xref: /openbmc/linux/drivers/md/md.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    md.c : Multiple Devices driver for Linux
4      Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 
6      completely rewritten, based on the MD driver code from Marc Zyngier
7 
8    Changes:
9 
10    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14    - kmod support by: Cyrus Durgin
15    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 
18    - lots of fixes and improvements to the RAID1/RAID5 and generic
19      RAID code (such as request based resynchronization):
20 
21      Neil Brown <neilb@cse.unsw.edu.au>.
22 
23    - persistent bitmap code
24      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 
26 
27    Errors, Warnings, etc.
28    Please use:
29      pr_crit() for error conditions that risk data loss
30      pr_err() for error conditions that are unexpected, like an IO error
31          or internal inconsistency
32      pr_warn() for error conditions that could have been predicated, like
33          adding a device to an array when it has incompatible metadata
34      pr_info() for every interesting, very rare events, like an array starting
35          or stopping, or resync starting or stopping
36      pr_debug() for everything else.
37 
38 */
39 
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67 
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72 
73 /* pers_list is a list of registered personalities protected
74  * by pers_lock.
75  * pers_lock does extra service to protect accesses to
76  * mddev->thread when the mutex cannot be held.
77  */
78 static LIST_HEAD(pers_list);
79 static DEFINE_SPINLOCK(pers_lock);
80 
81 static struct kobj_type md_ktype;
82 
83 struct md_cluster_operations *md_cluster_ops;
84 EXPORT_SYMBOL(md_cluster_ops);
85 static struct module *md_cluster_mod;
86 
87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88 static struct workqueue_struct *md_wq;
89 static struct workqueue_struct *md_misc_wq;
90 static struct workqueue_struct *md_rdev_misc_wq;
91 
92 static int remove_and_add_spares(struct mddev *mddev,
93 				 struct md_rdev *this);
94 static void mddev_detach(struct mddev *mddev);
95 
96 /*
97  * Default number of read corrections we'll attempt on an rdev
98  * before ejecting it from the array. We divide the read error
99  * count by 2 for every hour elapsed between read errors.
100  */
101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
102 /* Default safemode delay: 200 msec */
103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
104 /*
105  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
106  * is 1000 KB/sec, so the extra system load does not show up that much.
107  * Increase it if you want to have more _guaranteed_ speed. Note that
108  * the RAID driver will use the maximum available bandwidth if the IO
109  * subsystem is idle. There is also an 'absolute maximum' reconstruction
110  * speed limit - in case reconstruction slows down your system despite
111  * idle IO detection.
112  *
113  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
114  * or /sys/block/mdX/md/sync_speed_{min,max}
115  */
116 
117 static int sysctl_speed_limit_min = 1000;
118 static int sysctl_speed_limit_max = 200000;
119 static inline int speed_min(struct mddev *mddev)
120 {
121 	return mddev->sync_speed_min ?
122 		mddev->sync_speed_min : sysctl_speed_limit_min;
123 }
124 
125 static inline int speed_max(struct mddev *mddev)
126 {
127 	return mddev->sync_speed_max ?
128 		mddev->sync_speed_max : sysctl_speed_limit_max;
129 }
130 
131 static void rdev_uninit_serial(struct md_rdev *rdev)
132 {
133 	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
134 		return;
135 
136 	kvfree(rdev->serial);
137 	rdev->serial = NULL;
138 }
139 
140 static void rdevs_uninit_serial(struct mddev *mddev)
141 {
142 	struct md_rdev *rdev;
143 
144 	rdev_for_each(rdev, mddev)
145 		rdev_uninit_serial(rdev);
146 }
147 
148 static int rdev_init_serial(struct md_rdev *rdev)
149 {
150 	/* serial_nums equals with BARRIER_BUCKETS_NR */
151 	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
152 	struct serial_in_rdev *serial = NULL;
153 
154 	if (test_bit(CollisionCheck, &rdev->flags))
155 		return 0;
156 
157 	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
158 			  GFP_KERNEL);
159 	if (!serial)
160 		return -ENOMEM;
161 
162 	for (i = 0; i < serial_nums; i++) {
163 		struct serial_in_rdev *serial_tmp = &serial[i];
164 
165 		spin_lock_init(&serial_tmp->serial_lock);
166 		serial_tmp->serial_rb = RB_ROOT_CACHED;
167 		init_waitqueue_head(&serial_tmp->serial_io_wait);
168 	}
169 
170 	rdev->serial = serial;
171 	set_bit(CollisionCheck, &rdev->flags);
172 
173 	return 0;
174 }
175 
176 static int rdevs_init_serial(struct mddev *mddev)
177 {
178 	struct md_rdev *rdev;
179 	int ret = 0;
180 
181 	rdev_for_each(rdev, mddev) {
182 		ret = rdev_init_serial(rdev);
183 		if (ret)
184 			break;
185 	}
186 
187 	/* Free all resources if pool is not existed */
188 	if (ret && !mddev->serial_info_pool)
189 		rdevs_uninit_serial(mddev);
190 
191 	return ret;
192 }
193 
194 /*
195  * rdev needs to enable serial stuffs if it meets the conditions:
196  * 1. it is multi-queue device flaged with writemostly.
197  * 2. the write-behind mode is enabled.
198  */
199 static int rdev_need_serial(struct md_rdev *rdev)
200 {
201 	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
202 		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
203 		test_bit(WriteMostly, &rdev->flags));
204 }
205 
206 /*
207  * Init resource for rdev(s), then create serial_info_pool if:
208  * 1. rdev is the first device which return true from rdev_enable_serial.
209  * 2. rdev is NULL, means we want to enable serialization for all rdevs.
210  */
211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
212 			      bool is_suspend)
213 {
214 	int ret = 0;
215 
216 	if (rdev && !rdev_need_serial(rdev) &&
217 	    !test_bit(CollisionCheck, &rdev->flags))
218 		return;
219 
220 	if (!is_suspend)
221 		mddev_suspend(mddev);
222 
223 	if (!rdev)
224 		ret = rdevs_init_serial(mddev);
225 	else
226 		ret = rdev_init_serial(rdev);
227 	if (ret)
228 		goto abort;
229 
230 	if (mddev->serial_info_pool == NULL) {
231 		/*
232 		 * already in memalloc noio context by
233 		 * mddev_suspend()
234 		 */
235 		mddev->serial_info_pool =
236 			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
237 						sizeof(struct serial_info));
238 		if (!mddev->serial_info_pool) {
239 			rdevs_uninit_serial(mddev);
240 			pr_err("can't alloc memory pool for serialization\n");
241 		}
242 	}
243 
244 abort:
245 	if (!is_suspend)
246 		mddev_resume(mddev);
247 }
248 
249 /*
250  * Free resource from rdev(s), and destroy serial_info_pool under conditions:
251  * 1. rdev is the last device flaged with CollisionCheck.
252  * 2. when bitmap is destroyed while policy is not enabled.
253  * 3. for disable policy, the pool is destroyed only when no rdev needs it.
254  */
255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
256 			       bool is_suspend)
257 {
258 	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
259 		return;
260 
261 	if (mddev->serial_info_pool) {
262 		struct md_rdev *temp;
263 		int num = 0; /* used to track if other rdevs need the pool */
264 
265 		if (!is_suspend)
266 			mddev_suspend(mddev);
267 		rdev_for_each(temp, mddev) {
268 			if (!rdev) {
269 				if (!mddev->serialize_policy ||
270 				    !rdev_need_serial(temp))
271 					rdev_uninit_serial(temp);
272 				else
273 					num++;
274 			} else if (temp != rdev &&
275 				   test_bit(CollisionCheck, &temp->flags))
276 				num++;
277 		}
278 
279 		if (rdev)
280 			rdev_uninit_serial(rdev);
281 
282 		if (num)
283 			pr_info("The mempool could be used by other devices\n");
284 		else {
285 			mempool_destroy(mddev->serial_info_pool);
286 			mddev->serial_info_pool = NULL;
287 		}
288 		if (!is_suspend)
289 			mddev_resume(mddev);
290 	}
291 }
292 
293 static struct ctl_table_header *raid_table_header;
294 
295 static struct ctl_table raid_table[] = {
296 	{
297 		.procname	= "speed_limit_min",
298 		.data		= &sysctl_speed_limit_min,
299 		.maxlen		= sizeof(int),
300 		.mode		= S_IRUGO|S_IWUSR,
301 		.proc_handler	= proc_dointvec,
302 	},
303 	{
304 		.procname	= "speed_limit_max",
305 		.data		= &sysctl_speed_limit_max,
306 		.maxlen		= sizeof(int),
307 		.mode		= S_IRUGO|S_IWUSR,
308 		.proc_handler	= proc_dointvec,
309 	},
310 	{ }
311 };
312 
313 static struct ctl_table raid_dir_table[] = {
314 	{
315 		.procname	= "raid",
316 		.maxlen		= 0,
317 		.mode		= S_IRUGO|S_IXUGO,
318 		.child		= raid_table,
319 	},
320 	{ }
321 };
322 
323 static struct ctl_table raid_root_table[] = {
324 	{
325 		.procname	= "dev",
326 		.maxlen		= 0,
327 		.mode		= 0555,
328 		.child		= raid_dir_table,
329 	},
330 	{  }
331 };
332 
333 static int start_readonly;
334 
335 /*
336  * The original mechanism for creating an md device is to create
337  * a device node in /dev and to open it.  This causes races with device-close.
338  * The preferred method is to write to the "new_array" module parameter.
339  * This can avoid races.
340  * Setting create_on_open to false disables the original mechanism
341  * so all the races disappear.
342  */
343 static bool create_on_open = true;
344 
345 /*
346  * We have a system wide 'event count' that is incremented
347  * on any 'interesting' event, and readers of /proc/mdstat
348  * can use 'poll' or 'select' to find out when the event
349  * count increases.
350  *
351  * Events are:
352  *  start array, stop array, error, add device, remove device,
353  *  start build, activate spare
354  */
355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
356 static atomic_t md_event_count;
357 void md_new_event(void)
358 {
359 	atomic_inc(&md_event_count);
360 	wake_up(&md_event_waiters);
361 }
362 EXPORT_SYMBOL_GPL(md_new_event);
363 
364 /*
365  * Enables to iterate over all existing md arrays
366  * all_mddevs_lock protects this list.
367  */
368 static LIST_HEAD(all_mddevs);
369 static DEFINE_SPINLOCK(all_mddevs_lock);
370 
371 /*
372  * iterates through all used mddevs in the system.
373  * We take care to grab the all_mddevs_lock whenever navigating
374  * the list, and to always hold a refcount when unlocked.
375  * Any code which breaks out of this loop while own
376  * a reference to the current mddev and must mddev_put it.
377  */
378 #define for_each_mddev(_mddev,_tmp)					\
379 									\
380 	for (({ spin_lock(&all_mddevs_lock);				\
381 		_tmp = all_mddevs.next;					\
382 		_mddev = NULL;});					\
383 	     ({ if (_tmp != &all_mddevs)				\
384 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
385 		spin_unlock(&all_mddevs_lock);				\
386 		if (_mddev) mddev_put(_mddev);				\
387 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
388 		_tmp != &all_mddevs;});					\
389 	     ({ spin_lock(&all_mddevs_lock);				\
390 		_tmp = _tmp->next;})					\
391 		)
392 
393 /* Rather than calling directly into the personality make_request function,
394  * IO requests come here first so that we can check if the device is
395  * being suspended pending a reconfiguration.
396  * We hold a refcount over the call to ->make_request.  By the time that
397  * call has finished, the bio has been linked into some internal structure
398  * and so is visible to ->quiesce(), so we don't need the refcount any more.
399  */
400 static bool is_suspended(struct mddev *mddev, struct bio *bio)
401 {
402 	if (mddev->suspended)
403 		return true;
404 	if (bio_data_dir(bio) != WRITE)
405 		return false;
406 	if (mddev->suspend_lo >= mddev->suspend_hi)
407 		return false;
408 	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
409 		return false;
410 	if (bio_end_sector(bio) < mddev->suspend_lo)
411 		return false;
412 	return true;
413 }
414 
415 void md_handle_request(struct mddev *mddev, struct bio *bio)
416 {
417 check_suspended:
418 	rcu_read_lock();
419 	if (is_suspended(mddev, bio)) {
420 		DEFINE_WAIT(__wait);
421 		/* Bail out if REQ_NOWAIT is set for the bio */
422 		if (bio->bi_opf & REQ_NOWAIT) {
423 			rcu_read_unlock();
424 			bio_wouldblock_error(bio);
425 			return;
426 		}
427 		for (;;) {
428 			prepare_to_wait(&mddev->sb_wait, &__wait,
429 					TASK_UNINTERRUPTIBLE);
430 			if (!is_suspended(mddev, bio))
431 				break;
432 			rcu_read_unlock();
433 			schedule();
434 			rcu_read_lock();
435 		}
436 		finish_wait(&mddev->sb_wait, &__wait);
437 	}
438 	atomic_inc(&mddev->active_io);
439 	rcu_read_unlock();
440 
441 	if (!mddev->pers->make_request(mddev, bio)) {
442 		atomic_dec(&mddev->active_io);
443 		wake_up(&mddev->sb_wait);
444 		goto check_suspended;
445 	}
446 
447 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
448 		wake_up(&mddev->sb_wait);
449 }
450 EXPORT_SYMBOL(md_handle_request);
451 
452 static void md_submit_bio(struct bio *bio)
453 {
454 	const int rw = bio_data_dir(bio);
455 	struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
456 
457 	if (mddev == NULL || mddev->pers == NULL) {
458 		bio_io_error(bio);
459 		return;
460 	}
461 
462 	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
463 		bio_io_error(bio);
464 		return;
465 	}
466 
467 	blk_queue_split(&bio);
468 
469 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
470 		if (bio_sectors(bio) != 0)
471 			bio->bi_status = BLK_STS_IOERR;
472 		bio_endio(bio);
473 		return;
474 	}
475 
476 	/* bio could be mergeable after passing to underlayer */
477 	bio->bi_opf &= ~REQ_NOMERGE;
478 
479 	md_handle_request(mddev, bio);
480 }
481 
482 /* mddev_suspend makes sure no new requests are submitted
483  * to the device, and that any requests that have been submitted
484  * are completely handled.
485  * Once mddev_detach() is called and completes, the module will be
486  * completely unused.
487  */
488 void mddev_suspend(struct mddev *mddev)
489 {
490 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
491 	lockdep_assert_held(&mddev->reconfig_mutex);
492 	if (mddev->suspended++)
493 		return;
494 	synchronize_rcu();
495 	wake_up(&mddev->sb_wait);
496 	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
497 	smp_mb__after_atomic();
498 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
499 	mddev->pers->quiesce(mddev, 1);
500 	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
501 	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
502 
503 	del_timer_sync(&mddev->safemode_timer);
504 	/* restrict memory reclaim I/O during raid array is suspend */
505 	mddev->noio_flag = memalloc_noio_save();
506 }
507 EXPORT_SYMBOL_GPL(mddev_suspend);
508 
509 void mddev_resume(struct mddev *mddev)
510 {
511 	/* entred the memalloc scope from mddev_suspend() */
512 	memalloc_noio_restore(mddev->noio_flag);
513 	lockdep_assert_held(&mddev->reconfig_mutex);
514 	if (--mddev->suspended)
515 		return;
516 	wake_up(&mddev->sb_wait);
517 	mddev->pers->quiesce(mddev, 0);
518 
519 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
520 	md_wakeup_thread(mddev->thread);
521 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
522 }
523 EXPORT_SYMBOL_GPL(mddev_resume);
524 
525 /*
526  * Generic flush handling for md
527  */
528 
529 static void md_end_flush(struct bio *bio)
530 {
531 	struct md_rdev *rdev = bio->bi_private;
532 	struct mddev *mddev = rdev->mddev;
533 
534 	rdev_dec_pending(rdev, mddev);
535 
536 	if (atomic_dec_and_test(&mddev->flush_pending)) {
537 		/* The pre-request flush has finished */
538 		queue_work(md_wq, &mddev->flush_work);
539 	}
540 	bio_put(bio);
541 }
542 
543 static void md_submit_flush_data(struct work_struct *ws);
544 
545 static void submit_flushes(struct work_struct *ws)
546 {
547 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
548 	struct md_rdev *rdev;
549 
550 	mddev->start_flush = ktime_get_boottime();
551 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
552 	atomic_set(&mddev->flush_pending, 1);
553 	rcu_read_lock();
554 	rdev_for_each_rcu(rdev, mddev)
555 		if (rdev->raid_disk >= 0 &&
556 		    !test_bit(Faulty, &rdev->flags)) {
557 			/* Take two references, one is dropped
558 			 * when request finishes, one after
559 			 * we reclaim rcu_read_lock
560 			 */
561 			struct bio *bi;
562 			atomic_inc(&rdev->nr_pending);
563 			atomic_inc(&rdev->nr_pending);
564 			rcu_read_unlock();
565 			bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
566 			bi->bi_end_io = md_end_flush;
567 			bi->bi_private = rdev;
568 			bio_set_dev(bi, rdev->bdev);
569 			bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
570 			atomic_inc(&mddev->flush_pending);
571 			submit_bio(bi);
572 			rcu_read_lock();
573 			rdev_dec_pending(rdev, mddev);
574 		}
575 	rcu_read_unlock();
576 	if (atomic_dec_and_test(&mddev->flush_pending))
577 		queue_work(md_wq, &mddev->flush_work);
578 }
579 
580 static void md_submit_flush_data(struct work_struct *ws)
581 {
582 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
583 	struct bio *bio = mddev->flush_bio;
584 
585 	/*
586 	 * must reset flush_bio before calling into md_handle_request to avoid a
587 	 * deadlock, because other bios passed md_handle_request suspend check
588 	 * could wait for this and below md_handle_request could wait for those
589 	 * bios because of suspend check
590 	 */
591 	spin_lock_irq(&mddev->lock);
592 	mddev->prev_flush_start = mddev->start_flush;
593 	mddev->flush_bio = NULL;
594 	spin_unlock_irq(&mddev->lock);
595 	wake_up(&mddev->sb_wait);
596 
597 	if (bio->bi_iter.bi_size == 0) {
598 		/* an empty barrier - all done */
599 		bio_endio(bio);
600 	} else {
601 		bio->bi_opf &= ~REQ_PREFLUSH;
602 		md_handle_request(mddev, bio);
603 	}
604 }
605 
606 /*
607  * Manages consolidation of flushes and submitting any flushes needed for
608  * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
609  * being finished in another context.  Returns false if the flushing is
610  * complete but still needs the I/O portion of the bio to be processed.
611  */
612 bool md_flush_request(struct mddev *mddev, struct bio *bio)
613 {
614 	ktime_t req_start = ktime_get_boottime();
615 	spin_lock_irq(&mddev->lock);
616 	/* flush requests wait until ongoing flush completes,
617 	 * hence coalescing all the pending requests.
618 	 */
619 	wait_event_lock_irq(mddev->sb_wait,
620 			    !mddev->flush_bio ||
621 			    ktime_before(req_start, mddev->prev_flush_start),
622 			    mddev->lock);
623 	/* new request after previous flush is completed */
624 	if (ktime_after(req_start, mddev->prev_flush_start)) {
625 		WARN_ON(mddev->flush_bio);
626 		mddev->flush_bio = bio;
627 		bio = NULL;
628 	}
629 	spin_unlock_irq(&mddev->lock);
630 
631 	if (!bio) {
632 		INIT_WORK(&mddev->flush_work, submit_flushes);
633 		queue_work(md_wq, &mddev->flush_work);
634 	} else {
635 		/* flush was performed for some other bio while we waited. */
636 		if (bio->bi_iter.bi_size == 0)
637 			/* an empty barrier - all done */
638 			bio_endio(bio);
639 		else {
640 			bio->bi_opf &= ~REQ_PREFLUSH;
641 			return false;
642 		}
643 	}
644 	return true;
645 }
646 EXPORT_SYMBOL(md_flush_request);
647 
648 static inline struct mddev *mddev_get(struct mddev *mddev)
649 {
650 	atomic_inc(&mddev->active);
651 	return mddev;
652 }
653 
654 static void mddev_delayed_delete(struct work_struct *ws);
655 
656 static void mddev_put(struct mddev *mddev)
657 {
658 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
659 		return;
660 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
661 	    mddev->ctime == 0 && !mddev->hold_active) {
662 		/* Array is not configured at all, and not held active,
663 		 * so destroy it */
664 		list_del_init(&mddev->all_mddevs);
665 
666 		/*
667 		 * Call queue_work inside the spinlock so that
668 		 * flush_workqueue() after mddev_find will succeed in waiting
669 		 * for the work to be done.
670 		 */
671 		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
672 		queue_work(md_misc_wq, &mddev->del_work);
673 	}
674 	spin_unlock(&all_mddevs_lock);
675 }
676 
677 static void md_safemode_timeout(struct timer_list *t);
678 
679 void mddev_init(struct mddev *mddev)
680 {
681 	kobject_init(&mddev->kobj, &md_ktype);
682 	mutex_init(&mddev->open_mutex);
683 	mutex_init(&mddev->reconfig_mutex);
684 	mutex_init(&mddev->bitmap_info.mutex);
685 	INIT_LIST_HEAD(&mddev->disks);
686 	INIT_LIST_HEAD(&mddev->all_mddevs);
687 	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
688 	atomic_set(&mddev->active, 1);
689 	atomic_set(&mddev->openers, 0);
690 	atomic_set(&mddev->active_io, 0);
691 	spin_lock_init(&mddev->lock);
692 	atomic_set(&mddev->flush_pending, 0);
693 	init_waitqueue_head(&mddev->sb_wait);
694 	init_waitqueue_head(&mddev->recovery_wait);
695 	mddev->reshape_position = MaxSector;
696 	mddev->reshape_backwards = 0;
697 	mddev->last_sync_action = "none";
698 	mddev->resync_min = 0;
699 	mddev->resync_max = MaxSector;
700 	mddev->level = LEVEL_NONE;
701 }
702 EXPORT_SYMBOL_GPL(mddev_init);
703 
704 static struct mddev *mddev_find_locked(dev_t unit)
705 {
706 	struct mddev *mddev;
707 
708 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
709 		if (mddev->unit == unit)
710 			return mddev;
711 
712 	return NULL;
713 }
714 
715 /* find an unused unit number */
716 static dev_t mddev_alloc_unit(void)
717 {
718 	static int next_minor = 512;
719 	int start = next_minor;
720 	bool is_free = 0;
721 	dev_t dev = 0;
722 
723 	while (!is_free) {
724 		dev = MKDEV(MD_MAJOR, next_minor);
725 		next_minor++;
726 		if (next_minor > MINORMASK)
727 			next_minor = 0;
728 		if (next_minor == start)
729 			return 0;		/* Oh dear, all in use. */
730 		is_free = !mddev_find_locked(dev);
731 	}
732 
733 	return dev;
734 }
735 
736 static struct mddev *mddev_find(dev_t unit)
737 {
738 	struct mddev *mddev;
739 
740 	if (MAJOR(unit) != MD_MAJOR)
741 		unit &= ~((1 << MdpMinorShift) - 1);
742 
743 	spin_lock(&all_mddevs_lock);
744 	mddev = mddev_find_locked(unit);
745 	if (mddev)
746 		mddev_get(mddev);
747 	spin_unlock(&all_mddevs_lock);
748 
749 	return mddev;
750 }
751 
752 static struct mddev *mddev_alloc(dev_t unit)
753 {
754 	struct mddev *new;
755 	int error;
756 
757 	if (unit && MAJOR(unit) != MD_MAJOR)
758 		unit &= ~((1 << MdpMinorShift) - 1);
759 
760 	new = kzalloc(sizeof(*new), GFP_KERNEL);
761 	if (!new)
762 		return ERR_PTR(-ENOMEM);
763 	mddev_init(new);
764 
765 	spin_lock(&all_mddevs_lock);
766 	if (unit) {
767 		error = -EEXIST;
768 		if (mddev_find_locked(unit))
769 			goto out_free_new;
770 		new->unit = unit;
771 		if (MAJOR(unit) == MD_MAJOR)
772 			new->md_minor = MINOR(unit);
773 		else
774 			new->md_minor = MINOR(unit) >> MdpMinorShift;
775 		new->hold_active = UNTIL_IOCTL;
776 	} else {
777 		error = -ENODEV;
778 		new->unit = mddev_alloc_unit();
779 		if (!new->unit)
780 			goto out_free_new;
781 		new->md_minor = MINOR(new->unit);
782 		new->hold_active = UNTIL_STOP;
783 	}
784 
785 	list_add(&new->all_mddevs, &all_mddevs);
786 	spin_unlock(&all_mddevs_lock);
787 	return new;
788 out_free_new:
789 	spin_unlock(&all_mddevs_lock);
790 	kfree(new);
791 	return ERR_PTR(error);
792 }
793 
794 static const struct attribute_group md_redundancy_group;
795 
796 void mddev_unlock(struct mddev *mddev)
797 {
798 	if (mddev->to_remove) {
799 		/* These cannot be removed under reconfig_mutex as
800 		 * an access to the files will try to take reconfig_mutex
801 		 * while holding the file unremovable, which leads to
802 		 * a deadlock.
803 		 * So hold set sysfs_active while the remove in happeing,
804 		 * and anything else which might set ->to_remove or my
805 		 * otherwise change the sysfs namespace will fail with
806 		 * -EBUSY if sysfs_active is still set.
807 		 * We set sysfs_active under reconfig_mutex and elsewhere
808 		 * test it under the same mutex to ensure its correct value
809 		 * is seen.
810 		 */
811 		const struct attribute_group *to_remove = mddev->to_remove;
812 		mddev->to_remove = NULL;
813 		mddev->sysfs_active = 1;
814 		mutex_unlock(&mddev->reconfig_mutex);
815 
816 		if (mddev->kobj.sd) {
817 			if (to_remove != &md_redundancy_group)
818 				sysfs_remove_group(&mddev->kobj, to_remove);
819 			if (mddev->pers == NULL ||
820 			    mddev->pers->sync_request == NULL) {
821 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
822 				if (mddev->sysfs_action)
823 					sysfs_put(mddev->sysfs_action);
824 				if (mddev->sysfs_completed)
825 					sysfs_put(mddev->sysfs_completed);
826 				if (mddev->sysfs_degraded)
827 					sysfs_put(mddev->sysfs_degraded);
828 				mddev->sysfs_action = NULL;
829 				mddev->sysfs_completed = NULL;
830 				mddev->sysfs_degraded = NULL;
831 			}
832 		}
833 		mddev->sysfs_active = 0;
834 	} else
835 		mutex_unlock(&mddev->reconfig_mutex);
836 
837 	/* As we've dropped the mutex we need a spinlock to
838 	 * make sure the thread doesn't disappear
839 	 */
840 	spin_lock(&pers_lock);
841 	md_wakeup_thread(mddev->thread);
842 	wake_up(&mddev->sb_wait);
843 	spin_unlock(&pers_lock);
844 }
845 EXPORT_SYMBOL_GPL(mddev_unlock);
846 
847 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
848 {
849 	struct md_rdev *rdev;
850 
851 	rdev_for_each_rcu(rdev, mddev)
852 		if (rdev->desc_nr == nr)
853 			return rdev;
854 
855 	return NULL;
856 }
857 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
858 
859 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
860 {
861 	struct md_rdev *rdev;
862 
863 	rdev_for_each(rdev, mddev)
864 		if (rdev->bdev->bd_dev == dev)
865 			return rdev;
866 
867 	return NULL;
868 }
869 
870 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
871 {
872 	struct md_rdev *rdev;
873 
874 	rdev_for_each_rcu(rdev, mddev)
875 		if (rdev->bdev->bd_dev == dev)
876 			return rdev;
877 
878 	return NULL;
879 }
880 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
881 
882 static struct md_personality *find_pers(int level, char *clevel)
883 {
884 	struct md_personality *pers;
885 	list_for_each_entry(pers, &pers_list, list) {
886 		if (level != LEVEL_NONE && pers->level == level)
887 			return pers;
888 		if (strcmp(pers->name, clevel)==0)
889 			return pers;
890 	}
891 	return NULL;
892 }
893 
894 /* return the offset of the super block in 512byte sectors */
895 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
896 {
897 	return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
898 }
899 
900 static int alloc_disk_sb(struct md_rdev *rdev)
901 {
902 	rdev->sb_page = alloc_page(GFP_KERNEL);
903 	if (!rdev->sb_page)
904 		return -ENOMEM;
905 	return 0;
906 }
907 
908 void md_rdev_clear(struct md_rdev *rdev)
909 {
910 	if (rdev->sb_page) {
911 		put_page(rdev->sb_page);
912 		rdev->sb_loaded = 0;
913 		rdev->sb_page = NULL;
914 		rdev->sb_start = 0;
915 		rdev->sectors = 0;
916 	}
917 	if (rdev->bb_page) {
918 		put_page(rdev->bb_page);
919 		rdev->bb_page = NULL;
920 	}
921 	badblocks_exit(&rdev->badblocks);
922 }
923 EXPORT_SYMBOL_GPL(md_rdev_clear);
924 
925 static void super_written(struct bio *bio)
926 {
927 	struct md_rdev *rdev = bio->bi_private;
928 	struct mddev *mddev = rdev->mddev;
929 
930 	if (bio->bi_status) {
931 		pr_err("md: %s gets error=%d\n", __func__,
932 		       blk_status_to_errno(bio->bi_status));
933 		md_error(mddev, rdev);
934 		if (!test_bit(Faulty, &rdev->flags)
935 		    && (bio->bi_opf & MD_FAILFAST)) {
936 			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
937 			set_bit(LastDev, &rdev->flags);
938 		}
939 	} else
940 		clear_bit(LastDev, &rdev->flags);
941 
942 	if (atomic_dec_and_test(&mddev->pending_writes))
943 		wake_up(&mddev->sb_wait);
944 	rdev_dec_pending(rdev, mddev);
945 	bio_put(bio);
946 }
947 
948 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
949 		   sector_t sector, int size, struct page *page)
950 {
951 	/* write first size bytes of page to sector of rdev
952 	 * Increment mddev->pending_writes before returning
953 	 * and decrement it on completion, waking up sb_wait
954 	 * if zero is reached.
955 	 * If an error occurred, call md_error
956 	 */
957 	struct bio *bio;
958 	int ff = 0;
959 
960 	if (!page)
961 		return;
962 
963 	if (test_bit(Faulty, &rdev->flags))
964 		return;
965 
966 	bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
967 
968 	atomic_inc(&rdev->nr_pending);
969 
970 	bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
971 	bio->bi_iter.bi_sector = sector;
972 	bio_add_page(bio, page, size, 0);
973 	bio->bi_private = rdev;
974 	bio->bi_end_io = super_written;
975 
976 	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
977 	    test_bit(FailFast, &rdev->flags) &&
978 	    !test_bit(LastDev, &rdev->flags))
979 		ff = MD_FAILFAST;
980 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
981 
982 	atomic_inc(&mddev->pending_writes);
983 	submit_bio(bio);
984 }
985 
986 int md_super_wait(struct mddev *mddev)
987 {
988 	/* wait for all superblock writes that were scheduled to complete */
989 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
990 	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
991 		return -EAGAIN;
992 	return 0;
993 }
994 
995 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
996 		 struct page *page, int op, int op_flags, bool metadata_op)
997 {
998 	struct bio bio;
999 	struct bio_vec bvec;
1000 
1001 	bio_init(&bio, &bvec, 1);
1002 
1003 	if (metadata_op && rdev->meta_bdev)
1004 		bio_set_dev(&bio, rdev->meta_bdev);
1005 	else
1006 		bio_set_dev(&bio, rdev->bdev);
1007 	bio.bi_opf = op | op_flags;
1008 	if (metadata_op)
1009 		bio.bi_iter.bi_sector = sector + rdev->sb_start;
1010 	else if (rdev->mddev->reshape_position != MaxSector &&
1011 		 (rdev->mddev->reshape_backwards ==
1012 		  (sector >= rdev->mddev->reshape_position)))
1013 		bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1014 	else
1015 		bio.bi_iter.bi_sector = sector + rdev->data_offset;
1016 	bio_add_page(&bio, page, size, 0);
1017 
1018 	submit_bio_wait(&bio);
1019 
1020 	return !bio.bi_status;
1021 }
1022 EXPORT_SYMBOL_GPL(sync_page_io);
1023 
1024 static int read_disk_sb(struct md_rdev *rdev, int size)
1025 {
1026 	char b[BDEVNAME_SIZE];
1027 
1028 	if (rdev->sb_loaded)
1029 		return 0;
1030 
1031 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1032 		goto fail;
1033 	rdev->sb_loaded = 1;
1034 	return 0;
1035 
1036 fail:
1037 	pr_err("md: disabled device %s, could not read superblock.\n",
1038 	       bdevname(rdev->bdev,b));
1039 	return -EINVAL;
1040 }
1041 
1042 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1043 {
1044 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1045 		sb1->set_uuid1 == sb2->set_uuid1 &&
1046 		sb1->set_uuid2 == sb2->set_uuid2 &&
1047 		sb1->set_uuid3 == sb2->set_uuid3;
1048 }
1049 
1050 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1051 {
1052 	int ret;
1053 	mdp_super_t *tmp1, *tmp2;
1054 
1055 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1056 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1057 
1058 	if (!tmp1 || !tmp2) {
1059 		ret = 0;
1060 		goto abort;
1061 	}
1062 
1063 	*tmp1 = *sb1;
1064 	*tmp2 = *sb2;
1065 
1066 	/*
1067 	 * nr_disks is not constant
1068 	 */
1069 	tmp1->nr_disks = 0;
1070 	tmp2->nr_disks = 0;
1071 
1072 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1073 abort:
1074 	kfree(tmp1);
1075 	kfree(tmp2);
1076 	return ret;
1077 }
1078 
1079 static u32 md_csum_fold(u32 csum)
1080 {
1081 	csum = (csum & 0xffff) + (csum >> 16);
1082 	return (csum & 0xffff) + (csum >> 16);
1083 }
1084 
1085 static unsigned int calc_sb_csum(mdp_super_t *sb)
1086 {
1087 	u64 newcsum = 0;
1088 	u32 *sb32 = (u32*)sb;
1089 	int i;
1090 	unsigned int disk_csum, csum;
1091 
1092 	disk_csum = sb->sb_csum;
1093 	sb->sb_csum = 0;
1094 
1095 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1096 		newcsum += sb32[i];
1097 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1098 
1099 #ifdef CONFIG_ALPHA
1100 	/* This used to use csum_partial, which was wrong for several
1101 	 * reasons including that different results are returned on
1102 	 * different architectures.  It isn't critical that we get exactly
1103 	 * the same return value as before (we always csum_fold before
1104 	 * testing, and that removes any differences).  However as we
1105 	 * know that csum_partial always returned a 16bit value on
1106 	 * alphas, do a fold to maximise conformity to previous behaviour.
1107 	 */
1108 	sb->sb_csum = md_csum_fold(disk_csum);
1109 #else
1110 	sb->sb_csum = disk_csum;
1111 #endif
1112 	return csum;
1113 }
1114 
1115 /*
1116  * Handle superblock details.
1117  * We want to be able to handle multiple superblock formats
1118  * so we have a common interface to them all, and an array of
1119  * different handlers.
1120  * We rely on user-space to write the initial superblock, and support
1121  * reading and updating of superblocks.
1122  * Interface methods are:
1123  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1124  *      loads and validates a superblock on dev.
1125  *      if refdev != NULL, compare superblocks on both devices
1126  *    Return:
1127  *      0 - dev has a superblock that is compatible with refdev
1128  *      1 - dev has a superblock that is compatible and newer than refdev
1129  *          so dev should be used as the refdev in future
1130  *     -EINVAL superblock incompatible or invalid
1131  *     -othererror e.g. -EIO
1132  *
1133  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1134  *      Verify that dev is acceptable into mddev.
1135  *       The first time, mddev->raid_disks will be 0, and data from
1136  *       dev should be merged in.  Subsequent calls check that dev
1137  *       is new enough.  Return 0 or -EINVAL
1138  *
1139  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1140  *     Update the superblock for rdev with data in mddev
1141  *     This does not write to disc.
1142  *
1143  */
1144 
1145 struct super_type  {
1146 	char		    *name;
1147 	struct module	    *owner;
1148 	int		    (*load_super)(struct md_rdev *rdev,
1149 					  struct md_rdev *refdev,
1150 					  int minor_version);
1151 	int		    (*validate_super)(struct mddev *mddev,
1152 					      struct md_rdev *rdev);
1153 	void		    (*sync_super)(struct mddev *mddev,
1154 					  struct md_rdev *rdev);
1155 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1156 						sector_t num_sectors);
1157 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1158 						unsigned long long new_offset);
1159 };
1160 
1161 /*
1162  * Check that the given mddev has no bitmap.
1163  *
1164  * This function is called from the run method of all personalities that do not
1165  * support bitmaps. It prints an error message and returns non-zero if mddev
1166  * has a bitmap. Otherwise, it returns 0.
1167  *
1168  */
1169 int md_check_no_bitmap(struct mddev *mddev)
1170 {
1171 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1172 		return 0;
1173 	pr_warn("%s: bitmaps are not supported for %s\n",
1174 		mdname(mddev), mddev->pers->name);
1175 	return 1;
1176 }
1177 EXPORT_SYMBOL(md_check_no_bitmap);
1178 
1179 /*
1180  * load_super for 0.90.0
1181  */
1182 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1183 {
1184 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1185 	mdp_super_t *sb;
1186 	int ret;
1187 	bool spare_disk = true;
1188 
1189 	/*
1190 	 * Calculate the position of the superblock (512byte sectors),
1191 	 * it's at the end of the disk.
1192 	 *
1193 	 * It also happens to be a multiple of 4Kb.
1194 	 */
1195 	rdev->sb_start = calc_dev_sboffset(rdev);
1196 
1197 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1198 	if (ret)
1199 		return ret;
1200 
1201 	ret = -EINVAL;
1202 
1203 	bdevname(rdev->bdev, b);
1204 	sb = page_address(rdev->sb_page);
1205 
1206 	if (sb->md_magic != MD_SB_MAGIC) {
1207 		pr_warn("md: invalid raid superblock magic on %s\n", b);
1208 		goto abort;
1209 	}
1210 
1211 	if (sb->major_version != 0 ||
1212 	    sb->minor_version < 90 ||
1213 	    sb->minor_version > 91) {
1214 		pr_warn("Bad version number %d.%d on %s\n",
1215 			sb->major_version, sb->minor_version, b);
1216 		goto abort;
1217 	}
1218 
1219 	if (sb->raid_disks <= 0)
1220 		goto abort;
1221 
1222 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1223 		pr_warn("md: invalid superblock checksum on %s\n", b);
1224 		goto abort;
1225 	}
1226 
1227 	rdev->preferred_minor = sb->md_minor;
1228 	rdev->data_offset = 0;
1229 	rdev->new_data_offset = 0;
1230 	rdev->sb_size = MD_SB_BYTES;
1231 	rdev->badblocks.shift = -1;
1232 
1233 	if (sb->level == LEVEL_MULTIPATH)
1234 		rdev->desc_nr = -1;
1235 	else
1236 		rdev->desc_nr = sb->this_disk.number;
1237 
1238 	/* not spare disk, or LEVEL_MULTIPATH */
1239 	if (sb->level == LEVEL_MULTIPATH ||
1240 		(rdev->desc_nr >= 0 &&
1241 		 rdev->desc_nr < MD_SB_DISKS &&
1242 		 sb->disks[rdev->desc_nr].state &
1243 		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1244 		spare_disk = false;
1245 
1246 	if (!refdev) {
1247 		if (!spare_disk)
1248 			ret = 1;
1249 		else
1250 			ret = 0;
1251 	} else {
1252 		__u64 ev1, ev2;
1253 		mdp_super_t *refsb = page_address(refdev->sb_page);
1254 		if (!md_uuid_equal(refsb, sb)) {
1255 			pr_warn("md: %s has different UUID to %s\n",
1256 				b, bdevname(refdev->bdev,b2));
1257 			goto abort;
1258 		}
1259 		if (!md_sb_equal(refsb, sb)) {
1260 			pr_warn("md: %s has same UUID but different superblock to %s\n",
1261 				b, bdevname(refdev->bdev, b2));
1262 			goto abort;
1263 		}
1264 		ev1 = md_event(sb);
1265 		ev2 = md_event(refsb);
1266 
1267 		if (!spare_disk && ev1 > ev2)
1268 			ret = 1;
1269 		else
1270 			ret = 0;
1271 	}
1272 	rdev->sectors = rdev->sb_start;
1273 	/* Limit to 4TB as metadata cannot record more than that.
1274 	 * (not needed for Linear and RAID0 as metadata doesn't
1275 	 * record this size)
1276 	 */
1277 	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1278 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1279 
1280 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1281 		/* "this cannot possibly happen" ... */
1282 		ret = -EINVAL;
1283 
1284  abort:
1285 	return ret;
1286 }
1287 
1288 /*
1289  * validate_super for 0.90.0
1290  */
1291 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1292 {
1293 	mdp_disk_t *desc;
1294 	mdp_super_t *sb = page_address(rdev->sb_page);
1295 	__u64 ev1 = md_event(sb);
1296 
1297 	rdev->raid_disk = -1;
1298 	clear_bit(Faulty, &rdev->flags);
1299 	clear_bit(In_sync, &rdev->flags);
1300 	clear_bit(Bitmap_sync, &rdev->flags);
1301 	clear_bit(WriteMostly, &rdev->flags);
1302 
1303 	if (mddev->raid_disks == 0) {
1304 		mddev->major_version = 0;
1305 		mddev->minor_version = sb->minor_version;
1306 		mddev->patch_version = sb->patch_version;
1307 		mddev->external = 0;
1308 		mddev->chunk_sectors = sb->chunk_size >> 9;
1309 		mddev->ctime = sb->ctime;
1310 		mddev->utime = sb->utime;
1311 		mddev->level = sb->level;
1312 		mddev->clevel[0] = 0;
1313 		mddev->layout = sb->layout;
1314 		mddev->raid_disks = sb->raid_disks;
1315 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1316 		mddev->events = ev1;
1317 		mddev->bitmap_info.offset = 0;
1318 		mddev->bitmap_info.space = 0;
1319 		/* bitmap can use 60 K after the 4K superblocks */
1320 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1321 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1322 		mddev->reshape_backwards = 0;
1323 
1324 		if (mddev->minor_version >= 91) {
1325 			mddev->reshape_position = sb->reshape_position;
1326 			mddev->delta_disks = sb->delta_disks;
1327 			mddev->new_level = sb->new_level;
1328 			mddev->new_layout = sb->new_layout;
1329 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1330 			if (mddev->delta_disks < 0)
1331 				mddev->reshape_backwards = 1;
1332 		} else {
1333 			mddev->reshape_position = MaxSector;
1334 			mddev->delta_disks = 0;
1335 			mddev->new_level = mddev->level;
1336 			mddev->new_layout = mddev->layout;
1337 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1338 		}
1339 		if (mddev->level == 0)
1340 			mddev->layout = -1;
1341 
1342 		if (sb->state & (1<<MD_SB_CLEAN))
1343 			mddev->recovery_cp = MaxSector;
1344 		else {
1345 			if (sb->events_hi == sb->cp_events_hi &&
1346 				sb->events_lo == sb->cp_events_lo) {
1347 				mddev->recovery_cp = sb->recovery_cp;
1348 			} else
1349 				mddev->recovery_cp = 0;
1350 		}
1351 
1352 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1353 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1354 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1355 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1356 
1357 		mddev->max_disks = MD_SB_DISKS;
1358 
1359 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1360 		    mddev->bitmap_info.file == NULL) {
1361 			mddev->bitmap_info.offset =
1362 				mddev->bitmap_info.default_offset;
1363 			mddev->bitmap_info.space =
1364 				mddev->bitmap_info.default_space;
1365 		}
1366 
1367 	} else if (mddev->pers == NULL) {
1368 		/* Insist on good event counter while assembling, except
1369 		 * for spares (which don't need an event count) */
1370 		++ev1;
1371 		if (sb->disks[rdev->desc_nr].state & (
1372 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1373 			if (ev1 < mddev->events)
1374 				return -EINVAL;
1375 	} else if (mddev->bitmap) {
1376 		/* if adding to array with a bitmap, then we can accept an
1377 		 * older device ... but not too old.
1378 		 */
1379 		if (ev1 < mddev->bitmap->events_cleared)
1380 			return 0;
1381 		if (ev1 < mddev->events)
1382 			set_bit(Bitmap_sync, &rdev->flags);
1383 	} else {
1384 		if (ev1 < mddev->events)
1385 			/* just a hot-add of a new device, leave raid_disk at -1 */
1386 			return 0;
1387 	}
1388 
1389 	if (mddev->level != LEVEL_MULTIPATH) {
1390 		desc = sb->disks + rdev->desc_nr;
1391 
1392 		if (desc->state & (1<<MD_DISK_FAULTY))
1393 			set_bit(Faulty, &rdev->flags);
1394 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1395 			    desc->raid_disk < mddev->raid_disks */) {
1396 			set_bit(In_sync, &rdev->flags);
1397 			rdev->raid_disk = desc->raid_disk;
1398 			rdev->saved_raid_disk = desc->raid_disk;
1399 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1400 			/* active but not in sync implies recovery up to
1401 			 * reshape position.  We don't know exactly where
1402 			 * that is, so set to zero for now */
1403 			if (mddev->minor_version >= 91) {
1404 				rdev->recovery_offset = 0;
1405 				rdev->raid_disk = desc->raid_disk;
1406 			}
1407 		}
1408 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1409 			set_bit(WriteMostly, &rdev->flags);
1410 		if (desc->state & (1<<MD_DISK_FAILFAST))
1411 			set_bit(FailFast, &rdev->flags);
1412 	} else /* MULTIPATH are always insync */
1413 		set_bit(In_sync, &rdev->flags);
1414 	return 0;
1415 }
1416 
1417 /*
1418  * sync_super for 0.90.0
1419  */
1420 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1421 {
1422 	mdp_super_t *sb;
1423 	struct md_rdev *rdev2;
1424 	int next_spare = mddev->raid_disks;
1425 
1426 	/* make rdev->sb match mddev data..
1427 	 *
1428 	 * 1/ zero out disks
1429 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1430 	 * 3/ any empty disks < next_spare become removed
1431 	 *
1432 	 * disks[0] gets initialised to REMOVED because
1433 	 * we cannot be sure from other fields if it has
1434 	 * been initialised or not.
1435 	 */
1436 	int i;
1437 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1438 
1439 	rdev->sb_size = MD_SB_BYTES;
1440 
1441 	sb = page_address(rdev->sb_page);
1442 
1443 	memset(sb, 0, sizeof(*sb));
1444 
1445 	sb->md_magic = MD_SB_MAGIC;
1446 	sb->major_version = mddev->major_version;
1447 	sb->patch_version = mddev->patch_version;
1448 	sb->gvalid_words  = 0; /* ignored */
1449 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1450 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1451 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1452 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1453 
1454 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1455 	sb->level = mddev->level;
1456 	sb->size = mddev->dev_sectors / 2;
1457 	sb->raid_disks = mddev->raid_disks;
1458 	sb->md_minor = mddev->md_minor;
1459 	sb->not_persistent = 0;
1460 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1461 	sb->state = 0;
1462 	sb->events_hi = (mddev->events>>32);
1463 	sb->events_lo = (u32)mddev->events;
1464 
1465 	if (mddev->reshape_position == MaxSector)
1466 		sb->minor_version = 90;
1467 	else {
1468 		sb->minor_version = 91;
1469 		sb->reshape_position = mddev->reshape_position;
1470 		sb->new_level = mddev->new_level;
1471 		sb->delta_disks = mddev->delta_disks;
1472 		sb->new_layout = mddev->new_layout;
1473 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1474 	}
1475 	mddev->minor_version = sb->minor_version;
1476 	if (mddev->in_sync)
1477 	{
1478 		sb->recovery_cp = mddev->recovery_cp;
1479 		sb->cp_events_hi = (mddev->events>>32);
1480 		sb->cp_events_lo = (u32)mddev->events;
1481 		if (mddev->recovery_cp == MaxSector)
1482 			sb->state = (1<< MD_SB_CLEAN);
1483 	} else
1484 		sb->recovery_cp = 0;
1485 
1486 	sb->layout = mddev->layout;
1487 	sb->chunk_size = mddev->chunk_sectors << 9;
1488 
1489 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1490 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1491 
1492 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1493 	rdev_for_each(rdev2, mddev) {
1494 		mdp_disk_t *d;
1495 		int desc_nr;
1496 		int is_active = test_bit(In_sync, &rdev2->flags);
1497 
1498 		if (rdev2->raid_disk >= 0 &&
1499 		    sb->minor_version >= 91)
1500 			/* we have nowhere to store the recovery_offset,
1501 			 * but if it is not below the reshape_position,
1502 			 * we can piggy-back on that.
1503 			 */
1504 			is_active = 1;
1505 		if (rdev2->raid_disk < 0 ||
1506 		    test_bit(Faulty, &rdev2->flags))
1507 			is_active = 0;
1508 		if (is_active)
1509 			desc_nr = rdev2->raid_disk;
1510 		else
1511 			desc_nr = next_spare++;
1512 		rdev2->desc_nr = desc_nr;
1513 		d = &sb->disks[rdev2->desc_nr];
1514 		nr_disks++;
1515 		d->number = rdev2->desc_nr;
1516 		d->major = MAJOR(rdev2->bdev->bd_dev);
1517 		d->minor = MINOR(rdev2->bdev->bd_dev);
1518 		if (is_active)
1519 			d->raid_disk = rdev2->raid_disk;
1520 		else
1521 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1522 		if (test_bit(Faulty, &rdev2->flags))
1523 			d->state = (1<<MD_DISK_FAULTY);
1524 		else if (is_active) {
1525 			d->state = (1<<MD_DISK_ACTIVE);
1526 			if (test_bit(In_sync, &rdev2->flags))
1527 				d->state |= (1<<MD_DISK_SYNC);
1528 			active++;
1529 			working++;
1530 		} else {
1531 			d->state = 0;
1532 			spare++;
1533 			working++;
1534 		}
1535 		if (test_bit(WriteMostly, &rdev2->flags))
1536 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1537 		if (test_bit(FailFast, &rdev2->flags))
1538 			d->state |= (1<<MD_DISK_FAILFAST);
1539 	}
1540 	/* now set the "removed" and "faulty" bits on any missing devices */
1541 	for (i=0 ; i < mddev->raid_disks ; i++) {
1542 		mdp_disk_t *d = &sb->disks[i];
1543 		if (d->state == 0 && d->number == 0) {
1544 			d->number = i;
1545 			d->raid_disk = i;
1546 			d->state = (1<<MD_DISK_REMOVED);
1547 			d->state |= (1<<MD_DISK_FAULTY);
1548 			failed++;
1549 		}
1550 	}
1551 	sb->nr_disks = nr_disks;
1552 	sb->active_disks = active;
1553 	sb->working_disks = working;
1554 	sb->failed_disks = failed;
1555 	sb->spare_disks = spare;
1556 
1557 	sb->this_disk = sb->disks[rdev->desc_nr];
1558 	sb->sb_csum = calc_sb_csum(sb);
1559 }
1560 
1561 /*
1562  * rdev_size_change for 0.90.0
1563  */
1564 static unsigned long long
1565 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1566 {
1567 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1568 		return 0; /* component must fit device */
1569 	if (rdev->mddev->bitmap_info.offset)
1570 		return 0; /* can't move bitmap */
1571 	rdev->sb_start = calc_dev_sboffset(rdev);
1572 	if (!num_sectors || num_sectors > rdev->sb_start)
1573 		num_sectors = rdev->sb_start;
1574 	/* Limit to 4TB as metadata cannot record more than that.
1575 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1576 	 */
1577 	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1578 		num_sectors = (sector_t)(2ULL << 32) - 2;
1579 	do {
1580 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1581 		       rdev->sb_page);
1582 	} while (md_super_wait(rdev->mddev) < 0);
1583 	return num_sectors;
1584 }
1585 
1586 static int
1587 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1588 {
1589 	/* non-zero offset changes not possible with v0.90 */
1590 	return new_offset == 0;
1591 }
1592 
1593 /*
1594  * version 1 superblock
1595  */
1596 
1597 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1598 {
1599 	__le32 disk_csum;
1600 	u32 csum;
1601 	unsigned long long newcsum;
1602 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1603 	__le32 *isuper = (__le32*)sb;
1604 
1605 	disk_csum = sb->sb_csum;
1606 	sb->sb_csum = 0;
1607 	newcsum = 0;
1608 	for (; size >= 4; size -= 4)
1609 		newcsum += le32_to_cpu(*isuper++);
1610 
1611 	if (size == 2)
1612 		newcsum += le16_to_cpu(*(__le16*) isuper);
1613 
1614 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1615 	sb->sb_csum = disk_csum;
1616 	return cpu_to_le32(csum);
1617 }
1618 
1619 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1620 {
1621 	struct mdp_superblock_1 *sb;
1622 	int ret;
1623 	sector_t sb_start;
1624 	sector_t sectors;
1625 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1626 	int bmask;
1627 	bool spare_disk = true;
1628 
1629 	/*
1630 	 * Calculate the position of the superblock in 512byte sectors.
1631 	 * It is always aligned to a 4K boundary and
1632 	 * depeding on minor_version, it can be:
1633 	 * 0: At least 8K, but less than 12K, from end of device
1634 	 * 1: At start of device
1635 	 * 2: 4K from start of device.
1636 	 */
1637 	switch(minor_version) {
1638 	case 0:
1639 		sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1640 		sb_start &= ~(sector_t)(4*2-1);
1641 		break;
1642 	case 1:
1643 		sb_start = 0;
1644 		break;
1645 	case 2:
1646 		sb_start = 8;
1647 		break;
1648 	default:
1649 		return -EINVAL;
1650 	}
1651 	rdev->sb_start = sb_start;
1652 
1653 	/* superblock is rarely larger than 1K, but it can be larger,
1654 	 * and it is safe to read 4k, so we do that
1655 	 */
1656 	ret = read_disk_sb(rdev, 4096);
1657 	if (ret) return ret;
1658 
1659 	sb = page_address(rdev->sb_page);
1660 
1661 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1662 	    sb->major_version != cpu_to_le32(1) ||
1663 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1664 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1665 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1666 		return -EINVAL;
1667 
1668 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1669 		pr_warn("md: invalid superblock checksum on %s\n",
1670 			bdevname(rdev->bdev,b));
1671 		return -EINVAL;
1672 	}
1673 	if (le64_to_cpu(sb->data_size) < 10) {
1674 		pr_warn("md: data_size too small on %s\n",
1675 			bdevname(rdev->bdev,b));
1676 		return -EINVAL;
1677 	}
1678 	if (sb->pad0 ||
1679 	    sb->pad3[0] ||
1680 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1681 		/* Some padding is non-zero, might be a new feature */
1682 		return -EINVAL;
1683 
1684 	rdev->preferred_minor = 0xffff;
1685 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1686 	rdev->new_data_offset = rdev->data_offset;
1687 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1688 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1689 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1690 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1691 
1692 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1693 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1694 	if (rdev->sb_size & bmask)
1695 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1696 
1697 	if (minor_version
1698 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1699 		return -EINVAL;
1700 	if (minor_version
1701 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1702 		return -EINVAL;
1703 
1704 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1705 		rdev->desc_nr = -1;
1706 	else
1707 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1708 
1709 	if (!rdev->bb_page) {
1710 		rdev->bb_page = alloc_page(GFP_KERNEL);
1711 		if (!rdev->bb_page)
1712 			return -ENOMEM;
1713 	}
1714 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1715 	    rdev->badblocks.count == 0) {
1716 		/* need to load the bad block list.
1717 		 * Currently we limit it to one page.
1718 		 */
1719 		s32 offset;
1720 		sector_t bb_sector;
1721 		__le64 *bbp;
1722 		int i;
1723 		int sectors = le16_to_cpu(sb->bblog_size);
1724 		if (sectors > (PAGE_SIZE / 512))
1725 			return -EINVAL;
1726 		offset = le32_to_cpu(sb->bblog_offset);
1727 		if (offset == 0)
1728 			return -EINVAL;
1729 		bb_sector = (long long)offset;
1730 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1731 				  rdev->bb_page, REQ_OP_READ, 0, true))
1732 			return -EIO;
1733 		bbp = (__le64 *)page_address(rdev->bb_page);
1734 		rdev->badblocks.shift = sb->bblog_shift;
1735 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1736 			u64 bb = le64_to_cpu(*bbp);
1737 			int count = bb & (0x3ff);
1738 			u64 sector = bb >> 10;
1739 			sector <<= sb->bblog_shift;
1740 			count <<= sb->bblog_shift;
1741 			if (bb + 1 == 0)
1742 				break;
1743 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1744 				return -EINVAL;
1745 		}
1746 	} else if (sb->bblog_offset != 0)
1747 		rdev->badblocks.shift = 0;
1748 
1749 	if ((le32_to_cpu(sb->feature_map) &
1750 	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1751 		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1752 		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1753 		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1754 	}
1755 
1756 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1757 	    sb->level != 0)
1758 		return -EINVAL;
1759 
1760 	/* not spare disk, or LEVEL_MULTIPATH */
1761 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1762 		(rdev->desc_nr >= 0 &&
1763 		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1764 		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1765 		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1766 		spare_disk = false;
1767 
1768 	if (!refdev) {
1769 		if (!spare_disk)
1770 			ret = 1;
1771 		else
1772 			ret = 0;
1773 	} else {
1774 		__u64 ev1, ev2;
1775 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1776 
1777 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1778 		    sb->level != refsb->level ||
1779 		    sb->layout != refsb->layout ||
1780 		    sb->chunksize != refsb->chunksize) {
1781 			pr_warn("md: %s has strangely different superblock to %s\n",
1782 				bdevname(rdev->bdev,b),
1783 				bdevname(refdev->bdev,b2));
1784 			return -EINVAL;
1785 		}
1786 		ev1 = le64_to_cpu(sb->events);
1787 		ev2 = le64_to_cpu(refsb->events);
1788 
1789 		if (!spare_disk && ev1 > ev2)
1790 			ret = 1;
1791 		else
1792 			ret = 0;
1793 	}
1794 	if (minor_version)
1795 		sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1796 	else
1797 		sectors = rdev->sb_start;
1798 	if (sectors < le64_to_cpu(sb->data_size))
1799 		return -EINVAL;
1800 	rdev->sectors = le64_to_cpu(sb->data_size);
1801 	return ret;
1802 }
1803 
1804 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1805 {
1806 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1807 	__u64 ev1 = le64_to_cpu(sb->events);
1808 
1809 	rdev->raid_disk = -1;
1810 	clear_bit(Faulty, &rdev->flags);
1811 	clear_bit(In_sync, &rdev->flags);
1812 	clear_bit(Bitmap_sync, &rdev->flags);
1813 	clear_bit(WriteMostly, &rdev->flags);
1814 
1815 	if (mddev->raid_disks == 0) {
1816 		mddev->major_version = 1;
1817 		mddev->patch_version = 0;
1818 		mddev->external = 0;
1819 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1820 		mddev->ctime = le64_to_cpu(sb->ctime);
1821 		mddev->utime = le64_to_cpu(sb->utime);
1822 		mddev->level = le32_to_cpu(sb->level);
1823 		mddev->clevel[0] = 0;
1824 		mddev->layout = le32_to_cpu(sb->layout);
1825 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1826 		mddev->dev_sectors = le64_to_cpu(sb->size);
1827 		mddev->events = ev1;
1828 		mddev->bitmap_info.offset = 0;
1829 		mddev->bitmap_info.space = 0;
1830 		/* Default location for bitmap is 1K after superblock
1831 		 * using 3K - total of 4K
1832 		 */
1833 		mddev->bitmap_info.default_offset = 1024 >> 9;
1834 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1835 		mddev->reshape_backwards = 0;
1836 
1837 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1838 		memcpy(mddev->uuid, sb->set_uuid, 16);
1839 
1840 		mddev->max_disks =  (4096-256)/2;
1841 
1842 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1843 		    mddev->bitmap_info.file == NULL) {
1844 			mddev->bitmap_info.offset =
1845 				(__s32)le32_to_cpu(sb->bitmap_offset);
1846 			/* Metadata doesn't record how much space is available.
1847 			 * For 1.0, we assume we can use up to the superblock
1848 			 * if before, else to 4K beyond superblock.
1849 			 * For others, assume no change is possible.
1850 			 */
1851 			if (mddev->minor_version > 0)
1852 				mddev->bitmap_info.space = 0;
1853 			else if (mddev->bitmap_info.offset > 0)
1854 				mddev->bitmap_info.space =
1855 					8 - mddev->bitmap_info.offset;
1856 			else
1857 				mddev->bitmap_info.space =
1858 					-mddev->bitmap_info.offset;
1859 		}
1860 
1861 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1862 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1863 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1864 			mddev->new_level = le32_to_cpu(sb->new_level);
1865 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1866 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1867 			if (mddev->delta_disks < 0 ||
1868 			    (mddev->delta_disks == 0 &&
1869 			     (le32_to_cpu(sb->feature_map)
1870 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1871 				mddev->reshape_backwards = 1;
1872 		} else {
1873 			mddev->reshape_position = MaxSector;
1874 			mddev->delta_disks = 0;
1875 			mddev->new_level = mddev->level;
1876 			mddev->new_layout = mddev->layout;
1877 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1878 		}
1879 
1880 		if (mddev->level == 0 &&
1881 		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1882 			mddev->layout = -1;
1883 
1884 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1885 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1886 
1887 		if (le32_to_cpu(sb->feature_map) &
1888 		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1889 			if (le32_to_cpu(sb->feature_map) &
1890 			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1891 				return -EINVAL;
1892 			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1893 			    (le32_to_cpu(sb->feature_map) &
1894 					    MD_FEATURE_MULTIPLE_PPLS))
1895 				return -EINVAL;
1896 			set_bit(MD_HAS_PPL, &mddev->flags);
1897 		}
1898 	} else if (mddev->pers == NULL) {
1899 		/* Insist of good event counter while assembling, except for
1900 		 * spares (which don't need an event count) */
1901 		++ev1;
1902 		if (rdev->desc_nr >= 0 &&
1903 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1904 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1905 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1906 			if (ev1 < mddev->events)
1907 				return -EINVAL;
1908 	} else if (mddev->bitmap) {
1909 		/* If adding to array with a bitmap, then we can accept an
1910 		 * older device, but not too old.
1911 		 */
1912 		if (ev1 < mddev->bitmap->events_cleared)
1913 			return 0;
1914 		if (ev1 < mddev->events)
1915 			set_bit(Bitmap_sync, &rdev->flags);
1916 	} else {
1917 		if (ev1 < mddev->events)
1918 			/* just a hot-add of a new device, leave raid_disk at -1 */
1919 			return 0;
1920 	}
1921 	if (mddev->level != LEVEL_MULTIPATH) {
1922 		int role;
1923 		if (rdev->desc_nr < 0 ||
1924 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1925 			role = MD_DISK_ROLE_SPARE;
1926 			rdev->desc_nr = -1;
1927 		} else
1928 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1929 		switch(role) {
1930 		case MD_DISK_ROLE_SPARE: /* spare */
1931 			break;
1932 		case MD_DISK_ROLE_FAULTY: /* faulty */
1933 			set_bit(Faulty, &rdev->flags);
1934 			break;
1935 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1936 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1937 				/* journal device without journal feature */
1938 				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1939 				return -EINVAL;
1940 			}
1941 			set_bit(Journal, &rdev->flags);
1942 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1943 			rdev->raid_disk = 0;
1944 			break;
1945 		default:
1946 			rdev->saved_raid_disk = role;
1947 			if ((le32_to_cpu(sb->feature_map) &
1948 			     MD_FEATURE_RECOVERY_OFFSET)) {
1949 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1950 				if (!(le32_to_cpu(sb->feature_map) &
1951 				      MD_FEATURE_RECOVERY_BITMAP))
1952 					rdev->saved_raid_disk = -1;
1953 			} else {
1954 				/*
1955 				 * If the array is FROZEN, then the device can't
1956 				 * be in_sync with rest of array.
1957 				 */
1958 				if (!test_bit(MD_RECOVERY_FROZEN,
1959 					      &mddev->recovery))
1960 					set_bit(In_sync, &rdev->flags);
1961 			}
1962 			rdev->raid_disk = role;
1963 			break;
1964 		}
1965 		if (sb->devflags & WriteMostly1)
1966 			set_bit(WriteMostly, &rdev->flags);
1967 		if (sb->devflags & FailFast1)
1968 			set_bit(FailFast, &rdev->flags);
1969 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1970 			set_bit(Replacement, &rdev->flags);
1971 	} else /* MULTIPATH are always insync */
1972 		set_bit(In_sync, &rdev->flags);
1973 
1974 	return 0;
1975 }
1976 
1977 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1978 {
1979 	struct mdp_superblock_1 *sb;
1980 	struct md_rdev *rdev2;
1981 	int max_dev, i;
1982 	/* make rdev->sb match mddev and rdev data. */
1983 
1984 	sb = page_address(rdev->sb_page);
1985 
1986 	sb->feature_map = 0;
1987 	sb->pad0 = 0;
1988 	sb->recovery_offset = cpu_to_le64(0);
1989 	memset(sb->pad3, 0, sizeof(sb->pad3));
1990 
1991 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1992 	sb->events = cpu_to_le64(mddev->events);
1993 	if (mddev->in_sync)
1994 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1995 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1996 		sb->resync_offset = cpu_to_le64(MaxSector);
1997 	else
1998 		sb->resync_offset = cpu_to_le64(0);
1999 
2000 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2001 
2002 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2003 	sb->size = cpu_to_le64(mddev->dev_sectors);
2004 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2005 	sb->level = cpu_to_le32(mddev->level);
2006 	sb->layout = cpu_to_le32(mddev->layout);
2007 	if (test_bit(FailFast, &rdev->flags))
2008 		sb->devflags |= FailFast1;
2009 	else
2010 		sb->devflags &= ~FailFast1;
2011 
2012 	if (test_bit(WriteMostly, &rdev->flags))
2013 		sb->devflags |= WriteMostly1;
2014 	else
2015 		sb->devflags &= ~WriteMostly1;
2016 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2017 	sb->data_size = cpu_to_le64(rdev->sectors);
2018 
2019 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2020 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2021 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2022 	}
2023 
2024 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2025 	    !test_bit(In_sync, &rdev->flags)) {
2026 		sb->feature_map |=
2027 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2028 		sb->recovery_offset =
2029 			cpu_to_le64(rdev->recovery_offset);
2030 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2031 			sb->feature_map |=
2032 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2033 	}
2034 	/* Note: recovery_offset and journal_tail share space  */
2035 	if (test_bit(Journal, &rdev->flags))
2036 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2037 	if (test_bit(Replacement, &rdev->flags))
2038 		sb->feature_map |=
2039 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2040 
2041 	if (mddev->reshape_position != MaxSector) {
2042 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2043 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2044 		sb->new_layout = cpu_to_le32(mddev->new_layout);
2045 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2046 		sb->new_level = cpu_to_le32(mddev->new_level);
2047 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2048 		if (mddev->delta_disks == 0 &&
2049 		    mddev->reshape_backwards)
2050 			sb->feature_map
2051 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2052 		if (rdev->new_data_offset != rdev->data_offset) {
2053 			sb->feature_map
2054 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2055 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2056 							     - rdev->data_offset));
2057 		}
2058 	}
2059 
2060 	if (mddev_is_clustered(mddev))
2061 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2062 
2063 	if (rdev->badblocks.count == 0)
2064 		/* Nothing to do for bad blocks*/ ;
2065 	else if (sb->bblog_offset == 0)
2066 		/* Cannot record bad blocks on this device */
2067 		md_error(mddev, rdev);
2068 	else {
2069 		struct badblocks *bb = &rdev->badblocks;
2070 		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2071 		u64 *p = bb->page;
2072 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2073 		if (bb->changed) {
2074 			unsigned seq;
2075 
2076 retry:
2077 			seq = read_seqbegin(&bb->lock);
2078 
2079 			memset(bbp, 0xff, PAGE_SIZE);
2080 
2081 			for (i = 0 ; i < bb->count ; i++) {
2082 				u64 internal_bb = p[i];
2083 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2084 						| BB_LEN(internal_bb));
2085 				bbp[i] = cpu_to_le64(store_bb);
2086 			}
2087 			bb->changed = 0;
2088 			if (read_seqretry(&bb->lock, seq))
2089 				goto retry;
2090 
2091 			bb->sector = (rdev->sb_start +
2092 				      (int)le32_to_cpu(sb->bblog_offset));
2093 			bb->size = le16_to_cpu(sb->bblog_size);
2094 		}
2095 	}
2096 
2097 	max_dev = 0;
2098 	rdev_for_each(rdev2, mddev)
2099 		if (rdev2->desc_nr+1 > max_dev)
2100 			max_dev = rdev2->desc_nr+1;
2101 
2102 	if (max_dev > le32_to_cpu(sb->max_dev)) {
2103 		int bmask;
2104 		sb->max_dev = cpu_to_le32(max_dev);
2105 		rdev->sb_size = max_dev * 2 + 256;
2106 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2107 		if (rdev->sb_size & bmask)
2108 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2109 	} else
2110 		max_dev = le32_to_cpu(sb->max_dev);
2111 
2112 	for (i=0; i<max_dev;i++)
2113 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2114 
2115 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2116 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2117 
2118 	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2119 		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2120 			sb->feature_map |=
2121 			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2122 		else
2123 			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2124 		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2125 		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2126 	}
2127 
2128 	rdev_for_each(rdev2, mddev) {
2129 		i = rdev2->desc_nr;
2130 		if (test_bit(Faulty, &rdev2->flags))
2131 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2132 		else if (test_bit(In_sync, &rdev2->flags))
2133 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2134 		else if (test_bit(Journal, &rdev2->flags))
2135 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2136 		else if (rdev2->raid_disk >= 0)
2137 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2138 		else
2139 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2140 	}
2141 
2142 	sb->sb_csum = calc_sb_1_csum(sb);
2143 }
2144 
2145 static sector_t super_1_choose_bm_space(sector_t dev_size)
2146 {
2147 	sector_t bm_space;
2148 
2149 	/* if the device is bigger than 8Gig, save 64k for bitmap
2150 	 * usage, if bigger than 200Gig, save 128k
2151 	 */
2152 	if (dev_size < 64*2)
2153 		bm_space = 0;
2154 	else if (dev_size - 64*2 >= 200*1024*1024*2)
2155 		bm_space = 128*2;
2156 	else if (dev_size - 4*2 > 8*1024*1024*2)
2157 		bm_space = 64*2;
2158 	else
2159 		bm_space = 4*2;
2160 	return bm_space;
2161 }
2162 
2163 static unsigned long long
2164 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2165 {
2166 	struct mdp_superblock_1 *sb;
2167 	sector_t max_sectors;
2168 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2169 		return 0; /* component must fit device */
2170 	if (rdev->data_offset != rdev->new_data_offset)
2171 		return 0; /* too confusing */
2172 	if (rdev->sb_start < rdev->data_offset) {
2173 		/* minor versions 1 and 2; superblock before data */
2174 		max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2175 		if (!num_sectors || num_sectors > max_sectors)
2176 			num_sectors = max_sectors;
2177 	} else if (rdev->mddev->bitmap_info.offset) {
2178 		/* minor version 0 with bitmap we can't move */
2179 		return 0;
2180 	} else {
2181 		/* minor version 0; superblock after data */
2182 		sector_t sb_start, bm_space;
2183 		sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2184 
2185 		/* 8K is for superblock */
2186 		sb_start = dev_size - 8*2;
2187 		sb_start &= ~(sector_t)(4*2 - 1);
2188 
2189 		bm_space = super_1_choose_bm_space(dev_size);
2190 
2191 		/* Space that can be used to store date needs to decrease
2192 		 * superblock bitmap space and bad block space(4K)
2193 		 */
2194 		max_sectors = sb_start - bm_space - 4*2;
2195 
2196 		if (!num_sectors || num_sectors > max_sectors)
2197 			num_sectors = max_sectors;
2198 		rdev->sb_start = sb_start;
2199 	}
2200 	sb = page_address(rdev->sb_page);
2201 	sb->data_size = cpu_to_le64(num_sectors);
2202 	sb->super_offset = cpu_to_le64(rdev->sb_start);
2203 	sb->sb_csum = calc_sb_1_csum(sb);
2204 	do {
2205 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2206 			       rdev->sb_page);
2207 	} while (md_super_wait(rdev->mddev) < 0);
2208 	return num_sectors;
2209 
2210 }
2211 
2212 static int
2213 super_1_allow_new_offset(struct md_rdev *rdev,
2214 			 unsigned long long new_offset)
2215 {
2216 	/* All necessary checks on new >= old have been done */
2217 	struct bitmap *bitmap;
2218 	if (new_offset >= rdev->data_offset)
2219 		return 1;
2220 
2221 	/* with 1.0 metadata, there is no metadata to tread on
2222 	 * so we can always move back */
2223 	if (rdev->mddev->minor_version == 0)
2224 		return 1;
2225 
2226 	/* otherwise we must be sure not to step on
2227 	 * any metadata, so stay:
2228 	 * 36K beyond start of superblock
2229 	 * beyond end of badblocks
2230 	 * beyond write-intent bitmap
2231 	 */
2232 	if (rdev->sb_start + (32+4)*2 > new_offset)
2233 		return 0;
2234 	bitmap = rdev->mddev->bitmap;
2235 	if (bitmap && !rdev->mddev->bitmap_info.file &&
2236 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2237 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2238 		return 0;
2239 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2240 		return 0;
2241 
2242 	return 1;
2243 }
2244 
2245 static struct super_type super_types[] = {
2246 	[0] = {
2247 		.name	= "0.90.0",
2248 		.owner	= THIS_MODULE,
2249 		.load_super	    = super_90_load,
2250 		.validate_super	    = super_90_validate,
2251 		.sync_super	    = super_90_sync,
2252 		.rdev_size_change   = super_90_rdev_size_change,
2253 		.allow_new_offset   = super_90_allow_new_offset,
2254 	},
2255 	[1] = {
2256 		.name	= "md-1",
2257 		.owner	= THIS_MODULE,
2258 		.load_super	    = super_1_load,
2259 		.validate_super	    = super_1_validate,
2260 		.sync_super	    = super_1_sync,
2261 		.rdev_size_change   = super_1_rdev_size_change,
2262 		.allow_new_offset   = super_1_allow_new_offset,
2263 	},
2264 };
2265 
2266 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2267 {
2268 	if (mddev->sync_super) {
2269 		mddev->sync_super(mddev, rdev);
2270 		return;
2271 	}
2272 
2273 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2274 
2275 	super_types[mddev->major_version].sync_super(mddev, rdev);
2276 }
2277 
2278 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2279 {
2280 	struct md_rdev *rdev, *rdev2;
2281 
2282 	rcu_read_lock();
2283 	rdev_for_each_rcu(rdev, mddev1) {
2284 		if (test_bit(Faulty, &rdev->flags) ||
2285 		    test_bit(Journal, &rdev->flags) ||
2286 		    rdev->raid_disk == -1)
2287 			continue;
2288 		rdev_for_each_rcu(rdev2, mddev2) {
2289 			if (test_bit(Faulty, &rdev2->flags) ||
2290 			    test_bit(Journal, &rdev2->flags) ||
2291 			    rdev2->raid_disk == -1)
2292 				continue;
2293 			if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2294 				rcu_read_unlock();
2295 				return 1;
2296 			}
2297 		}
2298 	}
2299 	rcu_read_unlock();
2300 	return 0;
2301 }
2302 
2303 static LIST_HEAD(pending_raid_disks);
2304 
2305 /*
2306  * Try to register data integrity profile for an mddev
2307  *
2308  * This is called when an array is started and after a disk has been kicked
2309  * from the array. It only succeeds if all working and active component devices
2310  * are integrity capable with matching profiles.
2311  */
2312 int md_integrity_register(struct mddev *mddev)
2313 {
2314 	struct md_rdev *rdev, *reference = NULL;
2315 
2316 	if (list_empty(&mddev->disks))
2317 		return 0; /* nothing to do */
2318 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2319 		return 0; /* shouldn't register, or already is */
2320 	rdev_for_each(rdev, mddev) {
2321 		/* skip spares and non-functional disks */
2322 		if (test_bit(Faulty, &rdev->flags))
2323 			continue;
2324 		if (rdev->raid_disk < 0)
2325 			continue;
2326 		if (!reference) {
2327 			/* Use the first rdev as the reference */
2328 			reference = rdev;
2329 			continue;
2330 		}
2331 		/* does this rdev's profile match the reference profile? */
2332 		if (blk_integrity_compare(reference->bdev->bd_disk,
2333 				rdev->bdev->bd_disk) < 0)
2334 			return -EINVAL;
2335 	}
2336 	if (!reference || !bdev_get_integrity(reference->bdev))
2337 		return 0;
2338 	/*
2339 	 * All component devices are integrity capable and have matching
2340 	 * profiles, register the common profile for the md device.
2341 	 */
2342 	blk_integrity_register(mddev->gendisk,
2343 			       bdev_get_integrity(reference->bdev));
2344 
2345 	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2346 	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2347 	    (mddev->level != 1 && mddev->level != 10 &&
2348 	     bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2349 		/*
2350 		 * No need to handle the failure of bioset_integrity_create,
2351 		 * because the function is called by md_run() -> pers->run(),
2352 		 * md_run calls bioset_exit -> bioset_integrity_free in case
2353 		 * of failure case.
2354 		 */
2355 		pr_err("md: failed to create integrity pool for %s\n",
2356 		       mdname(mddev));
2357 		return -EINVAL;
2358 	}
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL(md_integrity_register);
2362 
2363 /*
2364  * Attempt to add an rdev, but only if it is consistent with the current
2365  * integrity profile
2366  */
2367 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2368 {
2369 	struct blk_integrity *bi_mddev;
2370 	char name[BDEVNAME_SIZE];
2371 
2372 	if (!mddev->gendisk)
2373 		return 0;
2374 
2375 	bi_mddev = blk_get_integrity(mddev->gendisk);
2376 
2377 	if (!bi_mddev) /* nothing to do */
2378 		return 0;
2379 
2380 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2381 		pr_err("%s: incompatible integrity profile for %s\n",
2382 		       mdname(mddev), bdevname(rdev->bdev, name));
2383 		return -ENXIO;
2384 	}
2385 
2386 	return 0;
2387 }
2388 EXPORT_SYMBOL(md_integrity_add_rdev);
2389 
2390 static bool rdev_read_only(struct md_rdev *rdev)
2391 {
2392 	return bdev_read_only(rdev->bdev) ||
2393 		(rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2394 }
2395 
2396 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2397 {
2398 	char b[BDEVNAME_SIZE];
2399 	int err;
2400 
2401 	/* prevent duplicates */
2402 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2403 		return -EEXIST;
2404 
2405 	if (rdev_read_only(rdev) && mddev->pers)
2406 		return -EROFS;
2407 
2408 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2409 	if (!test_bit(Journal, &rdev->flags) &&
2410 	    rdev->sectors &&
2411 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2412 		if (mddev->pers) {
2413 			/* Cannot change size, so fail
2414 			 * If mddev->level <= 0, then we don't care
2415 			 * about aligning sizes (e.g. linear)
2416 			 */
2417 			if (mddev->level > 0)
2418 				return -ENOSPC;
2419 		} else
2420 			mddev->dev_sectors = rdev->sectors;
2421 	}
2422 
2423 	/* Verify rdev->desc_nr is unique.
2424 	 * If it is -1, assign a free number, else
2425 	 * check number is not in use
2426 	 */
2427 	rcu_read_lock();
2428 	if (rdev->desc_nr < 0) {
2429 		int choice = 0;
2430 		if (mddev->pers)
2431 			choice = mddev->raid_disks;
2432 		while (md_find_rdev_nr_rcu(mddev, choice))
2433 			choice++;
2434 		rdev->desc_nr = choice;
2435 	} else {
2436 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2437 			rcu_read_unlock();
2438 			return -EBUSY;
2439 		}
2440 	}
2441 	rcu_read_unlock();
2442 	if (!test_bit(Journal, &rdev->flags) &&
2443 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2444 		pr_warn("md: %s: array is limited to %d devices\n",
2445 			mdname(mddev), mddev->max_disks);
2446 		return -EBUSY;
2447 	}
2448 	bdevname(rdev->bdev,b);
2449 	strreplace(b, '/', '!');
2450 
2451 	rdev->mddev = mddev;
2452 	pr_debug("md: bind<%s>\n", b);
2453 
2454 	if (mddev->raid_disks)
2455 		mddev_create_serial_pool(mddev, rdev, false);
2456 
2457 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2458 		goto fail;
2459 
2460 	/* failure here is OK */
2461 	err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2462 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2463 	rdev->sysfs_unack_badblocks =
2464 		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2465 	rdev->sysfs_badblocks =
2466 		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2467 
2468 	list_add_rcu(&rdev->same_set, &mddev->disks);
2469 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2470 
2471 	/* May as well allow recovery to be retried once */
2472 	mddev->recovery_disabled++;
2473 
2474 	return 0;
2475 
2476  fail:
2477 	pr_warn("md: failed to register dev-%s for %s\n",
2478 		b, mdname(mddev));
2479 	return err;
2480 }
2481 
2482 static void rdev_delayed_delete(struct work_struct *ws)
2483 {
2484 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2485 	kobject_del(&rdev->kobj);
2486 	kobject_put(&rdev->kobj);
2487 }
2488 
2489 static void unbind_rdev_from_array(struct md_rdev *rdev)
2490 {
2491 	char b[BDEVNAME_SIZE];
2492 
2493 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2494 	list_del_rcu(&rdev->same_set);
2495 	pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2496 	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2497 	rdev->mddev = NULL;
2498 	sysfs_remove_link(&rdev->kobj, "block");
2499 	sysfs_put(rdev->sysfs_state);
2500 	sysfs_put(rdev->sysfs_unack_badblocks);
2501 	sysfs_put(rdev->sysfs_badblocks);
2502 	rdev->sysfs_state = NULL;
2503 	rdev->sysfs_unack_badblocks = NULL;
2504 	rdev->sysfs_badblocks = NULL;
2505 	rdev->badblocks.count = 0;
2506 	/* We need to delay this, otherwise we can deadlock when
2507 	 * writing to 'remove' to "dev/state".  We also need
2508 	 * to delay it due to rcu usage.
2509 	 */
2510 	synchronize_rcu();
2511 	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2512 	kobject_get(&rdev->kobj);
2513 	queue_work(md_rdev_misc_wq, &rdev->del_work);
2514 }
2515 
2516 /*
2517  * prevent the device from being mounted, repartitioned or
2518  * otherwise reused by a RAID array (or any other kernel
2519  * subsystem), by bd_claiming the device.
2520  */
2521 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2522 {
2523 	int err = 0;
2524 	struct block_device *bdev;
2525 
2526 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2527 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2528 	if (IS_ERR(bdev)) {
2529 		pr_warn("md: could not open device unknown-block(%u,%u).\n",
2530 			MAJOR(dev), MINOR(dev));
2531 		return PTR_ERR(bdev);
2532 	}
2533 	rdev->bdev = bdev;
2534 	return err;
2535 }
2536 
2537 static void unlock_rdev(struct md_rdev *rdev)
2538 {
2539 	struct block_device *bdev = rdev->bdev;
2540 	rdev->bdev = NULL;
2541 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2542 }
2543 
2544 void md_autodetect_dev(dev_t dev);
2545 
2546 static void export_rdev(struct md_rdev *rdev)
2547 {
2548 	char b[BDEVNAME_SIZE];
2549 
2550 	pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2551 	md_rdev_clear(rdev);
2552 #ifndef MODULE
2553 	if (test_bit(AutoDetected, &rdev->flags))
2554 		md_autodetect_dev(rdev->bdev->bd_dev);
2555 #endif
2556 	unlock_rdev(rdev);
2557 	kobject_put(&rdev->kobj);
2558 }
2559 
2560 void md_kick_rdev_from_array(struct md_rdev *rdev)
2561 {
2562 	unbind_rdev_from_array(rdev);
2563 	export_rdev(rdev);
2564 }
2565 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2566 
2567 static void export_array(struct mddev *mddev)
2568 {
2569 	struct md_rdev *rdev;
2570 
2571 	while (!list_empty(&mddev->disks)) {
2572 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2573 					same_set);
2574 		md_kick_rdev_from_array(rdev);
2575 	}
2576 	mddev->raid_disks = 0;
2577 	mddev->major_version = 0;
2578 }
2579 
2580 static bool set_in_sync(struct mddev *mddev)
2581 {
2582 	lockdep_assert_held(&mddev->lock);
2583 	if (!mddev->in_sync) {
2584 		mddev->sync_checkers++;
2585 		spin_unlock(&mddev->lock);
2586 		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2587 		spin_lock(&mddev->lock);
2588 		if (!mddev->in_sync &&
2589 		    percpu_ref_is_zero(&mddev->writes_pending)) {
2590 			mddev->in_sync = 1;
2591 			/*
2592 			 * Ensure ->in_sync is visible before we clear
2593 			 * ->sync_checkers.
2594 			 */
2595 			smp_mb();
2596 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2597 			sysfs_notify_dirent_safe(mddev->sysfs_state);
2598 		}
2599 		if (--mddev->sync_checkers == 0)
2600 			percpu_ref_switch_to_percpu(&mddev->writes_pending);
2601 	}
2602 	if (mddev->safemode == 1)
2603 		mddev->safemode = 0;
2604 	return mddev->in_sync;
2605 }
2606 
2607 static void sync_sbs(struct mddev *mddev, int nospares)
2608 {
2609 	/* Update each superblock (in-memory image), but
2610 	 * if we are allowed to, skip spares which already
2611 	 * have the right event counter, or have one earlier
2612 	 * (which would mean they aren't being marked as dirty
2613 	 * with the rest of the array)
2614 	 */
2615 	struct md_rdev *rdev;
2616 	rdev_for_each(rdev, mddev) {
2617 		if (rdev->sb_events == mddev->events ||
2618 		    (nospares &&
2619 		     rdev->raid_disk < 0 &&
2620 		     rdev->sb_events+1 == mddev->events)) {
2621 			/* Don't update this superblock */
2622 			rdev->sb_loaded = 2;
2623 		} else {
2624 			sync_super(mddev, rdev);
2625 			rdev->sb_loaded = 1;
2626 		}
2627 	}
2628 }
2629 
2630 static bool does_sb_need_changing(struct mddev *mddev)
2631 {
2632 	struct md_rdev *rdev;
2633 	struct mdp_superblock_1 *sb;
2634 	int role;
2635 
2636 	/* Find a good rdev */
2637 	rdev_for_each(rdev, mddev)
2638 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2639 			break;
2640 
2641 	/* No good device found. */
2642 	if (!rdev)
2643 		return false;
2644 
2645 	sb = page_address(rdev->sb_page);
2646 	/* Check if a device has become faulty or a spare become active */
2647 	rdev_for_each(rdev, mddev) {
2648 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2649 		/* Device activated? */
2650 		if (role == 0xffff && rdev->raid_disk >=0 &&
2651 		    !test_bit(Faulty, &rdev->flags))
2652 			return true;
2653 		/* Device turned faulty? */
2654 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2655 			return true;
2656 	}
2657 
2658 	/* Check if any mddev parameters have changed */
2659 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2660 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2661 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2662 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2663 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2664 		return true;
2665 
2666 	return false;
2667 }
2668 
2669 void md_update_sb(struct mddev *mddev, int force_change)
2670 {
2671 	struct md_rdev *rdev;
2672 	int sync_req;
2673 	int nospares = 0;
2674 	int any_badblocks_changed = 0;
2675 	int ret = -1;
2676 
2677 	if (mddev->ro) {
2678 		if (force_change)
2679 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2680 		return;
2681 	}
2682 
2683 repeat:
2684 	if (mddev_is_clustered(mddev)) {
2685 		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2686 			force_change = 1;
2687 		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2688 			nospares = 1;
2689 		ret = md_cluster_ops->metadata_update_start(mddev);
2690 		/* Has someone else has updated the sb */
2691 		if (!does_sb_need_changing(mddev)) {
2692 			if (ret == 0)
2693 				md_cluster_ops->metadata_update_cancel(mddev);
2694 			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2695 							 BIT(MD_SB_CHANGE_DEVS) |
2696 							 BIT(MD_SB_CHANGE_CLEAN));
2697 			return;
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * First make sure individual recovery_offsets are correct
2703 	 * curr_resync_completed can only be used during recovery.
2704 	 * During reshape/resync it might use array-addresses rather
2705 	 * that device addresses.
2706 	 */
2707 	rdev_for_each(rdev, mddev) {
2708 		if (rdev->raid_disk >= 0 &&
2709 		    mddev->delta_disks >= 0 &&
2710 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2711 		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2712 		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2713 		    !test_bit(Journal, &rdev->flags) &&
2714 		    !test_bit(In_sync, &rdev->flags) &&
2715 		    mddev->curr_resync_completed > rdev->recovery_offset)
2716 				rdev->recovery_offset = mddev->curr_resync_completed;
2717 
2718 	}
2719 	if (!mddev->persistent) {
2720 		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2721 		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2722 		if (!mddev->external) {
2723 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2724 			rdev_for_each(rdev, mddev) {
2725 				if (rdev->badblocks.changed) {
2726 					rdev->badblocks.changed = 0;
2727 					ack_all_badblocks(&rdev->badblocks);
2728 					md_error(mddev, rdev);
2729 				}
2730 				clear_bit(Blocked, &rdev->flags);
2731 				clear_bit(BlockedBadBlocks, &rdev->flags);
2732 				wake_up(&rdev->blocked_wait);
2733 			}
2734 		}
2735 		wake_up(&mddev->sb_wait);
2736 		return;
2737 	}
2738 
2739 	spin_lock(&mddev->lock);
2740 
2741 	mddev->utime = ktime_get_real_seconds();
2742 
2743 	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2744 		force_change = 1;
2745 	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2746 		/* just a clean<-> dirty transition, possibly leave spares alone,
2747 		 * though if events isn't the right even/odd, we will have to do
2748 		 * spares after all
2749 		 */
2750 		nospares = 1;
2751 	if (force_change)
2752 		nospares = 0;
2753 	if (mddev->degraded)
2754 		/* If the array is degraded, then skipping spares is both
2755 		 * dangerous and fairly pointless.
2756 		 * Dangerous because a device that was removed from the array
2757 		 * might have a event_count that still looks up-to-date,
2758 		 * so it can be re-added without a resync.
2759 		 * Pointless because if there are any spares to skip,
2760 		 * then a recovery will happen and soon that array won't
2761 		 * be degraded any more and the spare can go back to sleep then.
2762 		 */
2763 		nospares = 0;
2764 
2765 	sync_req = mddev->in_sync;
2766 
2767 	/* If this is just a dirty<->clean transition, and the array is clean
2768 	 * and 'events' is odd, we can roll back to the previous clean state */
2769 	if (nospares
2770 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2771 	    && mddev->can_decrease_events
2772 	    && mddev->events != 1) {
2773 		mddev->events--;
2774 		mddev->can_decrease_events = 0;
2775 	} else {
2776 		/* otherwise we have to go forward and ... */
2777 		mddev->events ++;
2778 		mddev->can_decrease_events = nospares;
2779 	}
2780 
2781 	/*
2782 	 * This 64-bit counter should never wrap.
2783 	 * Either we are in around ~1 trillion A.C., assuming
2784 	 * 1 reboot per second, or we have a bug...
2785 	 */
2786 	WARN_ON(mddev->events == 0);
2787 
2788 	rdev_for_each(rdev, mddev) {
2789 		if (rdev->badblocks.changed)
2790 			any_badblocks_changed++;
2791 		if (test_bit(Faulty, &rdev->flags))
2792 			set_bit(FaultRecorded, &rdev->flags);
2793 	}
2794 
2795 	sync_sbs(mddev, nospares);
2796 	spin_unlock(&mddev->lock);
2797 
2798 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2799 		 mdname(mddev), mddev->in_sync);
2800 
2801 	if (mddev->queue)
2802 		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2803 rewrite:
2804 	md_bitmap_update_sb(mddev->bitmap);
2805 	rdev_for_each(rdev, mddev) {
2806 		char b[BDEVNAME_SIZE];
2807 
2808 		if (rdev->sb_loaded != 1)
2809 			continue; /* no noise on spare devices */
2810 
2811 		if (!test_bit(Faulty, &rdev->flags)) {
2812 			md_super_write(mddev,rdev,
2813 				       rdev->sb_start, rdev->sb_size,
2814 				       rdev->sb_page);
2815 			pr_debug("md: (write) %s's sb offset: %llu\n",
2816 				 bdevname(rdev->bdev, b),
2817 				 (unsigned long long)rdev->sb_start);
2818 			rdev->sb_events = mddev->events;
2819 			if (rdev->badblocks.size) {
2820 				md_super_write(mddev, rdev,
2821 					       rdev->badblocks.sector,
2822 					       rdev->badblocks.size << 9,
2823 					       rdev->bb_page);
2824 				rdev->badblocks.size = 0;
2825 			}
2826 
2827 		} else
2828 			pr_debug("md: %s (skipping faulty)\n",
2829 				 bdevname(rdev->bdev, b));
2830 
2831 		if (mddev->level == LEVEL_MULTIPATH)
2832 			/* only need to write one superblock... */
2833 			break;
2834 	}
2835 	if (md_super_wait(mddev) < 0)
2836 		goto rewrite;
2837 	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2838 
2839 	if (mddev_is_clustered(mddev) && ret == 0)
2840 		md_cluster_ops->metadata_update_finish(mddev);
2841 
2842 	if (mddev->in_sync != sync_req ||
2843 	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2844 			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2845 		/* have to write it out again */
2846 		goto repeat;
2847 	wake_up(&mddev->sb_wait);
2848 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2849 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2850 
2851 	rdev_for_each(rdev, mddev) {
2852 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2853 			clear_bit(Blocked, &rdev->flags);
2854 
2855 		if (any_badblocks_changed)
2856 			ack_all_badblocks(&rdev->badblocks);
2857 		clear_bit(BlockedBadBlocks, &rdev->flags);
2858 		wake_up(&rdev->blocked_wait);
2859 	}
2860 }
2861 EXPORT_SYMBOL(md_update_sb);
2862 
2863 static int add_bound_rdev(struct md_rdev *rdev)
2864 {
2865 	struct mddev *mddev = rdev->mddev;
2866 	int err = 0;
2867 	bool add_journal = test_bit(Journal, &rdev->flags);
2868 
2869 	if (!mddev->pers->hot_remove_disk || add_journal) {
2870 		/* If there is hot_add_disk but no hot_remove_disk
2871 		 * then added disks for geometry changes,
2872 		 * and should be added immediately.
2873 		 */
2874 		super_types[mddev->major_version].
2875 			validate_super(mddev, rdev);
2876 		if (add_journal)
2877 			mddev_suspend(mddev);
2878 		err = mddev->pers->hot_add_disk(mddev, rdev);
2879 		if (add_journal)
2880 			mddev_resume(mddev);
2881 		if (err) {
2882 			md_kick_rdev_from_array(rdev);
2883 			return err;
2884 		}
2885 	}
2886 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2887 
2888 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2889 	if (mddev->degraded)
2890 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2891 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2892 	md_new_event();
2893 	md_wakeup_thread(mddev->thread);
2894 	return 0;
2895 }
2896 
2897 /* words written to sysfs files may, or may not, be \n terminated.
2898  * We want to accept with case. For this we use cmd_match.
2899  */
2900 static int cmd_match(const char *cmd, const char *str)
2901 {
2902 	/* See if cmd, written into a sysfs file, matches
2903 	 * str.  They must either be the same, or cmd can
2904 	 * have a trailing newline
2905 	 */
2906 	while (*cmd && *str && *cmd == *str) {
2907 		cmd++;
2908 		str++;
2909 	}
2910 	if (*cmd == '\n')
2911 		cmd++;
2912 	if (*str || *cmd)
2913 		return 0;
2914 	return 1;
2915 }
2916 
2917 struct rdev_sysfs_entry {
2918 	struct attribute attr;
2919 	ssize_t (*show)(struct md_rdev *, char *);
2920 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2921 };
2922 
2923 static ssize_t
2924 state_show(struct md_rdev *rdev, char *page)
2925 {
2926 	char *sep = ",";
2927 	size_t len = 0;
2928 	unsigned long flags = READ_ONCE(rdev->flags);
2929 
2930 	if (test_bit(Faulty, &flags) ||
2931 	    (!test_bit(ExternalBbl, &flags) &&
2932 	    rdev->badblocks.unacked_exist))
2933 		len += sprintf(page+len, "faulty%s", sep);
2934 	if (test_bit(In_sync, &flags))
2935 		len += sprintf(page+len, "in_sync%s", sep);
2936 	if (test_bit(Journal, &flags))
2937 		len += sprintf(page+len, "journal%s", sep);
2938 	if (test_bit(WriteMostly, &flags))
2939 		len += sprintf(page+len, "write_mostly%s", sep);
2940 	if (test_bit(Blocked, &flags) ||
2941 	    (rdev->badblocks.unacked_exist
2942 	     && !test_bit(Faulty, &flags)))
2943 		len += sprintf(page+len, "blocked%s", sep);
2944 	if (!test_bit(Faulty, &flags) &&
2945 	    !test_bit(Journal, &flags) &&
2946 	    !test_bit(In_sync, &flags))
2947 		len += sprintf(page+len, "spare%s", sep);
2948 	if (test_bit(WriteErrorSeen, &flags))
2949 		len += sprintf(page+len, "write_error%s", sep);
2950 	if (test_bit(WantReplacement, &flags))
2951 		len += sprintf(page+len, "want_replacement%s", sep);
2952 	if (test_bit(Replacement, &flags))
2953 		len += sprintf(page+len, "replacement%s", sep);
2954 	if (test_bit(ExternalBbl, &flags))
2955 		len += sprintf(page+len, "external_bbl%s", sep);
2956 	if (test_bit(FailFast, &flags))
2957 		len += sprintf(page+len, "failfast%s", sep);
2958 
2959 	if (len)
2960 		len -= strlen(sep);
2961 
2962 	return len+sprintf(page+len, "\n");
2963 }
2964 
2965 static ssize_t
2966 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2967 {
2968 	/* can write
2969 	 *  faulty  - simulates an error
2970 	 *  remove  - disconnects the device
2971 	 *  writemostly - sets write_mostly
2972 	 *  -writemostly - clears write_mostly
2973 	 *  blocked - sets the Blocked flags
2974 	 *  -blocked - clears the Blocked and possibly simulates an error
2975 	 *  insync - sets Insync providing device isn't active
2976 	 *  -insync - clear Insync for a device with a slot assigned,
2977 	 *            so that it gets rebuilt based on bitmap
2978 	 *  write_error - sets WriteErrorSeen
2979 	 *  -write_error - clears WriteErrorSeen
2980 	 *  {,-}failfast - set/clear FailFast
2981 	 */
2982 
2983 	struct mddev *mddev = rdev->mddev;
2984 	int err = -EINVAL;
2985 	bool need_update_sb = false;
2986 
2987 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2988 		md_error(rdev->mddev, rdev);
2989 		if (test_bit(Faulty, &rdev->flags))
2990 			err = 0;
2991 		else
2992 			err = -EBUSY;
2993 	} else if (cmd_match(buf, "remove")) {
2994 		if (rdev->mddev->pers) {
2995 			clear_bit(Blocked, &rdev->flags);
2996 			remove_and_add_spares(rdev->mddev, rdev);
2997 		}
2998 		if (rdev->raid_disk >= 0)
2999 			err = -EBUSY;
3000 		else {
3001 			err = 0;
3002 			if (mddev_is_clustered(mddev))
3003 				err = md_cluster_ops->remove_disk(mddev, rdev);
3004 
3005 			if (err == 0) {
3006 				md_kick_rdev_from_array(rdev);
3007 				if (mddev->pers) {
3008 					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3009 					md_wakeup_thread(mddev->thread);
3010 				}
3011 				md_new_event();
3012 			}
3013 		}
3014 	} else if (cmd_match(buf, "writemostly")) {
3015 		set_bit(WriteMostly, &rdev->flags);
3016 		mddev_create_serial_pool(rdev->mddev, rdev, false);
3017 		need_update_sb = true;
3018 		err = 0;
3019 	} else if (cmd_match(buf, "-writemostly")) {
3020 		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3021 		clear_bit(WriteMostly, &rdev->flags);
3022 		need_update_sb = true;
3023 		err = 0;
3024 	} else if (cmd_match(buf, "blocked")) {
3025 		set_bit(Blocked, &rdev->flags);
3026 		err = 0;
3027 	} else if (cmd_match(buf, "-blocked")) {
3028 		if (!test_bit(Faulty, &rdev->flags) &&
3029 		    !test_bit(ExternalBbl, &rdev->flags) &&
3030 		    rdev->badblocks.unacked_exist) {
3031 			/* metadata handler doesn't understand badblocks,
3032 			 * so we need to fail the device
3033 			 */
3034 			md_error(rdev->mddev, rdev);
3035 		}
3036 		clear_bit(Blocked, &rdev->flags);
3037 		clear_bit(BlockedBadBlocks, &rdev->flags);
3038 		wake_up(&rdev->blocked_wait);
3039 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3040 		md_wakeup_thread(rdev->mddev->thread);
3041 
3042 		err = 0;
3043 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3044 		set_bit(In_sync, &rdev->flags);
3045 		err = 0;
3046 	} else if (cmd_match(buf, "failfast")) {
3047 		set_bit(FailFast, &rdev->flags);
3048 		need_update_sb = true;
3049 		err = 0;
3050 	} else if (cmd_match(buf, "-failfast")) {
3051 		clear_bit(FailFast, &rdev->flags);
3052 		need_update_sb = true;
3053 		err = 0;
3054 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3055 		   !test_bit(Journal, &rdev->flags)) {
3056 		if (rdev->mddev->pers == NULL) {
3057 			clear_bit(In_sync, &rdev->flags);
3058 			rdev->saved_raid_disk = rdev->raid_disk;
3059 			rdev->raid_disk = -1;
3060 			err = 0;
3061 		}
3062 	} else if (cmd_match(buf, "write_error")) {
3063 		set_bit(WriteErrorSeen, &rdev->flags);
3064 		err = 0;
3065 	} else if (cmd_match(buf, "-write_error")) {
3066 		clear_bit(WriteErrorSeen, &rdev->flags);
3067 		err = 0;
3068 	} else if (cmd_match(buf, "want_replacement")) {
3069 		/* Any non-spare device that is not a replacement can
3070 		 * become want_replacement at any time, but we then need to
3071 		 * check if recovery is needed.
3072 		 */
3073 		if (rdev->raid_disk >= 0 &&
3074 		    !test_bit(Journal, &rdev->flags) &&
3075 		    !test_bit(Replacement, &rdev->flags))
3076 			set_bit(WantReplacement, &rdev->flags);
3077 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3078 		md_wakeup_thread(rdev->mddev->thread);
3079 		err = 0;
3080 	} else if (cmd_match(buf, "-want_replacement")) {
3081 		/* Clearing 'want_replacement' is always allowed.
3082 		 * Once replacements starts it is too late though.
3083 		 */
3084 		err = 0;
3085 		clear_bit(WantReplacement, &rdev->flags);
3086 	} else if (cmd_match(buf, "replacement")) {
3087 		/* Can only set a device as a replacement when array has not
3088 		 * yet been started.  Once running, replacement is automatic
3089 		 * from spares, or by assigning 'slot'.
3090 		 */
3091 		if (rdev->mddev->pers)
3092 			err = -EBUSY;
3093 		else {
3094 			set_bit(Replacement, &rdev->flags);
3095 			err = 0;
3096 		}
3097 	} else if (cmd_match(buf, "-replacement")) {
3098 		/* Similarly, can only clear Replacement before start */
3099 		if (rdev->mddev->pers)
3100 			err = -EBUSY;
3101 		else {
3102 			clear_bit(Replacement, &rdev->flags);
3103 			err = 0;
3104 		}
3105 	} else if (cmd_match(buf, "re-add")) {
3106 		if (!rdev->mddev->pers)
3107 			err = -EINVAL;
3108 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3109 				rdev->saved_raid_disk >= 0) {
3110 			/* clear_bit is performed _after_ all the devices
3111 			 * have their local Faulty bit cleared. If any writes
3112 			 * happen in the meantime in the local node, they
3113 			 * will land in the local bitmap, which will be synced
3114 			 * by this node eventually
3115 			 */
3116 			if (!mddev_is_clustered(rdev->mddev) ||
3117 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3118 				clear_bit(Faulty, &rdev->flags);
3119 				err = add_bound_rdev(rdev);
3120 			}
3121 		} else
3122 			err = -EBUSY;
3123 	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3124 		set_bit(ExternalBbl, &rdev->flags);
3125 		rdev->badblocks.shift = 0;
3126 		err = 0;
3127 	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3128 		clear_bit(ExternalBbl, &rdev->flags);
3129 		err = 0;
3130 	}
3131 	if (need_update_sb)
3132 		md_update_sb(mddev, 1);
3133 	if (!err)
3134 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3135 	return err ? err : len;
3136 }
3137 static struct rdev_sysfs_entry rdev_state =
3138 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3139 
3140 static ssize_t
3141 errors_show(struct md_rdev *rdev, char *page)
3142 {
3143 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3144 }
3145 
3146 static ssize_t
3147 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3148 {
3149 	unsigned int n;
3150 	int rv;
3151 
3152 	rv = kstrtouint(buf, 10, &n);
3153 	if (rv < 0)
3154 		return rv;
3155 	atomic_set(&rdev->corrected_errors, n);
3156 	return len;
3157 }
3158 static struct rdev_sysfs_entry rdev_errors =
3159 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3160 
3161 static ssize_t
3162 slot_show(struct md_rdev *rdev, char *page)
3163 {
3164 	if (test_bit(Journal, &rdev->flags))
3165 		return sprintf(page, "journal\n");
3166 	else if (rdev->raid_disk < 0)
3167 		return sprintf(page, "none\n");
3168 	else
3169 		return sprintf(page, "%d\n", rdev->raid_disk);
3170 }
3171 
3172 static ssize_t
3173 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3174 {
3175 	int slot;
3176 	int err;
3177 
3178 	if (test_bit(Journal, &rdev->flags))
3179 		return -EBUSY;
3180 	if (strncmp(buf, "none", 4)==0)
3181 		slot = -1;
3182 	else {
3183 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3184 		if (err < 0)
3185 			return err;
3186 	}
3187 	if (rdev->mddev->pers && slot == -1) {
3188 		/* Setting 'slot' on an active array requires also
3189 		 * updating the 'rd%d' link, and communicating
3190 		 * with the personality with ->hot_*_disk.
3191 		 * For now we only support removing
3192 		 * failed/spare devices.  This normally happens automatically,
3193 		 * but not when the metadata is externally managed.
3194 		 */
3195 		if (rdev->raid_disk == -1)
3196 			return -EEXIST;
3197 		/* personality does all needed checks */
3198 		if (rdev->mddev->pers->hot_remove_disk == NULL)
3199 			return -EINVAL;
3200 		clear_bit(Blocked, &rdev->flags);
3201 		remove_and_add_spares(rdev->mddev, rdev);
3202 		if (rdev->raid_disk >= 0)
3203 			return -EBUSY;
3204 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3205 		md_wakeup_thread(rdev->mddev->thread);
3206 	} else if (rdev->mddev->pers) {
3207 		/* Activating a spare .. or possibly reactivating
3208 		 * if we ever get bitmaps working here.
3209 		 */
3210 		int err;
3211 
3212 		if (rdev->raid_disk != -1)
3213 			return -EBUSY;
3214 
3215 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3216 			return -EBUSY;
3217 
3218 		if (rdev->mddev->pers->hot_add_disk == NULL)
3219 			return -EINVAL;
3220 
3221 		if (slot >= rdev->mddev->raid_disks &&
3222 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3223 			return -ENOSPC;
3224 
3225 		rdev->raid_disk = slot;
3226 		if (test_bit(In_sync, &rdev->flags))
3227 			rdev->saved_raid_disk = slot;
3228 		else
3229 			rdev->saved_raid_disk = -1;
3230 		clear_bit(In_sync, &rdev->flags);
3231 		clear_bit(Bitmap_sync, &rdev->flags);
3232 		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3233 		if (err) {
3234 			rdev->raid_disk = -1;
3235 			return err;
3236 		} else
3237 			sysfs_notify_dirent_safe(rdev->sysfs_state);
3238 		/* failure here is OK */;
3239 		sysfs_link_rdev(rdev->mddev, rdev);
3240 		/* don't wakeup anyone, leave that to userspace. */
3241 	} else {
3242 		if (slot >= rdev->mddev->raid_disks &&
3243 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3244 			return -ENOSPC;
3245 		rdev->raid_disk = slot;
3246 		/* assume it is working */
3247 		clear_bit(Faulty, &rdev->flags);
3248 		clear_bit(WriteMostly, &rdev->flags);
3249 		set_bit(In_sync, &rdev->flags);
3250 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3251 	}
3252 	return len;
3253 }
3254 
3255 static struct rdev_sysfs_entry rdev_slot =
3256 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3257 
3258 static ssize_t
3259 offset_show(struct md_rdev *rdev, char *page)
3260 {
3261 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3262 }
3263 
3264 static ssize_t
3265 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3266 {
3267 	unsigned long long offset;
3268 	if (kstrtoull(buf, 10, &offset) < 0)
3269 		return -EINVAL;
3270 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3271 		return -EBUSY;
3272 	if (rdev->sectors && rdev->mddev->external)
3273 		/* Must set offset before size, so overlap checks
3274 		 * can be sane */
3275 		return -EBUSY;
3276 	rdev->data_offset = offset;
3277 	rdev->new_data_offset = offset;
3278 	return len;
3279 }
3280 
3281 static struct rdev_sysfs_entry rdev_offset =
3282 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3283 
3284 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3285 {
3286 	return sprintf(page, "%llu\n",
3287 		       (unsigned long long)rdev->new_data_offset);
3288 }
3289 
3290 static ssize_t new_offset_store(struct md_rdev *rdev,
3291 				const char *buf, size_t len)
3292 {
3293 	unsigned long long new_offset;
3294 	struct mddev *mddev = rdev->mddev;
3295 
3296 	if (kstrtoull(buf, 10, &new_offset) < 0)
3297 		return -EINVAL;
3298 
3299 	if (mddev->sync_thread ||
3300 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3301 		return -EBUSY;
3302 	if (new_offset == rdev->data_offset)
3303 		/* reset is always permitted */
3304 		;
3305 	else if (new_offset > rdev->data_offset) {
3306 		/* must not push array size beyond rdev_sectors */
3307 		if (new_offset - rdev->data_offset
3308 		    + mddev->dev_sectors > rdev->sectors)
3309 				return -E2BIG;
3310 	}
3311 	/* Metadata worries about other space details. */
3312 
3313 	/* decreasing the offset is inconsistent with a backwards
3314 	 * reshape.
3315 	 */
3316 	if (new_offset < rdev->data_offset &&
3317 	    mddev->reshape_backwards)
3318 		return -EINVAL;
3319 	/* Increasing offset is inconsistent with forwards
3320 	 * reshape.  reshape_direction should be set to
3321 	 * 'backwards' first.
3322 	 */
3323 	if (new_offset > rdev->data_offset &&
3324 	    !mddev->reshape_backwards)
3325 		return -EINVAL;
3326 
3327 	if (mddev->pers && mddev->persistent &&
3328 	    !super_types[mddev->major_version]
3329 	    .allow_new_offset(rdev, new_offset))
3330 		return -E2BIG;
3331 	rdev->new_data_offset = new_offset;
3332 	if (new_offset > rdev->data_offset)
3333 		mddev->reshape_backwards = 1;
3334 	else if (new_offset < rdev->data_offset)
3335 		mddev->reshape_backwards = 0;
3336 
3337 	return len;
3338 }
3339 static struct rdev_sysfs_entry rdev_new_offset =
3340 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3341 
3342 static ssize_t
3343 rdev_size_show(struct md_rdev *rdev, char *page)
3344 {
3345 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3346 }
3347 
3348 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3349 {
3350 	/* check if two start/length pairs overlap */
3351 	if (s1+l1 <= s2)
3352 		return 0;
3353 	if (s2+l2 <= s1)
3354 		return 0;
3355 	return 1;
3356 }
3357 
3358 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3359 {
3360 	unsigned long long blocks;
3361 	sector_t new;
3362 
3363 	if (kstrtoull(buf, 10, &blocks) < 0)
3364 		return -EINVAL;
3365 
3366 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3367 		return -EINVAL; /* sector conversion overflow */
3368 
3369 	new = blocks * 2;
3370 	if (new != blocks * 2)
3371 		return -EINVAL; /* unsigned long long to sector_t overflow */
3372 
3373 	*sectors = new;
3374 	return 0;
3375 }
3376 
3377 static ssize_t
3378 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3379 {
3380 	struct mddev *my_mddev = rdev->mddev;
3381 	sector_t oldsectors = rdev->sectors;
3382 	sector_t sectors;
3383 
3384 	if (test_bit(Journal, &rdev->flags))
3385 		return -EBUSY;
3386 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3387 		return -EINVAL;
3388 	if (rdev->data_offset != rdev->new_data_offset)
3389 		return -EINVAL; /* too confusing */
3390 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3391 		if (my_mddev->persistent) {
3392 			sectors = super_types[my_mddev->major_version].
3393 				rdev_size_change(rdev, sectors);
3394 			if (!sectors)
3395 				return -EBUSY;
3396 		} else if (!sectors)
3397 			sectors = bdev_nr_sectors(rdev->bdev) -
3398 				rdev->data_offset;
3399 		if (!my_mddev->pers->resize)
3400 			/* Cannot change size for RAID0 or Linear etc */
3401 			return -EINVAL;
3402 	}
3403 	if (sectors < my_mddev->dev_sectors)
3404 		return -EINVAL; /* component must fit device */
3405 
3406 	rdev->sectors = sectors;
3407 	if (sectors > oldsectors && my_mddev->external) {
3408 		/* Need to check that all other rdevs with the same
3409 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3410 		 * the rdev lists safely.
3411 		 * This check does not provide a hard guarantee, it
3412 		 * just helps avoid dangerous mistakes.
3413 		 */
3414 		struct mddev *mddev;
3415 		int overlap = 0;
3416 		struct list_head *tmp;
3417 
3418 		rcu_read_lock();
3419 		for_each_mddev(mddev, tmp) {
3420 			struct md_rdev *rdev2;
3421 
3422 			rdev_for_each(rdev2, mddev)
3423 				if (rdev->bdev == rdev2->bdev &&
3424 				    rdev != rdev2 &&
3425 				    overlaps(rdev->data_offset, rdev->sectors,
3426 					     rdev2->data_offset,
3427 					     rdev2->sectors)) {
3428 					overlap = 1;
3429 					break;
3430 				}
3431 			if (overlap) {
3432 				mddev_put(mddev);
3433 				break;
3434 			}
3435 		}
3436 		rcu_read_unlock();
3437 		if (overlap) {
3438 			/* Someone else could have slipped in a size
3439 			 * change here, but doing so is just silly.
3440 			 * We put oldsectors back because we *know* it is
3441 			 * safe, and trust userspace not to race with
3442 			 * itself
3443 			 */
3444 			rdev->sectors = oldsectors;
3445 			return -EBUSY;
3446 		}
3447 	}
3448 	return len;
3449 }
3450 
3451 static struct rdev_sysfs_entry rdev_size =
3452 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3453 
3454 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3455 {
3456 	unsigned long long recovery_start = rdev->recovery_offset;
3457 
3458 	if (test_bit(In_sync, &rdev->flags) ||
3459 	    recovery_start == MaxSector)
3460 		return sprintf(page, "none\n");
3461 
3462 	return sprintf(page, "%llu\n", recovery_start);
3463 }
3464 
3465 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3466 {
3467 	unsigned long long recovery_start;
3468 
3469 	if (cmd_match(buf, "none"))
3470 		recovery_start = MaxSector;
3471 	else if (kstrtoull(buf, 10, &recovery_start))
3472 		return -EINVAL;
3473 
3474 	if (rdev->mddev->pers &&
3475 	    rdev->raid_disk >= 0)
3476 		return -EBUSY;
3477 
3478 	rdev->recovery_offset = recovery_start;
3479 	if (recovery_start == MaxSector)
3480 		set_bit(In_sync, &rdev->flags);
3481 	else
3482 		clear_bit(In_sync, &rdev->flags);
3483 	return len;
3484 }
3485 
3486 static struct rdev_sysfs_entry rdev_recovery_start =
3487 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3488 
3489 /* sysfs access to bad-blocks list.
3490  * We present two files.
3491  * 'bad-blocks' lists sector numbers and lengths of ranges that
3492  *    are recorded as bad.  The list is truncated to fit within
3493  *    the one-page limit of sysfs.
3494  *    Writing "sector length" to this file adds an acknowledged
3495  *    bad block list.
3496  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3497  *    been acknowledged.  Writing to this file adds bad blocks
3498  *    without acknowledging them.  This is largely for testing.
3499  */
3500 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3501 {
3502 	return badblocks_show(&rdev->badblocks, page, 0);
3503 }
3504 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3505 {
3506 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3507 	/* Maybe that ack was all we needed */
3508 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3509 		wake_up(&rdev->blocked_wait);
3510 	return rv;
3511 }
3512 static struct rdev_sysfs_entry rdev_bad_blocks =
3513 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3514 
3515 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3516 {
3517 	return badblocks_show(&rdev->badblocks, page, 1);
3518 }
3519 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3520 {
3521 	return badblocks_store(&rdev->badblocks, page, len, 1);
3522 }
3523 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3524 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3525 
3526 static ssize_t
3527 ppl_sector_show(struct md_rdev *rdev, char *page)
3528 {
3529 	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3530 }
3531 
3532 static ssize_t
3533 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3534 {
3535 	unsigned long long sector;
3536 
3537 	if (kstrtoull(buf, 10, &sector) < 0)
3538 		return -EINVAL;
3539 	if (sector != (sector_t)sector)
3540 		return -EINVAL;
3541 
3542 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3543 	    rdev->raid_disk >= 0)
3544 		return -EBUSY;
3545 
3546 	if (rdev->mddev->persistent) {
3547 		if (rdev->mddev->major_version == 0)
3548 			return -EINVAL;
3549 		if ((sector > rdev->sb_start &&
3550 		     sector - rdev->sb_start > S16_MAX) ||
3551 		    (sector < rdev->sb_start &&
3552 		     rdev->sb_start - sector > -S16_MIN))
3553 			return -EINVAL;
3554 		rdev->ppl.offset = sector - rdev->sb_start;
3555 	} else if (!rdev->mddev->external) {
3556 		return -EBUSY;
3557 	}
3558 	rdev->ppl.sector = sector;
3559 	return len;
3560 }
3561 
3562 static struct rdev_sysfs_entry rdev_ppl_sector =
3563 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3564 
3565 static ssize_t
3566 ppl_size_show(struct md_rdev *rdev, char *page)
3567 {
3568 	return sprintf(page, "%u\n", rdev->ppl.size);
3569 }
3570 
3571 static ssize_t
3572 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3573 {
3574 	unsigned int size;
3575 
3576 	if (kstrtouint(buf, 10, &size) < 0)
3577 		return -EINVAL;
3578 
3579 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3580 	    rdev->raid_disk >= 0)
3581 		return -EBUSY;
3582 
3583 	if (rdev->mddev->persistent) {
3584 		if (rdev->mddev->major_version == 0)
3585 			return -EINVAL;
3586 		if (size > U16_MAX)
3587 			return -EINVAL;
3588 	} else if (!rdev->mddev->external) {
3589 		return -EBUSY;
3590 	}
3591 	rdev->ppl.size = size;
3592 	return len;
3593 }
3594 
3595 static struct rdev_sysfs_entry rdev_ppl_size =
3596 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3597 
3598 static struct attribute *rdev_default_attrs[] = {
3599 	&rdev_state.attr,
3600 	&rdev_errors.attr,
3601 	&rdev_slot.attr,
3602 	&rdev_offset.attr,
3603 	&rdev_new_offset.attr,
3604 	&rdev_size.attr,
3605 	&rdev_recovery_start.attr,
3606 	&rdev_bad_blocks.attr,
3607 	&rdev_unack_bad_blocks.attr,
3608 	&rdev_ppl_sector.attr,
3609 	&rdev_ppl_size.attr,
3610 	NULL,
3611 };
3612 ATTRIBUTE_GROUPS(rdev_default);
3613 static ssize_t
3614 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3615 {
3616 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3617 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3618 
3619 	if (!entry->show)
3620 		return -EIO;
3621 	if (!rdev->mddev)
3622 		return -ENODEV;
3623 	return entry->show(rdev, page);
3624 }
3625 
3626 static ssize_t
3627 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3628 	      const char *page, size_t length)
3629 {
3630 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3631 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3632 	ssize_t rv;
3633 	struct mddev *mddev = rdev->mddev;
3634 
3635 	if (!entry->store)
3636 		return -EIO;
3637 	if (!capable(CAP_SYS_ADMIN))
3638 		return -EACCES;
3639 	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3640 	if (!rv) {
3641 		if (rdev->mddev == NULL)
3642 			rv = -ENODEV;
3643 		else
3644 			rv = entry->store(rdev, page, length);
3645 		mddev_unlock(mddev);
3646 	}
3647 	return rv;
3648 }
3649 
3650 static void rdev_free(struct kobject *ko)
3651 {
3652 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3653 	kfree(rdev);
3654 }
3655 static const struct sysfs_ops rdev_sysfs_ops = {
3656 	.show		= rdev_attr_show,
3657 	.store		= rdev_attr_store,
3658 };
3659 static struct kobj_type rdev_ktype = {
3660 	.release	= rdev_free,
3661 	.sysfs_ops	= &rdev_sysfs_ops,
3662 	.default_groups	= rdev_default_groups,
3663 };
3664 
3665 int md_rdev_init(struct md_rdev *rdev)
3666 {
3667 	rdev->desc_nr = -1;
3668 	rdev->saved_raid_disk = -1;
3669 	rdev->raid_disk = -1;
3670 	rdev->flags = 0;
3671 	rdev->data_offset = 0;
3672 	rdev->new_data_offset = 0;
3673 	rdev->sb_events = 0;
3674 	rdev->last_read_error = 0;
3675 	rdev->sb_loaded = 0;
3676 	rdev->bb_page = NULL;
3677 	atomic_set(&rdev->nr_pending, 0);
3678 	atomic_set(&rdev->read_errors, 0);
3679 	atomic_set(&rdev->corrected_errors, 0);
3680 
3681 	INIT_LIST_HEAD(&rdev->same_set);
3682 	init_waitqueue_head(&rdev->blocked_wait);
3683 
3684 	/* Add space to store bad block list.
3685 	 * This reserves the space even on arrays where it cannot
3686 	 * be used - I wonder if that matters
3687 	 */
3688 	return badblocks_init(&rdev->badblocks, 0);
3689 }
3690 EXPORT_SYMBOL_GPL(md_rdev_init);
3691 /*
3692  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3693  *
3694  * mark the device faulty if:
3695  *
3696  *   - the device is nonexistent (zero size)
3697  *   - the device has no valid superblock
3698  *
3699  * a faulty rdev _never_ has rdev->sb set.
3700  */
3701 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3702 {
3703 	char b[BDEVNAME_SIZE];
3704 	int err;
3705 	struct md_rdev *rdev;
3706 	sector_t size;
3707 
3708 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3709 	if (!rdev)
3710 		return ERR_PTR(-ENOMEM);
3711 
3712 	err = md_rdev_init(rdev);
3713 	if (err)
3714 		goto abort_free;
3715 	err = alloc_disk_sb(rdev);
3716 	if (err)
3717 		goto abort_free;
3718 
3719 	err = lock_rdev(rdev, newdev, super_format == -2);
3720 	if (err)
3721 		goto abort_free;
3722 
3723 	kobject_init(&rdev->kobj, &rdev_ktype);
3724 
3725 	size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3726 	if (!size) {
3727 		pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3728 			bdevname(rdev->bdev,b));
3729 		err = -EINVAL;
3730 		goto abort_free;
3731 	}
3732 
3733 	if (super_format >= 0) {
3734 		err = super_types[super_format].
3735 			load_super(rdev, NULL, super_minor);
3736 		if (err == -EINVAL) {
3737 			pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3738 				bdevname(rdev->bdev,b),
3739 				super_format, super_minor);
3740 			goto abort_free;
3741 		}
3742 		if (err < 0) {
3743 			pr_warn("md: could not read %s's sb, not importing!\n",
3744 				bdevname(rdev->bdev,b));
3745 			goto abort_free;
3746 		}
3747 	}
3748 
3749 	return rdev;
3750 
3751 abort_free:
3752 	if (rdev->bdev)
3753 		unlock_rdev(rdev);
3754 	md_rdev_clear(rdev);
3755 	kfree(rdev);
3756 	return ERR_PTR(err);
3757 }
3758 
3759 /*
3760  * Check a full RAID array for plausibility
3761  */
3762 
3763 static int analyze_sbs(struct mddev *mddev)
3764 {
3765 	int i;
3766 	struct md_rdev *rdev, *freshest, *tmp;
3767 	char b[BDEVNAME_SIZE];
3768 
3769 	freshest = NULL;
3770 	rdev_for_each_safe(rdev, tmp, mddev)
3771 		switch (super_types[mddev->major_version].
3772 			load_super(rdev, freshest, mddev->minor_version)) {
3773 		case 1:
3774 			freshest = rdev;
3775 			break;
3776 		case 0:
3777 			break;
3778 		default:
3779 			pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3780 				bdevname(rdev->bdev,b));
3781 			md_kick_rdev_from_array(rdev);
3782 		}
3783 
3784 	/* Cannot find a valid fresh disk */
3785 	if (!freshest) {
3786 		pr_warn("md: cannot find a valid disk\n");
3787 		return -EINVAL;
3788 	}
3789 
3790 	super_types[mddev->major_version].
3791 		validate_super(mddev, freshest);
3792 
3793 	i = 0;
3794 	rdev_for_each_safe(rdev, tmp, mddev) {
3795 		if (mddev->max_disks &&
3796 		    (rdev->desc_nr >= mddev->max_disks ||
3797 		     i > mddev->max_disks)) {
3798 			pr_warn("md: %s: %s: only %d devices permitted\n",
3799 				mdname(mddev), bdevname(rdev->bdev, b),
3800 				mddev->max_disks);
3801 			md_kick_rdev_from_array(rdev);
3802 			continue;
3803 		}
3804 		if (rdev != freshest) {
3805 			if (super_types[mddev->major_version].
3806 			    validate_super(mddev, rdev)) {
3807 				pr_warn("md: kicking non-fresh %s from array!\n",
3808 					bdevname(rdev->bdev,b));
3809 				md_kick_rdev_from_array(rdev);
3810 				continue;
3811 			}
3812 		}
3813 		if (mddev->level == LEVEL_MULTIPATH) {
3814 			rdev->desc_nr = i++;
3815 			rdev->raid_disk = rdev->desc_nr;
3816 			set_bit(In_sync, &rdev->flags);
3817 		} else if (rdev->raid_disk >=
3818 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3819 			   !test_bit(Journal, &rdev->flags)) {
3820 			rdev->raid_disk = -1;
3821 			clear_bit(In_sync, &rdev->flags);
3822 		}
3823 	}
3824 
3825 	return 0;
3826 }
3827 
3828 /* Read a fixed-point number.
3829  * Numbers in sysfs attributes should be in "standard" units where
3830  * possible, so time should be in seconds.
3831  * However we internally use a a much smaller unit such as
3832  * milliseconds or jiffies.
3833  * This function takes a decimal number with a possible fractional
3834  * component, and produces an integer which is the result of
3835  * multiplying that number by 10^'scale'.
3836  * all without any floating-point arithmetic.
3837  */
3838 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3839 {
3840 	unsigned long result = 0;
3841 	long decimals = -1;
3842 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3843 		if (*cp == '.')
3844 			decimals = 0;
3845 		else if (decimals < scale) {
3846 			unsigned int value;
3847 			value = *cp - '0';
3848 			result = result * 10 + value;
3849 			if (decimals >= 0)
3850 				decimals++;
3851 		}
3852 		cp++;
3853 	}
3854 	if (*cp == '\n')
3855 		cp++;
3856 	if (*cp)
3857 		return -EINVAL;
3858 	if (decimals < 0)
3859 		decimals = 0;
3860 	*res = result * int_pow(10, scale - decimals);
3861 	return 0;
3862 }
3863 
3864 static ssize_t
3865 safe_delay_show(struct mddev *mddev, char *page)
3866 {
3867 	int msec = (mddev->safemode_delay*1000)/HZ;
3868 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3869 }
3870 static ssize_t
3871 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3872 {
3873 	unsigned long msec;
3874 
3875 	if (mddev_is_clustered(mddev)) {
3876 		pr_warn("md: Safemode is disabled for clustered mode\n");
3877 		return -EINVAL;
3878 	}
3879 
3880 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3881 		return -EINVAL;
3882 	if (msec == 0)
3883 		mddev->safemode_delay = 0;
3884 	else {
3885 		unsigned long old_delay = mddev->safemode_delay;
3886 		unsigned long new_delay = (msec*HZ)/1000;
3887 
3888 		if (new_delay == 0)
3889 			new_delay = 1;
3890 		mddev->safemode_delay = new_delay;
3891 		if (new_delay < old_delay || old_delay == 0)
3892 			mod_timer(&mddev->safemode_timer, jiffies+1);
3893 	}
3894 	return len;
3895 }
3896 static struct md_sysfs_entry md_safe_delay =
3897 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3898 
3899 static ssize_t
3900 level_show(struct mddev *mddev, char *page)
3901 {
3902 	struct md_personality *p;
3903 	int ret;
3904 	spin_lock(&mddev->lock);
3905 	p = mddev->pers;
3906 	if (p)
3907 		ret = sprintf(page, "%s\n", p->name);
3908 	else if (mddev->clevel[0])
3909 		ret = sprintf(page, "%s\n", mddev->clevel);
3910 	else if (mddev->level != LEVEL_NONE)
3911 		ret = sprintf(page, "%d\n", mddev->level);
3912 	else
3913 		ret = 0;
3914 	spin_unlock(&mddev->lock);
3915 	return ret;
3916 }
3917 
3918 static ssize_t
3919 level_store(struct mddev *mddev, const char *buf, size_t len)
3920 {
3921 	char clevel[16];
3922 	ssize_t rv;
3923 	size_t slen = len;
3924 	struct md_personality *pers, *oldpers;
3925 	long level;
3926 	void *priv, *oldpriv;
3927 	struct md_rdev *rdev;
3928 
3929 	if (slen == 0 || slen >= sizeof(clevel))
3930 		return -EINVAL;
3931 
3932 	rv = mddev_lock(mddev);
3933 	if (rv)
3934 		return rv;
3935 
3936 	if (mddev->pers == NULL) {
3937 		strncpy(mddev->clevel, buf, slen);
3938 		if (mddev->clevel[slen-1] == '\n')
3939 			slen--;
3940 		mddev->clevel[slen] = 0;
3941 		mddev->level = LEVEL_NONE;
3942 		rv = len;
3943 		goto out_unlock;
3944 	}
3945 	rv = -EROFS;
3946 	if (mddev->ro)
3947 		goto out_unlock;
3948 
3949 	/* request to change the personality.  Need to ensure:
3950 	 *  - array is not engaged in resync/recovery/reshape
3951 	 *  - old personality can be suspended
3952 	 *  - new personality will access other array.
3953 	 */
3954 
3955 	rv = -EBUSY;
3956 	if (mddev->sync_thread ||
3957 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3958 	    mddev->reshape_position != MaxSector ||
3959 	    mddev->sysfs_active)
3960 		goto out_unlock;
3961 
3962 	rv = -EINVAL;
3963 	if (!mddev->pers->quiesce) {
3964 		pr_warn("md: %s: %s does not support online personality change\n",
3965 			mdname(mddev), mddev->pers->name);
3966 		goto out_unlock;
3967 	}
3968 
3969 	/* Now find the new personality */
3970 	strncpy(clevel, buf, slen);
3971 	if (clevel[slen-1] == '\n')
3972 		slen--;
3973 	clevel[slen] = 0;
3974 	if (kstrtol(clevel, 10, &level))
3975 		level = LEVEL_NONE;
3976 
3977 	if (request_module("md-%s", clevel) != 0)
3978 		request_module("md-level-%s", clevel);
3979 	spin_lock(&pers_lock);
3980 	pers = find_pers(level, clevel);
3981 	if (!pers || !try_module_get(pers->owner)) {
3982 		spin_unlock(&pers_lock);
3983 		pr_warn("md: personality %s not loaded\n", clevel);
3984 		rv = -EINVAL;
3985 		goto out_unlock;
3986 	}
3987 	spin_unlock(&pers_lock);
3988 
3989 	if (pers == mddev->pers) {
3990 		/* Nothing to do! */
3991 		module_put(pers->owner);
3992 		rv = len;
3993 		goto out_unlock;
3994 	}
3995 	if (!pers->takeover) {
3996 		module_put(pers->owner);
3997 		pr_warn("md: %s: %s does not support personality takeover\n",
3998 			mdname(mddev), clevel);
3999 		rv = -EINVAL;
4000 		goto out_unlock;
4001 	}
4002 
4003 	rdev_for_each(rdev, mddev)
4004 		rdev->new_raid_disk = rdev->raid_disk;
4005 
4006 	/* ->takeover must set new_* and/or delta_disks
4007 	 * if it succeeds, and may set them when it fails.
4008 	 */
4009 	priv = pers->takeover(mddev);
4010 	if (IS_ERR(priv)) {
4011 		mddev->new_level = mddev->level;
4012 		mddev->new_layout = mddev->layout;
4013 		mddev->new_chunk_sectors = mddev->chunk_sectors;
4014 		mddev->raid_disks -= mddev->delta_disks;
4015 		mddev->delta_disks = 0;
4016 		mddev->reshape_backwards = 0;
4017 		module_put(pers->owner);
4018 		pr_warn("md: %s: %s would not accept array\n",
4019 			mdname(mddev), clevel);
4020 		rv = PTR_ERR(priv);
4021 		goto out_unlock;
4022 	}
4023 
4024 	/* Looks like we have a winner */
4025 	mddev_suspend(mddev);
4026 	mddev_detach(mddev);
4027 
4028 	spin_lock(&mddev->lock);
4029 	oldpers = mddev->pers;
4030 	oldpriv = mddev->private;
4031 	mddev->pers = pers;
4032 	mddev->private = priv;
4033 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4034 	mddev->level = mddev->new_level;
4035 	mddev->layout = mddev->new_layout;
4036 	mddev->chunk_sectors = mddev->new_chunk_sectors;
4037 	mddev->delta_disks = 0;
4038 	mddev->reshape_backwards = 0;
4039 	mddev->degraded = 0;
4040 	spin_unlock(&mddev->lock);
4041 
4042 	if (oldpers->sync_request == NULL &&
4043 	    mddev->external) {
4044 		/* We are converting from a no-redundancy array
4045 		 * to a redundancy array and metadata is managed
4046 		 * externally so we need to be sure that writes
4047 		 * won't block due to a need to transition
4048 		 *      clean->dirty
4049 		 * until external management is started.
4050 		 */
4051 		mddev->in_sync = 0;
4052 		mddev->safemode_delay = 0;
4053 		mddev->safemode = 0;
4054 	}
4055 
4056 	oldpers->free(mddev, oldpriv);
4057 
4058 	if (oldpers->sync_request == NULL &&
4059 	    pers->sync_request != NULL) {
4060 		/* need to add the md_redundancy_group */
4061 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4062 			pr_warn("md: cannot register extra attributes for %s\n",
4063 				mdname(mddev));
4064 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4065 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4066 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4067 	}
4068 	if (oldpers->sync_request != NULL &&
4069 	    pers->sync_request == NULL) {
4070 		/* need to remove the md_redundancy_group */
4071 		if (mddev->to_remove == NULL)
4072 			mddev->to_remove = &md_redundancy_group;
4073 	}
4074 
4075 	module_put(oldpers->owner);
4076 
4077 	rdev_for_each(rdev, mddev) {
4078 		if (rdev->raid_disk < 0)
4079 			continue;
4080 		if (rdev->new_raid_disk >= mddev->raid_disks)
4081 			rdev->new_raid_disk = -1;
4082 		if (rdev->new_raid_disk == rdev->raid_disk)
4083 			continue;
4084 		sysfs_unlink_rdev(mddev, rdev);
4085 	}
4086 	rdev_for_each(rdev, mddev) {
4087 		if (rdev->raid_disk < 0)
4088 			continue;
4089 		if (rdev->new_raid_disk == rdev->raid_disk)
4090 			continue;
4091 		rdev->raid_disk = rdev->new_raid_disk;
4092 		if (rdev->raid_disk < 0)
4093 			clear_bit(In_sync, &rdev->flags);
4094 		else {
4095 			if (sysfs_link_rdev(mddev, rdev))
4096 				pr_warn("md: cannot register rd%d for %s after level change\n",
4097 					rdev->raid_disk, mdname(mddev));
4098 		}
4099 	}
4100 
4101 	if (pers->sync_request == NULL) {
4102 		/* this is now an array without redundancy, so
4103 		 * it must always be in_sync
4104 		 */
4105 		mddev->in_sync = 1;
4106 		del_timer_sync(&mddev->safemode_timer);
4107 	}
4108 	blk_set_stacking_limits(&mddev->queue->limits);
4109 	pers->run(mddev);
4110 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4111 	mddev_resume(mddev);
4112 	if (!mddev->thread)
4113 		md_update_sb(mddev, 1);
4114 	sysfs_notify_dirent_safe(mddev->sysfs_level);
4115 	md_new_event();
4116 	rv = len;
4117 out_unlock:
4118 	mddev_unlock(mddev);
4119 	return rv;
4120 }
4121 
4122 static struct md_sysfs_entry md_level =
4123 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4124 
4125 static ssize_t
4126 layout_show(struct mddev *mddev, char *page)
4127 {
4128 	/* just a number, not meaningful for all levels */
4129 	if (mddev->reshape_position != MaxSector &&
4130 	    mddev->layout != mddev->new_layout)
4131 		return sprintf(page, "%d (%d)\n",
4132 			       mddev->new_layout, mddev->layout);
4133 	return sprintf(page, "%d\n", mddev->layout);
4134 }
4135 
4136 static ssize_t
4137 layout_store(struct mddev *mddev, const char *buf, size_t len)
4138 {
4139 	unsigned int n;
4140 	int err;
4141 
4142 	err = kstrtouint(buf, 10, &n);
4143 	if (err < 0)
4144 		return err;
4145 	err = mddev_lock(mddev);
4146 	if (err)
4147 		return err;
4148 
4149 	if (mddev->pers) {
4150 		if (mddev->pers->check_reshape == NULL)
4151 			err = -EBUSY;
4152 		else if (mddev->ro)
4153 			err = -EROFS;
4154 		else {
4155 			mddev->new_layout = n;
4156 			err = mddev->pers->check_reshape(mddev);
4157 			if (err)
4158 				mddev->new_layout = mddev->layout;
4159 		}
4160 	} else {
4161 		mddev->new_layout = n;
4162 		if (mddev->reshape_position == MaxSector)
4163 			mddev->layout = n;
4164 	}
4165 	mddev_unlock(mddev);
4166 	return err ?: len;
4167 }
4168 static struct md_sysfs_entry md_layout =
4169 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4170 
4171 static ssize_t
4172 raid_disks_show(struct mddev *mddev, char *page)
4173 {
4174 	if (mddev->raid_disks == 0)
4175 		return 0;
4176 	if (mddev->reshape_position != MaxSector &&
4177 	    mddev->delta_disks != 0)
4178 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4179 			       mddev->raid_disks - mddev->delta_disks);
4180 	return sprintf(page, "%d\n", mddev->raid_disks);
4181 }
4182 
4183 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4184 
4185 static ssize_t
4186 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4187 {
4188 	unsigned int n;
4189 	int err;
4190 
4191 	err = kstrtouint(buf, 10, &n);
4192 	if (err < 0)
4193 		return err;
4194 
4195 	err = mddev_lock(mddev);
4196 	if (err)
4197 		return err;
4198 	if (mddev->pers)
4199 		err = update_raid_disks(mddev, n);
4200 	else if (mddev->reshape_position != MaxSector) {
4201 		struct md_rdev *rdev;
4202 		int olddisks = mddev->raid_disks - mddev->delta_disks;
4203 
4204 		err = -EINVAL;
4205 		rdev_for_each(rdev, mddev) {
4206 			if (olddisks < n &&
4207 			    rdev->data_offset < rdev->new_data_offset)
4208 				goto out_unlock;
4209 			if (olddisks > n &&
4210 			    rdev->data_offset > rdev->new_data_offset)
4211 				goto out_unlock;
4212 		}
4213 		err = 0;
4214 		mddev->delta_disks = n - olddisks;
4215 		mddev->raid_disks = n;
4216 		mddev->reshape_backwards = (mddev->delta_disks < 0);
4217 	} else
4218 		mddev->raid_disks = n;
4219 out_unlock:
4220 	mddev_unlock(mddev);
4221 	return err ? err : len;
4222 }
4223 static struct md_sysfs_entry md_raid_disks =
4224 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4225 
4226 static ssize_t
4227 uuid_show(struct mddev *mddev, char *page)
4228 {
4229 	return sprintf(page, "%pU\n", mddev->uuid);
4230 }
4231 static struct md_sysfs_entry md_uuid =
4232 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4233 
4234 static ssize_t
4235 chunk_size_show(struct mddev *mddev, char *page)
4236 {
4237 	if (mddev->reshape_position != MaxSector &&
4238 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4239 		return sprintf(page, "%d (%d)\n",
4240 			       mddev->new_chunk_sectors << 9,
4241 			       mddev->chunk_sectors << 9);
4242 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4243 }
4244 
4245 static ssize_t
4246 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4247 {
4248 	unsigned long n;
4249 	int err;
4250 
4251 	err = kstrtoul(buf, 10, &n);
4252 	if (err < 0)
4253 		return err;
4254 
4255 	err = mddev_lock(mddev);
4256 	if (err)
4257 		return err;
4258 	if (mddev->pers) {
4259 		if (mddev->pers->check_reshape == NULL)
4260 			err = -EBUSY;
4261 		else if (mddev->ro)
4262 			err = -EROFS;
4263 		else {
4264 			mddev->new_chunk_sectors = n >> 9;
4265 			err = mddev->pers->check_reshape(mddev);
4266 			if (err)
4267 				mddev->new_chunk_sectors = mddev->chunk_sectors;
4268 		}
4269 	} else {
4270 		mddev->new_chunk_sectors = n >> 9;
4271 		if (mddev->reshape_position == MaxSector)
4272 			mddev->chunk_sectors = n >> 9;
4273 	}
4274 	mddev_unlock(mddev);
4275 	return err ?: len;
4276 }
4277 static struct md_sysfs_entry md_chunk_size =
4278 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4279 
4280 static ssize_t
4281 resync_start_show(struct mddev *mddev, char *page)
4282 {
4283 	if (mddev->recovery_cp == MaxSector)
4284 		return sprintf(page, "none\n");
4285 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4286 }
4287 
4288 static ssize_t
4289 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4290 {
4291 	unsigned long long n;
4292 	int err;
4293 
4294 	if (cmd_match(buf, "none"))
4295 		n = MaxSector;
4296 	else {
4297 		err = kstrtoull(buf, 10, &n);
4298 		if (err < 0)
4299 			return err;
4300 		if (n != (sector_t)n)
4301 			return -EINVAL;
4302 	}
4303 
4304 	err = mddev_lock(mddev);
4305 	if (err)
4306 		return err;
4307 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4308 		err = -EBUSY;
4309 
4310 	if (!err) {
4311 		mddev->recovery_cp = n;
4312 		if (mddev->pers)
4313 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4314 	}
4315 	mddev_unlock(mddev);
4316 	return err ?: len;
4317 }
4318 static struct md_sysfs_entry md_resync_start =
4319 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4320 		resync_start_show, resync_start_store);
4321 
4322 /*
4323  * The array state can be:
4324  *
4325  * clear
4326  *     No devices, no size, no level
4327  *     Equivalent to STOP_ARRAY ioctl
4328  * inactive
4329  *     May have some settings, but array is not active
4330  *        all IO results in error
4331  *     When written, doesn't tear down array, but just stops it
4332  * suspended (not supported yet)
4333  *     All IO requests will block. The array can be reconfigured.
4334  *     Writing this, if accepted, will block until array is quiescent
4335  * readonly
4336  *     no resync can happen.  no superblocks get written.
4337  *     write requests fail
4338  * read-auto
4339  *     like readonly, but behaves like 'clean' on a write request.
4340  *
4341  * clean - no pending writes, but otherwise active.
4342  *     When written to inactive array, starts without resync
4343  *     If a write request arrives then
4344  *       if metadata is known, mark 'dirty' and switch to 'active'.
4345  *       if not known, block and switch to write-pending
4346  *     If written to an active array that has pending writes, then fails.
4347  * active
4348  *     fully active: IO and resync can be happening.
4349  *     When written to inactive array, starts with resync
4350  *
4351  * write-pending
4352  *     clean, but writes are blocked waiting for 'active' to be written.
4353  *
4354  * active-idle
4355  *     like active, but no writes have been seen for a while (100msec).
4356  *
4357  * broken
4358  *     RAID0/LINEAR-only: same as clean, but array is missing a member.
4359  *     It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4360  *     when a member is gone, so this state will at least alert the
4361  *     user that something is wrong.
4362  */
4363 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4364 		   write_pending, active_idle, broken, bad_word};
4365 static char *array_states[] = {
4366 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4367 	"write-pending", "active-idle", "broken", NULL };
4368 
4369 static int match_word(const char *word, char **list)
4370 {
4371 	int n;
4372 	for (n=0; list[n]; n++)
4373 		if (cmd_match(word, list[n]))
4374 			break;
4375 	return n;
4376 }
4377 
4378 static ssize_t
4379 array_state_show(struct mddev *mddev, char *page)
4380 {
4381 	enum array_state st = inactive;
4382 
4383 	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4384 		switch(mddev->ro) {
4385 		case 1:
4386 			st = readonly;
4387 			break;
4388 		case 2:
4389 			st = read_auto;
4390 			break;
4391 		case 0:
4392 			spin_lock(&mddev->lock);
4393 			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4394 				st = write_pending;
4395 			else if (mddev->in_sync)
4396 				st = clean;
4397 			else if (mddev->safemode)
4398 				st = active_idle;
4399 			else
4400 				st = active;
4401 			spin_unlock(&mddev->lock);
4402 		}
4403 
4404 		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4405 			st = broken;
4406 	} else {
4407 		if (list_empty(&mddev->disks) &&
4408 		    mddev->raid_disks == 0 &&
4409 		    mddev->dev_sectors == 0)
4410 			st = clear;
4411 		else
4412 			st = inactive;
4413 	}
4414 	return sprintf(page, "%s\n", array_states[st]);
4415 }
4416 
4417 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4418 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4419 static int restart_array(struct mddev *mddev);
4420 
4421 static ssize_t
4422 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424 	int err = 0;
4425 	enum array_state st = match_word(buf, array_states);
4426 
4427 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4428 		/* don't take reconfig_mutex when toggling between
4429 		 * clean and active
4430 		 */
4431 		spin_lock(&mddev->lock);
4432 		if (st == active) {
4433 			restart_array(mddev);
4434 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4435 			md_wakeup_thread(mddev->thread);
4436 			wake_up(&mddev->sb_wait);
4437 		} else /* st == clean */ {
4438 			restart_array(mddev);
4439 			if (!set_in_sync(mddev))
4440 				err = -EBUSY;
4441 		}
4442 		if (!err)
4443 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4444 		spin_unlock(&mddev->lock);
4445 		return err ?: len;
4446 	}
4447 	err = mddev_lock(mddev);
4448 	if (err)
4449 		return err;
4450 	err = -EINVAL;
4451 	switch(st) {
4452 	case bad_word:
4453 		break;
4454 	case clear:
4455 		/* stopping an active array */
4456 		err = do_md_stop(mddev, 0, NULL);
4457 		break;
4458 	case inactive:
4459 		/* stopping an active array */
4460 		if (mddev->pers)
4461 			err = do_md_stop(mddev, 2, NULL);
4462 		else
4463 			err = 0; /* already inactive */
4464 		break;
4465 	case suspended:
4466 		break; /* not supported yet */
4467 	case readonly:
4468 		if (mddev->pers)
4469 			err = md_set_readonly(mddev, NULL);
4470 		else {
4471 			mddev->ro = 1;
4472 			set_disk_ro(mddev->gendisk, 1);
4473 			err = do_md_run(mddev);
4474 		}
4475 		break;
4476 	case read_auto:
4477 		if (mddev->pers) {
4478 			if (mddev->ro == 0)
4479 				err = md_set_readonly(mddev, NULL);
4480 			else if (mddev->ro == 1)
4481 				err = restart_array(mddev);
4482 			if (err == 0) {
4483 				mddev->ro = 2;
4484 				set_disk_ro(mddev->gendisk, 0);
4485 			}
4486 		} else {
4487 			mddev->ro = 2;
4488 			err = do_md_run(mddev);
4489 		}
4490 		break;
4491 	case clean:
4492 		if (mddev->pers) {
4493 			err = restart_array(mddev);
4494 			if (err)
4495 				break;
4496 			spin_lock(&mddev->lock);
4497 			if (!set_in_sync(mddev))
4498 				err = -EBUSY;
4499 			spin_unlock(&mddev->lock);
4500 		} else
4501 			err = -EINVAL;
4502 		break;
4503 	case active:
4504 		if (mddev->pers) {
4505 			err = restart_array(mddev);
4506 			if (err)
4507 				break;
4508 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4509 			wake_up(&mddev->sb_wait);
4510 			err = 0;
4511 		} else {
4512 			mddev->ro = 0;
4513 			set_disk_ro(mddev->gendisk, 0);
4514 			err = do_md_run(mddev);
4515 		}
4516 		break;
4517 	case write_pending:
4518 	case active_idle:
4519 	case broken:
4520 		/* these cannot be set */
4521 		break;
4522 	}
4523 
4524 	if (!err) {
4525 		if (mddev->hold_active == UNTIL_IOCTL)
4526 			mddev->hold_active = 0;
4527 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4528 	}
4529 	mddev_unlock(mddev);
4530 	return err ?: len;
4531 }
4532 static struct md_sysfs_entry md_array_state =
4533 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4534 
4535 static ssize_t
4536 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4537 	return sprintf(page, "%d\n",
4538 		       atomic_read(&mddev->max_corr_read_errors));
4539 }
4540 
4541 static ssize_t
4542 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4543 {
4544 	unsigned int n;
4545 	int rv;
4546 
4547 	rv = kstrtouint(buf, 10, &n);
4548 	if (rv < 0)
4549 		return rv;
4550 	atomic_set(&mddev->max_corr_read_errors, n);
4551 	return len;
4552 }
4553 
4554 static struct md_sysfs_entry max_corr_read_errors =
4555 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4556 	max_corrected_read_errors_store);
4557 
4558 static ssize_t
4559 null_show(struct mddev *mddev, char *page)
4560 {
4561 	return -EINVAL;
4562 }
4563 
4564 /* need to ensure rdev_delayed_delete() has completed */
4565 static void flush_rdev_wq(struct mddev *mddev)
4566 {
4567 	struct md_rdev *rdev;
4568 
4569 	rcu_read_lock();
4570 	rdev_for_each_rcu(rdev, mddev)
4571 		if (work_pending(&rdev->del_work)) {
4572 			flush_workqueue(md_rdev_misc_wq);
4573 			break;
4574 		}
4575 	rcu_read_unlock();
4576 }
4577 
4578 static ssize_t
4579 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4580 {
4581 	/* buf must be %d:%d\n? giving major and minor numbers */
4582 	/* The new device is added to the array.
4583 	 * If the array has a persistent superblock, we read the
4584 	 * superblock to initialise info and check validity.
4585 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4586 	 * which mainly checks size.
4587 	 */
4588 	char *e;
4589 	int major = simple_strtoul(buf, &e, 10);
4590 	int minor;
4591 	dev_t dev;
4592 	struct md_rdev *rdev;
4593 	int err;
4594 
4595 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4596 		return -EINVAL;
4597 	minor = simple_strtoul(e+1, &e, 10);
4598 	if (*e && *e != '\n')
4599 		return -EINVAL;
4600 	dev = MKDEV(major, minor);
4601 	if (major != MAJOR(dev) ||
4602 	    minor != MINOR(dev))
4603 		return -EOVERFLOW;
4604 
4605 	flush_rdev_wq(mddev);
4606 	err = mddev_lock(mddev);
4607 	if (err)
4608 		return err;
4609 	if (mddev->persistent) {
4610 		rdev = md_import_device(dev, mddev->major_version,
4611 					mddev->minor_version);
4612 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4613 			struct md_rdev *rdev0
4614 				= list_entry(mddev->disks.next,
4615 					     struct md_rdev, same_set);
4616 			err = super_types[mddev->major_version]
4617 				.load_super(rdev, rdev0, mddev->minor_version);
4618 			if (err < 0)
4619 				goto out;
4620 		}
4621 	} else if (mddev->external)
4622 		rdev = md_import_device(dev, -2, -1);
4623 	else
4624 		rdev = md_import_device(dev, -1, -1);
4625 
4626 	if (IS_ERR(rdev)) {
4627 		mddev_unlock(mddev);
4628 		return PTR_ERR(rdev);
4629 	}
4630 	err = bind_rdev_to_array(rdev, mddev);
4631  out:
4632 	if (err)
4633 		export_rdev(rdev);
4634 	mddev_unlock(mddev);
4635 	if (!err)
4636 		md_new_event();
4637 	return err ? err : len;
4638 }
4639 
4640 static struct md_sysfs_entry md_new_device =
4641 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4642 
4643 static ssize_t
4644 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4645 {
4646 	char *end;
4647 	unsigned long chunk, end_chunk;
4648 	int err;
4649 
4650 	err = mddev_lock(mddev);
4651 	if (err)
4652 		return err;
4653 	if (!mddev->bitmap)
4654 		goto out;
4655 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4656 	while (*buf) {
4657 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4658 		if (buf == end) break;
4659 		if (*end == '-') { /* range */
4660 			buf = end + 1;
4661 			end_chunk = simple_strtoul(buf, &end, 0);
4662 			if (buf == end) break;
4663 		}
4664 		if (*end && !isspace(*end)) break;
4665 		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4666 		buf = skip_spaces(end);
4667 	}
4668 	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4669 out:
4670 	mddev_unlock(mddev);
4671 	return len;
4672 }
4673 
4674 static struct md_sysfs_entry md_bitmap =
4675 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4676 
4677 static ssize_t
4678 size_show(struct mddev *mddev, char *page)
4679 {
4680 	return sprintf(page, "%llu\n",
4681 		(unsigned long long)mddev->dev_sectors / 2);
4682 }
4683 
4684 static int update_size(struct mddev *mddev, sector_t num_sectors);
4685 
4686 static ssize_t
4687 size_store(struct mddev *mddev, const char *buf, size_t len)
4688 {
4689 	/* If array is inactive, we can reduce the component size, but
4690 	 * not increase it (except from 0).
4691 	 * If array is active, we can try an on-line resize
4692 	 */
4693 	sector_t sectors;
4694 	int err = strict_blocks_to_sectors(buf, &sectors);
4695 
4696 	if (err < 0)
4697 		return err;
4698 	err = mddev_lock(mddev);
4699 	if (err)
4700 		return err;
4701 	if (mddev->pers) {
4702 		err = update_size(mddev, sectors);
4703 		if (err == 0)
4704 			md_update_sb(mddev, 1);
4705 	} else {
4706 		if (mddev->dev_sectors == 0 ||
4707 		    mddev->dev_sectors > sectors)
4708 			mddev->dev_sectors = sectors;
4709 		else
4710 			err = -ENOSPC;
4711 	}
4712 	mddev_unlock(mddev);
4713 	return err ? err : len;
4714 }
4715 
4716 static struct md_sysfs_entry md_size =
4717 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4718 
4719 /* Metadata version.
4720  * This is one of
4721  *   'none' for arrays with no metadata (good luck...)
4722  *   'external' for arrays with externally managed metadata,
4723  * or N.M for internally known formats
4724  */
4725 static ssize_t
4726 metadata_show(struct mddev *mddev, char *page)
4727 {
4728 	if (mddev->persistent)
4729 		return sprintf(page, "%d.%d\n",
4730 			       mddev->major_version, mddev->minor_version);
4731 	else if (mddev->external)
4732 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4733 	else
4734 		return sprintf(page, "none\n");
4735 }
4736 
4737 static ssize_t
4738 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4739 {
4740 	int major, minor;
4741 	char *e;
4742 	int err;
4743 	/* Changing the details of 'external' metadata is
4744 	 * always permitted.  Otherwise there must be
4745 	 * no devices attached to the array.
4746 	 */
4747 
4748 	err = mddev_lock(mddev);
4749 	if (err)
4750 		return err;
4751 	err = -EBUSY;
4752 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4753 		;
4754 	else if (!list_empty(&mddev->disks))
4755 		goto out_unlock;
4756 
4757 	err = 0;
4758 	if (cmd_match(buf, "none")) {
4759 		mddev->persistent = 0;
4760 		mddev->external = 0;
4761 		mddev->major_version = 0;
4762 		mddev->minor_version = 90;
4763 		goto out_unlock;
4764 	}
4765 	if (strncmp(buf, "external:", 9) == 0) {
4766 		size_t namelen = len-9;
4767 		if (namelen >= sizeof(mddev->metadata_type))
4768 			namelen = sizeof(mddev->metadata_type)-1;
4769 		strncpy(mddev->metadata_type, buf+9, namelen);
4770 		mddev->metadata_type[namelen] = 0;
4771 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4772 			mddev->metadata_type[--namelen] = 0;
4773 		mddev->persistent = 0;
4774 		mddev->external = 1;
4775 		mddev->major_version = 0;
4776 		mddev->minor_version = 90;
4777 		goto out_unlock;
4778 	}
4779 	major = simple_strtoul(buf, &e, 10);
4780 	err = -EINVAL;
4781 	if (e==buf || *e != '.')
4782 		goto out_unlock;
4783 	buf = e+1;
4784 	minor = simple_strtoul(buf, &e, 10);
4785 	if (e==buf || (*e && *e != '\n') )
4786 		goto out_unlock;
4787 	err = -ENOENT;
4788 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4789 		goto out_unlock;
4790 	mddev->major_version = major;
4791 	mddev->minor_version = minor;
4792 	mddev->persistent = 1;
4793 	mddev->external = 0;
4794 	err = 0;
4795 out_unlock:
4796 	mddev_unlock(mddev);
4797 	return err ?: len;
4798 }
4799 
4800 static struct md_sysfs_entry md_metadata =
4801 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4802 
4803 static ssize_t
4804 action_show(struct mddev *mddev, char *page)
4805 {
4806 	char *type = "idle";
4807 	unsigned long recovery = mddev->recovery;
4808 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4809 		type = "frozen";
4810 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4811 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4812 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4813 			type = "reshape";
4814 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4815 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4816 				type = "resync";
4817 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4818 				type = "check";
4819 			else
4820 				type = "repair";
4821 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4822 			type = "recover";
4823 		else if (mddev->reshape_position != MaxSector)
4824 			type = "reshape";
4825 	}
4826 	return sprintf(page, "%s\n", type);
4827 }
4828 
4829 static ssize_t
4830 action_store(struct mddev *mddev, const char *page, size_t len)
4831 {
4832 	if (!mddev->pers || !mddev->pers->sync_request)
4833 		return -EINVAL;
4834 
4835 
4836 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4837 		if (cmd_match(page, "frozen"))
4838 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4839 		else
4840 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4841 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4842 		    mddev_lock(mddev) == 0) {
4843 			if (work_pending(&mddev->del_work))
4844 				flush_workqueue(md_misc_wq);
4845 			if (mddev->sync_thread) {
4846 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4847 				md_reap_sync_thread(mddev);
4848 			}
4849 			mddev_unlock(mddev);
4850 		}
4851 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4852 		return -EBUSY;
4853 	else if (cmd_match(page, "resync"))
4854 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 	else if (cmd_match(page, "recover")) {
4856 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4857 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4858 	} else if (cmd_match(page, "reshape")) {
4859 		int err;
4860 		if (mddev->pers->start_reshape == NULL)
4861 			return -EINVAL;
4862 		err = mddev_lock(mddev);
4863 		if (!err) {
4864 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4865 				err =  -EBUSY;
4866 			else {
4867 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 				err = mddev->pers->start_reshape(mddev);
4869 			}
4870 			mddev_unlock(mddev);
4871 		}
4872 		if (err)
4873 			return err;
4874 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4875 	} else {
4876 		if (cmd_match(page, "check"))
4877 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4878 		else if (!cmd_match(page, "repair"))
4879 			return -EINVAL;
4880 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4881 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4882 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4883 	}
4884 	if (mddev->ro == 2) {
4885 		/* A write to sync_action is enough to justify
4886 		 * canceling read-auto mode
4887 		 */
4888 		mddev->ro = 0;
4889 		md_wakeup_thread(mddev->sync_thread);
4890 	}
4891 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4892 	md_wakeup_thread(mddev->thread);
4893 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4894 	return len;
4895 }
4896 
4897 static struct md_sysfs_entry md_scan_mode =
4898 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4899 
4900 static ssize_t
4901 last_sync_action_show(struct mddev *mddev, char *page)
4902 {
4903 	return sprintf(page, "%s\n", mddev->last_sync_action);
4904 }
4905 
4906 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4907 
4908 static ssize_t
4909 mismatch_cnt_show(struct mddev *mddev, char *page)
4910 {
4911 	return sprintf(page, "%llu\n",
4912 		       (unsigned long long)
4913 		       atomic64_read(&mddev->resync_mismatches));
4914 }
4915 
4916 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4917 
4918 static ssize_t
4919 sync_min_show(struct mddev *mddev, char *page)
4920 {
4921 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4922 		       mddev->sync_speed_min ? "local": "system");
4923 }
4924 
4925 static ssize_t
4926 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4927 {
4928 	unsigned int min;
4929 	int rv;
4930 
4931 	if (strncmp(buf, "system", 6)==0) {
4932 		min = 0;
4933 	} else {
4934 		rv = kstrtouint(buf, 10, &min);
4935 		if (rv < 0)
4936 			return rv;
4937 		if (min == 0)
4938 			return -EINVAL;
4939 	}
4940 	mddev->sync_speed_min = min;
4941 	return len;
4942 }
4943 
4944 static struct md_sysfs_entry md_sync_min =
4945 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4946 
4947 static ssize_t
4948 sync_max_show(struct mddev *mddev, char *page)
4949 {
4950 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4951 		       mddev->sync_speed_max ? "local": "system");
4952 }
4953 
4954 static ssize_t
4955 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4956 {
4957 	unsigned int max;
4958 	int rv;
4959 
4960 	if (strncmp(buf, "system", 6)==0) {
4961 		max = 0;
4962 	} else {
4963 		rv = kstrtouint(buf, 10, &max);
4964 		if (rv < 0)
4965 			return rv;
4966 		if (max == 0)
4967 			return -EINVAL;
4968 	}
4969 	mddev->sync_speed_max = max;
4970 	return len;
4971 }
4972 
4973 static struct md_sysfs_entry md_sync_max =
4974 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4975 
4976 static ssize_t
4977 degraded_show(struct mddev *mddev, char *page)
4978 {
4979 	return sprintf(page, "%d\n", mddev->degraded);
4980 }
4981 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4982 
4983 static ssize_t
4984 sync_force_parallel_show(struct mddev *mddev, char *page)
4985 {
4986 	return sprintf(page, "%d\n", mddev->parallel_resync);
4987 }
4988 
4989 static ssize_t
4990 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4991 {
4992 	long n;
4993 
4994 	if (kstrtol(buf, 10, &n))
4995 		return -EINVAL;
4996 
4997 	if (n != 0 && n != 1)
4998 		return -EINVAL;
4999 
5000 	mddev->parallel_resync = n;
5001 
5002 	if (mddev->sync_thread)
5003 		wake_up(&resync_wait);
5004 
5005 	return len;
5006 }
5007 
5008 /* force parallel resync, even with shared block devices */
5009 static struct md_sysfs_entry md_sync_force_parallel =
5010 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5011        sync_force_parallel_show, sync_force_parallel_store);
5012 
5013 static ssize_t
5014 sync_speed_show(struct mddev *mddev, char *page)
5015 {
5016 	unsigned long resync, dt, db;
5017 	if (mddev->curr_resync == 0)
5018 		return sprintf(page, "none\n");
5019 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5020 	dt = (jiffies - mddev->resync_mark) / HZ;
5021 	if (!dt) dt++;
5022 	db = resync - mddev->resync_mark_cnt;
5023 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5024 }
5025 
5026 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5027 
5028 static ssize_t
5029 sync_completed_show(struct mddev *mddev, char *page)
5030 {
5031 	unsigned long long max_sectors, resync;
5032 
5033 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5034 		return sprintf(page, "none\n");
5035 
5036 	if (mddev->curr_resync == 1 ||
5037 	    mddev->curr_resync == 2)
5038 		return sprintf(page, "delayed\n");
5039 
5040 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5041 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5042 		max_sectors = mddev->resync_max_sectors;
5043 	else
5044 		max_sectors = mddev->dev_sectors;
5045 
5046 	resync = mddev->curr_resync_completed;
5047 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5048 }
5049 
5050 static struct md_sysfs_entry md_sync_completed =
5051 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5052 
5053 static ssize_t
5054 min_sync_show(struct mddev *mddev, char *page)
5055 {
5056 	return sprintf(page, "%llu\n",
5057 		       (unsigned long long)mddev->resync_min);
5058 }
5059 static ssize_t
5060 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5061 {
5062 	unsigned long long min;
5063 	int err;
5064 
5065 	if (kstrtoull(buf, 10, &min))
5066 		return -EINVAL;
5067 
5068 	spin_lock(&mddev->lock);
5069 	err = -EINVAL;
5070 	if (min > mddev->resync_max)
5071 		goto out_unlock;
5072 
5073 	err = -EBUSY;
5074 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5075 		goto out_unlock;
5076 
5077 	/* Round down to multiple of 4K for safety */
5078 	mddev->resync_min = round_down(min, 8);
5079 	err = 0;
5080 
5081 out_unlock:
5082 	spin_unlock(&mddev->lock);
5083 	return err ?: len;
5084 }
5085 
5086 static struct md_sysfs_entry md_min_sync =
5087 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5088 
5089 static ssize_t
5090 max_sync_show(struct mddev *mddev, char *page)
5091 {
5092 	if (mddev->resync_max == MaxSector)
5093 		return sprintf(page, "max\n");
5094 	else
5095 		return sprintf(page, "%llu\n",
5096 			       (unsigned long long)mddev->resync_max);
5097 }
5098 static ssize_t
5099 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5100 {
5101 	int err;
5102 	spin_lock(&mddev->lock);
5103 	if (strncmp(buf, "max", 3) == 0)
5104 		mddev->resync_max = MaxSector;
5105 	else {
5106 		unsigned long long max;
5107 		int chunk;
5108 
5109 		err = -EINVAL;
5110 		if (kstrtoull(buf, 10, &max))
5111 			goto out_unlock;
5112 		if (max < mddev->resync_min)
5113 			goto out_unlock;
5114 
5115 		err = -EBUSY;
5116 		if (max < mddev->resync_max &&
5117 		    mddev->ro == 0 &&
5118 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5119 			goto out_unlock;
5120 
5121 		/* Must be a multiple of chunk_size */
5122 		chunk = mddev->chunk_sectors;
5123 		if (chunk) {
5124 			sector_t temp = max;
5125 
5126 			err = -EINVAL;
5127 			if (sector_div(temp, chunk))
5128 				goto out_unlock;
5129 		}
5130 		mddev->resync_max = max;
5131 	}
5132 	wake_up(&mddev->recovery_wait);
5133 	err = 0;
5134 out_unlock:
5135 	spin_unlock(&mddev->lock);
5136 	return err ?: len;
5137 }
5138 
5139 static struct md_sysfs_entry md_max_sync =
5140 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5141 
5142 static ssize_t
5143 suspend_lo_show(struct mddev *mddev, char *page)
5144 {
5145 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5146 }
5147 
5148 static ssize_t
5149 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5150 {
5151 	unsigned long long new;
5152 	int err;
5153 
5154 	err = kstrtoull(buf, 10, &new);
5155 	if (err < 0)
5156 		return err;
5157 	if (new != (sector_t)new)
5158 		return -EINVAL;
5159 
5160 	err = mddev_lock(mddev);
5161 	if (err)
5162 		return err;
5163 	err = -EINVAL;
5164 	if (mddev->pers == NULL ||
5165 	    mddev->pers->quiesce == NULL)
5166 		goto unlock;
5167 	mddev_suspend(mddev);
5168 	mddev->suspend_lo = new;
5169 	mddev_resume(mddev);
5170 
5171 	err = 0;
5172 unlock:
5173 	mddev_unlock(mddev);
5174 	return err ?: len;
5175 }
5176 static struct md_sysfs_entry md_suspend_lo =
5177 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5178 
5179 static ssize_t
5180 suspend_hi_show(struct mddev *mddev, char *page)
5181 {
5182 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5183 }
5184 
5185 static ssize_t
5186 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5187 {
5188 	unsigned long long new;
5189 	int err;
5190 
5191 	err = kstrtoull(buf, 10, &new);
5192 	if (err < 0)
5193 		return err;
5194 	if (new != (sector_t)new)
5195 		return -EINVAL;
5196 
5197 	err = mddev_lock(mddev);
5198 	if (err)
5199 		return err;
5200 	err = -EINVAL;
5201 	if (mddev->pers == NULL)
5202 		goto unlock;
5203 
5204 	mddev_suspend(mddev);
5205 	mddev->suspend_hi = new;
5206 	mddev_resume(mddev);
5207 
5208 	err = 0;
5209 unlock:
5210 	mddev_unlock(mddev);
5211 	return err ?: len;
5212 }
5213 static struct md_sysfs_entry md_suspend_hi =
5214 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5215 
5216 static ssize_t
5217 reshape_position_show(struct mddev *mddev, char *page)
5218 {
5219 	if (mddev->reshape_position != MaxSector)
5220 		return sprintf(page, "%llu\n",
5221 			       (unsigned long long)mddev->reshape_position);
5222 	strcpy(page, "none\n");
5223 	return 5;
5224 }
5225 
5226 static ssize_t
5227 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5228 {
5229 	struct md_rdev *rdev;
5230 	unsigned long long new;
5231 	int err;
5232 
5233 	err = kstrtoull(buf, 10, &new);
5234 	if (err < 0)
5235 		return err;
5236 	if (new != (sector_t)new)
5237 		return -EINVAL;
5238 	err = mddev_lock(mddev);
5239 	if (err)
5240 		return err;
5241 	err = -EBUSY;
5242 	if (mddev->pers)
5243 		goto unlock;
5244 	mddev->reshape_position = new;
5245 	mddev->delta_disks = 0;
5246 	mddev->reshape_backwards = 0;
5247 	mddev->new_level = mddev->level;
5248 	mddev->new_layout = mddev->layout;
5249 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5250 	rdev_for_each(rdev, mddev)
5251 		rdev->new_data_offset = rdev->data_offset;
5252 	err = 0;
5253 unlock:
5254 	mddev_unlock(mddev);
5255 	return err ?: len;
5256 }
5257 
5258 static struct md_sysfs_entry md_reshape_position =
5259 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5260        reshape_position_store);
5261 
5262 static ssize_t
5263 reshape_direction_show(struct mddev *mddev, char *page)
5264 {
5265 	return sprintf(page, "%s\n",
5266 		       mddev->reshape_backwards ? "backwards" : "forwards");
5267 }
5268 
5269 static ssize_t
5270 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5271 {
5272 	int backwards = 0;
5273 	int err;
5274 
5275 	if (cmd_match(buf, "forwards"))
5276 		backwards = 0;
5277 	else if (cmd_match(buf, "backwards"))
5278 		backwards = 1;
5279 	else
5280 		return -EINVAL;
5281 	if (mddev->reshape_backwards == backwards)
5282 		return len;
5283 
5284 	err = mddev_lock(mddev);
5285 	if (err)
5286 		return err;
5287 	/* check if we are allowed to change */
5288 	if (mddev->delta_disks)
5289 		err = -EBUSY;
5290 	else if (mddev->persistent &&
5291 	    mddev->major_version == 0)
5292 		err =  -EINVAL;
5293 	else
5294 		mddev->reshape_backwards = backwards;
5295 	mddev_unlock(mddev);
5296 	return err ?: len;
5297 }
5298 
5299 static struct md_sysfs_entry md_reshape_direction =
5300 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5301        reshape_direction_store);
5302 
5303 static ssize_t
5304 array_size_show(struct mddev *mddev, char *page)
5305 {
5306 	if (mddev->external_size)
5307 		return sprintf(page, "%llu\n",
5308 			       (unsigned long long)mddev->array_sectors/2);
5309 	else
5310 		return sprintf(page, "default\n");
5311 }
5312 
5313 static ssize_t
5314 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5315 {
5316 	sector_t sectors;
5317 	int err;
5318 
5319 	err = mddev_lock(mddev);
5320 	if (err)
5321 		return err;
5322 
5323 	/* cluster raid doesn't support change array_sectors */
5324 	if (mddev_is_clustered(mddev)) {
5325 		mddev_unlock(mddev);
5326 		return -EINVAL;
5327 	}
5328 
5329 	if (strncmp(buf, "default", 7) == 0) {
5330 		if (mddev->pers)
5331 			sectors = mddev->pers->size(mddev, 0, 0);
5332 		else
5333 			sectors = mddev->array_sectors;
5334 
5335 		mddev->external_size = 0;
5336 	} else {
5337 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5338 			err = -EINVAL;
5339 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5340 			err = -E2BIG;
5341 		else
5342 			mddev->external_size = 1;
5343 	}
5344 
5345 	if (!err) {
5346 		mddev->array_sectors = sectors;
5347 		if (mddev->pers)
5348 			set_capacity_and_notify(mddev->gendisk,
5349 						mddev->array_sectors);
5350 	}
5351 	mddev_unlock(mddev);
5352 	return err ?: len;
5353 }
5354 
5355 static struct md_sysfs_entry md_array_size =
5356 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5357        array_size_store);
5358 
5359 static ssize_t
5360 consistency_policy_show(struct mddev *mddev, char *page)
5361 {
5362 	int ret;
5363 
5364 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5365 		ret = sprintf(page, "journal\n");
5366 	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5367 		ret = sprintf(page, "ppl\n");
5368 	} else if (mddev->bitmap) {
5369 		ret = sprintf(page, "bitmap\n");
5370 	} else if (mddev->pers) {
5371 		if (mddev->pers->sync_request)
5372 			ret = sprintf(page, "resync\n");
5373 		else
5374 			ret = sprintf(page, "none\n");
5375 	} else {
5376 		ret = sprintf(page, "unknown\n");
5377 	}
5378 
5379 	return ret;
5380 }
5381 
5382 static ssize_t
5383 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5384 {
5385 	int err = 0;
5386 
5387 	if (mddev->pers) {
5388 		if (mddev->pers->change_consistency_policy)
5389 			err = mddev->pers->change_consistency_policy(mddev, buf);
5390 		else
5391 			err = -EBUSY;
5392 	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5393 		set_bit(MD_HAS_PPL, &mddev->flags);
5394 	} else {
5395 		err = -EINVAL;
5396 	}
5397 
5398 	return err ? err : len;
5399 }
5400 
5401 static struct md_sysfs_entry md_consistency_policy =
5402 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5403        consistency_policy_store);
5404 
5405 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5406 {
5407 	return sprintf(page, "%d\n", mddev->fail_last_dev);
5408 }
5409 
5410 /*
5411  * Setting fail_last_dev to true to allow last device to be forcibly removed
5412  * from RAID1/RAID10.
5413  */
5414 static ssize_t
5415 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5416 {
5417 	int ret;
5418 	bool value;
5419 
5420 	ret = kstrtobool(buf, &value);
5421 	if (ret)
5422 		return ret;
5423 
5424 	if (value != mddev->fail_last_dev)
5425 		mddev->fail_last_dev = value;
5426 
5427 	return len;
5428 }
5429 static struct md_sysfs_entry md_fail_last_dev =
5430 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5431        fail_last_dev_store);
5432 
5433 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5434 {
5435 	if (mddev->pers == NULL || (mddev->pers->level != 1))
5436 		return sprintf(page, "n/a\n");
5437 	else
5438 		return sprintf(page, "%d\n", mddev->serialize_policy);
5439 }
5440 
5441 /*
5442  * Setting serialize_policy to true to enforce write IO is not reordered
5443  * for raid1.
5444  */
5445 static ssize_t
5446 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5447 {
5448 	int err;
5449 	bool value;
5450 
5451 	err = kstrtobool(buf, &value);
5452 	if (err)
5453 		return err;
5454 
5455 	if (value == mddev->serialize_policy)
5456 		return len;
5457 
5458 	err = mddev_lock(mddev);
5459 	if (err)
5460 		return err;
5461 	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5462 		pr_err("md: serialize_policy is only effective for raid1\n");
5463 		err = -EINVAL;
5464 		goto unlock;
5465 	}
5466 
5467 	mddev_suspend(mddev);
5468 	if (value)
5469 		mddev_create_serial_pool(mddev, NULL, true);
5470 	else
5471 		mddev_destroy_serial_pool(mddev, NULL, true);
5472 	mddev->serialize_policy = value;
5473 	mddev_resume(mddev);
5474 unlock:
5475 	mddev_unlock(mddev);
5476 	return err ?: len;
5477 }
5478 
5479 static struct md_sysfs_entry md_serialize_policy =
5480 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5481        serialize_policy_store);
5482 
5483 
5484 static struct attribute *md_default_attrs[] = {
5485 	&md_level.attr,
5486 	&md_layout.attr,
5487 	&md_raid_disks.attr,
5488 	&md_uuid.attr,
5489 	&md_chunk_size.attr,
5490 	&md_size.attr,
5491 	&md_resync_start.attr,
5492 	&md_metadata.attr,
5493 	&md_new_device.attr,
5494 	&md_safe_delay.attr,
5495 	&md_array_state.attr,
5496 	&md_reshape_position.attr,
5497 	&md_reshape_direction.attr,
5498 	&md_array_size.attr,
5499 	&max_corr_read_errors.attr,
5500 	&md_consistency_policy.attr,
5501 	&md_fail_last_dev.attr,
5502 	&md_serialize_policy.attr,
5503 	NULL,
5504 };
5505 
5506 static const struct attribute_group md_default_group = {
5507 	.attrs = md_default_attrs,
5508 };
5509 
5510 static struct attribute *md_redundancy_attrs[] = {
5511 	&md_scan_mode.attr,
5512 	&md_last_scan_mode.attr,
5513 	&md_mismatches.attr,
5514 	&md_sync_min.attr,
5515 	&md_sync_max.attr,
5516 	&md_sync_speed.attr,
5517 	&md_sync_force_parallel.attr,
5518 	&md_sync_completed.attr,
5519 	&md_min_sync.attr,
5520 	&md_max_sync.attr,
5521 	&md_suspend_lo.attr,
5522 	&md_suspend_hi.attr,
5523 	&md_bitmap.attr,
5524 	&md_degraded.attr,
5525 	NULL,
5526 };
5527 static const struct attribute_group md_redundancy_group = {
5528 	.name = NULL,
5529 	.attrs = md_redundancy_attrs,
5530 };
5531 
5532 static const struct attribute_group *md_attr_groups[] = {
5533 	&md_default_group,
5534 	&md_bitmap_group,
5535 	NULL,
5536 };
5537 
5538 static ssize_t
5539 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5540 {
5541 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5542 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5543 	ssize_t rv;
5544 
5545 	if (!entry->show)
5546 		return -EIO;
5547 	spin_lock(&all_mddevs_lock);
5548 	if (list_empty(&mddev->all_mddevs)) {
5549 		spin_unlock(&all_mddevs_lock);
5550 		return -EBUSY;
5551 	}
5552 	mddev_get(mddev);
5553 	spin_unlock(&all_mddevs_lock);
5554 
5555 	rv = entry->show(mddev, page);
5556 	mddev_put(mddev);
5557 	return rv;
5558 }
5559 
5560 static ssize_t
5561 md_attr_store(struct kobject *kobj, struct attribute *attr,
5562 	      const char *page, size_t length)
5563 {
5564 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5565 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5566 	ssize_t rv;
5567 
5568 	if (!entry->store)
5569 		return -EIO;
5570 	if (!capable(CAP_SYS_ADMIN))
5571 		return -EACCES;
5572 	spin_lock(&all_mddevs_lock);
5573 	if (list_empty(&mddev->all_mddevs)) {
5574 		spin_unlock(&all_mddevs_lock);
5575 		return -EBUSY;
5576 	}
5577 	mddev_get(mddev);
5578 	spin_unlock(&all_mddevs_lock);
5579 	rv = entry->store(mddev, page, length);
5580 	mddev_put(mddev);
5581 	return rv;
5582 }
5583 
5584 static void md_free(struct kobject *ko)
5585 {
5586 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5587 
5588 	if (mddev->sysfs_state)
5589 		sysfs_put(mddev->sysfs_state);
5590 	if (mddev->sysfs_level)
5591 		sysfs_put(mddev->sysfs_level);
5592 
5593 	if (mddev->gendisk) {
5594 		del_gendisk(mddev->gendisk);
5595 		blk_cleanup_disk(mddev->gendisk);
5596 	}
5597 	percpu_ref_exit(&mddev->writes_pending);
5598 
5599 	bioset_exit(&mddev->bio_set);
5600 	bioset_exit(&mddev->sync_set);
5601 	if (mddev->level != 1 && mddev->level != 10)
5602 		bioset_exit(&mddev->io_acct_set);
5603 	kfree(mddev);
5604 }
5605 
5606 static const struct sysfs_ops md_sysfs_ops = {
5607 	.show	= md_attr_show,
5608 	.store	= md_attr_store,
5609 };
5610 static struct kobj_type md_ktype = {
5611 	.release	= md_free,
5612 	.sysfs_ops	= &md_sysfs_ops,
5613 	.default_groups	= md_attr_groups,
5614 };
5615 
5616 int mdp_major = 0;
5617 
5618 static void mddev_delayed_delete(struct work_struct *ws)
5619 {
5620 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5621 
5622 	kobject_del(&mddev->kobj);
5623 	kobject_put(&mddev->kobj);
5624 }
5625 
5626 static void no_op(struct percpu_ref *r) {}
5627 
5628 int mddev_init_writes_pending(struct mddev *mddev)
5629 {
5630 	if (mddev->writes_pending.percpu_count_ptr)
5631 		return 0;
5632 	if (percpu_ref_init(&mddev->writes_pending, no_op,
5633 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5634 		return -ENOMEM;
5635 	/* We want to start with the refcount at zero */
5636 	percpu_ref_put(&mddev->writes_pending);
5637 	return 0;
5638 }
5639 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5640 
5641 static int md_alloc(dev_t dev, char *name)
5642 {
5643 	/*
5644 	 * If dev is zero, name is the name of a device to allocate with
5645 	 * an arbitrary minor number.  It will be "md_???"
5646 	 * If dev is non-zero it must be a device number with a MAJOR of
5647 	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5648 	 * the device is being created by opening a node in /dev.
5649 	 * If "name" is not NULL, the device is being created by
5650 	 * writing to /sys/module/md_mod/parameters/new_array.
5651 	 */
5652 	static DEFINE_MUTEX(disks_mutex);
5653 	struct mddev *mddev;
5654 	struct gendisk *disk;
5655 	int partitioned;
5656 	int shift;
5657 	int unit;
5658 	int error ;
5659 
5660 	/*
5661 	 * Wait for any previous instance of this device to be completely
5662 	 * removed (mddev_delayed_delete).
5663 	 */
5664 	flush_workqueue(md_misc_wq);
5665 
5666 	mutex_lock(&disks_mutex);
5667 	mddev = mddev_alloc(dev);
5668 	if (IS_ERR(mddev)) {
5669 		mutex_unlock(&disks_mutex);
5670 		return PTR_ERR(mddev);
5671 	}
5672 
5673 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5674 	shift = partitioned ? MdpMinorShift : 0;
5675 	unit = MINOR(mddev->unit) >> shift;
5676 
5677 	if (name && !dev) {
5678 		/* Need to ensure that 'name' is not a duplicate.
5679 		 */
5680 		struct mddev *mddev2;
5681 		spin_lock(&all_mddevs_lock);
5682 
5683 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5684 			if (mddev2->gendisk &&
5685 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5686 				spin_unlock(&all_mddevs_lock);
5687 				error = -EEXIST;
5688 				goto out_unlock_disks_mutex;
5689 			}
5690 		spin_unlock(&all_mddevs_lock);
5691 	}
5692 	if (name && dev)
5693 		/*
5694 		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5695 		 */
5696 		mddev->hold_active = UNTIL_STOP;
5697 
5698 	error = -ENOMEM;
5699 	disk = blk_alloc_disk(NUMA_NO_NODE);
5700 	if (!disk)
5701 		goto out_unlock_disks_mutex;
5702 
5703 	disk->major = MAJOR(mddev->unit);
5704 	disk->first_minor = unit << shift;
5705 	disk->minors = 1 << shift;
5706 	if (name)
5707 		strcpy(disk->disk_name, name);
5708 	else if (partitioned)
5709 		sprintf(disk->disk_name, "md_d%d", unit);
5710 	else
5711 		sprintf(disk->disk_name, "md%d", unit);
5712 	disk->fops = &md_fops;
5713 	disk->private_data = mddev;
5714 
5715 	mddev->queue = disk->queue;
5716 	blk_set_stacking_limits(&mddev->queue->limits);
5717 	blk_queue_write_cache(mddev->queue, true, true);
5718 	disk->events |= DISK_EVENT_MEDIA_CHANGE;
5719 	mddev->gendisk = disk;
5720 	error = add_disk(disk);
5721 	if (error)
5722 		goto out_cleanup_disk;
5723 
5724 	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5725 	if (error)
5726 		goto out_del_gendisk;
5727 
5728 	kobject_uevent(&mddev->kobj, KOBJ_ADD);
5729 	mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5730 	mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5731 	goto out_unlock_disks_mutex;
5732 
5733 out_del_gendisk:
5734 	del_gendisk(disk);
5735 out_cleanup_disk:
5736 	blk_cleanup_disk(disk);
5737 out_unlock_disks_mutex:
5738 	mutex_unlock(&disks_mutex);
5739 	mddev_put(mddev);
5740 	return error;
5741 }
5742 
5743 static void md_probe(dev_t dev)
5744 {
5745 	if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5746 		return;
5747 	if (create_on_open)
5748 		md_alloc(dev, NULL);
5749 }
5750 
5751 static int add_named_array(const char *val, const struct kernel_param *kp)
5752 {
5753 	/*
5754 	 * val must be "md_*" or "mdNNN".
5755 	 * For "md_*" we allocate an array with a large free minor number, and
5756 	 * set the name to val.  val must not already be an active name.
5757 	 * For "mdNNN" we allocate an array with the minor number NNN
5758 	 * which must not already be in use.
5759 	 */
5760 	int len = strlen(val);
5761 	char buf[DISK_NAME_LEN];
5762 	unsigned long devnum;
5763 
5764 	while (len && val[len-1] == '\n')
5765 		len--;
5766 	if (len >= DISK_NAME_LEN)
5767 		return -E2BIG;
5768 	strlcpy(buf, val, len+1);
5769 	if (strncmp(buf, "md_", 3) == 0)
5770 		return md_alloc(0, buf);
5771 	if (strncmp(buf, "md", 2) == 0 &&
5772 	    isdigit(buf[2]) &&
5773 	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5774 	    devnum <= MINORMASK)
5775 		return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5776 
5777 	return -EINVAL;
5778 }
5779 
5780 static void md_safemode_timeout(struct timer_list *t)
5781 {
5782 	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5783 
5784 	mddev->safemode = 1;
5785 	if (mddev->external)
5786 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5787 
5788 	md_wakeup_thread(mddev->thread);
5789 }
5790 
5791 static int start_dirty_degraded;
5792 
5793 int md_run(struct mddev *mddev)
5794 {
5795 	int err;
5796 	struct md_rdev *rdev;
5797 	struct md_personality *pers;
5798 	bool nowait = true;
5799 
5800 	if (list_empty(&mddev->disks))
5801 		/* cannot run an array with no devices.. */
5802 		return -EINVAL;
5803 
5804 	if (mddev->pers)
5805 		return -EBUSY;
5806 	/* Cannot run until previous stop completes properly */
5807 	if (mddev->sysfs_active)
5808 		return -EBUSY;
5809 
5810 	/*
5811 	 * Analyze all RAID superblock(s)
5812 	 */
5813 	if (!mddev->raid_disks) {
5814 		if (!mddev->persistent)
5815 			return -EINVAL;
5816 		err = analyze_sbs(mddev);
5817 		if (err)
5818 			return -EINVAL;
5819 	}
5820 
5821 	if (mddev->level != LEVEL_NONE)
5822 		request_module("md-level-%d", mddev->level);
5823 	else if (mddev->clevel[0])
5824 		request_module("md-%s", mddev->clevel);
5825 
5826 	/*
5827 	 * Drop all container device buffers, from now on
5828 	 * the only valid external interface is through the md
5829 	 * device.
5830 	 */
5831 	mddev->has_superblocks = false;
5832 	rdev_for_each(rdev, mddev) {
5833 		if (test_bit(Faulty, &rdev->flags))
5834 			continue;
5835 		sync_blockdev(rdev->bdev);
5836 		invalidate_bdev(rdev->bdev);
5837 		if (mddev->ro != 1 && rdev_read_only(rdev)) {
5838 			mddev->ro = 1;
5839 			if (mddev->gendisk)
5840 				set_disk_ro(mddev->gendisk, 1);
5841 		}
5842 
5843 		if (rdev->sb_page)
5844 			mddev->has_superblocks = true;
5845 
5846 		/* perform some consistency tests on the device.
5847 		 * We don't want the data to overlap the metadata,
5848 		 * Internal Bitmap issues have been handled elsewhere.
5849 		 */
5850 		if (rdev->meta_bdev) {
5851 			/* Nothing to check */;
5852 		} else if (rdev->data_offset < rdev->sb_start) {
5853 			if (mddev->dev_sectors &&
5854 			    rdev->data_offset + mddev->dev_sectors
5855 			    > rdev->sb_start) {
5856 				pr_warn("md: %s: data overlaps metadata\n",
5857 					mdname(mddev));
5858 				return -EINVAL;
5859 			}
5860 		} else {
5861 			if (rdev->sb_start + rdev->sb_size/512
5862 			    > rdev->data_offset) {
5863 				pr_warn("md: %s: metadata overlaps data\n",
5864 					mdname(mddev));
5865 				return -EINVAL;
5866 			}
5867 		}
5868 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5869 		nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev));
5870 	}
5871 
5872 	/* Set the NOWAIT flags if all underlying devices support it */
5873 	if (nowait)
5874 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
5875 
5876 	if (!bioset_initialized(&mddev->bio_set)) {
5877 		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5878 		if (err)
5879 			return err;
5880 	}
5881 	if (!bioset_initialized(&mddev->sync_set)) {
5882 		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5883 		if (err)
5884 			goto exit_bio_set;
5885 	}
5886 
5887 	spin_lock(&pers_lock);
5888 	pers = find_pers(mddev->level, mddev->clevel);
5889 	if (!pers || !try_module_get(pers->owner)) {
5890 		spin_unlock(&pers_lock);
5891 		if (mddev->level != LEVEL_NONE)
5892 			pr_warn("md: personality for level %d is not loaded!\n",
5893 				mddev->level);
5894 		else
5895 			pr_warn("md: personality for level %s is not loaded!\n",
5896 				mddev->clevel);
5897 		err = -EINVAL;
5898 		goto abort;
5899 	}
5900 	spin_unlock(&pers_lock);
5901 	if (mddev->level != pers->level) {
5902 		mddev->level = pers->level;
5903 		mddev->new_level = pers->level;
5904 	}
5905 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5906 
5907 	if (mddev->reshape_position != MaxSector &&
5908 	    pers->start_reshape == NULL) {
5909 		/* This personality cannot handle reshaping... */
5910 		module_put(pers->owner);
5911 		err = -EINVAL;
5912 		goto abort;
5913 	}
5914 
5915 	if (pers->sync_request) {
5916 		/* Warn if this is a potentially silly
5917 		 * configuration.
5918 		 */
5919 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5920 		struct md_rdev *rdev2;
5921 		int warned = 0;
5922 
5923 		rdev_for_each(rdev, mddev)
5924 			rdev_for_each(rdev2, mddev) {
5925 				if (rdev < rdev2 &&
5926 				    rdev->bdev->bd_disk ==
5927 				    rdev2->bdev->bd_disk) {
5928 					pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5929 						mdname(mddev),
5930 						bdevname(rdev->bdev,b),
5931 						bdevname(rdev2->bdev,b2));
5932 					warned = 1;
5933 				}
5934 			}
5935 
5936 		if (warned)
5937 			pr_warn("True protection against single-disk failure might be compromised.\n");
5938 	}
5939 
5940 	mddev->recovery = 0;
5941 	/* may be over-ridden by personality */
5942 	mddev->resync_max_sectors = mddev->dev_sectors;
5943 
5944 	mddev->ok_start_degraded = start_dirty_degraded;
5945 
5946 	if (start_readonly && mddev->ro == 0)
5947 		mddev->ro = 2; /* read-only, but switch on first write */
5948 
5949 	err = pers->run(mddev);
5950 	if (err)
5951 		pr_warn("md: pers->run() failed ...\n");
5952 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5953 		WARN_ONCE(!mddev->external_size,
5954 			  "%s: default size too small, but 'external_size' not in effect?\n",
5955 			  __func__);
5956 		pr_warn("md: invalid array_size %llu > default size %llu\n",
5957 			(unsigned long long)mddev->array_sectors / 2,
5958 			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5959 		err = -EINVAL;
5960 	}
5961 	if (err == 0 && pers->sync_request &&
5962 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5963 		struct bitmap *bitmap;
5964 
5965 		bitmap = md_bitmap_create(mddev, -1);
5966 		if (IS_ERR(bitmap)) {
5967 			err = PTR_ERR(bitmap);
5968 			pr_warn("%s: failed to create bitmap (%d)\n",
5969 				mdname(mddev), err);
5970 		} else
5971 			mddev->bitmap = bitmap;
5972 
5973 	}
5974 	if (err)
5975 		goto bitmap_abort;
5976 
5977 	if (mddev->bitmap_info.max_write_behind > 0) {
5978 		bool create_pool = false;
5979 
5980 		rdev_for_each(rdev, mddev) {
5981 			if (test_bit(WriteMostly, &rdev->flags) &&
5982 			    rdev_init_serial(rdev))
5983 				create_pool = true;
5984 		}
5985 		if (create_pool && mddev->serial_info_pool == NULL) {
5986 			mddev->serial_info_pool =
5987 				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5988 						    sizeof(struct serial_info));
5989 			if (!mddev->serial_info_pool) {
5990 				err = -ENOMEM;
5991 				goto bitmap_abort;
5992 			}
5993 		}
5994 	}
5995 
5996 	if (mddev->queue) {
5997 		bool nonrot = true;
5998 
5999 		rdev_for_each(rdev, mddev) {
6000 			if (rdev->raid_disk >= 0 &&
6001 			    !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6002 				nonrot = false;
6003 				break;
6004 			}
6005 		}
6006 		if (mddev->degraded)
6007 			nonrot = false;
6008 		if (nonrot)
6009 			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6010 		else
6011 			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6012 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6013 	}
6014 	if (pers->sync_request) {
6015 		if (mddev->kobj.sd &&
6016 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6017 			pr_warn("md: cannot register extra attributes for %s\n",
6018 				mdname(mddev));
6019 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6020 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6021 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6022 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
6023 		mddev->ro = 0;
6024 
6025 	atomic_set(&mddev->max_corr_read_errors,
6026 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6027 	mddev->safemode = 0;
6028 	if (mddev_is_clustered(mddev))
6029 		mddev->safemode_delay = 0;
6030 	else
6031 		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6032 	mddev->in_sync = 1;
6033 	smp_wmb();
6034 	spin_lock(&mddev->lock);
6035 	mddev->pers = pers;
6036 	spin_unlock(&mddev->lock);
6037 	rdev_for_each(rdev, mddev)
6038 		if (rdev->raid_disk >= 0)
6039 			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6040 
6041 	if (mddev->degraded && !mddev->ro)
6042 		/* This ensures that recovering status is reported immediately
6043 		 * via sysfs - until a lack of spares is confirmed.
6044 		 */
6045 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6046 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6047 
6048 	if (mddev->sb_flags)
6049 		md_update_sb(mddev, 0);
6050 
6051 	md_new_event();
6052 	return 0;
6053 
6054 bitmap_abort:
6055 	mddev_detach(mddev);
6056 	if (mddev->private)
6057 		pers->free(mddev, mddev->private);
6058 	mddev->private = NULL;
6059 	module_put(pers->owner);
6060 	md_bitmap_destroy(mddev);
6061 abort:
6062 	bioset_exit(&mddev->sync_set);
6063 exit_bio_set:
6064 	bioset_exit(&mddev->bio_set);
6065 	return err;
6066 }
6067 EXPORT_SYMBOL_GPL(md_run);
6068 
6069 int do_md_run(struct mddev *mddev)
6070 {
6071 	int err;
6072 
6073 	set_bit(MD_NOT_READY, &mddev->flags);
6074 	err = md_run(mddev);
6075 	if (err)
6076 		goto out;
6077 	err = md_bitmap_load(mddev);
6078 	if (err) {
6079 		md_bitmap_destroy(mddev);
6080 		goto out;
6081 	}
6082 
6083 	if (mddev_is_clustered(mddev))
6084 		md_allow_write(mddev);
6085 
6086 	/* run start up tasks that require md_thread */
6087 	md_start(mddev);
6088 
6089 	md_wakeup_thread(mddev->thread);
6090 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6091 
6092 	set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6093 	clear_bit(MD_NOT_READY, &mddev->flags);
6094 	mddev->changed = 1;
6095 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6096 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6097 	sysfs_notify_dirent_safe(mddev->sysfs_action);
6098 	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6099 out:
6100 	clear_bit(MD_NOT_READY, &mddev->flags);
6101 	return err;
6102 }
6103 
6104 int md_start(struct mddev *mddev)
6105 {
6106 	int ret = 0;
6107 
6108 	if (mddev->pers->start) {
6109 		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6110 		md_wakeup_thread(mddev->thread);
6111 		ret = mddev->pers->start(mddev);
6112 		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6113 		md_wakeup_thread(mddev->sync_thread);
6114 	}
6115 	return ret;
6116 }
6117 EXPORT_SYMBOL_GPL(md_start);
6118 
6119 static int restart_array(struct mddev *mddev)
6120 {
6121 	struct gendisk *disk = mddev->gendisk;
6122 	struct md_rdev *rdev;
6123 	bool has_journal = false;
6124 	bool has_readonly = false;
6125 
6126 	/* Complain if it has no devices */
6127 	if (list_empty(&mddev->disks))
6128 		return -ENXIO;
6129 	if (!mddev->pers)
6130 		return -EINVAL;
6131 	if (!mddev->ro)
6132 		return -EBUSY;
6133 
6134 	rcu_read_lock();
6135 	rdev_for_each_rcu(rdev, mddev) {
6136 		if (test_bit(Journal, &rdev->flags) &&
6137 		    !test_bit(Faulty, &rdev->flags))
6138 			has_journal = true;
6139 		if (rdev_read_only(rdev))
6140 			has_readonly = true;
6141 	}
6142 	rcu_read_unlock();
6143 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6144 		/* Don't restart rw with journal missing/faulty */
6145 			return -EINVAL;
6146 	if (has_readonly)
6147 		return -EROFS;
6148 
6149 	mddev->safemode = 0;
6150 	mddev->ro = 0;
6151 	set_disk_ro(disk, 0);
6152 	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6153 	/* Kick recovery or resync if necessary */
6154 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6155 	md_wakeup_thread(mddev->thread);
6156 	md_wakeup_thread(mddev->sync_thread);
6157 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6158 	return 0;
6159 }
6160 
6161 static void md_clean(struct mddev *mddev)
6162 {
6163 	mddev->array_sectors = 0;
6164 	mddev->external_size = 0;
6165 	mddev->dev_sectors = 0;
6166 	mddev->raid_disks = 0;
6167 	mddev->recovery_cp = 0;
6168 	mddev->resync_min = 0;
6169 	mddev->resync_max = MaxSector;
6170 	mddev->reshape_position = MaxSector;
6171 	mddev->external = 0;
6172 	mddev->persistent = 0;
6173 	mddev->level = LEVEL_NONE;
6174 	mddev->clevel[0] = 0;
6175 	mddev->flags = 0;
6176 	mddev->sb_flags = 0;
6177 	mddev->ro = 0;
6178 	mddev->metadata_type[0] = 0;
6179 	mddev->chunk_sectors = 0;
6180 	mddev->ctime = mddev->utime = 0;
6181 	mddev->layout = 0;
6182 	mddev->max_disks = 0;
6183 	mddev->events = 0;
6184 	mddev->can_decrease_events = 0;
6185 	mddev->delta_disks = 0;
6186 	mddev->reshape_backwards = 0;
6187 	mddev->new_level = LEVEL_NONE;
6188 	mddev->new_layout = 0;
6189 	mddev->new_chunk_sectors = 0;
6190 	mddev->curr_resync = 0;
6191 	atomic64_set(&mddev->resync_mismatches, 0);
6192 	mddev->suspend_lo = mddev->suspend_hi = 0;
6193 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6194 	mddev->recovery = 0;
6195 	mddev->in_sync = 0;
6196 	mddev->changed = 0;
6197 	mddev->degraded = 0;
6198 	mddev->safemode = 0;
6199 	mddev->private = NULL;
6200 	mddev->cluster_info = NULL;
6201 	mddev->bitmap_info.offset = 0;
6202 	mddev->bitmap_info.default_offset = 0;
6203 	mddev->bitmap_info.default_space = 0;
6204 	mddev->bitmap_info.chunksize = 0;
6205 	mddev->bitmap_info.daemon_sleep = 0;
6206 	mddev->bitmap_info.max_write_behind = 0;
6207 	mddev->bitmap_info.nodes = 0;
6208 }
6209 
6210 static void __md_stop_writes(struct mddev *mddev)
6211 {
6212 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6213 	if (work_pending(&mddev->del_work))
6214 		flush_workqueue(md_misc_wq);
6215 	if (mddev->sync_thread) {
6216 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6217 		md_reap_sync_thread(mddev);
6218 	}
6219 
6220 	del_timer_sync(&mddev->safemode_timer);
6221 
6222 	if (mddev->pers && mddev->pers->quiesce) {
6223 		mddev->pers->quiesce(mddev, 1);
6224 		mddev->pers->quiesce(mddev, 0);
6225 	}
6226 	md_bitmap_flush(mddev);
6227 
6228 	if (mddev->ro == 0 &&
6229 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6230 	     mddev->sb_flags)) {
6231 		/* mark array as shutdown cleanly */
6232 		if (!mddev_is_clustered(mddev))
6233 			mddev->in_sync = 1;
6234 		md_update_sb(mddev, 1);
6235 	}
6236 	/* disable policy to guarantee rdevs free resources for serialization */
6237 	mddev->serialize_policy = 0;
6238 	mddev_destroy_serial_pool(mddev, NULL, true);
6239 }
6240 
6241 void md_stop_writes(struct mddev *mddev)
6242 {
6243 	mddev_lock_nointr(mddev);
6244 	__md_stop_writes(mddev);
6245 	mddev_unlock(mddev);
6246 }
6247 EXPORT_SYMBOL_GPL(md_stop_writes);
6248 
6249 static void mddev_detach(struct mddev *mddev)
6250 {
6251 	md_bitmap_wait_behind_writes(mddev);
6252 	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6253 		mddev->pers->quiesce(mddev, 1);
6254 		mddev->pers->quiesce(mddev, 0);
6255 	}
6256 	md_unregister_thread(&mddev->thread);
6257 	if (mddev->queue)
6258 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6259 }
6260 
6261 static void __md_stop(struct mddev *mddev)
6262 {
6263 	struct md_personality *pers = mddev->pers;
6264 	md_bitmap_destroy(mddev);
6265 	mddev_detach(mddev);
6266 	/* Ensure ->event_work is done */
6267 	if (mddev->event_work.func)
6268 		flush_workqueue(md_misc_wq);
6269 	spin_lock(&mddev->lock);
6270 	mddev->pers = NULL;
6271 	spin_unlock(&mddev->lock);
6272 	if (mddev->private)
6273 		pers->free(mddev, mddev->private);
6274 	mddev->private = NULL;
6275 	if (pers->sync_request && mddev->to_remove == NULL)
6276 		mddev->to_remove = &md_redundancy_group;
6277 	module_put(pers->owner);
6278 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6279 }
6280 
6281 void md_stop(struct mddev *mddev)
6282 {
6283 	/* stop the array and free an attached data structures.
6284 	 * This is called from dm-raid
6285 	 */
6286 	__md_stop(mddev);
6287 	bioset_exit(&mddev->bio_set);
6288 	bioset_exit(&mddev->sync_set);
6289 	if (mddev->level != 1 && mddev->level != 10)
6290 		bioset_exit(&mddev->io_acct_set);
6291 }
6292 
6293 EXPORT_SYMBOL_GPL(md_stop);
6294 
6295 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6296 {
6297 	int err = 0;
6298 	int did_freeze = 0;
6299 
6300 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6301 		did_freeze = 1;
6302 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6303 		md_wakeup_thread(mddev->thread);
6304 	}
6305 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6306 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6307 	if (mddev->sync_thread)
6308 		/* Thread might be blocked waiting for metadata update
6309 		 * which will now never happen */
6310 		wake_up_process(mddev->sync_thread->tsk);
6311 
6312 	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6313 		return -EBUSY;
6314 	mddev_unlock(mddev);
6315 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6316 					  &mddev->recovery));
6317 	wait_event(mddev->sb_wait,
6318 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6319 	mddev_lock_nointr(mddev);
6320 
6321 	mutex_lock(&mddev->open_mutex);
6322 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6323 	    mddev->sync_thread ||
6324 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6325 		pr_warn("md: %s still in use.\n",mdname(mddev));
6326 		if (did_freeze) {
6327 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6328 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6329 			md_wakeup_thread(mddev->thread);
6330 		}
6331 		err = -EBUSY;
6332 		goto out;
6333 	}
6334 	if (mddev->pers) {
6335 		__md_stop_writes(mddev);
6336 
6337 		err  = -ENXIO;
6338 		if (mddev->ro==1)
6339 			goto out;
6340 		mddev->ro = 1;
6341 		set_disk_ro(mddev->gendisk, 1);
6342 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6343 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6344 		md_wakeup_thread(mddev->thread);
6345 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6346 		err = 0;
6347 	}
6348 out:
6349 	mutex_unlock(&mddev->open_mutex);
6350 	return err;
6351 }
6352 
6353 /* mode:
6354  *   0 - completely stop and dis-assemble array
6355  *   2 - stop but do not disassemble array
6356  */
6357 static int do_md_stop(struct mddev *mddev, int mode,
6358 		      struct block_device *bdev)
6359 {
6360 	struct gendisk *disk = mddev->gendisk;
6361 	struct md_rdev *rdev;
6362 	int did_freeze = 0;
6363 
6364 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6365 		did_freeze = 1;
6366 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6367 		md_wakeup_thread(mddev->thread);
6368 	}
6369 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6370 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6371 	if (mddev->sync_thread)
6372 		/* Thread might be blocked waiting for metadata update
6373 		 * which will now never happen */
6374 		wake_up_process(mddev->sync_thread->tsk);
6375 
6376 	mddev_unlock(mddev);
6377 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6378 				 !test_bit(MD_RECOVERY_RUNNING,
6379 					   &mddev->recovery)));
6380 	mddev_lock_nointr(mddev);
6381 
6382 	mutex_lock(&mddev->open_mutex);
6383 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6384 	    mddev->sysfs_active ||
6385 	    mddev->sync_thread ||
6386 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6387 		pr_warn("md: %s still in use.\n",mdname(mddev));
6388 		mutex_unlock(&mddev->open_mutex);
6389 		if (did_freeze) {
6390 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6391 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6392 			md_wakeup_thread(mddev->thread);
6393 		}
6394 		return -EBUSY;
6395 	}
6396 	if (mddev->pers) {
6397 		if (mddev->ro)
6398 			set_disk_ro(disk, 0);
6399 
6400 		__md_stop_writes(mddev);
6401 		__md_stop(mddev);
6402 
6403 		/* tell userspace to handle 'inactive' */
6404 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6405 
6406 		rdev_for_each(rdev, mddev)
6407 			if (rdev->raid_disk >= 0)
6408 				sysfs_unlink_rdev(mddev, rdev);
6409 
6410 		set_capacity_and_notify(disk, 0);
6411 		mutex_unlock(&mddev->open_mutex);
6412 		mddev->changed = 1;
6413 
6414 		if (mddev->ro)
6415 			mddev->ro = 0;
6416 	} else
6417 		mutex_unlock(&mddev->open_mutex);
6418 	/*
6419 	 * Free resources if final stop
6420 	 */
6421 	if (mode == 0) {
6422 		pr_info("md: %s stopped.\n", mdname(mddev));
6423 
6424 		if (mddev->bitmap_info.file) {
6425 			struct file *f = mddev->bitmap_info.file;
6426 			spin_lock(&mddev->lock);
6427 			mddev->bitmap_info.file = NULL;
6428 			spin_unlock(&mddev->lock);
6429 			fput(f);
6430 		}
6431 		mddev->bitmap_info.offset = 0;
6432 
6433 		export_array(mddev);
6434 
6435 		md_clean(mddev);
6436 		if (mddev->hold_active == UNTIL_STOP)
6437 			mddev->hold_active = 0;
6438 	}
6439 	md_new_event();
6440 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6441 	return 0;
6442 }
6443 
6444 #ifndef MODULE
6445 static void autorun_array(struct mddev *mddev)
6446 {
6447 	struct md_rdev *rdev;
6448 	int err;
6449 
6450 	if (list_empty(&mddev->disks))
6451 		return;
6452 
6453 	pr_info("md: running: ");
6454 
6455 	rdev_for_each(rdev, mddev) {
6456 		char b[BDEVNAME_SIZE];
6457 		pr_cont("<%s>", bdevname(rdev->bdev,b));
6458 	}
6459 	pr_cont("\n");
6460 
6461 	err = do_md_run(mddev);
6462 	if (err) {
6463 		pr_warn("md: do_md_run() returned %d\n", err);
6464 		do_md_stop(mddev, 0, NULL);
6465 	}
6466 }
6467 
6468 /*
6469  * lets try to run arrays based on all disks that have arrived
6470  * until now. (those are in pending_raid_disks)
6471  *
6472  * the method: pick the first pending disk, collect all disks with
6473  * the same UUID, remove all from the pending list and put them into
6474  * the 'same_array' list. Then order this list based on superblock
6475  * update time (freshest comes first), kick out 'old' disks and
6476  * compare superblocks. If everything's fine then run it.
6477  *
6478  * If "unit" is allocated, then bump its reference count
6479  */
6480 static void autorun_devices(int part)
6481 {
6482 	struct md_rdev *rdev0, *rdev, *tmp;
6483 	struct mddev *mddev;
6484 	char b[BDEVNAME_SIZE];
6485 
6486 	pr_info("md: autorun ...\n");
6487 	while (!list_empty(&pending_raid_disks)) {
6488 		int unit;
6489 		dev_t dev;
6490 		LIST_HEAD(candidates);
6491 		rdev0 = list_entry(pending_raid_disks.next,
6492 					 struct md_rdev, same_set);
6493 
6494 		pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6495 		INIT_LIST_HEAD(&candidates);
6496 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6497 			if (super_90_load(rdev, rdev0, 0) >= 0) {
6498 				pr_debug("md:  adding %s ...\n",
6499 					 bdevname(rdev->bdev,b));
6500 				list_move(&rdev->same_set, &candidates);
6501 			}
6502 		/*
6503 		 * now we have a set of devices, with all of them having
6504 		 * mostly sane superblocks. It's time to allocate the
6505 		 * mddev.
6506 		 */
6507 		if (part) {
6508 			dev = MKDEV(mdp_major,
6509 				    rdev0->preferred_minor << MdpMinorShift);
6510 			unit = MINOR(dev) >> MdpMinorShift;
6511 		} else {
6512 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6513 			unit = MINOR(dev);
6514 		}
6515 		if (rdev0->preferred_minor != unit) {
6516 			pr_warn("md: unit number in %s is bad: %d\n",
6517 				bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6518 			break;
6519 		}
6520 
6521 		md_probe(dev);
6522 		mddev = mddev_find(dev);
6523 		if (!mddev)
6524 			break;
6525 
6526 		if (mddev_lock(mddev))
6527 			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6528 		else if (mddev->raid_disks || mddev->major_version
6529 			 || !list_empty(&mddev->disks)) {
6530 			pr_warn("md: %s already running, cannot run %s\n",
6531 				mdname(mddev), bdevname(rdev0->bdev,b));
6532 			mddev_unlock(mddev);
6533 		} else {
6534 			pr_debug("md: created %s\n", mdname(mddev));
6535 			mddev->persistent = 1;
6536 			rdev_for_each_list(rdev, tmp, &candidates) {
6537 				list_del_init(&rdev->same_set);
6538 				if (bind_rdev_to_array(rdev, mddev))
6539 					export_rdev(rdev);
6540 			}
6541 			autorun_array(mddev);
6542 			mddev_unlock(mddev);
6543 		}
6544 		/* on success, candidates will be empty, on error
6545 		 * it won't...
6546 		 */
6547 		rdev_for_each_list(rdev, tmp, &candidates) {
6548 			list_del_init(&rdev->same_set);
6549 			export_rdev(rdev);
6550 		}
6551 		mddev_put(mddev);
6552 	}
6553 	pr_info("md: ... autorun DONE.\n");
6554 }
6555 #endif /* !MODULE */
6556 
6557 static int get_version(void __user *arg)
6558 {
6559 	mdu_version_t ver;
6560 
6561 	ver.major = MD_MAJOR_VERSION;
6562 	ver.minor = MD_MINOR_VERSION;
6563 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6564 
6565 	if (copy_to_user(arg, &ver, sizeof(ver)))
6566 		return -EFAULT;
6567 
6568 	return 0;
6569 }
6570 
6571 static int get_array_info(struct mddev *mddev, void __user *arg)
6572 {
6573 	mdu_array_info_t info;
6574 	int nr,working,insync,failed,spare;
6575 	struct md_rdev *rdev;
6576 
6577 	nr = working = insync = failed = spare = 0;
6578 	rcu_read_lock();
6579 	rdev_for_each_rcu(rdev, mddev) {
6580 		nr++;
6581 		if (test_bit(Faulty, &rdev->flags))
6582 			failed++;
6583 		else {
6584 			working++;
6585 			if (test_bit(In_sync, &rdev->flags))
6586 				insync++;
6587 			else if (test_bit(Journal, &rdev->flags))
6588 				/* TODO: add journal count to md_u.h */
6589 				;
6590 			else
6591 				spare++;
6592 		}
6593 	}
6594 	rcu_read_unlock();
6595 
6596 	info.major_version = mddev->major_version;
6597 	info.minor_version = mddev->minor_version;
6598 	info.patch_version = MD_PATCHLEVEL_VERSION;
6599 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6600 	info.level         = mddev->level;
6601 	info.size          = mddev->dev_sectors / 2;
6602 	if (info.size != mddev->dev_sectors / 2) /* overflow */
6603 		info.size = -1;
6604 	info.nr_disks      = nr;
6605 	info.raid_disks    = mddev->raid_disks;
6606 	info.md_minor      = mddev->md_minor;
6607 	info.not_persistent= !mddev->persistent;
6608 
6609 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6610 	info.state         = 0;
6611 	if (mddev->in_sync)
6612 		info.state = (1<<MD_SB_CLEAN);
6613 	if (mddev->bitmap && mddev->bitmap_info.offset)
6614 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6615 	if (mddev_is_clustered(mddev))
6616 		info.state |= (1<<MD_SB_CLUSTERED);
6617 	info.active_disks  = insync;
6618 	info.working_disks = working;
6619 	info.failed_disks  = failed;
6620 	info.spare_disks   = spare;
6621 
6622 	info.layout        = mddev->layout;
6623 	info.chunk_size    = mddev->chunk_sectors << 9;
6624 
6625 	if (copy_to_user(arg, &info, sizeof(info)))
6626 		return -EFAULT;
6627 
6628 	return 0;
6629 }
6630 
6631 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6632 {
6633 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6634 	char *ptr;
6635 	int err;
6636 
6637 	file = kzalloc(sizeof(*file), GFP_NOIO);
6638 	if (!file)
6639 		return -ENOMEM;
6640 
6641 	err = 0;
6642 	spin_lock(&mddev->lock);
6643 	/* bitmap enabled */
6644 	if (mddev->bitmap_info.file) {
6645 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6646 				sizeof(file->pathname));
6647 		if (IS_ERR(ptr))
6648 			err = PTR_ERR(ptr);
6649 		else
6650 			memmove(file->pathname, ptr,
6651 				sizeof(file->pathname)-(ptr-file->pathname));
6652 	}
6653 	spin_unlock(&mddev->lock);
6654 
6655 	if (err == 0 &&
6656 	    copy_to_user(arg, file, sizeof(*file)))
6657 		err = -EFAULT;
6658 
6659 	kfree(file);
6660 	return err;
6661 }
6662 
6663 static int get_disk_info(struct mddev *mddev, void __user * arg)
6664 {
6665 	mdu_disk_info_t info;
6666 	struct md_rdev *rdev;
6667 
6668 	if (copy_from_user(&info, arg, sizeof(info)))
6669 		return -EFAULT;
6670 
6671 	rcu_read_lock();
6672 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6673 	if (rdev) {
6674 		info.major = MAJOR(rdev->bdev->bd_dev);
6675 		info.minor = MINOR(rdev->bdev->bd_dev);
6676 		info.raid_disk = rdev->raid_disk;
6677 		info.state = 0;
6678 		if (test_bit(Faulty, &rdev->flags))
6679 			info.state |= (1<<MD_DISK_FAULTY);
6680 		else if (test_bit(In_sync, &rdev->flags)) {
6681 			info.state |= (1<<MD_DISK_ACTIVE);
6682 			info.state |= (1<<MD_DISK_SYNC);
6683 		}
6684 		if (test_bit(Journal, &rdev->flags))
6685 			info.state |= (1<<MD_DISK_JOURNAL);
6686 		if (test_bit(WriteMostly, &rdev->flags))
6687 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6688 		if (test_bit(FailFast, &rdev->flags))
6689 			info.state |= (1<<MD_DISK_FAILFAST);
6690 	} else {
6691 		info.major = info.minor = 0;
6692 		info.raid_disk = -1;
6693 		info.state = (1<<MD_DISK_REMOVED);
6694 	}
6695 	rcu_read_unlock();
6696 
6697 	if (copy_to_user(arg, &info, sizeof(info)))
6698 		return -EFAULT;
6699 
6700 	return 0;
6701 }
6702 
6703 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6704 {
6705 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6706 	struct md_rdev *rdev;
6707 	dev_t dev = MKDEV(info->major,info->minor);
6708 
6709 	if (mddev_is_clustered(mddev) &&
6710 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6711 		pr_warn("%s: Cannot add to clustered mddev.\n",
6712 			mdname(mddev));
6713 		return -EINVAL;
6714 	}
6715 
6716 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6717 		return -EOVERFLOW;
6718 
6719 	if (!mddev->raid_disks) {
6720 		int err;
6721 		/* expecting a device which has a superblock */
6722 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6723 		if (IS_ERR(rdev)) {
6724 			pr_warn("md: md_import_device returned %ld\n",
6725 				PTR_ERR(rdev));
6726 			return PTR_ERR(rdev);
6727 		}
6728 		if (!list_empty(&mddev->disks)) {
6729 			struct md_rdev *rdev0
6730 				= list_entry(mddev->disks.next,
6731 					     struct md_rdev, same_set);
6732 			err = super_types[mddev->major_version]
6733 				.load_super(rdev, rdev0, mddev->minor_version);
6734 			if (err < 0) {
6735 				pr_warn("md: %s has different UUID to %s\n",
6736 					bdevname(rdev->bdev,b),
6737 					bdevname(rdev0->bdev,b2));
6738 				export_rdev(rdev);
6739 				return -EINVAL;
6740 			}
6741 		}
6742 		err = bind_rdev_to_array(rdev, mddev);
6743 		if (err)
6744 			export_rdev(rdev);
6745 		return err;
6746 	}
6747 
6748 	/*
6749 	 * md_add_new_disk can be used once the array is assembled
6750 	 * to add "hot spares".  They must already have a superblock
6751 	 * written
6752 	 */
6753 	if (mddev->pers) {
6754 		int err;
6755 		if (!mddev->pers->hot_add_disk) {
6756 			pr_warn("%s: personality does not support diskops!\n",
6757 				mdname(mddev));
6758 			return -EINVAL;
6759 		}
6760 		if (mddev->persistent)
6761 			rdev = md_import_device(dev, mddev->major_version,
6762 						mddev->minor_version);
6763 		else
6764 			rdev = md_import_device(dev, -1, -1);
6765 		if (IS_ERR(rdev)) {
6766 			pr_warn("md: md_import_device returned %ld\n",
6767 				PTR_ERR(rdev));
6768 			return PTR_ERR(rdev);
6769 		}
6770 		/* set saved_raid_disk if appropriate */
6771 		if (!mddev->persistent) {
6772 			if (info->state & (1<<MD_DISK_SYNC)  &&
6773 			    info->raid_disk < mddev->raid_disks) {
6774 				rdev->raid_disk = info->raid_disk;
6775 				set_bit(In_sync, &rdev->flags);
6776 				clear_bit(Bitmap_sync, &rdev->flags);
6777 			} else
6778 				rdev->raid_disk = -1;
6779 			rdev->saved_raid_disk = rdev->raid_disk;
6780 		} else
6781 			super_types[mddev->major_version].
6782 				validate_super(mddev, rdev);
6783 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6784 		     rdev->raid_disk != info->raid_disk) {
6785 			/* This was a hot-add request, but events doesn't
6786 			 * match, so reject it.
6787 			 */
6788 			export_rdev(rdev);
6789 			return -EINVAL;
6790 		}
6791 
6792 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6793 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6794 			set_bit(WriteMostly, &rdev->flags);
6795 		else
6796 			clear_bit(WriteMostly, &rdev->flags);
6797 		if (info->state & (1<<MD_DISK_FAILFAST))
6798 			set_bit(FailFast, &rdev->flags);
6799 		else
6800 			clear_bit(FailFast, &rdev->flags);
6801 
6802 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6803 			struct md_rdev *rdev2;
6804 			bool has_journal = false;
6805 
6806 			/* make sure no existing journal disk */
6807 			rdev_for_each(rdev2, mddev) {
6808 				if (test_bit(Journal, &rdev2->flags)) {
6809 					has_journal = true;
6810 					break;
6811 				}
6812 			}
6813 			if (has_journal || mddev->bitmap) {
6814 				export_rdev(rdev);
6815 				return -EBUSY;
6816 			}
6817 			set_bit(Journal, &rdev->flags);
6818 		}
6819 		/*
6820 		 * check whether the device shows up in other nodes
6821 		 */
6822 		if (mddev_is_clustered(mddev)) {
6823 			if (info->state & (1 << MD_DISK_CANDIDATE))
6824 				set_bit(Candidate, &rdev->flags);
6825 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6826 				/* --add initiated by this node */
6827 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6828 				if (err) {
6829 					export_rdev(rdev);
6830 					return err;
6831 				}
6832 			}
6833 		}
6834 
6835 		rdev->raid_disk = -1;
6836 		err = bind_rdev_to_array(rdev, mddev);
6837 
6838 		if (err)
6839 			export_rdev(rdev);
6840 
6841 		if (mddev_is_clustered(mddev)) {
6842 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6843 				if (!err) {
6844 					err = md_cluster_ops->new_disk_ack(mddev,
6845 						err == 0);
6846 					if (err)
6847 						md_kick_rdev_from_array(rdev);
6848 				}
6849 			} else {
6850 				if (err)
6851 					md_cluster_ops->add_new_disk_cancel(mddev);
6852 				else
6853 					err = add_bound_rdev(rdev);
6854 			}
6855 
6856 		} else if (!err)
6857 			err = add_bound_rdev(rdev);
6858 
6859 		return err;
6860 	}
6861 
6862 	/* otherwise, md_add_new_disk is only allowed
6863 	 * for major_version==0 superblocks
6864 	 */
6865 	if (mddev->major_version != 0) {
6866 		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6867 		return -EINVAL;
6868 	}
6869 
6870 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6871 		int err;
6872 		rdev = md_import_device(dev, -1, 0);
6873 		if (IS_ERR(rdev)) {
6874 			pr_warn("md: error, md_import_device() returned %ld\n",
6875 				PTR_ERR(rdev));
6876 			return PTR_ERR(rdev);
6877 		}
6878 		rdev->desc_nr = info->number;
6879 		if (info->raid_disk < mddev->raid_disks)
6880 			rdev->raid_disk = info->raid_disk;
6881 		else
6882 			rdev->raid_disk = -1;
6883 
6884 		if (rdev->raid_disk < mddev->raid_disks)
6885 			if (info->state & (1<<MD_DISK_SYNC))
6886 				set_bit(In_sync, &rdev->flags);
6887 
6888 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6889 			set_bit(WriteMostly, &rdev->flags);
6890 		if (info->state & (1<<MD_DISK_FAILFAST))
6891 			set_bit(FailFast, &rdev->flags);
6892 
6893 		if (!mddev->persistent) {
6894 			pr_debug("md: nonpersistent superblock ...\n");
6895 			rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6896 		} else
6897 			rdev->sb_start = calc_dev_sboffset(rdev);
6898 		rdev->sectors = rdev->sb_start;
6899 
6900 		err = bind_rdev_to_array(rdev, mddev);
6901 		if (err) {
6902 			export_rdev(rdev);
6903 			return err;
6904 		}
6905 	}
6906 
6907 	return 0;
6908 }
6909 
6910 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6911 {
6912 	char b[BDEVNAME_SIZE];
6913 	struct md_rdev *rdev;
6914 
6915 	if (!mddev->pers)
6916 		return -ENODEV;
6917 
6918 	rdev = find_rdev(mddev, dev);
6919 	if (!rdev)
6920 		return -ENXIO;
6921 
6922 	if (rdev->raid_disk < 0)
6923 		goto kick_rdev;
6924 
6925 	clear_bit(Blocked, &rdev->flags);
6926 	remove_and_add_spares(mddev, rdev);
6927 
6928 	if (rdev->raid_disk >= 0)
6929 		goto busy;
6930 
6931 kick_rdev:
6932 	if (mddev_is_clustered(mddev)) {
6933 		if (md_cluster_ops->remove_disk(mddev, rdev))
6934 			goto busy;
6935 	}
6936 
6937 	md_kick_rdev_from_array(rdev);
6938 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6939 	if (mddev->thread)
6940 		md_wakeup_thread(mddev->thread);
6941 	else
6942 		md_update_sb(mddev, 1);
6943 	md_new_event();
6944 
6945 	return 0;
6946 busy:
6947 	pr_debug("md: cannot remove active disk %s from %s ...\n",
6948 		 bdevname(rdev->bdev,b), mdname(mddev));
6949 	return -EBUSY;
6950 }
6951 
6952 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6953 {
6954 	char b[BDEVNAME_SIZE];
6955 	int err;
6956 	struct md_rdev *rdev;
6957 
6958 	if (!mddev->pers)
6959 		return -ENODEV;
6960 
6961 	if (mddev->major_version != 0) {
6962 		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6963 			mdname(mddev));
6964 		return -EINVAL;
6965 	}
6966 	if (!mddev->pers->hot_add_disk) {
6967 		pr_warn("%s: personality does not support diskops!\n",
6968 			mdname(mddev));
6969 		return -EINVAL;
6970 	}
6971 
6972 	rdev = md_import_device(dev, -1, 0);
6973 	if (IS_ERR(rdev)) {
6974 		pr_warn("md: error, md_import_device() returned %ld\n",
6975 			PTR_ERR(rdev));
6976 		return -EINVAL;
6977 	}
6978 
6979 	if (mddev->persistent)
6980 		rdev->sb_start = calc_dev_sboffset(rdev);
6981 	else
6982 		rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6983 
6984 	rdev->sectors = rdev->sb_start;
6985 
6986 	if (test_bit(Faulty, &rdev->flags)) {
6987 		pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6988 			bdevname(rdev->bdev,b), mdname(mddev));
6989 		err = -EINVAL;
6990 		goto abort_export;
6991 	}
6992 
6993 	clear_bit(In_sync, &rdev->flags);
6994 	rdev->desc_nr = -1;
6995 	rdev->saved_raid_disk = -1;
6996 	err = bind_rdev_to_array(rdev, mddev);
6997 	if (err)
6998 		goto abort_export;
6999 
7000 	/*
7001 	 * The rest should better be atomic, we can have disk failures
7002 	 * noticed in interrupt contexts ...
7003 	 */
7004 
7005 	rdev->raid_disk = -1;
7006 
7007 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7008 	if (!mddev->thread)
7009 		md_update_sb(mddev, 1);
7010 	/*
7011 	 * If the new disk does not support REQ_NOWAIT,
7012 	 * disable on the whole MD.
7013 	 */
7014 	if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) {
7015 		pr_info("%s: Disabling nowait because %s does not support nowait\n",
7016 			mdname(mddev), bdevname(rdev->bdev, b));
7017 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7018 	}
7019 	/*
7020 	 * Kick recovery, maybe this spare has to be added to the
7021 	 * array immediately.
7022 	 */
7023 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7024 	md_wakeup_thread(mddev->thread);
7025 	md_new_event();
7026 	return 0;
7027 
7028 abort_export:
7029 	export_rdev(rdev);
7030 	return err;
7031 }
7032 
7033 static int set_bitmap_file(struct mddev *mddev, int fd)
7034 {
7035 	int err = 0;
7036 
7037 	if (mddev->pers) {
7038 		if (!mddev->pers->quiesce || !mddev->thread)
7039 			return -EBUSY;
7040 		if (mddev->recovery || mddev->sync_thread)
7041 			return -EBUSY;
7042 		/* we should be able to change the bitmap.. */
7043 	}
7044 
7045 	if (fd >= 0) {
7046 		struct inode *inode;
7047 		struct file *f;
7048 
7049 		if (mddev->bitmap || mddev->bitmap_info.file)
7050 			return -EEXIST; /* cannot add when bitmap is present */
7051 		f = fget(fd);
7052 
7053 		if (f == NULL) {
7054 			pr_warn("%s: error: failed to get bitmap file\n",
7055 				mdname(mddev));
7056 			return -EBADF;
7057 		}
7058 
7059 		inode = f->f_mapping->host;
7060 		if (!S_ISREG(inode->i_mode)) {
7061 			pr_warn("%s: error: bitmap file must be a regular file\n",
7062 				mdname(mddev));
7063 			err = -EBADF;
7064 		} else if (!(f->f_mode & FMODE_WRITE)) {
7065 			pr_warn("%s: error: bitmap file must open for write\n",
7066 				mdname(mddev));
7067 			err = -EBADF;
7068 		} else if (atomic_read(&inode->i_writecount) != 1) {
7069 			pr_warn("%s: error: bitmap file is already in use\n",
7070 				mdname(mddev));
7071 			err = -EBUSY;
7072 		}
7073 		if (err) {
7074 			fput(f);
7075 			return err;
7076 		}
7077 		mddev->bitmap_info.file = f;
7078 		mddev->bitmap_info.offset = 0; /* file overrides offset */
7079 	} else if (mddev->bitmap == NULL)
7080 		return -ENOENT; /* cannot remove what isn't there */
7081 	err = 0;
7082 	if (mddev->pers) {
7083 		if (fd >= 0) {
7084 			struct bitmap *bitmap;
7085 
7086 			bitmap = md_bitmap_create(mddev, -1);
7087 			mddev_suspend(mddev);
7088 			if (!IS_ERR(bitmap)) {
7089 				mddev->bitmap = bitmap;
7090 				err = md_bitmap_load(mddev);
7091 			} else
7092 				err = PTR_ERR(bitmap);
7093 			if (err) {
7094 				md_bitmap_destroy(mddev);
7095 				fd = -1;
7096 			}
7097 			mddev_resume(mddev);
7098 		} else if (fd < 0) {
7099 			mddev_suspend(mddev);
7100 			md_bitmap_destroy(mddev);
7101 			mddev_resume(mddev);
7102 		}
7103 	}
7104 	if (fd < 0) {
7105 		struct file *f = mddev->bitmap_info.file;
7106 		if (f) {
7107 			spin_lock(&mddev->lock);
7108 			mddev->bitmap_info.file = NULL;
7109 			spin_unlock(&mddev->lock);
7110 			fput(f);
7111 		}
7112 	}
7113 
7114 	return err;
7115 }
7116 
7117 /*
7118  * md_set_array_info is used two different ways
7119  * The original usage is when creating a new array.
7120  * In this usage, raid_disks is > 0 and it together with
7121  *  level, size, not_persistent,layout,chunksize determine the
7122  *  shape of the array.
7123  *  This will always create an array with a type-0.90.0 superblock.
7124  * The newer usage is when assembling an array.
7125  *  In this case raid_disks will be 0, and the major_version field is
7126  *  use to determine which style super-blocks are to be found on the devices.
7127  *  The minor and patch _version numbers are also kept incase the
7128  *  super_block handler wishes to interpret them.
7129  */
7130 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7131 {
7132 	if (info->raid_disks == 0) {
7133 		/* just setting version number for superblock loading */
7134 		if (info->major_version < 0 ||
7135 		    info->major_version >= ARRAY_SIZE(super_types) ||
7136 		    super_types[info->major_version].name == NULL) {
7137 			/* maybe try to auto-load a module? */
7138 			pr_warn("md: superblock version %d not known\n",
7139 				info->major_version);
7140 			return -EINVAL;
7141 		}
7142 		mddev->major_version = info->major_version;
7143 		mddev->minor_version = info->minor_version;
7144 		mddev->patch_version = info->patch_version;
7145 		mddev->persistent = !info->not_persistent;
7146 		/* ensure mddev_put doesn't delete this now that there
7147 		 * is some minimal configuration.
7148 		 */
7149 		mddev->ctime         = ktime_get_real_seconds();
7150 		return 0;
7151 	}
7152 	mddev->major_version = MD_MAJOR_VERSION;
7153 	mddev->minor_version = MD_MINOR_VERSION;
7154 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7155 	mddev->ctime         = ktime_get_real_seconds();
7156 
7157 	mddev->level         = info->level;
7158 	mddev->clevel[0]     = 0;
7159 	mddev->dev_sectors   = 2 * (sector_t)info->size;
7160 	mddev->raid_disks    = info->raid_disks;
7161 	/* don't set md_minor, it is determined by which /dev/md* was
7162 	 * openned
7163 	 */
7164 	if (info->state & (1<<MD_SB_CLEAN))
7165 		mddev->recovery_cp = MaxSector;
7166 	else
7167 		mddev->recovery_cp = 0;
7168 	mddev->persistent    = ! info->not_persistent;
7169 	mddev->external	     = 0;
7170 
7171 	mddev->layout        = info->layout;
7172 	if (mddev->level == 0)
7173 		/* Cannot trust RAID0 layout info here */
7174 		mddev->layout = -1;
7175 	mddev->chunk_sectors = info->chunk_size >> 9;
7176 
7177 	if (mddev->persistent) {
7178 		mddev->max_disks = MD_SB_DISKS;
7179 		mddev->flags = 0;
7180 		mddev->sb_flags = 0;
7181 	}
7182 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7183 
7184 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7185 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7186 	mddev->bitmap_info.offset = 0;
7187 
7188 	mddev->reshape_position = MaxSector;
7189 
7190 	/*
7191 	 * Generate a 128 bit UUID
7192 	 */
7193 	get_random_bytes(mddev->uuid, 16);
7194 
7195 	mddev->new_level = mddev->level;
7196 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7197 	mddev->new_layout = mddev->layout;
7198 	mddev->delta_disks = 0;
7199 	mddev->reshape_backwards = 0;
7200 
7201 	return 0;
7202 }
7203 
7204 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7205 {
7206 	lockdep_assert_held(&mddev->reconfig_mutex);
7207 
7208 	if (mddev->external_size)
7209 		return;
7210 
7211 	mddev->array_sectors = array_sectors;
7212 }
7213 EXPORT_SYMBOL(md_set_array_sectors);
7214 
7215 static int update_size(struct mddev *mddev, sector_t num_sectors)
7216 {
7217 	struct md_rdev *rdev;
7218 	int rv;
7219 	int fit = (num_sectors == 0);
7220 	sector_t old_dev_sectors = mddev->dev_sectors;
7221 
7222 	if (mddev->pers->resize == NULL)
7223 		return -EINVAL;
7224 	/* The "num_sectors" is the number of sectors of each device that
7225 	 * is used.  This can only make sense for arrays with redundancy.
7226 	 * linear and raid0 always use whatever space is available. We can only
7227 	 * consider changing this number if no resync or reconstruction is
7228 	 * happening, and if the new size is acceptable. It must fit before the
7229 	 * sb_start or, if that is <data_offset, it must fit before the size
7230 	 * of each device.  If num_sectors is zero, we find the largest size
7231 	 * that fits.
7232 	 */
7233 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7234 	    mddev->sync_thread)
7235 		return -EBUSY;
7236 	if (mddev->ro)
7237 		return -EROFS;
7238 
7239 	rdev_for_each(rdev, mddev) {
7240 		sector_t avail = rdev->sectors;
7241 
7242 		if (fit && (num_sectors == 0 || num_sectors > avail))
7243 			num_sectors = avail;
7244 		if (avail < num_sectors)
7245 			return -ENOSPC;
7246 	}
7247 	rv = mddev->pers->resize(mddev, num_sectors);
7248 	if (!rv) {
7249 		if (mddev_is_clustered(mddev))
7250 			md_cluster_ops->update_size(mddev, old_dev_sectors);
7251 		else if (mddev->queue) {
7252 			set_capacity_and_notify(mddev->gendisk,
7253 						mddev->array_sectors);
7254 		}
7255 	}
7256 	return rv;
7257 }
7258 
7259 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7260 {
7261 	int rv;
7262 	struct md_rdev *rdev;
7263 	/* change the number of raid disks */
7264 	if (mddev->pers->check_reshape == NULL)
7265 		return -EINVAL;
7266 	if (mddev->ro)
7267 		return -EROFS;
7268 	if (raid_disks <= 0 ||
7269 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7270 		return -EINVAL;
7271 	if (mddev->sync_thread ||
7272 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7273 	    test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7274 	    mddev->reshape_position != MaxSector)
7275 		return -EBUSY;
7276 
7277 	rdev_for_each(rdev, mddev) {
7278 		if (mddev->raid_disks < raid_disks &&
7279 		    rdev->data_offset < rdev->new_data_offset)
7280 			return -EINVAL;
7281 		if (mddev->raid_disks > raid_disks &&
7282 		    rdev->data_offset > rdev->new_data_offset)
7283 			return -EINVAL;
7284 	}
7285 
7286 	mddev->delta_disks = raid_disks - mddev->raid_disks;
7287 	if (mddev->delta_disks < 0)
7288 		mddev->reshape_backwards = 1;
7289 	else if (mddev->delta_disks > 0)
7290 		mddev->reshape_backwards = 0;
7291 
7292 	rv = mddev->pers->check_reshape(mddev);
7293 	if (rv < 0) {
7294 		mddev->delta_disks = 0;
7295 		mddev->reshape_backwards = 0;
7296 	}
7297 	return rv;
7298 }
7299 
7300 /*
7301  * update_array_info is used to change the configuration of an
7302  * on-line array.
7303  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7304  * fields in the info are checked against the array.
7305  * Any differences that cannot be handled will cause an error.
7306  * Normally, only one change can be managed at a time.
7307  */
7308 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7309 {
7310 	int rv = 0;
7311 	int cnt = 0;
7312 	int state = 0;
7313 
7314 	/* calculate expected state,ignoring low bits */
7315 	if (mddev->bitmap && mddev->bitmap_info.offset)
7316 		state |= (1 << MD_SB_BITMAP_PRESENT);
7317 
7318 	if (mddev->major_version != info->major_version ||
7319 	    mddev->minor_version != info->minor_version ||
7320 /*	    mddev->patch_version != info->patch_version || */
7321 	    mddev->ctime         != info->ctime         ||
7322 	    mddev->level         != info->level         ||
7323 /*	    mddev->layout        != info->layout        || */
7324 	    mddev->persistent	 != !info->not_persistent ||
7325 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7326 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7327 	    ((state^info->state) & 0xfffffe00)
7328 		)
7329 		return -EINVAL;
7330 	/* Check there is only one change */
7331 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7332 		cnt++;
7333 	if (mddev->raid_disks != info->raid_disks)
7334 		cnt++;
7335 	if (mddev->layout != info->layout)
7336 		cnt++;
7337 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7338 		cnt++;
7339 	if (cnt == 0)
7340 		return 0;
7341 	if (cnt > 1)
7342 		return -EINVAL;
7343 
7344 	if (mddev->layout != info->layout) {
7345 		/* Change layout
7346 		 * we don't need to do anything at the md level, the
7347 		 * personality will take care of it all.
7348 		 */
7349 		if (mddev->pers->check_reshape == NULL)
7350 			return -EINVAL;
7351 		else {
7352 			mddev->new_layout = info->layout;
7353 			rv = mddev->pers->check_reshape(mddev);
7354 			if (rv)
7355 				mddev->new_layout = mddev->layout;
7356 			return rv;
7357 		}
7358 	}
7359 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7360 		rv = update_size(mddev, (sector_t)info->size * 2);
7361 
7362 	if (mddev->raid_disks    != info->raid_disks)
7363 		rv = update_raid_disks(mddev, info->raid_disks);
7364 
7365 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7366 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7367 			rv = -EINVAL;
7368 			goto err;
7369 		}
7370 		if (mddev->recovery || mddev->sync_thread) {
7371 			rv = -EBUSY;
7372 			goto err;
7373 		}
7374 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7375 			struct bitmap *bitmap;
7376 			/* add the bitmap */
7377 			if (mddev->bitmap) {
7378 				rv = -EEXIST;
7379 				goto err;
7380 			}
7381 			if (mddev->bitmap_info.default_offset == 0) {
7382 				rv = -EINVAL;
7383 				goto err;
7384 			}
7385 			mddev->bitmap_info.offset =
7386 				mddev->bitmap_info.default_offset;
7387 			mddev->bitmap_info.space =
7388 				mddev->bitmap_info.default_space;
7389 			bitmap = md_bitmap_create(mddev, -1);
7390 			mddev_suspend(mddev);
7391 			if (!IS_ERR(bitmap)) {
7392 				mddev->bitmap = bitmap;
7393 				rv = md_bitmap_load(mddev);
7394 			} else
7395 				rv = PTR_ERR(bitmap);
7396 			if (rv)
7397 				md_bitmap_destroy(mddev);
7398 			mddev_resume(mddev);
7399 		} else {
7400 			/* remove the bitmap */
7401 			if (!mddev->bitmap) {
7402 				rv = -ENOENT;
7403 				goto err;
7404 			}
7405 			if (mddev->bitmap->storage.file) {
7406 				rv = -EINVAL;
7407 				goto err;
7408 			}
7409 			if (mddev->bitmap_info.nodes) {
7410 				/* hold PW on all the bitmap lock */
7411 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7412 					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7413 					rv = -EPERM;
7414 					md_cluster_ops->unlock_all_bitmaps(mddev);
7415 					goto err;
7416 				}
7417 
7418 				mddev->bitmap_info.nodes = 0;
7419 				md_cluster_ops->leave(mddev);
7420 				module_put(md_cluster_mod);
7421 				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7422 			}
7423 			mddev_suspend(mddev);
7424 			md_bitmap_destroy(mddev);
7425 			mddev_resume(mddev);
7426 			mddev->bitmap_info.offset = 0;
7427 		}
7428 	}
7429 	md_update_sb(mddev, 1);
7430 	return rv;
7431 err:
7432 	return rv;
7433 }
7434 
7435 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7436 {
7437 	struct md_rdev *rdev;
7438 	int err = 0;
7439 
7440 	if (mddev->pers == NULL)
7441 		return -ENODEV;
7442 
7443 	rcu_read_lock();
7444 	rdev = md_find_rdev_rcu(mddev, dev);
7445 	if (!rdev)
7446 		err =  -ENODEV;
7447 	else {
7448 		md_error(mddev, rdev);
7449 		if (!test_bit(Faulty, &rdev->flags))
7450 			err = -EBUSY;
7451 	}
7452 	rcu_read_unlock();
7453 	return err;
7454 }
7455 
7456 /*
7457  * We have a problem here : there is no easy way to give a CHS
7458  * virtual geometry. We currently pretend that we have a 2 heads
7459  * 4 sectors (with a BIG number of cylinders...). This drives
7460  * dosfs just mad... ;-)
7461  */
7462 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7463 {
7464 	struct mddev *mddev = bdev->bd_disk->private_data;
7465 
7466 	geo->heads = 2;
7467 	geo->sectors = 4;
7468 	geo->cylinders = mddev->array_sectors / 8;
7469 	return 0;
7470 }
7471 
7472 static inline bool md_ioctl_valid(unsigned int cmd)
7473 {
7474 	switch (cmd) {
7475 	case ADD_NEW_DISK:
7476 	case GET_ARRAY_INFO:
7477 	case GET_BITMAP_FILE:
7478 	case GET_DISK_INFO:
7479 	case HOT_ADD_DISK:
7480 	case HOT_REMOVE_DISK:
7481 	case RAID_VERSION:
7482 	case RESTART_ARRAY_RW:
7483 	case RUN_ARRAY:
7484 	case SET_ARRAY_INFO:
7485 	case SET_BITMAP_FILE:
7486 	case SET_DISK_FAULTY:
7487 	case STOP_ARRAY:
7488 	case STOP_ARRAY_RO:
7489 	case CLUSTERED_DISK_NACK:
7490 		return true;
7491 	default:
7492 		return false;
7493 	}
7494 }
7495 
7496 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7497 			unsigned int cmd, unsigned long arg)
7498 {
7499 	int err = 0;
7500 	void __user *argp = (void __user *)arg;
7501 	struct mddev *mddev = NULL;
7502 	bool did_set_md_closing = false;
7503 
7504 	if (!md_ioctl_valid(cmd))
7505 		return -ENOTTY;
7506 
7507 	switch (cmd) {
7508 	case RAID_VERSION:
7509 	case GET_ARRAY_INFO:
7510 	case GET_DISK_INFO:
7511 		break;
7512 	default:
7513 		if (!capable(CAP_SYS_ADMIN))
7514 			return -EACCES;
7515 	}
7516 
7517 	/*
7518 	 * Commands dealing with the RAID driver but not any
7519 	 * particular array:
7520 	 */
7521 	switch (cmd) {
7522 	case RAID_VERSION:
7523 		err = get_version(argp);
7524 		goto out;
7525 	default:;
7526 	}
7527 
7528 	/*
7529 	 * Commands creating/starting a new array:
7530 	 */
7531 
7532 	mddev = bdev->bd_disk->private_data;
7533 
7534 	if (!mddev) {
7535 		BUG();
7536 		goto out;
7537 	}
7538 
7539 	/* Some actions do not requires the mutex */
7540 	switch (cmd) {
7541 	case GET_ARRAY_INFO:
7542 		if (!mddev->raid_disks && !mddev->external)
7543 			err = -ENODEV;
7544 		else
7545 			err = get_array_info(mddev, argp);
7546 		goto out;
7547 
7548 	case GET_DISK_INFO:
7549 		if (!mddev->raid_disks && !mddev->external)
7550 			err = -ENODEV;
7551 		else
7552 			err = get_disk_info(mddev, argp);
7553 		goto out;
7554 
7555 	case SET_DISK_FAULTY:
7556 		err = set_disk_faulty(mddev, new_decode_dev(arg));
7557 		goto out;
7558 
7559 	case GET_BITMAP_FILE:
7560 		err = get_bitmap_file(mddev, argp);
7561 		goto out;
7562 
7563 	}
7564 
7565 	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7566 		flush_rdev_wq(mddev);
7567 
7568 	if (cmd == HOT_REMOVE_DISK)
7569 		/* need to ensure recovery thread has run */
7570 		wait_event_interruptible_timeout(mddev->sb_wait,
7571 						 !test_bit(MD_RECOVERY_NEEDED,
7572 							   &mddev->recovery),
7573 						 msecs_to_jiffies(5000));
7574 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7575 		/* Need to flush page cache, and ensure no-one else opens
7576 		 * and writes
7577 		 */
7578 		mutex_lock(&mddev->open_mutex);
7579 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7580 			mutex_unlock(&mddev->open_mutex);
7581 			err = -EBUSY;
7582 			goto out;
7583 		}
7584 		if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7585 			mutex_unlock(&mddev->open_mutex);
7586 			err = -EBUSY;
7587 			goto out;
7588 		}
7589 		did_set_md_closing = true;
7590 		mutex_unlock(&mddev->open_mutex);
7591 		sync_blockdev(bdev);
7592 	}
7593 	err = mddev_lock(mddev);
7594 	if (err) {
7595 		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7596 			 err, cmd);
7597 		goto out;
7598 	}
7599 
7600 	if (cmd == SET_ARRAY_INFO) {
7601 		mdu_array_info_t info;
7602 		if (!arg)
7603 			memset(&info, 0, sizeof(info));
7604 		else if (copy_from_user(&info, argp, sizeof(info))) {
7605 			err = -EFAULT;
7606 			goto unlock;
7607 		}
7608 		if (mddev->pers) {
7609 			err = update_array_info(mddev, &info);
7610 			if (err) {
7611 				pr_warn("md: couldn't update array info. %d\n", err);
7612 				goto unlock;
7613 			}
7614 			goto unlock;
7615 		}
7616 		if (!list_empty(&mddev->disks)) {
7617 			pr_warn("md: array %s already has disks!\n", mdname(mddev));
7618 			err = -EBUSY;
7619 			goto unlock;
7620 		}
7621 		if (mddev->raid_disks) {
7622 			pr_warn("md: array %s already initialised!\n", mdname(mddev));
7623 			err = -EBUSY;
7624 			goto unlock;
7625 		}
7626 		err = md_set_array_info(mddev, &info);
7627 		if (err) {
7628 			pr_warn("md: couldn't set array info. %d\n", err);
7629 			goto unlock;
7630 		}
7631 		goto unlock;
7632 	}
7633 
7634 	/*
7635 	 * Commands querying/configuring an existing array:
7636 	 */
7637 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7638 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7639 	if ((!mddev->raid_disks && !mddev->external)
7640 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7641 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7642 	    && cmd != GET_BITMAP_FILE) {
7643 		err = -ENODEV;
7644 		goto unlock;
7645 	}
7646 
7647 	/*
7648 	 * Commands even a read-only array can execute:
7649 	 */
7650 	switch (cmd) {
7651 	case RESTART_ARRAY_RW:
7652 		err = restart_array(mddev);
7653 		goto unlock;
7654 
7655 	case STOP_ARRAY:
7656 		err = do_md_stop(mddev, 0, bdev);
7657 		goto unlock;
7658 
7659 	case STOP_ARRAY_RO:
7660 		err = md_set_readonly(mddev, bdev);
7661 		goto unlock;
7662 
7663 	case HOT_REMOVE_DISK:
7664 		err = hot_remove_disk(mddev, new_decode_dev(arg));
7665 		goto unlock;
7666 
7667 	case ADD_NEW_DISK:
7668 		/* We can support ADD_NEW_DISK on read-only arrays
7669 		 * only if we are re-adding a preexisting device.
7670 		 * So require mddev->pers and MD_DISK_SYNC.
7671 		 */
7672 		if (mddev->pers) {
7673 			mdu_disk_info_t info;
7674 			if (copy_from_user(&info, argp, sizeof(info)))
7675 				err = -EFAULT;
7676 			else if (!(info.state & (1<<MD_DISK_SYNC)))
7677 				/* Need to clear read-only for this */
7678 				break;
7679 			else
7680 				err = md_add_new_disk(mddev, &info);
7681 			goto unlock;
7682 		}
7683 		break;
7684 	}
7685 
7686 	/*
7687 	 * The remaining ioctls are changing the state of the
7688 	 * superblock, so we do not allow them on read-only arrays.
7689 	 */
7690 	if (mddev->ro && mddev->pers) {
7691 		if (mddev->ro == 2) {
7692 			mddev->ro = 0;
7693 			sysfs_notify_dirent_safe(mddev->sysfs_state);
7694 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7695 			/* mddev_unlock will wake thread */
7696 			/* If a device failed while we were read-only, we
7697 			 * need to make sure the metadata is updated now.
7698 			 */
7699 			if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7700 				mddev_unlock(mddev);
7701 				wait_event(mddev->sb_wait,
7702 					   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7703 					   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7704 				mddev_lock_nointr(mddev);
7705 			}
7706 		} else {
7707 			err = -EROFS;
7708 			goto unlock;
7709 		}
7710 	}
7711 
7712 	switch (cmd) {
7713 	case ADD_NEW_DISK:
7714 	{
7715 		mdu_disk_info_t info;
7716 		if (copy_from_user(&info, argp, sizeof(info)))
7717 			err = -EFAULT;
7718 		else
7719 			err = md_add_new_disk(mddev, &info);
7720 		goto unlock;
7721 	}
7722 
7723 	case CLUSTERED_DISK_NACK:
7724 		if (mddev_is_clustered(mddev))
7725 			md_cluster_ops->new_disk_ack(mddev, false);
7726 		else
7727 			err = -EINVAL;
7728 		goto unlock;
7729 
7730 	case HOT_ADD_DISK:
7731 		err = hot_add_disk(mddev, new_decode_dev(arg));
7732 		goto unlock;
7733 
7734 	case RUN_ARRAY:
7735 		err = do_md_run(mddev);
7736 		goto unlock;
7737 
7738 	case SET_BITMAP_FILE:
7739 		err = set_bitmap_file(mddev, (int)arg);
7740 		goto unlock;
7741 
7742 	default:
7743 		err = -EINVAL;
7744 		goto unlock;
7745 	}
7746 
7747 unlock:
7748 	if (mddev->hold_active == UNTIL_IOCTL &&
7749 	    err != -EINVAL)
7750 		mddev->hold_active = 0;
7751 	mddev_unlock(mddev);
7752 out:
7753 	if(did_set_md_closing)
7754 		clear_bit(MD_CLOSING, &mddev->flags);
7755 	return err;
7756 }
7757 #ifdef CONFIG_COMPAT
7758 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7759 		    unsigned int cmd, unsigned long arg)
7760 {
7761 	switch (cmd) {
7762 	case HOT_REMOVE_DISK:
7763 	case HOT_ADD_DISK:
7764 	case SET_DISK_FAULTY:
7765 	case SET_BITMAP_FILE:
7766 		/* These take in integer arg, do not convert */
7767 		break;
7768 	default:
7769 		arg = (unsigned long)compat_ptr(arg);
7770 		break;
7771 	}
7772 
7773 	return md_ioctl(bdev, mode, cmd, arg);
7774 }
7775 #endif /* CONFIG_COMPAT */
7776 
7777 static int md_set_read_only(struct block_device *bdev, bool ro)
7778 {
7779 	struct mddev *mddev = bdev->bd_disk->private_data;
7780 	int err;
7781 
7782 	err = mddev_lock(mddev);
7783 	if (err)
7784 		return err;
7785 
7786 	if (!mddev->raid_disks && !mddev->external) {
7787 		err = -ENODEV;
7788 		goto out_unlock;
7789 	}
7790 
7791 	/*
7792 	 * Transitioning to read-auto need only happen for arrays that call
7793 	 * md_write_start and which are not ready for writes yet.
7794 	 */
7795 	if (!ro && mddev->ro == 1 && mddev->pers) {
7796 		err = restart_array(mddev);
7797 		if (err)
7798 			goto out_unlock;
7799 		mddev->ro = 2;
7800 	}
7801 
7802 out_unlock:
7803 	mddev_unlock(mddev);
7804 	return err;
7805 }
7806 
7807 static int md_open(struct block_device *bdev, fmode_t mode)
7808 {
7809 	/*
7810 	 * Succeed if we can lock the mddev, which confirms that
7811 	 * it isn't being stopped right now.
7812 	 */
7813 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7814 	int err;
7815 
7816 	if (!mddev)
7817 		return -ENODEV;
7818 
7819 	if (mddev->gendisk != bdev->bd_disk) {
7820 		/* we are racing with mddev_put which is discarding this
7821 		 * bd_disk.
7822 		 */
7823 		mddev_put(mddev);
7824 		/* Wait until bdev->bd_disk is definitely gone */
7825 		if (work_pending(&mddev->del_work))
7826 			flush_workqueue(md_misc_wq);
7827 		return -EBUSY;
7828 	}
7829 	BUG_ON(mddev != bdev->bd_disk->private_data);
7830 
7831 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7832 		goto out;
7833 
7834 	if (test_bit(MD_CLOSING, &mddev->flags)) {
7835 		mutex_unlock(&mddev->open_mutex);
7836 		err = -ENODEV;
7837 		goto out;
7838 	}
7839 
7840 	err = 0;
7841 	atomic_inc(&mddev->openers);
7842 	mutex_unlock(&mddev->open_mutex);
7843 
7844 	bdev_check_media_change(bdev);
7845  out:
7846 	if (err)
7847 		mddev_put(mddev);
7848 	return err;
7849 }
7850 
7851 static void md_release(struct gendisk *disk, fmode_t mode)
7852 {
7853 	struct mddev *mddev = disk->private_data;
7854 
7855 	BUG_ON(!mddev);
7856 	atomic_dec(&mddev->openers);
7857 	mddev_put(mddev);
7858 }
7859 
7860 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7861 {
7862 	struct mddev *mddev = disk->private_data;
7863 	unsigned int ret = 0;
7864 
7865 	if (mddev->changed)
7866 		ret = DISK_EVENT_MEDIA_CHANGE;
7867 	mddev->changed = 0;
7868 	return ret;
7869 }
7870 
7871 const struct block_device_operations md_fops =
7872 {
7873 	.owner		= THIS_MODULE,
7874 	.submit_bio	= md_submit_bio,
7875 	.open		= md_open,
7876 	.release	= md_release,
7877 	.ioctl		= md_ioctl,
7878 #ifdef CONFIG_COMPAT
7879 	.compat_ioctl	= md_compat_ioctl,
7880 #endif
7881 	.getgeo		= md_getgeo,
7882 	.check_events	= md_check_events,
7883 	.set_read_only	= md_set_read_only,
7884 };
7885 
7886 static int md_thread(void *arg)
7887 {
7888 	struct md_thread *thread = arg;
7889 
7890 	/*
7891 	 * md_thread is a 'system-thread', it's priority should be very
7892 	 * high. We avoid resource deadlocks individually in each
7893 	 * raid personality. (RAID5 does preallocation) We also use RR and
7894 	 * the very same RT priority as kswapd, thus we will never get
7895 	 * into a priority inversion deadlock.
7896 	 *
7897 	 * we definitely have to have equal or higher priority than
7898 	 * bdflush, otherwise bdflush will deadlock if there are too
7899 	 * many dirty RAID5 blocks.
7900 	 */
7901 
7902 	allow_signal(SIGKILL);
7903 	while (!kthread_should_stop()) {
7904 
7905 		/* We need to wait INTERRUPTIBLE so that
7906 		 * we don't add to the load-average.
7907 		 * That means we need to be sure no signals are
7908 		 * pending
7909 		 */
7910 		if (signal_pending(current))
7911 			flush_signals(current);
7912 
7913 		wait_event_interruptible_timeout
7914 			(thread->wqueue,
7915 			 test_bit(THREAD_WAKEUP, &thread->flags)
7916 			 || kthread_should_stop() || kthread_should_park(),
7917 			 thread->timeout);
7918 
7919 		clear_bit(THREAD_WAKEUP, &thread->flags);
7920 		if (kthread_should_park())
7921 			kthread_parkme();
7922 		if (!kthread_should_stop())
7923 			thread->run(thread);
7924 	}
7925 
7926 	return 0;
7927 }
7928 
7929 void md_wakeup_thread(struct md_thread *thread)
7930 {
7931 	if (thread) {
7932 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7933 		set_bit(THREAD_WAKEUP, &thread->flags);
7934 		wake_up(&thread->wqueue);
7935 	}
7936 }
7937 EXPORT_SYMBOL(md_wakeup_thread);
7938 
7939 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7940 		struct mddev *mddev, const char *name)
7941 {
7942 	struct md_thread *thread;
7943 
7944 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7945 	if (!thread)
7946 		return NULL;
7947 
7948 	init_waitqueue_head(&thread->wqueue);
7949 
7950 	thread->run = run;
7951 	thread->mddev = mddev;
7952 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7953 	thread->tsk = kthread_run(md_thread, thread,
7954 				  "%s_%s",
7955 				  mdname(thread->mddev),
7956 				  name);
7957 	if (IS_ERR(thread->tsk)) {
7958 		kfree(thread);
7959 		return NULL;
7960 	}
7961 	return thread;
7962 }
7963 EXPORT_SYMBOL(md_register_thread);
7964 
7965 void md_unregister_thread(struct md_thread **threadp)
7966 {
7967 	struct md_thread *thread = *threadp;
7968 	if (!thread)
7969 		return;
7970 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7971 	/* Locking ensures that mddev_unlock does not wake_up a
7972 	 * non-existent thread
7973 	 */
7974 	spin_lock(&pers_lock);
7975 	*threadp = NULL;
7976 	spin_unlock(&pers_lock);
7977 
7978 	kthread_stop(thread->tsk);
7979 	kfree(thread);
7980 }
7981 EXPORT_SYMBOL(md_unregister_thread);
7982 
7983 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7984 {
7985 	if (!rdev || test_bit(Faulty, &rdev->flags))
7986 		return;
7987 
7988 	if (!mddev->pers || !mddev->pers->error_handler)
7989 		return;
7990 	mddev->pers->error_handler(mddev,rdev);
7991 	if (mddev->degraded)
7992 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7993 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7994 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7995 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7996 	md_wakeup_thread(mddev->thread);
7997 	if (mddev->event_work.func)
7998 		queue_work(md_misc_wq, &mddev->event_work);
7999 	md_new_event();
8000 }
8001 EXPORT_SYMBOL(md_error);
8002 
8003 /* seq_file implementation /proc/mdstat */
8004 
8005 static void status_unused(struct seq_file *seq)
8006 {
8007 	int i = 0;
8008 	struct md_rdev *rdev;
8009 
8010 	seq_printf(seq, "unused devices: ");
8011 
8012 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8013 		char b[BDEVNAME_SIZE];
8014 		i++;
8015 		seq_printf(seq, "%s ",
8016 			      bdevname(rdev->bdev,b));
8017 	}
8018 	if (!i)
8019 		seq_printf(seq, "<none>");
8020 
8021 	seq_printf(seq, "\n");
8022 }
8023 
8024 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8025 {
8026 	sector_t max_sectors, resync, res;
8027 	unsigned long dt, db = 0;
8028 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8029 	int scale, recovery_active;
8030 	unsigned int per_milli;
8031 
8032 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8033 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8034 		max_sectors = mddev->resync_max_sectors;
8035 	else
8036 		max_sectors = mddev->dev_sectors;
8037 
8038 	resync = mddev->curr_resync;
8039 	if (resync <= 3) {
8040 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8041 			/* Still cleaning up */
8042 			resync = max_sectors;
8043 	} else if (resync > max_sectors)
8044 		resync = max_sectors;
8045 	else
8046 		resync -= atomic_read(&mddev->recovery_active);
8047 
8048 	if (resync == 0) {
8049 		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8050 			struct md_rdev *rdev;
8051 
8052 			rdev_for_each(rdev, mddev)
8053 				if (rdev->raid_disk >= 0 &&
8054 				    !test_bit(Faulty, &rdev->flags) &&
8055 				    rdev->recovery_offset != MaxSector &&
8056 				    rdev->recovery_offset) {
8057 					seq_printf(seq, "\trecover=REMOTE");
8058 					return 1;
8059 				}
8060 			if (mddev->reshape_position != MaxSector)
8061 				seq_printf(seq, "\treshape=REMOTE");
8062 			else
8063 				seq_printf(seq, "\tresync=REMOTE");
8064 			return 1;
8065 		}
8066 		if (mddev->recovery_cp < MaxSector) {
8067 			seq_printf(seq, "\tresync=PENDING");
8068 			return 1;
8069 		}
8070 		return 0;
8071 	}
8072 	if (resync < 3) {
8073 		seq_printf(seq, "\tresync=DELAYED");
8074 		return 1;
8075 	}
8076 
8077 	WARN_ON(max_sectors == 0);
8078 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8079 	 * in a sector_t, and (max_sectors>>scale) will fit in a
8080 	 * u32, as those are the requirements for sector_div.
8081 	 * Thus 'scale' must be at least 10
8082 	 */
8083 	scale = 10;
8084 	if (sizeof(sector_t) > sizeof(unsigned long)) {
8085 		while ( max_sectors/2 > (1ULL<<(scale+32)))
8086 			scale++;
8087 	}
8088 	res = (resync>>scale)*1000;
8089 	sector_div(res, (u32)((max_sectors>>scale)+1));
8090 
8091 	per_milli = res;
8092 	{
8093 		int i, x = per_milli/50, y = 20-x;
8094 		seq_printf(seq, "[");
8095 		for (i = 0; i < x; i++)
8096 			seq_printf(seq, "=");
8097 		seq_printf(seq, ">");
8098 		for (i = 0; i < y; i++)
8099 			seq_printf(seq, ".");
8100 		seq_printf(seq, "] ");
8101 	}
8102 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8103 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8104 		    "reshape" :
8105 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8106 		     "check" :
8107 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8108 		      "resync" : "recovery"))),
8109 		   per_milli/10, per_milli % 10,
8110 		   (unsigned long long) resync/2,
8111 		   (unsigned long long) max_sectors/2);
8112 
8113 	/*
8114 	 * dt: time from mark until now
8115 	 * db: blocks written from mark until now
8116 	 * rt: remaining time
8117 	 *
8118 	 * rt is a sector_t, which is always 64bit now. We are keeping
8119 	 * the original algorithm, but it is not really necessary.
8120 	 *
8121 	 * Original algorithm:
8122 	 *   So we divide before multiply in case it is 32bit and close
8123 	 *   to the limit.
8124 	 *   We scale the divisor (db) by 32 to avoid losing precision
8125 	 *   near the end of resync when the number of remaining sectors
8126 	 *   is close to 'db'.
8127 	 *   We then divide rt by 32 after multiplying by db to compensate.
8128 	 *   The '+1' avoids division by zero if db is very small.
8129 	 */
8130 	dt = ((jiffies - mddev->resync_mark) / HZ);
8131 	if (!dt) dt++;
8132 
8133 	curr_mark_cnt = mddev->curr_mark_cnt;
8134 	recovery_active = atomic_read(&mddev->recovery_active);
8135 	resync_mark_cnt = mddev->resync_mark_cnt;
8136 
8137 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8138 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8139 
8140 	rt = max_sectors - resync;    /* number of remaining sectors */
8141 	rt = div64_u64(rt, db/32+1);
8142 	rt *= dt;
8143 	rt >>= 5;
8144 
8145 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8146 		   ((unsigned long)rt % 60)/6);
8147 
8148 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8149 	return 1;
8150 }
8151 
8152 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8153 {
8154 	struct list_head *tmp;
8155 	loff_t l = *pos;
8156 	struct mddev *mddev;
8157 
8158 	if (l == 0x10000) {
8159 		++*pos;
8160 		return (void *)2;
8161 	}
8162 	if (l > 0x10000)
8163 		return NULL;
8164 	if (!l--)
8165 		/* header */
8166 		return (void*)1;
8167 
8168 	spin_lock(&all_mddevs_lock);
8169 	list_for_each(tmp,&all_mddevs)
8170 		if (!l--) {
8171 			mddev = list_entry(tmp, struct mddev, all_mddevs);
8172 			mddev_get(mddev);
8173 			spin_unlock(&all_mddevs_lock);
8174 			return mddev;
8175 		}
8176 	spin_unlock(&all_mddevs_lock);
8177 	if (!l--)
8178 		return (void*)2;/* tail */
8179 	return NULL;
8180 }
8181 
8182 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8183 {
8184 	struct list_head *tmp;
8185 	struct mddev *next_mddev, *mddev = v;
8186 
8187 	++*pos;
8188 	if (v == (void*)2)
8189 		return NULL;
8190 
8191 	spin_lock(&all_mddevs_lock);
8192 	if (v == (void*)1)
8193 		tmp = all_mddevs.next;
8194 	else
8195 		tmp = mddev->all_mddevs.next;
8196 	if (tmp != &all_mddevs)
8197 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8198 	else {
8199 		next_mddev = (void*)2;
8200 		*pos = 0x10000;
8201 	}
8202 	spin_unlock(&all_mddevs_lock);
8203 
8204 	if (v != (void*)1)
8205 		mddev_put(mddev);
8206 	return next_mddev;
8207 
8208 }
8209 
8210 static void md_seq_stop(struct seq_file *seq, void *v)
8211 {
8212 	struct mddev *mddev = v;
8213 
8214 	if (mddev && v != (void*)1 && v != (void*)2)
8215 		mddev_put(mddev);
8216 }
8217 
8218 static int md_seq_show(struct seq_file *seq, void *v)
8219 {
8220 	struct mddev *mddev = v;
8221 	sector_t sectors;
8222 	struct md_rdev *rdev;
8223 
8224 	if (v == (void*)1) {
8225 		struct md_personality *pers;
8226 		seq_printf(seq, "Personalities : ");
8227 		spin_lock(&pers_lock);
8228 		list_for_each_entry(pers, &pers_list, list)
8229 			seq_printf(seq, "[%s] ", pers->name);
8230 
8231 		spin_unlock(&pers_lock);
8232 		seq_printf(seq, "\n");
8233 		seq->poll_event = atomic_read(&md_event_count);
8234 		return 0;
8235 	}
8236 	if (v == (void*)2) {
8237 		status_unused(seq);
8238 		return 0;
8239 	}
8240 
8241 	spin_lock(&mddev->lock);
8242 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8243 		seq_printf(seq, "%s : %sactive", mdname(mddev),
8244 						mddev->pers ? "" : "in");
8245 		if (mddev->pers) {
8246 			if (mddev->ro==1)
8247 				seq_printf(seq, " (read-only)");
8248 			if (mddev->ro==2)
8249 				seq_printf(seq, " (auto-read-only)");
8250 			seq_printf(seq, " %s", mddev->pers->name);
8251 		}
8252 
8253 		sectors = 0;
8254 		rcu_read_lock();
8255 		rdev_for_each_rcu(rdev, mddev) {
8256 			char b[BDEVNAME_SIZE];
8257 			seq_printf(seq, " %s[%d]",
8258 				bdevname(rdev->bdev,b), rdev->desc_nr);
8259 			if (test_bit(WriteMostly, &rdev->flags))
8260 				seq_printf(seq, "(W)");
8261 			if (test_bit(Journal, &rdev->flags))
8262 				seq_printf(seq, "(J)");
8263 			if (test_bit(Faulty, &rdev->flags)) {
8264 				seq_printf(seq, "(F)");
8265 				continue;
8266 			}
8267 			if (rdev->raid_disk < 0)
8268 				seq_printf(seq, "(S)"); /* spare */
8269 			if (test_bit(Replacement, &rdev->flags))
8270 				seq_printf(seq, "(R)");
8271 			sectors += rdev->sectors;
8272 		}
8273 		rcu_read_unlock();
8274 
8275 		if (!list_empty(&mddev->disks)) {
8276 			if (mddev->pers)
8277 				seq_printf(seq, "\n      %llu blocks",
8278 					   (unsigned long long)
8279 					   mddev->array_sectors / 2);
8280 			else
8281 				seq_printf(seq, "\n      %llu blocks",
8282 					   (unsigned long long)sectors / 2);
8283 		}
8284 		if (mddev->persistent) {
8285 			if (mddev->major_version != 0 ||
8286 			    mddev->minor_version != 90) {
8287 				seq_printf(seq," super %d.%d",
8288 					   mddev->major_version,
8289 					   mddev->minor_version);
8290 			}
8291 		} else if (mddev->external)
8292 			seq_printf(seq, " super external:%s",
8293 				   mddev->metadata_type);
8294 		else
8295 			seq_printf(seq, " super non-persistent");
8296 
8297 		if (mddev->pers) {
8298 			mddev->pers->status(seq, mddev);
8299 			seq_printf(seq, "\n      ");
8300 			if (mddev->pers->sync_request) {
8301 				if (status_resync(seq, mddev))
8302 					seq_printf(seq, "\n      ");
8303 			}
8304 		} else
8305 			seq_printf(seq, "\n       ");
8306 
8307 		md_bitmap_status(seq, mddev->bitmap);
8308 
8309 		seq_printf(seq, "\n");
8310 	}
8311 	spin_unlock(&mddev->lock);
8312 
8313 	return 0;
8314 }
8315 
8316 static const struct seq_operations md_seq_ops = {
8317 	.start  = md_seq_start,
8318 	.next   = md_seq_next,
8319 	.stop   = md_seq_stop,
8320 	.show   = md_seq_show,
8321 };
8322 
8323 static int md_seq_open(struct inode *inode, struct file *file)
8324 {
8325 	struct seq_file *seq;
8326 	int error;
8327 
8328 	error = seq_open(file, &md_seq_ops);
8329 	if (error)
8330 		return error;
8331 
8332 	seq = file->private_data;
8333 	seq->poll_event = atomic_read(&md_event_count);
8334 	return error;
8335 }
8336 
8337 static int md_unloading;
8338 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8339 {
8340 	struct seq_file *seq = filp->private_data;
8341 	__poll_t mask;
8342 
8343 	if (md_unloading)
8344 		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8345 	poll_wait(filp, &md_event_waiters, wait);
8346 
8347 	/* always allow read */
8348 	mask = EPOLLIN | EPOLLRDNORM;
8349 
8350 	if (seq->poll_event != atomic_read(&md_event_count))
8351 		mask |= EPOLLERR | EPOLLPRI;
8352 	return mask;
8353 }
8354 
8355 static const struct proc_ops mdstat_proc_ops = {
8356 	.proc_open	= md_seq_open,
8357 	.proc_read	= seq_read,
8358 	.proc_lseek	= seq_lseek,
8359 	.proc_release	= seq_release,
8360 	.proc_poll	= mdstat_poll,
8361 };
8362 
8363 int register_md_personality(struct md_personality *p)
8364 {
8365 	pr_debug("md: %s personality registered for level %d\n",
8366 		 p->name, p->level);
8367 	spin_lock(&pers_lock);
8368 	list_add_tail(&p->list, &pers_list);
8369 	spin_unlock(&pers_lock);
8370 	return 0;
8371 }
8372 EXPORT_SYMBOL(register_md_personality);
8373 
8374 int unregister_md_personality(struct md_personality *p)
8375 {
8376 	pr_debug("md: %s personality unregistered\n", p->name);
8377 	spin_lock(&pers_lock);
8378 	list_del_init(&p->list);
8379 	spin_unlock(&pers_lock);
8380 	return 0;
8381 }
8382 EXPORT_SYMBOL(unregister_md_personality);
8383 
8384 int register_md_cluster_operations(struct md_cluster_operations *ops,
8385 				   struct module *module)
8386 {
8387 	int ret = 0;
8388 	spin_lock(&pers_lock);
8389 	if (md_cluster_ops != NULL)
8390 		ret = -EALREADY;
8391 	else {
8392 		md_cluster_ops = ops;
8393 		md_cluster_mod = module;
8394 	}
8395 	spin_unlock(&pers_lock);
8396 	return ret;
8397 }
8398 EXPORT_SYMBOL(register_md_cluster_operations);
8399 
8400 int unregister_md_cluster_operations(void)
8401 {
8402 	spin_lock(&pers_lock);
8403 	md_cluster_ops = NULL;
8404 	spin_unlock(&pers_lock);
8405 	return 0;
8406 }
8407 EXPORT_SYMBOL(unregister_md_cluster_operations);
8408 
8409 int md_setup_cluster(struct mddev *mddev, int nodes)
8410 {
8411 	int ret;
8412 	if (!md_cluster_ops)
8413 		request_module("md-cluster");
8414 	spin_lock(&pers_lock);
8415 	/* ensure module won't be unloaded */
8416 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8417 		pr_warn("can't find md-cluster module or get its reference.\n");
8418 		spin_unlock(&pers_lock);
8419 		return -ENOENT;
8420 	}
8421 	spin_unlock(&pers_lock);
8422 
8423 	ret = md_cluster_ops->join(mddev, nodes);
8424 	if (!ret)
8425 		mddev->safemode_delay = 0;
8426 	return ret;
8427 }
8428 
8429 void md_cluster_stop(struct mddev *mddev)
8430 {
8431 	if (!md_cluster_ops)
8432 		return;
8433 	md_cluster_ops->leave(mddev);
8434 	module_put(md_cluster_mod);
8435 }
8436 
8437 static int is_mddev_idle(struct mddev *mddev, int init)
8438 {
8439 	struct md_rdev *rdev;
8440 	int idle;
8441 	int curr_events;
8442 
8443 	idle = 1;
8444 	rcu_read_lock();
8445 	rdev_for_each_rcu(rdev, mddev) {
8446 		struct gendisk *disk = rdev->bdev->bd_disk;
8447 		curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8448 			      atomic_read(&disk->sync_io);
8449 		/* sync IO will cause sync_io to increase before the disk_stats
8450 		 * as sync_io is counted when a request starts, and
8451 		 * disk_stats is counted when it completes.
8452 		 * So resync activity will cause curr_events to be smaller than
8453 		 * when there was no such activity.
8454 		 * non-sync IO will cause disk_stat to increase without
8455 		 * increasing sync_io so curr_events will (eventually)
8456 		 * be larger than it was before.  Once it becomes
8457 		 * substantially larger, the test below will cause
8458 		 * the array to appear non-idle, and resync will slow
8459 		 * down.
8460 		 * If there is a lot of outstanding resync activity when
8461 		 * we set last_event to curr_events, then all that activity
8462 		 * completing might cause the array to appear non-idle
8463 		 * and resync will be slowed down even though there might
8464 		 * not have been non-resync activity.  This will only
8465 		 * happen once though.  'last_events' will soon reflect
8466 		 * the state where there is little or no outstanding
8467 		 * resync requests, and further resync activity will
8468 		 * always make curr_events less than last_events.
8469 		 *
8470 		 */
8471 		if (init || curr_events - rdev->last_events > 64) {
8472 			rdev->last_events = curr_events;
8473 			idle = 0;
8474 		}
8475 	}
8476 	rcu_read_unlock();
8477 	return idle;
8478 }
8479 
8480 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8481 {
8482 	/* another "blocks" (512byte) blocks have been synced */
8483 	atomic_sub(blocks, &mddev->recovery_active);
8484 	wake_up(&mddev->recovery_wait);
8485 	if (!ok) {
8486 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8487 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8488 		md_wakeup_thread(mddev->thread);
8489 		// stop recovery, signal do_sync ....
8490 	}
8491 }
8492 EXPORT_SYMBOL(md_done_sync);
8493 
8494 /* md_write_start(mddev, bi)
8495  * If we need to update some array metadata (e.g. 'active' flag
8496  * in superblock) before writing, schedule a superblock update
8497  * and wait for it to complete.
8498  * A return value of 'false' means that the write wasn't recorded
8499  * and cannot proceed as the array is being suspend.
8500  */
8501 bool md_write_start(struct mddev *mddev, struct bio *bi)
8502 {
8503 	int did_change = 0;
8504 
8505 	if (bio_data_dir(bi) != WRITE)
8506 		return true;
8507 
8508 	BUG_ON(mddev->ro == 1);
8509 	if (mddev->ro == 2) {
8510 		/* need to switch to read/write */
8511 		mddev->ro = 0;
8512 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8513 		md_wakeup_thread(mddev->thread);
8514 		md_wakeup_thread(mddev->sync_thread);
8515 		did_change = 1;
8516 	}
8517 	rcu_read_lock();
8518 	percpu_ref_get(&mddev->writes_pending);
8519 	smp_mb(); /* Match smp_mb in set_in_sync() */
8520 	if (mddev->safemode == 1)
8521 		mddev->safemode = 0;
8522 	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8523 	if (mddev->in_sync || mddev->sync_checkers) {
8524 		spin_lock(&mddev->lock);
8525 		if (mddev->in_sync) {
8526 			mddev->in_sync = 0;
8527 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8528 			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8529 			md_wakeup_thread(mddev->thread);
8530 			did_change = 1;
8531 		}
8532 		spin_unlock(&mddev->lock);
8533 	}
8534 	rcu_read_unlock();
8535 	if (did_change)
8536 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8537 	if (!mddev->has_superblocks)
8538 		return true;
8539 	wait_event(mddev->sb_wait,
8540 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8541 		   mddev->suspended);
8542 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8543 		percpu_ref_put(&mddev->writes_pending);
8544 		return false;
8545 	}
8546 	return true;
8547 }
8548 EXPORT_SYMBOL(md_write_start);
8549 
8550 /* md_write_inc can only be called when md_write_start() has
8551  * already been called at least once of the current request.
8552  * It increments the counter and is useful when a single request
8553  * is split into several parts.  Each part causes an increment and
8554  * so needs a matching md_write_end().
8555  * Unlike md_write_start(), it is safe to call md_write_inc() inside
8556  * a spinlocked region.
8557  */
8558 void md_write_inc(struct mddev *mddev, struct bio *bi)
8559 {
8560 	if (bio_data_dir(bi) != WRITE)
8561 		return;
8562 	WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8563 	percpu_ref_get(&mddev->writes_pending);
8564 }
8565 EXPORT_SYMBOL(md_write_inc);
8566 
8567 void md_write_end(struct mddev *mddev)
8568 {
8569 	percpu_ref_put(&mddev->writes_pending);
8570 
8571 	if (mddev->safemode == 2)
8572 		md_wakeup_thread(mddev->thread);
8573 	else if (mddev->safemode_delay)
8574 		/* The roundup() ensures this only performs locking once
8575 		 * every ->safemode_delay jiffies
8576 		 */
8577 		mod_timer(&mddev->safemode_timer,
8578 			  roundup(jiffies, mddev->safemode_delay) +
8579 			  mddev->safemode_delay);
8580 }
8581 
8582 EXPORT_SYMBOL(md_write_end);
8583 
8584 /* This is used by raid0 and raid10 */
8585 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8586 			struct bio *bio, sector_t start, sector_t size)
8587 {
8588 	struct bio *discard_bio = NULL;
8589 
8590 	if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8591 			&discard_bio) || !discard_bio)
8592 		return;
8593 
8594 	bio_chain(discard_bio, bio);
8595 	bio_clone_blkg_association(discard_bio, bio);
8596 	if (mddev->gendisk)
8597 		trace_block_bio_remap(discard_bio,
8598 				disk_devt(mddev->gendisk),
8599 				bio->bi_iter.bi_sector);
8600 	submit_bio_noacct(discard_bio);
8601 }
8602 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8603 
8604 int acct_bioset_init(struct mddev *mddev)
8605 {
8606 	int err = 0;
8607 
8608 	if (!bioset_initialized(&mddev->io_acct_set))
8609 		err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8610 			offsetof(struct md_io_acct, bio_clone), 0);
8611 	return err;
8612 }
8613 EXPORT_SYMBOL_GPL(acct_bioset_init);
8614 
8615 void acct_bioset_exit(struct mddev *mddev)
8616 {
8617 	bioset_exit(&mddev->io_acct_set);
8618 }
8619 EXPORT_SYMBOL_GPL(acct_bioset_exit);
8620 
8621 static void md_end_io_acct(struct bio *bio)
8622 {
8623 	struct md_io_acct *md_io_acct = bio->bi_private;
8624 	struct bio *orig_bio = md_io_acct->orig_bio;
8625 
8626 	orig_bio->bi_status = bio->bi_status;
8627 
8628 	bio_end_io_acct(orig_bio, md_io_acct->start_time);
8629 	bio_put(bio);
8630 	bio_endio(orig_bio);
8631 }
8632 
8633 /*
8634  * Used by personalities that don't already clone the bio and thus can't
8635  * easily add the timestamp to their extended bio structure.
8636  */
8637 void md_account_bio(struct mddev *mddev, struct bio **bio)
8638 {
8639 	struct md_io_acct *md_io_acct;
8640 	struct bio *clone;
8641 
8642 	if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8643 		return;
8644 
8645 	clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8646 	md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8647 	md_io_acct->orig_bio = *bio;
8648 	md_io_acct->start_time = bio_start_io_acct(*bio);
8649 
8650 	clone->bi_end_io = md_end_io_acct;
8651 	clone->bi_private = md_io_acct;
8652 	*bio = clone;
8653 }
8654 EXPORT_SYMBOL_GPL(md_account_bio);
8655 
8656 /* md_allow_write(mddev)
8657  * Calling this ensures that the array is marked 'active' so that writes
8658  * may proceed without blocking.  It is important to call this before
8659  * attempting a GFP_KERNEL allocation while holding the mddev lock.
8660  * Must be called with mddev_lock held.
8661  */
8662 void md_allow_write(struct mddev *mddev)
8663 {
8664 	if (!mddev->pers)
8665 		return;
8666 	if (mddev->ro)
8667 		return;
8668 	if (!mddev->pers->sync_request)
8669 		return;
8670 
8671 	spin_lock(&mddev->lock);
8672 	if (mddev->in_sync) {
8673 		mddev->in_sync = 0;
8674 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8675 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8676 		if (mddev->safemode_delay &&
8677 		    mddev->safemode == 0)
8678 			mddev->safemode = 1;
8679 		spin_unlock(&mddev->lock);
8680 		md_update_sb(mddev, 0);
8681 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8682 		/* wait for the dirty state to be recorded in the metadata */
8683 		wait_event(mddev->sb_wait,
8684 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8685 	} else
8686 		spin_unlock(&mddev->lock);
8687 }
8688 EXPORT_SYMBOL_GPL(md_allow_write);
8689 
8690 #define SYNC_MARKS	10
8691 #define	SYNC_MARK_STEP	(3*HZ)
8692 #define UPDATE_FREQUENCY (5*60*HZ)
8693 void md_do_sync(struct md_thread *thread)
8694 {
8695 	struct mddev *mddev = thread->mddev;
8696 	struct mddev *mddev2;
8697 	unsigned int currspeed = 0, window;
8698 	sector_t max_sectors,j, io_sectors, recovery_done;
8699 	unsigned long mark[SYNC_MARKS];
8700 	unsigned long update_time;
8701 	sector_t mark_cnt[SYNC_MARKS];
8702 	int last_mark,m;
8703 	struct list_head *tmp;
8704 	sector_t last_check;
8705 	int skipped = 0;
8706 	struct md_rdev *rdev;
8707 	char *desc, *action = NULL;
8708 	struct blk_plug plug;
8709 	int ret;
8710 
8711 	/* just incase thread restarts... */
8712 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8713 	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8714 		return;
8715 	if (mddev->ro) {/* never try to sync a read-only array */
8716 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8717 		return;
8718 	}
8719 
8720 	if (mddev_is_clustered(mddev)) {
8721 		ret = md_cluster_ops->resync_start(mddev);
8722 		if (ret)
8723 			goto skip;
8724 
8725 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8726 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8727 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8728 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8729 		     && ((unsigned long long)mddev->curr_resync_completed
8730 			 < (unsigned long long)mddev->resync_max_sectors))
8731 			goto skip;
8732 	}
8733 
8734 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8735 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8736 			desc = "data-check";
8737 			action = "check";
8738 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8739 			desc = "requested-resync";
8740 			action = "repair";
8741 		} else
8742 			desc = "resync";
8743 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8744 		desc = "reshape";
8745 	else
8746 		desc = "recovery";
8747 
8748 	mddev->last_sync_action = action ?: desc;
8749 
8750 	/* we overload curr_resync somewhat here.
8751 	 * 0 == not engaged in resync at all
8752 	 * 2 == checking that there is no conflict with another sync
8753 	 * 1 == like 2, but have yielded to allow conflicting resync to
8754 	 *		commence
8755 	 * other == active in resync - this many blocks
8756 	 *
8757 	 * Before starting a resync we must have set curr_resync to
8758 	 * 2, and then checked that every "conflicting" array has curr_resync
8759 	 * less than ours.  When we find one that is the same or higher
8760 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8761 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8762 	 * This will mean we have to start checking from the beginning again.
8763 	 *
8764 	 */
8765 
8766 	do {
8767 		int mddev2_minor = -1;
8768 		mddev->curr_resync = 2;
8769 
8770 	try_again:
8771 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8772 			goto skip;
8773 		for_each_mddev(mddev2, tmp) {
8774 			if (mddev2 == mddev)
8775 				continue;
8776 			if (!mddev->parallel_resync
8777 			&&  mddev2->curr_resync
8778 			&&  match_mddev_units(mddev, mddev2)) {
8779 				DEFINE_WAIT(wq);
8780 				if (mddev < mddev2 && mddev->curr_resync == 2) {
8781 					/* arbitrarily yield */
8782 					mddev->curr_resync = 1;
8783 					wake_up(&resync_wait);
8784 				}
8785 				if (mddev > mddev2 && mddev->curr_resync == 1)
8786 					/* no need to wait here, we can wait the next
8787 					 * time 'round when curr_resync == 2
8788 					 */
8789 					continue;
8790 				/* We need to wait 'interruptible' so as not to
8791 				 * contribute to the load average, and not to
8792 				 * be caught by 'softlockup'
8793 				 */
8794 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8795 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8796 				    mddev2->curr_resync >= mddev->curr_resync) {
8797 					if (mddev2_minor != mddev2->md_minor) {
8798 						mddev2_minor = mddev2->md_minor;
8799 						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8800 							desc, mdname(mddev),
8801 							mdname(mddev2));
8802 					}
8803 					mddev_put(mddev2);
8804 					if (signal_pending(current))
8805 						flush_signals(current);
8806 					schedule();
8807 					finish_wait(&resync_wait, &wq);
8808 					goto try_again;
8809 				}
8810 				finish_wait(&resync_wait, &wq);
8811 			}
8812 		}
8813 	} while (mddev->curr_resync < 2);
8814 
8815 	j = 0;
8816 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8817 		/* resync follows the size requested by the personality,
8818 		 * which defaults to physical size, but can be virtual size
8819 		 */
8820 		max_sectors = mddev->resync_max_sectors;
8821 		atomic64_set(&mddev->resync_mismatches, 0);
8822 		/* we don't use the checkpoint if there's a bitmap */
8823 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8824 			j = mddev->resync_min;
8825 		else if (!mddev->bitmap)
8826 			j = mddev->recovery_cp;
8827 
8828 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8829 		max_sectors = mddev->resync_max_sectors;
8830 		/*
8831 		 * If the original node aborts reshaping then we continue the
8832 		 * reshaping, so set j again to avoid restart reshape from the
8833 		 * first beginning
8834 		 */
8835 		if (mddev_is_clustered(mddev) &&
8836 		    mddev->reshape_position != MaxSector)
8837 			j = mddev->reshape_position;
8838 	} else {
8839 		/* recovery follows the physical size of devices */
8840 		max_sectors = mddev->dev_sectors;
8841 		j = MaxSector;
8842 		rcu_read_lock();
8843 		rdev_for_each_rcu(rdev, mddev)
8844 			if (rdev->raid_disk >= 0 &&
8845 			    !test_bit(Journal, &rdev->flags) &&
8846 			    !test_bit(Faulty, &rdev->flags) &&
8847 			    !test_bit(In_sync, &rdev->flags) &&
8848 			    rdev->recovery_offset < j)
8849 				j = rdev->recovery_offset;
8850 		rcu_read_unlock();
8851 
8852 		/* If there is a bitmap, we need to make sure all
8853 		 * writes that started before we added a spare
8854 		 * complete before we start doing a recovery.
8855 		 * Otherwise the write might complete and (via
8856 		 * bitmap_endwrite) set a bit in the bitmap after the
8857 		 * recovery has checked that bit and skipped that
8858 		 * region.
8859 		 */
8860 		if (mddev->bitmap) {
8861 			mddev->pers->quiesce(mddev, 1);
8862 			mddev->pers->quiesce(mddev, 0);
8863 		}
8864 	}
8865 
8866 	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8867 	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8868 	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8869 		 speed_max(mddev), desc);
8870 
8871 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8872 
8873 	io_sectors = 0;
8874 	for (m = 0; m < SYNC_MARKS; m++) {
8875 		mark[m] = jiffies;
8876 		mark_cnt[m] = io_sectors;
8877 	}
8878 	last_mark = 0;
8879 	mddev->resync_mark = mark[last_mark];
8880 	mddev->resync_mark_cnt = mark_cnt[last_mark];
8881 
8882 	/*
8883 	 * Tune reconstruction:
8884 	 */
8885 	window = 32 * (PAGE_SIZE / 512);
8886 	pr_debug("md: using %dk window, over a total of %lluk.\n",
8887 		 window/2, (unsigned long long)max_sectors/2);
8888 
8889 	atomic_set(&mddev->recovery_active, 0);
8890 	last_check = 0;
8891 
8892 	if (j>2) {
8893 		pr_debug("md: resuming %s of %s from checkpoint.\n",
8894 			 desc, mdname(mddev));
8895 		mddev->curr_resync = j;
8896 	} else
8897 		mddev->curr_resync = 3; /* no longer delayed */
8898 	mddev->curr_resync_completed = j;
8899 	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8900 	md_new_event();
8901 	update_time = jiffies;
8902 
8903 	blk_start_plug(&plug);
8904 	while (j < max_sectors) {
8905 		sector_t sectors;
8906 
8907 		skipped = 0;
8908 
8909 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8910 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8911 		      (mddev->curr_resync - mddev->curr_resync_completed)
8912 		      > (max_sectors >> 4)) ||
8913 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8914 		     (j - mddev->curr_resync_completed)*2
8915 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8916 		     mddev->curr_resync_completed > mddev->resync_max
8917 			    )) {
8918 			/* time to update curr_resync_completed */
8919 			wait_event(mddev->recovery_wait,
8920 				   atomic_read(&mddev->recovery_active) == 0);
8921 			mddev->curr_resync_completed = j;
8922 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8923 			    j > mddev->recovery_cp)
8924 				mddev->recovery_cp = j;
8925 			update_time = jiffies;
8926 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8927 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8928 		}
8929 
8930 		while (j >= mddev->resync_max &&
8931 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8932 			/* As this condition is controlled by user-space,
8933 			 * we can block indefinitely, so use '_interruptible'
8934 			 * to avoid triggering warnings.
8935 			 */
8936 			flush_signals(current); /* just in case */
8937 			wait_event_interruptible(mddev->recovery_wait,
8938 						 mddev->resync_max > j
8939 						 || test_bit(MD_RECOVERY_INTR,
8940 							     &mddev->recovery));
8941 		}
8942 
8943 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8944 			break;
8945 
8946 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8947 		if (sectors == 0) {
8948 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8949 			break;
8950 		}
8951 
8952 		if (!skipped) { /* actual IO requested */
8953 			io_sectors += sectors;
8954 			atomic_add(sectors, &mddev->recovery_active);
8955 		}
8956 
8957 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8958 			break;
8959 
8960 		j += sectors;
8961 		if (j > max_sectors)
8962 			/* when skipping, extra large numbers can be returned. */
8963 			j = max_sectors;
8964 		if (j > 2)
8965 			mddev->curr_resync = j;
8966 		mddev->curr_mark_cnt = io_sectors;
8967 		if (last_check == 0)
8968 			/* this is the earliest that rebuild will be
8969 			 * visible in /proc/mdstat
8970 			 */
8971 			md_new_event();
8972 
8973 		if (last_check + window > io_sectors || j == max_sectors)
8974 			continue;
8975 
8976 		last_check = io_sectors;
8977 	repeat:
8978 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8979 			/* step marks */
8980 			int next = (last_mark+1) % SYNC_MARKS;
8981 
8982 			mddev->resync_mark = mark[next];
8983 			mddev->resync_mark_cnt = mark_cnt[next];
8984 			mark[next] = jiffies;
8985 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8986 			last_mark = next;
8987 		}
8988 
8989 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8990 			break;
8991 
8992 		/*
8993 		 * this loop exits only if either when we are slower than
8994 		 * the 'hard' speed limit, or the system was IO-idle for
8995 		 * a jiffy.
8996 		 * the system might be non-idle CPU-wise, but we only care
8997 		 * about not overloading the IO subsystem. (things like an
8998 		 * e2fsck being done on the RAID array should execute fast)
8999 		 */
9000 		cond_resched();
9001 
9002 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9003 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9004 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
9005 
9006 		if (currspeed > speed_min(mddev)) {
9007 			if (currspeed > speed_max(mddev)) {
9008 				msleep(500);
9009 				goto repeat;
9010 			}
9011 			if (!is_mddev_idle(mddev, 0)) {
9012 				/*
9013 				 * Give other IO more of a chance.
9014 				 * The faster the devices, the less we wait.
9015 				 */
9016 				wait_event(mddev->recovery_wait,
9017 					   !atomic_read(&mddev->recovery_active));
9018 			}
9019 		}
9020 	}
9021 	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9022 		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9023 		? "interrupted" : "done");
9024 	/*
9025 	 * this also signals 'finished resyncing' to md_stop
9026 	 */
9027 	blk_finish_plug(&plug);
9028 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9029 
9030 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9031 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9032 	    mddev->curr_resync > 3) {
9033 		mddev->curr_resync_completed = mddev->curr_resync;
9034 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
9035 	}
9036 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
9037 
9038 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9039 	    mddev->curr_resync > 3) {
9040 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9041 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9042 				if (mddev->curr_resync >= mddev->recovery_cp) {
9043 					pr_debug("md: checkpointing %s of %s.\n",
9044 						 desc, mdname(mddev));
9045 					if (test_bit(MD_RECOVERY_ERROR,
9046 						&mddev->recovery))
9047 						mddev->recovery_cp =
9048 							mddev->curr_resync_completed;
9049 					else
9050 						mddev->recovery_cp =
9051 							mddev->curr_resync;
9052 				}
9053 			} else
9054 				mddev->recovery_cp = MaxSector;
9055 		} else {
9056 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9057 				mddev->curr_resync = MaxSector;
9058 			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9059 			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9060 				rcu_read_lock();
9061 				rdev_for_each_rcu(rdev, mddev)
9062 					if (rdev->raid_disk >= 0 &&
9063 					    mddev->delta_disks >= 0 &&
9064 					    !test_bit(Journal, &rdev->flags) &&
9065 					    !test_bit(Faulty, &rdev->flags) &&
9066 					    !test_bit(In_sync, &rdev->flags) &&
9067 					    rdev->recovery_offset < mddev->curr_resync)
9068 						rdev->recovery_offset = mddev->curr_resync;
9069 				rcu_read_unlock();
9070 			}
9071 		}
9072 	}
9073  skip:
9074 	/* set CHANGE_PENDING here since maybe another update is needed,
9075 	 * so other nodes are informed. It should be harmless for normal
9076 	 * raid */
9077 	set_mask_bits(&mddev->sb_flags, 0,
9078 		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9079 
9080 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9081 			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9082 			mddev->delta_disks > 0 &&
9083 			mddev->pers->finish_reshape &&
9084 			mddev->pers->size &&
9085 			mddev->queue) {
9086 		mddev_lock_nointr(mddev);
9087 		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9088 		mddev_unlock(mddev);
9089 		if (!mddev_is_clustered(mddev))
9090 			set_capacity_and_notify(mddev->gendisk,
9091 						mddev->array_sectors);
9092 	}
9093 
9094 	spin_lock(&mddev->lock);
9095 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9096 		/* We completed so min/max setting can be forgotten if used. */
9097 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9098 			mddev->resync_min = 0;
9099 		mddev->resync_max = MaxSector;
9100 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9101 		mddev->resync_min = mddev->curr_resync_completed;
9102 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9103 	mddev->curr_resync = 0;
9104 	spin_unlock(&mddev->lock);
9105 
9106 	wake_up(&resync_wait);
9107 	md_wakeup_thread(mddev->thread);
9108 	return;
9109 }
9110 EXPORT_SYMBOL_GPL(md_do_sync);
9111 
9112 static int remove_and_add_spares(struct mddev *mddev,
9113 				 struct md_rdev *this)
9114 {
9115 	struct md_rdev *rdev;
9116 	int spares = 0;
9117 	int removed = 0;
9118 	bool remove_some = false;
9119 
9120 	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9121 		/* Mustn't remove devices when resync thread is running */
9122 		return 0;
9123 
9124 	rdev_for_each(rdev, mddev) {
9125 		if ((this == NULL || rdev == this) &&
9126 		    rdev->raid_disk >= 0 &&
9127 		    !test_bit(Blocked, &rdev->flags) &&
9128 		    test_bit(Faulty, &rdev->flags) &&
9129 		    atomic_read(&rdev->nr_pending)==0) {
9130 			/* Faulty non-Blocked devices with nr_pending == 0
9131 			 * never get nr_pending incremented,
9132 			 * never get Faulty cleared, and never get Blocked set.
9133 			 * So we can synchronize_rcu now rather than once per device
9134 			 */
9135 			remove_some = true;
9136 			set_bit(RemoveSynchronized, &rdev->flags);
9137 		}
9138 	}
9139 
9140 	if (remove_some)
9141 		synchronize_rcu();
9142 	rdev_for_each(rdev, mddev) {
9143 		if ((this == NULL || rdev == this) &&
9144 		    rdev->raid_disk >= 0 &&
9145 		    !test_bit(Blocked, &rdev->flags) &&
9146 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9147 		     (!test_bit(In_sync, &rdev->flags) &&
9148 		      !test_bit(Journal, &rdev->flags))) &&
9149 		    atomic_read(&rdev->nr_pending)==0)) {
9150 			if (mddev->pers->hot_remove_disk(
9151 				    mddev, rdev) == 0) {
9152 				sysfs_unlink_rdev(mddev, rdev);
9153 				rdev->saved_raid_disk = rdev->raid_disk;
9154 				rdev->raid_disk = -1;
9155 				removed++;
9156 			}
9157 		}
9158 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9159 			clear_bit(RemoveSynchronized, &rdev->flags);
9160 	}
9161 
9162 	if (removed && mddev->kobj.sd)
9163 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9164 
9165 	if (this && removed)
9166 		goto no_add;
9167 
9168 	rdev_for_each(rdev, mddev) {
9169 		if (this && this != rdev)
9170 			continue;
9171 		if (test_bit(Candidate, &rdev->flags))
9172 			continue;
9173 		if (rdev->raid_disk >= 0 &&
9174 		    !test_bit(In_sync, &rdev->flags) &&
9175 		    !test_bit(Journal, &rdev->flags) &&
9176 		    !test_bit(Faulty, &rdev->flags))
9177 			spares++;
9178 		if (rdev->raid_disk >= 0)
9179 			continue;
9180 		if (test_bit(Faulty, &rdev->flags))
9181 			continue;
9182 		if (!test_bit(Journal, &rdev->flags)) {
9183 			if (mddev->ro &&
9184 			    ! (rdev->saved_raid_disk >= 0 &&
9185 			       !test_bit(Bitmap_sync, &rdev->flags)))
9186 				continue;
9187 
9188 			rdev->recovery_offset = 0;
9189 		}
9190 		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9191 			/* failure here is OK */
9192 			sysfs_link_rdev(mddev, rdev);
9193 			if (!test_bit(Journal, &rdev->flags))
9194 				spares++;
9195 			md_new_event();
9196 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9197 		}
9198 	}
9199 no_add:
9200 	if (removed)
9201 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9202 	return spares;
9203 }
9204 
9205 static void md_start_sync(struct work_struct *ws)
9206 {
9207 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9208 
9209 	mddev->sync_thread = md_register_thread(md_do_sync,
9210 						mddev,
9211 						"resync");
9212 	if (!mddev->sync_thread) {
9213 		pr_warn("%s: could not start resync thread...\n",
9214 			mdname(mddev));
9215 		/* leave the spares where they are, it shouldn't hurt */
9216 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9217 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9218 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9219 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9220 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9221 		wake_up(&resync_wait);
9222 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9223 				       &mddev->recovery))
9224 			if (mddev->sysfs_action)
9225 				sysfs_notify_dirent_safe(mddev->sysfs_action);
9226 	} else
9227 		md_wakeup_thread(mddev->sync_thread);
9228 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9229 	md_new_event();
9230 }
9231 
9232 /*
9233  * This routine is regularly called by all per-raid-array threads to
9234  * deal with generic issues like resync and super-block update.
9235  * Raid personalities that don't have a thread (linear/raid0) do not
9236  * need this as they never do any recovery or update the superblock.
9237  *
9238  * It does not do any resync itself, but rather "forks" off other threads
9239  * to do that as needed.
9240  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9241  * "->recovery" and create a thread at ->sync_thread.
9242  * When the thread finishes it sets MD_RECOVERY_DONE
9243  * and wakeups up this thread which will reap the thread and finish up.
9244  * This thread also removes any faulty devices (with nr_pending == 0).
9245  *
9246  * The overall approach is:
9247  *  1/ if the superblock needs updating, update it.
9248  *  2/ If a recovery thread is running, don't do anything else.
9249  *  3/ If recovery has finished, clean up, possibly marking spares active.
9250  *  4/ If there are any faulty devices, remove them.
9251  *  5/ If array is degraded, try to add spares devices
9252  *  6/ If array has spares or is not in-sync, start a resync thread.
9253  */
9254 void md_check_recovery(struct mddev *mddev)
9255 {
9256 	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9257 		/* Write superblock - thread that called mddev_suspend()
9258 		 * holds reconfig_mutex for us.
9259 		 */
9260 		set_bit(MD_UPDATING_SB, &mddev->flags);
9261 		smp_mb__after_atomic();
9262 		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9263 			md_update_sb(mddev, 0);
9264 		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9265 		wake_up(&mddev->sb_wait);
9266 	}
9267 
9268 	if (mddev->suspended)
9269 		return;
9270 
9271 	if (mddev->bitmap)
9272 		md_bitmap_daemon_work(mddev);
9273 
9274 	if (signal_pending(current)) {
9275 		if (mddev->pers->sync_request && !mddev->external) {
9276 			pr_debug("md: %s in immediate safe mode\n",
9277 				 mdname(mddev));
9278 			mddev->safemode = 2;
9279 		}
9280 		flush_signals(current);
9281 	}
9282 
9283 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9284 		return;
9285 	if ( ! (
9286 		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9287 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9288 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9289 		(mddev->external == 0 && mddev->safemode == 1) ||
9290 		(mddev->safemode == 2
9291 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9292 		))
9293 		return;
9294 
9295 	if (mddev_trylock(mddev)) {
9296 		int spares = 0;
9297 		bool try_set_sync = mddev->safemode != 0;
9298 
9299 		if (!mddev->external && mddev->safemode == 1)
9300 			mddev->safemode = 0;
9301 
9302 		if (mddev->ro) {
9303 			struct md_rdev *rdev;
9304 			if (!mddev->external && mddev->in_sync)
9305 				/* 'Blocked' flag not needed as failed devices
9306 				 * will be recorded if array switched to read/write.
9307 				 * Leaving it set will prevent the device
9308 				 * from being removed.
9309 				 */
9310 				rdev_for_each(rdev, mddev)
9311 					clear_bit(Blocked, &rdev->flags);
9312 			/* On a read-only array we can:
9313 			 * - remove failed devices
9314 			 * - add already-in_sync devices if the array itself
9315 			 *   is in-sync.
9316 			 * As we only add devices that are already in-sync,
9317 			 * we can activate the spares immediately.
9318 			 */
9319 			remove_and_add_spares(mddev, NULL);
9320 			/* There is no thread, but we need to call
9321 			 * ->spare_active and clear saved_raid_disk
9322 			 */
9323 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9324 			md_reap_sync_thread(mddev);
9325 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9326 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9327 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9328 			goto unlock;
9329 		}
9330 
9331 		if (mddev_is_clustered(mddev)) {
9332 			struct md_rdev *rdev, *tmp;
9333 			/* kick the device if another node issued a
9334 			 * remove disk.
9335 			 */
9336 			rdev_for_each_safe(rdev, tmp, mddev) {
9337 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9338 						rdev->raid_disk < 0)
9339 					md_kick_rdev_from_array(rdev);
9340 			}
9341 		}
9342 
9343 		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9344 			spin_lock(&mddev->lock);
9345 			set_in_sync(mddev);
9346 			spin_unlock(&mddev->lock);
9347 		}
9348 
9349 		if (mddev->sb_flags)
9350 			md_update_sb(mddev, 0);
9351 
9352 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9353 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9354 			/* resync/recovery still happening */
9355 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9356 			goto unlock;
9357 		}
9358 		if (mddev->sync_thread) {
9359 			md_reap_sync_thread(mddev);
9360 			goto unlock;
9361 		}
9362 		/* Set RUNNING before clearing NEEDED to avoid
9363 		 * any transients in the value of "sync_action".
9364 		 */
9365 		mddev->curr_resync_completed = 0;
9366 		spin_lock(&mddev->lock);
9367 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9368 		spin_unlock(&mddev->lock);
9369 		/* Clear some bits that don't mean anything, but
9370 		 * might be left set
9371 		 */
9372 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9373 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9374 
9375 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9376 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9377 			goto not_running;
9378 		/* no recovery is running.
9379 		 * remove any failed drives, then
9380 		 * add spares if possible.
9381 		 * Spares are also removed and re-added, to allow
9382 		 * the personality to fail the re-add.
9383 		 */
9384 
9385 		if (mddev->reshape_position != MaxSector) {
9386 			if (mddev->pers->check_reshape == NULL ||
9387 			    mddev->pers->check_reshape(mddev) != 0)
9388 				/* Cannot proceed */
9389 				goto not_running;
9390 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9391 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9392 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9393 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9394 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9395 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9396 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9397 		} else if (mddev->recovery_cp < MaxSector) {
9398 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9399 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9400 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9401 			/* nothing to be done ... */
9402 			goto not_running;
9403 
9404 		if (mddev->pers->sync_request) {
9405 			if (spares) {
9406 				/* We are adding a device or devices to an array
9407 				 * which has the bitmap stored on all devices.
9408 				 * So make sure all bitmap pages get written
9409 				 */
9410 				md_bitmap_write_all(mddev->bitmap);
9411 			}
9412 			INIT_WORK(&mddev->del_work, md_start_sync);
9413 			queue_work(md_misc_wq, &mddev->del_work);
9414 			goto unlock;
9415 		}
9416 	not_running:
9417 		if (!mddev->sync_thread) {
9418 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9419 			wake_up(&resync_wait);
9420 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9421 					       &mddev->recovery))
9422 				if (mddev->sysfs_action)
9423 					sysfs_notify_dirent_safe(mddev->sysfs_action);
9424 		}
9425 	unlock:
9426 		wake_up(&mddev->sb_wait);
9427 		mddev_unlock(mddev);
9428 	}
9429 }
9430 EXPORT_SYMBOL(md_check_recovery);
9431 
9432 void md_reap_sync_thread(struct mddev *mddev)
9433 {
9434 	struct md_rdev *rdev;
9435 	sector_t old_dev_sectors = mddev->dev_sectors;
9436 	bool is_reshaped = false;
9437 
9438 	/* resync has finished, collect result */
9439 	md_unregister_thread(&mddev->sync_thread);
9440 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9441 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9442 	    mddev->degraded != mddev->raid_disks) {
9443 		/* success...*/
9444 		/* activate any spares */
9445 		if (mddev->pers->spare_active(mddev)) {
9446 			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9447 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9448 		}
9449 	}
9450 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9451 	    mddev->pers->finish_reshape) {
9452 		mddev->pers->finish_reshape(mddev);
9453 		if (mddev_is_clustered(mddev))
9454 			is_reshaped = true;
9455 	}
9456 
9457 	/* If array is no-longer degraded, then any saved_raid_disk
9458 	 * information must be scrapped.
9459 	 */
9460 	if (!mddev->degraded)
9461 		rdev_for_each(rdev, mddev)
9462 			rdev->saved_raid_disk = -1;
9463 
9464 	md_update_sb(mddev, 1);
9465 	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9466 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9467 	 * clustered raid */
9468 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9469 		md_cluster_ops->resync_finish(mddev);
9470 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9471 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9472 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9473 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9474 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9475 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9476 	/*
9477 	 * We call md_cluster_ops->update_size here because sync_size could
9478 	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9479 	 * so it is time to update size across cluster.
9480 	 */
9481 	if (mddev_is_clustered(mddev) && is_reshaped
9482 				      && !test_bit(MD_CLOSING, &mddev->flags))
9483 		md_cluster_ops->update_size(mddev, old_dev_sectors);
9484 	wake_up(&resync_wait);
9485 	/* flag recovery needed just to double check */
9486 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9487 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9488 	md_new_event();
9489 	if (mddev->event_work.func)
9490 		queue_work(md_misc_wq, &mddev->event_work);
9491 }
9492 EXPORT_SYMBOL(md_reap_sync_thread);
9493 
9494 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9495 {
9496 	sysfs_notify_dirent_safe(rdev->sysfs_state);
9497 	wait_event_timeout(rdev->blocked_wait,
9498 			   !test_bit(Blocked, &rdev->flags) &&
9499 			   !test_bit(BlockedBadBlocks, &rdev->flags),
9500 			   msecs_to_jiffies(5000));
9501 	rdev_dec_pending(rdev, mddev);
9502 }
9503 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9504 
9505 void md_finish_reshape(struct mddev *mddev)
9506 {
9507 	/* called be personality module when reshape completes. */
9508 	struct md_rdev *rdev;
9509 
9510 	rdev_for_each(rdev, mddev) {
9511 		if (rdev->data_offset > rdev->new_data_offset)
9512 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9513 		else
9514 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9515 		rdev->data_offset = rdev->new_data_offset;
9516 	}
9517 }
9518 EXPORT_SYMBOL(md_finish_reshape);
9519 
9520 /* Bad block management */
9521 
9522 /* Returns 1 on success, 0 on failure */
9523 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9524 		       int is_new)
9525 {
9526 	struct mddev *mddev = rdev->mddev;
9527 	int rv;
9528 	if (is_new)
9529 		s += rdev->new_data_offset;
9530 	else
9531 		s += rdev->data_offset;
9532 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9533 	if (rv == 0) {
9534 		/* Make sure they get written out promptly */
9535 		if (test_bit(ExternalBbl, &rdev->flags))
9536 			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9537 		sysfs_notify_dirent_safe(rdev->sysfs_state);
9538 		set_mask_bits(&mddev->sb_flags, 0,
9539 			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9540 		md_wakeup_thread(rdev->mddev->thread);
9541 		return 1;
9542 	} else
9543 		return 0;
9544 }
9545 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9546 
9547 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9548 			 int is_new)
9549 {
9550 	int rv;
9551 	if (is_new)
9552 		s += rdev->new_data_offset;
9553 	else
9554 		s += rdev->data_offset;
9555 	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9556 	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9557 		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9558 	return rv;
9559 }
9560 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9561 
9562 static int md_notify_reboot(struct notifier_block *this,
9563 			    unsigned long code, void *x)
9564 {
9565 	struct list_head *tmp;
9566 	struct mddev *mddev;
9567 	int need_delay = 0;
9568 
9569 	for_each_mddev(mddev, tmp) {
9570 		if (mddev_trylock(mddev)) {
9571 			if (mddev->pers)
9572 				__md_stop_writes(mddev);
9573 			if (mddev->persistent)
9574 				mddev->safemode = 2;
9575 			mddev_unlock(mddev);
9576 		}
9577 		need_delay = 1;
9578 	}
9579 	/*
9580 	 * certain more exotic SCSI devices are known to be
9581 	 * volatile wrt too early system reboots. While the
9582 	 * right place to handle this issue is the given
9583 	 * driver, we do want to have a safe RAID driver ...
9584 	 */
9585 	if (need_delay)
9586 		mdelay(1000*1);
9587 
9588 	return NOTIFY_DONE;
9589 }
9590 
9591 static struct notifier_block md_notifier = {
9592 	.notifier_call	= md_notify_reboot,
9593 	.next		= NULL,
9594 	.priority	= INT_MAX, /* before any real devices */
9595 };
9596 
9597 static void md_geninit(void)
9598 {
9599 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9600 
9601 	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9602 }
9603 
9604 static int __init md_init(void)
9605 {
9606 	int ret = -ENOMEM;
9607 
9608 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9609 	if (!md_wq)
9610 		goto err_wq;
9611 
9612 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9613 	if (!md_misc_wq)
9614 		goto err_misc_wq;
9615 
9616 	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9617 	if (!md_rdev_misc_wq)
9618 		goto err_rdev_misc_wq;
9619 
9620 	ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9621 	if (ret < 0)
9622 		goto err_md;
9623 
9624 	ret = __register_blkdev(0, "mdp", md_probe);
9625 	if (ret < 0)
9626 		goto err_mdp;
9627 	mdp_major = ret;
9628 
9629 	register_reboot_notifier(&md_notifier);
9630 	raid_table_header = register_sysctl_table(raid_root_table);
9631 
9632 	md_geninit();
9633 	return 0;
9634 
9635 err_mdp:
9636 	unregister_blkdev(MD_MAJOR, "md");
9637 err_md:
9638 	destroy_workqueue(md_rdev_misc_wq);
9639 err_rdev_misc_wq:
9640 	destroy_workqueue(md_misc_wq);
9641 err_misc_wq:
9642 	destroy_workqueue(md_wq);
9643 err_wq:
9644 	return ret;
9645 }
9646 
9647 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9648 {
9649 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9650 	struct md_rdev *rdev2, *tmp;
9651 	int role, ret;
9652 	char b[BDEVNAME_SIZE];
9653 
9654 	/*
9655 	 * If size is changed in another node then we need to
9656 	 * do resize as well.
9657 	 */
9658 	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9659 		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9660 		if (ret)
9661 			pr_info("md-cluster: resize failed\n");
9662 		else
9663 			md_bitmap_update_sb(mddev->bitmap);
9664 	}
9665 
9666 	/* Check for change of roles in the active devices */
9667 	rdev_for_each_safe(rdev2, tmp, mddev) {
9668 		if (test_bit(Faulty, &rdev2->flags))
9669 			continue;
9670 
9671 		/* Check if the roles changed */
9672 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9673 
9674 		if (test_bit(Candidate, &rdev2->flags)) {
9675 			if (role == 0xfffe) {
9676 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9677 				md_kick_rdev_from_array(rdev2);
9678 				continue;
9679 			}
9680 			else
9681 				clear_bit(Candidate, &rdev2->flags);
9682 		}
9683 
9684 		if (role != rdev2->raid_disk) {
9685 			/*
9686 			 * got activated except reshape is happening.
9687 			 */
9688 			if (rdev2->raid_disk == -1 && role != 0xffff &&
9689 			    !(le32_to_cpu(sb->feature_map) &
9690 			      MD_FEATURE_RESHAPE_ACTIVE)) {
9691 				rdev2->saved_raid_disk = role;
9692 				ret = remove_and_add_spares(mddev, rdev2);
9693 				pr_info("Activated spare: %s\n",
9694 					bdevname(rdev2->bdev,b));
9695 				/* wakeup mddev->thread here, so array could
9696 				 * perform resync with the new activated disk */
9697 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9698 				md_wakeup_thread(mddev->thread);
9699 			}
9700 			/* device faulty
9701 			 * We just want to do the minimum to mark the disk
9702 			 * as faulty. The recovery is performed by the
9703 			 * one who initiated the error.
9704 			 */
9705 			if ((role == 0xfffe) || (role == 0xfffd)) {
9706 				md_error(mddev, rdev2);
9707 				clear_bit(Blocked, &rdev2->flags);
9708 			}
9709 		}
9710 	}
9711 
9712 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9713 		ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9714 		if (ret)
9715 			pr_warn("md: updating array disks failed. %d\n", ret);
9716 	}
9717 
9718 	/*
9719 	 * Since mddev->delta_disks has already updated in update_raid_disks,
9720 	 * so it is time to check reshape.
9721 	 */
9722 	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9723 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9724 		/*
9725 		 * reshape is happening in the remote node, we need to
9726 		 * update reshape_position and call start_reshape.
9727 		 */
9728 		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9729 		if (mddev->pers->update_reshape_pos)
9730 			mddev->pers->update_reshape_pos(mddev);
9731 		if (mddev->pers->start_reshape)
9732 			mddev->pers->start_reshape(mddev);
9733 	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9734 		   mddev->reshape_position != MaxSector &&
9735 		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9736 		/* reshape is just done in another node. */
9737 		mddev->reshape_position = MaxSector;
9738 		if (mddev->pers->update_reshape_pos)
9739 			mddev->pers->update_reshape_pos(mddev);
9740 	}
9741 
9742 	/* Finally set the event to be up to date */
9743 	mddev->events = le64_to_cpu(sb->events);
9744 }
9745 
9746 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9747 {
9748 	int err;
9749 	struct page *swapout = rdev->sb_page;
9750 	struct mdp_superblock_1 *sb;
9751 
9752 	/* Store the sb page of the rdev in the swapout temporary
9753 	 * variable in case we err in the future
9754 	 */
9755 	rdev->sb_page = NULL;
9756 	err = alloc_disk_sb(rdev);
9757 	if (err == 0) {
9758 		ClearPageUptodate(rdev->sb_page);
9759 		rdev->sb_loaded = 0;
9760 		err = super_types[mddev->major_version].
9761 			load_super(rdev, NULL, mddev->minor_version);
9762 	}
9763 	if (err < 0) {
9764 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9765 				__func__, __LINE__, rdev->desc_nr, err);
9766 		if (rdev->sb_page)
9767 			put_page(rdev->sb_page);
9768 		rdev->sb_page = swapout;
9769 		rdev->sb_loaded = 1;
9770 		return err;
9771 	}
9772 
9773 	sb = page_address(rdev->sb_page);
9774 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9775 	 * is not set
9776 	 */
9777 
9778 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9779 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9780 
9781 	/* The other node finished recovery, call spare_active to set
9782 	 * device In_sync and mddev->degraded
9783 	 */
9784 	if (rdev->recovery_offset == MaxSector &&
9785 	    !test_bit(In_sync, &rdev->flags) &&
9786 	    mddev->pers->spare_active(mddev))
9787 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9788 
9789 	put_page(swapout);
9790 	return 0;
9791 }
9792 
9793 void md_reload_sb(struct mddev *mddev, int nr)
9794 {
9795 	struct md_rdev *rdev;
9796 	int err;
9797 
9798 	/* Find the rdev */
9799 	rdev_for_each_rcu(rdev, mddev) {
9800 		if (rdev->desc_nr == nr)
9801 			break;
9802 	}
9803 
9804 	if (!rdev || rdev->desc_nr != nr) {
9805 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9806 		return;
9807 	}
9808 
9809 	err = read_rdev(mddev, rdev);
9810 	if (err < 0)
9811 		return;
9812 
9813 	check_sb_changes(mddev, rdev);
9814 
9815 	/* Read all rdev's to update recovery_offset */
9816 	rdev_for_each_rcu(rdev, mddev) {
9817 		if (!test_bit(Faulty, &rdev->flags))
9818 			read_rdev(mddev, rdev);
9819 	}
9820 }
9821 EXPORT_SYMBOL(md_reload_sb);
9822 
9823 #ifndef MODULE
9824 
9825 /*
9826  * Searches all registered partitions for autorun RAID arrays
9827  * at boot time.
9828  */
9829 
9830 static DEFINE_MUTEX(detected_devices_mutex);
9831 static LIST_HEAD(all_detected_devices);
9832 struct detected_devices_node {
9833 	struct list_head list;
9834 	dev_t dev;
9835 };
9836 
9837 void md_autodetect_dev(dev_t dev)
9838 {
9839 	struct detected_devices_node *node_detected_dev;
9840 
9841 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9842 	if (node_detected_dev) {
9843 		node_detected_dev->dev = dev;
9844 		mutex_lock(&detected_devices_mutex);
9845 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9846 		mutex_unlock(&detected_devices_mutex);
9847 	}
9848 }
9849 
9850 void md_autostart_arrays(int part)
9851 {
9852 	struct md_rdev *rdev;
9853 	struct detected_devices_node *node_detected_dev;
9854 	dev_t dev;
9855 	int i_scanned, i_passed;
9856 
9857 	i_scanned = 0;
9858 	i_passed = 0;
9859 
9860 	pr_info("md: Autodetecting RAID arrays.\n");
9861 
9862 	mutex_lock(&detected_devices_mutex);
9863 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9864 		i_scanned++;
9865 		node_detected_dev = list_entry(all_detected_devices.next,
9866 					struct detected_devices_node, list);
9867 		list_del(&node_detected_dev->list);
9868 		dev = node_detected_dev->dev;
9869 		kfree(node_detected_dev);
9870 		mutex_unlock(&detected_devices_mutex);
9871 		rdev = md_import_device(dev,0, 90);
9872 		mutex_lock(&detected_devices_mutex);
9873 		if (IS_ERR(rdev))
9874 			continue;
9875 
9876 		if (test_bit(Faulty, &rdev->flags))
9877 			continue;
9878 
9879 		set_bit(AutoDetected, &rdev->flags);
9880 		list_add(&rdev->same_set, &pending_raid_disks);
9881 		i_passed++;
9882 	}
9883 	mutex_unlock(&detected_devices_mutex);
9884 
9885 	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9886 
9887 	autorun_devices(part);
9888 }
9889 
9890 #endif /* !MODULE */
9891 
9892 static __exit void md_exit(void)
9893 {
9894 	struct mddev *mddev;
9895 	struct list_head *tmp;
9896 	int delay = 1;
9897 
9898 	unregister_blkdev(MD_MAJOR,"md");
9899 	unregister_blkdev(mdp_major, "mdp");
9900 	unregister_reboot_notifier(&md_notifier);
9901 	unregister_sysctl_table(raid_table_header);
9902 
9903 	/* We cannot unload the modules while some process is
9904 	 * waiting for us in select() or poll() - wake them up
9905 	 */
9906 	md_unloading = 1;
9907 	while (waitqueue_active(&md_event_waiters)) {
9908 		/* not safe to leave yet */
9909 		wake_up(&md_event_waiters);
9910 		msleep(delay);
9911 		delay += delay;
9912 	}
9913 	remove_proc_entry("mdstat", NULL);
9914 
9915 	for_each_mddev(mddev, tmp) {
9916 		export_array(mddev);
9917 		mddev->ctime = 0;
9918 		mddev->hold_active = 0;
9919 		/*
9920 		 * for_each_mddev() will call mddev_put() at the end of each
9921 		 * iteration.  As the mddev is now fully clear, this will
9922 		 * schedule the mddev for destruction by a workqueue, and the
9923 		 * destroy_workqueue() below will wait for that to complete.
9924 		 */
9925 	}
9926 	destroy_workqueue(md_rdev_misc_wq);
9927 	destroy_workqueue(md_misc_wq);
9928 	destroy_workqueue(md_wq);
9929 }
9930 
9931 subsys_initcall(md_init);
9932 module_exit(md_exit)
9933 
9934 static int get_ro(char *buffer, const struct kernel_param *kp)
9935 {
9936 	return sprintf(buffer, "%d\n", start_readonly);
9937 }
9938 static int set_ro(const char *val, const struct kernel_param *kp)
9939 {
9940 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9941 }
9942 
9943 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9944 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9945 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9946 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9947 
9948 MODULE_LICENSE("GPL");
9949 MODULE_DESCRIPTION("MD RAID framework");
9950 MODULE_ALIAS("md");
9951 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9952