 6114 mddev->delta_disks = raid_disks - mddev->raid_disks; 6115 if (mddev->delta_disks < 0) 6116 mddev->reshape_backwards = 1; 6117 else if (mddev->delta_disks > 0) 6118 mddev->reshape_backwards = 0; 6119 6120 rv = mddev->pers->check_reshape(mddev); 6121 if (rv < 0) { 6122 mddev->delta_disks = 0; 6123 mddev->reshape_backwards = 0; 6124 } 6125 return rv; 6126 } 6127 6128 6129 /* 6130 * update_array_info is used to change the configuration of an 6131 * on-line array. 6132 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6133 * fields in the info are checked against the array. 6134 * Any differences that cannot be handled will cause an error. 6135 * Normally, only one change can be managed at a time. 6136 */ 6137 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6138 { 6139 int rv = 0; 6140 int cnt = 0; 6141 int state = 0; 6142 6143 /* calculate expected state,ignoring low bits */ 6144 if (mddev->bitmap && mddev->bitmap_info.offset) 6145 state |= (1 << MD_SB_BITMAP_PRESENT); 6146 6147 if (mddev->major_version != info->major_version || 6148 mddev->minor_version != info->minor_version || 6149 /* mddev->patch_version != info->patch_version || */ 6150 mddev->ctime != info->ctime || 6151 mddev->level != info->level || 6152 /* mddev->layout != info->layout || */ 6153 !mddev->persistent != info->not_persistent|| 6154 mddev->chunk_sectors != info->chunk_size >> 9 || 6155 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6156 ((state^info->state) & 0xfffffe00) 6157 ) 6158 return -EINVAL; 6159 /* Check there is only one change */ 6160 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6161 cnt++; 6162 if (mddev->raid_disks != info->raid_disks) 6163 cnt++; 6164 if (mddev->layout != info->layout) 6165 cnt++; 6166 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6167 cnt++; 6168 if (cnt == 0) 6169 return 0; 6170 if (cnt > 1) 6171 return -EINVAL; 6172 6173 if (mddev->layout != info->layout) { 6174 /* Change layout 6175 * we don't need to do anything at the md level, the 6176 * personality will take care of it all. 6177 */ 6178 if (mddev->pers->check_reshape == NULL) 6179 return -EINVAL; 6180 else { 6181 mddev->new_layout = info->layout; 6182 rv = mddev->pers->check_reshape(mddev); 6183 if (rv) 6184 mddev->new_layout = mddev->layout; 6185 return rv; 6186 } 6187 } 6188 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6189 rv = update_size(mddev, (sector_t)info->size * 2); 6190 6191 if (mddev->raid_disks != info->raid_disks) 6192 rv = update_raid_disks(mddev, info->raid_disks); 6193 6194 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6195 if (mddev->pers->quiesce == NULL) 6196 return -EINVAL; 6197 if (mddev->recovery || mddev->sync_thread) 6198 return -EBUSY; 6199 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6200 /* add the bitmap */ 6201 if (mddev->bitmap) 6202 return -EEXIST; 6203 if (mddev->bitmap_info.default_offset == 0) 6204 return -EINVAL; 6205 mddev->bitmap_info.offset = 6206 mddev->bitmap_info.default_offset; 6207 mddev->bitmap_info.space = 6208 mddev->bitmap_info.default_space; 6209 mddev->pers->quiesce(mddev, 1); 6210 rv = bitmap_create(mddev); 6211 if (!rv) 6212 rv = bitmap_load(mddev); 6213 if (rv) 6214 bitmap_destroy(mddev); 6215 mddev->pers->quiesce(mddev, 0); 6216 } else { 6217 /* remove the bitmap */ 6218 if (!mddev->bitmap) 6219 return -ENOENT; 6220 if (mddev->bitmap->storage.file) 6221 return -EINVAL; 6222 mddev->pers->quiesce(mddev, 1); 6223 bitmap_destroy(mddev); 6224 mddev->pers->quiesce(mddev, 0); 6225 mddev->bitmap_info.offset = 0; 6226 } 6227 } 6228 md_update_sb(mddev, 1); 6229 return rv; 6230 } 6231 6232 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6233 { 6234 struct md_rdev *rdev; 6235 6236 if (mddev->pers == NULL) 6237 return -ENODEV; 6238 6239 rdev = find_rdev(mddev, dev); 6240 if (!rdev) 6241 return -ENODEV; 6242 6243 md_error(mddev, rdev); 6244 if (!test_bit(Faulty, &rdev->flags)) 6245 return -EBUSY; 6246 return 0; 6247 } 6248 6249 /* 6250 * We have a problem here : there is no easy way to give a CHS 6251 * virtual geometry. We currently pretend that we have a 2 heads 6252 * 4 sectors (with a BIG number of cylinders...). This drives 6253 * dosfs just mad... ;-) 6254 */ 6255 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6256 { 6257 struct mddev *mddev = bdev->bd_disk->private_data; 6258 6259 geo->heads = 2; 6260 geo->sectors = 4; 6261 geo->cylinders = mddev->array_sectors / 8; 6262 return 0; 6263 } 6264 6265 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6266 unsigned int cmd, unsigned long arg) 6267 { 6268 int err = 0; 6269 void __user *argp = (void __user *)arg; 6270 struct mddev *mddev = NULL; 6271 int ro; 6272 6273 switch (cmd) { 6274 case RAID_VERSION: 6275 case GET_ARRAY_INFO: 6276 case GET_DISK_INFO: 6277 break; 6278 default: 6279 if (!capable(CAP_SYS_ADMIN)) 6280 return -EACCES; 6281 } 6282 6283 /* 6284 * Commands dealing with the RAID driver but not any 6285 * particular array: 6286 */ 6287 switch (cmd) 6288 { 6289 case RAID_VERSION: 6290 err = get_version(argp); 6291 goto done; 6292 6293 case PRINT_RAID_DEBUG: 6294 err = 0; 6295 md_print_devices(); 6296 goto done; 6297 6298 #ifndef MODULE 6299 case RAID_AUTORUN: 6300 err = 0; 6301 autostart_arrays(arg); 6302 goto done; 6303 #endif 6304 default:; 6305 } 6306 6307 /* 6308 * Commands creating/starting a new array: 6309 */ 6310 6311 mddev = bdev->bd_disk->private_data; 6312 6313 if (!mddev) { 6314 BUG(); 6315 goto abort; 6316 } 6317 6318 err = mddev_lock(mddev); 6319 if (err) { 6320 printk(KERN_INFO 6321 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6322 err, cmd); 6323 goto abort; 6324 } 6325 6326 switch (cmd) 6327 { 6328 case SET_ARRAY_INFO: 6329 { 6330 mdu_array_info_t info; 6331 if (!arg) 6332 memset(&info, 0, sizeof(info)); 6333 else if (copy_from_user(&info, argp, sizeof(info))) { 6334 err = -EFAULT; 6335 goto abort_unlock; 6336 } 6337 if (mddev->pers) { 6338 err = update_array_info(mddev, &info); 6339 if (err) { 6340 printk(KERN_WARNING "md: couldn't update" 6341 " array info. %d\n", err); 6342 goto abort_unlock; 6343 } 6344 goto done_unlock; 6345 } 6346 if (!list_empty(&mddev->disks)) { 6347 printk(KERN_WARNING 6348 "md: array %s already has disks!\n", 6349 mdname(mddev)); 6350 err = -EBUSY; 6351 goto abort_unlock; 6352 } 6353 if (mddev->raid_disks) { 6354 printk(KERN_WARNING 6355 "md: array %s already initialised!\n", 6356 mdname(mddev)); 6357 err = -EBUSY; 6358 goto abort_unlock; 6359 } 6360 err = set_array_info(mddev, &info); 6361 if (err) { 6362 printk(KERN_WARNING "md: couldn't set" 6363 " array info. %d\n", err); 6364 goto abort_unlock; 6365 } 6366 } 6367 goto done_unlock; 6368 6369 default:; 6370 } 6371 6372 /* 6373 * Commands querying/configuring an existing array: 6374 */ 6375 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6376 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6377 if ((!mddev->raid_disks && !mddev->external) 6378 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6379 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6380 && cmd != GET_BITMAP_FILE) { 6381 err = -ENODEV; 6382 goto abort_unlock; 6383 } 6384 6385 /* 6386 * Commands even a read-only array can execute: 6387 */ 6388 switch (cmd) 6389 { 6390 case GET_ARRAY_INFO: 6391 err = get_array_info(mddev, argp); 6392 goto done_unlock; 6393 6394 case GET_BITMAP_FILE: 6395 err = get_bitmap_file(mddev, argp); 6396 goto done_unlock; 6397 6398 case GET_DISK_INFO: 6399 err = get_disk_info(mddev, argp); 6400 goto done_unlock; 6401 6402 case RESTART_ARRAY_RW: 6403 err = restart_array(mddev); 6404 goto done_unlock; 6405 6406 case STOP_ARRAY: 6407 err = do_md_stop(mddev, 0, bdev); 6408 goto done_unlock; 6409 6410 case STOP_ARRAY_RO: 6411 err = md_set_readonly(mddev, bdev); 6412 goto done_unlock; 6413 6414 case BLKROSET: 6415 if (get_user(ro, (int __user *)(arg))) { 6416 err = -EFAULT; 6417 goto done_unlock; 6418 } 6419 err = -EINVAL; 6420 6421 /* if the bdev is going readonly the value of mddev->ro 6422 * does not matter, no writes are coming 6423 */ 6424 if (ro) 6425 goto done_unlock; 6426 6427 /* are we are already prepared for writes? */ 6428 if (mddev->ro != 1) 6429 goto done_unlock; 6430 6431 /* transitioning to readauto need only happen for 6432 * arrays that call md_write_start 6433 */ 6434 if (mddev->pers) { 6435 err = restart_array(mddev); 6436 if (err == 0) { 6437 mddev->ro = 2; 6438 set_disk_ro(mddev->gendisk, 0); 6439 } 6440 } 6441 goto done_unlock; 6442 } 6443 6444 /* 6445 * The remaining ioctls are changing the state of the 6446 * superblock, so we do not allow them on read-only arrays. 6447 * However non-MD ioctls (e.g. get-size) will still come through 6448 * here and hit the 'default' below, so only disallow 6449 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6450 */ 6451 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6452 if (mddev->ro == 2) { 6453 mddev->ro = 0; 6454 sysfs_notify_dirent_safe(mddev->sysfs_state); 6455 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6456 md_wakeup_thread(mddev->thread); 6457 } else { 6458 err = -EROFS; 6459 goto abort_unlock; 6460 } 6461 } 6462 6463 switch (cmd) 6464 { 6465 case ADD_NEW_DISK: 6466 { 6467 mdu_disk_info_t info; 6468 if (copy_from_user(&info, argp, sizeof(info))) 6469 err = -EFAULT; 6470 else 6471 err = add_new_disk(mddev, &info); 6472 goto done_unlock; 6473 } 6474 6475 case HOT_REMOVE_DISK: 6476 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6477 goto done_unlock; 6478 6479 case HOT_ADD_DISK: 6480 err = hot_add_disk(mddev, new_decode_dev(arg)); 6481 goto done_unlock; 6482 6483 case SET_DISK_FAULTY: 6484 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6485 goto done_unlock; 6486 6487 case RUN_ARRAY: 6488 err = do_md_run(mddev); 6489 goto done_unlock; 6490 6491 case SET_BITMAP_FILE: 6492 err = set_bitmap_file(mddev, (int)arg); 6493 goto done_unlock; 6494 6495 default: 6496 err = -EINVAL; 6497 goto abort_unlock; 6498 } 6499 6500 done_unlock: 6501 abort_unlock: 6502 if (mddev->hold_active == UNTIL_IOCTL && 6503 err != -EINVAL) 6504 mddev->hold_active = 0; 6505 mddev_unlock(mddev); 6506 6507 return err; 6508 done: 6509 if (err) 6510 MD_BUG(); 6511 abort: 6512 return err; 6513 } 6514 #ifdef CONFIG_COMPAT 6515 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6516 unsigned int cmd, unsigned long arg) 6517 { 6518 switch (cmd) { 6519 case HOT_REMOVE_DISK: 6520 case HOT_ADD_DISK: 6521 case SET_DISK_FAULTY: 6522 case SET_BITMAP_FILE: 6523 /* These take in integer arg, do not convert */ 6524 break; 6525 default: 6526 arg = (unsigned long)compat_ptr(arg); 6527 break; 6528 } 6529 6530 return md_ioctl(bdev, mode, cmd, arg); 6531 } 6532 #endif /* CONFIG_COMPAT */ 6533 6534 static int md_open(struct block_device *bdev, fmode_t mode) 6535 { 6536 /* 6537 * Succeed if we can lock the mddev, which confirms that 6538 * it isn't being stopped right now. 6539 */ 6540 struct mddev *mddev = mddev_find(bdev->bd_dev); 6541 int err; 6542 6543 if (!mddev) 6544 return -ENODEV; 6545 6546 if (mddev->gendisk != bdev->bd_disk) { 6547 /* we are racing with mddev_put which is discarding this 6548 * bd_disk. 6549 */ 6550 mddev_put(mddev); 6551 /* Wait until bdev->bd_disk is definitely gone */ 6552 flush_workqueue(md_misc_wq); 6553 /* Then retry the open from the top */ 6554 return -ERESTARTSYS; 6555 } 6556 BUG_ON(mddev != bdev->bd_disk->private_data); 6557 6558 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6559 goto out; 6560 6561 err = 0; 6562 atomic_inc(&mddev->openers); 6563 mutex_unlock(&mddev->open_mutex); 6564 6565 check_disk_change(bdev); 6566 out: 6567 return err; 6568 } 6569 6570 static int md_release(struct gendisk *disk, fmode_t mode) 6571 { 6572 struct mddev *mddev = disk->private_data; 6573 6574 BUG_ON(!mddev); 6575 atomic_dec(&mddev->openers); 6576 mddev_put(mddev); 6577 6578 return 0; 6579 } 6580 6581 static int md_media_changed(struct gendisk *disk) 6582 { 6583 struct mddev *mddev = disk->private_data; 6584 6585 return mddev->changed; 6586 } 6587 6588 static int md_revalidate(struct gendisk *disk) 6589 { 6590 struct mddev *mddev = disk->private_data; 6591 6592 mddev->changed = 0; 6593 return 0; 6594 } 6595 static const struct block_device_operations md_fops = 6596 { 6597 .owner = THIS_MODULE, 6598 .open = md_open, 6599 .release = md_release, 6600 .ioctl = md_ioctl, 6601 #ifdef CONFIG_COMPAT 6602 .compat_ioctl = md_compat_ioctl, 6603 #endif 6604 .getgeo = md_getgeo, 6605 .media_changed = md_media_changed, 6606 .revalidate_disk= md_revalidate, 6607 }; 6608 6609 static int md_thread(void * arg) 6610 { 6611 struct md_thread *thread = arg; 6612 6613 /* 6614 * md_thread is a 'system-thread', it's priority should be very 6615 * high. We avoid resource deadlocks individually in each 6616 * raid personality. (RAID5 does preallocation) We also use RR and 6617 * the very same RT priority as kswapd, thus we will never get 6618 * into a priority inversion deadlock. 6619 * 6620 * we definitely have to have equal or higher priority than 6621 * bdflush, otherwise bdflush will deadlock if there are too 6622 * many dirty RAID5 blocks. 6623 */ 6624 6625 allow_signal(SIGKILL); 6626 while (!kthread_should_stop()) { 6627 6628 /* We need to wait INTERRUPTIBLE so that 6629 * we don't add to the load-average. 6630 * That means we need to be sure no signals are 6631 * pending 6632 */ 6633 if (signal_pending(current)) 6634 flush_signals(current); 6635 6636 wait_event_interruptible_timeout 6637 (thread->wqueue, 6638 test_bit(THREAD_WAKEUP, &thread->flags) 6639 || kthread_should_stop(), 6640 thread->timeout); 6641 6642 clear_bit(THREAD_WAKEUP, &thread->flags); 6643 if (!kthread_should_stop()) 6644 thread->run(thread->mddev); 6645 } 6646 6647 return 0; 6648 } 6649 6650 void md_wakeup_thread(struct md_thread *thread) 6651 { 6652 if (thread) { 6653 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6654 set_bit(THREAD_WAKEUP, &thread->flags); 6655 wake_up(&thread->wqueue); 6656 } 6657 } 6658 6659 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev, 6660 const char *name) 6661 { 6662 struct md_thread *thread; 6663 6664 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6665 if (!thread) 6666 return NULL; 6667 6668 init_waitqueue_head(&thread->wqueue); 6669 6670 thread->run = run; 6671 thread->mddev = mddev; 6672 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6673 thread->tsk = kthread_run(md_thread, thread, 6674 "%s_%s", 6675 mdname(thread->mddev), 6676 name); 6677 if (IS_ERR(thread->tsk)) { 6678 kfree(thread); 6679 return NULL; 6680 } 6681 return thread; 6682 } 6683 6684 void md_unregister_thread(struct md_thread **threadp) 6685 { 6686 struct md_thread *thread = *threadp; 6687 if (!thread) 6688 return; 6689 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6690 /* Locking ensures that mddev_unlock does not wake_up a 6691 * non-existent thread 6692 */ 6693 spin_lock(&pers_lock); 6694 *threadp = NULL; 6695 spin_unlock(&pers_lock); 6696 6697 kthread_stop(thread->tsk); 6698 kfree(thread); 6699 } 6700 6701 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6702 { 6703 if (!mddev) { 6704 MD_BUG(); 6705 return; 6706 } 6707 6708 if (!rdev || test_bit(Faulty, &rdev->flags)) 6709 return; 6710 6711 if (!mddev->pers || !mddev->pers->error_handler) 6712 return; 6713 mddev->pers->error_handler(mddev,rdev); 6714 if (mddev->degraded) 6715 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6716 sysfs_notify_dirent_safe(rdev->sysfs_state); 6717 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6718 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6719 md_wakeup_thread(mddev->thread); 6720 if (mddev->event_work.func) 6721 queue_work(md_misc_wq, &mddev->event_work); 6722 md_new_event_inintr(mddev); 6723 } 6724 6725 /* seq_file implementation /proc/mdstat */ 6726 6727 static void status_unused(struct seq_file *seq) 6728 { 6729 int i = 0; 6730 struct md_rdev *rdev; 6731 6732 seq_printf(seq, "unused devices: "); 6733 6734 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6735 char b[BDEVNAME_SIZE]; 6736 i++; 6737 seq_printf(seq, "%s ", 6738 bdevname(rdev->bdev,b)); 6739 } 6740 if (!i) 6741 seq_printf(seq, "<none>"); 6742 6743 seq_printf(seq, "\n"); 6744 } 6745 6746 6747 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6748 { 6749 sector_t max_sectors, resync, res; 6750 unsigned long dt, db; 6751 sector_t rt; 6752 int scale; 6753 unsigned int per_milli; 6754 6755 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6756 6757 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6758 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6759 max_sectors = mddev->resync_max_sectors; 6760 else 6761 max_sectors = mddev->dev_sectors; 6762 6763 /* 6764 * Should not happen. 6765 */ 6766 if (!max_sectors) { 6767 MD_BUG(); 6768 return; 6769 } 6770 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6771 * in a sector_t, and (max_sectors>>scale) will fit in a 6772 * u32, as those are the requirements for sector_div. 6773 * Thus 'scale' must be at least 10 6774 */ 6775 scale = 10; 6776 if (sizeof(sector_t) > sizeof(unsigned long)) { 6777 while ( max_sectors/2 > (1ULL<<(scale+32))) 6778 scale++; 6779 } 6780 res = (resync>>scale)*1000; 6781 sector_div(res, (u32)((max_sectors>>scale)+1)); 6782 6783 per_milli = res; 6784 { 6785 int i, x = per_milli/50, y = 20-x; 6786 seq_printf(seq, "["); 6787 for (i = 0; i < x; i++) 6788 seq_printf(seq, "="); 6789 seq_printf(seq, ">"); 6790 for (i = 0; i < y; i++) 6791 seq_printf(seq, "."); 6792 seq_printf(seq, "] "); 6793 } 6794 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6795 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6796 "reshape" : 6797 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6798 "check" : 6799 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6800 "resync" : "recovery"))), 6801 per_milli/10, per_milli % 10, 6802 (unsigned long long) resync/2, 6803 (unsigned long long) max_sectors/2); 6804 6805 /* 6806 * dt: time from mark until now 6807 * db: blocks written from mark until now 6808 * rt: remaining time 6809 * 6810 * rt is a sector_t, so could be 32bit or 64bit. 6811 * So we divide before multiply in case it is 32bit and close 6812 * to the limit. 6813 * We scale the divisor (db) by 32 to avoid losing precision 6814 * near the end of resync when the number of remaining sectors 6815 * is close to 'db'. 6816 * We then divide rt by 32 after multiplying by db to compensate. 6817 * The '+1' avoids division by zero if db is very small. 6818 */ 6819 dt = ((jiffies - mddev->resync_mark) / HZ); 6820 if (!dt) dt++; 6821 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6822 - mddev->resync_mark_cnt; 6823 6824 rt = max_sectors - resync; /* number of remaining sectors */ 6825 sector_div(rt, db/32+1); 6826 rt *= dt; 6827 rt >>= 5; 6828 6829 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6830 ((unsigned long)rt % 60)/6); 6831 6832 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6833 } 6834 6835 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6836 { 6837 struct list_head *tmp; 6838 loff_t l = *pos; 6839 struct mddev *mddev; 6840 6841 if (l >= 0x10000) 6842 return NULL; 6843 if (!l--) 6844 /* header */ 6845 return (void*)1; 6846 6847 spin_lock(&all_mddevs_lock); 6848 list_for_each(tmp,&all_mddevs) 6849 if (!l--) { 6850 mddev = list_entry(tmp, struct mddev, all_mddevs); 6851 mddev_get(mddev); 6852 spin_unlock(&all_mddevs_lock); 6853 return mddev; 6854 } 6855 spin_unlock(&all_mddevs_lock); 6856 if (!l--) 6857 return (void*)2;/* tail */ 6858 return NULL; 6859 } 6860 6861 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6862 { 6863 struct list_head *tmp; 6864 struct mddev *next_mddev, *mddev = v; 6865 6866 ++*pos; 6867 if (v == (void*)2) 6868 return NULL; 6869 6870 spin_lock(&all_mddevs_lock); 6871 if (v == (void*)1) 6872 tmp = all_mddevs.next; 6873 else 6874 tmp = mddev->all_mddevs.next; 6875 if (tmp != &all_mddevs) 6876 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6877 else { 6878 next_mddev = (void*)2; 6879 *pos = 0x10000; 6880 } 6881 spin_unlock(&all_mddevs_lock); 6882 6883 if (v != (void*)1) 6884 mddev_put(mddev); 6885 return next_mddev; 6886 6887 } 6888 6889 static void md_seq_stop(struct seq_file *seq, void *v) 6890 { 6891 struct mddev *mddev = v; 6892 6893 if (mddev && v != (void*)1 && v != (void*)2) 6894 mddev_put(mddev); 6895 } 6896 6897 static int md_seq_show(struct seq_file *seq, void *v) 6898 { 6899 struct mddev *mddev = v; 6900 sector_t sectors; 6901 struct md_rdev *rdev; 6902 6903 if (v == (void*)1) { 6904 struct md_personality *pers; 6905 seq_printf(seq, "Personalities : "); 6906 spin_lock(&pers_lock); 6907 list_for_each_entry(pers, &pers_list, list) 6908 seq_printf(seq, "[%s] ", pers->name); 6909 6910 spin_unlock(&pers_lock); 6911 seq_printf(seq, "\n"); 6912 seq->poll_event = atomic_read(&md_event_count); 6913 return 0; 6914 } 6915 if (v == (void*)2) { 6916 status_unused(seq); 6917 return 0; 6918 } 6919 6920 if (mddev_lock(mddev) < 0) 6921 return -EINTR; 6922 6923 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6924 seq_printf(seq, "%s : %sactive", mdname(mddev), 6925 mddev->pers ? "" : "in"); 6926 if (mddev->pers) { 6927 if (mddev->ro==1) 6928 seq_printf(seq, " (read-only)"); 6929 if (mddev->ro==2) 6930 seq_printf(seq, " (auto-read-only)"); 6931 seq_printf(seq, " %s", mddev->pers->name); 6932 } 6933 6934 sectors = 0; 6935 rdev_for_each(rdev, mddev) { 6936 char b[BDEVNAME_SIZE]; 6937 seq_printf(seq, " %s[%d]", 6938 bdevname(rdev->bdev,b), rdev->desc_nr); 6939 if (test_bit(WriteMostly, &rdev->flags)) 6940 seq_printf(seq, "(W)"); 6941 if (test_bit(Faulty, &rdev->flags)) { 6942 seq_printf(seq, "(F)"); 6943 continue; 6944 } 6945 if (rdev->raid_disk < 0) 6946 seq_printf(seq, "(S)"); /* spare */ 6947 if (test_bit(Replacement, &rdev->flags)) 6948 seq_printf(seq, "(R)"); 6949 sectors += rdev->sectors; 6950 } 6951 6952 if (!list_empty(&mddev->disks)) { 6953 if (mddev->pers) 6954 seq_printf(seq, "\n %llu blocks", 6955 (unsigned long long) 6956 mddev->array_sectors / 2); 6957 else 6958 seq_printf(seq, "\n %llu blocks", 6959 (unsigned long long)sectors / 2); 6960 } 6961 if (mddev->persistent) { 6962 if (mddev->major_version != 0 || 6963 mddev->minor_version != 90) { 6964 seq_printf(seq," super %d.%d", 6965 mddev->major_version, 6966 mddev->minor_version); 6967 } 6968 } else if (mddev->external) 6969 seq_printf(seq, " super external:%s", 6970 mddev->metadata_type); 6971 else 6972 seq_printf(seq, " super non-persistent"); 6973 6974 if (mddev->pers) { 6975 mddev->pers->status(seq, mddev); 6976 seq_printf(seq, "\n "); 6977 if (mddev->pers->sync_request) { 6978 if (mddev->curr_resync > 2) { 6979 status_resync(seq, mddev); 6980 seq_printf(seq, "\n "); 6981 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6982 seq_printf(seq, "\tresync=DELAYED\n "); 6983 else if (mddev->recovery_cp < MaxSector) 6984 seq_printf(seq, "\tresync=PENDING\n "); 6985 } 6986 } else 6987 seq_printf(seq, "\n "); 6988 6989 bitmap_status(seq, mddev->bitmap); 6990 6991 seq_printf(seq, "\n"); 6992 } 6993 mddev_unlock(mddev); 6994 6995 return 0; 6996 } 6997 6998 static const struct seq_operations md_seq_ops = { 6999 .start = md_seq_start, 7000 .next = md_seq_next, 7001 .stop = md_seq_stop, 7002 .show = md_seq_show, 7003 }; 7004 7005 static int md_seq_open(struct inode *inode, struct file *file) 7006 { 7007 struct seq_file *seq; 7008 int error; 7009 7010 error = seq_open(file, &md_seq_ops); 7011 if (error) 7012 return error; 7013 7014 seq = file->private_data; 7015 seq->poll_event = atomic_read(&md_event_count); 7016 return error; 7017 } 7018 7019 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7020 { 7021 struct seq_file *seq = filp->private_data; 7022 int mask; 7023 7024 poll_wait(filp, &md_event_waiters, wait); 7025 7026 /* always allow read */ 7027 mask = POLLIN | POLLRDNORM; 7028 7029 if (seq->poll_event != atomic_read(&md_event_count)) 7030 mask |= POLLERR | POLLPRI; 7031 return mask; 7032 } 7033 7034 static const struct file_operations md_seq_fops = { 7035 .owner = THIS_MODULE, 7036 .open = md_seq_open, 7037 .read = seq_read, 7038 .llseek = seq_lseek, 7039 .release = seq_release_private, 7040 .poll = mdstat_poll, 7041 }; 7042 7043 int register_md_personality(struct md_personality *p) 7044 { 7045 spin_lock(&pers_lock); 7046 list_add_tail(&p->list, &pers_list); 7047 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7048 spin_unlock(&pers_lock); 7049 return 0; 7050 } 7051 7052 int unregister_md_personality(struct md_personality *p) 7053 { 7054 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7055 spin_lock(&pers_lock); 7056 list_del_init(&p->list); 7057 spin_unlock(&pers_lock); 7058 return 0; 7059 } 7060 7061 static int is_mddev_idle(struct mddev *mddev, int init) 7062 { 7063 struct md_rdev * rdev; 7064 int idle; 7065 int curr_events; 7066 7067 idle = 1; 7068 rcu_read_lock(); 7069 rdev_for_each_rcu(rdev, mddev) { 7070 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7071 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7072 (int)part_stat_read(&disk->part0, sectors[1]) - 7073 atomic_read(&disk->sync_io); 7074 /* sync IO will cause sync_io to increase before the disk_stats 7075 * as sync_io is counted when a request starts, and 7076 * disk_stats is counted when it completes. 7077 * So resync activity will cause curr_events to be smaller than 7078 * when there was no such activity. 7079 * non-sync IO will cause disk_stat to increase without 7080 * increasing sync_io so curr_events will (eventually) 7081 * be larger than it was before. Once it becomes 7082 * substantially larger, the test below will cause 7083 * the array to appear non-idle, and resync will slow 7084 * down. 7085 * If there is a lot of outstanding resync activity when 7086 * we set last_event to curr_events, then all that activity 7087 * completing might cause the array to appear non-idle 7088 * and resync will be slowed down even though there might 7089 * not have been non-resync activity. This will only 7090 * happen once though. 'last_events' will soon reflect 7091 * the state where there is little or no outstanding 7092 * resync requests, and further resync activity will 7093 * always make curr_events less than last_events. 7094 * 7095 */ 7096 if (init || curr_events - rdev->last_events > 64) { 7097 rdev->last_events = curr_events; 7098 idle = 0; 7099 } 7100 } 7101 rcu_read_unlock(); 7102 return idle; 7103 } 7104 7105 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7106 { 7107 /* another "blocks" (512byte) blocks have been synced */ 7108 atomic_sub(blocks, &mddev->recovery_active); 7109 wake_up(&mddev->recovery_wait); 7110 if (!ok) { 7111 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7112 md_wakeup_thread(mddev->thread); 7113 // stop recovery, signal do_sync .... 7114 } 7115 } 7116 7117 7118 /* md_write_start(mddev, bi) 7119 * If we need to update some array metadata (e.g. 'active' flag 7120 * in superblock) before writing, schedule a superblock update 7121 * and wait for it to complete. 7122 */ 7123 void md_write_start(struct mddev *mddev, struct bio *bi) 7124 { 7125 int did_change = 0; 7126 if (bio_data_dir(bi) != WRITE) 7127 return; 7128 7129 BUG_ON(mddev->ro == 1); 7130 if (mddev->ro == 2) { 7131 /* need to switch to read/write */ 7132 mddev->ro = 0; 7133 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7134 md_wakeup_thread(mddev->thread); 7135 md_wakeup_thread(mddev->sync_thread); 7136 did_change = 1; 7137 } 7138 atomic_inc(&mddev->writes_pending); 7139 if (mddev->safemode == 1) 7140 mddev->safemode = 0; 7141 if (mddev->in_sync) { 7142 spin_lock_irq(&mddev->write_lock); 7143 if (mddev->in_sync) { 7144 mddev->in_sync = 0; 7145 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7146 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7147 md_wakeup_thread(mddev->thread); 7148 did_change = 1; 7149 } 7150 spin_unlock_irq(&mddev->write_lock); 7151 } 7152 if (did_change) 7153 sysfs_notify_dirent_safe(mddev->sysfs_state); 7154 wait_event(mddev->sb_wait, 7155 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7156 } 7157 7158 void md_write_end(struct mddev *mddev) 7159 { 7160 if (atomic_dec_and_test(&mddev->writes_pending)) { 7161 if (mddev->safemode == 2) 7162 md_wakeup_thread(mddev->thread); 7163 else if (mddev->safemode_delay) 7164 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7165 } 7166 } 7167 7168 /* md_allow_write(mddev) 7169 * Calling this ensures that the array is marked 'active' so that writes 7170 * may proceed without blocking. It is important to call this before 7171 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7172 * Must be called with mddev_lock held. 7173 * 7174 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7175 * is dropped, so return -EAGAIN after notifying userspace. 7176 */ 7177 int md_allow_write(struct mddev *mddev) 7178 { 7179 if (!mddev->pers) 7180 return 0; 7181 if (mddev->ro) 7182 return 0; 7183 if (!mddev->pers->sync_request) 7184 return 0; 7185 7186 spin_lock_irq(&mddev->write_lock); 7187 if (mddev->in_sync) { 7188 mddev->in_sync = 0; 7189 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7190 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7191 if (mddev->safemode_delay && 7192 mddev->safemode == 0) 7193 mddev->safemode = 1; 7194 spin_unlock_irq(&mddev->write_lock); 7195 md_update_sb(mddev, 0); 7196 sysfs_notify_dirent_safe(mddev->sysfs_state); 7197 } else 7198 spin_unlock_irq(&mddev->write_lock); 7199 7200 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7201 return -EAGAIN; 7202 else 7203 return 0; 7204 } 7205 EXPORT_SYMBOL_GPL(md_allow_write); 7206 7207 #define SYNC_MARKS 10 7208 #define SYNC_MARK_STEP (3*HZ) 7209 void md_do_sync(struct mddev *mddev) 7210 { 7211 struct mddev *mddev2; 7212 unsigned int currspeed = 0, 7213 window; 7214 sector_t max_sectors,j, io_sectors; 7215 unsigned long mark[SYNC_MARKS]; 7216 sector_t mark_cnt[SYNC_MARKS]; 7217 int last_mark,m; 7218 struct list_head *tmp; 7219 sector_t last_check; 7220 int skipped = 0; 7221 struct md_rdev *rdev; 7222 char *desc; 7223 struct blk_plug plug; 7224 7225 /* just incase thread restarts... */ 7226 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7227 return; 7228 if (mddev->ro) /* never try to sync a read-only array */ 7229 return; 7230 7231 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7232 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7233 desc = "data-check"; 7234 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7235 desc = "requested-resync"; 7236 else 7237 desc = "resync"; 7238 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7239 desc = "reshape"; 7240 else 7241 desc = "recovery"; 7242 7243 /* we overload curr_resync somewhat here. 7244 * 0 == not engaged in resync at all 7245 * 2 == checking that there is no conflict with another sync 7246 * 1 == like 2, but have yielded to allow conflicting resync to 7247 * commense 7248 * other == active in resync - this many blocks 7249 * 7250 * Before starting a resync we must have set curr_resync to 7251 * 2, and then checked that every "conflicting" array has curr_resync 7252 * less than ours. When we find one that is the same or higher 7253 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7254 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7255 * This will mean we have to start checking from the beginning again. 7256 * 7257 */ 7258 7259 do { 7260 mddev->curr_resync = 2; 7261 7262 try_again: 7263 if (kthread_should_stop()) 7264 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7265 7266 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7267 goto skip; 7268 for_each_mddev(mddev2, tmp) { 7269 if (mddev2 == mddev) 7270 continue; 7271 if (!mddev->parallel_resync 7272 && mddev2->curr_resync 7273 && match_mddev_units(mddev, mddev2)) { 7274 DEFINE_WAIT(wq); 7275 if (mddev < mddev2 && mddev->curr_resync == 2) { 7276 /* arbitrarily yield */ 7277 mddev->curr_resync = 1; 7278 wake_up(&resync_wait); 7279 } 7280 if (mddev > mddev2 && mddev->curr_resync == 1) 7281 /* no need to wait here, we can wait the next 7282 * time 'round when curr_resync == 2 7283 */ 7284 continue; 7285 /* We need to wait 'interruptible' so as not to 7286 * contribute to the load average, and not to 7287 * be caught by 'softlockup' 7288 */ 7289 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7290 if (!kthread_should_stop() && 7291 mddev2->curr_resync >= mddev->curr_resync) { 7292 printk(KERN_INFO "md: delaying %s of %s" 7293 " until %s has finished (they" 7294 " share one or more physical units)\n", 7295 desc, mdname(mddev), mdname(mddev2)); 7296 mddev_put(mddev2); 7297 if (signal_pending(current)) 7298 flush_signals(current); 7299 schedule(); 7300 finish_wait(&resync_wait, &wq); 7301 goto try_again; 7302 } 7303 finish_wait(&resync_wait, &wq); 7304 } 7305 } 7306 } while (mddev->curr_resync < 2); 7307 7308 j = 0; 7309 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7310 /* resync follows the size requested by the personality, 7311 * which defaults to physical size, but can be virtual size 7312 */ 7313 max_sectors = mddev->resync_max_sectors; 7314 mddev->resync_mismatches = 0; 7315 /* we don't use the checkpoint if there's a bitmap */ 7316 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7317 j = mddev->resync_min; 7318 else if (!mddev->bitmap) 7319 j = mddev->recovery_cp; 7320 7321 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7322 max_sectors = mddev->resync_max_sectors; 7323 else { 7324 /* recovery follows the physical size of devices */ 7325 max_sectors = mddev->dev_sectors; 7326 j = MaxSector; 7327 rcu_read_lock(); 7328 rdev_for_each_rcu(rdev, mddev) 7329 if (rdev->raid_disk >= 0 && 7330 !test_bit(Faulty, &rdev->flags) && 7331 !test_bit(In_sync, &rdev->flags) && 7332 rdev->recovery_offset < j) 7333 j = rdev->recovery_offset; 7334 rcu_read_unlock(); 7335 } 7336 7337 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7338 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7339 " %d KB/sec/disk.\n", speed_min(mddev)); 7340 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7341 "(but not more than %d KB/sec) for %s.\n", 7342 speed_max(mddev), desc); 7343 7344 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7345 7346 io_sectors = 0; 7347 for (m = 0; m < SYNC_MARKS; m++) { 7348 mark[m] = jiffies; 7349 mark_cnt[m] = io_sectors; 7350 } 7351 last_mark = 0; 7352 mddev->resync_mark = mark[last_mark]; 7353 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7354 7355 /* 7356 * Tune reconstruction: 7357 */ 7358 window = 32*(PAGE_SIZE/512); 7359 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7360 window/2, (unsigned long long)max_sectors/2); 7361 7362 atomic_set(&mddev->recovery_active, 0); 7363 last_check = 0; 7364 7365 if (j>2) { 7366 printk(KERN_INFO 7367 "md: resuming %s of %s from checkpoint.\n", 7368 desc, mdname(mddev)); 7369 mddev->curr_resync = j; 7370 } 7371 mddev->curr_resync_completed = j; 7372 7373 blk_start_plug(&plug); 7374 while (j < max_sectors) { 7375 sector_t sectors; 7376 7377 skipped = 0; 7378 7379 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7380 ((mddev->curr_resync > mddev->curr_resync_completed && 7381 (mddev->curr_resync - mddev->curr_resync_completed) 7382 > (max_sectors >> 4)) || 7383 (j - mddev->curr_resync_completed)*2 7384 >= mddev->resync_max - mddev->curr_resync_completed 7385 )) { 7386 /* time to update curr_resync_completed */ 7387 wait_event(mddev->recovery_wait, 7388 atomic_read(&mddev->recovery_active) == 0); 7389 mddev->curr_resync_completed = j; 7390 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7391 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7392 } 7393 7394 while (j >= mddev->resync_max && !kthread_should_stop()) { 7395 /* As this condition is controlled by user-space, 7396 * we can block indefinitely, so use '_interruptible' 7397 * to avoid triggering warnings. 7398 */ 7399 flush_signals(current); /* just in case */ 7400 wait_event_interruptible(mddev->recovery_wait, 7401 mddev->resync_max > j 7402 || kthread_should_stop()); 7403 } 7404 7405 if (kthread_should_stop()) 7406 goto interrupted; 7407 7408 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7409 currspeed < speed_min(mddev)); 7410 if (sectors == 0) { 7411 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7412 goto out; 7413 } 7414 7415 if (!skipped) { /* actual IO requested */ 7416 io_sectors += sectors; 7417 atomic_add(sectors, &mddev->recovery_active); 7418 } 7419 7420 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7421 break; 7422 7423 j += sectors; 7424 if (j>1) mddev->curr_resync = j; 7425 mddev->curr_mark_cnt = io_sectors; 7426 if (last_check == 0) 7427 /* this is the earliest that rebuild will be 7428 * visible in /proc/mdstat 7429 */ 7430 md_new_event(mddev); 7431 7432 if (last_check + window > io_sectors || j == max_sectors) 7433 continue; 7434 7435 last_check = io_sectors; 7436 repeat: 7437 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7438 /* step marks */ 7439 int next = (last_mark+1) % SYNC_MARKS; 7440 7441 mddev->resync_mark = mark[next]; 7442 mddev->resync_mark_cnt = mark_cnt[next]; 7443 mark[next] = jiffies; 7444 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7445 last_mark = next; 7446 } 7447 7448 7449 if (kthread_should_stop()) 7450 goto interrupted; 7451 7452 7453 /* 7454 * this loop exits only if either when we are slower than 7455 * the 'hard' speed limit, or the system was IO-idle for 7456 * a jiffy. 7457 * the system might be non-idle CPU-wise, but we only care 7458 * about not overloading the IO subsystem. (things like an 7459 * e2fsck being done on the RAID array should execute fast) 7460 */ 7461 cond_resched(); 7462 7463 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7464 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7465 7466 if (currspeed > speed_min(mddev)) { 7467 if ((currspeed > speed_max(mddev)) || 7468 !is_mddev_idle(mddev, 0)) { 7469 msleep(500); 7470 goto repeat; 7471 } 7472 } 7473 } 7474 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7475 /* 7476 * this also signals 'finished resyncing' to md_stop 7477 */ 7478 out: 7479 blk_finish_plug(&plug); 7480 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7481 7482 /* tell personality that we are finished */ 7483 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7484 7485 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7486 mddev->curr_resync > 2) { 7487 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7488 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7489 if (mddev->curr_resync >= mddev->recovery_cp) { 7490 printk(KERN_INFO 7491 "md: checkpointing %s of %s.\n", 7492 desc, mdname(mddev)); 7493 mddev->recovery_cp = 7494 mddev->curr_resync_completed; 7495 } 7496 } else 7497 mddev->recovery_cp = MaxSector; 7498 } else { 7499 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7500 mddev->curr_resync = MaxSector; 7501 rcu_read_lock(); 7502 rdev_for_each_rcu(rdev, mddev) 7503 if (rdev->raid_disk >= 0 && 7504 mddev->delta_disks >= 0 && 7505 !test_bit(Faulty, &rdev->flags) && 7506 !test_bit(In_sync, &rdev->flags) && 7507 rdev->recovery_offset < mddev->curr_resync) 7508 rdev->recovery_offset = mddev->curr_resync; 7509 rcu_read_unlock(); 7510 } 7511 } 7512 skip: 7513 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7514 7515 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7516 /* We completed so min/max setting can be forgotten if used. */ 7517 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7518 mddev->resync_min = 0; 7519 mddev->resync_max = MaxSector; 7520 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7521 mddev->resync_min = mddev->curr_resync_completed; 7522 mddev->curr_resync = 0; 7523 wake_up(&resync_wait); 7524 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7525 md_wakeup_thread(mddev->thread); 7526 return; 7527 7528 interrupted: 7529 /* 7530 * got a signal, exit. 7531 */ 7532 printk(KERN_INFO 7533 "md: md_do_sync() got signal ... exiting\n"); 7534 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7535 goto out; 7536 7537 } 7538 EXPORT_SYMBOL_GPL(md_do_sync); 7539 7540 static int remove_and_add_spares(struct mddev *mddev) 7541 { 7542 struct md_rdev *rdev; 7543 int spares = 0; 7544 int removed = 0; 7545 7546 mddev->curr_resync_completed = 0; 7547 7548 rdev_for_each(rdev, mddev) 7549 if (rdev->raid_disk >= 0 && 7550 !test_bit(Blocked, &rdev->flags) && 7551 (test_bit(Faulty, &rdev->flags) || 7552 ! test_bit(In_sync, &rdev->flags)) && 7553 atomic_read(&rdev->nr_pending)==0) { 7554 if (mddev->pers->hot_remove_disk( 7555 mddev, rdev) == 0) { 7556 sysfs_unlink_rdev(mddev, rdev); 7557 rdev->raid_disk = -1; 7558 removed++; 7559 } 7560 } 7561 if (removed) 7562 sysfs_notify(&mddev->kobj, NULL, 7563 "degraded"); 7564 7565 7566 rdev_for_each(rdev, mddev) { 7567 if (rdev->raid_disk >= 0 && 7568 !test_bit(In_sync, &rdev->flags) && 7569 !test_bit(Faulty, &rdev->flags)) 7570 spares++; 7571 if (rdev->raid_disk < 0 7572 && !test_bit(Faulty, &rdev->flags)) { 7573 rdev->recovery_offset = 0; 7574 if (mddev->pers-> 7575 hot_add_disk(mddev, rdev) == 0) { 7576 if (sysfs_link_rdev(mddev, rdev)) 7577 /* failure here is OK */; 7578 spares++; 7579 md_new_event(mddev); 7580 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7581 } 7582 } 7583 } 7584 return spares; 7585 } 7586 7587 static void reap_sync_thread(struct mddev *mddev) 7588 { 7589 struct md_rdev *rdev; 7590 7591 /* resync has finished, collect result */ 7592 md_unregister_thread(&mddev->sync_thread); 7593 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7594 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7595 /* success...*/ 7596 /* activate any spares */ 7597 if (mddev->pers->spare_active(mddev)) 7598 sysfs_notify(&mddev->kobj, NULL, 7599 "degraded"); 7600 } 7601 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7602 mddev->pers->finish_reshape) 7603 mddev->pers->finish_reshape(mddev); 7604 7605 /* If array is no-longer degraded, then any saved_raid_disk 7606 * information must be scrapped. Also if any device is now 7607 * In_sync we must scrape the saved_raid_disk for that device 7608 * do the superblock for an incrementally recovered device 7609 * written out. 7610 */ 7611 rdev_for_each(rdev, mddev) 7612 if (!mddev->degraded || 7613 test_bit(In_sync, &rdev->flags)) 7614 rdev->saved_raid_disk = -1; 7615 7616 md_update_sb(mddev, 1); 7617 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7618 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7619 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7620 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7621 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7622 /* flag recovery needed just to double check */ 7623 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7624 sysfs_notify_dirent_safe(mddev->sysfs_action); 7625 md_new_event(mddev); 7626 if (mddev->event_work.func) 7627 queue_work(md_misc_wq, &mddev->event_work); 7628 } 7629 7630 /* 7631 * This routine is regularly called by all per-raid-array threads to 7632 * deal with generic issues like resync and super-block update. 7633 * Raid personalities that don't have a thread (linear/raid0) do not 7634 * need this as they never do any recovery or update the superblock. 7635 * 7636 * It does not do any resync itself, but rather "forks" off other threads 7637 * to do that as needed. 7638 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7639 * "->recovery" and create a thread at ->sync_thread. 7640 * When the thread finishes it sets MD_RECOVERY_DONE 7641 * and wakeups up this thread which will reap the thread and finish up. 7642 * This thread also removes any faulty devices (with nr_pending == 0). 7643 * 7644 * The overall approach is: 7645 * 1/ if the superblock needs updating, update it. 7646 * 2/ If a recovery thread is running, don't do anything else. 7647 * 3/ If recovery has finished, clean up, possibly marking spares active. 7648 * 4/ If there are any faulty devices, remove them. 7649 * 5/ If array is degraded, try to add spares devices 7650 * 6/ If array has spares or is not in-sync, start a resync thread. 7651 */ 7652 void md_check_recovery(struct mddev *mddev) 7653 { 7654 if (mddev->suspended) 7655 return; 7656 7657 if (mddev->bitmap) 7658 bitmap_daemon_work(mddev); 7659 7660 if (signal_pending(current)) { 7661 if (mddev->pers->sync_request && !mddev->external) { 7662 printk(KERN_INFO "md: %s in immediate safe mode\n", 7663 mdname(mddev)); 7664 mddev->safemode = 2; 7665 } 7666 flush_signals(current); 7667 } 7668 7669 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7670 return; 7671 if ( ! ( 7672 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7673 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7674 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7675 (mddev->external == 0 && mddev->safemode == 1) || 7676 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7677 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7678 )) 7679 return; 7680 7681 if (mddev_trylock(mddev)) { 7682 int spares = 0; 7683 7684 if (mddev->ro) { 7685 /* Only thing we do on a ro array is remove 7686 * failed devices. 7687 */ 7688 struct md_rdev *rdev; 7689 rdev_for_each(rdev, mddev) 7690 if (rdev->raid_disk >= 0 && 7691 !test_bit(Blocked, &rdev->flags) && 7692 test_bit(Faulty, &rdev->flags) && 7693 atomic_read(&rdev->nr_pending)==0) { 7694 if (mddev->pers->hot_remove_disk( 7695 mddev, rdev) == 0) { 7696 sysfs_unlink_rdev(mddev, rdev); 7697 rdev->raid_disk = -1; 7698 } 7699 } 7700 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7701 goto unlock; 7702 } 7703 7704 if (!mddev->external) { 7705 int did_change = 0; 7706 spin_lock_irq(&mddev->write_lock); 7707 if (mddev->safemode && 7708 !atomic_read(&mddev->writes_pending) && 7709 !mddev->in_sync && 7710 mddev->recovery_cp == MaxSector) { 7711 mddev->in_sync = 1; 7712 did_change = 1; 7713 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7714 } 7715 if (mddev->safemode == 1) 7716 mddev->safemode = 0; 7717 spin_unlock_irq(&mddev->write_lock); 7718 if (did_change) 7719 sysfs_notify_dirent_safe(mddev->sysfs_state); 7720 } 7721 7722 if (mddev->flags) 7723 md_update_sb(mddev, 0); 7724 7725 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7726 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7727 /* resync/recovery still happening */ 7728 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7729 goto unlock; 7730 } 7731 if (mddev->sync_thread) { 7732 reap_sync_thread(mddev); 7733 goto unlock; 7734 } 7735 /* Set RUNNING before clearing NEEDED to avoid 7736 * any transients in the value of "sync_action". 7737 */ 7738 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7739 /* Clear some bits that don't mean anything, but 7740 * might be left set 7741 */ 7742 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7743 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7744 7745 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7746 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7747 goto unlock; 7748 /* no recovery is running. 7749 * remove any failed drives, then 7750 * add spares if possible. 7751 * Spare are also removed and re-added, to allow 7752 * the personality to fail the re-add. 7753 */ 7754 7755 if (mddev->reshape_position != MaxSector) { 7756 if (mddev->pers->check_reshape == NULL || 7757 mddev->pers->check_reshape(mddev) != 0) 7758 /* Cannot proceed */ 7759 goto unlock; 7760 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7761 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7762 } else if ((spares = remove_and_add_spares(mddev))) { 7763 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7764 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7765 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7766 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7767 } else if (mddev->recovery_cp < MaxSector) { 7768 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7769 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7770 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7771 /* nothing to be done ... */ 7772 goto unlock; 7773 7774 if (mddev->pers->sync_request) { 7775 if (spares) { 7776 /* We are adding a device or devices to an array 7777 * which has the bitmap stored on all devices. 7778 * So make sure all bitmap pages get written 7779 */ 7780 bitmap_write_all(mddev->bitmap); 7781 } 7782 mddev->sync_thread = md_register_thread(md_do_sync, 7783 mddev, 7784 "resync"); 7785 if (!mddev->sync_thread) { 7786 printk(KERN_ERR "%s: could not start resync" 7787 " thread...\n", 7788 mdname(mddev)); 7789 /* leave the spares where they are, it shouldn't hurt */ 7790 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7791 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7792 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7793 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7794 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7795 } else 7796 md_wakeup_thread(mddev->sync_thread); 7797 sysfs_notify_dirent_safe(mddev->sysfs_action); 7798 md_new_event(mddev); 7799 } 7800 unlock: 7801 if (!mddev->sync_thread) { 7802 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7803 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7804 &mddev->recovery)) 7805 if (mddev->sysfs_action) 7806 sysfs_notify_dirent_safe(mddev->sysfs_action); 7807 } 7808 mddev_unlock(mddev); 7809 } 7810 } 7811 7812 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7813 { 7814 sysfs_notify_dirent_safe(rdev->sysfs_state); 7815 wait_event_timeout(rdev->blocked_wait, 7816 !test_bit(Blocked, &rdev->flags) && 7817 !test_bit(BlockedBadBlocks, &rdev->flags), 7818 msecs_to_jiffies(5000)); 7819 rdev_dec_pending(rdev, mddev); 7820 } 7821 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7822 7823 void md_finish_reshape(struct mddev *mddev) 7824 { 7825 /* called be personality module when reshape completes. */ 7826 struct md_rdev *rdev; 7827 7828 rdev_for_each(rdev, mddev) { 7829 if (rdev->data_offset > rdev->new_data_offset) 7830 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7831 else 7832 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7833 rdev->data_offset = rdev->new_data_offset; 7834 } 7835 } 7836 EXPORT_SYMBOL(md_finish_reshape); 7837 7838 /* Bad block management. 7839 * We can record which blocks on each device are 'bad' and so just 7840 * fail those blocks, or that stripe, rather than the whole device. 7841 * Entries in the bad-block table are 64bits wide. This comprises: 7842 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7843 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7844 * A 'shift' can be set so that larger blocks are tracked and 7845 * consequently larger devices can be covered. 7846 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7847 * 7848 * Locking of the bad-block table uses a seqlock so md_is_badblock 7849 * might need to retry if it is very unlucky. 7850 * We will sometimes want to check for bad blocks in a bi_end_io function, 7851 * so we use the write_seqlock_irq variant. 7852 * 7853 * When looking for a bad block we specify a range and want to 7854 * know if any block in the range is bad. So we binary-search 7855 * to the last range that starts at-or-before the given endpoint, 7856 * (or "before the sector after the target range") 7857 * then see if it ends after the given start. 7858 * We return 7859 * 0 if there are no known bad blocks in the range 7860 * 1 if there are known bad block which are all acknowledged 7861 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7862 * plus the start/length of the first bad section we overlap. 7863 */ 7864 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7865 sector_t *first_bad, int *bad_sectors) 7866 { 7867 int hi; 7868 int lo = 0; 7869 u64 *p = bb->page; 7870 int rv = 0; 7871 sector_t target = s + sectors; 7872 unsigned seq; 7873 7874 if (bb->shift > 0) { 7875 /* round the start down, and the end up */ 7876 s >>= bb->shift; 7877 target += (1<<bb->shift) - 1; 7878 target >>= bb->shift; 7879 sectors = target - s; 7880 } 7881 /* 'target' is now the first block after the bad range */ 7882 7883 retry: 7884 seq = read_seqbegin(&bb->lock); 7885 7886 hi = bb->count; 7887 7888 /* Binary search between lo and hi for 'target' 7889 * i.e. for the last range that starts before 'target' 7890 */ 7891 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7892 * are known not to be the last range before target. 7893 * VARIANT: hi-lo is the number of possible 7894 * ranges, and decreases until it reaches 1 7895 */ 7896 while (hi - lo > 1) { 7897 int mid = (lo + hi) / 2; 7898 sector_t a = BB_OFFSET(p[mid]); 7899 if (a < target) 7900 /* This could still be the one, earlier ranges 7901 * could not. */ 7902 lo = mid; 7903 else 7904 /* This and later ranges are definitely out. */ 7905 hi = mid; 7906 } 7907 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7908 if (hi > lo) { 7909 /* need to check all range that end after 's' to see if 7910 * any are unacknowledged. 7911 */ 7912 while (lo >= 0 && 7913 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7914 if (BB_OFFSET(p[lo]) < target) { 7915 /* starts before the end, and finishes after 7916 * the start, so they must overlap 7917 */ 7918 if (rv != -1 && BB_ACK(p[lo])) 7919 rv = 1; 7920 else 7921 rv = -1; 7922 *first_bad = BB_OFFSET(p[lo]); 7923 *bad_sectors = BB_LEN(p[lo]); 7924 } 7925 lo--; 7926 } 7927 } 7928 7929 if (read_seqretry(&bb->lock, seq)) 7930 goto retry; 7931 7932 return rv; 7933 } 7934 EXPORT_SYMBOL_GPL(md_is_badblock); 7935 7936 /* 7937 * Add a range of bad blocks to the table. 7938 * This might extend the table, or might contract it 7939 * if two adjacent ranges can be merged. 7940 * We binary-search to find the 'insertion' point, then 7941 * decide how best to handle it. 7942 */ 7943 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 7944 int acknowledged) 7945 { 7946 u64 *p; 7947 int lo, hi; 7948 int rv = 1; 7949 7950 if (bb->shift < 0) 7951 /* badblocks are disabled */ 7952 return 0; 7953 7954 if (bb->shift) { 7955 /* round the start down, and the end up */ 7956 sector_t next = s + sectors; 7957 s >>= bb->shift; 7958 next += (1<<bb->shift) - 1; 7959 next >>= bb->shift; 7960 sectors = next - s; 7961 } 7962 7963 write_seqlock_irq(&bb->lock); 7964 7965 p = bb->page; 7966 lo = 0; 7967 hi = bb->count; 7968 /* Find the last range that starts at-or-before 's' */ 7969 while (hi - lo > 1) { 7970 int mid = (lo + hi) / 2; 7971 sector_t a = BB_OFFSET(p[mid]); 7972 if (a <= s) 7973 lo = mid; 7974 else 7975 hi = mid; 7976 } 7977 if (hi > lo && BB_OFFSET(p[lo]) > s) 7978 hi = lo; 7979 7980 if (hi > lo) { 7981 /* we found a range that might merge with the start 7982 * of our new range 7983 */ 7984 sector_t a = BB_OFFSET(p[lo]); 7985 sector_t e = a + BB_LEN(p[lo]); 7986 int ack = BB_ACK(p[lo]); 7987 if (e >= s) { 7988 /* Yes, we can merge with a previous range */ 7989 if (s == a && s + sectors >= e) 7990 /* new range covers old */ 7991 ack = acknowledged; 7992 else 7993 ack = ack && acknowledged; 7994 7995 if (e < s + sectors) 7996 e = s + sectors; 7997 if (e - a <= BB_MAX_LEN) { 7998 p[lo] = BB_MAKE(a, e-a, ack); 7999 s = e; 8000 } else { 8001 /* does not all fit in one range, 8002 * make p[lo] maximal 8003 */ 8004 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8005 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8006 s = a + BB_MAX_LEN; 8007 } 8008 sectors = e - s; 8009 } 8010 } 8011 if (sectors && hi < bb->count) { 8012 /* 'hi' points to the first range that starts after 's'. 8013 * Maybe we can merge with the start of that range */ 8014 sector_t a = BB_OFFSET(p[hi]); 8015 sector_t e = a + BB_LEN(p[hi]); 8016 int ack = BB_ACK(p[hi]); 8017 if (a <= s + sectors) { 8018 /* merging is possible */ 8019 if (e <= s + sectors) { 8020 /* full overlap */ 8021 e = s + sectors; 8022 ack = acknowledged; 8023 } else 8024 ack = ack && acknowledged; 8025 8026 a = s; 8027 if (e - a <= BB_MAX_LEN) { 8028 p[hi] = BB_MAKE(a, e-a, ack); 8029 s = e; 8030 } else { 8031 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8032 s = a + BB_MAX_LEN; 8033 } 8034 sectors = e - s; 8035 lo = hi; 8036 hi++; 8037 } 8038 } 8039 if (sectors == 0 && hi < bb->count) { 8040 /* we might be able to combine lo and hi */ 8041 /* Note: 's' is at the end of 'lo' */ 8042 sector_t a = BB_OFFSET(p[hi]); 8043 int lolen = BB_LEN(p[lo]); 8044 int hilen = BB_LEN(p[hi]); 8045 int newlen = lolen + hilen - (s - a); 8046 if (s >= a && newlen < BB_MAX_LEN) { 8047 /* yes, we can combine them */ 8048 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8049 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8050 memmove(p + hi, p + hi + 1, 8051 (bb->count - hi - 1) * 8); 8052 bb->count--; 8053 } 8054 } 8055 while (sectors) { 8056 /* didn't merge (it all). 8057 * Need to add a range just before 'hi' */ 8058 if (bb->count >= MD_MAX_BADBLOCKS) { 8059 /* No room for more */ 8060 rv = 0; 8061 break; 8062 } else { 8063 int this_sectors = sectors; 8064 memmove(p + hi + 1, p + hi, 8065 (bb->count - hi) * 8); 8066 bb->count++; 8067 8068 if (this_sectors > BB_MAX_LEN) 8069 this_sectors = BB_MAX_LEN; 8070 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8071 sectors -= this_sectors; 8072 s += this_sectors; 8073 } 8074 } 8075 8076 bb->changed = 1; 8077 if (!acknowledged) 8078 bb->unacked_exist = 1; 8079 write_sequnlock_irq(&bb->lock); 8080 8081 return rv; 8082 } 8083 8084 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8085 int is_new) 8086 { 8087 int rv; 8088 if (is_new) 8089 s += rdev->new_data_offset; 8090 else 8091 s += rdev->data_offset; 8092 rv = md_set_badblocks(&rdev->badblocks, 8093 s, sectors, 0); 8094 if (rv) { 8095 /* Make sure they get written out promptly */ 8096 sysfs_notify_dirent_safe(rdev->sysfs_state); 8097 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8098 md_wakeup_thread(rdev->mddev->thread); 8099 } 8100 return rv; 8101 } 8102 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8103 8104 /* 8105 * Remove a range of bad blocks from the table. 8106 * This may involve extending the table if we spilt a region, 8107 * but it must not fail. So if the table becomes full, we just 8108 * drop the remove request. 8109 */ 8110 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8111 { 8112 u64 *p; 8113 int lo, hi; 8114 sector_t target = s + sectors; 8115 int rv = 0; 8116 8117 if (bb->shift > 0) { 8118 /* When clearing we round the start up and the end down. 8119 * This should not matter as the shift should align with 8120 * the block size and no rounding should ever be needed. 8121 * However it is better the think a block is bad when it 8122 * isn't than to think a block is not bad when it is. 8123 */ 8124 s += (1<<bb->shift) - 1; 8125 s >>= bb->shift; 8126 target >>= bb->shift; 8127 sectors = target - s; 8128 } 8129 8130 write_seqlock_irq(&bb->lock); 8131 8132 p = bb->page; 8133 lo = 0; 8134 hi = bb->count; 8135 /* Find the last range that starts before 'target' */ 8136 while (hi - lo > 1) { 8137 int mid = (lo + hi) / 2; 8138 sector_t a = BB_OFFSET(p[mid]); 8139 if (a < target) 8140 lo = mid; 8141 else 8142 hi = mid; 8143 } 8144 if (hi > lo) { 8145 /* p[lo] is the last range that could overlap the 8146 * current range. Earlier ranges could also overlap, 8147 * but only this one can overlap the end of the range. 8148 */ 8149 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8150 /* Partial overlap, leave the tail of this range */ 8151 int ack = BB_ACK(p[lo]); 8152 sector_t a = BB_OFFSET(p[lo]); 8153 sector_t end = a + BB_LEN(p[lo]); 8154 8155 if (a < s) { 8156 /* we need to split this range */ 8157 if (bb->count >= MD_MAX_BADBLOCKS) { 8158 rv = 0; 8159 goto out; 8160 } 8161 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8162 bb->count++; 8163 p[lo] = BB_MAKE(a, s-a, ack); 8164 lo++; 8165 } 8166 p[lo] = BB_MAKE(target, end - target, ack); 8167 /* there is no longer an overlap */ 8168 hi = lo; 8169 lo--; 8170 } 8171 while (lo >= 0 && 8172 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8173 /* This range does overlap */ 8174 if (BB_OFFSET(p[lo]) < s) { 8175 /* Keep the early parts of this range. */ 8176 int ack = BB_ACK(p[lo]); 8177 sector_t start = BB_OFFSET(p[lo]); 8178 p[lo] = BB_MAKE(start, s - start, ack); 8179 /* now low doesn't overlap, so.. */ 8180 break; 8181 } 8182 lo--; 8183 } 8184 /* 'lo' is strictly before, 'hi' is strictly after, 8185 * anything between needs to be discarded 8186 */ 8187 if (hi - lo > 1) { 8188 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8189 bb->count -= (hi - lo - 1); 8190 } 8191 } 8192 8193 bb->changed = 1; 8194 out: 8195 write_sequnlock_irq(&bb->lock); 8196 return rv; 8197 } 8198 8199 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8200 int is_new) 8201 { 8202 if (is_new) 8203 s += rdev->new_data_offset; 8204 else 8205 s += rdev->data_offset; 8206 return md_clear_badblocks(&rdev->badblocks, 8207 s, sectors); 8208 } 8209 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8210 8211 /* 8212 * Acknowledge all bad blocks in a list. 8213 * This only succeeds if ->changed is clear. It is used by 8214 * in-kernel metadata updates 8215 */ 8216 void md_ack_all_badblocks(struct badblocks *bb) 8217 { 8218 if (bb->page == NULL || bb->changed) 8219 /* no point even trying */ 8220 return; 8221 write_seqlock_irq(&bb->lock); 8222 8223 if (bb->changed == 0 && bb->unacked_exist) { 8224 u64 *p = bb->page; 8225 int i; 8226 for (i = 0; i < bb->count ; i++) { 8227 if (!BB_ACK(p[i])) { 8228 sector_t start = BB_OFFSET(p[i]); 8229 int len = BB_LEN(p[i]); 8230 p[i] = BB_MAKE(start, len, 1); 8231 } 8232 } 8233 bb->unacked_exist = 0; 8234 } 8235 write_sequnlock_irq(&bb->lock); 8236 } 8237 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8238 8239 /* sysfs access to bad-blocks list. 8240 * We present two files. 8241 * 'bad-blocks' lists sector numbers and lengths of ranges that 8242 * are recorded as bad. The list is truncated to fit within 8243 * the one-page limit of sysfs. 8244 * Writing "sector length" to this file adds an acknowledged 8245 * bad block list. 8246 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8247 * been acknowledged. Writing to this file adds bad blocks 8248 * without acknowledging them. This is largely for testing. 8249 */ 8250 8251 static ssize_t 8252 badblocks_show(struct badblocks *bb, char *page, int unack) 8253 { 8254 size_t len; 8255 int i; 8256 u64 *p = bb->page; 8257 unsigned seq; 8258 8259 if (bb->shift < 0) 8260 return 0; 8261 8262 retry: 8263 seq = read_seqbegin(&bb->lock); 8264 8265 len = 0; 8266 i = 0; 8267 8268 while (len < PAGE_SIZE && i < bb->count) { 8269 sector_t s = BB_OFFSET(p[i]); 8270 unsigned int length = BB_LEN(p[i]); 8271 int ack = BB_ACK(p[i]); 8272 i++; 8273 8274 if (unack && ack) 8275 continue; 8276 8277 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8278 (unsigned long long)s << bb->shift, 8279 length << bb->shift); 8280 } 8281 if (unack && len == 0) 8282 bb->unacked_exist = 0; 8283 8284 if (read_seqretry(&bb->lock, seq)) 8285 goto retry; 8286 8287 return len; 8288 } 8289 8290 #define DO_DEBUG 1 8291 8292 static ssize_t 8293 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8294 { 8295 unsigned long long sector; 8296 int length; 8297 char newline; 8298 #ifdef DO_DEBUG 8299 /* Allow clearing via sysfs *only* for testing/debugging. 8300 * Normally only a successful write may clear a badblock 8301 */ 8302 int clear = 0; 8303 if (page[0] == '-') { 8304 clear = 1; 8305 page++; 8306 } 8307 #endif /* DO_DEBUG */ 8308 8309 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8310 case 3: 8311 if (newline != '\n') 8312 return -EINVAL; 8313 case 2: 8314 if (length <= 0) 8315 return -EINVAL; 8316 break; 8317 default: 8318 return -EINVAL; 8319 } 8320 8321 #ifdef DO_DEBUG 8322 if (clear) { 8323 md_clear_badblocks(bb, sector, length); 8324 return len; 8325 } 8326 #endif /* DO_DEBUG */ 8327 if (md_set_badblocks(bb, sector, length, !unack)) 8328 return len; 8329 else 8330 return -ENOSPC; 8331 } 8332 8333 static int md_notify_reboot(struct notifier_block *this, 8334 unsigned long code, void *x) 8335 { 8336 struct list_head *tmp; 8337 struct mddev *mddev; 8338 int need_delay = 0; 8339 8340 for_each_mddev(mddev, tmp) { 8341 if (mddev_trylock(mddev)) { 8342 if (mddev->pers) 8343 __md_stop_writes(mddev); 8344 mddev->safemode = 2; 8345 mddev_unlock(mddev); 8346 } 8347 need_delay = 1; 8348 } 8349 /* 8350 * certain more exotic SCSI devices are known to be 8351 * volatile wrt too early system reboots. While the 8352 * right place to handle this issue is the given 8353 * driver, we do want to have a safe RAID driver ... 8354 */ 8355 if (need_delay) 8356 mdelay(1000*1); 8357 8358 return NOTIFY_DONE; 8359 } 8360 8361 static struct notifier_block md_notifier = { 8362 .notifier_call = md_notify_reboot, 8363 .next = NULL, 8364 .priority = INT_MAX, /* before any real devices */ 8365 }; 8366 8367 static void md_geninit(void) 8368 { 8369 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8370 8371 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8372 } 8373 8374 static int __init md_init(void) 8375 { 8376 int ret = -ENOMEM; 8377 8378 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8379 if (!md_wq) 8380 goto err_wq; 8381 8382 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8383 if (!md_misc_wq) 8384 goto err_misc_wq; 8385 8386 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8387 goto err_md; 8388 8389 if ((ret = register_blkdev(0, "mdp")) < 0) 8390 goto err_mdp; 8391 mdp_major = ret; 8392 8393 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8394 md_probe, NULL, NULL); 8395 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8396 md_probe, NULL, NULL); 8397 8398 register_reboot_notifier(&md_notifier); 8399 raid_table_header = register_sysctl_table(raid_root_table); 8400 8401 md_geninit(); 8402 return 0; 8403 8404 err_mdp: 8405 unregister_blkdev(MD_MAJOR, "md"); 8406 err_md: 8407 destroy_workqueue(md_misc_wq); 8408 err_misc_wq: 8409 destroy_workqueue(md_wq); 8410 err_wq: 8411 return ret; 8412 } 8413 8414 #ifndef MODULE 8415 8416 /* 8417 * Searches all registered partitions for autorun RAID arrays 8418 * at boot time. 8419 */ 8420 8421 static LIST_HEAD(all_detected_devices); 8422 struct detected_devices_node { 8423 struct list_head list; 8424 dev_t dev; 8425 }; 8426 8427 void md_autodetect_dev(dev_t dev) 8428 { 8429 struct detected_devices_node *node_detected_dev; 8430 8431 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8432 if (node_detected_dev) { 8433 node_detected_dev->dev = dev; 8434 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8435 } else { 8436 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8437 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8438 } 8439 } 8440 8441 8442 static void autostart_arrays(int part) 8443 { 8444 struct md_rdev *rdev; 8445 struct detected_devices_node *node_detected_dev; 8446 dev_t dev; 8447 int i_scanned, i_passed; 8448 8449 i_scanned = 0; 8450 i_passed = 0; 8451 8452 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8453 8454 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8455 i_scanned++; 8456 node_detected_dev = list_entry(all_detected_devices.next, 8457 struct detected_devices_node, list); 8458 list_del(&node_detected_dev->list); 8459 dev = node_detected_dev->dev; 8460 kfree(node_detected_dev); 8461 rdev = md_import_device(dev,0, 90); 8462 if (IS_ERR(rdev)) 8463 continue; 8464 8465 if (test_bit(Faulty, &rdev->flags)) { 8466 MD_BUG(); 8467 continue; 8468 } 8469 set_bit(AutoDetected, &rdev->flags); 8470 list_add(&rdev->same_set, &pending_raid_disks); 8471 i_passed++; 8472 } 8473 8474 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8475 i_scanned, i_passed); 8476 8477 autorun_devices(part); 8478 } 8479 8480 #endif /* !MODULE */ 8481 8482 static __exit void md_exit(void) 8483 { 8484 struct mddev *mddev; 8485 struct list_head *tmp; 8486 8487 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8488 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8489 8490 unregister_blkdev(MD_MAJOR,"md"); 8491 unregister_blkdev(mdp_major, "mdp"); 8492 unregister_reboot_notifier(&md_notifier); 8493 unregister_sysctl_table(raid_table_header); 8494 remove_proc_entry("mdstat", NULL); 8495 for_each_mddev(mddev, tmp) { 8496 export_array(mddev); 8497 mddev->hold_active = 0; 8498 } 8499 destroy_workqueue(md_misc_wq); 8500 destroy_workqueue(md_wq); 8501 } 8502 8503 subsys_initcall(md_init); 8504 module_exit(md_exit) 8505 8506 static int get_ro(char *buffer, struct kernel_param *kp) 8507 { 8508 return sprintf(buffer, "%d", start_readonly); 8509 } 8510 static int set_ro(const char *val, struct kernel_param *kp) 8511 { 8512 char *e; 8513 int num = simple_strtoul(val, &e, 10); 8514 if (*val && (*e == '\0' || *e == '\n')) { 8515 start_readonly = num; 8516 return 0; 8517 } 8518 return -EINVAL; 8519 } 8520 8521 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8522 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8523 8524 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8525 8526 EXPORT_SYMBOL(register_md_personality); 8527 EXPORT_SYMBOL(unregister_md_personality); 8528 EXPORT_SYMBOL(md_error); 8529 EXPORT_SYMBOL(md_done_sync); 8530 EXPORT_SYMBOL(md_write_start); 8531 EXPORT_SYMBOL(md_write_end); 8532 EXPORT_SYMBOL(md_register_thread); 8533 EXPORT_SYMBOL(md_unregister_thread); 8534 EXPORT_SYMBOL(md_wakeup_thread); 8535 EXPORT_SYMBOL(md_check_recovery); 8536 MODULE_LICENSE("GPL"); 8537 MODULE_DESCRIPTION("MD RAID framework"); 8538 MODULE_ALIAS("md"); 8539 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8540