1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/major.h> 55 #include <linux/module.h> 56 #include <linux/reboot.h> 57 #include <linux/file.h> 58 #include <linux/compat.h> 59 #include <linux/delay.h> 60 #include <linux/raid/md_p.h> 61 #include <linux/raid/md_u.h> 62 #include <linux/raid/detect.h> 63 #include <linux/slab.h> 64 #include <linux/percpu-refcount.h> 65 #include <linux/part_stat.h> 66 67 #include <trace/events/block.h> 68 #include "md.h" 69 #include "md-bitmap.h" 70 #include "md-cluster.h" 71 72 /* pers_list is a list of registered personalities protected 73 * by pers_lock. 74 * pers_lock does extra service to protect accesses to 75 * mddev->thread when the mutex cannot be held. 76 */ 77 static LIST_HEAD(pers_list); 78 static DEFINE_SPINLOCK(pers_lock); 79 80 static struct kobj_type md_ktype; 81 82 struct md_cluster_operations *md_cluster_ops; 83 EXPORT_SYMBOL(md_cluster_ops); 84 static struct module *md_cluster_mod; 85 86 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 87 static struct workqueue_struct *md_wq; 88 static struct workqueue_struct *md_misc_wq; 89 static struct workqueue_struct *md_rdev_misc_wq; 90 91 static int remove_and_add_spares(struct mddev *mddev, 92 struct md_rdev *this); 93 static void mddev_detach(struct mddev *mddev); 94 95 /* 96 * Default number of read corrections we'll attempt on an rdev 97 * before ejecting it from the array. We divide the read error 98 * count by 2 for every hour elapsed between read errors. 99 */ 100 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 101 /* Default safemode delay: 200 msec */ 102 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 103 /* 104 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 105 * is 1000 KB/sec, so the extra system load does not show up that much. 106 * Increase it if you want to have more _guaranteed_ speed. Note that 107 * the RAID driver will use the maximum available bandwidth if the IO 108 * subsystem is idle. There is also an 'absolute maximum' reconstruction 109 * speed limit - in case reconstruction slows down your system despite 110 * idle IO detection. 111 * 112 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 113 * or /sys/block/mdX/md/sync_speed_{min,max} 114 */ 115 116 static int sysctl_speed_limit_min = 1000; 117 static int sysctl_speed_limit_max = 200000; 118 static inline int speed_min(struct mddev *mddev) 119 { 120 return mddev->sync_speed_min ? 121 mddev->sync_speed_min : sysctl_speed_limit_min; 122 } 123 124 static inline int speed_max(struct mddev *mddev) 125 { 126 return mddev->sync_speed_max ? 127 mddev->sync_speed_max : sysctl_speed_limit_max; 128 } 129 130 static void rdev_uninit_serial(struct md_rdev *rdev) 131 { 132 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 133 return; 134 135 kvfree(rdev->serial); 136 rdev->serial = NULL; 137 } 138 139 static void rdevs_uninit_serial(struct mddev *mddev) 140 { 141 struct md_rdev *rdev; 142 143 rdev_for_each(rdev, mddev) 144 rdev_uninit_serial(rdev); 145 } 146 147 static int rdev_init_serial(struct md_rdev *rdev) 148 { 149 /* serial_nums equals with BARRIER_BUCKETS_NR */ 150 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 151 struct serial_in_rdev *serial = NULL; 152 153 if (test_bit(CollisionCheck, &rdev->flags)) 154 return 0; 155 156 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 157 GFP_KERNEL); 158 if (!serial) 159 return -ENOMEM; 160 161 for (i = 0; i < serial_nums; i++) { 162 struct serial_in_rdev *serial_tmp = &serial[i]; 163 164 spin_lock_init(&serial_tmp->serial_lock); 165 serial_tmp->serial_rb = RB_ROOT_CACHED; 166 init_waitqueue_head(&serial_tmp->serial_io_wait); 167 } 168 169 rdev->serial = serial; 170 set_bit(CollisionCheck, &rdev->flags); 171 172 return 0; 173 } 174 175 static int rdevs_init_serial(struct mddev *mddev) 176 { 177 struct md_rdev *rdev; 178 int ret = 0; 179 180 rdev_for_each(rdev, mddev) { 181 ret = rdev_init_serial(rdev); 182 if (ret) 183 break; 184 } 185 186 /* Free all resources if pool is not existed */ 187 if (ret && !mddev->serial_info_pool) 188 rdevs_uninit_serial(mddev); 189 190 return ret; 191 } 192 193 /* 194 * rdev needs to enable serial stuffs if it meets the conditions: 195 * 1. it is multi-queue device flaged with writemostly. 196 * 2. the write-behind mode is enabled. 197 */ 198 static int rdev_need_serial(struct md_rdev *rdev) 199 { 200 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 201 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 202 test_bit(WriteMostly, &rdev->flags)); 203 } 204 205 /* 206 * Init resource for rdev(s), then create serial_info_pool if: 207 * 1. rdev is the first device which return true from rdev_enable_serial. 208 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 209 */ 210 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 211 bool is_suspend) 212 { 213 int ret = 0; 214 215 if (rdev && !rdev_need_serial(rdev) && 216 !test_bit(CollisionCheck, &rdev->flags)) 217 return; 218 219 if (!is_suspend) 220 mddev_suspend(mddev); 221 222 if (!rdev) 223 ret = rdevs_init_serial(mddev); 224 else 225 ret = rdev_init_serial(rdev); 226 if (ret) 227 goto abort; 228 229 if (mddev->serial_info_pool == NULL) { 230 /* 231 * already in memalloc noio context by 232 * mddev_suspend() 233 */ 234 mddev->serial_info_pool = 235 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 236 sizeof(struct serial_info)); 237 if (!mddev->serial_info_pool) { 238 rdevs_uninit_serial(mddev); 239 pr_err("can't alloc memory pool for serialization\n"); 240 } 241 } 242 243 abort: 244 if (!is_suspend) 245 mddev_resume(mddev); 246 } 247 248 /* 249 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 250 * 1. rdev is the last device flaged with CollisionCheck. 251 * 2. when bitmap is destroyed while policy is not enabled. 252 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 253 */ 254 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 255 bool is_suspend) 256 { 257 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 258 return; 259 260 if (mddev->serial_info_pool) { 261 struct md_rdev *temp; 262 int num = 0; /* used to track if other rdevs need the pool */ 263 264 if (!is_suspend) 265 mddev_suspend(mddev); 266 rdev_for_each(temp, mddev) { 267 if (!rdev) { 268 if (!mddev->serialize_policy || 269 !rdev_need_serial(temp)) 270 rdev_uninit_serial(temp); 271 else 272 num++; 273 } else if (temp != rdev && 274 test_bit(CollisionCheck, &temp->flags)) 275 num++; 276 } 277 278 if (rdev) 279 rdev_uninit_serial(rdev); 280 281 if (num) 282 pr_info("The mempool could be used by other devices\n"); 283 else { 284 mempool_destroy(mddev->serial_info_pool); 285 mddev->serial_info_pool = NULL; 286 } 287 if (!is_suspend) 288 mddev_resume(mddev); 289 } 290 } 291 292 static struct ctl_table_header *raid_table_header; 293 294 static struct ctl_table raid_table[] = { 295 { 296 .procname = "speed_limit_min", 297 .data = &sysctl_speed_limit_min, 298 .maxlen = sizeof(int), 299 .mode = S_IRUGO|S_IWUSR, 300 .proc_handler = proc_dointvec, 301 }, 302 { 303 .procname = "speed_limit_max", 304 .data = &sysctl_speed_limit_max, 305 .maxlen = sizeof(int), 306 .mode = S_IRUGO|S_IWUSR, 307 .proc_handler = proc_dointvec, 308 }, 309 { } 310 }; 311 312 static struct ctl_table raid_dir_table[] = { 313 { 314 .procname = "raid", 315 .maxlen = 0, 316 .mode = S_IRUGO|S_IXUGO, 317 .child = raid_table, 318 }, 319 { } 320 }; 321 322 static struct ctl_table raid_root_table[] = { 323 { 324 .procname = "dev", 325 .maxlen = 0, 326 .mode = 0555, 327 .child = raid_dir_table, 328 }, 329 { } 330 }; 331 332 static int start_readonly; 333 334 /* 335 * The original mechanism for creating an md device is to create 336 * a device node in /dev and to open it. This causes races with device-close. 337 * The preferred method is to write to the "new_array" module parameter. 338 * This can avoid races. 339 * Setting create_on_open to false disables the original mechanism 340 * so all the races disappear. 341 */ 342 static bool create_on_open = true; 343 344 /* 345 * We have a system wide 'event count' that is incremented 346 * on any 'interesting' event, and readers of /proc/mdstat 347 * can use 'poll' or 'select' to find out when the event 348 * count increases. 349 * 350 * Events are: 351 * start array, stop array, error, add device, remove device, 352 * start build, activate spare 353 */ 354 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 355 static atomic_t md_event_count; 356 void md_new_event(struct mddev *mddev) 357 { 358 atomic_inc(&md_event_count); 359 wake_up(&md_event_waiters); 360 } 361 EXPORT_SYMBOL_GPL(md_new_event); 362 363 /* 364 * Enables to iterate over all existing md arrays 365 * all_mddevs_lock protects this list. 366 */ 367 static LIST_HEAD(all_mddevs); 368 static DEFINE_SPINLOCK(all_mddevs_lock); 369 370 /* 371 * iterates through all used mddevs in the system. 372 * We take care to grab the all_mddevs_lock whenever navigating 373 * the list, and to always hold a refcount when unlocked. 374 * Any code which breaks out of this loop while own 375 * a reference to the current mddev and must mddev_put it. 376 */ 377 #define for_each_mddev(_mddev,_tmp) \ 378 \ 379 for (({ spin_lock(&all_mddevs_lock); \ 380 _tmp = all_mddevs.next; \ 381 _mddev = NULL;}); \ 382 ({ if (_tmp != &all_mddevs) \ 383 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 384 spin_unlock(&all_mddevs_lock); \ 385 if (_mddev) mddev_put(_mddev); \ 386 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 387 _tmp != &all_mddevs;}); \ 388 ({ spin_lock(&all_mddevs_lock); \ 389 _tmp = _tmp->next;}) \ 390 ) 391 392 /* Rather than calling directly into the personality make_request function, 393 * IO requests come here first so that we can check if the device is 394 * being suspended pending a reconfiguration. 395 * We hold a refcount over the call to ->make_request. By the time that 396 * call has finished, the bio has been linked into some internal structure 397 * and so is visible to ->quiesce(), so we don't need the refcount any more. 398 */ 399 static bool is_suspended(struct mddev *mddev, struct bio *bio) 400 { 401 if (mddev->suspended) 402 return true; 403 if (bio_data_dir(bio) != WRITE) 404 return false; 405 if (mddev->suspend_lo >= mddev->suspend_hi) 406 return false; 407 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 408 return false; 409 if (bio_end_sector(bio) < mddev->suspend_lo) 410 return false; 411 return true; 412 } 413 414 void md_handle_request(struct mddev *mddev, struct bio *bio) 415 { 416 check_suspended: 417 rcu_read_lock(); 418 if (is_suspended(mddev, bio)) { 419 DEFINE_WAIT(__wait); 420 for (;;) { 421 prepare_to_wait(&mddev->sb_wait, &__wait, 422 TASK_UNINTERRUPTIBLE); 423 if (!is_suspended(mddev, bio)) 424 break; 425 rcu_read_unlock(); 426 schedule(); 427 rcu_read_lock(); 428 } 429 finish_wait(&mddev->sb_wait, &__wait); 430 } 431 atomic_inc(&mddev->active_io); 432 rcu_read_unlock(); 433 434 if (!mddev->pers->make_request(mddev, bio)) { 435 atomic_dec(&mddev->active_io); 436 wake_up(&mddev->sb_wait); 437 goto check_suspended; 438 } 439 440 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 441 wake_up(&mddev->sb_wait); 442 } 443 EXPORT_SYMBOL(md_handle_request); 444 445 static blk_qc_t md_submit_bio(struct bio *bio) 446 { 447 const int rw = bio_data_dir(bio); 448 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 449 450 if (mddev == NULL || mddev->pers == NULL) { 451 bio_io_error(bio); 452 return BLK_QC_T_NONE; 453 } 454 455 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 456 bio_io_error(bio); 457 return BLK_QC_T_NONE; 458 } 459 460 blk_queue_split(&bio); 461 462 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 463 if (bio_sectors(bio) != 0) 464 bio->bi_status = BLK_STS_IOERR; 465 bio_endio(bio); 466 return BLK_QC_T_NONE; 467 } 468 469 /* bio could be mergeable after passing to underlayer */ 470 bio->bi_opf &= ~REQ_NOMERGE; 471 472 md_handle_request(mddev, bio); 473 474 return BLK_QC_T_NONE; 475 } 476 477 /* mddev_suspend makes sure no new requests are submitted 478 * to the device, and that any requests that have been submitted 479 * are completely handled. 480 * Once mddev_detach() is called and completes, the module will be 481 * completely unused. 482 */ 483 void mddev_suspend(struct mddev *mddev) 484 { 485 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 486 lockdep_assert_held(&mddev->reconfig_mutex); 487 if (mddev->suspended++) 488 return; 489 synchronize_rcu(); 490 wake_up(&mddev->sb_wait); 491 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 492 smp_mb__after_atomic(); 493 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 494 mddev->pers->quiesce(mddev, 1); 495 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 496 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 497 498 del_timer_sync(&mddev->safemode_timer); 499 /* restrict memory reclaim I/O during raid array is suspend */ 500 mddev->noio_flag = memalloc_noio_save(); 501 } 502 EXPORT_SYMBOL_GPL(mddev_suspend); 503 504 void mddev_resume(struct mddev *mddev) 505 { 506 /* entred the memalloc scope from mddev_suspend() */ 507 memalloc_noio_restore(mddev->noio_flag); 508 lockdep_assert_held(&mddev->reconfig_mutex); 509 if (--mddev->suspended) 510 return; 511 wake_up(&mddev->sb_wait); 512 mddev->pers->quiesce(mddev, 0); 513 514 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 515 md_wakeup_thread(mddev->thread); 516 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 517 } 518 EXPORT_SYMBOL_GPL(mddev_resume); 519 520 /* 521 * Generic flush handling for md 522 */ 523 524 static void md_end_flush(struct bio *bio) 525 { 526 struct md_rdev *rdev = bio->bi_private; 527 struct mddev *mddev = rdev->mddev; 528 529 rdev_dec_pending(rdev, mddev); 530 531 if (atomic_dec_and_test(&mddev->flush_pending)) { 532 /* The pre-request flush has finished */ 533 queue_work(md_wq, &mddev->flush_work); 534 } 535 bio_put(bio); 536 } 537 538 static void md_submit_flush_data(struct work_struct *ws); 539 540 static void submit_flushes(struct work_struct *ws) 541 { 542 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 543 struct md_rdev *rdev; 544 545 mddev->start_flush = ktime_get_boottime(); 546 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 547 atomic_set(&mddev->flush_pending, 1); 548 rcu_read_lock(); 549 rdev_for_each_rcu(rdev, mddev) 550 if (rdev->raid_disk >= 0 && 551 !test_bit(Faulty, &rdev->flags)) { 552 /* Take two references, one is dropped 553 * when request finishes, one after 554 * we reclaim rcu_read_lock 555 */ 556 struct bio *bi; 557 atomic_inc(&rdev->nr_pending); 558 atomic_inc(&rdev->nr_pending); 559 rcu_read_unlock(); 560 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set); 561 bi->bi_end_io = md_end_flush; 562 bi->bi_private = rdev; 563 bio_set_dev(bi, rdev->bdev); 564 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 565 atomic_inc(&mddev->flush_pending); 566 submit_bio(bi); 567 rcu_read_lock(); 568 rdev_dec_pending(rdev, mddev); 569 } 570 rcu_read_unlock(); 571 if (atomic_dec_and_test(&mddev->flush_pending)) 572 queue_work(md_wq, &mddev->flush_work); 573 } 574 575 static void md_submit_flush_data(struct work_struct *ws) 576 { 577 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 578 struct bio *bio = mddev->flush_bio; 579 580 /* 581 * must reset flush_bio before calling into md_handle_request to avoid a 582 * deadlock, because other bios passed md_handle_request suspend check 583 * could wait for this and below md_handle_request could wait for those 584 * bios because of suspend check 585 */ 586 spin_lock_irq(&mddev->lock); 587 mddev->prev_flush_start = mddev->start_flush; 588 mddev->flush_bio = NULL; 589 spin_unlock_irq(&mddev->lock); 590 wake_up(&mddev->sb_wait); 591 592 if (bio->bi_iter.bi_size == 0) { 593 /* an empty barrier - all done */ 594 bio_endio(bio); 595 } else { 596 bio->bi_opf &= ~REQ_PREFLUSH; 597 md_handle_request(mddev, bio); 598 } 599 } 600 601 /* 602 * Manages consolidation of flushes and submitting any flushes needed for 603 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 604 * being finished in another context. Returns false if the flushing is 605 * complete but still needs the I/O portion of the bio to be processed. 606 */ 607 bool md_flush_request(struct mddev *mddev, struct bio *bio) 608 { 609 ktime_t req_start = ktime_get_boottime(); 610 spin_lock_irq(&mddev->lock); 611 /* flush requests wait until ongoing flush completes, 612 * hence coalescing all the pending requests. 613 */ 614 wait_event_lock_irq(mddev->sb_wait, 615 !mddev->flush_bio || 616 ktime_before(req_start, mddev->prev_flush_start), 617 mddev->lock); 618 /* new request after previous flush is completed */ 619 if (ktime_after(req_start, mddev->prev_flush_start)) { 620 WARN_ON(mddev->flush_bio); 621 mddev->flush_bio = bio; 622 bio = NULL; 623 } 624 spin_unlock_irq(&mddev->lock); 625 626 if (!bio) { 627 INIT_WORK(&mddev->flush_work, submit_flushes); 628 queue_work(md_wq, &mddev->flush_work); 629 } else { 630 /* flush was performed for some other bio while we waited. */ 631 if (bio->bi_iter.bi_size == 0) 632 /* an empty barrier - all done */ 633 bio_endio(bio); 634 else { 635 bio->bi_opf &= ~REQ_PREFLUSH; 636 return false; 637 } 638 } 639 return true; 640 } 641 EXPORT_SYMBOL(md_flush_request); 642 643 static inline struct mddev *mddev_get(struct mddev *mddev) 644 { 645 atomic_inc(&mddev->active); 646 return mddev; 647 } 648 649 static void mddev_delayed_delete(struct work_struct *ws); 650 651 static void mddev_put(struct mddev *mddev) 652 { 653 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 654 return; 655 if (!mddev->raid_disks && list_empty(&mddev->disks) && 656 mddev->ctime == 0 && !mddev->hold_active) { 657 /* Array is not configured at all, and not held active, 658 * so destroy it */ 659 list_del_init(&mddev->all_mddevs); 660 661 /* 662 * Call queue_work inside the spinlock so that 663 * flush_workqueue() after mddev_find will succeed in waiting 664 * for the work to be done. 665 */ 666 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 667 queue_work(md_misc_wq, &mddev->del_work); 668 } 669 spin_unlock(&all_mddevs_lock); 670 } 671 672 static void md_safemode_timeout(struct timer_list *t); 673 674 void mddev_init(struct mddev *mddev) 675 { 676 kobject_init(&mddev->kobj, &md_ktype); 677 mutex_init(&mddev->open_mutex); 678 mutex_init(&mddev->reconfig_mutex); 679 mutex_init(&mddev->bitmap_info.mutex); 680 INIT_LIST_HEAD(&mddev->disks); 681 INIT_LIST_HEAD(&mddev->all_mddevs); 682 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 683 atomic_set(&mddev->active, 1); 684 atomic_set(&mddev->openers, 0); 685 atomic_set(&mddev->active_io, 0); 686 spin_lock_init(&mddev->lock); 687 atomic_set(&mddev->flush_pending, 0); 688 init_waitqueue_head(&mddev->sb_wait); 689 init_waitqueue_head(&mddev->recovery_wait); 690 mddev->reshape_position = MaxSector; 691 mddev->reshape_backwards = 0; 692 mddev->last_sync_action = "none"; 693 mddev->resync_min = 0; 694 mddev->resync_max = MaxSector; 695 mddev->level = LEVEL_NONE; 696 } 697 EXPORT_SYMBOL_GPL(mddev_init); 698 699 static struct mddev *mddev_find_locked(dev_t unit) 700 { 701 struct mddev *mddev; 702 703 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 704 if (mddev->unit == unit) 705 return mddev; 706 707 return NULL; 708 } 709 710 /* find an unused unit number */ 711 static dev_t mddev_alloc_unit(void) 712 { 713 static int next_minor = 512; 714 int start = next_minor; 715 bool is_free = 0; 716 dev_t dev = 0; 717 718 while (!is_free) { 719 dev = MKDEV(MD_MAJOR, next_minor); 720 next_minor++; 721 if (next_minor > MINORMASK) 722 next_minor = 0; 723 if (next_minor == start) 724 return 0; /* Oh dear, all in use. */ 725 is_free = !mddev_find_locked(dev); 726 } 727 728 return dev; 729 } 730 731 static struct mddev *mddev_find(dev_t unit) 732 { 733 struct mddev *mddev; 734 735 if (MAJOR(unit) != MD_MAJOR) 736 unit &= ~((1 << MdpMinorShift) - 1); 737 738 spin_lock(&all_mddevs_lock); 739 mddev = mddev_find_locked(unit); 740 if (mddev) 741 mddev_get(mddev); 742 spin_unlock(&all_mddevs_lock); 743 744 return mddev; 745 } 746 747 static struct mddev *mddev_alloc(dev_t unit) 748 { 749 struct mddev *new; 750 int error; 751 752 if (unit && MAJOR(unit) != MD_MAJOR) 753 unit &= ~((1 << MdpMinorShift) - 1); 754 755 new = kzalloc(sizeof(*new), GFP_KERNEL); 756 if (!new) 757 return ERR_PTR(-ENOMEM); 758 mddev_init(new); 759 760 spin_lock(&all_mddevs_lock); 761 if (unit) { 762 error = -EEXIST; 763 if (mddev_find_locked(unit)) 764 goto out_free_new; 765 new->unit = unit; 766 if (MAJOR(unit) == MD_MAJOR) 767 new->md_minor = MINOR(unit); 768 else 769 new->md_minor = MINOR(unit) >> MdpMinorShift; 770 new->hold_active = UNTIL_IOCTL; 771 } else { 772 error = -ENODEV; 773 new->unit = mddev_alloc_unit(); 774 if (!new->unit) 775 goto out_free_new; 776 new->md_minor = MINOR(new->unit); 777 new->hold_active = UNTIL_STOP; 778 } 779 780 list_add(&new->all_mddevs, &all_mddevs); 781 spin_unlock(&all_mddevs_lock); 782 return new; 783 out_free_new: 784 spin_unlock(&all_mddevs_lock); 785 kfree(new); 786 return ERR_PTR(error); 787 } 788 789 static const struct attribute_group md_redundancy_group; 790 791 void mddev_unlock(struct mddev *mddev) 792 { 793 if (mddev->to_remove) { 794 /* These cannot be removed under reconfig_mutex as 795 * an access to the files will try to take reconfig_mutex 796 * while holding the file unremovable, which leads to 797 * a deadlock. 798 * So hold set sysfs_active while the remove in happeing, 799 * and anything else which might set ->to_remove or my 800 * otherwise change the sysfs namespace will fail with 801 * -EBUSY if sysfs_active is still set. 802 * We set sysfs_active under reconfig_mutex and elsewhere 803 * test it under the same mutex to ensure its correct value 804 * is seen. 805 */ 806 const struct attribute_group *to_remove = mddev->to_remove; 807 mddev->to_remove = NULL; 808 mddev->sysfs_active = 1; 809 mutex_unlock(&mddev->reconfig_mutex); 810 811 if (mddev->kobj.sd) { 812 if (to_remove != &md_redundancy_group) 813 sysfs_remove_group(&mddev->kobj, to_remove); 814 if (mddev->pers == NULL || 815 mddev->pers->sync_request == NULL) { 816 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 817 if (mddev->sysfs_action) 818 sysfs_put(mddev->sysfs_action); 819 if (mddev->sysfs_completed) 820 sysfs_put(mddev->sysfs_completed); 821 if (mddev->sysfs_degraded) 822 sysfs_put(mddev->sysfs_degraded); 823 mddev->sysfs_action = NULL; 824 mddev->sysfs_completed = NULL; 825 mddev->sysfs_degraded = NULL; 826 } 827 } 828 mddev->sysfs_active = 0; 829 } else 830 mutex_unlock(&mddev->reconfig_mutex); 831 832 /* As we've dropped the mutex we need a spinlock to 833 * make sure the thread doesn't disappear 834 */ 835 spin_lock(&pers_lock); 836 md_wakeup_thread(mddev->thread); 837 wake_up(&mddev->sb_wait); 838 spin_unlock(&pers_lock); 839 } 840 EXPORT_SYMBOL_GPL(mddev_unlock); 841 842 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 843 { 844 struct md_rdev *rdev; 845 846 rdev_for_each_rcu(rdev, mddev) 847 if (rdev->desc_nr == nr) 848 return rdev; 849 850 return NULL; 851 } 852 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 853 854 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 855 { 856 struct md_rdev *rdev; 857 858 rdev_for_each(rdev, mddev) 859 if (rdev->bdev->bd_dev == dev) 860 return rdev; 861 862 return NULL; 863 } 864 865 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 866 { 867 struct md_rdev *rdev; 868 869 rdev_for_each_rcu(rdev, mddev) 870 if (rdev->bdev->bd_dev == dev) 871 return rdev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 876 877 static struct md_personality *find_pers(int level, char *clevel) 878 { 879 struct md_personality *pers; 880 list_for_each_entry(pers, &pers_list, list) { 881 if (level != LEVEL_NONE && pers->level == level) 882 return pers; 883 if (strcmp(pers->name, clevel)==0) 884 return pers; 885 } 886 return NULL; 887 } 888 889 /* return the offset of the super block in 512byte sectors */ 890 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 891 { 892 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 893 return MD_NEW_SIZE_SECTORS(num_sectors); 894 } 895 896 static int alloc_disk_sb(struct md_rdev *rdev) 897 { 898 rdev->sb_page = alloc_page(GFP_KERNEL); 899 if (!rdev->sb_page) 900 return -ENOMEM; 901 return 0; 902 } 903 904 void md_rdev_clear(struct md_rdev *rdev) 905 { 906 if (rdev->sb_page) { 907 put_page(rdev->sb_page); 908 rdev->sb_loaded = 0; 909 rdev->sb_page = NULL; 910 rdev->sb_start = 0; 911 rdev->sectors = 0; 912 } 913 if (rdev->bb_page) { 914 put_page(rdev->bb_page); 915 rdev->bb_page = NULL; 916 } 917 badblocks_exit(&rdev->badblocks); 918 } 919 EXPORT_SYMBOL_GPL(md_rdev_clear); 920 921 static void super_written(struct bio *bio) 922 { 923 struct md_rdev *rdev = bio->bi_private; 924 struct mddev *mddev = rdev->mddev; 925 926 if (bio->bi_status) { 927 pr_err("md: %s gets error=%d\n", __func__, 928 blk_status_to_errno(bio->bi_status)); 929 md_error(mddev, rdev); 930 if (!test_bit(Faulty, &rdev->flags) 931 && (bio->bi_opf & MD_FAILFAST)) { 932 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 933 set_bit(LastDev, &rdev->flags); 934 } 935 } else 936 clear_bit(LastDev, &rdev->flags); 937 938 if (atomic_dec_and_test(&mddev->pending_writes)) 939 wake_up(&mddev->sb_wait); 940 rdev_dec_pending(rdev, mddev); 941 bio_put(bio); 942 } 943 944 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 945 sector_t sector, int size, struct page *page) 946 { 947 /* write first size bytes of page to sector of rdev 948 * Increment mddev->pending_writes before returning 949 * and decrement it on completion, waking up sb_wait 950 * if zero is reached. 951 * If an error occurred, call md_error 952 */ 953 struct bio *bio; 954 int ff = 0; 955 956 if (!page) 957 return; 958 959 if (test_bit(Faulty, &rdev->flags)) 960 return; 961 962 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 963 964 atomic_inc(&rdev->nr_pending); 965 966 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 967 bio->bi_iter.bi_sector = sector; 968 bio_add_page(bio, page, size, 0); 969 bio->bi_private = rdev; 970 bio->bi_end_io = super_written; 971 972 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 973 test_bit(FailFast, &rdev->flags) && 974 !test_bit(LastDev, &rdev->flags)) 975 ff = MD_FAILFAST; 976 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 977 978 atomic_inc(&mddev->pending_writes); 979 submit_bio(bio); 980 } 981 982 int md_super_wait(struct mddev *mddev) 983 { 984 /* wait for all superblock writes that were scheduled to complete */ 985 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 986 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 987 return -EAGAIN; 988 return 0; 989 } 990 991 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 992 struct page *page, int op, int op_flags, bool metadata_op) 993 { 994 struct bio bio; 995 struct bio_vec bvec; 996 997 bio_init(&bio, &bvec, 1); 998 999 if (metadata_op && rdev->meta_bdev) 1000 bio_set_dev(&bio, rdev->meta_bdev); 1001 else 1002 bio_set_dev(&bio, rdev->bdev); 1003 bio.bi_opf = op | op_flags; 1004 if (metadata_op) 1005 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1006 else if (rdev->mddev->reshape_position != MaxSector && 1007 (rdev->mddev->reshape_backwards == 1008 (sector >= rdev->mddev->reshape_position))) 1009 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1010 else 1011 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1012 bio_add_page(&bio, page, size, 0); 1013 1014 submit_bio_wait(&bio); 1015 1016 return !bio.bi_status; 1017 } 1018 EXPORT_SYMBOL_GPL(sync_page_io); 1019 1020 static int read_disk_sb(struct md_rdev *rdev, int size) 1021 { 1022 char b[BDEVNAME_SIZE]; 1023 1024 if (rdev->sb_loaded) 1025 return 0; 1026 1027 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1028 goto fail; 1029 rdev->sb_loaded = 1; 1030 return 0; 1031 1032 fail: 1033 pr_err("md: disabled device %s, could not read superblock.\n", 1034 bdevname(rdev->bdev,b)); 1035 return -EINVAL; 1036 } 1037 1038 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1039 { 1040 return sb1->set_uuid0 == sb2->set_uuid0 && 1041 sb1->set_uuid1 == sb2->set_uuid1 && 1042 sb1->set_uuid2 == sb2->set_uuid2 && 1043 sb1->set_uuid3 == sb2->set_uuid3; 1044 } 1045 1046 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1047 { 1048 int ret; 1049 mdp_super_t *tmp1, *tmp2; 1050 1051 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1052 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1053 1054 if (!tmp1 || !tmp2) { 1055 ret = 0; 1056 goto abort; 1057 } 1058 1059 *tmp1 = *sb1; 1060 *tmp2 = *sb2; 1061 1062 /* 1063 * nr_disks is not constant 1064 */ 1065 tmp1->nr_disks = 0; 1066 tmp2->nr_disks = 0; 1067 1068 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1069 abort: 1070 kfree(tmp1); 1071 kfree(tmp2); 1072 return ret; 1073 } 1074 1075 static u32 md_csum_fold(u32 csum) 1076 { 1077 csum = (csum & 0xffff) + (csum >> 16); 1078 return (csum & 0xffff) + (csum >> 16); 1079 } 1080 1081 static unsigned int calc_sb_csum(mdp_super_t *sb) 1082 { 1083 u64 newcsum = 0; 1084 u32 *sb32 = (u32*)sb; 1085 int i; 1086 unsigned int disk_csum, csum; 1087 1088 disk_csum = sb->sb_csum; 1089 sb->sb_csum = 0; 1090 1091 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1092 newcsum += sb32[i]; 1093 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1094 1095 #ifdef CONFIG_ALPHA 1096 /* This used to use csum_partial, which was wrong for several 1097 * reasons including that different results are returned on 1098 * different architectures. It isn't critical that we get exactly 1099 * the same return value as before (we always csum_fold before 1100 * testing, and that removes any differences). However as we 1101 * know that csum_partial always returned a 16bit value on 1102 * alphas, do a fold to maximise conformity to previous behaviour. 1103 */ 1104 sb->sb_csum = md_csum_fold(disk_csum); 1105 #else 1106 sb->sb_csum = disk_csum; 1107 #endif 1108 return csum; 1109 } 1110 1111 /* 1112 * Handle superblock details. 1113 * We want to be able to handle multiple superblock formats 1114 * so we have a common interface to them all, and an array of 1115 * different handlers. 1116 * We rely on user-space to write the initial superblock, and support 1117 * reading and updating of superblocks. 1118 * Interface methods are: 1119 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1120 * loads and validates a superblock on dev. 1121 * if refdev != NULL, compare superblocks on both devices 1122 * Return: 1123 * 0 - dev has a superblock that is compatible with refdev 1124 * 1 - dev has a superblock that is compatible and newer than refdev 1125 * so dev should be used as the refdev in future 1126 * -EINVAL superblock incompatible or invalid 1127 * -othererror e.g. -EIO 1128 * 1129 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1130 * Verify that dev is acceptable into mddev. 1131 * The first time, mddev->raid_disks will be 0, and data from 1132 * dev should be merged in. Subsequent calls check that dev 1133 * is new enough. Return 0 or -EINVAL 1134 * 1135 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1136 * Update the superblock for rdev with data in mddev 1137 * This does not write to disc. 1138 * 1139 */ 1140 1141 struct super_type { 1142 char *name; 1143 struct module *owner; 1144 int (*load_super)(struct md_rdev *rdev, 1145 struct md_rdev *refdev, 1146 int minor_version); 1147 int (*validate_super)(struct mddev *mddev, 1148 struct md_rdev *rdev); 1149 void (*sync_super)(struct mddev *mddev, 1150 struct md_rdev *rdev); 1151 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1152 sector_t num_sectors); 1153 int (*allow_new_offset)(struct md_rdev *rdev, 1154 unsigned long long new_offset); 1155 }; 1156 1157 /* 1158 * Check that the given mddev has no bitmap. 1159 * 1160 * This function is called from the run method of all personalities that do not 1161 * support bitmaps. It prints an error message and returns non-zero if mddev 1162 * has a bitmap. Otherwise, it returns 0. 1163 * 1164 */ 1165 int md_check_no_bitmap(struct mddev *mddev) 1166 { 1167 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1168 return 0; 1169 pr_warn("%s: bitmaps are not supported for %s\n", 1170 mdname(mddev), mddev->pers->name); 1171 return 1; 1172 } 1173 EXPORT_SYMBOL(md_check_no_bitmap); 1174 1175 /* 1176 * load_super for 0.90.0 1177 */ 1178 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1179 { 1180 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1181 mdp_super_t *sb; 1182 int ret; 1183 bool spare_disk = true; 1184 1185 /* 1186 * Calculate the position of the superblock (512byte sectors), 1187 * it's at the end of the disk. 1188 * 1189 * It also happens to be a multiple of 4Kb. 1190 */ 1191 rdev->sb_start = calc_dev_sboffset(rdev); 1192 1193 ret = read_disk_sb(rdev, MD_SB_BYTES); 1194 if (ret) 1195 return ret; 1196 1197 ret = -EINVAL; 1198 1199 bdevname(rdev->bdev, b); 1200 sb = page_address(rdev->sb_page); 1201 1202 if (sb->md_magic != MD_SB_MAGIC) { 1203 pr_warn("md: invalid raid superblock magic on %s\n", b); 1204 goto abort; 1205 } 1206 1207 if (sb->major_version != 0 || 1208 sb->minor_version < 90 || 1209 sb->minor_version > 91) { 1210 pr_warn("Bad version number %d.%d on %s\n", 1211 sb->major_version, sb->minor_version, b); 1212 goto abort; 1213 } 1214 1215 if (sb->raid_disks <= 0) 1216 goto abort; 1217 1218 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1219 pr_warn("md: invalid superblock checksum on %s\n", b); 1220 goto abort; 1221 } 1222 1223 rdev->preferred_minor = sb->md_minor; 1224 rdev->data_offset = 0; 1225 rdev->new_data_offset = 0; 1226 rdev->sb_size = MD_SB_BYTES; 1227 rdev->badblocks.shift = -1; 1228 1229 if (sb->level == LEVEL_MULTIPATH) 1230 rdev->desc_nr = -1; 1231 else 1232 rdev->desc_nr = sb->this_disk.number; 1233 1234 /* not spare disk, or LEVEL_MULTIPATH */ 1235 if (sb->level == LEVEL_MULTIPATH || 1236 (rdev->desc_nr >= 0 && 1237 rdev->desc_nr < MD_SB_DISKS && 1238 sb->disks[rdev->desc_nr].state & 1239 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1240 spare_disk = false; 1241 1242 if (!refdev) { 1243 if (!spare_disk) 1244 ret = 1; 1245 else 1246 ret = 0; 1247 } else { 1248 __u64 ev1, ev2; 1249 mdp_super_t *refsb = page_address(refdev->sb_page); 1250 if (!md_uuid_equal(refsb, sb)) { 1251 pr_warn("md: %s has different UUID to %s\n", 1252 b, bdevname(refdev->bdev,b2)); 1253 goto abort; 1254 } 1255 if (!md_sb_equal(refsb, sb)) { 1256 pr_warn("md: %s has same UUID but different superblock to %s\n", 1257 b, bdevname(refdev->bdev, b2)); 1258 goto abort; 1259 } 1260 ev1 = md_event(sb); 1261 ev2 = md_event(refsb); 1262 1263 if (!spare_disk && ev1 > ev2) 1264 ret = 1; 1265 else 1266 ret = 0; 1267 } 1268 rdev->sectors = rdev->sb_start; 1269 /* Limit to 4TB as metadata cannot record more than that. 1270 * (not needed for Linear and RAID0 as metadata doesn't 1271 * record this size) 1272 */ 1273 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1274 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1275 1276 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1277 /* "this cannot possibly happen" ... */ 1278 ret = -EINVAL; 1279 1280 abort: 1281 return ret; 1282 } 1283 1284 /* 1285 * validate_super for 0.90.0 1286 */ 1287 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1288 { 1289 mdp_disk_t *desc; 1290 mdp_super_t *sb = page_address(rdev->sb_page); 1291 __u64 ev1 = md_event(sb); 1292 1293 rdev->raid_disk = -1; 1294 clear_bit(Faulty, &rdev->flags); 1295 clear_bit(In_sync, &rdev->flags); 1296 clear_bit(Bitmap_sync, &rdev->flags); 1297 clear_bit(WriteMostly, &rdev->flags); 1298 1299 if (mddev->raid_disks == 0) { 1300 mddev->major_version = 0; 1301 mddev->minor_version = sb->minor_version; 1302 mddev->patch_version = sb->patch_version; 1303 mddev->external = 0; 1304 mddev->chunk_sectors = sb->chunk_size >> 9; 1305 mddev->ctime = sb->ctime; 1306 mddev->utime = sb->utime; 1307 mddev->level = sb->level; 1308 mddev->clevel[0] = 0; 1309 mddev->layout = sb->layout; 1310 mddev->raid_disks = sb->raid_disks; 1311 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1312 mddev->events = ev1; 1313 mddev->bitmap_info.offset = 0; 1314 mddev->bitmap_info.space = 0; 1315 /* bitmap can use 60 K after the 4K superblocks */ 1316 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1317 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1318 mddev->reshape_backwards = 0; 1319 1320 if (mddev->minor_version >= 91) { 1321 mddev->reshape_position = sb->reshape_position; 1322 mddev->delta_disks = sb->delta_disks; 1323 mddev->new_level = sb->new_level; 1324 mddev->new_layout = sb->new_layout; 1325 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1326 if (mddev->delta_disks < 0) 1327 mddev->reshape_backwards = 1; 1328 } else { 1329 mddev->reshape_position = MaxSector; 1330 mddev->delta_disks = 0; 1331 mddev->new_level = mddev->level; 1332 mddev->new_layout = mddev->layout; 1333 mddev->new_chunk_sectors = mddev->chunk_sectors; 1334 } 1335 if (mddev->level == 0) 1336 mddev->layout = -1; 1337 1338 if (sb->state & (1<<MD_SB_CLEAN)) 1339 mddev->recovery_cp = MaxSector; 1340 else { 1341 if (sb->events_hi == sb->cp_events_hi && 1342 sb->events_lo == sb->cp_events_lo) { 1343 mddev->recovery_cp = sb->recovery_cp; 1344 } else 1345 mddev->recovery_cp = 0; 1346 } 1347 1348 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1349 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1350 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1351 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1352 1353 mddev->max_disks = MD_SB_DISKS; 1354 1355 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1356 mddev->bitmap_info.file == NULL) { 1357 mddev->bitmap_info.offset = 1358 mddev->bitmap_info.default_offset; 1359 mddev->bitmap_info.space = 1360 mddev->bitmap_info.default_space; 1361 } 1362 1363 } else if (mddev->pers == NULL) { 1364 /* Insist on good event counter while assembling, except 1365 * for spares (which don't need an event count) */ 1366 ++ev1; 1367 if (sb->disks[rdev->desc_nr].state & ( 1368 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1369 if (ev1 < mddev->events) 1370 return -EINVAL; 1371 } else if (mddev->bitmap) { 1372 /* if adding to array with a bitmap, then we can accept an 1373 * older device ... but not too old. 1374 */ 1375 if (ev1 < mddev->bitmap->events_cleared) 1376 return 0; 1377 if (ev1 < mddev->events) 1378 set_bit(Bitmap_sync, &rdev->flags); 1379 } else { 1380 if (ev1 < mddev->events) 1381 /* just a hot-add of a new device, leave raid_disk at -1 */ 1382 return 0; 1383 } 1384 1385 if (mddev->level != LEVEL_MULTIPATH) { 1386 desc = sb->disks + rdev->desc_nr; 1387 1388 if (desc->state & (1<<MD_DISK_FAULTY)) 1389 set_bit(Faulty, &rdev->flags); 1390 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1391 desc->raid_disk < mddev->raid_disks */) { 1392 set_bit(In_sync, &rdev->flags); 1393 rdev->raid_disk = desc->raid_disk; 1394 rdev->saved_raid_disk = desc->raid_disk; 1395 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1396 /* active but not in sync implies recovery up to 1397 * reshape position. We don't know exactly where 1398 * that is, so set to zero for now */ 1399 if (mddev->minor_version >= 91) { 1400 rdev->recovery_offset = 0; 1401 rdev->raid_disk = desc->raid_disk; 1402 } 1403 } 1404 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1405 set_bit(WriteMostly, &rdev->flags); 1406 if (desc->state & (1<<MD_DISK_FAILFAST)) 1407 set_bit(FailFast, &rdev->flags); 1408 } else /* MULTIPATH are always insync */ 1409 set_bit(In_sync, &rdev->flags); 1410 return 0; 1411 } 1412 1413 /* 1414 * sync_super for 0.90.0 1415 */ 1416 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1417 { 1418 mdp_super_t *sb; 1419 struct md_rdev *rdev2; 1420 int next_spare = mddev->raid_disks; 1421 1422 /* make rdev->sb match mddev data.. 1423 * 1424 * 1/ zero out disks 1425 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1426 * 3/ any empty disks < next_spare become removed 1427 * 1428 * disks[0] gets initialised to REMOVED because 1429 * we cannot be sure from other fields if it has 1430 * been initialised or not. 1431 */ 1432 int i; 1433 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1434 1435 rdev->sb_size = MD_SB_BYTES; 1436 1437 sb = page_address(rdev->sb_page); 1438 1439 memset(sb, 0, sizeof(*sb)); 1440 1441 sb->md_magic = MD_SB_MAGIC; 1442 sb->major_version = mddev->major_version; 1443 sb->patch_version = mddev->patch_version; 1444 sb->gvalid_words = 0; /* ignored */ 1445 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1446 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1447 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1448 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1449 1450 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1451 sb->level = mddev->level; 1452 sb->size = mddev->dev_sectors / 2; 1453 sb->raid_disks = mddev->raid_disks; 1454 sb->md_minor = mddev->md_minor; 1455 sb->not_persistent = 0; 1456 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1457 sb->state = 0; 1458 sb->events_hi = (mddev->events>>32); 1459 sb->events_lo = (u32)mddev->events; 1460 1461 if (mddev->reshape_position == MaxSector) 1462 sb->minor_version = 90; 1463 else { 1464 sb->minor_version = 91; 1465 sb->reshape_position = mddev->reshape_position; 1466 sb->new_level = mddev->new_level; 1467 sb->delta_disks = mddev->delta_disks; 1468 sb->new_layout = mddev->new_layout; 1469 sb->new_chunk = mddev->new_chunk_sectors << 9; 1470 } 1471 mddev->minor_version = sb->minor_version; 1472 if (mddev->in_sync) 1473 { 1474 sb->recovery_cp = mddev->recovery_cp; 1475 sb->cp_events_hi = (mddev->events>>32); 1476 sb->cp_events_lo = (u32)mddev->events; 1477 if (mddev->recovery_cp == MaxSector) 1478 sb->state = (1<< MD_SB_CLEAN); 1479 } else 1480 sb->recovery_cp = 0; 1481 1482 sb->layout = mddev->layout; 1483 sb->chunk_size = mddev->chunk_sectors << 9; 1484 1485 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1486 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1487 1488 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1489 rdev_for_each(rdev2, mddev) { 1490 mdp_disk_t *d; 1491 int desc_nr; 1492 int is_active = test_bit(In_sync, &rdev2->flags); 1493 1494 if (rdev2->raid_disk >= 0 && 1495 sb->minor_version >= 91) 1496 /* we have nowhere to store the recovery_offset, 1497 * but if it is not below the reshape_position, 1498 * we can piggy-back on that. 1499 */ 1500 is_active = 1; 1501 if (rdev2->raid_disk < 0 || 1502 test_bit(Faulty, &rdev2->flags)) 1503 is_active = 0; 1504 if (is_active) 1505 desc_nr = rdev2->raid_disk; 1506 else 1507 desc_nr = next_spare++; 1508 rdev2->desc_nr = desc_nr; 1509 d = &sb->disks[rdev2->desc_nr]; 1510 nr_disks++; 1511 d->number = rdev2->desc_nr; 1512 d->major = MAJOR(rdev2->bdev->bd_dev); 1513 d->minor = MINOR(rdev2->bdev->bd_dev); 1514 if (is_active) 1515 d->raid_disk = rdev2->raid_disk; 1516 else 1517 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1518 if (test_bit(Faulty, &rdev2->flags)) 1519 d->state = (1<<MD_DISK_FAULTY); 1520 else if (is_active) { 1521 d->state = (1<<MD_DISK_ACTIVE); 1522 if (test_bit(In_sync, &rdev2->flags)) 1523 d->state |= (1<<MD_DISK_SYNC); 1524 active++; 1525 working++; 1526 } else { 1527 d->state = 0; 1528 spare++; 1529 working++; 1530 } 1531 if (test_bit(WriteMostly, &rdev2->flags)) 1532 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1533 if (test_bit(FailFast, &rdev2->flags)) 1534 d->state |= (1<<MD_DISK_FAILFAST); 1535 } 1536 /* now set the "removed" and "faulty" bits on any missing devices */ 1537 for (i=0 ; i < mddev->raid_disks ; i++) { 1538 mdp_disk_t *d = &sb->disks[i]; 1539 if (d->state == 0 && d->number == 0) { 1540 d->number = i; 1541 d->raid_disk = i; 1542 d->state = (1<<MD_DISK_REMOVED); 1543 d->state |= (1<<MD_DISK_FAULTY); 1544 failed++; 1545 } 1546 } 1547 sb->nr_disks = nr_disks; 1548 sb->active_disks = active; 1549 sb->working_disks = working; 1550 sb->failed_disks = failed; 1551 sb->spare_disks = spare; 1552 1553 sb->this_disk = sb->disks[rdev->desc_nr]; 1554 sb->sb_csum = calc_sb_csum(sb); 1555 } 1556 1557 /* 1558 * rdev_size_change for 0.90.0 1559 */ 1560 static unsigned long long 1561 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1562 { 1563 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1564 return 0; /* component must fit device */ 1565 if (rdev->mddev->bitmap_info.offset) 1566 return 0; /* can't move bitmap */ 1567 rdev->sb_start = calc_dev_sboffset(rdev); 1568 if (!num_sectors || num_sectors > rdev->sb_start) 1569 num_sectors = rdev->sb_start; 1570 /* Limit to 4TB as metadata cannot record more than that. 1571 * 4TB == 2^32 KB, or 2*2^32 sectors. 1572 */ 1573 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1574 num_sectors = (sector_t)(2ULL << 32) - 2; 1575 do { 1576 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1577 rdev->sb_page); 1578 } while (md_super_wait(rdev->mddev) < 0); 1579 return num_sectors; 1580 } 1581 1582 static int 1583 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1584 { 1585 /* non-zero offset changes not possible with v0.90 */ 1586 return new_offset == 0; 1587 } 1588 1589 /* 1590 * version 1 superblock 1591 */ 1592 1593 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1594 { 1595 __le32 disk_csum; 1596 u32 csum; 1597 unsigned long long newcsum; 1598 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1599 __le32 *isuper = (__le32*)sb; 1600 1601 disk_csum = sb->sb_csum; 1602 sb->sb_csum = 0; 1603 newcsum = 0; 1604 for (; size >= 4; size -= 4) 1605 newcsum += le32_to_cpu(*isuper++); 1606 1607 if (size == 2) 1608 newcsum += le16_to_cpu(*(__le16*) isuper); 1609 1610 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1611 sb->sb_csum = disk_csum; 1612 return cpu_to_le32(csum); 1613 } 1614 1615 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1616 { 1617 struct mdp_superblock_1 *sb; 1618 int ret; 1619 sector_t sb_start; 1620 sector_t sectors; 1621 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1622 int bmask; 1623 bool spare_disk = true; 1624 1625 /* 1626 * Calculate the position of the superblock in 512byte sectors. 1627 * It is always aligned to a 4K boundary and 1628 * depeding on minor_version, it can be: 1629 * 0: At least 8K, but less than 12K, from end of device 1630 * 1: At start of device 1631 * 2: 4K from start of device. 1632 */ 1633 switch(minor_version) { 1634 case 0: 1635 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1636 sb_start -= 8*2; 1637 sb_start &= ~(sector_t)(4*2-1); 1638 break; 1639 case 1: 1640 sb_start = 0; 1641 break; 1642 case 2: 1643 sb_start = 8; 1644 break; 1645 default: 1646 return -EINVAL; 1647 } 1648 rdev->sb_start = sb_start; 1649 1650 /* superblock is rarely larger than 1K, but it can be larger, 1651 * and it is safe to read 4k, so we do that 1652 */ 1653 ret = read_disk_sb(rdev, 4096); 1654 if (ret) return ret; 1655 1656 sb = page_address(rdev->sb_page); 1657 1658 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1659 sb->major_version != cpu_to_le32(1) || 1660 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1661 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1662 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1663 return -EINVAL; 1664 1665 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1666 pr_warn("md: invalid superblock checksum on %s\n", 1667 bdevname(rdev->bdev,b)); 1668 return -EINVAL; 1669 } 1670 if (le64_to_cpu(sb->data_size) < 10) { 1671 pr_warn("md: data_size too small on %s\n", 1672 bdevname(rdev->bdev,b)); 1673 return -EINVAL; 1674 } 1675 if (sb->pad0 || 1676 sb->pad3[0] || 1677 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1678 /* Some padding is non-zero, might be a new feature */ 1679 return -EINVAL; 1680 1681 rdev->preferred_minor = 0xffff; 1682 rdev->data_offset = le64_to_cpu(sb->data_offset); 1683 rdev->new_data_offset = rdev->data_offset; 1684 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1685 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1686 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1687 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1688 1689 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1690 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1691 if (rdev->sb_size & bmask) 1692 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1693 1694 if (minor_version 1695 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1696 return -EINVAL; 1697 if (minor_version 1698 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1699 return -EINVAL; 1700 1701 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1702 rdev->desc_nr = -1; 1703 else 1704 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1705 1706 if (!rdev->bb_page) { 1707 rdev->bb_page = alloc_page(GFP_KERNEL); 1708 if (!rdev->bb_page) 1709 return -ENOMEM; 1710 } 1711 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1712 rdev->badblocks.count == 0) { 1713 /* need to load the bad block list. 1714 * Currently we limit it to one page. 1715 */ 1716 s32 offset; 1717 sector_t bb_sector; 1718 __le64 *bbp; 1719 int i; 1720 int sectors = le16_to_cpu(sb->bblog_size); 1721 if (sectors > (PAGE_SIZE / 512)) 1722 return -EINVAL; 1723 offset = le32_to_cpu(sb->bblog_offset); 1724 if (offset == 0) 1725 return -EINVAL; 1726 bb_sector = (long long)offset; 1727 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1728 rdev->bb_page, REQ_OP_READ, 0, true)) 1729 return -EIO; 1730 bbp = (__le64 *)page_address(rdev->bb_page); 1731 rdev->badblocks.shift = sb->bblog_shift; 1732 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1733 u64 bb = le64_to_cpu(*bbp); 1734 int count = bb & (0x3ff); 1735 u64 sector = bb >> 10; 1736 sector <<= sb->bblog_shift; 1737 count <<= sb->bblog_shift; 1738 if (bb + 1 == 0) 1739 break; 1740 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1741 return -EINVAL; 1742 } 1743 } else if (sb->bblog_offset != 0) 1744 rdev->badblocks.shift = 0; 1745 1746 if ((le32_to_cpu(sb->feature_map) & 1747 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1748 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1749 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1750 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1751 } 1752 1753 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1754 sb->level != 0) 1755 return -EINVAL; 1756 1757 /* not spare disk, or LEVEL_MULTIPATH */ 1758 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1759 (rdev->desc_nr >= 0 && 1760 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1761 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1762 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1763 spare_disk = false; 1764 1765 if (!refdev) { 1766 if (!spare_disk) 1767 ret = 1; 1768 else 1769 ret = 0; 1770 } else { 1771 __u64 ev1, ev2; 1772 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1773 1774 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1775 sb->level != refsb->level || 1776 sb->layout != refsb->layout || 1777 sb->chunksize != refsb->chunksize) { 1778 pr_warn("md: %s has strangely different superblock to %s\n", 1779 bdevname(rdev->bdev,b), 1780 bdevname(refdev->bdev,b2)); 1781 return -EINVAL; 1782 } 1783 ev1 = le64_to_cpu(sb->events); 1784 ev2 = le64_to_cpu(refsb->events); 1785 1786 if (!spare_disk && ev1 > ev2) 1787 ret = 1; 1788 else 1789 ret = 0; 1790 } 1791 if (minor_version) { 1792 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1793 sectors -= rdev->data_offset; 1794 } else 1795 sectors = rdev->sb_start; 1796 if (sectors < le64_to_cpu(sb->data_size)) 1797 return -EINVAL; 1798 rdev->sectors = le64_to_cpu(sb->data_size); 1799 return ret; 1800 } 1801 1802 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1803 { 1804 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1805 __u64 ev1 = le64_to_cpu(sb->events); 1806 1807 rdev->raid_disk = -1; 1808 clear_bit(Faulty, &rdev->flags); 1809 clear_bit(In_sync, &rdev->flags); 1810 clear_bit(Bitmap_sync, &rdev->flags); 1811 clear_bit(WriteMostly, &rdev->flags); 1812 1813 if (mddev->raid_disks == 0) { 1814 mddev->major_version = 1; 1815 mddev->patch_version = 0; 1816 mddev->external = 0; 1817 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1818 mddev->ctime = le64_to_cpu(sb->ctime); 1819 mddev->utime = le64_to_cpu(sb->utime); 1820 mddev->level = le32_to_cpu(sb->level); 1821 mddev->clevel[0] = 0; 1822 mddev->layout = le32_to_cpu(sb->layout); 1823 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1824 mddev->dev_sectors = le64_to_cpu(sb->size); 1825 mddev->events = ev1; 1826 mddev->bitmap_info.offset = 0; 1827 mddev->bitmap_info.space = 0; 1828 /* Default location for bitmap is 1K after superblock 1829 * using 3K - total of 4K 1830 */ 1831 mddev->bitmap_info.default_offset = 1024 >> 9; 1832 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1833 mddev->reshape_backwards = 0; 1834 1835 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1836 memcpy(mddev->uuid, sb->set_uuid, 16); 1837 1838 mddev->max_disks = (4096-256)/2; 1839 1840 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1841 mddev->bitmap_info.file == NULL) { 1842 mddev->bitmap_info.offset = 1843 (__s32)le32_to_cpu(sb->bitmap_offset); 1844 /* Metadata doesn't record how much space is available. 1845 * For 1.0, we assume we can use up to the superblock 1846 * if before, else to 4K beyond superblock. 1847 * For others, assume no change is possible. 1848 */ 1849 if (mddev->minor_version > 0) 1850 mddev->bitmap_info.space = 0; 1851 else if (mddev->bitmap_info.offset > 0) 1852 mddev->bitmap_info.space = 1853 8 - mddev->bitmap_info.offset; 1854 else 1855 mddev->bitmap_info.space = 1856 -mddev->bitmap_info.offset; 1857 } 1858 1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1860 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1861 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1862 mddev->new_level = le32_to_cpu(sb->new_level); 1863 mddev->new_layout = le32_to_cpu(sb->new_layout); 1864 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1865 if (mddev->delta_disks < 0 || 1866 (mddev->delta_disks == 0 && 1867 (le32_to_cpu(sb->feature_map) 1868 & MD_FEATURE_RESHAPE_BACKWARDS))) 1869 mddev->reshape_backwards = 1; 1870 } else { 1871 mddev->reshape_position = MaxSector; 1872 mddev->delta_disks = 0; 1873 mddev->new_level = mddev->level; 1874 mddev->new_layout = mddev->layout; 1875 mddev->new_chunk_sectors = mddev->chunk_sectors; 1876 } 1877 1878 if (mddev->level == 0 && 1879 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1880 mddev->layout = -1; 1881 1882 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1883 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1884 1885 if (le32_to_cpu(sb->feature_map) & 1886 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1887 if (le32_to_cpu(sb->feature_map) & 1888 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1889 return -EINVAL; 1890 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1891 (le32_to_cpu(sb->feature_map) & 1892 MD_FEATURE_MULTIPLE_PPLS)) 1893 return -EINVAL; 1894 set_bit(MD_HAS_PPL, &mddev->flags); 1895 } 1896 } else if (mddev->pers == NULL) { 1897 /* Insist of good event counter while assembling, except for 1898 * spares (which don't need an event count) */ 1899 ++ev1; 1900 if (rdev->desc_nr >= 0 && 1901 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1902 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1903 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1904 if (ev1 < mddev->events) 1905 return -EINVAL; 1906 } else if (mddev->bitmap) { 1907 /* If adding to array with a bitmap, then we can accept an 1908 * older device, but not too old. 1909 */ 1910 if (ev1 < mddev->bitmap->events_cleared) 1911 return 0; 1912 if (ev1 < mddev->events) 1913 set_bit(Bitmap_sync, &rdev->flags); 1914 } else { 1915 if (ev1 < mddev->events) 1916 /* just a hot-add of a new device, leave raid_disk at -1 */ 1917 return 0; 1918 } 1919 if (mddev->level != LEVEL_MULTIPATH) { 1920 int role; 1921 if (rdev->desc_nr < 0 || 1922 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1923 role = MD_DISK_ROLE_SPARE; 1924 rdev->desc_nr = -1; 1925 } else 1926 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1927 switch(role) { 1928 case MD_DISK_ROLE_SPARE: /* spare */ 1929 break; 1930 case MD_DISK_ROLE_FAULTY: /* faulty */ 1931 set_bit(Faulty, &rdev->flags); 1932 break; 1933 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1934 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1935 /* journal device without journal feature */ 1936 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1937 return -EINVAL; 1938 } 1939 set_bit(Journal, &rdev->flags); 1940 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1941 rdev->raid_disk = 0; 1942 break; 1943 default: 1944 rdev->saved_raid_disk = role; 1945 if ((le32_to_cpu(sb->feature_map) & 1946 MD_FEATURE_RECOVERY_OFFSET)) { 1947 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1948 if (!(le32_to_cpu(sb->feature_map) & 1949 MD_FEATURE_RECOVERY_BITMAP)) 1950 rdev->saved_raid_disk = -1; 1951 } else { 1952 /* 1953 * If the array is FROZEN, then the device can't 1954 * be in_sync with rest of array. 1955 */ 1956 if (!test_bit(MD_RECOVERY_FROZEN, 1957 &mddev->recovery)) 1958 set_bit(In_sync, &rdev->flags); 1959 } 1960 rdev->raid_disk = role; 1961 break; 1962 } 1963 if (sb->devflags & WriteMostly1) 1964 set_bit(WriteMostly, &rdev->flags); 1965 if (sb->devflags & FailFast1) 1966 set_bit(FailFast, &rdev->flags); 1967 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1968 set_bit(Replacement, &rdev->flags); 1969 } else /* MULTIPATH are always insync */ 1970 set_bit(In_sync, &rdev->flags); 1971 1972 return 0; 1973 } 1974 1975 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1976 { 1977 struct mdp_superblock_1 *sb; 1978 struct md_rdev *rdev2; 1979 int max_dev, i; 1980 /* make rdev->sb match mddev and rdev data. */ 1981 1982 sb = page_address(rdev->sb_page); 1983 1984 sb->feature_map = 0; 1985 sb->pad0 = 0; 1986 sb->recovery_offset = cpu_to_le64(0); 1987 memset(sb->pad3, 0, sizeof(sb->pad3)); 1988 1989 sb->utime = cpu_to_le64((__u64)mddev->utime); 1990 sb->events = cpu_to_le64(mddev->events); 1991 if (mddev->in_sync) 1992 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1993 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1994 sb->resync_offset = cpu_to_le64(MaxSector); 1995 else 1996 sb->resync_offset = cpu_to_le64(0); 1997 1998 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1999 2000 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2001 sb->size = cpu_to_le64(mddev->dev_sectors); 2002 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2003 sb->level = cpu_to_le32(mddev->level); 2004 sb->layout = cpu_to_le32(mddev->layout); 2005 if (test_bit(FailFast, &rdev->flags)) 2006 sb->devflags |= FailFast1; 2007 else 2008 sb->devflags &= ~FailFast1; 2009 2010 if (test_bit(WriteMostly, &rdev->flags)) 2011 sb->devflags |= WriteMostly1; 2012 else 2013 sb->devflags &= ~WriteMostly1; 2014 sb->data_offset = cpu_to_le64(rdev->data_offset); 2015 sb->data_size = cpu_to_le64(rdev->sectors); 2016 2017 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2018 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2019 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2020 } 2021 2022 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2023 !test_bit(In_sync, &rdev->flags)) { 2024 sb->feature_map |= 2025 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2026 sb->recovery_offset = 2027 cpu_to_le64(rdev->recovery_offset); 2028 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2029 sb->feature_map |= 2030 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2031 } 2032 /* Note: recovery_offset and journal_tail share space */ 2033 if (test_bit(Journal, &rdev->flags)) 2034 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2035 if (test_bit(Replacement, &rdev->flags)) 2036 sb->feature_map |= 2037 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2038 2039 if (mddev->reshape_position != MaxSector) { 2040 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2041 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2042 sb->new_layout = cpu_to_le32(mddev->new_layout); 2043 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2044 sb->new_level = cpu_to_le32(mddev->new_level); 2045 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2046 if (mddev->delta_disks == 0 && 2047 mddev->reshape_backwards) 2048 sb->feature_map 2049 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2050 if (rdev->new_data_offset != rdev->data_offset) { 2051 sb->feature_map 2052 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2053 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2054 - rdev->data_offset)); 2055 } 2056 } 2057 2058 if (mddev_is_clustered(mddev)) 2059 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2060 2061 if (rdev->badblocks.count == 0) 2062 /* Nothing to do for bad blocks*/ ; 2063 else if (sb->bblog_offset == 0) 2064 /* Cannot record bad blocks on this device */ 2065 md_error(mddev, rdev); 2066 else { 2067 struct badblocks *bb = &rdev->badblocks; 2068 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2069 u64 *p = bb->page; 2070 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2071 if (bb->changed) { 2072 unsigned seq; 2073 2074 retry: 2075 seq = read_seqbegin(&bb->lock); 2076 2077 memset(bbp, 0xff, PAGE_SIZE); 2078 2079 for (i = 0 ; i < bb->count ; i++) { 2080 u64 internal_bb = p[i]; 2081 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2082 | BB_LEN(internal_bb)); 2083 bbp[i] = cpu_to_le64(store_bb); 2084 } 2085 bb->changed = 0; 2086 if (read_seqretry(&bb->lock, seq)) 2087 goto retry; 2088 2089 bb->sector = (rdev->sb_start + 2090 (int)le32_to_cpu(sb->bblog_offset)); 2091 bb->size = le16_to_cpu(sb->bblog_size); 2092 } 2093 } 2094 2095 max_dev = 0; 2096 rdev_for_each(rdev2, mddev) 2097 if (rdev2->desc_nr+1 > max_dev) 2098 max_dev = rdev2->desc_nr+1; 2099 2100 if (max_dev > le32_to_cpu(sb->max_dev)) { 2101 int bmask; 2102 sb->max_dev = cpu_to_le32(max_dev); 2103 rdev->sb_size = max_dev * 2 + 256; 2104 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2105 if (rdev->sb_size & bmask) 2106 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2107 } else 2108 max_dev = le32_to_cpu(sb->max_dev); 2109 2110 for (i=0; i<max_dev;i++) 2111 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2112 2113 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2114 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2115 2116 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2117 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2118 sb->feature_map |= 2119 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2120 else 2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2122 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2123 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2124 } 2125 2126 rdev_for_each(rdev2, mddev) { 2127 i = rdev2->desc_nr; 2128 if (test_bit(Faulty, &rdev2->flags)) 2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2130 else if (test_bit(In_sync, &rdev2->flags)) 2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2132 else if (test_bit(Journal, &rdev2->flags)) 2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2134 else if (rdev2->raid_disk >= 0) 2135 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2136 else 2137 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2138 } 2139 2140 sb->sb_csum = calc_sb_1_csum(sb); 2141 } 2142 2143 static sector_t super_1_choose_bm_space(sector_t dev_size) 2144 { 2145 sector_t bm_space; 2146 2147 /* if the device is bigger than 8Gig, save 64k for bitmap 2148 * usage, if bigger than 200Gig, save 128k 2149 */ 2150 if (dev_size < 64*2) 2151 bm_space = 0; 2152 else if (dev_size - 64*2 >= 200*1024*1024*2) 2153 bm_space = 128*2; 2154 else if (dev_size - 4*2 > 8*1024*1024*2) 2155 bm_space = 64*2; 2156 else 2157 bm_space = 4*2; 2158 return bm_space; 2159 } 2160 2161 static unsigned long long 2162 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2163 { 2164 struct mdp_superblock_1 *sb; 2165 sector_t max_sectors; 2166 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2167 return 0; /* component must fit device */ 2168 if (rdev->data_offset != rdev->new_data_offset) 2169 return 0; /* too confusing */ 2170 if (rdev->sb_start < rdev->data_offset) { 2171 /* minor versions 1 and 2; superblock before data */ 2172 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2173 max_sectors -= rdev->data_offset; 2174 if (!num_sectors || num_sectors > max_sectors) 2175 num_sectors = max_sectors; 2176 } else if (rdev->mddev->bitmap_info.offset) { 2177 /* minor version 0 with bitmap we can't move */ 2178 return 0; 2179 } else { 2180 /* minor version 0; superblock after data */ 2181 sector_t sb_start, bm_space; 2182 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2183 2184 /* 8K is for superblock */ 2185 sb_start = dev_size - 8*2; 2186 sb_start &= ~(sector_t)(4*2 - 1); 2187 2188 bm_space = super_1_choose_bm_space(dev_size); 2189 2190 /* Space that can be used to store date needs to decrease 2191 * superblock bitmap space and bad block space(4K) 2192 */ 2193 max_sectors = sb_start - bm_space - 4*2; 2194 2195 if (!num_sectors || num_sectors > max_sectors) 2196 num_sectors = max_sectors; 2197 } 2198 sb = page_address(rdev->sb_page); 2199 sb->data_size = cpu_to_le64(num_sectors); 2200 sb->super_offset = cpu_to_le64(rdev->sb_start); 2201 sb->sb_csum = calc_sb_1_csum(sb); 2202 do { 2203 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2204 rdev->sb_page); 2205 } while (md_super_wait(rdev->mddev) < 0); 2206 return num_sectors; 2207 2208 } 2209 2210 static int 2211 super_1_allow_new_offset(struct md_rdev *rdev, 2212 unsigned long long new_offset) 2213 { 2214 /* All necessary checks on new >= old have been done */ 2215 struct bitmap *bitmap; 2216 if (new_offset >= rdev->data_offset) 2217 return 1; 2218 2219 /* with 1.0 metadata, there is no metadata to tread on 2220 * so we can always move back */ 2221 if (rdev->mddev->minor_version == 0) 2222 return 1; 2223 2224 /* otherwise we must be sure not to step on 2225 * any metadata, so stay: 2226 * 36K beyond start of superblock 2227 * beyond end of badblocks 2228 * beyond write-intent bitmap 2229 */ 2230 if (rdev->sb_start + (32+4)*2 > new_offset) 2231 return 0; 2232 bitmap = rdev->mddev->bitmap; 2233 if (bitmap && !rdev->mddev->bitmap_info.file && 2234 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2235 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2236 return 0; 2237 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2238 return 0; 2239 2240 return 1; 2241 } 2242 2243 static struct super_type super_types[] = { 2244 [0] = { 2245 .name = "0.90.0", 2246 .owner = THIS_MODULE, 2247 .load_super = super_90_load, 2248 .validate_super = super_90_validate, 2249 .sync_super = super_90_sync, 2250 .rdev_size_change = super_90_rdev_size_change, 2251 .allow_new_offset = super_90_allow_new_offset, 2252 }, 2253 [1] = { 2254 .name = "md-1", 2255 .owner = THIS_MODULE, 2256 .load_super = super_1_load, 2257 .validate_super = super_1_validate, 2258 .sync_super = super_1_sync, 2259 .rdev_size_change = super_1_rdev_size_change, 2260 .allow_new_offset = super_1_allow_new_offset, 2261 }, 2262 }; 2263 2264 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2265 { 2266 if (mddev->sync_super) { 2267 mddev->sync_super(mddev, rdev); 2268 return; 2269 } 2270 2271 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2272 2273 super_types[mddev->major_version].sync_super(mddev, rdev); 2274 } 2275 2276 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2277 { 2278 struct md_rdev *rdev, *rdev2; 2279 2280 rcu_read_lock(); 2281 rdev_for_each_rcu(rdev, mddev1) { 2282 if (test_bit(Faulty, &rdev->flags) || 2283 test_bit(Journal, &rdev->flags) || 2284 rdev->raid_disk == -1) 2285 continue; 2286 rdev_for_each_rcu(rdev2, mddev2) { 2287 if (test_bit(Faulty, &rdev2->flags) || 2288 test_bit(Journal, &rdev2->flags) || 2289 rdev2->raid_disk == -1) 2290 continue; 2291 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2292 rcu_read_unlock(); 2293 return 1; 2294 } 2295 } 2296 } 2297 rcu_read_unlock(); 2298 return 0; 2299 } 2300 2301 static LIST_HEAD(pending_raid_disks); 2302 2303 /* 2304 * Try to register data integrity profile for an mddev 2305 * 2306 * This is called when an array is started and after a disk has been kicked 2307 * from the array. It only succeeds if all working and active component devices 2308 * are integrity capable with matching profiles. 2309 */ 2310 int md_integrity_register(struct mddev *mddev) 2311 { 2312 struct md_rdev *rdev, *reference = NULL; 2313 2314 if (list_empty(&mddev->disks)) 2315 return 0; /* nothing to do */ 2316 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2317 return 0; /* shouldn't register, or already is */ 2318 rdev_for_each(rdev, mddev) { 2319 /* skip spares and non-functional disks */ 2320 if (test_bit(Faulty, &rdev->flags)) 2321 continue; 2322 if (rdev->raid_disk < 0) 2323 continue; 2324 if (!reference) { 2325 /* Use the first rdev as the reference */ 2326 reference = rdev; 2327 continue; 2328 } 2329 /* does this rdev's profile match the reference profile? */ 2330 if (blk_integrity_compare(reference->bdev->bd_disk, 2331 rdev->bdev->bd_disk) < 0) 2332 return -EINVAL; 2333 } 2334 if (!reference || !bdev_get_integrity(reference->bdev)) 2335 return 0; 2336 /* 2337 * All component devices are integrity capable and have matching 2338 * profiles, register the common profile for the md device. 2339 */ 2340 blk_integrity_register(mddev->gendisk, 2341 bdev_get_integrity(reference->bdev)); 2342 2343 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2344 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2345 (mddev->level != 1 && mddev->level != 10 && 2346 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2347 /* 2348 * No need to handle the failure of bioset_integrity_create, 2349 * because the function is called by md_run() -> pers->run(), 2350 * md_run calls bioset_exit -> bioset_integrity_free in case 2351 * of failure case. 2352 */ 2353 pr_err("md: failed to create integrity pool for %s\n", 2354 mdname(mddev)); 2355 return -EINVAL; 2356 } 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(md_integrity_register); 2360 2361 /* 2362 * Attempt to add an rdev, but only if it is consistent with the current 2363 * integrity profile 2364 */ 2365 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2366 { 2367 struct blk_integrity *bi_mddev; 2368 char name[BDEVNAME_SIZE]; 2369 2370 if (!mddev->gendisk) 2371 return 0; 2372 2373 bi_mddev = blk_get_integrity(mddev->gendisk); 2374 2375 if (!bi_mddev) /* nothing to do */ 2376 return 0; 2377 2378 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2379 pr_err("%s: incompatible integrity profile for %s\n", 2380 mdname(mddev), bdevname(rdev->bdev, name)); 2381 return -ENXIO; 2382 } 2383 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(md_integrity_add_rdev); 2387 2388 static bool rdev_read_only(struct md_rdev *rdev) 2389 { 2390 return bdev_read_only(rdev->bdev) || 2391 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2392 } 2393 2394 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2395 { 2396 char b[BDEVNAME_SIZE]; 2397 int err; 2398 2399 /* prevent duplicates */ 2400 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2401 return -EEXIST; 2402 2403 if (rdev_read_only(rdev) && mddev->pers) 2404 return -EROFS; 2405 2406 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2407 if (!test_bit(Journal, &rdev->flags) && 2408 rdev->sectors && 2409 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2410 if (mddev->pers) { 2411 /* Cannot change size, so fail 2412 * If mddev->level <= 0, then we don't care 2413 * about aligning sizes (e.g. linear) 2414 */ 2415 if (mddev->level > 0) 2416 return -ENOSPC; 2417 } else 2418 mddev->dev_sectors = rdev->sectors; 2419 } 2420 2421 /* Verify rdev->desc_nr is unique. 2422 * If it is -1, assign a free number, else 2423 * check number is not in use 2424 */ 2425 rcu_read_lock(); 2426 if (rdev->desc_nr < 0) { 2427 int choice = 0; 2428 if (mddev->pers) 2429 choice = mddev->raid_disks; 2430 while (md_find_rdev_nr_rcu(mddev, choice)) 2431 choice++; 2432 rdev->desc_nr = choice; 2433 } else { 2434 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2435 rcu_read_unlock(); 2436 return -EBUSY; 2437 } 2438 } 2439 rcu_read_unlock(); 2440 if (!test_bit(Journal, &rdev->flags) && 2441 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2442 pr_warn("md: %s: array is limited to %d devices\n", 2443 mdname(mddev), mddev->max_disks); 2444 return -EBUSY; 2445 } 2446 bdevname(rdev->bdev,b); 2447 strreplace(b, '/', '!'); 2448 2449 rdev->mddev = mddev; 2450 pr_debug("md: bind<%s>\n", b); 2451 2452 if (mddev->raid_disks) 2453 mddev_create_serial_pool(mddev, rdev, false); 2454 2455 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2456 goto fail; 2457 2458 /* failure here is OK */ 2459 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2460 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2461 rdev->sysfs_unack_badblocks = 2462 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2463 rdev->sysfs_badblocks = 2464 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2465 2466 list_add_rcu(&rdev->same_set, &mddev->disks); 2467 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2468 2469 /* May as well allow recovery to be retried once */ 2470 mddev->recovery_disabled++; 2471 2472 return 0; 2473 2474 fail: 2475 pr_warn("md: failed to register dev-%s for %s\n", 2476 b, mdname(mddev)); 2477 return err; 2478 } 2479 2480 static void rdev_delayed_delete(struct work_struct *ws) 2481 { 2482 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2483 kobject_del(&rdev->kobj); 2484 kobject_put(&rdev->kobj); 2485 } 2486 2487 static void unbind_rdev_from_array(struct md_rdev *rdev) 2488 { 2489 char b[BDEVNAME_SIZE]; 2490 2491 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2492 list_del_rcu(&rdev->same_set); 2493 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2494 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2495 rdev->mddev = NULL; 2496 sysfs_remove_link(&rdev->kobj, "block"); 2497 sysfs_put(rdev->sysfs_state); 2498 sysfs_put(rdev->sysfs_unack_badblocks); 2499 sysfs_put(rdev->sysfs_badblocks); 2500 rdev->sysfs_state = NULL; 2501 rdev->sysfs_unack_badblocks = NULL; 2502 rdev->sysfs_badblocks = NULL; 2503 rdev->badblocks.count = 0; 2504 /* We need to delay this, otherwise we can deadlock when 2505 * writing to 'remove' to "dev/state". We also need 2506 * to delay it due to rcu usage. 2507 */ 2508 synchronize_rcu(); 2509 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2510 kobject_get(&rdev->kobj); 2511 queue_work(md_rdev_misc_wq, &rdev->del_work); 2512 } 2513 2514 /* 2515 * prevent the device from being mounted, repartitioned or 2516 * otherwise reused by a RAID array (or any other kernel 2517 * subsystem), by bd_claiming the device. 2518 */ 2519 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2520 { 2521 int err = 0; 2522 struct block_device *bdev; 2523 2524 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2525 shared ? (struct md_rdev *)lock_rdev : rdev); 2526 if (IS_ERR(bdev)) { 2527 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2528 MAJOR(dev), MINOR(dev)); 2529 return PTR_ERR(bdev); 2530 } 2531 rdev->bdev = bdev; 2532 return err; 2533 } 2534 2535 static void unlock_rdev(struct md_rdev *rdev) 2536 { 2537 struct block_device *bdev = rdev->bdev; 2538 rdev->bdev = NULL; 2539 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2540 } 2541 2542 void md_autodetect_dev(dev_t dev); 2543 2544 static void export_rdev(struct md_rdev *rdev) 2545 { 2546 char b[BDEVNAME_SIZE]; 2547 2548 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2549 md_rdev_clear(rdev); 2550 #ifndef MODULE 2551 if (test_bit(AutoDetected, &rdev->flags)) 2552 md_autodetect_dev(rdev->bdev->bd_dev); 2553 #endif 2554 unlock_rdev(rdev); 2555 kobject_put(&rdev->kobj); 2556 } 2557 2558 void md_kick_rdev_from_array(struct md_rdev *rdev) 2559 { 2560 unbind_rdev_from_array(rdev); 2561 export_rdev(rdev); 2562 } 2563 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2564 2565 static void export_array(struct mddev *mddev) 2566 { 2567 struct md_rdev *rdev; 2568 2569 while (!list_empty(&mddev->disks)) { 2570 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2571 same_set); 2572 md_kick_rdev_from_array(rdev); 2573 } 2574 mddev->raid_disks = 0; 2575 mddev->major_version = 0; 2576 } 2577 2578 static bool set_in_sync(struct mddev *mddev) 2579 { 2580 lockdep_assert_held(&mddev->lock); 2581 if (!mddev->in_sync) { 2582 mddev->sync_checkers++; 2583 spin_unlock(&mddev->lock); 2584 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2585 spin_lock(&mddev->lock); 2586 if (!mddev->in_sync && 2587 percpu_ref_is_zero(&mddev->writes_pending)) { 2588 mddev->in_sync = 1; 2589 /* 2590 * Ensure ->in_sync is visible before we clear 2591 * ->sync_checkers. 2592 */ 2593 smp_mb(); 2594 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2595 sysfs_notify_dirent_safe(mddev->sysfs_state); 2596 } 2597 if (--mddev->sync_checkers == 0) 2598 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2599 } 2600 if (mddev->safemode == 1) 2601 mddev->safemode = 0; 2602 return mddev->in_sync; 2603 } 2604 2605 static void sync_sbs(struct mddev *mddev, int nospares) 2606 { 2607 /* Update each superblock (in-memory image), but 2608 * if we are allowed to, skip spares which already 2609 * have the right event counter, or have one earlier 2610 * (which would mean they aren't being marked as dirty 2611 * with the rest of the array) 2612 */ 2613 struct md_rdev *rdev; 2614 rdev_for_each(rdev, mddev) { 2615 if (rdev->sb_events == mddev->events || 2616 (nospares && 2617 rdev->raid_disk < 0 && 2618 rdev->sb_events+1 == mddev->events)) { 2619 /* Don't update this superblock */ 2620 rdev->sb_loaded = 2; 2621 } else { 2622 sync_super(mddev, rdev); 2623 rdev->sb_loaded = 1; 2624 } 2625 } 2626 } 2627 2628 static bool does_sb_need_changing(struct mddev *mddev) 2629 { 2630 struct md_rdev *rdev; 2631 struct mdp_superblock_1 *sb; 2632 int role; 2633 2634 /* Find a good rdev */ 2635 rdev_for_each(rdev, mddev) 2636 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2637 break; 2638 2639 /* No good device found. */ 2640 if (!rdev) 2641 return false; 2642 2643 sb = page_address(rdev->sb_page); 2644 /* Check if a device has become faulty or a spare become active */ 2645 rdev_for_each(rdev, mddev) { 2646 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2647 /* Device activated? */ 2648 if (role == 0xffff && rdev->raid_disk >=0 && 2649 !test_bit(Faulty, &rdev->flags)) 2650 return true; 2651 /* Device turned faulty? */ 2652 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2653 return true; 2654 } 2655 2656 /* Check if any mddev parameters have changed */ 2657 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2658 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2659 (mddev->layout != le32_to_cpu(sb->layout)) || 2660 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2661 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2662 return true; 2663 2664 return false; 2665 } 2666 2667 void md_update_sb(struct mddev *mddev, int force_change) 2668 { 2669 struct md_rdev *rdev; 2670 int sync_req; 2671 int nospares = 0; 2672 int any_badblocks_changed = 0; 2673 int ret = -1; 2674 2675 if (mddev->ro) { 2676 if (force_change) 2677 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2678 return; 2679 } 2680 2681 repeat: 2682 if (mddev_is_clustered(mddev)) { 2683 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2684 force_change = 1; 2685 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2686 nospares = 1; 2687 ret = md_cluster_ops->metadata_update_start(mddev); 2688 /* Has someone else has updated the sb */ 2689 if (!does_sb_need_changing(mddev)) { 2690 if (ret == 0) 2691 md_cluster_ops->metadata_update_cancel(mddev); 2692 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2693 BIT(MD_SB_CHANGE_DEVS) | 2694 BIT(MD_SB_CHANGE_CLEAN)); 2695 return; 2696 } 2697 } 2698 2699 /* 2700 * First make sure individual recovery_offsets are correct 2701 * curr_resync_completed can only be used during recovery. 2702 * During reshape/resync it might use array-addresses rather 2703 * that device addresses. 2704 */ 2705 rdev_for_each(rdev, mddev) { 2706 if (rdev->raid_disk >= 0 && 2707 mddev->delta_disks >= 0 && 2708 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2709 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2710 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2711 !test_bit(Journal, &rdev->flags) && 2712 !test_bit(In_sync, &rdev->flags) && 2713 mddev->curr_resync_completed > rdev->recovery_offset) 2714 rdev->recovery_offset = mddev->curr_resync_completed; 2715 2716 } 2717 if (!mddev->persistent) { 2718 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2719 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2720 if (!mddev->external) { 2721 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2722 rdev_for_each(rdev, mddev) { 2723 if (rdev->badblocks.changed) { 2724 rdev->badblocks.changed = 0; 2725 ack_all_badblocks(&rdev->badblocks); 2726 md_error(mddev, rdev); 2727 } 2728 clear_bit(Blocked, &rdev->flags); 2729 clear_bit(BlockedBadBlocks, &rdev->flags); 2730 wake_up(&rdev->blocked_wait); 2731 } 2732 } 2733 wake_up(&mddev->sb_wait); 2734 return; 2735 } 2736 2737 spin_lock(&mddev->lock); 2738 2739 mddev->utime = ktime_get_real_seconds(); 2740 2741 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2742 force_change = 1; 2743 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2744 /* just a clean<-> dirty transition, possibly leave spares alone, 2745 * though if events isn't the right even/odd, we will have to do 2746 * spares after all 2747 */ 2748 nospares = 1; 2749 if (force_change) 2750 nospares = 0; 2751 if (mddev->degraded) 2752 /* If the array is degraded, then skipping spares is both 2753 * dangerous and fairly pointless. 2754 * Dangerous because a device that was removed from the array 2755 * might have a event_count that still looks up-to-date, 2756 * so it can be re-added without a resync. 2757 * Pointless because if there are any spares to skip, 2758 * then a recovery will happen and soon that array won't 2759 * be degraded any more and the spare can go back to sleep then. 2760 */ 2761 nospares = 0; 2762 2763 sync_req = mddev->in_sync; 2764 2765 /* If this is just a dirty<->clean transition, and the array is clean 2766 * and 'events' is odd, we can roll back to the previous clean state */ 2767 if (nospares 2768 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2769 && mddev->can_decrease_events 2770 && mddev->events != 1) { 2771 mddev->events--; 2772 mddev->can_decrease_events = 0; 2773 } else { 2774 /* otherwise we have to go forward and ... */ 2775 mddev->events ++; 2776 mddev->can_decrease_events = nospares; 2777 } 2778 2779 /* 2780 * This 64-bit counter should never wrap. 2781 * Either we are in around ~1 trillion A.C., assuming 2782 * 1 reboot per second, or we have a bug... 2783 */ 2784 WARN_ON(mddev->events == 0); 2785 2786 rdev_for_each(rdev, mddev) { 2787 if (rdev->badblocks.changed) 2788 any_badblocks_changed++; 2789 if (test_bit(Faulty, &rdev->flags)) 2790 set_bit(FaultRecorded, &rdev->flags); 2791 } 2792 2793 sync_sbs(mddev, nospares); 2794 spin_unlock(&mddev->lock); 2795 2796 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2797 mdname(mddev), mddev->in_sync); 2798 2799 if (mddev->queue) 2800 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2801 rewrite: 2802 md_bitmap_update_sb(mddev->bitmap); 2803 rdev_for_each(rdev, mddev) { 2804 char b[BDEVNAME_SIZE]; 2805 2806 if (rdev->sb_loaded != 1) 2807 continue; /* no noise on spare devices */ 2808 2809 if (!test_bit(Faulty, &rdev->flags)) { 2810 md_super_write(mddev,rdev, 2811 rdev->sb_start, rdev->sb_size, 2812 rdev->sb_page); 2813 pr_debug("md: (write) %s's sb offset: %llu\n", 2814 bdevname(rdev->bdev, b), 2815 (unsigned long long)rdev->sb_start); 2816 rdev->sb_events = mddev->events; 2817 if (rdev->badblocks.size) { 2818 md_super_write(mddev, rdev, 2819 rdev->badblocks.sector, 2820 rdev->badblocks.size << 9, 2821 rdev->bb_page); 2822 rdev->badblocks.size = 0; 2823 } 2824 2825 } else 2826 pr_debug("md: %s (skipping faulty)\n", 2827 bdevname(rdev->bdev, b)); 2828 2829 if (mddev->level == LEVEL_MULTIPATH) 2830 /* only need to write one superblock... */ 2831 break; 2832 } 2833 if (md_super_wait(mddev) < 0) 2834 goto rewrite; 2835 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2836 2837 if (mddev_is_clustered(mddev) && ret == 0) 2838 md_cluster_ops->metadata_update_finish(mddev); 2839 2840 if (mddev->in_sync != sync_req || 2841 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2842 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2843 /* have to write it out again */ 2844 goto repeat; 2845 wake_up(&mddev->sb_wait); 2846 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2847 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2848 2849 rdev_for_each(rdev, mddev) { 2850 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2851 clear_bit(Blocked, &rdev->flags); 2852 2853 if (any_badblocks_changed) 2854 ack_all_badblocks(&rdev->badblocks); 2855 clear_bit(BlockedBadBlocks, &rdev->flags); 2856 wake_up(&rdev->blocked_wait); 2857 } 2858 } 2859 EXPORT_SYMBOL(md_update_sb); 2860 2861 static int add_bound_rdev(struct md_rdev *rdev) 2862 { 2863 struct mddev *mddev = rdev->mddev; 2864 int err = 0; 2865 bool add_journal = test_bit(Journal, &rdev->flags); 2866 2867 if (!mddev->pers->hot_remove_disk || add_journal) { 2868 /* If there is hot_add_disk but no hot_remove_disk 2869 * then added disks for geometry changes, 2870 * and should be added immediately. 2871 */ 2872 super_types[mddev->major_version]. 2873 validate_super(mddev, rdev); 2874 if (add_journal) 2875 mddev_suspend(mddev); 2876 err = mddev->pers->hot_add_disk(mddev, rdev); 2877 if (add_journal) 2878 mddev_resume(mddev); 2879 if (err) { 2880 md_kick_rdev_from_array(rdev); 2881 return err; 2882 } 2883 } 2884 sysfs_notify_dirent_safe(rdev->sysfs_state); 2885 2886 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2887 if (mddev->degraded) 2888 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2890 md_new_event(mddev); 2891 md_wakeup_thread(mddev->thread); 2892 return 0; 2893 } 2894 2895 /* words written to sysfs files may, or may not, be \n terminated. 2896 * We want to accept with case. For this we use cmd_match. 2897 */ 2898 static int cmd_match(const char *cmd, const char *str) 2899 { 2900 /* See if cmd, written into a sysfs file, matches 2901 * str. They must either be the same, or cmd can 2902 * have a trailing newline 2903 */ 2904 while (*cmd && *str && *cmd == *str) { 2905 cmd++; 2906 str++; 2907 } 2908 if (*cmd == '\n') 2909 cmd++; 2910 if (*str || *cmd) 2911 return 0; 2912 return 1; 2913 } 2914 2915 struct rdev_sysfs_entry { 2916 struct attribute attr; 2917 ssize_t (*show)(struct md_rdev *, char *); 2918 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2919 }; 2920 2921 static ssize_t 2922 state_show(struct md_rdev *rdev, char *page) 2923 { 2924 char *sep = ","; 2925 size_t len = 0; 2926 unsigned long flags = READ_ONCE(rdev->flags); 2927 2928 if (test_bit(Faulty, &flags) || 2929 (!test_bit(ExternalBbl, &flags) && 2930 rdev->badblocks.unacked_exist)) 2931 len += sprintf(page+len, "faulty%s", sep); 2932 if (test_bit(In_sync, &flags)) 2933 len += sprintf(page+len, "in_sync%s", sep); 2934 if (test_bit(Journal, &flags)) 2935 len += sprintf(page+len, "journal%s", sep); 2936 if (test_bit(WriteMostly, &flags)) 2937 len += sprintf(page+len, "write_mostly%s", sep); 2938 if (test_bit(Blocked, &flags) || 2939 (rdev->badblocks.unacked_exist 2940 && !test_bit(Faulty, &flags))) 2941 len += sprintf(page+len, "blocked%s", sep); 2942 if (!test_bit(Faulty, &flags) && 2943 !test_bit(Journal, &flags) && 2944 !test_bit(In_sync, &flags)) 2945 len += sprintf(page+len, "spare%s", sep); 2946 if (test_bit(WriteErrorSeen, &flags)) 2947 len += sprintf(page+len, "write_error%s", sep); 2948 if (test_bit(WantReplacement, &flags)) 2949 len += sprintf(page+len, "want_replacement%s", sep); 2950 if (test_bit(Replacement, &flags)) 2951 len += sprintf(page+len, "replacement%s", sep); 2952 if (test_bit(ExternalBbl, &flags)) 2953 len += sprintf(page+len, "external_bbl%s", sep); 2954 if (test_bit(FailFast, &flags)) 2955 len += sprintf(page+len, "failfast%s", sep); 2956 2957 if (len) 2958 len -= strlen(sep); 2959 2960 return len+sprintf(page+len, "\n"); 2961 } 2962 2963 static ssize_t 2964 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2965 { 2966 /* can write 2967 * faulty - simulates an error 2968 * remove - disconnects the device 2969 * writemostly - sets write_mostly 2970 * -writemostly - clears write_mostly 2971 * blocked - sets the Blocked flags 2972 * -blocked - clears the Blocked and possibly simulates an error 2973 * insync - sets Insync providing device isn't active 2974 * -insync - clear Insync for a device with a slot assigned, 2975 * so that it gets rebuilt based on bitmap 2976 * write_error - sets WriteErrorSeen 2977 * -write_error - clears WriteErrorSeen 2978 * {,-}failfast - set/clear FailFast 2979 */ 2980 int err = -EINVAL; 2981 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2982 md_error(rdev->mddev, rdev); 2983 if (test_bit(Faulty, &rdev->flags)) 2984 err = 0; 2985 else 2986 err = -EBUSY; 2987 } else if (cmd_match(buf, "remove")) { 2988 if (rdev->mddev->pers) { 2989 clear_bit(Blocked, &rdev->flags); 2990 remove_and_add_spares(rdev->mddev, rdev); 2991 } 2992 if (rdev->raid_disk >= 0) 2993 err = -EBUSY; 2994 else { 2995 struct mddev *mddev = rdev->mddev; 2996 err = 0; 2997 if (mddev_is_clustered(mddev)) 2998 err = md_cluster_ops->remove_disk(mddev, rdev); 2999 3000 if (err == 0) { 3001 md_kick_rdev_from_array(rdev); 3002 if (mddev->pers) { 3003 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3004 md_wakeup_thread(mddev->thread); 3005 } 3006 md_new_event(mddev); 3007 } 3008 } 3009 } else if (cmd_match(buf, "writemostly")) { 3010 set_bit(WriteMostly, &rdev->flags); 3011 mddev_create_serial_pool(rdev->mddev, rdev, false); 3012 err = 0; 3013 } else if (cmd_match(buf, "-writemostly")) { 3014 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3015 clear_bit(WriteMostly, &rdev->flags); 3016 err = 0; 3017 } else if (cmd_match(buf, "blocked")) { 3018 set_bit(Blocked, &rdev->flags); 3019 err = 0; 3020 } else if (cmd_match(buf, "-blocked")) { 3021 if (!test_bit(Faulty, &rdev->flags) && 3022 !test_bit(ExternalBbl, &rdev->flags) && 3023 rdev->badblocks.unacked_exist) { 3024 /* metadata handler doesn't understand badblocks, 3025 * so we need to fail the device 3026 */ 3027 md_error(rdev->mddev, rdev); 3028 } 3029 clear_bit(Blocked, &rdev->flags); 3030 clear_bit(BlockedBadBlocks, &rdev->flags); 3031 wake_up(&rdev->blocked_wait); 3032 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3033 md_wakeup_thread(rdev->mddev->thread); 3034 3035 err = 0; 3036 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3037 set_bit(In_sync, &rdev->flags); 3038 err = 0; 3039 } else if (cmd_match(buf, "failfast")) { 3040 set_bit(FailFast, &rdev->flags); 3041 err = 0; 3042 } else if (cmd_match(buf, "-failfast")) { 3043 clear_bit(FailFast, &rdev->flags); 3044 err = 0; 3045 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3046 !test_bit(Journal, &rdev->flags)) { 3047 if (rdev->mddev->pers == NULL) { 3048 clear_bit(In_sync, &rdev->flags); 3049 rdev->saved_raid_disk = rdev->raid_disk; 3050 rdev->raid_disk = -1; 3051 err = 0; 3052 } 3053 } else if (cmd_match(buf, "write_error")) { 3054 set_bit(WriteErrorSeen, &rdev->flags); 3055 err = 0; 3056 } else if (cmd_match(buf, "-write_error")) { 3057 clear_bit(WriteErrorSeen, &rdev->flags); 3058 err = 0; 3059 } else if (cmd_match(buf, "want_replacement")) { 3060 /* Any non-spare device that is not a replacement can 3061 * become want_replacement at any time, but we then need to 3062 * check if recovery is needed. 3063 */ 3064 if (rdev->raid_disk >= 0 && 3065 !test_bit(Journal, &rdev->flags) && 3066 !test_bit(Replacement, &rdev->flags)) 3067 set_bit(WantReplacement, &rdev->flags); 3068 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3069 md_wakeup_thread(rdev->mddev->thread); 3070 err = 0; 3071 } else if (cmd_match(buf, "-want_replacement")) { 3072 /* Clearing 'want_replacement' is always allowed. 3073 * Once replacements starts it is too late though. 3074 */ 3075 err = 0; 3076 clear_bit(WantReplacement, &rdev->flags); 3077 } else if (cmd_match(buf, "replacement")) { 3078 /* Can only set a device as a replacement when array has not 3079 * yet been started. Once running, replacement is automatic 3080 * from spares, or by assigning 'slot'. 3081 */ 3082 if (rdev->mddev->pers) 3083 err = -EBUSY; 3084 else { 3085 set_bit(Replacement, &rdev->flags); 3086 err = 0; 3087 } 3088 } else if (cmd_match(buf, "-replacement")) { 3089 /* Similarly, can only clear Replacement before start */ 3090 if (rdev->mddev->pers) 3091 err = -EBUSY; 3092 else { 3093 clear_bit(Replacement, &rdev->flags); 3094 err = 0; 3095 } 3096 } else if (cmd_match(buf, "re-add")) { 3097 if (!rdev->mddev->pers) 3098 err = -EINVAL; 3099 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3100 rdev->saved_raid_disk >= 0) { 3101 /* clear_bit is performed _after_ all the devices 3102 * have their local Faulty bit cleared. If any writes 3103 * happen in the meantime in the local node, they 3104 * will land in the local bitmap, which will be synced 3105 * by this node eventually 3106 */ 3107 if (!mddev_is_clustered(rdev->mddev) || 3108 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3109 clear_bit(Faulty, &rdev->flags); 3110 err = add_bound_rdev(rdev); 3111 } 3112 } else 3113 err = -EBUSY; 3114 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3115 set_bit(ExternalBbl, &rdev->flags); 3116 rdev->badblocks.shift = 0; 3117 err = 0; 3118 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3119 clear_bit(ExternalBbl, &rdev->flags); 3120 err = 0; 3121 } 3122 if (!err) 3123 sysfs_notify_dirent_safe(rdev->sysfs_state); 3124 return err ? err : len; 3125 } 3126 static struct rdev_sysfs_entry rdev_state = 3127 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3128 3129 static ssize_t 3130 errors_show(struct md_rdev *rdev, char *page) 3131 { 3132 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3133 } 3134 3135 static ssize_t 3136 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3137 { 3138 unsigned int n; 3139 int rv; 3140 3141 rv = kstrtouint(buf, 10, &n); 3142 if (rv < 0) 3143 return rv; 3144 atomic_set(&rdev->corrected_errors, n); 3145 return len; 3146 } 3147 static struct rdev_sysfs_entry rdev_errors = 3148 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3149 3150 static ssize_t 3151 slot_show(struct md_rdev *rdev, char *page) 3152 { 3153 if (test_bit(Journal, &rdev->flags)) 3154 return sprintf(page, "journal\n"); 3155 else if (rdev->raid_disk < 0) 3156 return sprintf(page, "none\n"); 3157 else 3158 return sprintf(page, "%d\n", rdev->raid_disk); 3159 } 3160 3161 static ssize_t 3162 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3163 { 3164 int slot; 3165 int err; 3166 3167 if (test_bit(Journal, &rdev->flags)) 3168 return -EBUSY; 3169 if (strncmp(buf, "none", 4)==0) 3170 slot = -1; 3171 else { 3172 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3173 if (err < 0) 3174 return err; 3175 } 3176 if (rdev->mddev->pers && slot == -1) { 3177 /* Setting 'slot' on an active array requires also 3178 * updating the 'rd%d' link, and communicating 3179 * with the personality with ->hot_*_disk. 3180 * For now we only support removing 3181 * failed/spare devices. This normally happens automatically, 3182 * but not when the metadata is externally managed. 3183 */ 3184 if (rdev->raid_disk == -1) 3185 return -EEXIST; 3186 /* personality does all needed checks */ 3187 if (rdev->mddev->pers->hot_remove_disk == NULL) 3188 return -EINVAL; 3189 clear_bit(Blocked, &rdev->flags); 3190 remove_and_add_spares(rdev->mddev, rdev); 3191 if (rdev->raid_disk >= 0) 3192 return -EBUSY; 3193 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3194 md_wakeup_thread(rdev->mddev->thread); 3195 } else if (rdev->mddev->pers) { 3196 /* Activating a spare .. or possibly reactivating 3197 * if we ever get bitmaps working here. 3198 */ 3199 int err; 3200 3201 if (rdev->raid_disk != -1) 3202 return -EBUSY; 3203 3204 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3205 return -EBUSY; 3206 3207 if (rdev->mddev->pers->hot_add_disk == NULL) 3208 return -EINVAL; 3209 3210 if (slot >= rdev->mddev->raid_disks && 3211 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3212 return -ENOSPC; 3213 3214 rdev->raid_disk = slot; 3215 if (test_bit(In_sync, &rdev->flags)) 3216 rdev->saved_raid_disk = slot; 3217 else 3218 rdev->saved_raid_disk = -1; 3219 clear_bit(In_sync, &rdev->flags); 3220 clear_bit(Bitmap_sync, &rdev->flags); 3221 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3222 if (err) { 3223 rdev->raid_disk = -1; 3224 return err; 3225 } else 3226 sysfs_notify_dirent_safe(rdev->sysfs_state); 3227 /* failure here is OK */; 3228 sysfs_link_rdev(rdev->mddev, rdev); 3229 /* don't wakeup anyone, leave that to userspace. */ 3230 } else { 3231 if (slot >= rdev->mddev->raid_disks && 3232 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3233 return -ENOSPC; 3234 rdev->raid_disk = slot; 3235 /* assume it is working */ 3236 clear_bit(Faulty, &rdev->flags); 3237 clear_bit(WriteMostly, &rdev->flags); 3238 set_bit(In_sync, &rdev->flags); 3239 sysfs_notify_dirent_safe(rdev->sysfs_state); 3240 } 3241 return len; 3242 } 3243 3244 static struct rdev_sysfs_entry rdev_slot = 3245 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3246 3247 static ssize_t 3248 offset_show(struct md_rdev *rdev, char *page) 3249 { 3250 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3251 } 3252 3253 static ssize_t 3254 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3255 { 3256 unsigned long long offset; 3257 if (kstrtoull(buf, 10, &offset) < 0) 3258 return -EINVAL; 3259 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3260 return -EBUSY; 3261 if (rdev->sectors && rdev->mddev->external) 3262 /* Must set offset before size, so overlap checks 3263 * can be sane */ 3264 return -EBUSY; 3265 rdev->data_offset = offset; 3266 rdev->new_data_offset = offset; 3267 return len; 3268 } 3269 3270 static struct rdev_sysfs_entry rdev_offset = 3271 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3272 3273 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3274 { 3275 return sprintf(page, "%llu\n", 3276 (unsigned long long)rdev->new_data_offset); 3277 } 3278 3279 static ssize_t new_offset_store(struct md_rdev *rdev, 3280 const char *buf, size_t len) 3281 { 3282 unsigned long long new_offset; 3283 struct mddev *mddev = rdev->mddev; 3284 3285 if (kstrtoull(buf, 10, &new_offset) < 0) 3286 return -EINVAL; 3287 3288 if (mddev->sync_thread || 3289 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3290 return -EBUSY; 3291 if (new_offset == rdev->data_offset) 3292 /* reset is always permitted */ 3293 ; 3294 else if (new_offset > rdev->data_offset) { 3295 /* must not push array size beyond rdev_sectors */ 3296 if (new_offset - rdev->data_offset 3297 + mddev->dev_sectors > rdev->sectors) 3298 return -E2BIG; 3299 } 3300 /* Metadata worries about other space details. */ 3301 3302 /* decreasing the offset is inconsistent with a backwards 3303 * reshape. 3304 */ 3305 if (new_offset < rdev->data_offset && 3306 mddev->reshape_backwards) 3307 return -EINVAL; 3308 /* Increasing offset is inconsistent with forwards 3309 * reshape. reshape_direction should be set to 3310 * 'backwards' first. 3311 */ 3312 if (new_offset > rdev->data_offset && 3313 !mddev->reshape_backwards) 3314 return -EINVAL; 3315 3316 if (mddev->pers && mddev->persistent && 3317 !super_types[mddev->major_version] 3318 .allow_new_offset(rdev, new_offset)) 3319 return -E2BIG; 3320 rdev->new_data_offset = new_offset; 3321 if (new_offset > rdev->data_offset) 3322 mddev->reshape_backwards = 1; 3323 else if (new_offset < rdev->data_offset) 3324 mddev->reshape_backwards = 0; 3325 3326 return len; 3327 } 3328 static struct rdev_sysfs_entry rdev_new_offset = 3329 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3330 3331 static ssize_t 3332 rdev_size_show(struct md_rdev *rdev, char *page) 3333 { 3334 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3335 } 3336 3337 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3338 { 3339 /* check if two start/length pairs overlap */ 3340 if (s1+l1 <= s2) 3341 return 0; 3342 if (s2+l2 <= s1) 3343 return 0; 3344 return 1; 3345 } 3346 3347 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3348 { 3349 unsigned long long blocks; 3350 sector_t new; 3351 3352 if (kstrtoull(buf, 10, &blocks) < 0) 3353 return -EINVAL; 3354 3355 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3356 return -EINVAL; /* sector conversion overflow */ 3357 3358 new = blocks * 2; 3359 if (new != blocks * 2) 3360 return -EINVAL; /* unsigned long long to sector_t overflow */ 3361 3362 *sectors = new; 3363 return 0; 3364 } 3365 3366 static ssize_t 3367 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3368 { 3369 struct mddev *my_mddev = rdev->mddev; 3370 sector_t oldsectors = rdev->sectors; 3371 sector_t sectors; 3372 3373 if (test_bit(Journal, &rdev->flags)) 3374 return -EBUSY; 3375 if (strict_blocks_to_sectors(buf, §ors) < 0) 3376 return -EINVAL; 3377 if (rdev->data_offset != rdev->new_data_offset) 3378 return -EINVAL; /* too confusing */ 3379 if (my_mddev->pers && rdev->raid_disk >= 0) { 3380 if (my_mddev->persistent) { 3381 sectors = super_types[my_mddev->major_version]. 3382 rdev_size_change(rdev, sectors); 3383 if (!sectors) 3384 return -EBUSY; 3385 } else if (!sectors) 3386 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3387 rdev->data_offset; 3388 if (!my_mddev->pers->resize) 3389 /* Cannot change size for RAID0 or Linear etc */ 3390 return -EINVAL; 3391 } 3392 if (sectors < my_mddev->dev_sectors) 3393 return -EINVAL; /* component must fit device */ 3394 3395 rdev->sectors = sectors; 3396 if (sectors > oldsectors && my_mddev->external) { 3397 /* Need to check that all other rdevs with the same 3398 * ->bdev do not overlap. 'rcu' is sufficient to walk 3399 * the rdev lists safely. 3400 * This check does not provide a hard guarantee, it 3401 * just helps avoid dangerous mistakes. 3402 */ 3403 struct mddev *mddev; 3404 int overlap = 0; 3405 struct list_head *tmp; 3406 3407 rcu_read_lock(); 3408 for_each_mddev(mddev, tmp) { 3409 struct md_rdev *rdev2; 3410 3411 rdev_for_each(rdev2, mddev) 3412 if (rdev->bdev == rdev2->bdev && 3413 rdev != rdev2 && 3414 overlaps(rdev->data_offset, rdev->sectors, 3415 rdev2->data_offset, 3416 rdev2->sectors)) { 3417 overlap = 1; 3418 break; 3419 } 3420 if (overlap) { 3421 mddev_put(mddev); 3422 break; 3423 } 3424 } 3425 rcu_read_unlock(); 3426 if (overlap) { 3427 /* Someone else could have slipped in a size 3428 * change here, but doing so is just silly. 3429 * We put oldsectors back because we *know* it is 3430 * safe, and trust userspace not to race with 3431 * itself 3432 */ 3433 rdev->sectors = oldsectors; 3434 return -EBUSY; 3435 } 3436 } 3437 return len; 3438 } 3439 3440 static struct rdev_sysfs_entry rdev_size = 3441 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3442 3443 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3444 { 3445 unsigned long long recovery_start = rdev->recovery_offset; 3446 3447 if (test_bit(In_sync, &rdev->flags) || 3448 recovery_start == MaxSector) 3449 return sprintf(page, "none\n"); 3450 3451 return sprintf(page, "%llu\n", recovery_start); 3452 } 3453 3454 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3455 { 3456 unsigned long long recovery_start; 3457 3458 if (cmd_match(buf, "none")) 3459 recovery_start = MaxSector; 3460 else if (kstrtoull(buf, 10, &recovery_start)) 3461 return -EINVAL; 3462 3463 if (rdev->mddev->pers && 3464 rdev->raid_disk >= 0) 3465 return -EBUSY; 3466 3467 rdev->recovery_offset = recovery_start; 3468 if (recovery_start == MaxSector) 3469 set_bit(In_sync, &rdev->flags); 3470 else 3471 clear_bit(In_sync, &rdev->flags); 3472 return len; 3473 } 3474 3475 static struct rdev_sysfs_entry rdev_recovery_start = 3476 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3477 3478 /* sysfs access to bad-blocks list. 3479 * We present two files. 3480 * 'bad-blocks' lists sector numbers and lengths of ranges that 3481 * are recorded as bad. The list is truncated to fit within 3482 * the one-page limit of sysfs. 3483 * Writing "sector length" to this file adds an acknowledged 3484 * bad block list. 3485 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3486 * been acknowledged. Writing to this file adds bad blocks 3487 * without acknowledging them. This is largely for testing. 3488 */ 3489 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3490 { 3491 return badblocks_show(&rdev->badblocks, page, 0); 3492 } 3493 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3494 { 3495 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3496 /* Maybe that ack was all we needed */ 3497 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3498 wake_up(&rdev->blocked_wait); 3499 return rv; 3500 } 3501 static struct rdev_sysfs_entry rdev_bad_blocks = 3502 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3503 3504 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3505 { 3506 return badblocks_show(&rdev->badblocks, page, 1); 3507 } 3508 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3509 { 3510 return badblocks_store(&rdev->badblocks, page, len, 1); 3511 } 3512 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3513 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3514 3515 static ssize_t 3516 ppl_sector_show(struct md_rdev *rdev, char *page) 3517 { 3518 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3519 } 3520 3521 static ssize_t 3522 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3523 { 3524 unsigned long long sector; 3525 3526 if (kstrtoull(buf, 10, §or) < 0) 3527 return -EINVAL; 3528 if (sector != (sector_t)sector) 3529 return -EINVAL; 3530 3531 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3532 rdev->raid_disk >= 0) 3533 return -EBUSY; 3534 3535 if (rdev->mddev->persistent) { 3536 if (rdev->mddev->major_version == 0) 3537 return -EINVAL; 3538 if ((sector > rdev->sb_start && 3539 sector - rdev->sb_start > S16_MAX) || 3540 (sector < rdev->sb_start && 3541 rdev->sb_start - sector > -S16_MIN)) 3542 return -EINVAL; 3543 rdev->ppl.offset = sector - rdev->sb_start; 3544 } else if (!rdev->mddev->external) { 3545 return -EBUSY; 3546 } 3547 rdev->ppl.sector = sector; 3548 return len; 3549 } 3550 3551 static struct rdev_sysfs_entry rdev_ppl_sector = 3552 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3553 3554 static ssize_t 3555 ppl_size_show(struct md_rdev *rdev, char *page) 3556 { 3557 return sprintf(page, "%u\n", rdev->ppl.size); 3558 } 3559 3560 static ssize_t 3561 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3562 { 3563 unsigned int size; 3564 3565 if (kstrtouint(buf, 10, &size) < 0) 3566 return -EINVAL; 3567 3568 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3569 rdev->raid_disk >= 0) 3570 return -EBUSY; 3571 3572 if (rdev->mddev->persistent) { 3573 if (rdev->mddev->major_version == 0) 3574 return -EINVAL; 3575 if (size > U16_MAX) 3576 return -EINVAL; 3577 } else if (!rdev->mddev->external) { 3578 return -EBUSY; 3579 } 3580 rdev->ppl.size = size; 3581 return len; 3582 } 3583 3584 static struct rdev_sysfs_entry rdev_ppl_size = 3585 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3586 3587 static struct attribute *rdev_default_attrs[] = { 3588 &rdev_state.attr, 3589 &rdev_errors.attr, 3590 &rdev_slot.attr, 3591 &rdev_offset.attr, 3592 &rdev_new_offset.attr, 3593 &rdev_size.attr, 3594 &rdev_recovery_start.attr, 3595 &rdev_bad_blocks.attr, 3596 &rdev_unack_bad_blocks.attr, 3597 &rdev_ppl_sector.attr, 3598 &rdev_ppl_size.attr, 3599 NULL, 3600 }; 3601 static ssize_t 3602 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3603 { 3604 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3605 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3606 3607 if (!entry->show) 3608 return -EIO; 3609 if (!rdev->mddev) 3610 return -ENODEV; 3611 return entry->show(rdev, page); 3612 } 3613 3614 static ssize_t 3615 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3616 const char *page, size_t length) 3617 { 3618 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3619 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3620 ssize_t rv; 3621 struct mddev *mddev = rdev->mddev; 3622 3623 if (!entry->store) 3624 return -EIO; 3625 if (!capable(CAP_SYS_ADMIN)) 3626 return -EACCES; 3627 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3628 if (!rv) { 3629 if (rdev->mddev == NULL) 3630 rv = -ENODEV; 3631 else 3632 rv = entry->store(rdev, page, length); 3633 mddev_unlock(mddev); 3634 } 3635 return rv; 3636 } 3637 3638 static void rdev_free(struct kobject *ko) 3639 { 3640 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3641 kfree(rdev); 3642 } 3643 static const struct sysfs_ops rdev_sysfs_ops = { 3644 .show = rdev_attr_show, 3645 .store = rdev_attr_store, 3646 }; 3647 static struct kobj_type rdev_ktype = { 3648 .release = rdev_free, 3649 .sysfs_ops = &rdev_sysfs_ops, 3650 .default_attrs = rdev_default_attrs, 3651 }; 3652 3653 int md_rdev_init(struct md_rdev *rdev) 3654 { 3655 rdev->desc_nr = -1; 3656 rdev->saved_raid_disk = -1; 3657 rdev->raid_disk = -1; 3658 rdev->flags = 0; 3659 rdev->data_offset = 0; 3660 rdev->new_data_offset = 0; 3661 rdev->sb_events = 0; 3662 rdev->last_read_error = 0; 3663 rdev->sb_loaded = 0; 3664 rdev->bb_page = NULL; 3665 atomic_set(&rdev->nr_pending, 0); 3666 atomic_set(&rdev->read_errors, 0); 3667 atomic_set(&rdev->corrected_errors, 0); 3668 3669 INIT_LIST_HEAD(&rdev->same_set); 3670 init_waitqueue_head(&rdev->blocked_wait); 3671 3672 /* Add space to store bad block list. 3673 * This reserves the space even on arrays where it cannot 3674 * be used - I wonder if that matters 3675 */ 3676 return badblocks_init(&rdev->badblocks, 0); 3677 } 3678 EXPORT_SYMBOL_GPL(md_rdev_init); 3679 /* 3680 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3681 * 3682 * mark the device faulty if: 3683 * 3684 * - the device is nonexistent (zero size) 3685 * - the device has no valid superblock 3686 * 3687 * a faulty rdev _never_ has rdev->sb set. 3688 */ 3689 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3690 { 3691 char b[BDEVNAME_SIZE]; 3692 int err; 3693 struct md_rdev *rdev; 3694 sector_t size; 3695 3696 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3697 if (!rdev) 3698 return ERR_PTR(-ENOMEM); 3699 3700 err = md_rdev_init(rdev); 3701 if (err) 3702 goto abort_free; 3703 err = alloc_disk_sb(rdev); 3704 if (err) 3705 goto abort_free; 3706 3707 err = lock_rdev(rdev, newdev, super_format == -2); 3708 if (err) 3709 goto abort_free; 3710 3711 kobject_init(&rdev->kobj, &rdev_ktype); 3712 3713 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3714 if (!size) { 3715 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3716 bdevname(rdev->bdev,b)); 3717 err = -EINVAL; 3718 goto abort_free; 3719 } 3720 3721 if (super_format >= 0) { 3722 err = super_types[super_format]. 3723 load_super(rdev, NULL, super_minor); 3724 if (err == -EINVAL) { 3725 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3726 bdevname(rdev->bdev,b), 3727 super_format, super_minor); 3728 goto abort_free; 3729 } 3730 if (err < 0) { 3731 pr_warn("md: could not read %s's sb, not importing!\n", 3732 bdevname(rdev->bdev,b)); 3733 goto abort_free; 3734 } 3735 } 3736 3737 return rdev; 3738 3739 abort_free: 3740 if (rdev->bdev) 3741 unlock_rdev(rdev); 3742 md_rdev_clear(rdev); 3743 kfree(rdev); 3744 return ERR_PTR(err); 3745 } 3746 3747 /* 3748 * Check a full RAID array for plausibility 3749 */ 3750 3751 static int analyze_sbs(struct mddev *mddev) 3752 { 3753 int i; 3754 struct md_rdev *rdev, *freshest, *tmp; 3755 char b[BDEVNAME_SIZE]; 3756 3757 freshest = NULL; 3758 rdev_for_each_safe(rdev, tmp, mddev) 3759 switch (super_types[mddev->major_version]. 3760 load_super(rdev, freshest, mddev->minor_version)) { 3761 case 1: 3762 freshest = rdev; 3763 break; 3764 case 0: 3765 break; 3766 default: 3767 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3768 bdevname(rdev->bdev,b)); 3769 md_kick_rdev_from_array(rdev); 3770 } 3771 3772 /* Cannot find a valid fresh disk */ 3773 if (!freshest) { 3774 pr_warn("md: cannot find a valid disk\n"); 3775 return -EINVAL; 3776 } 3777 3778 super_types[mddev->major_version]. 3779 validate_super(mddev, freshest); 3780 3781 i = 0; 3782 rdev_for_each_safe(rdev, tmp, mddev) { 3783 if (mddev->max_disks && 3784 (rdev->desc_nr >= mddev->max_disks || 3785 i > mddev->max_disks)) { 3786 pr_warn("md: %s: %s: only %d devices permitted\n", 3787 mdname(mddev), bdevname(rdev->bdev, b), 3788 mddev->max_disks); 3789 md_kick_rdev_from_array(rdev); 3790 continue; 3791 } 3792 if (rdev != freshest) { 3793 if (super_types[mddev->major_version]. 3794 validate_super(mddev, rdev)) { 3795 pr_warn("md: kicking non-fresh %s from array!\n", 3796 bdevname(rdev->bdev,b)); 3797 md_kick_rdev_from_array(rdev); 3798 continue; 3799 } 3800 } 3801 if (mddev->level == LEVEL_MULTIPATH) { 3802 rdev->desc_nr = i++; 3803 rdev->raid_disk = rdev->desc_nr; 3804 set_bit(In_sync, &rdev->flags); 3805 } else if (rdev->raid_disk >= 3806 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3807 !test_bit(Journal, &rdev->flags)) { 3808 rdev->raid_disk = -1; 3809 clear_bit(In_sync, &rdev->flags); 3810 } 3811 } 3812 3813 return 0; 3814 } 3815 3816 /* Read a fixed-point number. 3817 * Numbers in sysfs attributes should be in "standard" units where 3818 * possible, so time should be in seconds. 3819 * However we internally use a a much smaller unit such as 3820 * milliseconds or jiffies. 3821 * This function takes a decimal number with a possible fractional 3822 * component, and produces an integer which is the result of 3823 * multiplying that number by 10^'scale'. 3824 * all without any floating-point arithmetic. 3825 */ 3826 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3827 { 3828 unsigned long result = 0; 3829 long decimals = -1; 3830 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3831 if (*cp == '.') 3832 decimals = 0; 3833 else if (decimals < scale) { 3834 unsigned int value; 3835 value = *cp - '0'; 3836 result = result * 10 + value; 3837 if (decimals >= 0) 3838 decimals++; 3839 } 3840 cp++; 3841 } 3842 if (*cp == '\n') 3843 cp++; 3844 if (*cp) 3845 return -EINVAL; 3846 if (decimals < 0) 3847 decimals = 0; 3848 *res = result * int_pow(10, scale - decimals); 3849 return 0; 3850 } 3851 3852 static ssize_t 3853 safe_delay_show(struct mddev *mddev, char *page) 3854 { 3855 int msec = (mddev->safemode_delay*1000)/HZ; 3856 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3857 } 3858 static ssize_t 3859 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3860 { 3861 unsigned long msec; 3862 3863 if (mddev_is_clustered(mddev)) { 3864 pr_warn("md: Safemode is disabled for clustered mode\n"); 3865 return -EINVAL; 3866 } 3867 3868 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3869 return -EINVAL; 3870 if (msec == 0) 3871 mddev->safemode_delay = 0; 3872 else { 3873 unsigned long old_delay = mddev->safemode_delay; 3874 unsigned long new_delay = (msec*HZ)/1000; 3875 3876 if (new_delay == 0) 3877 new_delay = 1; 3878 mddev->safemode_delay = new_delay; 3879 if (new_delay < old_delay || old_delay == 0) 3880 mod_timer(&mddev->safemode_timer, jiffies+1); 3881 } 3882 return len; 3883 } 3884 static struct md_sysfs_entry md_safe_delay = 3885 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3886 3887 static ssize_t 3888 level_show(struct mddev *mddev, char *page) 3889 { 3890 struct md_personality *p; 3891 int ret; 3892 spin_lock(&mddev->lock); 3893 p = mddev->pers; 3894 if (p) 3895 ret = sprintf(page, "%s\n", p->name); 3896 else if (mddev->clevel[0]) 3897 ret = sprintf(page, "%s\n", mddev->clevel); 3898 else if (mddev->level != LEVEL_NONE) 3899 ret = sprintf(page, "%d\n", mddev->level); 3900 else 3901 ret = 0; 3902 spin_unlock(&mddev->lock); 3903 return ret; 3904 } 3905 3906 static ssize_t 3907 level_store(struct mddev *mddev, const char *buf, size_t len) 3908 { 3909 char clevel[16]; 3910 ssize_t rv; 3911 size_t slen = len; 3912 struct md_personality *pers, *oldpers; 3913 long level; 3914 void *priv, *oldpriv; 3915 struct md_rdev *rdev; 3916 3917 if (slen == 0 || slen >= sizeof(clevel)) 3918 return -EINVAL; 3919 3920 rv = mddev_lock(mddev); 3921 if (rv) 3922 return rv; 3923 3924 if (mddev->pers == NULL) { 3925 strncpy(mddev->clevel, buf, slen); 3926 if (mddev->clevel[slen-1] == '\n') 3927 slen--; 3928 mddev->clevel[slen] = 0; 3929 mddev->level = LEVEL_NONE; 3930 rv = len; 3931 goto out_unlock; 3932 } 3933 rv = -EROFS; 3934 if (mddev->ro) 3935 goto out_unlock; 3936 3937 /* request to change the personality. Need to ensure: 3938 * - array is not engaged in resync/recovery/reshape 3939 * - old personality can be suspended 3940 * - new personality will access other array. 3941 */ 3942 3943 rv = -EBUSY; 3944 if (mddev->sync_thread || 3945 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3946 mddev->reshape_position != MaxSector || 3947 mddev->sysfs_active) 3948 goto out_unlock; 3949 3950 rv = -EINVAL; 3951 if (!mddev->pers->quiesce) { 3952 pr_warn("md: %s: %s does not support online personality change\n", 3953 mdname(mddev), mddev->pers->name); 3954 goto out_unlock; 3955 } 3956 3957 /* Now find the new personality */ 3958 strncpy(clevel, buf, slen); 3959 if (clevel[slen-1] == '\n') 3960 slen--; 3961 clevel[slen] = 0; 3962 if (kstrtol(clevel, 10, &level)) 3963 level = LEVEL_NONE; 3964 3965 if (request_module("md-%s", clevel) != 0) 3966 request_module("md-level-%s", clevel); 3967 spin_lock(&pers_lock); 3968 pers = find_pers(level, clevel); 3969 if (!pers || !try_module_get(pers->owner)) { 3970 spin_unlock(&pers_lock); 3971 pr_warn("md: personality %s not loaded\n", clevel); 3972 rv = -EINVAL; 3973 goto out_unlock; 3974 } 3975 spin_unlock(&pers_lock); 3976 3977 if (pers == mddev->pers) { 3978 /* Nothing to do! */ 3979 module_put(pers->owner); 3980 rv = len; 3981 goto out_unlock; 3982 } 3983 if (!pers->takeover) { 3984 module_put(pers->owner); 3985 pr_warn("md: %s: %s does not support personality takeover\n", 3986 mdname(mddev), clevel); 3987 rv = -EINVAL; 3988 goto out_unlock; 3989 } 3990 3991 rdev_for_each(rdev, mddev) 3992 rdev->new_raid_disk = rdev->raid_disk; 3993 3994 /* ->takeover must set new_* and/or delta_disks 3995 * if it succeeds, and may set them when it fails. 3996 */ 3997 priv = pers->takeover(mddev); 3998 if (IS_ERR(priv)) { 3999 mddev->new_level = mddev->level; 4000 mddev->new_layout = mddev->layout; 4001 mddev->new_chunk_sectors = mddev->chunk_sectors; 4002 mddev->raid_disks -= mddev->delta_disks; 4003 mddev->delta_disks = 0; 4004 mddev->reshape_backwards = 0; 4005 module_put(pers->owner); 4006 pr_warn("md: %s: %s would not accept array\n", 4007 mdname(mddev), clevel); 4008 rv = PTR_ERR(priv); 4009 goto out_unlock; 4010 } 4011 4012 /* Looks like we have a winner */ 4013 mddev_suspend(mddev); 4014 mddev_detach(mddev); 4015 4016 spin_lock(&mddev->lock); 4017 oldpers = mddev->pers; 4018 oldpriv = mddev->private; 4019 mddev->pers = pers; 4020 mddev->private = priv; 4021 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4022 mddev->level = mddev->new_level; 4023 mddev->layout = mddev->new_layout; 4024 mddev->chunk_sectors = mddev->new_chunk_sectors; 4025 mddev->delta_disks = 0; 4026 mddev->reshape_backwards = 0; 4027 mddev->degraded = 0; 4028 spin_unlock(&mddev->lock); 4029 4030 if (oldpers->sync_request == NULL && 4031 mddev->external) { 4032 /* We are converting from a no-redundancy array 4033 * to a redundancy array and metadata is managed 4034 * externally so we need to be sure that writes 4035 * won't block due to a need to transition 4036 * clean->dirty 4037 * until external management is started. 4038 */ 4039 mddev->in_sync = 0; 4040 mddev->safemode_delay = 0; 4041 mddev->safemode = 0; 4042 } 4043 4044 oldpers->free(mddev, oldpriv); 4045 4046 if (oldpers->sync_request == NULL && 4047 pers->sync_request != NULL) { 4048 /* need to add the md_redundancy_group */ 4049 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4050 pr_warn("md: cannot register extra attributes for %s\n", 4051 mdname(mddev)); 4052 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4053 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4054 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4055 } 4056 if (oldpers->sync_request != NULL && 4057 pers->sync_request == NULL) { 4058 /* need to remove the md_redundancy_group */ 4059 if (mddev->to_remove == NULL) 4060 mddev->to_remove = &md_redundancy_group; 4061 } 4062 4063 module_put(oldpers->owner); 4064 4065 rdev_for_each(rdev, mddev) { 4066 if (rdev->raid_disk < 0) 4067 continue; 4068 if (rdev->new_raid_disk >= mddev->raid_disks) 4069 rdev->new_raid_disk = -1; 4070 if (rdev->new_raid_disk == rdev->raid_disk) 4071 continue; 4072 sysfs_unlink_rdev(mddev, rdev); 4073 } 4074 rdev_for_each(rdev, mddev) { 4075 if (rdev->raid_disk < 0) 4076 continue; 4077 if (rdev->new_raid_disk == rdev->raid_disk) 4078 continue; 4079 rdev->raid_disk = rdev->new_raid_disk; 4080 if (rdev->raid_disk < 0) 4081 clear_bit(In_sync, &rdev->flags); 4082 else { 4083 if (sysfs_link_rdev(mddev, rdev)) 4084 pr_warn("md: cannot register rd%d for %s after level change\n", 4085 rdev->raid_disk, mdname(mddev)); 4086 } 4087 } 4088 4089 if (pers->sync_request == NULL) { 4090 /* this is now an array without redundancy, so 4091 * it must always be in_sync 4092 */ 4093 mddev->in_sync = 1; 4094 del_timer_sync(&mddev->safemode_timer); 4095 } 4096 blk_set_stacking_limits(&mddev->queue->limits); 4097 pers->run(mddev); 4098 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4099 mddev_resume(mddev); 4100 if (!mddev->thread) 4101 md_update_sb(mddev, 1); 4102 sysfs_notify_dirent_safe(mddev->sysfs_level); 4103 md_new_event(mddev); 4104 rv = len; 4105 out_unlock: 4106 mddev_unlock(mddev); 4107 return rv; 4108 } 4109 4110 static struct md_sysfs_entry md_level = 4111 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4112 4113 static ssize_t 4114 layout_show(struct mddev *mddev, char *page) 4115 { 4116 /* just a number, not meaningful for all levels */ 4117 if (mddev->reshape_position != MaxSector && 4118 mddev->layout != mddev->new_layout) 4119 return sprintf(page, "%d (%d)\n", 4120 mddev->new_layout, mddev->layout); 4121 return sprintf(page, "%d\n", mddev->layout); 4122 } 4123 4124 static ssize_t 4125 layout_store(struct mddev *mddev, const char *buf, size_t len) 4126 { 4127 unsigned int n; 4128 int err; 4129 4130 err = kstrtouint(buf, 10, &n); 4131 if (err < 0) 4132 return err; 4133 err = mddev_lock(mddev); 4134 if (err) 4135 return err; 4136 4137 if (mddev->pers) { 4138 if (mddev->pers->check_reshape == NULL) 4139 err = -EBUSY; 4140 else if (mddev->ro) 4141 err = -EROFS; 4142 else { 4143 mddev->new_layout = n; 4144 err = mddev->pers->check_reshape(mddev); 4145 if (err) 4146 mddev->new_layout = mddev->layout; 4147 } 4148 } else { 4149 mddev->new_layout = n; 4150 if (mddev->reshape_position == MaxSector) 4151 mddev->layout = n; 4152 } 4153 mddev_unlock(mddev); 4154 return err ?: len; 4155 } 4156 static struct md_sysfs_entry md_layout = 4157 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4158 4159 static ssize_t 4160 raid_disks_show(struct mddev *mddev, char *page) 4161 { 4162 if (mddev->raid_disks == 0) 4163 return 0; 4164 if (mddev->reshape_position != MaxSector && 4165 mddev->delta_disks != 0) 4166 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4167 mddev->raid_disks - mddev->delta_disks); 4168 return sprintf(page, "%d\n", mddev->raid_disks); 4169 } 4170 4171 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4172 4173 static ssize_t 4174 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4175 { 4176 unsigned int n; 4177 int err; 4178 4179 err = kstrtouint(buf, 10, &n); 4180 if (err < 0) 4181 return err; 4182 4183 err = mddev_lock(mddev); 4184 if (err) 4185 return err; 4186 if (mddev->pers) 4187 err = update_raid_disks(mddev, n); 4188 else if (mddev->reshape_position != MaxSector) { 4189 struct md_rdev *rdev; 4190 int olddisks = mddev->raid_disks - mddev->delta_disks; 4191 4192 err = -EINVAL; 4193 rdev_for_each(rdev, mddev) { 4194 if (olddisks < n && 4195 rdev->data_offset < rdev->new_data_offset) 4196 goto out_unlock; 4197 if (olddisks > n && 4198 rdev->data_offset > rdev->new_data_offset) 4199 goto out_unlock; 4200 } 4201 err = 0; 4202 mddev->delta_disks = n - olddisks; 4203 mddev->raid_disks = n; 4204 mddev->reshape_backwards = (mddev->delta_disks < 0); 4205 } else 4206 mddev->raid_disks = n; 4207 out_unlock: 4208 mddev_unlock(mddev); 4209 return err ? err : len; 4210 } 4211 static struct md_sysfs_entry md_raid_disks = 4212 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4213 4214 static ssize_t 4215 uuid_show(struct mddev *mddev, char *page) 4216 { 4217 return sprintf(page, "%pU\n", mddev->uuid); 4218 } 4219 static struct md_sysfs_entry md_uuid = 4220 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4221 4222 static ssize_t 4223 chunk_size_show(struct mddev *mddev, char *page) 4224 { 4225 if (mddev->reshape_position != MaxSector && 4226 mddev->chunk_sectors != mddev->new_chunk_sectors) 4227 return sprintf(page, "%d (%d)\n", 4228 mddev->new_chunk_sectors << 9, 4229 mddev->chunk_sectors << 9); 4230 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4231 } 4232 4233 static ssize_t 4234 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4235 { 4236 unsigned long n; 4237 int err; 4238 4239 err = kstrtoul(buf, 10, &n); 4240 if (err < 0) 4241 return err; 4242 4243 err = mddev_lock(mddev); 4244 if (err) 4245 return err; 4246 if (mddev->pers) { 4247 if (mddev->pers->check_reshape == NULL) 4248 err = -EBUSY; 4249 else if (mddev->ro) 4250 err = -EROFS; 4251 else { 4252 mddev->new_chunk_sectors = n >> 9; 4253 err = mddev->pers->check_reshape(mddev); 4254 if (err) 4255 mddev->new_chunk_sectors = mddev->chunk_sectors; 4256 } 4257 } else { 4258 mddev->new_chunk_sectors = n >> 9; 4259 if (mddev->reshape_position == MaxSector) 4260 mddev->chunk_sectors = n >> 9; 4261 } 4262 mddev_unlock(mddev); 4263 return err ?: len; 4264 } 4265 static struct md_sysfs_entry md_chunk_size = 4266 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4267 4268 static ssize_t 4269 resync_start_show(struct mddev *mddev, char *page) 4270 { 4271 if (mddev->recovery_cp == MaxSector) 4272 return sprintf(page, "none\n"); 4273 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4274 } 4275 4276 static ssize_t 4277 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4278 { 4279 unsigned long long n; 4280 int err; 4281 4282 if (cmd_match(buf, "none")) 4283 n = MaxSector; 4284 else { 4285 err = kstrtoull(buf, 10, &n); 4286 if (err < 0) 4287 return err; 4288 if (n != (sector_t)n) 4289 return -EINVAL; 4290 } 4291 4292 err = mddev_lock(mddev); 4293 if (err) 4294 return err; 4295 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4296 err = -EBUSY; 4297 4298 if (!err) { 4299 mddev->recovery_cp = n; 4300 if (mddev->pers) 4301 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4302 } 4303 mddev_unlock(mddev); 4304 return err ?: len; 4305 } 4306 static struct md_sysfs_entry md_resync_start = 4307 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4308 resync_start_show, resync_start_store); 4309 4310 /* 4311 * The array state can be: 4312 * 4313 * clear 4314 * No devices, no size, no level 4315 * Equivalent to STOP_ARRAY ioctl 4316 * inactive 4317 * May have some settings, but array is not active 4318 * all IO results in error 4319 * When written, doesn't tear down array, but just stops it 4320 * suspended (not supported yet) 4321 * All IO requests will block. The array can be reconfigured. 4322 * Writing this, if accepted, will block until array is quiescent 4323 * readonly 4324 * no resync can happen. no superblocks get written. 4325 * write requests fail 4326 * read-auto 4327 * like readonly, but behaves like 'clean' on a write request. 4328 * 4329 * clean - no pending writes, but otherwise active. 4330 * When written to inactive array, starts without resync 4331 * If a write request arrives then 4332 * if metadata is known, mark 'dirty' and switch to 'active'. 4333 * if not known, block and switch to write-pending 4334 * If written to an active array that has pending writes, then fails. 4335 * active 4336 * fully active: IO and resync can be happening. 4337 * When written to inactive array, starts with resync 4338 * 4339 * write-pending 4340 * clean, but writes are blocked waiting for 'active' to be written. 4341 * 4342 * active-idle 4343 * like active, but no writes have been seen for a while (100msec). 4344 * 4345 * broken 4346 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4347 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4348 * when a member is gone, so this state will at least alert the 4349 * user that something is wrong. 4350 */ 4351 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4352 write_pending, active_idle, broken, bad_word}; 4353 static char *array_states[] = { 4354 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4355 "write-pending", "active-idle", "broken", NULL }; 4356 4357 static int match_word(const char *word, char **list) 4358 { 4359 int n; 4360 for (n=0; list[n]; n++) 4361 if (cmd_match(word, list[n])) 4362 break; 4363 return n; 4364 } 4365 4366 static ssize_t 4367 array_state_show(struct mddev *mddev, char *page) 4368 { 4369 enum array_state st = inactive; 4370 4371 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4372 switch(mddev->ro) { 4373 case 1: 4374 st = readonly; 4375 break; 4376 case 2: 4377 st = read_auto; 4378 break; 4379 case 0: 4380 spin_lock(&mddev->lock); 4381 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4382 st = write_pending; 4383 else if (mddev->in_sync) 4384 st = clean; 4385 else if (mddev->safemode) 4386 st = active_idle; 4387 else 4388 st = active; 4389 spin_unlock(&mddev->lock); 4390 } 4391 4392 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4393 st = broken; 4394 } else { 4395 if (list_empty(&mddev->disks) && 4396 mddev->raid_disks == 0 && 4397 mddev->dev_sectors == 0) 4398 st = clear; 4399 else 4400 st = inactive; 4401 } 4402 return sprintf(page, "%s\n", array_states[st]); 4403 } 4404 4405 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4406 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4407 static int restart_array(struct mddev *mddev); 4408 4409 static ssize_t 4410 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4411 { 4412 int err = 0; 4413 enum array_state st = match_word(buf, array_states); 4414 4415 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4416 /* don't take reconfig_mutex when toggling between 4417 * clean and active 4418 */ 4419 spin_lock(&mddev->lock); 4420 if (st == active) { 4421 restart_array(mddev); 4422 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4423 md_wakeup_thread(mddev->thread); 4424 wake_up(&mddev->sb_wait); 4425 } else /* st == clean */ { 4426 restart_array(mddev); 4427 if (!set_in_sync(mddev)) 4428 err = -EBUSY; 4429 } 4430 if (!err) 4431 sysfs_notify_dirent_safe(mddev->sysfs_state); 4432 spin_unlock(&mddev->lock); 4433 return err ?: len; 4434 } 4435 err = mddev_lock(mddev); 4436 if (err) 4437 return err; 4438 err = -EINVAL; 4439 switch(st) { 4440 case bad_word: 4441 break; 4442 case clear: 4443 /* stopping an active array */ 4444 err = do_md_stop(mddev, 0, NULL); 4445 break; 4446 case inactive: 4447 /* stopping an active array */ 4448 if (mddev->pers) 4449 err = do_md_stop(mddev, 2, NULL); 4450 else 4451 err = 0; /* already inactive */ 4452 break; 4453 case suspended: 4454 break; /* not supported yet */ 4455 case readonly: 4456 if (mddev->pers) 4457 err = md_set_readonly(mddev, NULL); 4458 else { 4459 mddev->ro = 1; 4460 set_disk_ro(mddev->gendisk, 1); 4461 err = do_md_run(mddev); 4462 } 4463 break; 4464 case read_auto: 4465 if (mddev->pers) { 4466 if (mddev->ro == 0) 4467 err = md_set_readonly(mddev, NULL); 4468 else if (mddev->ro == 1) 4469 err = restart_array(mddev); 4470 if (err == 0) { 4471 mddev->ro = 2; 4472 set_disk_ro(mddev->gendisk, 0); 4473 } 4474 } else { 4475 mddev->ro = 2; 4476 err = do_md_run(mddev); 4477 } 4478 break; 4479 case clean: 4480 if (mddev->pers) { 4481 err = restart_array(mddev); 4482 if (err) 4483 break; 4484 spin_lock(&mddev->lock); 4485 if (!set_in_sync(mddev)) 4486 err = -EBUSY; 4487 spin_unlock(&mddev->lock); 4488 } else 4489 err = -EINVAL; 4490 break; 4491 case active: 4492 if (mddev->pers) { 4493 err = restart_array(mddev); 4494 if (err) 4495 break; 4496 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4497 wake_up(&mddev->sb_wait); 4498 err = 0; 4499 } else { 4500 mddev->ro = 0; 4501 set_disk_ro(mddev->gendisk, 0); 4502 err = do_md_run(mddev); 4503 } 4504 break; 4505 case write_pending: 4506 case active_idle: 4507 case broken: 4508 /* these cannot be set */ 4509 break; 4510 } 4511 4512 if (!err) { 4513 if (mddev->hold_active == UNTIL_IOCTL) 4514 mddev->hold_active = 0; 4515 sysfs_notify_dirent_safe(mddev->sysfs_state); 4516 } 4517 mddev_unlock(mddev); 4518 return err ?: len; 4519 } 4520 static struct md_sysfs_entry md_array_state = 4521 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4522 4523 static ssize_t 4524 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4525 return sprintf(page, "%d\n", 4526 atomic_read(&mddev->max_corr_read_errors)); 4527 } 4528 4529 static ssize_t 4530 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4531 { 4532 unsigned int n; 4533 int rv; 4534 4535 rv = kstrtouint(buf, 10, &n); 4536 if (rv < 0) 4537 return rv; 4538 atomic_set(&mddev->max_corr_read_errors, n); 4539 return len; 4540 } 4541 4542 static struct md_sysfs_entry max_corr_read_errors = 4543 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4544 max_corrected_read_errors_store); 4545 4546 static ssize_t 4547 null_show(struct mddev *mddev, char *page) 4548 { 4549 return -EINVAL; 4550 } 4551 4552 /* need to ensure rdev_delayed_delete() has completed */ 4553 static void flush_rdev_wq(struct mddev *mddev) 4554 { 4555 struct md_rdev *rdev; 4556 4557 rcu_read_lock(); 4558 rdev_for_each_rcu(rdev, mddev) 4559 if (work_pending(&rdev->del_work)) { 4560 flush_workqueue(md_rdev_misc_wq); 4561 break; 4562 } 4563 rcu_read_unlock(); 4564 } 4565 4566 static ssize_t 4567 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4568 { 4569 /* buf must be %d:%d\n? giving major and minor numbers */ 4570 /* The new device is added to the array. 4571 * If the array has a persistent superblock, we read the 4572 * superblock to initialise info and check validity. 4573 * Otherwise, only checking done is that in bind_rdev_to_array, 4574 * which mainly checks size. 4575 */ 4576 char *e; 4577 int major = simple_strtoul(buf, &e, 10); 4578 int minor; 4579 dev_t dev; 4580 struct md_rdev *rdev; 4581 int err; 4582 4583 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4584 return -EINVAL; 4585 minor = simple_strtoul(e+1, &e, 10); 4586 if (*e && *e != '\n') 4587 return -EINVAL; 4588 dev = MKDEV(major, minor); 4589 if (major != MAJOR(dev) || 4590 minor != MINOR(dev)) 4591 return -EOVERFLOW; 4592 4593 flush_rdev_wq(mddev); 4594 err = mddev_lock(mddev); 4595 if (err) 4596 return err; 4597 if (mddev->persistent) { 4598 rdev = md_import_device(dev, mddev->major_version, 4599 mddev->minor_version); 4600 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4601 struct md_rdev *rdev0 4602 = list_entry(mddev->disks.next, 4603 struct md_rdev, same_set); 4604 err = super_types[mddev->major_version] 4605 .load_super(rdev, rdev0, mddev->minor_version); 4606 if (err < 0) 4607 goto out; 4608 } 4609 } else if (mddev->external) 4610 rdev = md_import_device(dev, -2, -1); 4611 else 4612 rdev = md_import_device(dev, -1, -1); 4613 4614 if (IS_ERR(rdev)) { 4615 mddev_unlock(mddev); 4616 return PTR_ERR(rdev); 4617 } 4618 err = bind_rdev_to_array(rdev, mddev); 4619 out: 4620 if (err) 4621 export_rdev(rdev); 4622 mddev_unlock(mddev); 4623 if (!err) 4624 md_new_event(mddev); 4625 return err ? err : len; 4626 } 4627 4628 static struct md_sysfs_entry md_new_device = 4629 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4630 4631 static ssize_t 4632 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4633 { 4634 char *end; 4635 unsigned long chunk, end_chunk; 4636 int err; 4637 4638 err = mddev_lock(mddev); 4639 if (err) 4640 return err; 4641 if (!mddev->bitmap) 4642 goto out; 4643 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4644 while (*buf) { 4645 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4646 if (buf == end) break; 4647 if (*end == '-') { /* range */ 4648 buf = end + 1; 4649 end_chunk = simple_strtoul(buf, &end, 0); 4650 if (buf == end) break; 4651 } 4652 if (*end && !isspace(*end)) break; 4653 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4654 buf = skip_spaces(end); 4655 } 4656 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4657 out: 4658 mddev_unlock(mddev); 4659 return len; 4660 } 4661 4662 static struct md_sysfs_entry md_bitmap = 4663 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4664 4665 static ssize_t 4666 size_show(struct mddev *mddev, char *page) 4667 { 4668 return sprintf(page, "%llu\n", 4669 (unsigned long long)mddev->dev_sectors / 2); 4670 } 4671 4672 static int update_size(struct mddev *mddev, sector_t num_sectors); 4673 4674 static ssize_t 4675 size_store(struct mddev *mddev, const char *buf, size_t len) 4676 { 4677 /* If array is inactive, we can reduce the component size, but 4678 * not increase it (except from 0). 4679 * If array is active, we can try an on-line resize 4680 */ 4681 sector_t sectors; 4682 int err = strict_blocks_to_sectors(buf, §ors); 4683 4684 if (err < 0) 4685 return err; 4686 err = mddev_lock(mddev); 4687 if (err) 4688 return err; 4689 if (mddev->pers) { 4690 err = update_size(mddev, sectors); 4691 if (err == 0) 4692 md_update_sb(mddev, 1); 4693 } else { 4694 if (mddev->dev_sectors == 0 || 4695 mddev->dev_sectors > sectors) 4696 mddev->dev_sectors = sectors; 4697 else 4698 err = -ENOSPC; 4699 } 4700 mddev_unlock(mddev); 4701 return err ? err : len; 4702 } 4703 4704 static struct md_sysfs_entry md_size = 4705 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4706 4707 /* Metadata version. 4708 * This is one of 4709 * 'none' for arrays with no metadata (good luck...) 4710 * 'external' for arrays with externally managed metadata, 4711 * or N.M for internally known formats 4712 */ 4713 static ssize_t 4714 metadata_show(struct mddev *mddev, char *page) 4715 { 4716 if (mddev->persistent) 4717 return sprintf(page, "%d.%d\n", 4718 mddev->major_version, mddev->minor_version); 4719 else if (mddev->external) 4720 return sprintf(page, "external:%s\n", mddev->metadata_type); 4721 else 4722 return sprintf(page, "none\n"); 4723 } 4724 4725 static ssize_t 4726 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4727 { 4728 int major, minor; 4729 char *e; 4730 int err; 4731 /* Changing the details of 'external' metadata is 4732 * always permitted. Otherwise there must be 4733 * no devices attached to the array. 4734 */ 4735 4736 err = mddev_lock(mddev); 4737 if (err) 4738 return err; 4739 err = -EBUSY; 4740 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4741 ; 4742 else if (!list_empty(&mddev->disks)) 4743 goto out_unlock; 4744 4745 err = 0; 4746 if (cmd_match(buf, "none")) { 4747 mddev->persistent = 0; 4748 mddev->external = 0; 4749 mddev->major_version = 0; 4750 mddev->minor_version = 90; 4751 goto out_unlock; 4752 } 4753 if (strncmp(buf, "external:", 9) == 0) { 4754 size_t namelen = len-9; 4755 if (namelen >= sizeof(mddev->metadata_type)) 4756 namelen = sizeof(mddev->metadata_type)-1; 4757 strncpy(mddev->metadata_type, buf+9, namelen); 4758 mddev->metadata_type[namelen] = 0; 4759 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4760 mddev->metadata_type[--namelen] = 0; 4761 mddev->persistent = 0; 4762 mddev->external = 1; 4763 mddev->major_version = 0; 4764 mddev->minor_version = 90; 4765 goto out_unlock; 4766 } 4767 major = simple_strtoul(buf, &e, 10); 4768 err = -EINVAL; 4769 if (e==buf || *e != '.') 4770 goto out_unlock; 4771 buf = e+1; 4772 minor = simple_strtoul(buf, &e, 10); 4773 if (e==buf || (*e && *e != '\n') ) 4774 goto out_unlock; 4775 err = -ENOENT; 4776 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4777 goto out_unlock; 4778 mddev->major_version = major; 4779 mddev->minor_version = minor; 4780 mddev->persistent = 1; 4781 mddev->external = 0; 4782 err = 0; 4783 out_unlock: 4784 mddev_unlock(mddev); 4785 return err ?: len; 4786 } 4787 4788 static struct md_sysfs_entry md_metadata = 4789 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4790 4791 static ssize_t 4792 action_show(struct mddev *mddev, char *page) 4793 { 4794 char *type = "idle"; 4795 unsigned long recovery = mddev->recovery; 4796 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4797 type = "frozen"; 4798 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4799 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4800 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4801 type = "reshape"; 4802 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4803 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4804 type = "resync"; 4805 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4806 type = "check"; 4807 else 4808 type = "repair"; 4809 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4810 type = "recover"; 4811 else if (mddev->reshape_position != MaxSector) 4812 type = "reshape"; 4813 } 4814 return sprintf(page, "%s\n", type); 4815 } 4816 4817 static ssize_t 4818 action_store(struct mddev *mddev, const char *page, size_t len) 4819 { 4820 if (!mddev->pers || !mddev->pers->sync_request) 4821 return -EINVAL; 4822 4823 4824 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4825 if (cmd_match(page, "frozen")) 4826 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4827 else 4828 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4829 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4830 mddev_lock(mddev) == 0) { 4831 if (work_pending(&mddev->del_work)) 4832 flush_workqueue(md_misc_wq); 4833 if (mddev->sync_thread) { 4834 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4835 md_reap_sync_thread(mddev); 4836 } 4837 mddev_unlock(mddev); 4838 } 4839 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4840 return -EBUSY; 4841 else if (cmd_match(page, "resync")) 4842 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4843 else if (cmd_match(page, "recover")) { 4844 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4845 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4846 } else if (cmd_match(page, "reshape")) { 4847 int err; 4848 if (mddev->pers->start_reshape == NULL) 4849 return -EINVAL; 4850 err = mddev_lock(mddev); 4851 if (!err) { 4852 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4853 err = -EBUSY; 4854 else { 4855 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4856 err = mddev->pers->start_reshape(mddev); 4857 } 4858 mddev_unlock(mddev); 4859 } 4860 if (err) 4861 return err; 4862 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4863 } else { 4864 if (cmd_match(page, "check")) 4865 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4866 else if (!cmd_match(page, "repair")) 4867 return -EINVAL; 4868 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4869 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4870 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4871 } 4872 if (mddev->ro == 2) { 4873 /* A write to sync_action is enough to justify 4874 * canceling read-auto mode 4875 */ 4876 mddev->ro = 0; 4877 md_wakeup_thread(mddev->sync_thread); 4878 } 4879 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4880 md_wakeup_thread(mddev->thread); 4881 sysfs_notify_dirent_safe(mddev->sysfs_action); 4882 return len; 4883 } 4884 4885 static struct md_sysfs_entry md_scan_mode = 4886 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4887 4888 static ssize_t 4889 last_sync_action_show(struct mddev *mddev, char *page) 4890 { 4891 return sprintf(page, "%s\n", mddev->last_sync_action); 4892 } 4893 4894 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4895 4896 static ssize_t 4897 mismatch_cnt_show(struct mddev *mddev, char *page) 4898 { 4899 return sprintf(page, "%llu\n", 4900 (unsigned long long) 4901 atomic64_read(&mddev->resync_mismatches)); 4902 } 4903 4904 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4905 4906 static ssize_t 4907 sync_min_show(struct mddev *mddev, char *page) 4908 { 4909 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4910 mddev->sync_speed_min ? "local": "system"); 4911 } 4912 4913 static ssize_t 4914 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4915 { 4916 unsigned int min; 4917 int rv; 4918 4919 if (strncmp(buf, "system", 6)==0) { 4920 min = 0; 4921 } else { 4922 rv = kstrtouint(buf, 10, &min); 4923 if (rv < 0) 4924 return rv; 4925 if (min == 0) 4926 return -EINVAL; 4927 } 4928 mddev->sync_speed_min = min; 4929 return len; 4930 } 4931 4932 static struct md_sysfs_entry md_sync_min = 4933 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4934 4935 static ssize_t 4936 sync_max_show(struct mddev *mddev, char *page) 4937 { 4938 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4939 mddev->sync_speed_max ? "local": "system"); 4940 } 4941 4942 static ssize_t 4943 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4944 { 4945 unsigned int max; 4946 int rv; 4947 4948 if (strncmp(buf, "system", 6)==0) { 4949 max = 0; 4950 } else { 4951 rv = kstrtouint(buf, 10, &max); 4952 if (rv < 0) 4953 return rv; 4954 if (max == 0) 4955 return -EINVAL; 4956 } 4957 mddev->sync_speed_max = max; 4958 return len; 4959 } 4960 4961 static struct md_sysfs_entry md_sync_max = 4962 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4963 4964 static ssize_t 4965 degraded_show(struct mddev *mddev, char *page) 4966 { 4967 return sprintf(page, "%d\n", mddev->degraded); 4968 } 4969 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4970 4971 static ssize_t 4972 sync_force_parallel_show(struct mddev *mddev, char *page) 4973 { 4974 return sprintf(page, "%d\n", mddev->parallel_resync); 4975 } 4976 4977 static ssize_t 4978 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4979 { 4980 long n; 4981 4982 if (kstrtol(buf, 10, &n)) 4983 return -EINVAL; 4984 4985 if (n != 0 && n != 1) 4986 return -EINVAL; 4987 4988 mddev->parallel_resync = n; 4989 4990 if (mddev->sync_thread) 4991 wake_up(&resync_wait); 4992 4993 return len; 4994 } 4995 4996 /* force parallel resync, even with shared block devices */ 4997 static struct md_sysfs_entry md_sync_force_parallel = 4998 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4999 sync_force_parallel_show, sync_force_parallel_store); 5000 5001 static ssize_t 5002 sync_speed_show(struct mddev *mddev, char *page) 5003 { 5004 unsigned long resync, dt, db; 5005 if (mddev->curr_resync == 0) 5006 return sprintf(page, "none\n"); 5007 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5008 dt = (jiffies - mddev->resync_mark) / HZ; 5009 if (!dt) dt++; 5010 db = resync - mddev->resync_mark_cnt; 5011 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5012 } 5013 5014 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5015 5016 static ssize_t 5017 sync_completed_show(struct mddev *mddev, char *page) 5018 { 5019 unsigned long long max_sectors, resync; 5020 5021 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5022 return sprintf(page, "none\n"); 5023 5024 if (mddev->curr_resync == 1 || 5025 mddev->curr_resync == 2) 5026 return sprintf(page, "delayed\n"); 5027 5028 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5029 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5030 max_sectors = mddev->resync_max_sectors; 5031 else 5032 max_sectors = mddev->dev_sectors; 5033 5034 resync = mddev->curr_resync_completed; 5035 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5036 } 5037 5038 static struct md_sysfs_entry md_sync_completed = 5039 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5040 5041 static ssize_t 5042 min_sync_show(struct mddev *mddev, char *page) 5043 { 5044 return sprintf(page, "%llu\n", 5045 (unsigned long long)mddev->resync_min); 5046 } 5047 static ssize_t 5048 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5049 { 5050 unsigned long long min; 5051 int err; 5052 5053 if (kstrtoull(buf, 10, &min)) 5054 return -EINVAL; 5055 5056 spin_lock(&mddev->lock); 5057 err = -EINVAL; 5058 if (min > mddev->resync_max) 5059 goto out_unlock; 5060 5061 err = -EBUSY; 5062 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5063 goto out_unlock; 5064 5065 /* Round down to multiple of 4K for safety */ 5066 mddev->resync_min = round_down(min, 8); 5067 err = 0; 5068 5069 out_unlock: 5070 spin_unlock(&mddev->lock); 5071 return err ?: len; 5072 } 5073 5074 static struct md_sysfs_entry md_min_sync = 5075 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5076 5077 static ssize_t 5078 max_sync_show(struct mddev *mddev, char *page) 5079 { 5080 if (mddev->resync_max == MaxSector) 5081 return sprintf(page, "max\n"); 5082 else 5083 return sprintf(page, "%llu\n", 5084 (unsigned long long)mddev->resync_max); 5085 } 5086 static ssize_t 5087 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5088 { 5089 int err; 5090 spin_lock(&mddev->lock); 5091 if (strncmp(buf, "max", 3) == 0) 5092 mddev->resync_max = MaxSector; 5093 else { 5094 unsigned long long max; 5095 int chunk; 5096 5097 err = -EINVAL; 5098 if (kstrtoull(buf, 10, &max)) 5099 goto out_unlock; 5100 if (max < mddev->resync_min) 5101 goto out_unlock; 5102 5103 err = -EBUSY; 5104 if (max < mddev->resync_max && 5105 mddev->ro == 0 && 5106 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5107 goto out_unlock; 5108 5109 /* Must be a multiple of chunk_size */ 5110 chunk = mddev->chunk_sectors; 5111 if (chunk) { 5112 sector_t temp = max; 5113 5114 err = -EINVAL; 5115 if (sector_div(temp, chunk)) 5116 goto out_unlock; 5117 } 5118 mddev->resync_max = max; 5119 } 5120 wake_up(&mddev->recovery_wait); 5121 err = 0; 5122 out_unlock: 5123 spin_unlock(&mddev->lock); 5124 return err ?: len; 5125 } 5126 5127 static struct md_sysfs_entry md_max_sync = 5128 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5129 5130 static ssize_t 5131 suspend_lo_show(struct mddev *mddev, char *page) 5132 { 5133 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5134 } 5135 5136 static ssize_t 5137 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5138 { 5139 unsigned long long new; 5140 int err; 5141 5142 err = kstrtoull(buf, 10, &new); 5143 if (err < 0) 5144 return err; 5145 if (new != (sector_t)new) 5146 return -EINVAL; 5147 5148 err = mddev_lock(mddev); 5149 if (err) 5150 return err; 5151 err = -EINVAL; 5152 if (mddev->pers == NULL || 5153 mddev->pers->quiesce == NULL) 5154 goto unlock; 5155 mddev_suspend(mddev); 5156 mddev->suspend_lo = new; 5157 mddev_resume(mddev); 5158 5159 err = 0; 5160 unlock: 5161 mddev_unlock(mddev); 5162 return err ?: len; 5163 } 5164 static struct md_sysfs_entry md_suspend_lo = 5165 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5166 5167 static ssize_t 5168 suspend_hi_show(struct mddev *mddev, char *page) 5169 { 5170 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5171 } 5172 5173 static ssize_t 5174 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5175 { 5176 unsigned long long new; 5177 int err; 5178 5179 err = kstrtoull(buf, 10, &new); 5180 if (err < 0) 5181 return err; 5182 if (new != (sector_t)new) 5183 return -EINVAL; 5184 5185 err = mddev_lock(mddev); 5186 if (err) 5187 return err; 5188 err = -EINVAL; 5189 if (mddev->pers == NULL) 5190 goto unlock; 5191 5192 mddev_suspend(mddev); 5193 mddev->suspend_hi = new; 5194 mddev_resume(mddev); 5195 5196 err = 0; 5197 unlock: 5198 mddev_unlock(mddev); 5199 return err ?: len; 5200 } 5201 static struct md_sysfs_entry md_suspend_hi = 5202 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5203 5204 static ssize_t 5205 reshape_position_show(struct mddev *mddev, char *page) 5206 { 5207 if (mddev->reshape_position != MaxSector) 5208 return sprintf(page, "%llu\n", 5209 (unsigned long long)mddev->reshape_position); 5210 strcpy(page, "none\n"); 5211 return 5; 5212 } 5213 5214 static ssize_t 5215 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5216 { 5217 struct md_rdev *rdev; 5218 unsigned long long new; 5219 int err; 5220 5221 err = kstrtoull(buf, 10, &new); 5222 if (err < 0) 5223 return err; 5224 if (new != (sector_t)new) 5225 return -EINVAL; 5226 err = mddev_lock(mddev); 5227 if (err) 5228 return err; 5229 err = -EBUSY; 5230 if (mddev->pers) 5231 goto unlock; 5232 mddev->reshape_position = new; 5233 mddev->delta_disks = 0; 5234 mddev->reshape_backwards = 0; 5235 mddev->new_level = mddev->level; 5236 mddev->new_layout = mddev->layout; 5237 mddev->new_chunk_sectors = mddev->chunk_sectors; 5238 rdev_for_each(rdev, mddev) 5239 rdev->new_data_offset = rdev->data_offset; 5240 err = 0; 5241 unlock: 5242 mddev_unlock(mddev); 5243 return err ?: len; 5244 } 5245 5246 static struct md_sysfs_entry md_reshape_position = 5247 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5248 reshape_position_store); 5249 5250 static ssize_t 5251 reshape_direction_show(struct mddev *mddev, char *page) 5252 { 5253 return sprintf(page, "%s\n", 5254 mddev->reshape_backwards ? "backwards" : "forwards"); 5255 } 5256 5257 static ssize_t 5258 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5259 { 5260 int backwards = 0; 5261 int err; 5262 5263 if (cmd_match(buf, "forwards")) 5264 backwards = 0; 5265 else if (cmd_match(buf, "backwards")) 5266 backwards = 1; 5267 else 5268 return -EINVAL; 5269 if (mddev->reshape_backwards == backwards) 5270 return len; 5271 5272 err = mddev_lock(mddev); 5273 if (err) 5274 return err; 5275 /* check if we are allowed to change */ 5276 if (mddev->delta_disks) 5277 err = -EBUSY; 5278 else if (mddev->persistent && 5279 mddev->major_version == 0) 5280 err = -EINVAL; 5281 else 5282 mddev->reshape_backwards = backwards; 5283 mddev_unlock(mddev); 5284 return err ?: len; 5285 } 5286 5287 static struct md_sysfs_entry md_reshape_direction = 5288 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5289 reshape_direction_store); 5290 5291 static ssize_t 5292 array_size_show(struct mddev *mddev, char *page) 5293 { 5294 if (mddev->external_size) 5295 return sprintf(page, "%llu\n", 5296 (unsigned long long)mddev->array_sectors/2); 5297 else 5298 return sprintf(page, "default\n"); 5299 } 5300 5301 static ssize_t 5302 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5303 { 5304 sector_t sectors; 5305 int err; 5306 5307 err = mddev_lock(mddev); 5308 if (err) 5309 return err; 5310 5311 /* cluster raid doesn't support change array_sectors */ 5312 if (mddev_is_clustered(mddev)) { 5313 mddev_unlock(mddev); 5314 return -EINVAL; 5315 } 5316 5317 if (strncmp(buf, "default", 7) == 0) { 5318 if (mddev->pers) 5319 sectors = mddev->pers->size(mddev, 0, 0); 5320 else 5321 sectors = mddev->array_sectors; 5322 5323 mddev->external_size = 0; 5324 } else { 5325 if (strict_blocks_to_sectors(buf, §ors) < 0) 5326 err = -EINVAL; 5327 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5328 err = -E2BIG; 5329 else 5330 mddev->external_size = 1; 5331 } 5332 5333 if (!err) { 5334 mddev->array_sectors = sectors; 5335 if (mddev->pers) 5336 set_capacity_and_notify(mddev->gendisk, 5337 mddev->array_sectors); 5338 } 5339 mddev_unlock(mddev); 5340 return err ?: len; 5341 } 5342 5343 static struct md_sysfs_entry md_array_size = 5344 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5345 array_size_store); 5346 5347 static ssize_t 5348 consistency_policy_show(struct mddev *mddev, char *page) 5349 { 5350 int ret; 5351 5352 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5353 ret = sprintf(page, "journal\n"); 5354 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5355 ret = sprintf(page, "ppl\n"); 5356 } else if (mddev->bitmap) { 5357 ret = sprintf(page, "bitmap\n"); 5358 } else if (mddev->pers) { 5359 if (mddev->pers->sync_request) 5360 ret = sprintf(page, "resync\n"); 5361 else 5362 ret = sprintf(page, "none\n"); 5363 } else { 5364 ret = sprintf(page, "unknown\n"); 5365 } 5366 5367 return ret; 5368 } 5369 5370 static ssize_t 5371 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5372 { 5373 int err = 0; 5374 5375 if (mddev->pers) { 5376 if (mddev->pers->change_consistency_policy) 5377 err = mddev->pers->change_consistency_policy(mddev, buf); 5378 else 5379 err = -EBUSY; 5380 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5381 set_bit(MD_HAS_PPL, &mddev->flags); 5382 } else { 5383 err = -EINVAL; 5384 } 5385 5386 return err ? err : len; 5387 } 5388 5389 static struct md_sysfs_entry md_consistency_policy = 5390 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5391 consistency_policy_store); 5392 5393 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5394 { 5395 return sprintf(page, "%d\n", mddev->fail_last_dev); 5396 } 5397 5398 /* 5399 * Setting fail_last_dev to true to allow last device to be forcibly removed 5400 * from RAID1/RAID10. 5401 */ 5402 static ssize_t 5403 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5404 { 5405 int ret; 5406 bool value; 5407 5408 ret = kstrtobool(buf, &value); 5409 if (ret) 5410 return ret; 5411 5412 if (value != mddev->fail_last_dev) 5413 mddev->fail_last_dev = value; 5414 5415 return len; 5416 } 5417 static struct md_sysfs_entry md_fail_last_dev = 5418 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5419 fail_last_dev_store); 5420 5421 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5422 { 5423 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5424 return sprintf(page, "n/a\n"); 5425 else 5426 return sprintf(page, "%d\n", mddev->serialize_policy); 5427 } 5428 5429 /* 5430 * Setting serialize_policy to true to enforce write IO is not reordered 5431 * for raid1. 5432 */ 5433 static ssize_t 5434 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5435 { 5436 int err; 5437 bool value; 5438 5439 err = kstrtobool(buf, &value); 5440 if (err) 5441 return err; 5442 5443 if (value == mddev->serialize_policy) 5444 return len; 5445 5446 err = mddev_lock(mddev); 5447 if (err) 5448 return err; 5449 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5450 pr_err("md: serialize_policy is only effective for raid1\n"); 5451 err = -EINVAL; 5452 goto unlock; 5453 } 5454 5455 mddev_suspend(mddev); 5456 if (value) 5457 mddev_create_serial_pool(mddev, NULL, true); 5458 else 5459 mddev_destroy_serial_pool(mddev, NULL, true); 5460 mddev->serialize_policy = value; 5461 mddev_resume(mddev); 5462 unlock: 5463 mddev_unlock(mddev); 5464 return err ?: len; 5465 } 5466 5467 static struct md_sysfs_entry md_serialize_policy = 5468 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5469 serialize_policy_store); 5470 5471 5472 static struct attribute *md_default_attrs[] = { 5473 &md_level.attr, 5474 &md_layout.attr, 5475 &md_raid_disks.attr, 5476 &md_uuid.attr, 5477 &md_chunk_size.attr, 5478 &md_size.attr, 5479 &md_resync_start.attr, 5480 &md_metadata.attr, 5481 &md_new_device.attr, 5482 &md_safe_delay.attr, 5483 &md_array_state.attr, 5484 &md_reshape_position.attr, 5485 &md_reshape_direction.attr, 5486 &md_array_size.attr, 5487 &max_corr_read_errors.attr, 5488 &md_consistency_policy.attr, 5489 &md_fail_last_dev.attr, 5490 &md_serialize_policy.attr, 5491 NULL, 5492 }; 5493 5494 static struct attribute *md_redundancy_attrs[] = { 5495 &md_scan_mode.attr, 5496 &md_last_scan_mode.attr, 5497 &md_mismatches.attr, 5498 &md_sync_min.attr, 5499 &md_sync_max.attr, 5500 &md_sync_speed.attr, 5501 &md_sync_force_parallel.attr, 5502 &md_sync_completed.attr, 5503 &md_min_sync.attr, 5504 &md_max_sync.attr, 5505 &md_suspend_lo.attr, 5506 &md_suspend_hi.attr, 5507 &md_bitmap.attr, 5508 &md_degraded.attr, 5509 NULL, 5510 }; 5511 static const struct attribute_group md_redundancy_group = { 5512 .name = NULL, 5513 .attrs = md_redundancy_attrs, 5514 }; 5515 5516 static ssize_t 5517 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5518 { 5519 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5520 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5521 ssize_t rv; 5522 5523 if (!entry->show) 5524 return -EIO; 5525 spin_lock(&all_mddevs_lock); 5526 if (list_empty(&mddev->all_mddevs)) { 5527 spin_unlock(&all_mddevs_lock); 5528 return -EBUSY; 5529 } 5530 mddev_get(mddev); 5531 spin_unlock(&all_mddevs_lock); 5532 5533 rv = entry->show(mddev, page); 5534 mddev_put(mddev); 5535 return rv; 5536 } 5537 5538 static ssize_t 5539 md_attr_store(struct kobject *kobj, struct attribute *attr, 5540 const char *page, size_t length) 5541 { 5542 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5543 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5544 ssize_t rv; 5545 5546 if (!entry->store) 5547 return -EIO; 5548 if (!capable(CAP_SYS_ADMIN)) 5549 return -EACCES; 5550 spin_lock(&all_mddevs_lock); 5551 if (list_empty(&mddev->all_mddevs)) { 5552 spin_unlock(&all_mddevs_lock); 5553 return -EBUSY; 5554 } 5555 mddev_get(mddev); 5556 spin_unlock(&all_mddevs_lock); 5557 rv = entry->store(mddev, page, length); 5558 mddev_put(mddev); 5559 return rv; 5560 } 5561 5562 static void md_free(struct kobject *ko) 5563 { 5564 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5565 5566 if (mddev->sysfs_state) 5567 sysfs_put(mddev->sysfs_state); 5568 if (mddev->sysfs_level) 5569 sysfs_put(mddev->sysfs_level); 5570 5571 if (mddev->gendisk) { 5572 del_gendisk(mddev->gendisk); 5573 blk_cleanup_disk(mddev->gendisk); 5574 } 5575 percpu_ref_exit(&mddev->writes_pending); 5576 5577 bioset_exit(&mddev->bio_set); 5578 bioset_exit(&mddev->sync_set); 5579 if (mddev->level != 1 && mddev->level != 10) 5580 bioset_exit(&mddev->io_acct_set); 5581 kfree(mddev); 5582 } 5583 5584 static const struct sysfs_ops md_sysfs_ops = { 5585 .show = md_attr_show, 5586 .store = md_attr_store, 5587 }; 5588 static struct kobj_type md_ktype = { 5589 .release = md_free, 5590 .sysfs_ops = &md_sysfs_ops, 5591 .default_attrs = md_default_attrs, 5592 }; 5593 5594 int mdp_major = 0; 5595 5596 static void mddev_delayed_delete(struct work_struct *ws) 5597 { 5598 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5599 5600 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5601 kobject_del(&mddev->kobj); 5602 kobject_put(&mddev->kobj); 5603 } 5604 5605 static void no_op(struct percpu_ref *r) {} 5606 5607 int mddev_init_writes_pending(struct mddev *mddev) 5608 { 5609 if (mddev->writes_pending.percpu_count_ptr) 5610 return 0; 5611 if (percpu_ref_init(&mddev->writes_pending, no_op, 5612 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5613 return -ENOMEM; 5614 /* We want to start with the refcount at zero */ 5615 percpu_ref_put(&mddev->writes_pending); 5616 return 0; 5617 } 5618 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5619 5620 static int md_alloc(dev_t dev, char *name) 5621 { 5622 /* 5623 * If dev is zero, name is the name of a device to allocate with 5624 * an arbitrary minor number. It will be "md_???" 5625 * If dev is non-zero it must be a device number with a MAJOR of 5626 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5627 * the device is being created by opening a node in /dev. 5628 * If "name" is not NULL, the device is being created by 5629 * writing to /sys/module/md_mod/parameters/new_array. 5630 */ 5631 static DEFINE_MUTEX(disks_mutex); 5632 struct mddev *mddev; 5633 struct gendisk *disk; 5634 int partitioned; 5635 int shift; 5636 int unit; 5637 int error ; 5638 5639 /* 5640 * Wait for any previous instance of this device to be completely 5641 * removed (mddev_delayed_delete). 5642 */ 5643 flush_workqueue(md_misc_wq); 5644 5645 mutex_lock(&disks_mutex); 5646 mddev = mddev_alloc(dev); 5647 if (IS_ERR(mddev)) { 5648 mutex_unlock(&disks_mutex); 5649 return PTR_ERR(mddev); 5650 } 5651 5652 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5653 shift = partitioned ? MdpMinorShift : 0; 5654 unit = MINOR(mddev->unit) >> shift; 5655 5656 if (name && !dev) { 5657 /* Need to ensure that 'name' is not a duplicate. 5658 */ 5659 struct mddev *mddev2; 5660 spin_lock(&all_mddevs_lock); 5661 5662 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5663 if (mddev2->gendisk && 5664 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5665 spin_unlock(&all_mddevs_lock); 5666 error = -EEXIST; 5667 goto abort; 5668 } 5669 spin_unlock(&all_mddevs_lock); 5670 } 5671 if (name && dev) 5672 /* 5673 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5674 */ 5675 mddev->hold_active = UNTIL_STOP; 5676 5677 error = -ENOMEM; 5678 disk = blk_alloc_disk(NUMA_NO_NODE); 5679 if (!disk) 5680 goto abort; 5681 5682 disk->major = MAJOR(mddev->unit); 5683 disk->first_minor = unit << shift; 5684 disk->minors = 1 << shift; 5685 if (name) 5686 strcpy(disk->disk_name, name); 5687 else if (partitioned) 5688 sprintf(disk->disk_name, "md_d%d", unit); 5689 else 5690 sprintf(disk->disk_name, "md%d", unit); 5691 disk->fops = &md_fops; 5692 disk->private_data = mddev; 5693 5694 mddev->queue = disk->queue; 5695 blk_set_stacking_limits(&mddev->queue->limits); 5696 blk_queue_write_cache(mddev->queue, true, true); 5697 /* Allow extended partitions. This makes the 5698 * 'mdp' device redundant, but we can't really 5699 * remove it now. 5700 */ 5701 disk->flags |= GENHD_FL_EXT_DEVT; 5702 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5703 mddev->gendisk = disk; 5704 add_disk(disk); 5705 5706 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5707 if (error) { 5708 /* This isn't possible, but as kobject_init_and_add is marked 5709 * __must_check, we must do something with the result 5710 */ 5711 pr_debug("md: cannot register %s/md - name in use\n", 5712 disk->disk_name); 5713 error = 0; 5714 } 5715 if (mddev->kobj.sd && 5716 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5717 pr_debug("pointless warning\n"); 5718 abort: 5719 mutex_unlock(&disks_mutex); 5720 if (!error && mddev->kobj.sd) { 5721 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5722 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5723 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5724 } 5725 mddev_put(mddev); 5726 return error; 5727 } 5728 5729 static void md_probe(dev_t dev) 5730 { 5731 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5732 return; 5733 if (create_on_open) 5734 md_alloc(dev, NULL); 5735 } 5736 5737 static int add_named_array(const char *val, const struct kernel_param *kp) 5738 { 5739 /* 5740 * val must be "md_*" or "mdNNN". 5741 * For "md_*" we allocate an array with a large free minor number, and 5742 * set the name to val. val must not already be an active name. 5743 * For "mdNNN" we allocate an array with the minor number NNN 5744 * which must not already be in use. 5745 */ 5746 int len = strlen(val); 5747 char buf[DISK_NAME_LEN]; 5748 unsigned long devnum; 5749 5750 while (len && val[len-1] == '\n') 5751 len--; 5752 if (len >= DISK_NAME_LEN) 5753 return -E2BIG; 5754 strlcpy(buf, val, len+1); 5755 if (strncmp(buf, "md_", 3) == 0) 5756 return md_alloc(0, buf); 5757 if (strncmp(buf, "md", 2) == 0 && 5758 isdigit(buf[2]) && 5759 kstrtoul(buf+2, 10, &devnum) == 0 && 5760 devnum <= MINORMASK) 5761 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5762 5763 return -EINVAL; 5764 } 5765 5766 static void md_safemode_timeout(struct timer_list *t) 5767 { 5768 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5769 5770 mddev->safemode = 1; 5771 if (mddev->external) 5772 sysfs_notify_dirent_safe(mddev->sysfs_state); 5773 5774 md_wakeup_thread(mddev->thread); 5775 } 5776 5777 static int start_dirty_degraded; 5778 5779 int md_run(struct mddev *mddev) 5780 { 5781 int err; 5782 struct md_rdev *rdev; 5783 struct md_personality *pers; 5784 5785 if (list_empty(&mddev->disks)) 5786 /* cannot run an array with no devices.. */ 5787 return -EINVAL; 5788 5789 if (mddev->pers) 5790 return -EBUSY; 5791 /* Cannot run until previous stop completes properly */ 5792 if (mddev->sysfs_active) 5793 return -EBUSY; 5794 5795 /* 5796 * Analyze all RAID superblock(s) 5797 */ 5798 if (!mddev->raid_disks) { 5799 if (!mddev->persistent) 5800 return -EINVAL; 5801 err = analyze_sbs(mddev); 5802 if (err) 5803 return -EINVAL; 5804 } 5805 5806 if (mddev->level != LEVEL_NONE) 5807 request_module("md-level-%d", mddev->level); 5808 else if (mddev->clevel[0]) 5809 request_module("md-%s", mddev->clevel); 5810 5811 /* 5812 * Drop all container device buffers, from now on 5813 * the only valid external interface is through the md 5814 * device. 5815 */ 5816 mddev->has_superblocks = false; 5817 rdev_for_each(rdev, mddev) { 5818 if (test_bit(Faulty, &rdev->flags)) 5819 continue; 5820 sync_blockdev(rdev->bdev); 5821 invalidate_bdev(rdev->bdev); 5822 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5823 mddev->ro = 1; 5824 if (mddev->gendisk) 5825 set_disk_ro(mddev->gendisk, 1); 5826 } 5827 5828 if (rdev->sb_page) 5829 mddev->has_superblocks = true; 5830 5831 /* perform some consistency tests on the device. 5832 * We don't want the data to overlap the metadata, 5833 * Internal Bitmap issues have been handled elsewhere. 5834 */ 5835 if (rdev->meta_bdev) { 5836 /* Nothing to check */; 5837 } else if (rdev->data_offset < rdev->sb_start) { 5838 if (mddev->dev_sectors && 5839 rdev->data_offset + mddev->dev_sectors 5840 > rdev->sb_start) { 5841 pr_warn("md: %s: data overlaps metadata\n", 5842 mdname(mddev)); 5843 return -EINVAL; 5844 } 5845 } else { 5846 if (rdev->sb_start + rdev->sb_size/512 5847 > rdev->data_offset) { 5848 pr_warn("md: %s: metadata overlaps data\n", 5849 mdname(mddev)); 5850 return -EINVAL; 5851 } 5852 } 5853 sysfs_notify_dirent_safe(rdev->sysfs_state); 5854 } 5855 5856 if (!bioset_initialized(&mddev->bio_set)) { 5857 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5858 if (err) 5859 return err; 5860 } 5861 if (!bioset_initialized(&mddev->sync_set)) { 5862 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5863 if (err) 5864 goto exit_bio_set; 5865 } 5866 if (mddev->level != 1 && mddev->level != 10 && 5867 !bioset_initialized(&mddev->io_acct_set)) { 5868 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 5869 offsetof(struct md_io_acct, bio_clone), 0); 5870 if (err) 5871 goto exit_sync_set; 5872 } 5873 5874 spin_lock(&pers_lock); 5875 pers = find_pers(mddev->level, mddev->clevel); 5876 if (!pers || !try_module_get(pers->owner)) { 5877 spin_unlock(&pers_lock); 5878 if (mddev->level != LEVEL_NONE) 5879 pr_warn("md: personality for level %d is not loaded!\n", 5880 mddev->level); 5881 else 5882 pr_warn("md: personality for level %s is not loaded!\n", 5883 mddev->clevel); 5884 err = -EINVAL; 5885 goto abort; 5886 } 5887 spin_unlock(&pers_lock); 5888 if (mddev->level != pers->level) { 5889 mddev->level = pers->level; 5890 mddev->new_level = pers->level; 5891 } 5892 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5893 5894 if (mddev->reshape_position != MaxSector && 5895 pers->start_reshape == NULL) { 5896 /* This personality cannot handle reshaping... */ 5897 module_put(pers->owner); 5898 err = -EINVAL; 5899 goto abort; 5900 } 5901 5902 if (pers->sync_request) { 5903 /* Warn if this is a potentially silly 5904 * configuration. 5905 */ 5906 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5907 struct md_rdev *rdev2; 5908 int warned = 0; 5909 5910 rdev_for_each(rdev, mddev) 5911 rdev_for_each(rdev2, mddev) { 5912 if (rdev < rdev2 && 5913 rdev->bdev->bd_disk == 5914 rdev2->bdev->bd_disk) { 5915 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5916 mdname(mddev), 5917 bdevname(rdev->bdev,b), 5918 bdevname(rdev2->bdev,b2)); 5919 warned = 1; 5920 } 5921 } 5922 5923 if (warned) 5924 pr_warn("True protection against single-disk failure might be compromised.\n"); 5925 } 5926 5927 mddev->recovery = 0; 5928 /* may be over-ridden by personality */ 5929 mddev->resync_max_sectors = mddev->dev_sectors; 5930 5931 mddev->ok_start_degraded = start_dirty_degraded; 5932 5933 if (start_readonly && mddev->ro == 0) 5934 mddev->ro = 2; /* read-only, but switch on first write */ 5935 5936 err = pers->run(mddev); 5937 if (err) 5938 pr_warn("md: pers->run() failed ...\n"); 5939 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5940 WARN_ONCE(!mddev->external_size, 5941 "%s: default size too small, but 'external_size' not in effect?\n", 5942 __func__); 5943 pr_warn("md: invalid array_size %llu > default size %llu\n", 5944 (unsigned long long)mddev->array_sectors / 2, 5945 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5946 err = -EINVAL; 5947 } 5948 if (err == 0 && pers->sync_request && 5949 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5950 struct bitmap *bitmap; 5951 5952 bitmap = md_bitmap_create(mddev, -1); 5953 if (IS_ERR(bitmap)) { 5954 err = PTR_ERR(bitmap); 5955 pr_warn("%s: failed to create bitmap (%d)\n", 5956 mdname(mddev), err); 5957 } else 5958 mddev->bitmap = bitmap; 5959 5960 } 5961 if (err) 5962 goto bitmap_abort; 5963 5964 if (mddev->bitmap_info.max_write_behind > 0) { 5965 bool create_pool = false; 5966 5967 rdev_for_each(rdev, mddev) { 5968 if (test_bit(WriteMostly, &rdev->flags) && 5969 rdev_init_serial(rdev)) 5970 create_pool = true; 5971 } 5972 if (create_pool && mddev->serial_info_pool == NULL) { 5973 mddev->serial_info_pool = 5974 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5975 sizeof(struct serial_info)); 5976 if (!mddev->serial_info_pool) { 5977 err = -ENOMEM; 5978 goto bitmap_abort; 5979 } 5980 } 5981 } 5982 5983 if (mddev->queue) { 5984 bool nonrot = true; 5985 5986 rdev_for_each(rdev, mddev) { 5987 if (rdev->raid_disk >= 0 && 5988 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5989 nonrot = false; 5990 break; 5991 } 5992 } 5993 if (mddev->degraded) 5994 nonrot = false; 5995 if (nonrot) 5996 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5997 else 5998 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5999 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6000 } 6001 if (pers->sync_request) { 6002 if (mddev->kobj.sd && 6003 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6004 pr_warn("md: cannot register extra attributes for %s\n", 6005 mdname(mddev)); 6006 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6007 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6008 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6009 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6010 mddev->ro = 0; 6011 6012 atomic_set(&mddev->max_corr_read_errors, 6013 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6014 mddev->safemode = 0; 6015 if (mddev_is_clustered(mddev)) 6016 mddev->safemode_delay = 0; 6017 else 6018 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6019 mddev->in_sync = 1; 6020 smp_wmb(); 6021 spin_lock(&mddev->lock); 6022 mddev->pers = pers; 6023 spin_unlock(&mddev->lock); 6024 rdev_for_each(rdev, mddev) 6025 if (rdev->raid_disk >= 0) 6026 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6027 6028 if (mddev->degraded && !mddev->ro) 6029 /* This ensures that recovering status is reported immediately 6030 * via sysfs - until a lack of spares is confirmed. 6031 */ 6032 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6033 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6034 6035 if (mddev->sb_flags) 6036 md_update_sb(mddev, 0); 6037 6038 md_new_event(mddev); 6039 return 0; 6040 6041 bitmap_abort: 6042 mddev_detach(mddev); 6043 if (mddev->private) 6044 pers->free(mddev, mddev->private); 6045 mddev->private = NULL; 6046 module_put(pers->owner); 6047 md_bitmap_destroy(mddev); 6048 abort: 6049 if (mddev->level != 1 && mddev->level != 10) 6050 bioset_exit(&mddev->io_acct_set); 6051 exit_sync_set: 6052 bioset_exit(&mddev->sync_set); 6053 exit_bio_set: 6054 bioset_exit(&mddev->bio_set); 6055 return err; 6056 } 6057 EXPORT_SYMBOL_GPL(md_run); 6058 6059 int do_md_run(struct mddev *mddev) 6060 { 6061 int err; 6062 6063 set_bit(MD_NOT_READY, &mddev->flags); 6064 err = md_run(mddev); 6065 if (err) 6066 goto out; 6067 err = md_bitmap_load(mddev); 6068 if (err) { 6069 md_bitmap_destroy(mddev); 6070 goto out; 6071 } 6072 6073 if (mddev_is_clustered(mddev)) 6074 md_allow_write(mddev); 6075 6076 /* run start up tasks that require md_thread */ 6077 md_start(mddev); 6078 6079 md_wakeup_thread(mddev->thread); 6080 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6081 6082 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6083 clear_bit(MD_NOT_READY, &mddev->flags); 6084 mddev->changed = 1; 6085 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6086 sysfs_notify_dirent_safe(mddev->sysfs_state); 6087 sysfs_notify_dirent_safe(mddev->sysfs_action); 6088 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6089 out: 6090 clear_bit(MD_NOT_READY, &mddev->flags); 6091 return err; 6092 } 6093 6094 int md_start(struct mddev *mddev) 6095 { 6096 int ret = 0; 6097 6098 if (mddev->pers->start) { 6099 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6100 md_wakeup_thread(mddev->thread); 6101 ret = mddev->pers->start(mddev); 6102 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6103 md_wakeup_thread(mddev->sync_thread); 6104 } 6105 return ret; 6106 } 6107 EXPORT_SYMBOL_GPL(md_start); 6108 6109 static int restart_array(struct mddev *mddev) 6110 { 6111 struct gendisk *disk = mddev->gendisk; 6112 struct md_rdev *rdev; 6113 bool has_journal = false; 6114 bool has_readonly = false; 6115 6116 /* Complain if it has no devices */ 6117 if (list_empty(&mddev->disks)) 6118 return -ENXIO; 6119 if (!mddev->pers) 6120 return -EINVAL; 6121 if (!mddev->ro) 6122 return -EBUSY; 6123 6124 rcu_read_lock(); 6125 rdev_for_each_rcu(rdev, mddev) { 6126 if (test_bit(Journal, &rdev->flags) && 6127 !test_bit(Faulty, &rdev->flags)) 6128 has_journal = true; 6129 if (rdev_read_only(rdev)) 6130 has_readonly = true; 6131 } 6132 rcu_read_unlock(); 6133 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6134 /* Don't restart rw with journal missing/faulty */ 6135 return -EINVAL; 6136 if (has_readonly) 6137 return -EROFS; 6138 6139 mddev->safemode = 0; 6140 mddev->ro = 0; 6141 set_disk_ro(disk, 0); 6142 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6143 /* Kick recovery or resync if necessary */ 6144 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6145 md_wakeup_thread(mddev->thread); 6146 md_wakeup_thread(mddev->sync_thread); 6147 sysfs_notify_dirent_safe(mddev->sysfs_state); 6148 return 0; 6149 } 6150 6151 static void md_clean(struct mddev *mddev) 6152 { 6153 mddev->array_sectors = 0; 6154 mddev->external_size = 0; 6155 mddev->dev_sectors = 0; 6156 mddev->raid_disks = 0; 6157 mddev->recovery_cp = 0; 6158 mddev->resync_min = 0; 6159 mddev->resync_max = MaxSector; 6160 mddev->reshape_position = MaxSector; 6161 mddev->external = 0; 6162 mddev->persistent = 0; 6163 mddev->level = LEVEL_NONE; 6164 mddev->clevel[0] = 0; 6165 mddev->flags = 0; 6166 mddev->sb_flags = 0; 6167 mddev->ro = 0; 6168 mddev->metadata_type[0] = 0; 6169 mddev->chunk_sectors = 0; 6170 mddev->ctime = mddev->utime = 0; 6171 mddev->layout = 0; 6172 mddev->max_disks = 0; 6173 mddev->events = 0; 6174 mddev->can_decrease_events = 0; 6175 mddev->delta_disks = 0; 6176 mddev->reshape_backwards = 0; 6177 mddev->new_level = LEVEL_NONE; 6178 mddev->new_layout = 0; 6179 mddev->new_chunk_sectors = 0; 6180 mddev->curr_resync = 0; 6181 atomic64_set(&mddev->resync_mismatches, 0); 6182 mddev->suspend_lo = mddev->suspend_hi = 0; 6183 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6184 mddev->recovery = 0; 6185 mddev->in_sync = 0; 6186 mddev->changed = 0; 6187 mddev->degraded = 0; 6188 mddev->safemode = 0; 6189 mddev->private = NULL; 6190 mddev->cluster_info = NULL; 6191 mddev->bitmap_info.offset = 0; 6192 mddev->bitmap_info.default_offset = 0; 6193 mddev->bitmap_info.default_space = 0; 6194 mddev->bitmap_info.chunksize = 0; 6195 mddev->bitmap_info.daemon_sleep = 0; 6196 mddev->bitmap_info.max_write_behind = 0; 6197 mddev->bitmap_info.nodes = 0; 6198 } 6199 6200 static void __md_stop_writes(struct mddev *mddev) 6201 { 6202 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6203 if (work_pending(&mddev->del_work)) 6204 flush_workqueue(md_misc_wq); 6205 if (mddev->sync_thread) { 6206 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6207 md_reap_sync_thread(mddev); 6208 } 6209 6210 del_timer_sync(&mddev->safemode_timer); 6211 6212 if (mddev->pers && mddev->pers->quiesce) { 6213 mddev->pers->quiesce(mddev, 1); 6214 mddev->pers->quiesce(mddev, 0); 6215 } 6216 md_bitmap_flush(mddev); 6217 6218 if (mddev->ro == 0 && 6219 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6220 mddev->sb_flags)) { 6221 /* mark array as shutdown cleanly */ 6222 if (!mddev_is_clustered(mddev)) 6223 mddev->in_sync = 1; 6224 md_update_sb(mddev, 1); 6225 } 6226 /* disable policy to guarantee rdevs free resources for serialization */ 6227 mddev->serialize_policy = 0; 6228 mddev_destroy_serial_pool(mddev, NULL, true); 6229 } 6230 6231 void md_stop_writes(struct mddev *mddev) 6232 { 6233 mddev_lock_nointr(mddev); 6234 __md_stop_writes(mddev); 6235 mddev_unlock(mddev); 6236 } 6237 EXPORT_SYMBOL_GPL(md_stop_writes); 6238 6239 static void mddev_detach(struct mddev *mddev) 6240 { 6241 md_bitmap_wait_behind_writes(mddev); 6242 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6243 mddev->pers->quiesce(mddev, 1); 6244 mddev->pers->quiesce(mddev, 0); 6245 } 6246 md_unregister_thread(&mddev->thread); 6247 if (mddev->queue) 6248 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6249 } 6250 6251 static void __md_stop(struct mddev *mddev) 6252 { 6253 struct md_personality *pers = mddev->pers; 6254 md_bitmap_destroy(mddev); 6255 mddev_detach(mddev); 6256 /* Ensure ->event_work is done */ 6257 if (mddev->event_work.func) 6258 flush_workqueue(md_misc_wq); 6259 spin_lock(&mddev->lock); 6260 mddev->pers = NULL; 6261 spin_unlock(&mddev->lock); 6262 pers->free(mddev, mddev->private); 6263 mddev->private = NULL; 6264 if (pers->sync_request && mddev->to_remove == NULL) 6265 mddev->to_remove = &md_redundancy_group; 6266 module_put(pers->owner); 6267 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6268 } 6269 6270 void md_stop(struct mddev *mddev) 6271 { 6272 /* stop the array and free an attached data structures. 6273 * This is called from dm-raid 6274 */ 6275 __md_stop(mddev); 6276 bioset_exit(&mddev->bio_set); 6277 bioset_exit(&mddev->sync_set); 6278 if (mddev->level != 1 && mddev->level != 10) 6279 bioset_exit(&mddev->io_acct_set); 6280 } 6281 6282 EXPORT_SYMBOL_GPL(md_stop); 6283 6284 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6285 { 6286 int err = 0; 6287 int did_freeze = 0; 6288 6289 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6290 did_freeze = 1; 6291 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6292 md_wakeup_thread(mddev->thread); 6293 } 6294 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6295 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6296 if (mddev->sync_thread) 6297 /* Thread might be blocked waiting for metadata update 6298 * which will now never happen */ 6299 wake_up_process(mddev->sync_thread->tsk); 6300 6301 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6302 return -EBUSY; 6303 mddev_unlock(mddev); 6304 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6305 &mddev->recovery)); 6306 wait_event(mddev->sb_wait, 6307 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6308 mddev_lock_nointr(mddev); 6309 6310 mutex_lock(&mddev->open_mutex); 6311 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6312 mddev->sync_thread || 6313 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6314 pr_warn("md: %s still in use.\n",mdname(mddev)); 6315 if (did_freeze) { 6316 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6318 md_wakeup_thread(mddev->thread); 6319 } 6320 err = -EBUSY; 6321 goto out; 6322 } 6323 if (mddev->pers) { 6324 __md_stop_writes(mddev); 6325 6326 err = -ENXIO; 6327 if (mddev->ro==1) 6328 goto out; 6329 mddev->ro = 1; 6330 set_disk_ro(mddev->gendisk, 1); 6331 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6333 md_wakeup_thread(mddev->thread); 6334 sysfs_notify_dirent_safe(mddev->sysfs_state); 6335 err = 0; 6336 } 6337 out: 6338 mutex_unlock(&mddev->open_mutex); 6339 return err; 6340 } 6341 6342 /* mode: 6343 * 0 - completely stop and dis-assemble array 6344 * 2 - stop but do not disassemble array 6345 */ 6346 static int do_md_stop(struct mddev *mddev, int mode, 6347 struct block_device *bdev) 6348 { 6349 struct gendisk *disk = mddev->gendisk; 6350 struct md_rdev *rdev; 6351 int did_freeze = 0; 6352 6353 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6354 did_freeze = 1; 6355 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6356 md_wakeup_thread(mddev->thread); 6357 } 6358 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6359 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6360 if (mddev->sync_thread) 6361 /* Thread might be blocked waiting for metadata update 6362 * which will now never happen */ 6363 wake_up_process(mddev->sync_thread->tsk); 6364 6365 mddev_unlock(mddev); 6366 wait_event(resync_wait, (mddev->sync_thread == NULL && 6367 !test_bit(MD_RECOVERY_RUNNING, 6368 &mddev->recovery))); 6369 mddev_lock_nointr(mddev); 6370 6371 mutex_lock(&mddev->open_mutex); 6372 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6373 mddev->sysfs_active || 6374 mddev->sync_thread || 6375 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6376 pr_warn("md: %s still in use.\n",mdname(mddev)); 6377 mutex_unlock(&mddev->open_mutex); 6378 if (did_freeze) { 6379 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6380 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6381 md_wakeup_thread(mddev->thread); 6382 } 6383 return -EBUSY; 6384 } 6385 if (mddev->pers) { 6386 if (mddev->ro) 6387 set_disk_ro(disk, 0); 6388 6389 __md_stop_writes(mddev); 6390 __md_stop(mddev); 6391 6392 /* tell userspace to handle 'inactive' */ 6393 sysfs_notify_dirent_safe(mddev->sysfs_state); 6394 6395 rdev_for_each(rdev, mddev) 6396 if (rdev->raid_disk >= 0) 6397 sysfs_unlink_rdev(mddev, rdev); 6398 6399 set_capacity_and_notify(disk, 0); 6400 mutex_unlock(&mddev->open_mutex); 6401 mddev->changed = 1; 6402 6403 if (mddev->ro) 6404 mddev->ro = 0; 6405 } else 6406 mutex_unlock(&mddev->open_mutex); 6407 /* 6408 * Free resources if final stop 6409 */ 6410 if (mode == 0) { 6411 pr_info("md: %s stopped.\n", mdname(mddev)); 6412 6413 if (mddev->bitmap_info.file) { 6414 struct file *f = mddev->bitmap_info.file; 6415 spin_lock(&mddev->lock); 6416 mddev->bitmap_info.file = NULL; 6417 spin_unlock(&mddev->lock); 6418 fput(f); 6419 } 6420 mddev->bitmap_info.offset = 0; 6421 6422 export_array(mddev); 6423 6424 md_clean(mddev); 6425 if (mddev->hold_active == UNTIL_STOP) 6426 mddev->hold_active = 0; 6427 } 6428 md_new_event(mddev); 6429 sysfs_notify_dirent_safe(mddev->sysfs_state); 6430 return 0; 6431 } 6432 6433 #ifndef MODULE 6434 static void autorun_array(struct mddev *mddev) 6435 { 6436 struct md_rdev *rdev; 6437 int err; 6438 6439 if (list_empty(&mddev->disks)) 6440 return; 6441 6442 pr_info("md: running: "); 6443 6444 rdev_for_each(rdev, mddev) { 6445 char b[BDEVNAME_SIZE]; 6446 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6447 } 6448 pr_cont("\n"); 6449 6450 err = do_md_run(mddev); 6451 if (err) { 6452 pr_warn("md: do_md_run() returned %d\n", err); 6453 do_md_stop(mddev, 0, NULL); 6454 } 6455 } 6456 6457 /* 6458 * lets try to run arrays based on all disks that have arrived 6459 * until now. (those are in pending_raid_disks) 6460 * 6461 * the method: pick the first pending disk, collect all disks with 6462 * the same UUID, remove all from the pending list and put them into 6463 * the 'same_array' list. Then order this list based on superblock 6464 * update time (freshest comes first), kick out 'old' disks and 6465 * compare superblocks. If everything's fine then run it. 6466 * 6467 * If "unit" is allocated, then bump its reference count 6468 */ 6469 static void autorun_devices(int part) 6470 { 6471 struct md_rdev *rdev0, *rdev, *tmp; 6472 struct mddev *mddev; 6473 char b[BDEVNAME_SIZE]; 6474 6475 pr_info("md: autorun ...\n"); 6476 while (!list_empty(&pending_raid_disks)) { 6477 int unit; 6478 dev_t dev; 6479 LIST_HEAD(candidates); 6480 rdev0 = list_entry(pending_raid_disks.next, 6481 struct md_rdev, same_set); 6482 6483 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6484 INIT_LIST_HEAD(&candidates); 6485 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6486 if (super_90_load(rdev, rdev0, 0) >= 0) { 6487 pr_debug("md: adding %s ...\n", 6488 bdevname(rdev->bdev,b)); 6489 list_move(&rdev->same_set, &candidates); 6490 } 6491 /* 6492 * now we have a set of devices, with all of them having 6493 * mostly sane superblocks. It's time to allocate the 6494 * mddev. 6495 */ 6496 if (part) { 6497 dev = MKDEV(mdp_major, 6498 rdev0->preferred_minor << MdpMinorShift); 6499 unit = MINOR(dev) >> MdpMinorShift; 6500 } else { 6501 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6502 unit = MINOR(dev); 6503 } 6504 if (rdev0->preferred_minor != unit) { 6505 pr_warn("md: unit number in %s is bad: %d\n", 6506 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6507 break; 6508 } 6509 6510 md_probe(dev); 6511 mddev = mddev_find(dev); 6512 if (!mddev) 6513 break; 6514 6515 if (mddev_lock(mddev)) 6516 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6517 else if (mddev->raid_disks || mddev->major_version 6518 || !list_empty(&mddev->disks)) { 6519 pr_warn("md: %s already running, cannot run %s\n", 6520 mdname(mddev), bdevname(rdev0->bdev,b)); 6521 mddev_unlock(mddev); 6522 } else { 6523 pr_debug("md: created %s\n", mdname(mddev)); 6524 mddev->persistent = 1; 6525 rdev_for_each_list(rdev, tmp, &candidates) { 6526 list_del_init(&rdev->same_set); 6527 if (bind_rdev_to_array(rdev, mddev)) 6528 export_rdev(rdev); 6529 } 6530 autorun_array(mddev); 6531 mddev_unlock(mddev); 6532 } 6533 /* on success, candidates will be empty, on error 6534 * it won't... 6535 */ 6536 rdev_for_each_list(rdev, tmp, &candidates) { 6537 list_del_init(&rdev->same_set); 6538 export_rdev(rdev); 6539 } 6540 mddev_put(mddev); 6541 } 6542 pr_info("md: ... autorun DONE.\n"); 6543 } 6544 #endif /* !MODULE */ 6545 6546 static int get_version(void __user *arg) 6547 { 6548 mdu_version_t ver; 6549 6550 ver.major = MD_MAJOR_VERSION; 6551 ver.minor = MD_MINOR_VERSION; 6552 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6553 6554 if (copy_to_user(arg, &ver, sizeof(ver))) 6555 return -EFAULT; 6556 6557 return 0; 6558 } 6559 6560 static int get_array_info(struct mddev *mddev, void __user *arg) 6561 { 6562 mdu_array_info_t info; 6563 int nr,working,insync,failed,spare; 6564 struct md_rdev *rdev; 6565 6566 nr = working = insync = failed = spare = 0; 6567 rcu_read_lock(); 6568 rdev_for_each_rcu(rdev, mddev) { 6569 nr++; 6570 if (test_bit(Faulty, &rdev->flags)) 6571 failed++; 6572 else { 6573 working++; 6574 if (test_bit(In_sync, &rdev->flags)) 6575 insync++; 6576 else if (test_bit(Journal, &rdev->flags)) 6577 /* TODO: add journal count to md_u.h */ 6578 ; 6579 else 6580 spare++; 6581 } 6582 } 6583 rcu_read_unlock(); 6584 6585 info.major_version = mddev->major_version; 6586 info.minor_version = mddev->minor_version; 6587 info.patch_version = MD_PATCHLEVEL_VERSION; 6588 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6589 info.level = mddev->level; 6590 info.size = mddev->dev_sectors / 2; 6591 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6592 info.size = -1; 6593 info.nr_disks = nr; 6594 info.raid_disks = mddev->raid_disks; 6595 info.md_minor = mddev->md_minor; 6596 info.not_persistent= !mddev->persistent; 6597 6598 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6599 info.state = 0; 6600 if (mddev->in_sync) 6601 info.state = (1<<MD_SB_CLEAN); 6602 if (mddev->bitmap && mddev->bitmap_info.offset) 6603 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6604 if (mddev_is_clustered(mddev)) 6605 info.state |= (1<<MD_SB_CLUSTERED); 6606 info.active_disks = insync; 6607 info.working_disks = working; 6608 info.failed_disks = failed; 6609 info.spare_disks = spare; 6610 6611 info.layout = mddev->layout; 6612 info.chunk_size = mddev->chunk_sectors << 9; 6613 6614 if (copy_to_user(arg, &info, sizeof(info))) 6615 return -EFAULT; 6616 6617 return 0; 6618 } 6619 6620 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6621 { 6622 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6623 char *ptr; 6624 int err; 6625 6626 file = kzalloc(sizeof(*file), GFP_NOIO); 6627 if (!file) 6628 return -ENOMEM; 6629 6630 err = 0; 6631 spin_lock(&mddev->lock); 6632 /* bitmap enabled */ 6633 if (mddev->bitmap_info.file) { 6634 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6635 sizeof(file->pathname)); 6636 if (IS_ERR(ptr)) 6637 err = PTR_ERR(ptr); 6638 else 6639 memmove(file->pathname, ptr, 6640 sizeof(file->pathname)-(ptr-file->pathname)); 6641 } 6642 spin_unlock(&mddev->lock); 6643 6644 if (err == 0 && 6645 copy_to_user(arg, file, sizeof(*file))) 6646 err = -EFAULT; 6647 6648 kfree(file); 6649 return err; 6650 } 6651 6652 static int get_disk_info(struct mddev *mddev, void __user * arg) 6653 { 6654 mdu_disk_info_t info; 6655 struct md_rdev *rdev; 6656 6657 if (copy_from_user(&info, arg, sizeof(info))) 6658 return -EFAULT; 6659 6660 rcu_read_lock(); 6661 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6662 if (rdev) { 6663 info.major = MAJOR(rdev->bdev->bd_dev); 6664 info.minor = MINOR(rdev->bdev->bd_dev); 6665 info.raid_disk = rdev->raid_disk; 6666 info.state = 0; 6667 if (test_bit(Faulty, &rdev->flags)) 6668 info.state |= (1<<MD_DISK_FAULTY); 6669 else if (test_bit(In_sync, &rdev->flags)) { 6670 info.state |= (1<<MD_DISK_ACTIVE); 6671 info.state |= (1<<MD_DISK_SYNC); 6672 } 6673 if (test_bit(Journal, &rdev->flags)) 6674 info.state |= (1<<MD_DISK_JOURNAL); 6675 if (test_bit(WriteMostly, &rdev->flags)) 6676 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6677 if (test_bit(FailFast, &rdev->flags)) 6678 info.state |= (1<<MD_DISK_FAILFAST); 6679 } else { 6680 info.major = info.minor = 0; 6681 info.raid_disk = -1; 6682 info.state = (1<<MD_DISK_REMOVED); 6683 } 6684 rcu_read_unlock(); 6685 6686 if (copy_to_user(arg, &info, sizeof(info))) 6687 return -EFAULT; 6688 6689 return 0; 6690 } 6691 6692 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6693 { 6694 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6695 struct md_rdev *rdev; 6696 dev_t dev = MKDEV(info->major,info->minor); 6697 6698 if (mddev_is_clustered(mddev) && 6699 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6700 pr_warn("%s: Cannot add to clustered mddev.\n", 6701 mdname(mddev)); 6702 return -EINVAL; 6703 } 6704 6705 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6706 return -EOVERFLOW; 6707 6708 if (!mddev->raid_disks) { 6709 int err; 6710 /* expecting a device which has a superblock */ 6711 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6712 if (IS_ERR(rdev)) { 6713 pr_warn("md: md_import_device returned %ld\n", 6714 PTR_ERR(rdev)); 6715 return PTR_ERR(rdev); 6716 } 6717 if (!list_empty(&mddev->disks)) { 6718 struct md_rdev *rdev0 6719 = list_entry(mddev->disks.next, 6720 struct md_rdev, same_set); 6721 err = super_types[mddev->major_version] 6722 .load_super(rdev, rdev0, mddev->minor_version); 6723 if (err < 0) { 6724 pr_warn("md: %s has different UUID to %s\n", 6725 bdevname(rdev->bdev,b), 6726 bdevname(rdev0->bdev,b2)); 6727 export_rdev(rdev); 6728 return -EINVAL; 6729 } 6730 } 6731 err = bind_rdev_to_array(rdev, mddev); 6732 if (err) 6733 export_rdev(rdev); 6734 return err; 6735 } 6736 6737 /* 6738 * md_add_new_disk can be used once the array is assembled 6739 * to add "hot spares". They must already have a superblock 6740 * written 6741 */ 6742 if (mddev->pers) { 6743 int err; 6744 if (!mddev->pers->hot_add_disk) { 6745 pr_warn("%s: personality does not support diskops!\n", 6746 mdname(mddev)); 6747 return -EINVAL; 6748 } 6749 if (mddev->persistent) 6750 rdev = md_import_device(dev, mddev->major_version, 6751 mddev->minor_version); 6752 else 6753 rdev = md_import_device(dev, -1, -1); 6754 if (IS_ERR(rdev)) { 6755 pr_warn("md: md_import_device returned %ld\n", 6756 PTR_ERR(rdev)); 6757 return PTR_ERR(rdev); 6758 } 6759 /* set saved_raid_disk if appropriate */ 6760 if (!mddev->persistent) { 6761 if (info->state & (1<<MD_DISK_SYNC) && 6762 info->raid_disk < mddev->raid_disks) { 6763 rdev->raid_disk = info->raid_disk; 6764 set_bit(In_sync, &rdev->flags); 6765 clear_bit(Bitmap_sync, &rdev->flags); 6766 } else 6767 rdev->raid_disk = -1; 6768 rdev->saved_raid_disk = rdev->raid_disk; 6769 } else 6770 super_types[mddev->major_version]. 6771 validate_super(mddev, rdev); 6772 if ((info->state & (1<<MD_DISK_SYNC)) && 6773 rdev->raid_disk != info->raid_disk) { 6774 /* This was a hot-add request, but events doesn't 6775 * match, so reject it. 6776 */ 6777 export_rdev(rdev); 6778 return -EINVAL; 6779 } 6780 6781 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6782 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6783 set_bit(WriteMostly, &rdev->flags); 6784 else 6785 clear_bit(WriteMostly, &rdev->flags); 6786 if (info->state & (1<<MD_DISK_FAILFAST)) 6787 set_bit(FailFast, &rdev->flags); 6788 else 6789 clear_bit(FailFast, &rdev->flags); 6790 6791 if (info->state & (1<<MD_DISK_JOURNAL)) { 6792 struct md_rdev *rdev2; 6793 bool has_journal = false; 6794 6795 /* make sure no existing journal disk */ 6796 rdev_for_each(rdev2, mddev) { 6797 if (test_bit(Journal, &rdev2->flags)) { 6798 has_journal = true; 6799 break; 6800 } 6801 } 6802 if (has_journal || mddev->bitmap) { 6803 export_rdev(rdev); 6804 return -EBUSY; 6805 } 6806 set_bit(Journal, &rdev->flags); 6807 } 6808 /* 6809 * check whether the device shows up in other nodes 6810 */ 6811 if (mddev_is_clustered(mddev)) { 6812 if (info->state & (1 << MD_DISK_CANDIDATE)) 6813 set_bit(Candidate, &rdev->flags); 6814 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6815 /* --add initiated by this node */ 6816 err = md_cluster_ops->add_new_disk(mddev, rdev); 6817 if (err) { 6818 export_rdev(rdev); 6819 return err; 6820 } 6821 } 6822 } 6823 6824 rdev->raid_disk = -1; 6825 err = bind_rdev_to_array(rdev, mddev); 6826 6827 if (err) 6828 export_rdev(rdev); 6829 6830 if (mddev_is_clustered(mddev)) { 6831 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6832 if (!err) { 6833 err = md_cluster_ops->new_disk_ack(mddev, 6834 err == 0); 6835 if (err) 6836 md_kick_rdev_from_array(rdev); 6837 } 6838 } else { 6839 if (err) 6840 md_cluster_ops->add_new_disk_cancel(mddev); 6841 else 6842 err = add_bound_rdev(rdev); 6843 } 6844 6845 } else if (!err) 6846 err = add_bound_rdev(rdev); 6847 6848 return err; 6849 } 6850 6851 /* otherwise, md_add_new_disk is only allowed 6852 * for major_version==0 superblocks 6853 */ 6854 if (mddev->major_version != 0) { 6855 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6856 return -EINVAL; 6857 } 6858 6859 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6860 int err; 6861 rdev = md_import_device(dev, -1, 0); 6862 if (IS_ERR(rdev)) { 6863 pr_warn("md: error, md_import_device() returned %ld\n", 6864 PTR_ERR(rdev)); 6865 return PTR_ERR(rdev); 6866 } 6867 rdev->desc_nr = info->number; 6868 if (info->raid_disk < mddev->raid_disks) 6869 rdev->raid_disk = info->raid_disk; 6870 else 6871 rdev->raid_disk = -1; 6872 6873 if (rdev->raid_disk < mddev->raid_disks) 6874 if (info->state & (1<<MD_DISK_SYNC)) 6875 set_bit(In_sync, &rdev->flags); 6876 6877 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6878 set_bit(WriteMostly, &rdev->flags); 6879 if (info->state & (1<<MD_DISK_FAILFAST)) 6880 set_bit(FailFast, &rdev->flags); 6881 6882 if (!mddev->persistent) { 6883 pr_debug("md: nonpersistent superblock ...\n"); 6884 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6885 } else 6886 rdev->sb_start = calc_dev_sboffset(rdev); 6887 rdev->sectors = rdev->sb_start; 6888 6889 err = bind_rdev_to_array(rdev, mddev); 6890 if (err) { 6891 export_rdev(rdev); 6892 return err; 6893 } 6894 } 6895 6896 return 0; 6897 } 6898 6899 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6900 { 6901 char b[BDEVNAME_SIZE]; 6902 struct md_rdev *rdev; 6903 6904 if (!mddev->pers) 6905 return -ENODEV; 6906 6907 rdev = find_rdev(mddev, dev); 6908 if (!rdev) 6909 return -ENXIO; 6910 6911 if (rdev->raid_disk < 0) 6912 goto kick_rdev; 6913 6914 clear_bit(Blocked, &rdev->flags); 6915 remove_and_add_spares(mddev, rdev); 6916 6917 if (rdev->raid_disk >= 0) 6918 goto busy; 6919 6920 kick_rdev: 6921 if (mddev_is_clustered(mddev)) { 6922 if (md_cluster_ops->remove_disk(mddev, rdev)) 6923 goto busy; 6924 } 6925 6926 md_kick_rdev_from_array(rdev); 6927 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6928 if (mddev->thread) 6929 md_wakeup_thread(mddev->thread); 6930 else 6931 md_update_sb(mddev, 1); 6932 md_new_event(mddev); 6933 6934 return 0; 6935 busy: 6936 pr_debug("md: cannot remove active disk %s from %s ...\n", 6937 bdevname(rdev->bdev,b), mdname(mddev)); 6938 return -EBUSY; 6939 } 6940 6941 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6942 { 6943 char b[BDEVNAME_SIZE]; 6944 int err; 6945 struct md_rdev *rdev; 6946 6947 if (!mddev->pers) 6948 return -ENODEV; 6949 6950 if (mddev->major_version != 0) { 6951 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6952 mdname(mddev)); 6953 return -EINVAL; 6954 } 6955 if (!mddev->pers->hot_add_disk) { 6956 pr_warn("%s: personality does not support diskops!\n", 6957 mdname(mddev)); 6958 return -EINVAL; 6959 } 6960 6961 rdev = md_import_device(dev, -1, 0); 6962 if (IS_ERR(rdev)) { 6963 pr_warn("md: error, md_import_device() returned %ld\n", 6964 PTR_ERR(rdev)); 6965 return -EINVAL; 6966 } 6967 6968 if (mddev->persistent) 6969 rdev->sb_start = calc_dev_sboffset(rdev); 6970 else 6971 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6972 6973 rdev->sectors = rdev->sb_start; 6974 6975 if (test_bit(Faulty, &rdev->flags)) { 6976 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6977 bdevname(rdev->bdev,b), mdname(mddev)); 6978 err = -EINVAL; 6979 goto abort_export; 6980 } 6981 6982 clear_bit(In_sync, &rdev->flags); 6983 rdev->desc_nr = -1; 6984 rdev->saved_raid_disk = -1; 6985 err = bind_rdev_to_array(rdev, mddev); 6986 if (err) 6987 goto abort_export; 6988 6989 /* 6990 * The rest should better be atomic, we can have disk failures 6991 * noticed in interrupt contexts ... 6992 */ 6993 6994 rdev->raid_disk = -1; 6995 6996 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6997 if (!mddev->thread) 6998 md_update_sb(mddev, 1); 6999 /* 7000 * Kick recovery, maybe this spare has to be added to the 7001 * array immediately. 7002 */ 7003 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7004 md_wakeup_thread(mddev->thread); 7005 md_new_event(mddev); 7006 return 0; 7007 7008 abort_export: 7009 export_rdev(rdev); 7010 return err; 7011 } 7012 7013 static int set_bitmap_file(struct mddev *mddev, int fd) 7014 { 7015 int err = 0; 7016 7017 if (mddev->pers) { 7018 if (!mddev->pers->quiesce || !mddev->thread) 7019 return -EBUSY; 7020 if (mddev->recovery || mddev->sync_thread) 7021 return -EBUSY; 7022 /* we should be able to change the bitmap.. */ 7023 } 7024 7025 if (fd >= 0) { 7026 struct inode *inode; 7027 struct file *f; 7028 7029 if (mddev->bitmap || mddev->bitmap_info.file) 7030 return -EEXIST; /* cannot add when bitmap is present */ 7031 f = fget(fd); 7032 7033 if (f == NULL) { 7034 pr_warn("%s: error: failed to get bitmap file\n", 7035 mdname(mddev)); 7036 return -EBADF; 7037 } 7038 7039 inode = f->f_mapping->host; 7040 if (!S_ISREG(inode->i_mode)) { 7041 pr_warn("%s: error: bitmap file must be a regular file\n", 7042 mdname(mddev)); 7043 err = -EBADF; 7044 } else if (!(f->f_mode & FMODE_WRITE)) { 7045 pr_warn("%s: error: bitmap file must open for write\n", 7046 mdname(mddev)); 7047 err = -EBADF; 7048 } else if (atomic_read(&inode->i_writecount) != 1) { 7049 pr_warn("%s: error: bitmap file is already in use\n", 7050 mdname(mddev)); 7051 err = -EBUSY; 7052 } 7053 if (err) { 7054 fput(f); 7055 return err; 7056 } 7057 mddev->bitmap_info.file = f; 7058 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7059 } else if (mddev->bitmap == NULL) 7060 return -ENOENT; /* cannot remove what isn't there */ 7061 err = 0; 7062 if (mddev->pers) { 7063 if (fd >= 0) { 7064 struct bitmap *bitmap; 7065 7066 bitmap = md_bitmap_create(mddev, -1); 7067 mddev_suspend(mddev); 7068 if (!IS_ERR(bitmap)) { 7069 mddev->bitmap = bitmap; 7070 err = md_bitmap_load(mddev); 7071 } else 7072 err = PTR_ERR(bitmap); 7073 if (err) { 7074 md_bitmap_destroy(mddev); 7075 fd = -1; 7076 } 7077 mddev_resume(mddev); 7078 } else if (fd < 0) { 7079 mddev_suspend(mddev); 7080 md_bitmap_destroy(mddev); 7081 mddev_resume(mddev); 7082 } 7083 } 7084 if (fd < 0) { 7085 struct file *f = mddev->bitmap_info.file; 7086 if (f) { 7087 spin_lock(&mddev->lock); 7088 mddev->bitmap_info.file = NULL; 7089 spin_unlock(&mddev->lock); 7090 fput(f); 7091 } 7092 } 7093 7094 return err; 7095 } 7096 7097 /* 7098 * md_set_array_info is used two different ways 7099 * The original usage is when creating a new array. 7100 * In this usage, raid_disks is > 0 and it together with 7101 * level, size, not_persistent,layout,chunksize determine the 7102 * shape of the array. 7103 * This will always create an array with a type-0.90.0 superblock. 7104 * The newer usage is when assembling an array. 7105 * In this case raid_disks will be 0, and the major_version field is 7106 * use to determine which style super-blocks are to be found on the devices. 7107 * The minor and patch _version numbers are also kept incase the 7108 * super_block handler wishes to interpret them. 7109 */ 7110 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7111 { 7112 if (info->raid_disks == 0) { 7113 /* just setting version number for superblock loading */ 7114 if (info->major_version < 0 || 7115 info->major_version >= ARRAY_SIZE(super_types) || 7116 super_types[info->major_version].name == NULL) { 7117 /* maybe try to auto-load a module? */ 7118 pr_warn("md: superblock version %d not known\n", 7119 info->major_version); 7120 return -EINVAL; 7121 } 7122 mddev->major_version = info->major_version; 7123 mddev->minor_version = info->minor_version; 7124 mddev->patch_version = info->patch_version; 7125 mddev->persistent = !info->not_persistent; 7126 /* ensure mddev_put doesn't delete this now that there 7127 * is some minimal configuration. 7128 */ 7129 mddev->ctime = ktime_get_real_seconds(); 7130 return 0; 7131 } 7132 mddev->major_version = MD_MAJOR_VERSION; 7133 mddev->minor_version = MD_MINOR_VERSION; 7134 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7135 mddev->ctime = ktime_get_real_seconds(); 7136 7137 mddev->level = info->level; 7138 mddev->clevel[0] = 0; 7139 mddev->dev_sectors = 2 * (sector_t)info->size; 7140 mddev->raid_disks = info->raid_disks; 7141 /* don't set md_minor, it is determined by which /dev/md* was 7142 * openned 7143 */ 7144 if (info->state & (1<<MD_SB_CLEAN)) 7145 mddev->recovery_cp = MaxSector; 7146 else 7147 mddev->recovery_cp = 0; 7148 mddev->persistent = ! info->not_persistent; 7149 mddev->external = 0; 7150 7151 mddev->layout = info->layout; 7152 if (mddev->level == 0) 7153 /* Cannot trust RAID0 layout info here */ 7154 mddev->layout = -1; 7155 mddev->chunk_sectors = info->chunk_size >> 9; 7156 7157 if (mddev->persistent) { 7158 mddev->max_disks = MD_SB_DISKS; 7159 mddev->flags = 0; 7160 mddev->sb_flags = 0; 7161 } 7162 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7163 7164 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7165 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7166 mddev->bitmap_info.offset = 0; 7167 7168 mddev->reshape_position = MaxSector; 7169 7170 /* 7171 * Generate a 128 bit UUID 7172 */ 7173 get_random_bytes(mddev->uuid, 16); 7174 7175 mddev->new_level = mddev->level; 7176 mddev->new_chunk_sectors = mddev->chunk_sectors; 7177 mddev->new_layout = mddev->layout; 7178 mddev->delta_disks = 0; 7179 mddev->reshape_backwards = 0; 7180 7181 return 0; 7182 } 7183 7184 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7185 { 7186 lockdep_assert_held(&mddev->reconfig_mutex); 7187 7188 if (mddev->external_size) 7189 return; 7190 7191 mddev->array_sectors = array_sectors; 7192 } 7193 EXPORT_SYMBOL(md_set_array_sectors); 7194 7195 static int update_size(struct mddev *mddev, sector_t num_sectors) 7196 { 7197 struct md_rdev *rdev; 7198 int rv; 7199 int fit = (num_sectors == 0); 7200 sector_t old_dev_sectors = mddev->dev_sectors; 7201 7202 if (mddev->pers->resize == NULL) 7203 return -EINVAL; 7204 /* The "num_sectors" is the number of sectors of each device that 7205 * is used. This can only make sense for arrays with redundancy. 7206 * linear and raid0 always use whatever space is available. We can only 7207 * consider changing this number if no resync or reconstruction is 7208 * happening, and if the new size is acceptable. It must fit before the 7209 * sb_start or, if that is <data_offset, it must fit before the size 7210 * of each device. If num_sectors is zero, we find the largest size 7211 * that fits. 7212 */ 7213 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7214 mddev->sync_thread) 7215 return -EBUSY; 7216 if (mddev->ro) 7217 return -EROFS; 7218 7219 rdev_for_each(rdev, mddev) { 7220 sector_t avail = rdev->sectors; 7221 7222 if (fit && (num_sectors == 0 || num_sectors > avail)) 7223 num_sectors = avail; 7224 if (avail < num_sectors) 7225 return -ENOSPC; 7226 } 7227 rv = mddev->pers->resize(mddev, num_sectors); 7228 if (!rv) { 7229 if (mddev_is_clustered(mddev)) 7230 md_cluster_ops->update_size(mddev, old_dev_sectors); 7231 else if (mddev->queue) { 7232 set_capacity_and_notify(mddev->gendisk, 7233 mddev->array_sectors); 7234 } 7235 } 7236 return rv; 7237 } 7238 7239 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7240 { 7241 int rv; 7242 struct md_rdev *rdev; 7243 /* change the number of raid disks */ 7244 if (mddev->pers->check_reshape == NULL) 7245 return -EINVAL; 7246 if (mddev->ro) 7247 return -EROFS; 7248 if (raid_disks <= 0 || 7249 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7250 return -EINVAL; 7251 if (mddev->sync_thread || 7252 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7253 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7254 mddev->reshape_position != MaxSector) 7255 return -EBUSY; 7256 7257 rdev_for_each(rdev, mddev) { 7258 if (mddev->raid_disks < raid_disks && 7259 rdev->data_offset < rdev->new_data_offset) 7260 return -EINVAL; 7261 if (mddev->raid_disks > raid_disks && 7262 rdev->data_offset > rdev->new_data_offset) 7263 return -EINVAL; 7264 } 7265 7266 mddev->delta_disks = raid_disks - mddev->raid_disks; 7267 if (mddev->delta_disks < 0) 7268 mddev->reshape_backwards = 1; 7269 else if (mddev->delta_disks > 0) 7270 mddev->reshape_backwards = 0; 7271 7272 rv = mddev->pers->check_reshape(mddev); 7273 if (rv < 0) { 7274 mddev->delta_disks = 0; 7275 mddev->reshape_backwards = 0; 7276 } 7277 return rv; 7278 } 7279 7280 /* 7281 * update_array_info is used to change the configuration of an 7282 * on-line array. 7283 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7284 * fields in the info are checked against the array. 7285 * Any differences that cannot be handled will cause an error. 7286 * Normally, only one change can be managed at a time. 7287 */ 7288 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7289 { 7290 int rv = 0; 7291 int cnt = 0; 7292 int state = 0; 7293 7294 /* calculate expected state,ignoring low bits */ 7295 if (mddev->bitmap && mddev->bitmap_info.offset) 7296 state |= (1 << MD_SB_BITMAP_PRESENT); 7297 7298 if (mddev->major_version != info->major_version || 7299 mddev->minor_version != info->minor_version || 7300 /* mddev->patch_version != info->patch_version || */ 7301 mddev->ctime != info->ctime || 7302 mddev->level != info->level || 7303 /* mddev->layout != info->layout || */ 7304 mddev->persistent != !info->not_persistent || 7305 mddev->chunk_sectors != info->chunk_size >> 9 || 7306 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7307 ((state^info->state) & 0xfffffe00) 7308 ) 7309 return -EINVAL; 7310 /* Check there is only one change */ 7311 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7312 cnt++; 7313 if (mddev->raid_disks != info->raid_disks) 7314 cnt++; 7315 if (mddev->layout != info->layout) 7316 cnt++; 7317 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7318 cnt++; 7319 if (cnt == 0) 7320 return 0; 7321 if (cnt > 1) 7322 return -EINVAL; 7323 7324 if (mddev->layout != info->layout) { 7325 /* Change layout 7326 * we don't need to do anything at the md level, the 7327 * personality will take care of it all. 7328 */ 7329 if (mddev->pers->check_reshape == NULL) 7330 return -EINVAL; 7331 else { 7332 mddev->new_layout = info->layout; 7333 rv = mddev->pers->check_reshape(mddev); 7334 if (rv) 7335 mddev->new_layout = mddev->layout; 7336 return rv; 7337 } 7338 } 7339 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7340 rv = update_size(mddev, (sector_t)info->size * 2); 7341 7342 if (mddev->raid_disks != info->raid_disks) 7343 rv = update_raid_disks(mddev, info->raid_disks); 7344 7345 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7346 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7347 rv = -EINVAL; 7348 goto err; 7349 } 7350 if (mddev->recovery || mddev->sync_thread) { 7351 rv = -EBUSY; 7352 goto err; 7353 } 7354 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7355 struct bitmap *bitmap; 7356 /* add the bitmap */ 7357 if (mddev->bitmap) { 7358 rv = -EEXIST; 7359 goto err; 7360 } 7361 if (mddev->bitmap_info.default_offset == 0) { 7362 rv = -EINVAL; 7363 goto err; 7364 } 7365 mddev->bitmap_info.offset = 7366 mddev->bitmap_info.default_offset; 7367 mddev->bitmap_info.space = 7368 mddev->bitmap_info.default_space; 7369 bitmap = md_bitmap_create(mddev, -1); 7370 mddev_suspend(mddev); 7371 if (!IS_ERR(bitmap)) { 7372 mddev->bitmap = bitmap; 7373 rv = md_bitmap_load(mddev); 7374 } else 7375 rv = PTR_ERR(bitmap); 7376 if (rv) 7377 md_bitmap_destroy(mddev); 7378 mddev_resume(mddev); 7379 } else { 7380 /* remove the bitmap */ 7381 if (!mddev->bitmap) { 7382 rv = -ENOENT; 7383 goto err; 7384 } 7385 if (mddev->bitmap->storage.file) { 7386 rv = -EINVAL; 7387 goto err; 7388 } 7389 if (mddev->bitmap_info.nodes) { 7390 /* hold PW on all the bitmap lock */ 7391 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7392 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7393 rv = -EPERM; 7394 md_cluster_ops->unlock_all_bitmaps(mddev); 7395 goto err; 7396 } 7397 7398 mddev->bitmap_info.nodes = 0; 7399 md_cluster_ops->leave(mddev); 7400 module_put(md_cluster_mod); 7401 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7402 } 7403 mddev_suspend(mddev); 7404 md_bitmap_destroy(mddev); 7405 mddev_resume(mddev); 7406 mddev->bitmap_info.offset = 0; 7407 } 7408 } 7409 md_update_sb(mddev, 1); 7410 return rv; 7411 err: 7412 return rv; 7413 } 7414 7415 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7416 { 7417 struct md_rdev *rdev; 7418 int err = 0; 7419 7420 if (mddev->pers == NULL) 7421 return -ENODEV; 7422 7423 rcu_read_lock(); 7424 rdev = md_find_rdev_rcu(mddev, dev); 7425 if (!rdev) 7426 err = -ENODEV; 7427 else { 7428 md_error(mddev, rdev); 7429 if (!test_bit(Faulty, &rdev->flags)) 7430 err = -EBUSY; 7431 } 7432 rcu_read_unlock(); 7433 return err; 7434 } 7435 7436 /* 7437 * We have a problem here : there is no easy way to give a CHS 7438 * virtual geometry. We currently pretend that we have a 2 heads 7439 * 4 sectors (with a BIG number of cylinders...). This drives 7440 * dosfs just mad... ;-) 7441 */ 7442 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7443 { 7444 struct mddev *mddev = bdev->bd_disk->private_data; 7445 7446 geo->heads = 2; 7447 geo->sectors = 4; 7448 geo->cylinders = mddev->array_sectors / 8; 7449 return 0; 7450 } 7451 7452 static inline bool md_ioctl_valid(unsigned int cmd) 7453 { 7454 switch (cmd) { 7455 case ADD_NEW_DISK: 7456 case GET_ARRAY_INFO: 7457 case GET_BITMAP_FILE: 7458 case GET_DISK_INFO: 7459 case HOT_ADD_DISK: 7460 case HOT_REMOVE_DISK: 7461 case RAID_VERSION: 7462 case RESTART_ARRAY_RW: 7463 case RUN_ARRAY: 7464 case SET_ARRAY_INFO: 7465 case SET_BITMAP_FILE: 7466 case SET_DISK_FAULTY: 7467 case STOP_ARRAY: 7468 case STOP_ARRAY_RO: 7469 case CLUSTERED_DISK_NACK: 7470 return true; 7471 default: 7472 return false; 7473 } 7474 } 7475 7476 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7477 unsigned int cmd, unsigned long arg) 7478 { 7479 int err = 0; 7480 void __user *argp = (void __user *)arg; 7481 struct mddev *mddev = NULL; 7482 bool did_set_md_closing = false; 7483 7484 if (!md_ioctl_valid(cmd)) 7485 return -ENOTTY; 7486 7487 switch (cmd) { 7488 case RAID_VERSION: 7489 case GET_ARRAY_INFO: 7490 case GET_DISK_INFO: 7491 break; 7492 default: 7493 if (!capable(CAP_SYS_ADMIN)) 7494 return -EACCES; 7495 } 7496 7497 /* 7498 * Commands dealing with the RAID driver but not any 7499 * particular array: 7500 */ 7501 switch (cmd) { 7502 case RAID_VERSION: 7503 err = get_version(argp); 7504 goto out; 7505 default:; 7506 } 7507 7508 /* 7509 * Commands creating/starting a new array: 7510 */ 7511 7512 mddev = bdev->bd_disk->private_data; 7513 7514 if (!mddev) { 7515 BUG(); 7516 goto out; 7517 } 7518 7519 /* Some actions do not requires the mutex */ 7520 switch (cmd) { 7521 case GET_ARRAY_INFO: 7522 if (!mddev->raid_disks && !mddev->external) 7523 err = -ENODEV; 7524 else 7525 err = get_array_info(mddev, argp); 7526 goto out; 7527 7528 case GET_DISK_INFO: 7529 if (!mddev->raid_disks && !mddev->external) 7530 err = -ENODEV; 7531 else 7532 err = get_disk_info(mddev, argp); 7533 goto out; 7534 7535 case SET_DISK_FAULTY: 7536 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7537 goto out; 7538 7539 case GET_BITMAP_FILE: 7540 err = get_bitmap_file(mddev, argp); 7541 goto out; 7542 7543 } 7544 7545 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7546 flush_rdev_wq(mddev); 7547 7548 if (cmd == HOT_REMOVE_DISK) 7549 /* need to ensure recovery thread has run */ 7550 wait_event_interruptible_timeout(mddev->sb_wait, 7551 !test_bit(MD_RECOVERY_NEEDED, 7552 &mddev->recovery), 7553 msecs_to_jiffies(5000)); 7554 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7555 /* Need to flush page cache, and ensure no-one else opens 7556 * and writes 7557 */ 7558 mutex_lock(&mddev->open_mutex); 7559 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7560 mutex_unlock(&mddev->open_mutex); 7561 err = -EBUSY; 7562 goto out; 7563 } 7564 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7565 mutex_unlock(&mddev->open_mutex); 7566 err = -EBUSY; 7567 goto out; 7568 } 7569 did_set_md_closing = true; 7570 mutex_unlock(&mddev->open_mutex); 7571 sync_blockdev(bdev); 7572 } 7573 err = mddev_lock(mddev); 7574 if (err) { 7575 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7576 err, cmd); 7577 goto out; 7578 } 7579 7580 if (cmd == SET_ARRAY_INFO) { 7581 mdu_array_info_t info; 7582 if (!arg) 7583 memset(&info, 0, sizeof(info)); 7584 else if (copy_from_user(&info, argp, sizeof(info))) { 7585 err = -EFAULT; 7586 goto unlock; 7587 } 7588 if (mddev->pers) { 7589 err = update_array_info(mddev, &info); 7590 if (err) { 7591 pr_warn("md: couldn't update array info. %d\n", err); 7592 goto unlock; 7593 } 7594 goto unlock; 7595 } 7596 if (!list_empty(&mddev->disks)) { 7597 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7598 err = -EBUSY; 7599 goto unlock; 7600 } 7601 if (mddev->raid_disks) { 7602 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7603 err = -EBUSY; 7604 goto unlock; 7605 } 7606 err = md_set_array_info(mddev, &info); 7607 if (err) { 7608 pr_warn("md: couldn't set array info. %d\n", err); 7609 goto unlock; 7610 } 7611 goto unlock; 7612 } 7613 7614 /* 7615 * Commands querying/configuring an existing array: 7616 */ 7617 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7618 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7619 if ((!mddev->raid_disks && !mddev->external) 7620 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7621 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7622 && cmd != GET_BITMAP_FILE) { 7623 err = -ENODEV; 7624 goto unlock; 7625 } 7626 7627 /* 7628 * Commands even a read-only array can execute: 7629 */ 7630 switch (cmd) { 7631 case RESTART_ARRAY_RW: 7632 err = restart_array(mddev); 7633 goto unlock; 7634 7635 case STOP_ARRAY: 7636 err = do_md_stop(mddev, 0, bdev); 7637 goto unlock; 7638 7639 case STOP_ARRAY_RO: 7640 err = md_set_readonly(mddev, bdev); 7641 goto unlock; 7642 7643 case HOT_REMOVE_DISK: 7644 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7645 goto unlock; 7646 7647 case ADD_NEW_DISK: 7648 /* We can support ADD_NEW_DISK on read-only arrays 7649 * only if we are re-adding a preexisting device. 7650 * So require mddev->pers and MD_DISK_SYNC. 7651 */ 7652 if (mddev->pers) { 7653 mdu_disk_info_t info; 7654 if (copy_from_user(&info, argp, sizeof(info))) 7655 err = -EFAULT; 7656 else if (!(info.state & (1<<MD_DISK_SYNC))) 7657 /* Need to clear read-only for this */ 7658 break; 7659 else 7660 err = md_add_new_disk(mddev, &info); 7661 goto unlock; 7662 } 7663 break; 7664 } 7665 7666 /* 7667 * The remaining ioctls are changing the state of the 7668 * superblock, so we do not allow them on read-only arrays. 7669 */ 7670 if (mddev->ro && mddev->pers) { 7671 if (mddev->ro == 2) { 7672 mddev->ro = 0; 7673 sysfs_notify_dirent_safe(mddev->sysfs_state); 7674 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7675 /* mddev_unlock will wake thread */ 7676 /* If a device failed while we were read-only, we 7677 * need to make sure the metadata is updated now. 7678 */ 7679 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7680 mddev_unlock(mddev); 7681 wait_event(mddev->sb_wait, 7682 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7683 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7684 mddev_lock_nointr(mddev); 7685 } 7686 } else { 7687 err = -EROFS; 7688 goto unlock; 7689 } 7690 } 7691 7692 switch (cmd) { 7693 case ADD_NEW_DISK: 7694 { 7695 mdu_disk_info_t info; 7696 if (copy_from_user(&info, argp, sizeof(info))) 7697 err = -EFAULT; 7698 else 7699 err = md_add_new_disk(mddev, &info); 7700 goto unlock; 7701 } 7702 7703 case CLUSTERED_DISK_NACK: 7704 if (mddev_is_clustered(mddev)) 7705 md_cluster_ops->new_disk_ack(mddev, false); 7706 else 7707 err = -EINVAL; 7708 goto unlock; 7709 7710 case HOT_ADD_DISK: 7711 err = hot_add_disk(mddev, new_decode_dev(arg)); 7712 goto unlock; 7713 7714 case RUN_ARRAY: 7715 err = do_md_run(mddev); 7716 goto unlock; 7717 7718 case SET_BITMAP_FILE: 7719 err = set_bitmap_file(mddev, (int)arg); 7720 goto unlock; 7721 7722 default: 7723 err = -EINVAL; 7724 goto unlock; 7725 } 7726 7727 unlock: 7728 if (mddev->hold_active == UNTIL_IOCTL && 7729 err != -EINVAL) 7730 mddev->hold_active = 0; 7731 mddev_unlock(mddev); 7732 out: 7733 if(did_set_md_closing) 7734 clear_bit(MD_CLOSING, &mddev->flags); 7735 return err; 7736 } 7737 #ifdef CONFIG_COMPAT 7738 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7739 unsigned int cmd, unsigned long arg) 7740 { 7741 switch (cmd) { 7742 case HOT_REMOVE_DISK: 7743 case HOT_ADD_DISK: 7744 case SET_DISK_FAULTY: 7745 case SET_BITMAP_FILE: 7746 /* These take in integer arg, do not convert */ 7747 break; 7748 default: 7749 arg = (unsigned long)compat_ptr(arg); 7750 break; 7751 } 7752 7753 return md_ioctl(bdev, mode, cmd, arg); 7754 } 7755 #endif /* CONFIG_COMPAT */ 7756 7757 static int md_set_read_only(struct block_device *bdev, bool ro) 7758 { 7759 struct mddev *mddev = bdev->bd_disk->private_data; 7760 int err; 7761 7762 err = mddev_lock(mddev); 7763 if (err) 7764 return err; 7765 7766 if (!mddev->raid_disks && !mddev->external) { 7767 err = -ENODEV; 7768 goto out_unlock; 7769 } 7770 7771 /* 7772 * Transitioning to read-auto need only happen for arrays that call 7773 * md_write_start and which are not ready for writes yet. 7774 */ 7775 if (!ro && mddev->ro == 1 && mddev->pers) { 7776 err = restart_array(mddev); 7777 if (err) 7778 goto out_unlock; 7779 mddev->ro = 2; 7780 } 7781 7782 out_unlock: 7783 mddev_unlock(mddev); 7784 return err; 7785 } 7786 7787 static int md_open(struct block_device *bdev, fmode_t mode) 7788 { 7789 /* 7790 * Succeed if we can lock the mddev, which confirms that 7791 * it isn't being stopped right now. 7792 */ 7793 struct mddev *mddev = mddev_find(bdev->bd_dev); 7794 int err; 7795 7796 if (!mddev) 7797 return -ENODEV; 7798 7799 if (mddev->gendisk != bdev->bd_disk) { 7800 /* we are racing with mddev_put which is discarding this 7801 * bd_disk. 7802 */ 7803 mddev_put(mddev); 7804 /* Wait until bdev->bd_disk is definitely gone */ 7805 if (work_pending(&mddev->del_work)) 7806 flush_workqueue(md_misc_wq); 7807 return -EBUSY; 7808 } 7809 BUG_ON(mddev != bdev->bd_disk->private_data); 7810 7811 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7812 goto out; 7813 7814 if (test_bit(MD_CLOSING, &mddev->flags)) { 7815 mutex_unlock(&mddev->open_mutex); 7816 err = -ENODEV; 7817 goto out; 7818 } 7819 7820 err = 0; 7821 atomic_inc(&mddev->openers); 7822 mutex_unlock(&mddev->open_mutex); 7823 7824 bdev_check_media_change(bdev); 7825 out: 7826 if (err) 7827 mddev_put(mddev); 7828 return err; 7829 } 7830 7831 static void md_release(struct gendisk *disk, fmode_t mode) 7832 { 7833 struct mddev *mddev = disk->private_data; 7834 7835 BUG_ON(!mddev); 7836 atomic_dec(&mddev->openers); 7837 mddev_put(mddev); 7838 } 7839 7840 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7841 { 7842 struct mddev *mddev = disk->private_data; 7843 unsigned int ret = 0; 7844 7845 if (mddev->changed) 7846 ret = DISK_EVENT_MEDIA_CHANGE; 7847 mddev->changed = 0; 7848 return ret; 7849 } 7850 7851 const struct block_device_operations md_fops = 7852 { 7853 .owner = THIS_MODULE, 7854 .submit_bio = md_submit_bio, 7855 .open = md_open, 7856 .release = md_release, 7857 .ioctl = md_ioctl, 7858 #ifdef CONFIG_COMPAT 7859 .compat_ioctl = md_compat_ioctl, 7860 #endif 7861 .getgeo = md_getgeo, 7862 .check_events = md_check_events, 7863 .set_read_only = md_set_read_only, 7864 }; 7865 7866 static int md_thread(void *arg) 7867 { 7868 struct md_thread *thread = arg; 7869 7870 /* 7871 * md_thread is a 'system-thread', it's priority should be very 7872 * high. We avoid resource deadlocks individually in each 7873 * raid personality. (RAID5 does preallocation) We also use RR and 7874 * the very same RT priority as kswapd, thus we will never get 7875 * into a priority inversion deadlock. 7876 * 7877 * we definitely have to have equal or higher priority than 7878 * bdflush, otherwise bdflush will deadlock if there are too 7879 * many dirty RAID5 blocks. 7880 */ 7881 7882 allow_signal(SIGKILL); 7883 while (!kthread_should_stop()) { 7884 7885 /* We need to wait INTERRUPTIBLE so that 7886 * we don't add to the load-average. 7887 * That means we need to be sure no signals are 7888 * pending 7889 */ 7890 if (signal_pending(current)) 7891 flush_signals(current); 7892 7893 wait_event_interruptible_timeout 7894 (thread->wqueue, 7895 test_bit(THREAD_WAKEUP, &thread->flags) 7896 || kthread_should_stop() || kthread_should_park(), 7897 thread->timeout); 7898 7899 clear_bit(THREAD_WAKEUP, &thread->flags); 7900 if (kthread_should_park()) 7901 kthread_parkme(); 7902 if (!kthread_should_stop()) 7903 thread->run(thread); 7904 } 7905 7906 return 0; 7907 } 7908 7909 void md_wakeup_thread(struct md_thread *thread) 7910 { 7911 if (thread) { 7912 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7913 set_bit(THREAD_WAKEUP, &thread->flags); 7914 wake_up(&thread->wqueue); 7915 } 7916 } 7917 EXPORT_SYMBOL(md_wakeup_thread); 7918 7919 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7920 struct mddev *mddev, const char *name) 7921 { 7922 struct md_thread *thread; 7923 7924 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7925 if (!thread) 7926 return NULL; 7927 7928 init_waitqueue_head(&thread->wqueue); 7929 7930 thread->run = run; 7931 thread->mddev = mddev; 7932 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7933 thread->tsk = kthread_run(md_thread, thread, 7934 "%s_%s", 7935 mdname(thread->mddev), 7936 name); 7937 if (IS_ERR(thread->tsk)) { 7938 kfree(thread); 7939 return NULL; 7940 } 7941 return thread; 7942 } 7943 EXPORT_SYMBOL(md_register_thread); 7944 7945 void md_unregister_thread(struct md_thread **threadp) 7946 { 7947 struct md_thread *thread = *threadp; 7948 if (!thread) 7949 return; 7950 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7951 /* Locking ensures that mddev_unlock does not wake_up a 7952 * non-existent thread 7953 */ 7954 spin_lock(&pers_lock); 7955 *threadp = NULL; 7956 spin_unlock(&pers_lock); 7957 7958 kthread_stop(thread->tsk); 7959 kfree(thread); 7960 } 7961 EXPORT_SYMBOL(md_unregister_thread); 7962 7963 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7964 { 7965 if (!rdev || test_bit(Faulty, &rdev->flags)) 7966 return; 7967 7968 if (!mddev->pers || !mddev->pers->error_handler) 7969 return; 7970 mddev->pers->error_handler(mddev,rdev); 7971 if (mddev->degraded) 7972 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7973 sysfs_notify_dirent_safe(rdev->sysfs_state); 7974 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7975 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7976 md_wakeup_thread(mddev->thread); 7977 if (mddev->event_work.func) 7978 queue_work(md_misc_wq, &mddev->event_work); 7979 md_new_event(mddev); 7980 } 7981 EXPORT_SYMBOL(md_error); 7982 7983 /* seq_file implementation /proc/mdstat */ 7984 7985 static void status_unused(struct seq_file *seq) 7986 { 7987 int i = 0; 7988 struct md_rdev *rdev; 7989 7990 seq_printf(seq, "unused devices: "); 7991 7992 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7993 char b[BDEVNAME_SIZE]; 7994 i++; 7995 seq_printf(seq, "%s ", 7996 bdevname(rdev->bdev,b)); 7997 } 7998 if (!i) 7999 seq_printf(seq, "<none>"); 8000 8001 seq_printf(seq, "\n"); 8002 } 8003 8004 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8005 { 8006 sector_t max_sectors, resync, res; 8007 unsigned long dt, db = 0; 8008 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8009 int scale, recovery_active; 8010 unsigned int per_milli; 8011 8012 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8013 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8014 max_sectors = mddev->resync_max_sectors; 8015 else 8016 max_sectors = mddev->dev_sectors; 8017 8018 resync = mddev->curr_resync; 8019 if (resync <= 3) { 8020 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8021 /* Still cleaning up */ 8022 resync = max_sectors; 8023 } else if (resync > max_sectors) 8024 resync = max_sectors; 8025 else 8026 resync -= atomic_read(&mddev->recovery_active); 8027 8028 if (resync == 0) { 8029 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8030 struct md_rdev *rdev; 8031 8032 rdev_for_each(rdev, mddev) 8033 if (rdev->raid_disk >= 0 && 8034 !test_bit(Faulty, &rdev->flags) && 8035 rdev->recovery_offset != MaxSector && 8036 rdev->recovery_offset) { 8037 seq_printf(seq, "\trecover=REMOTE"); 8038 return 1; 8039 } 8040 if (mddev->reshape_position != MaxSector) 8041 seq_printf(seq, "\treshape=REMOTE"); 8042 else 8043 seq_printf(seq, "\tresync=REMOTE"); 8044 return 1; 8045 } 8046 if (mddev->recovery_cp < MaxSector) { 8047 seq_printf(seq, "\tresync=PENDING"); 8048 return 1; 8049 } 8050 return 0; 8051 } 8052 if (resync < 3) { 8053 seq_printf(seq, "\tresync=DELAYED"); 8054 return 1; 8055 } 8056 8057 WARN_ON(max_sectors == 0); 8058 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8059 * in a sector_t, and (max_sectors>>scale) will fit in a 8060 * u32, as those are the requirements for sector_div. 8061 * Thus 'scale' must be at least 10 8062 */ 8063 scale = 10; 8064 if (sizeof(sector_t) > sizeof(unsigned long)) { 8065 while ( max_sectors/2 > (1ULL<<(scale+32))) 8066 scale++; 8067 } 8068 res = (resync>>scale)*1000; 8069 sector_div(res, (u32)((max_sectors>>scale)+1)); 8070 8071 per_milli = res; 8072 { 8073 int i, x = per_milli/50, y = 20-x; 8074 seq_printf(seq, "["); 8075 for (i = 0; i < x; i++) 8076 seq_printf(seq, "="); 8077 seq_printf(seq, ">"); 8078 for (i = 0; i < y; i++) 8079 seq_printf(seq, "."); 8080 seq_printf(seq, "] "); 8081 } 8082 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8083 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8084 "reshape" : 8085 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8086 "check" : 8087 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8088 "resync" : "recovery"))), 8089 per_milli/10, per_milli % 10, 8090 (unsigned long long) resync/2, 8091 (unsigned long long) max_sectors/2); 8092 8093 /* 8094 * dt: time from mark until now 8095 * db: blocks written from mark until now 8096 * rt: remaining time 8097 * 8098 * rt is a sector_t, which is always 64bit now. We are keeping 8099 * the original algorithm, but it is not really necessary. 8100 * 8101 * Original algorithm: 8102 * So we divide before multiply in case it is 32bit and close 8103 * to the limit. 8104 * We scale the divisor (db) by 32 to avoid losing precision 8105 * near the end of resync when the number of remaining sectors 8106 * is close to 'db'. 8107 * We then divide rt by 32 after multiplying by db to compensate. 8108 * The '+1' avoids division by zero if db is very small. 8109 */ 8110 dt = ((jiffies - mddev->resync_mark) / HZ); 8111 if (!dt) dt++; 8112 8113 curr_mark_cnt = mddev->curr_mark_cnt; 8114 recovery_active = atomic_read(&mddev->recovery_active); 8115 resync_mark_cnt = mddev->resync_mark_cnt; 8116 8117 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8118 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8119 8120 rt = max_sectors - resync; /* number of remaining sectors */ 8121 rt = div64_u64(rt, db/32+1); 8122 rt *= dt; 8123 rt >>= 5; 8124 8125 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8126 ((unsigned long)rt % 60)/6); 8127 8128 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8129 return 1; 8130 } 8131 8132 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8133 { 8134 struct list_head *tmp; 8135 loff_t l = *pos; 8136 struct mddev *mddev; 8137 8138 if (l == 0x10000) { 8139 ++*pos; 8140 return (void *)2; 8141 } 8142 if (l > 0x10000) 8143 return NULL; 8144 if (!l--) 8145 /* header */ 8146 return (void*)1; 8147 8148 spin_lock(&all_mddevs_lock); 8149 list_for_each(tmp,&all_mddevs) 8150 if (!l--) { 8151 mddev = list_entry(tmp, struct mddev, all_mddevs); 8152 mddev_get(mddev); 8153 spin_unlock(&all_mddevs_lock); 8154 return mddev; 8155 } 8156 spin_unlock(&all_mddevs_lock); 8157 if (!l--) 8158 return (void*)2;/* tail */ 8159 return NULL; 8160 } 8161 8162 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8163 { 8164 struct list_head *tmp; 8165 struct mddev *next_mddev, *mddev = v; 8166 8167 ++*pos; 8168 if (v == (void*)2) 8169 return NULL; 8170 8171 spin_lock(&all_mddevs_lock); 8172 if (v == (void*)1) 8173 tmp = all_mddevs.next; 8174 else 8175 tmp = mddev->all_mddevs.next; 8176 if (tmp != &all_mddevs) 8177 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8178 else { 8179 next_mddev = (void*)2; 8180 *pos = 0x10000; 8181 } 8182 spin_unlock(&all_mddevs_lock); 8183 8184 if (v != (void*)1) 8185 mddev_put(mddev); 8186 return next_mddev; 8187 8188 } 8189 8190 static void md_seq_stop(struct seq_file *seq, void *v) 8191 { 8192 struct mddev *mddev = v; 8193 8194 if (mddev && v != (void*)1 && v != (void*)2) 8195 mddev_put(mddev); 8196 } 8197 8198 static int md_seq_show(struct seq_file *seq, void *v) 8199 { 8200 struct mddev *mddev = v; 8201 sector_t sectors; 8202 struct md_rdev *rdev; 8203 8204 if (v == (void*)1) { 8205 struct md_personality *pers; 8206 seq_printf(seq, "Personalities : "); 8207 spin_lock(&pers_lock); 8208 list_for_each_entry(pers, &pers_list, list) 8209 seq_printf(seq, "[%s] ", pers->name); 8210 8211 spin_unlock(&pers_lock); 8212 seq_printf(seq, "\n"); 8213 seq->poll_event = atomic_read(&md_event_count); 8214 return 0; 8215 } 8216 if (v == (void*)2) { 8217 status_unused(seq); 8218 return 0; 8219 } 8220 8221 spin_lock(&mddev->lock); 8222 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8223 seq_printf(seq, "%s : %sactive", mdname(mddev), 8224 mddev->pers ? "" : "in"); 8225 if (mddev->pers) { 8226 if (mddev->ro==1) 8227 seq_printf(seq, " (read-only)"); 8228 if (mddev->ro==2) 8229 seq_printf(seq, " (auto-read-only)"); 8230 seq_printf(seq, " %s", mddev->pers->name); 8231 } 8232 8233 sectors = 0; 8234 rcu_read_lock(); 8235 rdev_for_each_rcu(rdev, mddev) { 8236 char b[BDEVNAME_SIZE]; 8237 seq_printf(seq, " %s[%d]", 8238 bdevname(rdev->bdev,b), rdev->desc_nr); 8239 if (test_bit(WriteMostly, &rdev->flags)) 8240 seq_printf(seq, "(W)"); 8241 if (test_bit(Journal, &rdev->flags)) 8242 seq_printf(seq, "(J)"); 8243 if (test_bit(Faulty, &rdev->flags)) { 8244 seq_printf(seq, "(F)"); 8245 continue; 8246 } 8247 if (rdev->raid_disk < 0) 8248 seq_printf(seq, "(S)"); /* spare */ 8249 if (test_bit(Replacement, &rdev->flags)) 8250 seq_printf(seq, "(R)"); 8251 sectors += rdev->sectors; 8252 } 8253 rcu_read_unlock(); 8254 8255 if (!list_empty(&mddev->disks)) { 8256 if (mddev->pers) 8257 seq_printf(seq, "\n %llu blocks", 8258 (unsigned long long) 8259 mddev->array_sectors / 2); 8260 else 8261 seq_printf(seq, "\n %llu blocks", 8262 (unsigned long long)sectors / 2); 8263 } 8264 if (mddev->persistent) { 8265 if (mddev->major_version != 0 || 8266 mddev->minor_version != 90) { 8267 seq_printf(seq," super %d.%d", 8268 mddev->major_version, 8269 mddev->minor_version); 8270 } 8271 } else if (mddev->external) 8272 seq_printf(seq, " super external:%s", 8273 mddev->metadata_type); 8274 else 8275 seq_printf(seq, " super non-persistent"); 8276 8277 if (mddev->pers) { 8278 mddev->pers->status(seq, mddev); 8279 seq_printf(seq, "\n "); 8280 if (mddev->pers->sync_request) { 8281 if (status_resync(seq, mddev)) 8282 seq_printf(seq, "\n "); 8283 } 8284 } else 8285 seq_printf(seq, "\n "); 8286 8287 md_bitmap_status(seq, mddev->bitmap); 8288 8289 seq_printf(seq, "\n"); 8290 } 8291 spin_unlock(&mddev->lock); 8292 8293 return 0; 8294 } 8295 8296 static const struct seq_operations md_seq_ops = { 8297 .start = md_seq_start, 8298 .next = md_seq_next, 8299 .stop = md_seq_stop, 8300 .show = md_seq_show, 8301 }; 8302 8303 static int md_seq_open(struct inode *inode, struct file *file) 8304 { 8305 struct seq_file *seq; 8306 int error; 8307 8308 error = seq_open(file, &md_seq_ops); 8309 if (error) 8310 return error; 8311 8312 seq = file->private_data; 8313 seq->poll_event = atomic_read(&md_event_count); 8314 return error; 8315 } 8316 8317 static int md_unloading; 8318 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8319 { 8320 struct seq_file *seq = filp->private_data; 8321 __poll_t mask; 8322 8323 if (md_unloading) 8324 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8325 poll_wait(filp, &md_event_waiters, wait); 8326 8327 /* always allow read */ 8328 mask = EPOLLIN | EPOLLRDNORM; 8329 8330 if (seq->poll_event != atomic_read(&md_event_count)) 8331 mask |= EPOLLERR | EPOLLPRI; 8332 return mask; 8333 } 8334 8335 static const struct proc_ops mdstat_proc_ops = { 8336 .proc_open = md_seq_open, 8337 .proc_read = seq_read, 8338 .proc_lseek = seq_lseek, 8339 .proc_release = seq_release, 8340 .proc_poll = mdstat_poll, 8341 }; 8342 8343 int register_md_personality(struct md_personality *p) 8344 { 8345 pr_debug("md: %s personality registered for level %d\n", 8346 p->name, p->level); 8347 spin_lock(&pers_lock); 8348 list_add_tail(&p->list, &pers_list); 8349 spin_unlock(&pers_lock); 8350 return 0; 8351 } 8352 EXPORT_SYMBOL(register_md_personality); 8353 8354 int unregister_md_personality(struct md_personality *p) 8355 { 8356 pr_debug("md: %s personality unregistered\n", p->name); 8357 spin_lock(&pers_lock); 8358 list_del_init(&p->list); 8359 spin_unlock(&pers_lock); 8360 return 0; 8361 } 8362 EXPORT_SYMBOL(unregister_md_personality); 8363 8364 int register_md_cluster_operations(struct md_cluster_operations *ops, 8365 struct module *module) 8366 { 8367 int ret = 0; 8368 spin_lock(&pers_lock); 8369 if (md_cluster_ops != NULL) 8370 ret = -EALREADY; 8371 else { 8372 md_cluster_ops = ops; 8373 md_cluster_mod = module; 8374 } 8375 spin_unlock(&pers_lock); 8376 return ret; 8377 } 8378 EXPORT_SYMBOL(register_md_cluster_operations); 8379 8380 int unregister_md_cluster_operations(void) 8381 { 8382 spin_lock(&pers_lock); 8383 md_cluster_ops = NULL; 8384 spin_unlock(&pers_lock); 8385 return 0; 8386 } 8387 EXPORT_SYMBOL(unregister_md_cluster_operations); 8388 8389 int md_setup_cluster(struct mddev *mddev, int nodes) 8390 { 8391 int ret; 8392 if (!md_cluster_ops) 8393 request_module("md-cluster"); 8394 spin_lock(&pers_lock); 8395 /* ensure module won't be unloaded */ 8396 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8397 pr_warn("can't find md-cluster module or get it's reference.\n"); 8398 spin_unlock(&pers_lock); 8399 return -ENOENT; 8400 } 8401 spin_unlock(&pers_lock); 8402 8403 ret = md_cluster_ops->join(mddev, nodes); 8404 if (!ret) 8405 mddev->safemode_delay = 0; 8406 return ret; 8407 } 8408 8409 void md_cluster_stop(struct mddev *mddev) 8410 { 8411 if (!md_cluster_ops) 8412 return; 8413 md_cluster_ops->leave(mddev); 8414 module_put(md_cluster_mod); 8415 } 8416 8417 static int is_mddev_idle(struct mddev *mddev, int init) 8418 { 8419 struct md_rdev *rdev; 8420 int idle; 8421 int curr_events; 8422 8423 idle = 1; 8424 rcu_read_lock(); 8425 rdev_for_each_rcu(rdev, mddev) { 8426 struct gendisk *disk = rdev->bdev->bd_disk; 8427 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8428 atomic_read(&disk->sync_io); 8429 /* sync IO will cause sync_io to increase before the disk_stats 8430 * as sync_io is counted when a request starts, and 8431 * disk_stats is counted when it completes. 8432 * So resync activity will cause curr_events to be smaller than 8433 * when there was no such activity. 8434 * non-sync IO will cause disk_stat to increase without 8435 * increasing sync_io so curr_events will (eventually) 8436 * be larger than it was before. Once it becomes 8437 * substantially larger, the test below will cause 8438 * the array to appear non-idle, and resync will slow 8439 * down. 8440 * If there is a lot of outstanding resync activity when 8441 * we set last_event to curr_events, then all that activity 8442 * completing might cause the array to appear non-idle 8443 * and resync will be slowed down even though there might 8444 * not have been non-resync activity. This will only 8445 * happen once though. 'last_events' will soon reflect 8446 * the state where there is little or no outstanding 8447 * resync requests, and further resync activity will 8448 * always make curr_events less than last_events. 8449 * 8450 */ 8451 if (init || curr_events - rdev->last_events > 64) { 8452 rdev->last_events = curr_events; 8453 idle = 0; 8454 } 8455 } 8456 rcu_read_unlock(); 8457 return idle; 8458 } 8459 8460 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8461 { 8462 /* another "blocks" (512byte) blocks have been synced */ 8463 atomic_sub(blocks, &mddev->recovery_active); 8464 wake_up(&mddev->recovery_wait); 8465 if (!ok) { 8466 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8467 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8468 md_wakeup_thread(mddev->thread); 8469 // stop recovery, signal do_sync .... 8470 } 8471 } 8472 EXPORT_SYMBOL(md_done_sync); 8473 8474 /* md_write_start(mddev, bi) 8475 * If we need to update some array metadata (e.g. 'active' flag 8476 * in superblock) before writing, schedule a superblock update 8477 * and wait for it to complete. 8478 * A return value of 'false' means that the write wasn't recorded 8479 * and cannot proceed as the array is being suspend. 8480 */ 8481 bool md_write_start(struct mddev *mddev, struct bio *bi) 8482 { 8483 int did_change = 0; 8484 8485 if (bio_data_dir(bi) != WRITE) 8486 return true; 8487 8488 BUG_ON(mddev->ro == 1); 8489 if (mddev->ro == 2) { 8490 /* need to switch to read/write */ 8491 mddev->ro = 0; 8492 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8493 md_wakeup_thread(mddev->thread); 8494 md_wakeup_thread(mddev->sync_thread); 8495 did_change = 1; 8496 } 8497 rcu_read_lock(); 8498 percpu_ref_get(&mddev->writes_pending); 8499 smp_mb(); /* Match smp_mb in set_in_sync() */ 8500 if (mddev->safemode == 1) 8501 mddev->safemode = 0; 8502 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8503 if (mddev->in_sync || mddev->sync_checkers) { 8504 spin_lock(&mddev->lock); 8505 if (mddev->in_sync) { 8506 mddev->in_sync = 0; 8507 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8508 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8509 md_wakeup_thread(mddev->thread); 8510 did_change = 1; 8511 } 8512 spin_unlock(&mddev->lock); 8513 } 8514 rcu_read_unlock(); 8515 if (did_change) 8516 sysfs_notify_dirent_safe(mddev->sysfs_state); 8517 if (!mddev->has_superblocks) 8518 return true; 8519 wait_event(mddev->sb_wait, 8520 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8521 mddev->suspended); 8522 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8523 percpu_ref_put(&mddev->writes_pending); 8524 return false; 8525 } 8526 return true; 8527 } 8528 EXPORT_SYMBOL(md_write_start); 8529 8530 /* md_write_inc can only be called when md_write_start() has 8531 * already been called at least once of the current request. 8532 * It increments the counter and is useful when a single request 8533 * is split into several parts. Each part causes an increment and 8534 * so needs a matching md_write_end(). 8535 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8536 * a spinlocked region. 8537 */ 8538 void md_write_inc(struct mddev *mddev, struct bio *bi) 8539 { 8540 if (bio_data_dir(bi) != WRITE) 8541 return; 8542 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8543 percpu_ref_get(&mddev->writes_pending); 8544 } 8545 EXPORT_SYMBOL(md_write_inc); 8546 8547 void md_write_end(struct mddev *mddev) 8548 { 8549 percpu_ref_put(&mddev->writes_pending); 8550 8551 if (mddev->safemode == 2) 8552 md_wakeup_thread(mddev->thread); 8553 else if (mddev->safemode_delay) 8554 /* The roundup() ensures this only performs locking once 8555 * every ->safemode_delay jiffies 8556 */ 8557 mod_timer(&mddev->safemode_timer, 8558 roundup(jiffies, mddev->safemode_delay) + 8559 mddev->safemode_delay); 8560 } 8561 8562 EXPORT_SYMBOL(md_write_end); 8563 8564 /* This is used by raid0 and raid10 */ 8565 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8566 struct bio *bio, sector_t start, sector_t size) 8567 { 8568 struct bio *discard_bio = NULL; 8569 8570 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0, 8571 &discard_bio) || !discard_bio) 8572 return; 8573 8574 bio_chain(discard_bio, bio); 8575 bio_clone_blkg_association(discard_bio, bio); 8576 if (mddev->gendisk) 8577 trace_block_bio_remap(discard_bio, 8578 disk_devt(mddev->gendisk), 8579 bio->bi_iter.bi_sector); 8580 submit_bio_noacct(discard_bio); 8581 } 8582 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8583 8584 static void md_end_io_acct(struct bio *bio) 8585 { 8586 struct md_io_acct *md_io_acct = bio->bi_private; 8587 struct bio *orig_bio = md_io_acct->orig_bio; 8588 8589 orig_bio->bi_status = bio->bi_status; 8590 8591 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8592 bio_put(bio); 8593 bio_endio(orig_bio); 8594 } 8595 8596 /* 8597 * Used by personalities that don't already clone the bio and thus can't 8598 * easily add the timestamp to their extended bio structure. 8599 */ 8600 void md_account_bio(struct mddev *mddev, struct bio **bio) 8601 { 8602 struct md_io_acct *md_io_acct; 8603 struct bio *clone; 8604 8605 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue)) 8606 return; 8607 8608 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set); 8609 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8610 md_io_acct->orig_bio = *bio; 8611 md_io_acct->start_time = bio_start_io_acct(*bio); 8612 8613 clone->bi_end_io = md_end_io_acct; 8614 clone->bi_private = md_io_acct; 8615 *bio = clone; 8616 } 8617 EXPORT_SYMBOL_GPL(md_account_bio); 8618 8619 /* md_allow_write(mddev) 8620 * Calling this ensures that the array is marked 'active' so that writes 8621 * may proceed without blocking. It is important to call this before 8622 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8623 * Must be called with mddev_lock held. 8624 */ 8625 void md_allow_write(struct mddev *mddev) 8626 { 8627 if (!mddev->pers) 8628 return; 8629 if (mddev->ro) 8630 return; 8631 if (!mddev->pers->sync_request) 8632 return; 8633 8634 spin_lock(&mddev->lock); 8635 if (mddev->in_sync) { 8636 mddev->in_sync = 0; 8637 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8638 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8639 if (mddev->safemode_delay && 8640 mddev->safemode == 0) 8641 mddev->safemode = 1; 8642 spin_unlock(&mddev->lock); 8643 md_update_sb(mddev, 0); 8644 sysfs_notify_dirent_safe(mddev->sysfs_state); 8645 /* wait for the dirty state to be recorded in the metadata */ 8646 wait_event(mddev->sb_wait, 8647 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8648 } else 8649 spin_unlock(&mddev->lock); 8650 } 8651 EXPORT_SYMBOL_GPL(md_allow_write); 8652 8653 #define SYNC_MARKS 10 8654 #define SYNC_MARK_STEP (3*HZ) 8655 #define UPDATE_FREQUENCY (5*60*HZ) 8656 void md_do_sync(struct md_thread *thread) 8657 { 8658 struct mddev *mddev = thread->mddev; 8659 struct mddev *mddev2; 8660 unsigned int currspeed = 0, window; 8661 sector_t max_sectors,j, io_sectors, recovery_done; 8662 unsigned long mark[SYNC_MARKS]; 8663 unsigned long update_time; 8664 sector_t mark_cnt[SYNC_MARKS]; 8665 int last_mark,m; 8666 struct list_head *tmp; 8667 sector_t last_check; 8668 int skipped = 0; 8669 struct md_rdev *rdev; 8670 char *desc, *action = NULL; 8671 struct blk_plug plug; 8672 int ret; 8673 8674 /* just incase thread restarts... */ 8675 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8676 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8677 return; 8678 if (mddev->ro) {/* never try to sync a read-only array */ 8679 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8680 return; 8681 } 8682 8683 if (mddev_is_clustered(mddev)) { 8684 ret = md_cluster_ops->resync_start(mddev); 8685 if (ret) 8686 goto skip; 8687 8688 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8689 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8690 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8691 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8692 && ((unsigned long long)mddev->curr_resync_completed 8693 < (unsigned long long)mddev->resync_max_sectors)) 8694 goto skip; 8695 } 8696 8697 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8698 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8699 desc = "data-check"; 8700 action = "check"; 8701 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8702 desc = "requested-resync"; 8703 action = "repair"; 8704 } else 8705 desc = "resync"; 8706 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8707 desc = "reshape"; 8708 else 8709 desc = "recovery"; 8710 8711 mddev->last_sync_action = action ?: desc; 8712 8713 /* we overload curr_resync somewhat here. 8714 * 0 == not engaged in resync at all 8715 * 2 == checking that there is no conflict with another sync 8716 * 1 == like 2, but have yielded to allow conflicting resync to 8717 * commence 8718 * other == active in resync - this many blocks 8719 * 8720 * Before starting a resync we must have set curr_resync to 8721 * 2, and then checked that every "conflicting" array has curr_resync 8722 * less than ours. When we find one that is the same or higher 8723 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8724 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8725 * This will mean we have to start checking from the beginning again. 8726 * 8727 */ 8728 8729 do { 8730 int mddev2_minor = -1; 8731 mddev->curr_resync = 2; 8732 8733 try_again: 8734 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8735 goto skip; 8736 for_each_mddev(mddev2, tmp) { 8737 if (mddev2 == mddev) 8738 continue; 8739 if (!mddev->parallel_resync 8740 && mddev2->curr_resync 8741 && match_mddev_units(mddev, mddev2)) { 8742 DEFINE_WAIT(wq); 8743 if (mddev < mddev2 && mddev->curr_resync == 2) { 8744 /* arbitrarily yield */ 8745 mddev->curr_resync = 1; 8746 wake_up(&resync_wait); 8747 } 8748 if (mddev > mddev2 && mddev->curr_resync == 1) 8749 /* no need to wait here, we can wait the next 8750 * time 'round when curr_resync == 2 8751 */ 8752 continue; 8753 /* We need to wait 'interruptible' so as not to 8754 * contribute to the load average, and not to 8755 * be caught by 'softlockup' 8756 */ 8757 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8758 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8759 mddev2->curr_resync >= mddev->curr_resync) { 8760 if (mddev2_minor != mddev2->md_minor) { 8761 mddev2_minor = mddev2->md_minor; 8762 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8763 desc, mdname(mddev), 8764 mdname(mddev2)); 8765 } 8766 mddev_put(mddev2); 8767 if (signal_pending(current)) 8768 flush_signals(current); 8769 schedule(); 8770 finish_wait(&resync_wait, &wq); 8771 goto try_again; 8772 } 8773 finish_wait(&resync_wait, &wq); 8774 } 8775 } 8776 } while (mddev->curr_resync < 2); 8777 8778 j = 0; 8779 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8780 /* resync follows the size requested by the personality, 8781 * which defaults to physical size, but can be virtual size 8782 */ 8783 max_sectors = mddev->resync_max_sectors; 8784 atomic64_set(&mddev->resync_mismatches, 0); 8785 /* we don't use the checkpoint if there's a bitmap */ 8786 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8787 j = mddev->resync_min; 8788 else if (!mddev->bitmap) 8789 j = mddev->recovery_cp; 8790 8791 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8792 max_sectors = mddev->resync_max_sectors; 8793 /* 8794 * If the original node aborts reshaping then we continue the 8795 * reshaping, so set j again to avoid restart reshape from the 8796 * first beginning 8797 */ 8798 if (mddev_is_clustered(mddev) && 8799 mddev->reshape_position != MaxSector) 8800 j = mddev->reshape_position; 8801 } else { 8802 /* recovery follows the physical size of devices */ 8803 max_sectors = mddev->dev_sectors; 8804 j = MaxSector; 8805 rcu_read_lock(); 8806 rdev_for_each_rcu(rdev, mddev) 8807 if (rdev->raid_disk >= 0 && 8808 !test_bit(Journal, &rdev->flags) && 8809 !test_bit(Faulty, &rdev->flags) && 8810 !test_bit(In_sync, &rdev->flags) && 8811 rdev->recovery_offset < j) 8812 j = rdev->recovery_offset; 8813 rcu_read_unlock(); 8814 8815 /* If there is a bitmap, we need to make sure all 8816 * writes that started before we added a spare 8817 * complete before we start doing a recovery. 8818 * Otherwise the write might complete and (via 8819 * bitmap_endwrite) set a bit in the bitmap after the 8820 * recovery has checked that bit and skipped that 8821 * region. 8822 */ 8823 if (mddev->bitmap) { 8824 mddev->pers->quiesce(mddev, 1); 8825 mddev->pers->quiesce(mddev, 0); 8826 } 8827 } 8828 8829 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8830 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8831 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8832 speed_max(mddev), desc); 8833 8834 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8835 8836 io_sectors = 0; 8837 for (m = 0; m < SYNC_MARKS; m++) { 8838 mark[m] = jiffies; 8839 mark_cnt[m] = io_sectors; 8840 } 8841 last_mark = 0; 8842 mddev->resync_mark = mark[last_mark]; 8843 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8844 8845 /* 8846 * Tune reconstruction: 8847 */ 8848 window = 32 * (PAGE_SIZE / 512); 8849 pr_debug("md: using %dk window, over a total of %lluk.\n", 8850 window/2, (unsigned long long)max_sectors/2); 8851 8852 atomic_set(&mddev->recovery_active, 0); 8853 last_check = 0; 8854 8855 if (j>2) { 8856 pr_debug("md: resuming %s of %s from checkpoint.\n", 8857 desc, mdname(mddev)); 8858 mddev->curr_resync = j; 8859 } else 8860 mddev->curr_resync = 3; /* no longer delayed */ 8861 mddev->curr_resync_completed = j; 8862 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8863 md_new_event(mddev); 8864 update_time = jiffies; 8865 8866 blk_start_plug(&plug); 8867 while (j < max_sectors) { 8868 sector_t sectors; 8869 8870 skipped = 0; 8871 8872 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8873 ((mddev->curr_resync > mddev->curr_resync_completed && 8874 (mddev->curr_resync - mddev->curr_resync_completed) 8875 > (max_sectors >> 4)) || 8876 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8877 (j - mddev->curr_resync_completed)*2 8878 >= mddev->resync_max - mddev->curr_resync_completed || 8879 mddev->curr_resync_completed > mddev->resync_max 8880 )) { 8881 /* time to update curr_resync_completed */ 8882 wait_event(mddev->recovery_wait, 8883 atomic_read(&mddev->recovery_active) == 0); 8884 mddev->curr_resync_completed = j; 8885 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8886 j > mddev->recovery_cp) 8887 mddev->recovery_cp = j; 8888 update_time = jiffies; 8889 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8890 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8891 } 8892 8893 while (j >= mddev->resync_max && 8894 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8895 /* As this condition is controlled by user-space, 8896 * we can block indefinitely, so use '_interruptible' 8897 * to avoid triggering warnings. 8898 */ 8899 flush_signals(current); /* just in case */ 8900 wait_event_interruptible(mddev->recovery_wait, 8901 mddev->resync_max > j 8902 || test_bit(MD_RECOVERY_INTR, 8903 &mddev->recovery)); 8904 } 8905 8906 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8907 break; 8908 8909 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8910 if (sectors == 0) { 8911 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8912 break; 8913 } 8914 8915 if (!skipped) { /* actual IO requested */ 8916 io_sectors += sectors; 8917 atomic_add(sectors, &mddev->recovery_active); 8918 } 8919 8920 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8921 break; 8922 8923 j += sectors; 8924 if (j > max_sectors) 8925 /* when skipping, extra large numbers can be returned. */ 8926 j = max_sectors; 8927 if (j > 2) 8928 mddev->curr_resync = j; 8929 mddev->curr_mark_cnt = io_sectors; 8930 if (last_check == 0) 8931 /* this is the earliest that rebuild will be 8932 * visible in /proc/mdstat 8933 */ 8934 md_new_event(mddev); 8935 8936 if (last_check + window > io_sectors || j == max_sectors) 8937 continue; 8938 8939 last_check = io_sectors; 8940 repeat: 8941 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8942 /* step marks */ 8943 int next = (last_mark+1) % SYNC_MARKS; 8944 8945 mddev->resync_mark = mark[next]; 8946 mddev->resync_mark_cnt = mark_cnt[next]; 8947 mark[next] = jiffies; 8948 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8949 last_mark = next; 8950 } 8951 8952 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8953 break; 8954 8955 /* 8956 * this loop exits only if either when we are slower than 8957 * the 'hard' speed limit, or the system was IO-idle for 8958 * a jiffy. 8959 * the system might be non-idle CPU-wise, but we only care 8960 * about not overloading the IO subsystem. (things like an 8961 * e2fsck being done on the RAID array should execute fast) 8962 */ 8963 cond_resched(); 8964 8965 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8966 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8967 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8968 8969 if (currspeed > speed_min(mddev)) { 8970 if (currspeed > speed_max(mddev)) { 8971 msleep(500); 8972 goto repeat; 8973 } 8974 if (!is_mddev_idle(mddev, 0)) { 8975 /* 8976 * Give other IO more of a chance. 8977 * The faster the devices, the less we wait. 8978 */ 8979 wait_event(mddev->recovery_wait, 8980 !atomic_read(&mddev->recovery_active)); 8981 } 8982 } 8983 } 8984 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8985 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8986 ? "interrupted" : "done"); 8987 /* 8988 * this also signals 'finished resyncing' to md_stop 8989 */ 8990 blk_finish_plug(&plug); 8991 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8992 8993 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8994 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8995 mddev->curr_resync > 3) { 8996 mddev->curr_resync_completed = mddev->curr_resync; 8997 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8998 } 8999 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9000 9001 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9002 mddev->curr_resync > 3) { 9003 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9004 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9005 if (mddev->curr_resync >= mddev->recovery_cp) { 9006 pr_debug("md: checkpointing %s of %s.\n", 9007 desc, mdname(mddev)); 9008 if (test_bit(MD_RECOVERY_ERROR, 9009 &mddev->recovery)) 9010 mddev->recovery_cp = 9011 mddev->curr_resync_completed; 9012 else 9013 mddev->recovery_cp = 9014 mddev->curr_resync; 9015 } 9016 } else 9017 mddev->recovery_cp = MaxSector; 9018 } else { 9019 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9020 mddev->curr_resync = MaxSector; 9021 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9022 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9023 rcu_read_lock(); 9024 rdev_for_each_rcu(rdev, mddev) 9025 if (rdev->raid_disk >= 0 && 9026 mddev->delta_disks >= 0 && 9027 !test_bit(Journal, &rdev->flags) && 9028 !test_bit(Faulty, &rdev->flags) && 9029 !test_bit(In_sync, &rdev->flags) && 9030 rdev->recovery_offset < mddev->curr_resync) 9031 rdev->recovery_offset = mddev->curr_resync; 9032 rcu_read_unlock(); 9033 } 9034 } 9035 } 9036 skip: 9037 /* set CHANGE_PENDING here since maybe another update is needed, 9038 * so other nodes are informed. It should be harmless for normal 9039 * raid */ 9040 set_mask_bits(&mddev->sb_flags, 0, 9041 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9042 9043 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9044 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9045 mddev->delta_disks > 0 && 9046 mddev->pers->finish_reshape && 9047 mddev->pers->size && 9048 mddev->queue) { 9049 mddev_lock_nointr(mddev); 9050 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9051 mddev_unlock(mddev); 9052 if (!mddev_is_clustered(mddev)) 9053 set_capacity_and_notify(mddev->gendisk, 9054 mddev->array_sectors); 9055 } 9056 9057 spin_lock(&mddev->lock); 9058 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9059 /* We completed so min/max setting can be forgotten if used. */ 9060 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9061 mddev->resync_min = 0; 9062 mddev->resync_max = MaxSector; 9063 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9064 mddev->resync_min = mddev->curr_resync_completed; 9065 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9066 mddev->curr_resync = 0; 9067 spin_unlock(&mddev->lock); 9068 9069 wake_up(&resync_wait); 9070 md_wakeup_thread(mddev->thread); 9071 return; 9072 } 9073 EXPORT_SYMBOL_GPL(md_do_sync); 9074 9075 static int remove_and_add_spares(struct mddev *mddev, 9076 struct md_rdev *this) 9077 { 9078 struct md_rdev *rdev; 9079 int spares = 0; 9080 int removed = 0; 9081 bool remove_some = false; 9082 9083 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9084 /* Mustn't remove devices when resync thread is running */ 9085 return 0; 9086 9087 rdev_for_each(rdev, mddev) { 9088 if ((this == NULL || rdev == this) && 9089 rdev->raid_disk >= 0 && 9090 !test_bit(Blocked, &rdev->flags) && 9091 test_bit(Faulty, &rdev->flags) && 9092 atomic_read(&rdev->nr_pending)==0) { 9093 /* Faulty non-Blocked devices with nr_pending == 0 9094 * never get nr_pending incremented, 9095 * never get Faulty cleared, and never get Blocked set. 9096 * So we can synchronize_rcu now rather than once per device 9097 */ 9098 remove_some = true; 9099 set_bit(RemoveSynchronized, &rdev->flags); 9100 } 9101 } 9102 9103 if (remove_some) 9104 synchronize_rcu(); 9105 rdev_for_each(rdev, mddev) { 9106 if ((this == NULL || rdev == this) && 9107 rdev->raid_disk >= 0 && 9108 !test_bit(Blocked, &rdev->flags) && 9109 ((test_bit(RemoveSynchronized, &rdev->flags) || 9110 (!test_bit(In_sync, &rdev->flags) && 9111 !test_bit(Journal, &rdev->flags))) && 9112 atomic_read(&rdev->nr_pending)==0)) { 9113 if (mddev->pers->hot_remove_disk( 9114 mddev, rdev) == 0) { 9115 sysfs_unlink_rdev(mddev, rdev); 9116 rdev->saved_raid_disk = rdev->raid_disk; 9117 rdev->raid_disk = -1; 9118 removed++; 9119 } 9120 } 9121 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9122 clear_bit(RemoveSynchronized, &rdev->flags); 9123 } 9124 9125 if (removed && mddev->kobj.sd) 9126 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9127 9128 if (this && removed) 9129 goto no_add; 9130 9131 rdev_for_each(rdev, mddev) { 9132 if (this && this != rdev) 9133 continue; 9134 if (test_bit(Candidate, &rdev->flags)) 9135 continue; 9136 if (rdev->raid_disk >= 0 && 9137 !test_bit(In_sync, &rdev->flags) && 9138 !test_bit(Journal, &rdev->flags) && 9139 !test_bit(Faulty, &rdev->flags)) 9140 spares++; 9141 if (rdev->raid_disk >= 0) 9142 continue; 9143 if (test_bit(Faulty, &rdev->flags)) 9144 continue; 9145 if (!test_bit(Journal, &rdev->flags)) { 9146 if (mddev->ro && 9147 ! (rdev->saved_raid_disk >= 0 && 9148 !test_bit(Bitmap_sync, &rdev->flags))) 9149 continue; 9150 9151 rdev->recovery_offset = 0; 9152 } 9153 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9154 /* failure here is OK */ 9155 sysfs_link_rdev(mddev, rdev); 9156 if (!test_bit(Journal, &rdev->flags)) 9157 spares++; 9158 md_new_event(mddev); 9159 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9160 } 9161 } 9162 no_add: 9163 if (removed) 9164 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9165 return spares; 9166 } 9167 9168 static void md_start_sync(struct work_struct *ws) 9169 { 9170 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9171 9172 mddev->sync_thread = md_register_thread(md_do_sync, 9173 mddev, 9174 "resync"); 9175 if (!mddev->sync_thread) { 9176 pr_warn("%s: could not start resync thread...\n", 9177 mdname(mddev)); 9178 /* leave the spares where they are, it shouldn't hurt */ 9179 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9180 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9181 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9183 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9184 wake_up(&resync_wait); 9185 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9186 &mddev->recovery)) 9187 if (mddev->sysfs_action) 9188 sysfs_notify_dirent_safe(mddev->sysfs_action); 9189 } else 9190 md_wakeup_thread(mddev->sync_thread); 9191 sysfs_notify_dirent_safe(mddev->sysfs_action); 9192 md_new_event(mddev); 9193 } 9194 9195 /* 9196 * This routine is regularly called by all per-raid-array threads to 9197 * deal with generic issues like resync and super-block update. 9198 * Raid personalities that don't have a thread (linear/raid0) do not 9199 * need this as they never do any recovery or update the superblock. 9200 * 9201 * It does not do any resync itself, but rather "forks" off other threads 9202 * to do that as needed. 9203 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9204 * "->recovery" and create a thread at ->sync_thread. 9205 * When the thread finishes it sets MD_RECOVERY_DONE 9206 * and wakeups up this thread which will reap the thread and finish up. 9207 * This thread also removes any faulty devices (with nr_pending == 0). 9208 * 9209 * The overall approach is: 9210 * 1/ if the superblock needs updating, update it. 9211 * 2/ If a recovery thread is running, don't do anything else. 9212 * 3/ If recovery has finished, clean up, possibly marking spares active. 9213 * 4/ If there are any faulty devices, remove them. 9214 * 5/ If array is degraded, try to add spares devices 9215 * 6/ If array has spares or is not in-sync, start a resync thread. 9216 */ 9217 void md_check_recovery(struct mddev *mddev) 9218 { 9219 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9220 /* Write superblock - thread that called mddev_suspend() 9221 * holds reconfig_mutex for us. 9222 */ 9223 set_bit(MD_UPDATING_SB, &mddev->flags); 9224 smp_mb__after_atomic(); 9225 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9226 md_update_sb(mddev, 0); 9227 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9228 wake_up(&mddev->sb_wait); 9229 } 9230 9231 if (mddev->suspended) 9232 return; 9233 9234 if (mddev->bitmap) 9235 md_bitmap_daemon_work(mddev); 9236 9237 if (signal_pending(current)) { 9238 if (mddev->pers->sync_request && !mddev->external) { 9239 pr_debug("md: %s in immediate safe mode\n", 9240 mdname(mddev)); 9241 mddev->safemode = 2; 9242 } 9243 flush_signals(current); 9244 } 9245 9246 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9247 return; 9248 if ( ! ( 9249 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9250 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9251 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9252 (mddev->external == 0 && mddev->safemode == 1) || 9253 (mddev->safemode == 2 9254 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9255 )) 9256 return; 9257 9258 if (mddev_trylock(mddev)) { 9259 int spares = 0; 9260 bool try_set_sync = mddev->safemode != 0; 9261 9262 if (!mddev->external && mddev->safemode == 1) 9263 mddev->safemode = 0; 9264 9265 if (mddev->ro) { 9266 struct md_rdev *rdev; 9267 if (!mddev->external && mddev->in_sync) 9268 /* 'Blocked' flag not needed as failed devices 9269 * will be recorded if array switched to read/write. 9270 * Leaving it set will prevent the device 9271 * from being removed. 9272 */ 9273 rdev_for_each(rdev, mddev) 9274 clear_bit(Blocked, &rdev->flags); 9275 /* On a read-only array we can: 9276 * - remove failed devices 9277 * - add already-in_sync devices if the array itself 9278 * is in-sync. 9279 * As we only add devices that are already in-sync, 9280 * we can activate the spares immediately. 9281 */ 9282 remove_and_add_spares(mddev, NULL); 9283 /* There is no thread, but we need to call 9284 * ->spare_active and clear saved_raid_disk 9285 */ 9286 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9287 md_reap_sync_thread(mddev); 9288 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9289 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9290 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9291 goto unlock; 9292 } 9293 9294 if (mddev_is_clustered(mddev)) { 9295 struct md_rdev *rdev, *tmp; 9296 /* kick the device if another node issued a 9297 * remove disk. 9298 */ 9299 rdev_for_each_safe(rdev, tmp, mddev) { 9300 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9301 rdev->raid_disk < 0) 9302 md_kick_rdev_from_array(rdev); 9303 } 9304 } 9305 9306 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9307 spin_lock(&mddev->lock); 9308 set_in_sync(mddev); 9309 spin_unlock(&mddev->lock); 9310 } 9311 9312 if (mddev->sb_flags) 9313 md_update_sb(mddev, 0); 9314 9315 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9316 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9317 /* resync/recovery still happening */ 9318 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9319 goto unlock; 9320 } 9321 if (mddev->sync_thread) { 9322 md_reap_sync_thread(mddev); 9323 goto unlock; 9324 } 9325 /* Set RUNNING before clearing NEEDED to avoid 9326 * any transients in the value of "sync_action". 9327 */ 9328 mddev->curr_resync_completed = 0; 9329 spin_lock(&mddev->lock); 9330 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9331 spin_unlock(&mddev->lock); 9332 /* Clear some bits that don't mean anything, but 9333 * might be left set 9334 */ 9335 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9336 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9337 9338 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9339 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9340 goto not_running; 9341 /* no recovery is running. 9342 * remove any failed drives, then 9343 * add spares if possible. 9344 * Spares are also removed and re-added, to allow 9345 * the personality to fail the re-add. 9346 */ 9347 9348 if (mddev->reshape_position != MaxSector) { 9349 if (mddev->pers->check_reshape == NULL || 9350 mddev->pers->check_reshape(mddev) != 0) 9351 /* Cannot proceed */ 9352 goto not_running; 9353 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9354 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9355 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9356 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9357 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9358 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9359 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9360 } else if (mddev->recovery_cp < MaxSector) { 9361 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9362 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9363 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9364 /* nothing to be done ... */ 9365 goto not_running; 9366 9367 if (mddev->pers->sync_request) { 9368 if (spares) { 9369 /* We are adding a device or devices to an array 9370 * which has the bitmap stored on all devices. 9371 * So make sure all bitmap pages get written 9372 */ 9373 md_bitmap_write_all(mddev->bitmap); 9374 } 9375 INIT_WORK(&mddev->del_work, md_start_sync); 9376 queue_work(md_misc_wq, &mddev->del_work); 9377 goto unlock; 9378 } 9379 not_running: 9380 if (!mddev->sync_thread) { 9381 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9382 wake_up(&resync_wait); 9383 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9384 &mddev->recovery)) 9385 if (mddev->sysfs_action) 9386 sysfs_notify_dirent_safe(mddev->sysfs_action); 9387 } 9388 unlock: 9389 wake_up(&mddev->sb_wait); 9390 mddev_unlock(mddev); 9391 } 9392 } 9393 EXPORT_SYMBOL(md_check_recovery); 9394 9395 void md_reap_sync_thread(struct mddev *mddev) 9396 { 9397 struct md_rdev *rdev; 9398 sector_t old_dev_sectors = mddev->dev_sectors; 9399 bool is_reshaped = false; 9400 9401 /* resync has finished, collect result */ 9402 md_unregister_thread(&mddev->sync_thread); 9403 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9404 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9405 mddev->degraded != mddev->raid_disks) { 9406 /* success...*/ 9407 /* activate any spares */ 9408 if (mddev->pers->spare_active(mddev)) { 9409 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9410 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9411 } 9412 } 9413 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9414 mddev->pers->finish_reshape) { 9415 mddev->pers->finish_reshape(mddev); 9416 if (mddev_is_clustered(mddev)) 9417 is_reshaped = true; 9418 } 9419 9420 /* If array is no-longer degraded, then any saved_raid_disk 9421 * information must be scrapped. 9422 */ 9423 if (!mddev->degraded) 9424 rdev_for_each(rdev, mddev) 9425 rdev->saved_raid_disk = -1; 9426 9427 md_update_sb(mddev, 1); 9428 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9429 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9430 * clustered raid */ 9431 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9432 md_cluster_ops->resync_finish(mddev); 9433 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9434 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9435 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9436 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9437 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9438 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9439 /* 9440 * We call md_cluster_ops->update_size here because sync_size could 9441 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9442 * so it is time to update size across cluster. 9443 */ 9444 if (mddev_is_clustered(mddev) && is_reshaped 9445 && !test_bit(MD_CLOSING, &mddev->flags)) 9446 md_cluster_ops->update_size(mddev, old_dev_sectors); 9447 wake_up(&resync_wait); 9448 /* flag recovery needed just to double check */ 9449 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9450 sysfs_notify_dirent_safe(mddev->sysfs_action); 9451 md_new_event(mddev); 9452 if (mddev->event_work.func) 9453 queue_work(md_misc_wq, &mddev->event_work); 9454 } 9455 EXPORT_SYMBOL(md_reap_sync_thread); 9456 9457 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9458 { 9459 sysfs_notify_dirent_safe(rdev->sysfs_state); 9460 wait_event_timeout(rdev->blocked_wait, 9461 !test_bit(Blocked, &rdev->flags) && 9462 !test_bit(BlockedBadBlocks, &rdev->flags), 9463 msecs_to_jiffies(5000)); 9464 rdev_dec_pending(rdev, mddev); 9465 } 9466 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9467 9468 void md_finish_reshape(struct mddev *mddev) 9469 { 9470 /* called be personality module when reshape completes. */ 9471 struct md_rdev *rdev; 9472 9473 rdev_for_each(rdev, mddev) { 9474 if (rdev->data_offset > rdev->new_data_offset) 9475 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9476 else 9477 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9478 rdev->data_offset = rdev->new_data_offset; 9479 } 9480 } 9481 EXPORT_SYMBOL(md_finish_reshape); 9482 9483 /* Bad block management */ 9484 9485 /* Returns 1 on success, 0 on failure */ 9486 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9487 int is_new) 9488 { 9489 struct mddev *mddev = rdev->mddev; 9490 int rv; 9491 if (is_new) 9492 s += rdev->new_data_offset; 9493 else 9494 s += rdev->data_offset; 9495 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9496 if (rv == 0) { 9497 /* Make sure they get written out promptly */ 9498 if (test_bit(ExternalBbl, &rdev->flags)) 9499 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9500 sysfs_notify_dirent_safe(rdev->sysfs_state); 9501 set_mask_bits(&mddev->sb_flags, 0, 9502 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9503 md_wakeup_thread(rdev->mddev->thread); 9504 return 1; 9505 } else 9506 return 0; 9507 } 9508 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9509 9510 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9511 int is_new) 9512 { 9513 int rv; 9514 if (is_new) 9515 s += rdev->new_data_offset; 9516 else 9517 s += rdev->data_offset; 9518 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9519 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9520 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9521 return rv; 9522 } 9523 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9524 9525 static int md_notify_reboot(struct notifier_block *this, 9526 unsigned long code, void *x) 9527 { 9528 struct list_head *tmp; 9529 struct mddev *mddev; 9530 int need_delay = 0; 9531 9532 for_each_mddev(mddev, tmp) { 9533 if (mddev_trylock(mddev)) { 9534 if (mddev->pers) 9535 __md_stop_writes(mddev); 9536 if (mddev->persistent) 9537 mddev->safemode = 2; 9538 mddev_unlock(mddev); 9539 } 9540 need_delay = 1; 9541 } 9542 /* 9543 * certain more exotic SCSI devices are known to be 9544 * volatile wrt too early system reboots. While the 9545 * right place to handle this issue is the given 9546 * driver, we do want to have a safe RAID driver ... 9547 */ 9548 if (need_delay) 9549 mdelay(1000*1); 9550 9551 return NOTIFY_DONE; 9552 } 9553 9554 static struct notifier_block md_notifier = { 9555 .notifier_call = md_notify_reboot, 9556 .next = NULL, 9557 .priority = INT_MAX, /* before any real devices */ 9558 }; 9559 9560 static void md_geninit(void) 9561 { 9562 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9563 9564 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9565 } 9566 9567 static int __init md_init(void) 9568 { 9569 int ret = -ENOMEM; 9570 9571 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9572 if (!md_wq) 9573 goto err_wq; 9574 9575 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9576 if (!md_misc_wq) 9577 goto err_misc_wq; 9578 9579 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9580 if (!md_rdev_misc_wq) 9581 goto err_rdev_misc_wq; 9582 9583 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9584 if (ret < 0) 9585 goto err_md; 9586 9587 ret = __register_blkdev(0, "mdp", md_probe); 9588 if (ret < 0) 9589 goto err_mdp; 9590 mdp_major = ret; 9591 9592 register_reboot_notifier(&md_notifier); 9593 raid_table_header = register_sysctl_table(raid_root_table); 9594 9595 md_geninit(); 9596 return 0; 9597 9598 err_mdp: 9599 unregister_blkdev(MD_MAJOR, "md"); 9600 err_md: 9601 destroy_workqueue(md_rdev_misc_wq); 9602 err_rdev_misc_wq: 9603 destroy_workqueue(md_misc_wq); 9604 err_misc_wq: 9605 destroy_workqueue(md_wq); 9606 err_wq: 9607 return ret; 9608 } 9609 9610 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9611 { 9612 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9613 struct md_rdev *rdev2, *tmp; 9614 int role, ret; 9615 char b[BDEVNAME_SIZE]; 9616 9617 /* 9618 * If size is changed in another node then we need to 9619 * do resize as well. 9620 */ 9621 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9622 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9623 if (ret) 9624 pr_info("md-cluster: resize failed\n"); 9625 else 9626 md_bitmap_update_sb(mddev->bitmap); 9627 } 9628 9629 /* Check for change of roles in the active devices */ 9630 rdev_for_each_safe(rdev2, tmp, mddev) { 9631 if (test_bit(Faulty, &rdev2->flags)) 9632 continue; 9633 9634 /* Check if the roles changed */ 9635 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9636 9637 if (test_bit(Candidate, &rdev2->flags)) { 9638 if (role == 0xfffe) { 9639 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9640 md_kick_rdev_from_array(rdev2); 9641 continue; 9642 } 9643 else 9644 clear_bit(Candidate, &rdev2->flags); 9645 } 9646 9647 if (role != rdev2->raid_disk) { 9648 /* 9649 * got activated except reshape is happening. 9650 */ 9651 if (rdev2->raid_disk == -1 && role != 0xffff && 9652 !(le32_to_cpu(sb->feature_map) & 9653 MD_FEATURE_RESHAPE_ACTIVE)) { 9654 rdev2->saved_raid_disk = role; 9655 ret = remove_and_add_spares(mddev, rdev2); 9656 pr_info("Activated spare: %s\n", 9657 bdevname(rdev2->bdev,b)); 9658 /* wakeup mddev->thread here, so array could 9659 * perform resync with the new activated disk */ 9660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9661 md_wakeup_thread(mddev->thread); 9662 } 9663 /* device faulty 9664 * We just want to do the minimum to mark the disk 9665 * as faulty. The recovery is performed by the 9666 * one who initiated the error. 9667 */ 9668 if ((role == 0xfffe) || (role == 0xfffd)) { 9669 md_error(mddev, rdev2); 9670 clear_bit(Blocked, &rdev2->flags); 9671 } 9672 } 9673 } 9674 9675 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9676 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9677 if (ret) 9678 pr_warn("md: updating array disks failed. %d\n", ret); 9679 } 9680 9681 /* 9682 * Since mddev->delta_disks has already updated in update_raid_disks, 9683 * so it is time to check reshape. 9684 */ 9685 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9686 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9687 /* 9688 * reshape is happening in the remote node, we need to 9689 * update reshape_position and call start_reshape. 9690 */ 9691 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9692 if (mddev->pers->update_reshape_pos) 9693 mddev->pers->update_reshape_pos(mddev); 9694 if (mddev->pers->start_reshape) 9695 mddev->pers->start_reshape(mddev); 9696 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9697 mddev->reshape_position != MaxSector && 9698 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9699 /* reshape is just done in another node. */ 9700 mddev->reshape_position = MaxSector; 9701 if (mddev->pers->update_reshape_pos) 9702 mddev->pers->update_reshape_pos(mddev); 9703 } 9704 9705 /* Finally set the event to be up to date */ 9706 mddev->events = le64_to_cpu(sb->events); 9707 } 9708 9709 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9710 { 9711 int err; 9712 struct page *swapout = rdev->sb_page; 9713 struct mdp_superblock_1 *sb; 9714 9715 /* Store the sb page of the rdev in the swapout temporary 9716 * variable in case we err in the future 9717 */ 9718 rdev->sb_page = NULL; 9719 err = alloc_disk_sb(rdev); 9720 if (err == 0) { 9721 ClearPageUptodate(rdev->sb_page); 9722 rdev->sb_loaded = 0; 9723 err = super_types[mddev->major_version]. 9724 load_super(rdev, NULL, mddev->minor_version); 9725 } 9726 if (err < 0) { 9727 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9728 __func__, __LINE__, rdev->desc_nr, err); 9729 if (rdev->sb_page) 9730 put_page(rdev->sb_page); 9731 rdev->sb_page = swapout; 9732 rdev->sb_loaded = 1; 9733 return err; 9734 } 9735 9736 sb = page_address(rdev->sb_page); 9737 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9738 * is not set 9739 */ 9740 9741 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9742 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9743 9744 /* The other node finished recovery, call spare_active to set 9745 * device In_sync and mddev->degraded 9746 */ 9747 if (rdev->recovery_offset == MaxSector && 9748 !test_bit(In_sync, &rdev->flags) && 9749 mddev->pers->spare_active(mddev)) 9750 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9751 9752 put_page(swapout); 9753 return 0; 9754 } 9755 9756 void md_reload_sb(struct mddev *mddev, int nr) 9757 { 9758 struct md_rdev *rdev; 9759 int err; 9760 9761 /* Find the rdev */ 9762 rdev_for_each_rcu(rdev, mddev) { 9763 if (rdev->desc_nr == nr) 9764 break; 9765 } 9766 9767 if (!rdev || rdev->desc_nr != nr) { 9768 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9769 return; 9770 } 9771 9772 err = read_rdev(mddev, rdev); 9773 if (err < 0) 9774 return; 9775 9776 check_sb_changes(mddev, rdev); 9777 9778 /* Read all rdev's to update recovery_offset */ 9779 rdev_for_each_rcu(rdev, mddev) { 9780 if (!test_bit(Faulty, &rdev->flags)) 9781 read_rdev(mddev, rdev); 9782 } 9783 } 9784 EXPORT_SYMBOL(md_reload_sb); 9785 9786 #ifndef MODULE 9787 9788 /* 9789 * Searches all registered partitions for autorun RAID arrays 9790 * at boot time. 9791 */ 9792 9793 static DEFINE_MUTEX(detected_devices_mutex); 9794 static LIST_HEAD(all_detected_devices); 9795 struct detected_devices_node { 9796 struct list_head list; 9797 dev_t dev; 9798 }; 9799 9800 void md_autodetect_dev(dev_t dev) 9801 { 9802 struct detected_devices_node *node_detected_dev; 9803 9804 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9805 if (node_detected_dev) { 9806 node_detected_dev->dev = dev; 9807 mutex_lock(&detected_devices_mutex); 9808 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9809 mutex_unlock(&detected_devices_mutex); 9810 } 9811 } 9812 9813 void md_autostart_arrays(int part) 9814 { 9815 struct md_rdev *rdev; 9816 struct detected_devices_node *node_detected_dev; 9817 dev_t dev; 9818 int i_scanned, i_passed; 9819 9820 i_scanned = 0; 9821 i_passed = 0; 9822 9823 pr_info("md: Autodetecting RAID arrays.\n"); 9824 9825 mutex_lock(&detected_devices_mutex); 9826 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9827 i_scanned++; 9828 node_detected_dev = list_entry(all_detected_devices.next, 9829 struct detected_devices_node, list); 9830 list_del(&node_detected_dev->list); 9831 dev = node_detected_dev->dev; 9832 kfree(node_detected_dev); 9833 mutex_unlock(&detected_devices_mutex); 9834 rdev = md_import_device(dev,0, 90); 9835 mutex_lock(&detected_devices_mutex); 9836 if (IS_ERR(rdev)) 9837 continue; 9838 9839 if (test_bit(Faulty, &rdev->flags)) 9840 continue; 9841 9842 set_bit(AutoDetected, &rdev->flags); 9843 list_add(&rdev->same_set, &pending_raid_disks); 9844 i_passed++; 9845 } 9846 mutex_unlock(&detected_devices_mutex); 9847 9848 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9849 9850 autorun_devices(part); 9851 } 9852 9853 #endif /* !MODULE */ 9854 9855 static __exit void md_exit(void) 9856 { 9857 struct mddev *mddev; 9858 struct list_head *tmp; 9859 int delay = 1; 9860 9861 unregister_blkdev(MD_MAJOR,"md"); 9862 unregister_blkdev(mdp_major, "mdp"); 9863 unregister_reboot_notifier(&md_notifier); 9864 unregister_sysctl_table(raid_table_header); 9865 9866 /* We cannot unload the modules while some process is 9867 * waiting for us in select() or poll() - wake them up 9868 */ 9869 md_unloading = 1; 9870 while (waitqueue_active(&md_event_waiters)) { 9871 /* not safe to leave yet */ 9872 wake_up(&md_event_waiters); 9873 msleep(delay); 9874 delay += delay; 9875 } 9876 remove_proc_entry("mdstat", NULL); 9877 9878 for_each_mddev(mddev, tmp) { 9879 export_array(mddev); 9880 mddev->ctime = 0; 9881 mddev->hold_active = 0; 9882 /* 9883 * for_each_mddev() will call mddev_put() at the end of each 9884 * iteration. As the mddev is now fully clear, this will 9885 * schedule the mddev for destruction by a workqueue, and the 9886 * destroy_workqueue() below will wait for that to complete. 9887 */ 9888 } 9889 destroy_workqueue(md_rdev_misc_wq); 9890 destroy_workqueue(md_misc_wq); 9891 destroy_workqueue(md_wq); 9892 } 9893 9894 subsys_initcall(md_init); 9895 module_exit(md_exit) 9896 9897 static int get_ro(char *buffer, const struct kernel_param *kp) 9898 { 9899 return sprintf(buffer, "%d\n", start_readonly); 9900 } 9901 static int set_ro(const char *val, const struct kernel_param *kp) 9902 { 9903 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9904 } 9905 9906 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9907 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9908 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9909 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9910 9911 MODULE_LICENSE("GPL"); 9912 MODULE_DESCRIPTION("MD RAID framework"); 9913 MODULE_ALIAS("md"); 9914 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9915