1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 struct md_cluster_operations *md_cluster_ops; 88 EXPORT_SYMBOL(md_cluster_ops); 89 struct module *md_cluster_mod; 90 EXPORT_SYMBOL(md_cluster_mod); 91 92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 93 static struct workqueue_struct *md_wq; 94 static struct workqueue_struct *md_misc_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 100 /* 101 * Default number of read corrections we'll attempt on an rdev 102 * before ejecting it from the array. We divide the read error 103 * count by 2 for every hour elapsed between read errors. 104 */ 105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static struct ctl_table_header *raid_table_header; 134 135 static struct ctl_table raid_table[] = { 136 { 137 .procname = "speed_limit_min", 138 .data = &sysctl_speed_limit_min, 139 .maxlen = sizeof(int), 140 .mode = S_IRUGO|S_IWUSR, 141 .proc_handler = proc_dointvec, 142 }, 143 { 144 .procname = "speed_limit_max", 145 .data = &sysctl_speed_limit_max, 146 .maxlen = sizeof(int), 147 .mode = S_IRUGO|S_IWUSR, 148 .proc_handler = proc_dointvec, 149 }, 150 { } 151 }; 152 153 static struct ctl_table raid_dir_table[] = { 154 { 155 .procname = "raid", 156 .maxlen = 0, 157 .mode = S_IRUGO|S_IXUGO, 158 .child = raid_table, 159 }, 160 { } 161 }; 162 163 static struct ctl_table raid_root_table[] = { 164 { 165 .procname = "dev", 166 .maxlen = 0, 167 .mode = 0555, 168 .child = raid_dir_table, 169 }, 170 { } 171 }; 172 173 static const struct block_device_operations md_fops; 174 175 static int start_readonly; 176 177 /* 178 * The original mechanism for creating an md device is to create 179 * a device node in /dev and to open it. This causes races with device-close. 180 * The preferred method is to write to the "new_array" module parameter. 181 * This can avoid races. 182 * Setting create_on_open to false disables the original mechanism 183 * so all the races disappear. 184 */ 185 static bool create_on_open = true; 186 187 /* bio_clone_mddev 188 * like bio_clone_bioset, but with a local bio set 189 */ 190 191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 192 struct mddev *mddev) 193 { 194 struct bio *b; 195 196 if (!mddev || !mddev->bio_set) 197 return bio_alloc(gfp_mask, nr_iovecs); 198 199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 200 if (!b) 201 return NULL; 202 return b; 203 } 204 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 205 206 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 207 { 208 if (!mddev || !mddev->sync_set) 209 return bio_alloc(GFP_NOIO, 1); 210 211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set); 212 } 213 214 /* 215 * We have a system wide 'event count' that is incremented 216 * on any 'interesting' event, and readers of /proc/mdstat 217 * can use 'poll' or 'select' to find out when the event 218 * count increases. 219 * 220 * Events are: 221 * start array, stop array, error, add device, remove device, 222 * start build, activate spare 223 */ 224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 225 static atomic_t md_event_count; 226 void md_new_event(struct mddev *mddev) 227 { 228 atomic_inc(&md_event_count); 229 wake_up(&md_event_waiters); 230 } 231 EXPORT_SYMBOL_GPL(md_new_event); 232 233 /* 234 * Enables to iterate over all existing md arrays 235 * all_mddevs_lock protects this list. 236 */ 237 static LIST_HEAD(all_mddevs); 238 static DEFINE_SPINLOCK(all_mddevs_lock); 239 240 /* 241 * iterates through all used mddevs in the system. 242 * We take care to grab the all_mddevs_lock whenever navigating 243 * the list, and to always hold a refcount when unlocked. 244 * Any code which breaks out of this loop while own 245 * a reference to the current mddev and must mddev_put it. 246 */ 247 #define for_each_mddev(_mddev,_tmp) \ 248 \ 249 for (({ spin_lock(&all_mddevs_lock); \ 250 _tmp = all_mddevs.next; \ 251 _mddev = NULL;}); \ 252 ({ if (_tmp != &all_mddevs) \ 253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 254 spin_unlock(&all_mddevs_lock); \ 255 if (_mddev) mddev_put(_mddev); \ 256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 257 _tmp != &all_mddevs;}); \ 258 ({ spin_lock(&all_mddevs_lock); \ 259 _tmp = _tmp->next;}) \ 260 ) 261 262 /* Rather than calling directly into the personality make_request function, 263 * IO requests come here first so that we can check if the device is 264 * being suspended pending a reconfiguration. 265 * We hold a refcount over the call to ->make_request. By the time that 266 * call has finished, the bio has been linked into some internal structure 267 * and so is visible to ->quiesce(), so we don't need the refcount any more. 268 */ 269 static bool is_suspended(struct mddev *mddev, struct bio *bio) 270 { 271 if (mddev->suspended) 272 return true; 273 if (bio_data_dir(bio) != WRITE) 274 return false; 275 if (mddev->suspend_lo >= mddev->suspend_hi) 276 return false; 277 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 278 return false; 279 if (bio_end_sector(bio) < mddev->suspend_lo) 280 return false; 281 return true; 282 } 283 284 void md_handle_request(struct mddev *mddev, struct bio *bio) 285 { 286 check_suspended: 287 rcu_read_lock(); 288 if (is_suspended(mddev, bio)) { 289 DEFINE_WAIT(__wait); 290 for (;;) { 291 prepare_to_wait(&mddev->sb_wait, &__wait, 292 TASK_UNINTERRUPTIBLE); 293 if (!is_suspended(mddev, bio)) 294 break; 295 rcu_read_unlock(); 296 schedule(); 297 rcu_read_lock(); 298 } 299 finish_wait(&mddev->sb_wait, &__wait); 300 } 301 atomic_inc(&mddev->active_io); 302 rcu_read_unlock(); 303 304 if (!mddev->pers->make_request(mddev, bio)) { 305 atomic_dec(&mddev->active_io); 306 wake_up(&mddev->sb_wait); 307 goto check_suspended; 308 } 309 310 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 311 wake_up(&mddev->sb_wait); 312 } 313 EXPORT_SYMBOL(md_handle_request); 314 315 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 316 { 317 const int rw = bio_data_dir(bio); 318 struct mddev *mddev = q->queuedata; 319 unsigned int sectors; 320 int cpu; 321 322 blk_queue_split(q, &bio); 323 324 if (mddev == NULL || mddev->pers == NULL) { 325 bio_io_error(bio); 326 return BLK_QC_T_NONE; 327 } 328 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 329 if (bio_sectors(bio) != 0) 330 bio->bi_status = BLK_STS_IOERR; 331 bio_endio(bio); 332 return BLK_QC_T_NONE; 333 } 334 335 /* 336 * save the sectors now since our bio can 337 * go away inside make_request 338 */ 339 sectors = bio_sectors(bio); 340 /* bio could be mergeable after passing to underlayer */ 341 bio->bi_opf &= ~REQ_NOMERGE; 342 343 md_handle_request(mddev, bio); 344 345 cpu = part_stat_lock(); 346 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 347 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 348 part_stat_unlock(); 349 350 return BLK_QC_T_NONE; 351 } 352 353 /* mddev_suspend makes sure no new requests are submitted 354 * to the device, and that any requests that have been submitted 355 * are completely handled. 356 * Once mddev_detach() is called and completes, the module will be 357 * completely unused. 358 */ 359 void mddev_suspend(struct mddev *mddev) 360 { 361 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 362 lockdep_assert_held(&mddev->reconfig_mutex); 363 if (mddev->suspended++) 364 return; 365 synchronize_rcu(); 366 wake_up(&mddev->sb_wait); 367 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 368 smp_mb__after_atomic(); 369 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 370 mddev->pers->quiesce(mddev, 1); 371 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 372 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 373 374 del_timer_sync(&mddev->safemode_timer); 375 } 376 EXPORT_SYMBOL_GPL(mddev_suspend); 377 378 void mddev_resume(struct mddev *mddev) 379 { 380 lockdep_assert_held(&mddev->reconfig_mutex); 381 if (--mddev->suspended) 382 return; 383 wake_up(&mddev->sb_wait); 384 mddev->pers->quiesce(mddev, 0); 385 386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 387 md_wakeup_thread(mddev->thread); 388 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 389 } 390 EXPORT_SYMBOL_GPL(mddev_resume); 391 392 int mddev_congested(struct mddev *mddev, int bits) 393 { 394 struct md_personality *pers = mddev->pers; 395 int ret = 0; 396 397 rcu_read_lock(); 398 if (mddev->suspended) 399 ret = 1; 400 else if (pers && pers->congested) 401 ret = pers->congested(mddev, bits); 402 rcu_read_unlock(); 403 return ret; 404 } 405 EXPORT_SYMBOL_GPL(mddev_congested); 406 static int md_congested(void *data, int bits) 407 { 408 struct mddev *mddev = data; 409 return mddev_congested(mddev, bits); 410 } 411 412 /* 413 * Generic flush handling for md 414 */ 415 416 static void md_end_flush(struct bio *bio) 417 { 418 struct md_rdev *rdev = bio->bi_private; 419 struct mddev *mddev = rdev->mddev; 420 421 rdev_dec_pending(rdev, mddev); 422 423 if (atomic_dec_and_test(&mddev->flush_pending)) { 424 /* The pre-request flush has finished */ 425 queue_work(md_wq, &mddev->flush_work); 426 } 427 bio_put(bio); 428 } 429 430 static void md_submit_flush_data(struct work_struct *ws); 431 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 435 struct md_rdev *rdev; 436 437 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 438 atomic_set(&mddev->flush_pending, 1); 439 rcu_read_lock(); 440 rdev_for_each_rcu(rdev, mddev) 441 if (rdev->raid_disk >= 0 && 442 !test_bit(Faulty, &rdev->flags)) { 443 /* Take two references, one is dropped 444 * when request finishes, one after 445 * we reclaim rcu_read_lock 446 */ 447 struct bio *bi; 448 atomic_inc(&rdev->nr_pending); 449 atomic_inc(&rdev->nr_pending); 450 rcu_read_unlock(); 451 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 452 bi->bi_end_io = md_end_flush; 453 bi->bi_private = rdev; 454 bio_set_dev(bi, rdev->bdev); 455 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 456 atomic_inc(&mddev->flush_pending); 457 submit_bio(bi); 458 rcu_read_lock(); 459 rdev_dec_pending(rdev, mddev); 460 } 461 rcu_read_unlock(); 462 if (atomic_dec_and_test(&mddev->flush_pending)) 463 queue_work(md_wq, &mddev->flush_work); 464 } 465 466 static void md_submit_flush_data(struct work_struct *ws) 467 { 468 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 469 struct bio *bio = mddev->flush_bio; 470 471 /* 472 * must reset flush_bio before calling into md_handle_request to avoid a 473 * deadlock, because other bios passed md_handle_request suspend check 474 * could wait for this and below md_handle_request could wait for those 475 * bios because of suspend check 476 */ 477 mddev->flush_bio = NULL; 478 wake_up(&mddev->sb_wait); 479 480 if (bio->bi_iter.bi_size == 0) 481 /* an empty barrier - all done */ 482 bio_endio(bio); 483 else { 484 bio->bi_opf &= ~REQ_PREFLUSH; 485 md_handle_request(mddev, bio); 486 } 487 } 488 489 void md_flush_request(struct mddev *mddev, struct bio *bio) 490 { 491 spin_lock_irq(&mddev->lock); 492 wait_event_lock_irq(mddev->sb_wait, 493 !mddev->flush_bio, 494 mddev->lock); 495 mddev->flush_bio = bio; 496 spin_unlock_irq(&mddev->lock); 497 498 INIT_WORK(&mddev->flush_work, submit_flushes); 499 queue_work(md_wq, &mddev->flush_work); 500 } 501 EXPORT_SYMBOL(md_flush_request); 502 503 static inline struct mddev *mddev_get(struct mddev *mddev) 504 { 505 atomic_inc(&mddev->active); 506 return mddev; 507 } 508 509 static void mddev_delayed_delete(struct work_struct *ws); 510 511 static void mddev_put(struct mddev *mddev) 512 { 513 struct bio_set *bs = NULL, *sync_bs = NULL; 514 515 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 516 return; 517 if (!mddev->raid_disks && list_empty(&mddev->disks) && 518 mddev->ctime == 0 && !mddev->hold_active) { 519 /* Array is not configured at all, and not held active, 520 * so destroy it */ 521 list_del_init(&mddev->all_mddevs); 522 bs = mddev->bio_set; 523 sync_bs = mddev->sync_set; 524 mddev->bio_set = NULL; 525 mddev->sync_set = NULL; 526 if (mddev->gendisk) { 527 /* We did a probe so need to clean up. Call 528 * queue_work inside the spinlock so that 529 * flush_workqueue() after mddev_find will 530 * succeed in waiting for the work to be done. 531 */ 532 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 533 queue_work(md_misc_wq, &mddev->del_work); 534 } else 535 kfree(mddev); 536 } 537 spin_unlock(&all_mddevs_lock); 538 if (bs) 539 bioset_free(bs); 540 if (sync_bs) 541 bioset_free(sync_bs); 542 } 543 544 static void md_safemode_timeout(unsigned long data); 545 546 void mddev_init(struct mddev *mddev) 547 { 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 setup_timer(&mddev->safemode_timer, md_safemode_timeout, 554 (unsigned long) mddev); 555 atomic_set(&mddev->active, 1); 556 atomic_set(&mddev->openers, 0); 557 atomic_set(&mddev->active_io, 0); 558 spin_lock_init(&mddev->lock); 559 atomic_set(&mddev->flush_pending, 0); 560 init_waitqueue_head(&mddev->sb_wait); 561 init_waitqueue_head(&mddev->recovery_wait); 562 mddev->reshape_position = MaxSector; 563 mddev->reshape_backwards = 0; 564 mddev->last_sync_action = "none"; 565 mddev->resync_min = 0; 566 mddev->resync_max = MaxSector; 567 mddev->level = LEVEL_NONE; 568 } 569 EXPORT_SYMBOL_GPL(mddev_init); 570 571 static struct mddev *mddev_find(dev_t unit) 572 { 573 struct mddev *mddev, *new = NULL; 574 575 if (unit && MAJOR(unit) != MD_MAJOR) 576 unit &= ~((1<<MdpMinorShift)-1); 577 578 retry: 579 spin_lock(&all_mddevs_lock); 580 581 if (unit) { 582 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 583 if (mddev->unit == unit) { 584 mddev_get(mddev); 585 spin_unlock(&all_mddevs_lock); 586 kfree(new); 587 return mddev; 588 } 589 590 if (new) { 591 list_add(&new->all_mddevs, &all_mddevs); 592 spin_unlock(&all_mddevs_lock); 593 new->hold_active = UNTIL_IOCTL; 594 return new; 595 } 596 } else if (new) { 597 /* find an unused unit number */ 598 static int next_minor = 512; 599 int start = next_minor; 600 int is_free = 0; 601 int dev = 0; 602 while (!is_free) { 603 dev = MKDEV(MD_MAJOR, next_minor); 604 next_minor++; 605 if (next_minor > MINORMASK) 606 next_minor = 0; 607 if (next_minor == start) { 608 /* Oh dear, all in use. */ 609 spin_unlock(&all_mddevs_lock); 610 kfree(new); 611 return NULL; 612 } 613 614 is_free = 1; 615 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 616 if (mddev->unit == dev) { 617 is_free = 0; 618 break; 619 } 620 } 621 new->unit = dev; 622 new->md_minor = MINOR(dev); 623 new->hold_active = UNTIL_STOP; 624 list_add(&new->all_mddevs, &all_mddevs); 625 spin_unlock(&all_mddevs_lock); 626 return new; 627 } 628 spin_unlock(&all_mddevs_lock); 629 630 new = kzalloc(sizeof(*new), GFP_KERNEL); 631 if (!new) 632 return NULL; 633 634 new->unit = unit; 635 if (MAJOR(unit) == MD_MAJOR) 636 new->md_minor = MINOR(unit); 637 else 638 new->md_minor = MINOR(unit) >> MdpMinorShift; 639 640 mddev_init(new); 641 642 goto retry; 643 } 644 645 static struct attribute_group md_redundancy_group; 646 647 void mddev_unlock(struct mddev *mddev) 648 { 649 if (mddev->to_remove) { 650 /* These cannot be removed under reconfig_mutex as 651 * an access to the files will try to take reconfig_mutex 652 * while holding the file unremovable, which leads to 653 * a deadlock. 654 * So hold set sysfs_active while the remove in happeing, 655 * and anything else which might set ->to_remove or my 656 * otherwise change the sysfs namespace will fail with 657 * -EBUSY if sysfs_active is still set. 658 * We set sysfs_active under reconfig_mutex and elsewhere 659 * test it under the same mutex to ensure its correct value 660 * is seen. 661 */ 662 struct attribute_group *to_remove = mddev->to_remove; 663 mddev->to_remove = NULL; 664 mddev->sysfs_active = 1; 665 mutex_unlock(&mddev->reconfig_mutex); 666 667 if (mddev->kobj.sd) { 668 if (to_remove != &md_redundancy_group) 669 sysfs_remove_group(&mddev->kobj, to_remove); 670 if (mddev->pers == NULL || 671 mddev->pers->sync_request == NULL) { 672 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 673 if (mddev->sysfs_action) 674 sysfs_put(mddev->sysfs_action); 675 mddev->sysfs_action = NULL; 676 } 677 } 678 mddev->sysfs_active = 0; 679 } else 680 mutex_unlock(&mddev->reconfig_mutex); 681 682 /* As we've dropped the mutex we need a spinlock to 683 * make sure the thread doesn't disappear 684 */ 685 spin_lock(&pers_lock); 686 md_wakeup_thread(mddev->thread); 687 wake_up(&mddev->sb_wait); 688 spin_unlock(&pers_lock); 689 } 690 EXPORT_SYMBOL_GPL(mddev_unlock); 691 692 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 693 { 694 struct md_rdev *rdev; 695 696 rdev_for_each_rcu(rdev, mddev) 697 if (rdev->desc_nr == nr) 698 return rdev; 699 700 return NULL; 701 } 702 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 703 704 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 705 { 706 struct md_rdev *rdev; 707 708 rdev_for_each(rdev, mddev) 709 if (rdev->bdev->bd_dev == dev) 710 return rdev; 711 712 return NULL; 713 } 714 715 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 716 { 717 struct md_rdev *rdev; 718 719 rdev_for_each_rcu(rdev, mddev) 720 if (rdev->bdev->bd_dev == dev) 721 return rdev; 722 723 return NULL; 724 } 725 726 static struct md_personality *find_pers(int level, char *clevel) 727 { 728 struct md_personality *pers; 729 list_for_each_entry(pers, &pers_list, list) { 730 if (level != LEVEL_NONE && pers->level == level) 731 return pers; 732 if (strcmp(pers->name, clevel)==0) 733 return pers; 734 } 735 return NULL; 736 } 737 738 /* return the offset of the super block in 512byte sectors */ 739 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 740 { 741 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 742 return MD_NEW_SIZE_SECTORS(num_sectors); 743 } 744 745 static int alloc_disk_sb(struct md_rdev *rdev) 746 { 747 rdev->sb_page = alloc_page(GFP_KERNEL); 748 if (!rdev->sb_page) 749 return -ENOMEM; 750 return 0; 751 } 752 753 void md_rdev_clear(struct md_rdev *rdev) 754 { 755 if (rdev->sb_page) { 756 put_page(rdev->sb_page); 757 rdev->sb_loaded = 0; 758 rdev->sb_page = NULL; 759 rdev->sb_start = 0; 760 rdev->sectors = 0; 761 } 762 if (rdev->bb_page) { 763 put_page(rdev->bb_page); 764 rdev->bb_page = NULL; 765 } 766 badblocks_exit(&rdev->badblocks); 767 } 768 EXPORT_SYMBOL_GPL(md_rdev_clear); 769 770 static void super_written(struct bio *bio) 771 { 772 struct md_rdev *rdev = bio->bi_private; 773 struct mddev *mddev = rdev->mddev; 774 775 if (bio->bi_status) { 776 pr_err("md: super_written gets error=%d\n", bio->bi_status); 777 md_error(mddev, rdev); 778 if (!test_bit(Faulty, &rdev->flags) 779 && (bio->bi_opf & MD_FAILFAST)) { 780 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 781 set_bit(LastDev, &rdev->flags); 782 } 783 } else 784 clear_bit(LastDev, &rdev->flags); 785 786 if (atomic_dec_and_test(&mddev->pending_writes)) 787 wake_up(&mddev->sb_wait); 788 rdev_dec_pending(rdev, mddev); 789 bio_put(bio); 790 } 791 792 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 793 sector_t sector, int size, struct page *page) 794 { 795 /* write first size bytes of page to sector of rdev 796 * Increment mddev->pending_writes before returning 797 * and decrement it on completion, waking up sb_wait 798 * if zero is reached. 799 * If an error occurred, call md_error 800 */ 801 struct bio *bio; 802 int ff = 0; 803 804 if (test_bit(Faulty, &rdev->flags)) 805 return; 806 807 bio = md_bio_alloc_sync(mddev); 808 809 atomic_inc(&rdev->nr_pending); 810 811 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 812 bio->bi_iter.bi_sector = sector; 813 bio_add_page(bio, page, size, 0); 814 bio->bi_private = rdev; 815 bio->bi_end_io = super_written; 816 817 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 818 test_bit(FailFast, &rdev->flags) && 819 !test_bit(LastDev, &rdev->flags)) 820 ff = MD_FAILFAST; 821 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 822 823 atomic_inc(&mddev->pending_writes); 824 submit_bio(bio); 825 } 826 827 int md_super_wait(struct mddev *mddev) 828 { 829 /* wait for all superblock writes that were scheduled to complete */ 830 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 831 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 832 return -EAGAIN; 833 return 0; 834 } 835 836 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 837 struct page *page, int op, int op_flags, bool metadata_op) 838 { 839 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 840 int ret; 841 842 if (metadata_op && rdev->meta_bdev) 843 bio_set_dev(bio, rdev->meta_bdev); 844 else 845 bio_set_dev(bio, rdev->bdev); 846 bio_set_op_attrs(bio, op, op_flags); 847 if (metadata_op) 848 bio->bi_iter.bi_sector = sector + rdev->sb_start; 849 else if (rdev->mddev->reshape_position != MaxSector && 850 (rdev->mddev->reshape_backwards == 851 (sector >= rdev->mddev->reshape_position))) 852 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 853 else 854 bio->bi_iter.bi_sector = sector + rdev->data_offset; 855 bio_add_page(bio, page, size, 0); 856 857 submit_bio_wait(bio); 858 859 ret = !bio->bi_status; 860 bio_put(bio); 861 return ret; 862 } 863 EXPORT_SYMBOL_GPL(sync_page_io); 864 865 static int read_disk_sb(struct md_rdev *rdev, int size) 866 { 867 char b[BDEVNAME_SIZE]; 868 869 if (rdev->sb_loaded) 870 return 0; 871 872 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 873 goto fail; 874 rdev->sb_loaded = 1; 875 return 0; 876 877 fail: 878 pr_err("md: disabled device %s, could not read superblock.\n", 879 bdevname(rdev->bdev,b)); 880 return -EINVAL; 881 } 882 883 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 884 { 885 return sb1->set_uuid0 == sb2->set_uuid0 && 886 sb1->set_uuid1 == sb2->set_uuid1 && 887 sb1->set_uuid2 == sb2->set_uuid2 && 888 sb1->set_uuid3 == sb2->set_uuid3; 889 } 890 891 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 892 { 893 int ret; 894 mdp_super_t *tmp1, *tmp2; 895 896 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 897 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 898 899 if (!tmp1 || !tmp2) { 900 ret = 0; 901 goto abort; 902 } 903 904 *tmp1 = *sb1; 905 *tmp2 = *sb2; 906 907 /* 908 * nr_disks is not constant 909 */ 910 tmp1->nr_disks = 0; 911 tmp2->nr_disks = 0; 912 913 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 914 abort: 915 kfree(tmp1); 916 kfree(tmp2); 917 return ret; 918 } 919 920 static u32 md_csum_fold(u32 csum) 921 { 922 csum = (csum & 0xffff) + (csum >> 16); 923 return (csum & 0xffff) + (csum >> 16); 924 } 925 926 static unsigned int calc_sb_csum(mdp_super_t *sb) 927 { 928 u64 newcsum = 0; 929 u32 *sb32 = (u32*)sb; 930 int i; 931 unsigned int disk_csum, csum; 932 933 disk_csum = sb->sb_csum; 934 sb->sb_csum = 0; 935 936 for (i = 0; i < MD_SB_BYTES/4 ; i++) 937 newcsum += sb32[i]; 938 csum = (newcsum & 0xffffffff) + (newcsum>>32); 939 940 #ifdef CONFIG_ALPHA 941 /* This used to use csum_partial, which was wrong for several 942 * reasons including that different results are returned on 943 * different architectures. It isn't critical that we get exactly 944 * the same return value as before (we always csum_fold before 945 * testing, and that removes any differences). However as we 946 * know that csum_partial always returned a 16bit value on 947 * alphas, do a fold to maximise conformity to previous behaviour. 948 */ 949 sb->sb_csum = md_csum_fold(disk_csum); 950 #else 951 sb->sb_csum = disk_csum; 952 #endif 953 return csum; 954 } 955 956 /* 957 * Handle superblock details. 958 * We want to be able to handle multiple superblock formats 959 * so we have a common interface to them all, and an array of 960 * different handlers. 961 * We rely on user-space to write the initial superblock, and support 962 * reading and updating of superblocks. 963 * Interface methods are: 964 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 965 * loads and validates a superblock on dev. 966 * if refdev != NULL, compare superblocks on both devices 967 * Return: 968 * 0 - dev has a superblock that is compatible with refdev 969 * 1 - dev has a superblock that is compatible and newer than refdev 970 * so dev should be used as the refdev in future 971 * -EINVAL superblock incompatible or invalid 972 * -othererror e.g. -EIO 973 * 974 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 975 * Verify that dev is acceptable into mddev. 976 * The first time, mddev->raid_disks will be 0, and data from 977 * dev should be merged in. Subsequent calls check that dev 978 * is new enough. Return 0 or -EINVAL 979 * 980 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 981 * Update the superblock for rdev with data in mddev 982 * This does not write to disc. 983 * 984 */ 985 986 struct super_type { 987 char *name; 988 struct module *owner; 989 int (*load_super)(struct md_rdev *rdev, 990 struct md_rdev *refdev, 991 int minor_version); 992 int (*validate_super)(struct mddev *mddev, 993 struct md_rdev *rdev); 994 void (*sync_super)(struct mddev *mddev, 995 struct md_rdev *rdev); 996 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 997 sector_t num_sectors); 998 int (*allow_new_offset)(struct md_rdev *rdev, 999 unsigned long long new_offset); 1000 }; 1001 1002 /* 1003 * Check that the given mddev has no bitmap. 1004 * 1005 * This function is called from the run method of all personalities that do not 1006 * support bitmaps. It prints an error message and returns non-zero if mddev 1007 * has a bitmap. Otherwise, it returns 0. 1008 * 1009 */ 1010 int md_check_no_bitmap(struct mddev *mddev) 1011 { 1012 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1013 return 0; 1014 pr_warn("%s: bitmaps are not supported for %s\n", 1015 mdname(mddev), mddev->pers->name); 1016 return 1; 1017 } 1018 EXPORT_SYMBOL(md_check_no_bitmap); 1019 1020 /* 1021 * load_super for 0.90.0 1022 */ 1023 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1024 { 1025 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1026 mdp_super_t *sb; 1027 int ret; 1028 1029 /* 1030 * Calculate the position of the superblock (512byte sectors), 1031 * it's at the end of the disk. 1032 * 1033 * It also happens to be a multiple of 4Kb. 1034 */ 1035 rdev->sb_start = calc_dev_sboffset(rdev); 1036 1037 ret = read_disk_sb(rdev, MD_SB_BYTES); 1038 if (ret) 1039 return ret; 1040 1041 ret = -EINVAL; 1042 1043 bdevname(rdev->bdev, b); 1044 sb = page_address(rdev->sb_page); 1045 1046 if (sb->md_magic != MD_SB_MAGIC) { 1047 pr_warn("md: invalid raid superblock magic on %s\n", b); 1048 goto abort; 1049 } 1050 1051 if (sb->major_version != 0 || 1052 sb->minor_version < 90 || 1053 sb->minor_version > 91) { 1054 pr_warn("Bad version number %d.%d on %s\n", 1055 sb->major_version, sb->minor_version, b); 1056 goto abort; 1057 } 1058 1059 if (sb->raid_disks <= 0) 1060 goto abort; 1061 1062 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1063 pr_warn("md: invalid superblock checksum on %s\n", b); 1064 goto abort; 1065 } 1066 1067 rdev->preferred_minor = sb->md_minor; 1068 rdev->data_offset = 0; 1069 rdev->new_data_offset = 0; 1070 rdev->sb_size = MD_SB_BYTES; 1071 rdev->badblocks.shift = -1; 1072 1073 if (sb->level == LEVEL_MULTIPATH) 1074 rdev->desc_nr = -1; 1075 else 1076 rdev->desc_nr = sb->this_disk.number; 1077 1078 if (!refdev) { 1079 ret = 1; 1080 } else { 1081 __u64 ev1, ev2; 1082 mdp_super_t *refsb = page_address(refdev->sb_page); 1083 if (!md_uuid_equal(refsb, sb)) { 1084 pr_warn("md: %s has different UUID to %s\n", 1085 b, bdevname(refdev->bdev,b2)); 1086 goto abort; 1087 } 1088 if (!md_sb_equal(refsb, sb)) { 1089 pr_warn("md: %s has same UUID but different superblock to %s\n", 1090 b, bdevname(refdev->bdev, b2)); 1091 goto abort; 1092 } 1093 ev1 = md_event(sb); 1094 ev2 = md_event(refsb); 1095 if (ev1 > ev2) 1096 ret = 1; 1097 else 1098 ret = 0; 1099 } 1100 rdev->sectors = rdev->sb_start; 1101 /* Limit to 4TB as metadata cannot record more than that. 1102 * (not needed for Linear and RAID0 as metadata doesn't 1103 * record this size) 1104 */ 1105 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1106 sb->level >= 1) 1107 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1108 1109 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1110 /* "this cannot possibly happen" ... */ 1111 ret = -EINVAL; 1112 1113 abort: 1114 return ret; 1115 } 1116 1117 /* 1118 * validate_super for 0.90.0 1119 */ 1120 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1121 { 1122 mdp_disk_t *desc; 1123 mdp_super_t *sb = page_address(rdev->sb_page); 1124 __u64 ev1 = md_event(sb); 1125 1126 rdev->raid_disk = -1; 1127 clear_bit(Faulty, &rdev->flags); 1128 clear_bit(In_sync, &rdev->flags); 1129 clear_bit(Bitmap_sync, &rdev->flags); 1130 clear_bit(WriteMostly, &rdev->flags); 1131 1132 if (mddev->raid_disks == 0) { 1133 mddev->major_version = 0; 1134 mddev->minor_version = sb->minor_version; 1135 mddev->patch_version = sb->patch_version; 1136 mddev->external = 0; 1137 mddev->chunk_sectors = sb->chunk_size >> 9; 1138 mddev->ctime = sb->ctime; 1139 mddev->utime = sb->utime; 1140 mddev->level = sb->level; 1141 mddev->clevel[0] = 0; 1142 mddev->layout = sb->layout; 1143 mddev->raid_disks = sb->raid_disks; 1144 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1145 mddev->events = ev1; 1146 mddev->bitmap_info.offset = 0; 1147 mddev->bitmap_info.space = 0; 1148 /* bitmap can use 60 K after the 4K superblocks */ 1149 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1150 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1151 mddev->reshape_backwards = 0; 1152 1153 if (mddev->minor_version >= 91) { 1154 mddev->reshape_position = sb->reshape_position; 1155 mddev->delta_disks = sb->delta_disks; 1156 mddev->new_level = sb->new_level; 1157 mddev->new_layout = sb->new_layout; 1158 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1159 if (mddev->delta_disks < 0) 1160 mddev->reshape_backwards = 1; 1161 } else { 1162 mddev->reshape_position = MaxSector; 1163 mddev->delta_disks = 0; 1164 mddev->new_level = mddev->level; 1165 mddev->new_layout = mddev->layout; 1166 mddev->new_chunk_sectors = mddev->chunk_sectors; 1167 } 1168 1169 if (sb->state & (1<<MD_SB_CLEAN)) 1170 mddev->recovery_cp = MaxSector; 1171 else { 1172 if (sb->events_hi == sb->cp_events_hi && 1173 sb->events_lo == sb->cp_events_lo) { 1174 mddev->recovery_cp = sb->recovery_cp; 1175 } else 1176 mddev->recovery_cp = 0; 1177 } 1178 1179 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1180 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1181 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1182 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1183 1184 mddev->max_disks = MD_SB_DISKS; 1185 1186 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1187 mddev->bitmap_info.file == NULL) { 1188 mddev->bitmap_info.offset = 1189 mddev->bitmap_info.default_offset; 1190 mddev->bitmap_info.space = 1191 mddev->bitmap_info.default_space; 1192 } 1193 1194 } else if (mddev->pers == NULL) { 1195 /* Insist on good event counter while assembling, except 1196 * for spares (which don't need an event count) */ 1197 ++ev1; 1198 if (sb->disks[rdev->desc_nr].state & ( 1199 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1200 if (ev1 < mddev->events) 1201 return -EINVAL; 1202 } else if (mddev->bitmap) { 1203 /* if adding to array with a bitmap, then we can accept an 1204 * older device ... but not too old. 1205 */ 1206 if (ev1 < mddev->bitmap->events_cleared) 1207 return 0; 1208 if (ev1 < mddev->events) 1209 set_bit(Bitmap_sync, &rdev->flags); 1210 } else { 1211 if (ev1 < mddev->events) 1212 /* just a hot-add of a new device, leave raid_disk at -1 */ 1213 return 0; 1214 } 1215 1216 if (mddev->level != LEVEL_MULTIPATH) { 1217 desc = sb->disks + rdev->desc_nr; 1218 1219 if (desc->state & (1<<MD_DISK_FAULTY)) 1220 set_bit(Faulty, &rdev->flags); 1221 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1222 desc->raid_disk < mddev->raid_disks */) { 1223 set_bit(In_sync, &rdev->flags); 1224 rdev->raid_disk = desc->raid_disk; 1225 rdev->saved_raid_disk = desc->raid_disk; 1226 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1227 /* active but not in sync implies recovery up to 1228 * reshape position. We don't know exactly where 1229 * that is, so set to zero for now */ 1230 if (mddev->minor_version >= 91) { 1231 rdev->recovery_offset = 0; 1232 rdev->raid_disk = desc->raid_disk; 1233 } 1234 } 1235 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1236 set_bit(WriteMostly, &rdev->flags); 1237 if (desc->state & (1<<MD_DISK_FAILFAST)) 1238 set_bit(FailFast, &rdev->flags); 1239 } else /* MULTIPATH are always insync */ 1240 set_bit(In_sync, &rdev->flags); 1241 return 0; 1242 } 1243 1244 /* 1245 * sync_super for 0.90.0 1246 */ 1247 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1248 { 1249 mdp_super_t *sb; 1250 struct md_rdev *rdev2; 1251 int next_spare = mddev->raid_disks; 1252 1253 /* make rdev->sb match mddev data.. 1254 * 1255 * 1/ zero out disks 1256 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1257 * 3/ any empty disks < next_spare become removed 1258 * 1259 * disks[0] gets initialised to REMOVED because 1260 * we cannot be sure from other fields if it has 1261 * been initialised or not. 1262 */ 1263 int i; 1264 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1265 1266 rdev->sb_size = MD_SB_BYTES; 1267 1268 sb = page_address(rdev->sb_page); 1269 1270 memset(sb, 0, sizeof(*sb)); 1271 1272 sb->md_magic = MD_SB_MAGIC; 1273 sb->major_version = mddev->major_version; 1274 sb->patch_version = mddev->patch_version; 1275 sb->gvalid_words = 0; /* ignored */ 1276 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1277 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1278 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1279 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1280 1281 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1282 sb->level = mddev->level; 1283 sb->size = mddev->dev_sectors / 2; 1284 sb->raid_disks = mddev->raid_disks; 1285 sb->md_minor = mddev->md_minor; 1286 sb->not_persistent = 0; 1287 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1288 sb->state = 0; 1289 sb->events_hi = (mddev->events>>32); 1290 sb->events_lo = (u32)mddev->events; 1291 1292 if (mddev->reshape_position == MaxSector) 1293 sb->minor_version = 90; 1294 else { 1295 sb->minor_version = 91; 1296 sb->reshape_position = mddev->reshape_position; 1297 sb->new_level = mddev->new_level; 1298 sb->delta_disks = mddev->delta_disks; 1299 sb->new_layout = mddev->new_layout; 1300 sb->new_chunk = mddev->new_chunk_sectors << 9; 1301 } 1302 mddev->minor_version = sb->minor_version; 1303 if (mddev->in_sync) 1304 { 1305 sb->recovery_cp = mddev->recovery_cp; 1306 sb->cp_events_hi = (mddev->events>>32); 1307 sb->cp_events_lo = (u32)mddev->events; 1308 if (mddev->recovery_cp == MaxSector) 1309 sb->state = (1<< MD_SB_CLEAN); 1310 } else 1311 sb->recovery_cp = 0; 1312 1313 sb->layout = mddev->layout; 1314 sb->chunk_size = mddev->chunk_sectors << 9; 1315 1316 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1317 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1318 1319 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1320 rdev_for_each(rdev2, mddev) { 1321 mdp_disk_t *d; 1322 int desc_nr; 1323 int is_active = test_bit(In_sync, &rdev2->flags); 1324 1325 if (rdev2->raid_disk >= 0 && 1326 sb->minor_version >= 91) 1327 /* we have nowhere to store the recovery_offset, 1328 * but if it is not below the reshape_position, 1329 * we can piggy-back on that. 1330 */ 1331 is_active = 1; 1332 if (rdev2->raid_disk < 0 || 1333 test_bit(Faulty, &rdev2->flags)) 1334 is_active = 0; 1335 if (is_active) 1336 desc_nr = rdev2->raid_disk; 1337 else 1338 desc_nr = next_spare++; 1339 rdev2->desc_nr = desc_nr; 1340 d = &sb->disks[rdev2->desc_nr]; 1341 nr_disks++; 1342 d->number = rdev2->desc_nr; 1343 d->major = MAJOR(rdev2->bdev->bd_dev); 1344 d->minor = MINOR(rdev2->bdev->bd_dev); 1345 if (is_active) 1346 d->raid_disk = rdev2->raid_disk; 1347 else 1348 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1349 if (test_bit(Faulty, &rdev2->flags)) 1350 d->state = (1<<MD_DISK_FAULTY); 1351 else if (is_active) { 1352 d->state = (1<<MD_DISK_ACTIVE); 1353 if (test_bit(In_sync, &rdev2->flags)) 1354 d->state |= (1<<MD_DISK_SYNC); 1355 active++; 1356 working++; 1357 } else { 1358 d->state = 0; 1359 spare++; 1360 working++; 1361 } 1362 if (test_bit(WriteMostly, &rdev2->flags)) 1363 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1364 if (test_bit(FailFast, &rdev2->flags)) 1365 d->state |= (1<<MD_DISK_FAILFAST); 1366 } 1367 /* now set the "removed" and "faulty" bits on any missing devices */ 1368 for (i=0 ; i < mddev->raid_disks ; i++) { 1369 mdp_disk_t *d = &sb->disks[i]; 1370 if (d->state == 0 && d->number == 0) { 1371 d->number = i; 1372 d->raid_disk = i; 1373 d->state = (1<<MD_DISK_REMOVED); 1374 d->state |= (1<<MD_DISK_FAULTY); 1375 failed++; 1376 } 1377 } 1378 sb->nr_disks = nr_disks; 1379 sb->active_disks = active; 1380 sb->working_disks = working; 1381 sb->failed_disks = failed; 1382 sb->spare_disks = spare; 1383 1384 sb->this_disk = sb->disks[rdev->desc_nr]; 1385 sb->sb_csum = calc_sb_csum(sb); 1386 } 1387 1388 /* 1389 * rdev_size_change for 0.90.0 1390 */ 1391 static unsigned long long 1392 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1393 { 1394 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1395 return 0; /* component must fit device */ 1396 if (rdev->mddev->bitmap_info.offset) 1397 return 0; /* can't move bitmap */ 1398 rdev->sb_start = calc_dev_sboffset(rdev); 1399 if (!num_sectors || num_sectors > rdev->sb_start) 1400 num_sectors = rdev->sb_start; 1401 /* Limit to 4TB as metadata cannot record more than that. 1402 * 4TB == 2^32 KB, or 2*2^32 sectors. 1403 */ 1404 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1405 rdev->mddev->level >= 1) 1406 num_sectors = (sector_t)(2ULL << 32) - 2; 1407 do { 1408 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1409 rdev->sb_page); 1410 } while (md_super_wait(rdev->mddev) < 0); 1411 return num_sectors; 1412 } 1413 1414 static int 1415 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1416 { 1417 /* non-zero offset changes not possible with v0.90 */ 1418 return new_offset == 0; 1419 } 1420 1421 /* 1422 * version 1 superblock 1423 */ 1424 1425 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1426 { 1427 __le32 disk_csum; 1428 u32 csum; 1429 unsigned long long newcsum; 1430 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1431 __le32 *isuper = (__le32*)sb; 1432 1433 disk_csum = sb->sb_csum; 1434 sb->sb_csum = 0; 1435 newcsum = 0; 1436 for (; size >= 4; size -= 4) 1437 newcsum += le32_to_cpu(*isuper++); 1438 1439 if (size == 2) 1440 newcsum += le16_to_cpu(*(__le16*) isuper); 1441 1442 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1443 sb->sb_csum = disk_csum; 1444 return cpu_to_le32(csum); 1445 } 1446 1447 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1448 { 1449 struct mdp_superblock_1 *sb; 1450 int ret; 1451 sector_t sb_start; 1452 sector_t sectors; 1453 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1454 int bmask; 1455 1456 /* 1457 * Calculate the position of the superblock in 512byte sectors. 1458 * It is always aligned to a 4K boundary and 1459 * depeding on minor_version, it can be: 1460 * 0: At least 8K, but less than 12K, from end of device 1461 * 1: At start of device 1462 * 2: 4K from start of device. 1463 */ 1464 switch(minor_version) { 1465 case 0: 1466 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1467 sb_start -= 8*2; 1468 sb_start &= ~(sector_t)(4*2-1); 1469 break; 1470 case 1: 1471 sb_start = 0; 1472 break; 1473 case 2: 1474 sb_start = 8; 1475 break; 1476 default: 1477 return -EINVAL; 1478 } 1479 rdev->sb_start = sb_start; 1480 1481 /* superblock is rarely larger than 1K, but it can be larger, 1482 * and it is safe to read 4k, so we do that 1483 */ 1484 ret = read_disk_sb(rdev, 4096); 1485 if (ret) return ret; 1486 1487 sb = page_address(rdev->sb_page); 1488 1489 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1490 sb->major_version != cpu_to_le32(1) || 1491 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1492 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1493 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1494 return -EINVAL; 1495 1496 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1497 pr_warn("md: invalid superblock checksum on %s\n", 1498 bdevname(rdev->bdev,b)); 1499 return -EINVAL; 1500 } 1501 if (le64_to_cpu(sb->data_size) < 10) { 1502 pr_warn("md: data_size too small on %s\n", 1503 bdevname(rdev->bdev,b)); 1504 return -EINVAL; 1505 } 1506 if (sb->pad0 || 1507 sb->pad3[0] || 1508 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1509 /* Some padding is non-zero, might be a new feature */ 1510 return -EINVAL; 1511 1512 rdev->preferred_minor = 0xffff; 1513 rdev->data_offset = le64_to_cpu(sb->data_offset); 1514 rdev->new_data_offset = rdev->data_offset; 1515 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1516 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1517 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1518 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1519 1520 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1521 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1522 if (rdev->sb_size & bmask) 1523 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1524 1525 if (minor_version 1526 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1527 return -EINVAL; 1528 if (minor_version 1529 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1530 return -EINVAL; 1531 1532 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1533 rdev->desc_nr = -1; 1534 else 1535 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1536 1537 if (!rdev->bb_page) { 1538 rdev->bb_page = alloc_page(GFP_KERNEL); 1539 if (!rdev->bb_page) 1540 return -ENOMEM; 1541 } 1542 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1543 rdev->badblocks.count == 0) { 1544 /* need to load the bad block list. 1545 * Currently we limit it to one page. 1546 */ 1547 s32 offset; 1548 sector_t bb_sector; 1549 u64 *bbp; 1550 int i; 1551 int sectors = le16_to_cpu(sb->bblog_size); 1552 if (sectors > (PAGE_SIZE / 512)) 1553 return -EINVAL; 1554 offset = le32_to_cpu(sb->bblog_offset); 1555 if (offset == 0) 1556 return -EINVAL; 1557 bb_sector = (long long)offset; 1558 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1559 rdev->bb_page, REQ_OP_READ, 0, true)) 1560 return -EIO; 1561 bbp = (u64 *)page_address(rdev->bb_page); 1562 rdev->badblocks.shift = sb->bblog_shift; 1563 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1564 u64 bb = le64_to_cpu(*bbp); 1565 int count = bb & (0x3ff); 1566 u64 sector = bb >> 10; 1567 sector <<= sb->bblog_shift; 1568 count <<= sb->bblog_shift; 1569 if (bb + 1 == 0) 1570 break; 1571 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1572 return -EINVAL; 1573 } 1574 } else if (sb->bblog_offset != 0) 1575 rdev->badblocks.shift = 0; 1576 1577 if ((le32_to_cpu(sb->feature_map) & 1578 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1579 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1580 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1581 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1582 } 1583 1584 if (!refdev) { 1585 ret = 1; 1586 } else { 1587 __u64 ev1, ev2; 1588 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1589 1590 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1591 sb->level != refsb->level || 1592 sb->layout != refsb->layout || 1593 sb->chunksize != refsb->chunksize) { 1594 pr_warn("md: %s has strangely different superblock to %s\n", 1595 bdevname(rdev->bdev,b), 1596 bdevname(refdev->bdev,b2)); 1597 return -EINVAL; 1598 } 1599 ev1 = le64_to_cpu(sb->events); 1600 ev2 = le64_to_cpu(refsb->events); 1601 1602 if (ev1 > ev2) 1603 ret = 1; 1604 else 1605 ret = 0; 1606 } 1607 if (minor_version) { 1608 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1609 sectors -= rdev->data_offset; 1610 } else 1611 sectors = rdev->sb_start; 1612 if (sectors < le64_to_cpu(sb->data_size)) 1613 return -EINVAL; 1614 rdev->sectors = le64_to_cpu(sb->data_size); 1615 return ret; 1616 } 1617 1618 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1619 { 1620 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1621 __u64 ev1 = le64_to_cpu(sb->events); 1622 1623 rdev->raid_disk = -1; 1624 clear_bit(Faulty, &rdev->flags); 1625 clear_bit(In_sync, &rdev->flags); 1626 clear_bit(Bitmap_sync, &rdev->flags); 1627 clear_bit(WriteMostly, &rdev->flags); 1628 1629 if (mddev->raid_disks == 0) { 1630 mddev->major_version = 1; 1631 mddev->patch_version = 0; 1632 mddev->external = 0; 1633 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1634 mddev->ctime = le64_to_cpu(sb->ctime); 1635 mddev->utime = le64_to_cpu(sb->utime); 1636 mddev->level = le32_to_cpu(sb->level); 1637 mddev->clevel[0] = 0; 1638 mddev->layout = le32_to_cpu(sb->layout); 1639 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1640 mddev->dev_sectors = le64_to_cpu(sb->size); 1641 mddev->events = ev1; 1642 mddev->bitmap_info.offset = 0; 1643 mddev->bitmap_info.space = 0; 1644 /* Default location for bitmap is 1K after superblock 1645 * using 3K - total of 4K 1646 */ 1647 mddev->bitmap_info.default_offset = 1024 >> 9; 1648 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1649 mddev->reshape_backwards = 0; 1650 1651 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1652 memcpy(mddev->uuid, sb->set_uuid, 16); 1653 1654 mddev->max_disks = (4096-256)/2; 1655 1656 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1657 mddev->bitmap_info.file == NULL) { 1658 mddev->bitmap_info.offset = 1659 (__s32)le32_to_cpu(sb->bitmap_offset); 1660 /* Metadata doesn't record how much space is available. 1661 * For 1.0, we assume we can use up to the superblock 1662 * if before, else to 4K beyond superblock. 1663 * For others, assume no change is possible. 1664 */ 1665 if (mddev->minor_version > 0) 1666 mddev->bitmap_info.space = 0; 1667 else if (mddev->bitmap_info.offset > 0) 1668 mddev->bitmap_info.space = 1669 8 - mddev->bitmap_info.offset; 1670 else 1671 mddev->bitmap_info.space = 1672 -mddev->bitmap_info.offset; 1673 } 1674 1675 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1676 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1677 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1678 mddev->new_level = le32_to_cpu(sb->new_level); 1679 mddev->new_layout = le32_to_cpu(sb->new_layout); 1680 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1681 if (mddev->delta_disks < 0 || 1682 (mddev->delta_disks == 0 && 1683 (le32_to_cpu(sb->feature_map) 1684 & MD_FEATURE_RESHAPE_BACKWARDS))) 1685 mddev->reshape_backwards = 1; 1686 } else { 1687 mddev->reshape_position = MaxSector; 1688 mddev->delta_disks = 0; 1689 mddev->new_level = mddev->level; 1690 mddev->new_layout = mddev->layout; 1691 mddev->new_chunk_sectors = mddev->chunk_sectors; 1692 } 1693 1694 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1695 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1696 1697 if (le32_to_cpu(sb->feature_map) & 1698 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1699 if (le32_to_cpu(sb->feature_map) & 1700 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1701 return -EINVAL; 1702 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1703 (le32_to_cpu(sb->feature_map) & 1704 MD_FEATURE_MULTIPLE_PPLS)) 1705 return -EINVAL; 1706 set_bit(MD_HAS_PPL, &mddev->flags); 1707 } 1708 } else if (mddev->pers == NULL) { 1709 /* Insist of good event counter while assembling, except for 1710 * spares (which don't need an event count) */ 1711 ++ev1; 1712 if (rdev->desc_nr >= 0 && 1713 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1714 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1715 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1716 if (ev1 < mddev->events) 1717 return -EINVAL; 1718 } else if (mddev->bitmap) { 1719 /* If adding to array with a bitmap, then we can accept an 1720 * older device, but not too old. 1721 */ 1722 if (ev1 < mddev->bitmap->events_cleared) 1723 return 0; 1724 if (ev1 < mddev->events) 1725 set_bit(Bitmap_sync, &rdev->flags); 1726 } else { 1727 if (ev1 < mddev->events) 1728 /* just a hot-add of a new device, leave raid_disk at -1 */ 1729 return 0; 1730 } 1731 if (mddev->level != LEVEL_MULTIPATH) { 1732 int role; 1733 if (rdev->desc_nr < 0 || 1734 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1735 role = MD_DISK_ROLE_SPARE; 1736 rdev->desc_nr = -1; 1737 } else 1738 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1739 switch(role) { 1740 case MD_DISK_ROLE_SPARE: /* spare */ 1741 break; 1742 case MD_DISK_ROLE_FAULTY: /* faulty */ 1743 set_bit(Faulty, &rdev->flags); 1744 break; 1745 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1746 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1747 /* journal device without journal feature */ 1748 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1749 return -EINVAL; 1750 } 1751 set_bit(Journal, &rdev->flags); 1752 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1753 rdev->raid_disk = 0; 1754 break; 1755 default: 1756 rdev->saved_raid_disk = role; 1757 if ((le32_to_cpu(sb->feature_map) & 1758 MD_FEATURE_RECOVERY_OFFSET)) { 1759 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1760 if (!(le32_to_cpu(sb->feature_map) & 1761 MD_FEATURE_RECOVERY_BITMAP)) 1762 rdev->saved_raid_disk = -1; 1763 } else 1764 set_bit(In_sync, &rdev->flags); 1765 rdev->raid_disk = role; 1766 break; 1767 } 1768 if (sb->devflags & WriteMostly1) 1769 set_bit(WriteMostly, &rdev->flags); 1770 if (sb->devflags & FailFast1) 1771 set_bit(FailFast, &rdev->flags); 1772 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1773 set_bit(Replacement, &rdev->flags); 1774 } else /* MULTIPATH are always insync */ 1775 set_bit(In_sync, &rdev->flags); 1776 1777 return 0; 1778 } 1779 1780 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1781 { 1782 struct mdp_superblock_1 *sb; 1783 struct md_rdev *rdev2; 1784 int max_dev, i; 1785 /* make rdev->sb match mddev and rdev data. */ 1786 1787 sb = page_address(rdev->sb_page); 1788 1789 sb->feature_map = 0; 1790 sb->pad0 = 0; 1791 sb->recovery_offset = cpu_to_le64(0); 1792 memset(sb->pad3, 0, sizeof(sb->pad3)); 1793 1794 sb->utime = cpu_to_le64((__u64)mddev->utime); 1795 sb->events = cpu_to_le64(mddev->events); 1796 if (mddev->in_sync) 1797 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1798 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1799 sb->resync_offset = cpu_to_le64(MaxSector); 1800 else 1801 sb->resync_offset = cpu_to_le64(0); 1802 1803 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1804 1805 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1806 sb->size = cpu_to_le64(mddev->dev_sectors); 1807 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1808 sb->level = cpu_to_le32(mddev->level); 1809 sb->layout = cpu_to_le32(mddev->layout); 1810 if (test_bit(FailFast, &rdev->flags)) 1811 sb->devflags |= FailFast1; 1812 else 1813 sb->devflags &= ~FailFast1; 1814 1815 if (test_bit(WriteMostly, &rdev->flags)) 1816 sb->devflags |= WriteMostly1; 1817 else 1818 sb->devflags &= ~WriteMostly1; 1819 sb->data_offset = cpu_to_le64(rdev->data_offset); 1820 sb->data_size = cpu_to_le64(rdev->sectors); 1821 1822 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1823 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1824 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1825 } 1826 1827 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1828 !test_bit(In_sync, &rdev->flags)) { 1829 sb->feature_map |= 1830 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1831 sb->recovery_offset = 1832 cpu_to_le64(rdev->recovery_offset); 1833 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1834 sb->feature_map |= 1835 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1836 } 1837 /* Note: recovery_offset and journal_tail share space */ 1838 if (test_bit(Journal, &rdev->flags)) 1839 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1840 if (test_bit(Replacement, &rdev->flags)) 1841 sb->feature_map |= 1842 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1843 1844 if (mddev->reshape_position != MaxSector) { 1845 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1846 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1847 sb->new_layout = cpu_to_le32(mddev->new_layout); 1848 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1849 sb->new_level = cpu_to_le32(mddev->new_level); 1850 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1851 if (mddev->delta_disks == 0 && 1852 mddev->reshape_backwards) 1853 sb->feature_map 1854 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1855 if (rdev->new_data_offset != rdev->data_offset) { 1856 sb->feature_map 1857 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1858 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1859 - rdev->data_offset)); 1860 } 1861 } 1862 1863 if (mddev_is_clustered(mddev)) 1864 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1865 1866 if (rdev->badblocks.count == 0) 1867 /* Nothing to do for bad blocks*/ ; 1868 else if (sb->bblog_offset == 0) 1869 /* Cannot record bad blocks on this device */ 1870 md_error(mddev, rdev); 1871 else { 1872 struct badblocks *bb = &rdev->badblocks; 1873 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1874 u64 *p = bb->page; 1875 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1876 if (bb->changed) { 1877 unsigned seq; 1878 1879 retry: 1880 seq = read_seqbegin(&bb->lock); 1881 1882 memset(bbp, 0xff, PAGE_SIZE); 1883 1884 for (i = 0 ; i < bb->count ; i++) { 1885 u64 internal_bb = p[i]; 1886 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1887 | BB_LEN(internal_bb)); 1888 bbp[i] = cpu_to_le64(store_bb); 1889 } 1890 bb->changed = 0; 1891 if (read_seqretry(&bb->lock, seq)) 1892 goto retry; 1893 1894 bb->sector = (rdev->sb_start + 1895 (int)le32_to_cpu(sb->bblog_offset)); 1896 bb->size = le16_to_cpu(sb->bblog_size); 1897 } 1898 } 1899 1900 max_dev = 0; 1901 rdev_for_each(rdev2, mddev) 1902 if (rdev2->desc_nr+1 > max_dev) 1903 max_dev = rdev2->desc_nr+1; 1904 1905 if (max_dev > le32_to_cpu(sb->max_dev)) { 1906 int bmask; 1907 sb->max_dev = cpu_to_le32(max_dev); 1908 rdev->sb_size = max_dev * 2 + 256; 1909 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1910 if (rdev->sb_size & bmask) 1911 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1912 } else 1913 max_dev = le32_to_cpu(sb->max_dev); 1914 1915 for (i=0; i<max_dev;i++) 1916 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1917 1918 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1919 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1920 1921 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1922 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1923 sb->feature_map |= 1924 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1925 else 1926 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1927 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1928 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1929 } 1930 1931 rdev_for_each(rdev2, mddev) { 1932 i = rdev2->desc_nr; 1933 if (test_bit(Faulty, &rdev2->flags)) 1934 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1935 else if (test_bit(In_sync, &rdev2->flags)) 1936 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1937 else if (test_bit(Journal, &rdev2->flags)) 1938 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1939 else if (rdev2->raid_disk >= 0) 1940 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1941 else 1942 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1943 } 1944 1945 sb->sb_csum = calc_sb_1_csum(sb); 1946 } 1947 1948 static unsigned long long 1949 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1950 { 1951 struct mdp_superblock_1 *sb; 1952 sector_t max_sectors; 1953 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1954 return 0; /* component must fit device */ 1955 if (rdev->data_offset != rdev->new_data_offset) 1956 return 0; /* too confusing */ 1957 if (rdev->sb_start < rdev->data_offset) { 1958 /* minor versions 1 and 2; superblock before data */ 1959 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1960 max_sectors -= rdev->data_offset; 1961 if (!num_sectors || num_sectors > max_sectors) 1962 num_sectors = max_sectors; 1963 } else if (rdev->mddev->bitmap_info.offset) { 1964 /* minor version 0 with bitmap we can't move */ 1965 return 0; 1966 } else { 1967 /* minor version 0; superblock after data */ 1968 sector_t sb_start; 1969 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1970 sb_start &= ~(sector_t)(4*2 - 1); 1971 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1972 if (!num_sectors || num_sectors > max_sectors) 1973 num_sectors = max_sectors; 1974 rdev->sb_start = sb_start; 1975 } 1976 sb = page_address(rdev->sb_page); 1977 sb->data_size = cpu_to_le64(num_sectors); 1978 sb->super_offset = cpu_to_le64(rdev->sb_start); 1979 sb->sb_csum = calc_sb_1_csum(sb); 1980 do { 1981 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1982 rdev->sb_page); 1983 } while (md_super_wait(rdev->mddev) < 0); 1984 return num_sectors; 1985 1986 } 1987 1988 static int 1989 super_1_allow_new_offset(struct md_rdev *rdev, 1990 unsigned long long new_offset) 1991 { 1992 /* All necessary checks on new >= old have been done */ 1993 struct bitmap *bitmap; 1994 if (new_offset >= rdev->data_offset) 1995 return 1; 1996 1997 /* with 1.0 metadata, there is no metadata to tread on 1998 * so we can always move back */ 1999 if (rdev->mddev->minor_version == 0) 2000 return 1; 2001 2002 /* otherwise we must be sure not to step on 2003 * any metadata, so stay: 2004 * 36K beyond start of superblock 2005 * beyond end of badblocks 2006 * beyond write-intent bitmap 2007 */ 2008 if (rdev->sb_start + (32+4)*2 > new_offset) 2009 return 0; 2010 bitmap = rdev->mddev->bitmap; 2011 if (bitmap && !rdev->mddev->bitmap_info.file && 2012 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2013 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2014 return 0; 2015 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2016 return 0; 2017 2018 return 1; 2019 } 2020 2021 static struct super_type super_types[] = { 2022 [0] = { 2023 .name = "0.90.0", 2024 .owner = THIS_MODULE, 2025 .load_super = super_90_load, 2026 .validate_super = super_90_validate, 2027 .sync_super = super_90_sync, 2028 .rdev_size_change = super_90_rdev_size_change, 2029 .allow_new_offset = super_90_allow_new_offset, 2030 }, 2031 [1] = { 2032 .name = "md-1", 2033 .owner = THIS_MODULE, 2034 .load_super = super_1_load, 2035 .validate_super = super_1_validate, 2036 .sync_super = super_1_sync, 2037 .rdev_size_change = super_1_rdev_size_change, 2038 .allow_new_offset = super_1_allow_new_offset, 2039 }, 2040 }; 2041 2042 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2043 { 2044 if (mddev->sync_super) { 2045 mddev->sync_super(mddev, rdev); 2046 return; 2047 } 2048 2049 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2050 2051 super_types[mddev->major_version].sync_super(mddev, rdev); 2052 } 2053 2054 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2055 { 2056 struct md_rdev *rdev, *rdev2; 2057 2058 rcu_read_lock(); 2059 rdev_for_each_rcu(rdev, mddev1) { 2060 if (test_bit(Faulty, &rdev->flags) || 2061 test_bit(Journal, &rdev->flags) || 2062 rdev->raid_disk == -1) 2063 continue; 2064 rdev_for_each_rcu(rdev2, mddev2) { 2065 if (test_bit(Faulty, &rdev2->flags) || 2066 test_bit(Journal, &rdev2->flags) || 2067 rdev2->raid_disk == -1) 2068 continue; 2069 if (rdev->bdev->bd_contains == 2070 rdev2->bdev->bd_contains) { 2071 rcu_read_unlock(); 2072 return 1; 2073 } 2074 } 2075 } 2076 rcu_read_unlock(); 2077 return 0; 2078 } 2079 2080 static LIST_HEAD(pending_raid_disks); 2081 2082 /* 2083 * Try to register data integrity profile for an mddev 2084 * 2085 * This is called when an array is started and after a disk has been kicked 2086 * from the array. It only succeeds if all working and active component devices 2087 * are integrity capable with matching profiles. 2088 */ 2089 int md_integrity_register(struct mddev *mddev) 2090 { 2091 struct md_rdev *rdev, *reference = NULL; 2092 2093 if (list_empty(&mddev->disks)) 2094 return 0; /* nothing to do */ 2095 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2096 return 0; /* shouldn't register, or already is */ 2097 rdev_for_each(rdev, mddev) { 2098 /* skip spares and non-functional disks */ 2099 if (test_bit(Faulty, &rdev->flags)) 2100 continue; 2101 if (rdev->raid_disk < 0) 2102 continue; 2103 if (!reference) { 2104 /* Use the first rdev as the reference */ 2105 reference = rdev; 2106 continue; 2107 } 2108 /* does this rdev's profile match the reference profile? */ 2109 if (blk_integrity_compare(reference->bdev->bd_disk, 2110 rdev->bdev->bd_disk) < 0) 2111 return -EINVAL; 2112 } 2113 if (!reference || !bdev_get_integrity(reference->bdev)) 2114 return 0; 2115 /* 2116 * All component devices are integrity capable and have matching 2117 * profiles, register the common profile for the md device. 2118 */ 2119 blk_integrity_register(mddev->gendisk, 2120 bdev_get_integrity(reference->bdev)); 2121 2122 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2123 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2124 pr_err("md: failed to create integrity pool for %s\n", 2125 mdname(mddev)); 2126 return -EINVAL; 2127 } 2128 return 0; 2129 } 2130 EXPORT_SYMBOL(md_integrity_register); 2131 2132 /* 2133 * Attempt to add an rdev, but only if it is consistent with the current 2134 * integrity profile 2135 */ 2136 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2137 { 2138 struct blk_integrity *bi_rdev; 2139 struct blk_integrity *bi_mddev; 2140 char name[BDEVNAME_SIZE]; 2141 2142 if (!mddev->gendisk) 2143 return 0; 2144 2145 bi_rdev = bdev_get_integrity(rdev->bdev); 2146 bi_mddev = blk_get_integrity(mddev->gendisk); 2147 2148 if (!bi_mddev) /* nothing to do */ 2149 return 0; 2150 2151 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2152 pr_err("%s: incompatible integrity profile for %s\n", 2153 mdname(mddev), bdevname(rdev->bdev, name)); 2154 return -ENXIO; 2155 } 2156 2157 return 0; 2158 } 2159 EXPORT_SYMBOL(md_integrity_add_rdev); 2160 2161 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2162 { 2163 char b[BDEVNAME_SIZE]; 2164 struct kobject *ko; 2165 int err; 2166 2167 /* prevent duplicates */ 2168 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2169 return -EEXIST; 2170 2171 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2172 mddev->pers) 2173 return -EROFS; 2174 2175 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2176 if (!test_bit(Journal, &rdev->flags) && 2177 rdev->sectors && 2178 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2179 if (mddev->pers) { 2180 /* Cannot change size, so fail 2181 * If mddev->level <= 0, then we don't care 2182 * about aligning sizes (e.g. linear) 2183 */ 2184 if (mddev->level > 0) 2185 return -ENOSPC; 2186 } else 2187 mddev->dev_sectors = rdev->sectors; 2188 } 2189 2190 /* Verify rdev->desc_nr is unique. 2191 * If it is -1, assign a free number, else 2192 * check number is not in use 2193 */ 2194 rcu_read_lock(); 2195 if (rdev->desc_nr < 0) { 2196 int choice = 0; 2197 if (mddev->pers) 2198 choice = mddev->raid_disks; 2199 while (md_find_rdev_nr_rcu(mddev, choice)) 2200 choice++; 2201 rdev->desc_nr = choice; 2202 } else { 2203 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2204 rcu_read_unlock(); 2205 return -EBUSY; 2206 } 2207 } 2208 rcu_read_unlock(); 2209 if (!test_bit(Journal, &rdev->flags) && 2210 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2211 pr_warn("md: %s: array is limited to %d devices\n", 2212 mdname(mddev), mddev->max_disks); 2213 return -EBUSY; 2214 } 2215 bdevname(rdev->bdev,b); 2216 strreplace(b, '/', '!'); 2217 2218 rdev->mddev = mddev; 2219 pr_debug("md: bind<%s>\n", b); 2220 2221 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2222 goto fail; 2223 2224 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2225 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2226 /* failure here is OK */; 2227 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2228 2229 list_add_rcu(&rdev->same_set, &mddev->disks); 2230 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2231 2232 /* May as well allow recovery to be retried once */ 2233 mddev->recovery_disabled++; 2234 2235 return 0; 2236 2237 fail: 2238 pr_warn("md: failed to register dev-%s for %s\n", 2239 b, mdname(mddev)); 2240 return err; 2241 } 2242 2243 static void md_delayed_delete(struct work_struct *ws) 2244 { 2245 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2246 kobject_del(&rdev->kobj); 2247 kobject_put(&rdev->kobj); 2248 } 2249 2250 static void unbind_rdev_from_array(struct md_rdev *rdev) 2251 { 2252 char b[BDEVNAME_SIZE]; 2253 2254 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2255 list_del_rcu(&rdev->same_set); 2256 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2257 rdev->mddev = NULL; 2258 sysfs_remove_link(&rdev->kobj, "block"); 2259 sysfs_put(rdev->sysfs_state); 2260 rdev->sysfs_state = NULL; 2261 rdev->badblocks.count = 0; 2262 /* We need to delay this, otherwise we can deadlock when 2263 * writing to 'remove' to "dev/state". We also need 2264 * to delay it due to rcu usage. 2265 */ 2266 synchronize_rcu(); 2267 INIT_WORK(&rdev->del_work, md_delayed_delete); 2268 kobject_get(&rdev->kobj); 2269 queue_work(md_misc_wq, &rdev->del_work); 2270 } 2271 2272 /* 2273 * prevent the device from being mounted, repartitioned or 2274 * otherwise reused by a RAID array (or any other kernel 2275 * subsystem), by bd_claiming the device. 2276 */ 2277 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2278 { 2279 int err = 0; 2280 struct block_device *bdev; 2281 char b[BDEVNAME_SIZE]; 2282 2283 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2284 shared ? (struct md_rdev *)lock_rdev : rdev); 2285 if (IS_ERR(bdev)) { 2286 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2287 return PTR_ERR(bdev); 2288 } 2289 rdev->bdev = bdev; 2290 return err; 2291 } 2292 2293 static void unlock_rdev(struct md_rdev *rdev) 2294 { 2295 struct block_device *bdev = rdev->bdev; 2296 rdev->bdev = NULL; 2297 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2298 } 2299 2300 void md_autodetect_dev(dev_t dev); 2301 2302 static void export_rdev(struct md_rdev *rdev) 2303 { 2304 char b[BDEVNAME_SIZE]; 2305 2306 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2307 md_rdev_clear(rdev); 2308 #ifndef MODULE 2309 if (test_bit(AutoDetected, &rdev->flags)) 2310 md_autodetect_dev(rdev->bdev->bd_dev); 2311 #endif 2312 unlock_rdev(rdev); 2313 kobject_put(&rdev->kobj); 2314 } 2315 2316 void md_kick_rdev_from_array(struct md_rdev *rdev) 2317 { 2318 unbind_rdev_from_array(rdev); 2319 export_rdev(rdev); 2320 } 2321 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2322 2323 static void export_array(struct mddev *mddev) 2324 { 2325 struct md_rdev *rdev; 2326 2327 while (!list_empty(&mddev->disks)) { 2328 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2329 same_set); 2330 md_kick_rdev_from_array(rdev); 2331 } 2332 mddev->raid_disks = 0; 2333 mddev->major_version = 0; 2334 } 2335 2336 static bool set_in_sync(struct mddev *mddev) 2337 { 2338 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock)); 2339 if (!mddev->in_sync) { 2340 mddev->sync_checkers++; 2341 spin_unlock(&mddev->lock); 2342 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2343 spin_lock(&mddev->lock); 2344 if (!mddev->in_sync && 2345 percpu_ref_is_zero(&mddev->writes_pending)) { 2346 mddev->in_sync = 1; 2347 /* 2348 * Ensure ->in_sync is visible before we clear 2349 * ->sync_checkers. 2350 */ 2351 smp_mb(); 2352 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2353 sysfs_notify_dirent_safe(mddev->sysfs_state); 2354 } 2355 if (--mddev->sync_checkers == 0) 2356 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2357 } 2358 if (mddev->safemode == 1) 2359 mddev->safemode = 0; 2360 return mddev->in_sync; 2361 } 2362 2363 static void sync_sbs(struct mddev *mddev, int nospares) 2364 { 2365 /* Update each superblock (in-memory image), but 2366 * if we are allowed to, skip spares which already 2367 * have the right event counter, or have one earlier 2368 * (which would mean they aren't being marked as dirty 2369 * with the rest of the array) 2370 */ 2371 struct md_rdev *rdev; 2372 rdev_for_each(rdev, mddev) { 2373 if (rdev->sb_events == mddev->events || 2374 (nospares && 2375 rdev->raid_disk < 0 && 2376 rdev->sb_events+1 == mddev->events)) { 2377 /* Don't update this superblock */ 2378 rdev->sb_loaded = 2; 2379 } else { 2380 sync_super(mddev, rdev); 2381 rdev->sb_loaded = 1; 2382 } 2383 } 2384 } 2385 2386 static bool does_sb_need_changing(struct mddev *mddev) 2387 { 2388 struct md_rdev *rdev; 2389 struct mdp_superblock_1 *sb; 2390 int role; 2391 2392 /* Find a good rdev */ 2393 rdev_for_each(rdev, mddev) 2394 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2395 break; 2396 2397 /* No good device found. */ 2398 if (!rdev) 2399 return false; 2400 2401 sb = page_address(rdev->sb_page); 2402 /* Check if a device has become faulty or a spare become active */ 2403 rdev_for_each(rdev, mddev) { 2404 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2405 /* Device activated? */ 2406 if (role == 0xffff && rdev->raid_disk >=0 && 2407 !test_bit(Faulty, &rdev->flags)) 2408 return true; 2409 /* Device turned faulty? */ 2410 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2411 return true; 2412 } 2413 2414 /* Check if any mddev parameters have changed */ 2415 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2416 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2417 (mddev->layout != le32_to_cpu(sb->layout)) || 2418 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2419 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2420 return true; 2421 2422 return false; 2423 } 2424 2425 void md_update_sb(struct mddev *mddev, int force_change) 2426 { 2427 struct md_rdev *rdev; 2428 int sync_req; 2429 int nospares = 0; 2430 int any_badblocks_changed = 0; 2431 int ret = -1; 2432 2433 if (mddev->ro) { 2434 if (force_change) 2435 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2436 return; 2437 } 2438 2439 repeat: 2440 if (mddev_is_clustered(mddev)) { 2441 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2442 force_change = 1; 2443 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2444 nospares = 1; 2445 ret = md_cluster_ops->metadata_update_start(mddev); 2446 /* Has someone else has updated the sb */ 2447 if (!does_sb_need_changing(mddev)) { 2448 if (ret == 0) 2449 md_cluster_ops->metadata_update_cancel(mddev); 2450 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2451 BIT(MD_SB_CHANGE_DEVS) | 2452 BIT(MD_SB_CHANGE_CLEAN)); 2453 return; 2454 } 2455 } 2456 2457 /* First make sure individual recovery_offsets are correct */ 2458 rdev_for_each(rdev, mddev) { 2459 if (rdev->raid_disk >= 0 && 2460 mddev->delta_disks >= 0 && 2461 !test_bit(Journal, &rdev->flags) && 2462 !test_bit(In_sync, &rdev->flags) && 2463 mddev->curr_resync_completed > rdev->recovery_offset) 2464 rdev->recovery_offset = mddev->curr_resync_completed; 2465 2466 } 2467 if (!mddev->persistent) { 2468 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2469 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2470 if (!mddev->external) { 2471 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2472 rdev_for_each(rdev, mddev) { 2473 if (rdev->badblocks.changed) { 2474 rdev->badblocks.changed = 0; 2475 ack_all_badblocks(&rdev->badblocks); 2476 md_error(mddev, rdev); 2477 } 2478 clear_bit(Blocked, &rdev->flags); 2479 clear_bit(BlockedBadBlocks, &rdev->flags); 2480 wake_up(&rdev->blocked_wait); 2481 } 2482 } 2483 wake_up(&mddev->sb_wait); 2484 return; 2485 } 2486 2487 spin_lock(&mddev->lock); 2488 2489 mddev->utime = ktime_get_real_seconds(); 2490 2491 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2492 force_change = 1; 2493 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2494 /* just a clean<-> dirty transition, possibly leave spares alone, 2495 * though if events isn't the right even/odd, we will have to do 2496 * spares after all 2497 */ 2498 nospares = 1; 2499 if (force_change) 2500 nospares = 0; 2501 if (mddev->degraded) 2502 /* If the array is degraded, then skipping spares is both 2503 * dangerous and fairly pointless. 2504 * Dangerous because a device that was removed from the array 2505 * might have a event_count that still looks up-to-date, 2506 * so it can be re-added without a resync. 2507 * Pointless because if there are any spares to skip, 2508 * then a recovery will happen and soon that array won't 2509 * be degraded any more and the spare can go back to sleep then. 2510 */ 2511 nospares = 0; 2512 2513 sync_req = mddev->in_sync; 2514 2515 /* If this is just a dirty<->clean transition, and the array is clean 2516 * and 'events' is odd, we can roll back to the previous clean state */ 2517 if (nospares 2518 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2519 && mddev->can_decrease_events 2520 && mddev->events != 1) { 2521 mddev->events--; 2522 mddev->can_decrease_events = 0; 2523 } else { 2524 /* otherwise we have to go forward and ... */ 2525 mddev->events ++; 2526 mddev->can_decrease_events = nospares; 2527 } 2528 2529 /* 2530 * This 64-bit counter should never wrap. 2531 * Either we are in around ~1 trillion A.C., assuming 2532 * 1 reboot per second, or we have a bug... 2533 */ 2534 WARN_ON(mddev->events == 0); 2535 2536 rdev_for_each(rdev, mddev) { 2537 if (rdev->badblocks.changed) 2538 any_badblocks_changed++; 2539 if (test_bit(Faulty, &rdev->flags)) 2540 set_bit(FaultRecorded, &rdev->flags); 2541 } 2542 2543 sync_sbs(mddev, nospares); 2544 spin_unlock(&mddev->lock); 2545 2546 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2547 mdname(mddev), mddev->in_sync); 2548 2549 if (mddev->queue) 2550 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2551 rewrite: 2552 bitmap_update_sb(mddev->bitmap); 2553 rdev_for_each(rdev, mddev) { 2554 char b[BDEVNAME_SIZE]; 2555 2556 if (rdev->sb_loaded != 1) 2557 continue; /* no noise on spare devices */ 2558 2559 if (!test_bit(Faulty, &rdev->flags)) { 2560 md_super_write(mddev,rdev, 2561 rdev->sb_start, rdev->sb_size, 2562 rdev->sb_page); 2563 pr_debug("md: (write) %s's sb offset: %llu\n", 2564 bdevname(rdev->bdev, b), 2565 (unsigned long long)rdev->sb_start); 2566 rdev->sb_events = mddev->events; 2567 if (rdev->badblocks.size) { 2568 md_super_write(mddev, rdev, 2569 rdev->badblocks.sector, 2570 rdev->badblocks.size << 9, 2571 rdev->bb_page); 2572 rdev->badblocks.size = 0; 2573 } 2574 2575 } else 2576 pr_debug("md: %s (skipping faulty)\n", 2577 bdevname(rdev->bdev, b)); 2578 2579 if (mddev->level == LEVEL_MULTIPATH) 2580 /* only need to write one superblock... */ 2581 break; 2582 } 2583 if (md_super_wait(mddev) < 0) 2584 goto rewrite; 2585 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2586 2587 if (mddev_is_clustered(mddev) && ret == 0) 2588 md_cluster_ops->metadata_update_finish(mddev); 2589 2590 if (mddev->in_sync != sync_req || 2591 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2592 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2593 /* have to write it out again */ 2594 goto repeat; 2595 wake_up(&mddev->sb_wait); 2596 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2597 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2598 2599 rdev_for_each(rdev, mddev) { 2600 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2601 clear_bit(Blocked, &rdev->flags); 2602 2603 if (any_badblocks_changed) 2604 ack_all_badblocks(&rdev->badblocks); 2605 clear_bit(BlockedBadBlocks, &rdev->flags); 2606 wake_up(&rdev->blocked_wait); 2607 } 2608 } 2609 EXPORT_SYMBOL(md_update_sb); 2610 2611 static int add_bound_rdev(struct md_rdev *rdev) 2612 { 2613 struct mddev *mddev = rdev->mddev; 2614 int err = 0; 2615 bool add_journal = test_bit(Journal, &rdev->flags); 2616 2617 if (!mddev->pers->hot_remove_disk || add_journal) { 2618 /* If there is hot_add_disk but no hot_remove_disk 2619 * then added disks for geometry changes, 2620 * and should be added immediately. 2621 */ 2622 super_types[mddev->major_version]. 2623 validate_super(mddev, rdev); 2624 if (add_journal) 2625 mddev_suspend(mddev); 2626 err = mddev->pers->hot_add_disk(mddev, rdev); 2627 if (add_journal) 2628 mddev_resume(mddev); 2629 if (err) { 2630 md_kick_rdev_from_array(rdev); 2631 return err; 2632 } 2633 } 2634 sysfs_notify_dirent_safe(rdev->sysfs_state); 2635 2636 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2637 if (mddev->degraded) 2638 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2639 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2640 md_new_event(mddev); 2641 md_wakeup_thread(mddev->thread); 2642 return 0; 2643 } 2644 2645 /* words written to sysfs files may, or may not, be \n terminated. 2646 * We want to accept with case. For this we use cmd_match. 2647 */ 2648 static int cmd_match(const char *cmd, const char *str) 2649 { 2650 /* See if cmd, written into a sysfs file, matches 2651 * str. They must either be the same, or cmd can 2652 * have a trailing newline 2653 */ 2654 while (*cmd && *str && *cmd == *str) { 2655 cmd++; 2656 str++; 2657 } 2658 if (*cmd == '\n') 2659 cmd++; 2660 if (*str || *cmd) 2661 return 0; 2662 return 1; 2663 } 2664 2665 struct rdev_sysfs_entry { 2666 struct attribute attr; 2667 ssize_t (*show)(struct md_rdev *, char *); 2668 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2669 }; 2670 2671 static ssize_t 2672 state_show(struct md_rdev *rdev, char *page) 2673 { 2674 char *sep = ","; 2675 size_t len = 0; 2676 unsigned long flags = ACCESS_ONCE(rdev->flags); 2677 2678 if (test_bit(Faulty, &flags) || 2679 (!test_bit(ExternalBbl, &flags) && 2680 rdev->badblocks.unacked_exist)) 2681 len += sprintf(page+len, "faulty%s", sep); 2682 if (test_bit(In_sync, &flags)) 2683 len += sprintf(page+len, "in_sync%s", sep); 2684 if (test_bit(Journal, &flags)) 2685 len += sprintf(page+len, "journal%s", sep); 2686 if (test_bit(WriteMostly, &flags)) 2687 len += sprintf(page+len, "write_mostly%s", sep); 2688 if (test_bit(Blocked, &flags) || 2689 (rdev->badblocks.unacked_exist 2690 && !test_bit(Faulty, &flags))) 2691 len += sprintf(page+len, "blocked%s", sep); 2692 if (!test_bit(Faulty, &flags) && 2693 !test_bit(Journal, &flags) && 2694 !test_bit(In_sync, &flags)) 2695 len += sprintf(page+len, "spare%s", sep); 2696 if (test_bit(WriteErrorSeen, &flags)) 2697 len += sprintf(page+len, "write_error%s", sep); 2698 if (test_bit(WantReplacement, &flags)) 2699 len += sprintf(page+len, "want_replacement%s", sep); 2700 if (test_bit(Replacement, &flags)) 2701 len += sprintf(page+len, "replacement%s", sep); 2702 if (test_bit(ExternalBbl, &flags)) 2703 len += sprintf(page+len, "external_bbl%s", sep); 2704 if (test_bit(FailFast, &flags)) 2705 len += sprintf(page+len, "failfast%s", sep); 2706 2707 if (len) 2708 len -= strlen(sep); 2709 2710 return len+sprintf(page+len, "\n"); 2711 } 2712 2713 static ssize_t 2714 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2715 { 2716 /* can write 2717 * faulty - simulates an error 2718 * remove - disconnects the device 2719 * writemostly - sets write_mostly 2720 * -writemostly - clears write_mostly 2721 * blocked - sets the Blocked flags 2722 * -blocked - clears the Blocked and possibly simulates an error 2723 * insync - sets Insync providing device isn't active 2724 * -insync - clear Insync for a device with a slot assigned, 2725 * so that it gets rebuilt based on bitmap 2726 * write_error - sets WriteErrorSeen 2727 * -write_error - clears WriteErrorSeen 2728 * {,-}failfast - set/clear FailFast 2729 */ 2730 int err = -EINVAL; 2731 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2732 md_error(rdev->mddev, rdev); 2733 if (test_bit(Faulty, &rdev->flags)) 2734 err = 0; 2735 else 2736 err = -EBUSY; 2737 } else if (cmd_match(buf, "remove")) { 2738 if (rdev->mddev->pers) { 2739 clear_bit(Blocked, &rdev->flags); 2740 remove_and_add_spares(rdev->mddev, rdev); 2741 } 2742 if (rdev->raid_disk >= 0) 2743 err = -EBUSY; 2744 else { 2745 struct mddev *mddev = rdev->mddev; 2746 err = 0; 2747 if (mddev_is_clustered(mddev)) 2748 err = md_cluster_ops->remove_disk(mddev, rdev); 2749 2750 if (err == 0) { 2751 md_kick_rdev_from_array(rdev); 2752 if (mddev->pers) { 2753 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2754 md_wakeup_thread(mddev->thread); 2755 } 2756 md_new_event(mddev); 2757 } 2758 } 2759 } else if (cmd_match(buf, "writemostly")) { 2760 set_bit(WriteMostly, &rdev->flags); 2761 err = 0; 2762 } else if (cmd_match(buf, "-writemostly")) { 2763 clear_bit(WriteMostly, &rdev->flags); 2764 err = 0; 2765 } else if (cmd_match(buf, "blocked")) { 2766 set_bit(Blocked, &rdev->flags); 2767 err = 0; 2768 } else if (cmd_match(buf, "-blocked")) { 2769 if (!test_bit(Faulty, &rdev->flags) && 2770 !test_bit(ExternalBbl, &rdev->flags) && 2771 rdev->badblocks.unacked_exist) { 2772 /* metadata handler doesn't understand badblocks, 2773 * so we need to fail the device 2774 */ 2775 md_error(rdev->mddev, rdev); 2776 } 2777 clear_bit(Blocked, &rdev->flags); 2778 clear_bit(BlockedBadBlocks, &rdev->flags); 2779 wake_up(&rdev->blocked_wait); 2780 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2781 md_wakeup_thread(rdev->mddev->thread); 2782 2783 err = 0; 2784 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2785 set_bit(In_sync, &rdev->flags); 2786 err = 0; 2787 } else if (cmd_match(buf, "failfast")) { 2788 set_bit(FailFast, &rdev->flags); 2789 err = 0; 2790 } else if (cmd_match(buf, "-failfast")) { 2791 clear_bit(FailFast, &rdev->flags); 2792 err = 0; 2793 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2794 !test_bit(Journal, &rdev->flags)) { 2795 if (rdev->mddev->pers == NULL) { 2796 clear_bit(In_sync, &rdev->flags); 2797 rdev->saved_raid_disk = rdev->raid_disk; 2798 rdev->raid_disk = -1; 2799 err = 0; 2800 } 2801 } else if (cmd_match(buf, "write_error")) { 2802 set_bit(WriteErrorSeen, &rdev->flags); 2803 err = 0; 2804 } else if (cmd_match(buf, "-write_error")) { 2805 clear_bit(WriteErrorSeen, &rdev->flags); 2806 err = 0; 2807 } else if (cmd_match(buf, "want_replacement")) { 2808 /* Any non-spare device that is not a replacement can 2809 * become want_replacement at any time, but we then need to 2810 * check if recovery is needed. 2811 */ 2812 if (rdev->raid_disk >= 0 && 2813 !test_bit(Journal, &rdev->flags) && 2814 !test_bit(Replacement, &rdev->flags)) 2815 set_bit(WantReplacement, &rdev->flags); 2816 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2817 md_wakeup_thread(rdev->mddev->thread); 2818 err = 0; 2819 } else if (cmd_match(buf, "-want_replacement")) { 2820 /* Clearing 'want_replacement' is always allowed. 2821 * Once replacements starts it is too late though. 2822 */ 2823 err = 0; 2824 clear_bit(WantReplacement, &rdev->flags); 2825 } else if (cmd_match(buf, "replacement")) { 2826 /* Can only set a device as a replacement when array has not 2827 * yet been started. Once running, replacement is automatic 2828 * from spares, or by assigning 'slot'. 2829 */ 2830 if (rdev->mddev->pers) 2831 err = -EBUSY; 2832 else { 2833 set_bit(Replacement, &rdev->flags); 2834 err = 0; 2835 } 2836 } else if (cmd_match(buf, "-replacement")) { 2837 /* Similarly, can only clear Replacement before start */ 2838 if (rdev->mddev->pers) 2839 err = -EBUSY; 2840 else { 2841 clear_bit(Replacement, &rdev->flags); 2842 err = 0; 2843 } 2844 } else if (cmd_match(buf, "re-add")) { 2845 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2846 /* clear_bit is performed _after_ all the devices 2847 * have their local Faulty bit cleared. If any writes 2848 * happen in the meantime in the local node, they 2849 * will land in the local bitmap, which will be synced 2850 * by this node eventually 2851 */ 2852 if (!mddev_is_clustered(rdev->mddev) || 2853 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2854 clear_bit(Faulty, &rdev->flags); 2855 err = add_bound_rdev(rdev); 2856 } 2857 } else 2858 err = -EBUSY; 2859 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2860 set_bit(ExternalBbl, &rdev->flags); 2861 rdev->badblocks.shift = 0; 2862 err = 0; 2863 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2864 clear_bit(ExternalBbl, &rdev->flags); 2865 err = 0; 2866 } 2867 if (!err) 2868 sysfs_notify_dirent_safe(rdev->sysfs_state); 2869 return err ? err : len; 2870 } 2871 static struct rdev_sysfs_entry rdev_state = 2872 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2873 2874 static ssize_t 2875 errors_show(struct md_rdev *rdev, char *page) 2876 { 2877 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2878 } 2879 2880 static ssize_t 2881 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2882 { 2883 unsigned int n; 2884 int rv; 2885 2886 rv = kstrtouint(buf, 10, &n); 2887 if (rv < 0) 2888 return rv; 2889 atomic_set(&rdev->corrected_errors, n); 2890 return len; 2891 } 2892 static struct rdev_sysfs_entry rdev_errors = 2893 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2894 2895 static ssize_t 2896 slot_show(struct md_rdev *rdev, char *page) 2897 { 2898 if (test_bit(Journal, &rdev->flags)) 2899 return sprintf(page, "journal\n"); 2900 else if (rdev->raid_disk < 0) 2901 return sprintf(page, "none\n"); 2902 else 2903 return sprintf(page, "%d\n", rdev->raid_disk); 2904 } 2905 2906 static ssize_t 2907 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2908 { 2909 int slot; 2910 int err; 2911 2912 if (test_bit(Journal, &rdev->flags)) 2913 return -EBUSY; 2914 if (strncmp(buf, "none", 4)==0) 2915 slot = -1; 2916 else { 2917 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2918 if (err < 0) 2919 return err; 2920 } 2921 if (rdev->mddev->pers && slot == -1) { 2922 /* Setting 'slot' on an active array requires also 2923 * updating the 'rd%d' link, and communicating 2924 * with the personality with ->hot_*_disk. 2925 * For now we only support removing 2926 * failed/spare devices. This normally happens automatically, 2927 * but not when the metadata is externally managed. 2928 */ 2929 if (rdev->raid_disk == -1) 2930 return -EEXIST; 2931 /* personality does all needed checks */ 2932 if (rdev->mddev->pers->hot_remove_disk == NULL) 2933 return -EINVAL; 2934 clear_bit(Blocked, &rdev->flags); 2935 remove_and_add_spares(rdev->mddev, rdev); 2936 if (rdev->raid_disk >= 0) 2937 return -EBUSY; 2938 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2939 md_wakeup_thread(rdev->mddev->thread); 2940 } else if (rdev->mddev->pers) { 2941 /* Activating a spare .. or possibly reactivating 2942 * if we ever get bitmaps working here. 2943 */ 2944 int err; 2945 2946 if (rdev->raid_disk != -1) 2947 return -EBUSY; 2948 2949 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2950 return -EBUSY; 2951 2952 if (rdev->mddev->pers->hot_add_disk == NULL) 2953 return -EINVAL; 2954 2955 if (slot >= rdev->mddev->raid_disks && 2956 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2957 return -ENOSPC; 2958 2959 rdev->raid_disk = slot; 2960 if (test_bit(In_sync, &rdev->flags)) 2961 rdev->saved_raid_disk = slot; 2962 else 2963 rdev->saved_raid_disk = -1; 2964 clear_bit(In_sync, &rdev->flags); 2965 clear_bit(Bitmap_sync, &rdev->flags); 2966 err = rdev->mddev->pers-> 2967 hot_add_disk(rdev->mddev, rdev); 2968 if (err) { 2969 rdev->raid_disk = -1; 2970 return err; 2971 } else 2972 sysfs_notify_dirent_safe(rdev->sysfs_state); 2973 if (sysfs_link_rdev(rdev->mddev, rdev)) 2974 /* failure here is OK */; 2975 /* don't wakeup anyone, leave that to userspace. */ 2976 } else { 2977 if (slot >= rdev->mddev->raid_disks && 2978 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2979 return -ENOSPC; 2980 rdev->raid_disk = slot; 2981 /* assume it is working */ 2982 clear_bit(Faulty, &rdev->flags); 2983 clear_bit(WriteMostly, &rdev->flags); 2984 set_bit(In_sync, &rdev->flags); 2985 sysfs_notify_dirent_safe(rdev->sysfs_state); 2986 } 2987 return len; 2988 } 2989 2990 static struct rdev_sysfs_entry rdev_slot = 2991 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2992 2993 static ssize_t 2994 offset_show(struct md_rdev *rdev, char *page) 2995 { 2996 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2997 } 2998 2999 static ssize_t 3000 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3001 { 3002 unsigned long long offset; 3003 if (kstrtoull(buf, 10, &offset) < 0) 3004 return -EINVAL; 3005 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3006 return -EBUSY; 3007 if (rdev->sectors && rdev->mddev->external) 3008 /* Must set offset before size, so overlap checks 3009 * can be sane */ 3010 return -EBUSY; 3011 rdev->data_offset = offset; 3012 rdev->new_data_offset = offset; 3013 return len; 3014 } 3015 3016 static struct rdev_sysfs_entry rdev_offset = 3017 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3018 3019 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3020 { 3021 return sprintf(page, "%llu\n", 3022 (unsigned long long)rdev->new_data_offset); 3023 } 3024 3025 static ssize_t new_offset_store(struct md_rdev *rdev, 3026 const char *buf, size_t len) 3027 { 3028 unsigned long long new_offset; 3029 struct mddev *mddev = rdev->mddev; 3030 3031 if (kstrtoull(buf, 10, &new_offset) < 0) 3032 return -EINVAL; 3033 3034 if (mddev->sync_thread || 3035 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3036 return -EBUSY; 3037 if (new_offset == rdev->data_offset) 3038 /* reset is always permitted */ 3039 ; 3040 else if (new_offset > rdev->data_offset) { 3041 /* must not push array size beyond rdev_sectors */ 3042 if (new_offset - rdev->data_offset 3043 + mddev->dev_sectors > rdev->sectors) 3044 return -E2BIG; 3045 } 3046 /* Metadata worries about other space details. */ 3047 3048 /* decreasing the offset is inconsistent with a backwards 3049 * reshape. 3050 */ 3051 if (new_offset < rdev->data_offset && 3052 mddev->reshape_backwards) 3053 return -EINVAL; 3054 /* Increasing offset is inconsistent with forwards 3055 * reshape. reshape_direction should be set to 3056 * 'backwards' first. 3057 */ 3058 if (new_offset > rdev->data_offset && 3059 !mddev->reshape_backwards) 3060 return -EINVAL; 3061 3062 if (mddev->pers && mddev->persistent && 3063 !super_types[mddev->major_version] 3064 .allow_new_offset(rdev, new_offset)) 3065 return -E2BIG; 3066 rdev->new_data_offset = new_offset; 3067 if (new_offset > rdev->data_offset) 3068 mddev->reshape_backwards = 1; 3069 else if (new_offset < rdev->data_offset) 3070 mddev->reshape_backwards = 0; 3071 3072 return len; 3073 } 3074 static struct rdev_sysfs_entry rdev_new_offset = 3075 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3076 3077 static ssize_t 3078 rdev_size_show(struct md_rdev *rdev, char *page) 3079 { 3080 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3081 } 3082 3083 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3084 { 3085 /* check if two start/length pairs overlap */ 3086 if (s1+l1 <= s2) 3087 return 0; 3088 if (s2+l2 <= s1) 3089 return 0; 3090 return 1; 3091 } 3092 3093 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3094 { 3095 unsigned long long blocks; 3096 sector_t new; 3097 3098 if (kstrtoull(buf, 10, &blocks) < 0) 3099 return -EINVAL; 3100 3101 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3102 return -EINVAL; /* sector conversion overflow */ 3103 3104 new = blocks * 2; 3105 if (new != blocks * 2) 3106 return -EINVAL; /* unsigned long long to sector_t overflow */ 3107 3108 *sectors = new; 3109 return 0; 3110 } 3111 3112 static ssize_t 3113 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3114 { 3115 struct mddev *my_mddev = rdev->mddev; 3116 sector_t oldsectors = rdev->sectors; 3117 sector_t sectors; 3118 3119 if (test_bit(Journal, &rdev->flags)) 3120 return -EBUSY; 3121 if (strict_blocks_to_sectors(buf, §ors) < 0) 3122 return -EINVAL; 3123 if (rdev->data_offset != rdev->new_data_offset) 3124 return -EINVAL; /* too confusing */ 3125 if (my_mddev->pers && rdev->raid_disk >= 0) { 3126 if (my_mddev->persistent) { 3127 sectors = super_types[my_mddev->major_version]. 3128 rdev_size_change(rdev, sectors); 3129 if (!sectors) 3130 return -EBUSY; 3131 } else if (!sectors) 3132 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3133 rdev->data_offset; 3134 if (!my_mddev->pers->resize) 3135 /* Cannot change size for RAID0 or Linear etc */ 3136 return -EINVAL; 3137 } 3138 if (sectors < my_mddev->dev_sectors) 3139 return -EINVAL; /* component must fit device */ 3140 3141 rdev->sectors = sectors; 3142 if (sectors > oldsectors && my_mddev->external) { 3143 /* Need to check that all other rdevs with the same 3144 * ->bdev do not overlap. 'rcu' is sufficient to walk 3145 * the rdev lists safely. 3146 * This check does not provide a hard guarantee, it 3147 * just helps avoid dangerous mistakes. 3148 */ 3149 struct mddev *mddev; 3150 int overlap = 0; 3151 struct list_head *tmp; 3152 3153 rcu_read_lock(); 3154 for_each_mddev(mddev, tmp) { 3155 struct md_rdev *rdev2; 3156 3157 rdev_for_each(rdev2, mddev) 3158 if (rdev->bdev == rdev2->bdev && 3159 rdev != rdev2 && 3160 overlaps(rdev->data_offset, rdev->sectors, 3161 rdev2->data_offset, 3162 rdev2->sectors)) { 3163 overlap = 1; 3164 break; 3165 } 3166 if (overlap) { 3167 mddev_put(mddev); 3168 break; 3169 } 3170 } 3171 rcu_read_unlock(); 3172 if (overlap) { 3173 /* Someone else could have slipped in a size 3174 * change here, but doing so is just silly. 3175 * We put oldsectors back because we *know* it is 3176 * safe, and trust userspace not to race with 3177 * itself 3178 */ 3179 rdev->sectors = oldsectors; 3180 return -EBUSY; 3181 } 3182 } 3183 return len; 3184 } 3185 3186 static struct rdev_sysfs_entry rdev_size = 3187 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3188 3189 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3190 { 3191 unsigned long long recovery_start = rdev->recovery_offset; 3192 3193 if (test_bit(In_sync, &rdev->flags) || 3194 recovery_start == MaxSector) 3195 return sprintf(page, "none\n"); 3196 3197 return sprintf(page, "%llu\n", recovery_start); 3198 } 3199 3200 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3201 { 3202 unsigned long long recovery_start; 3203 3204 if (cmd_match(buf, "none")) 3205 recovery_start = MaxSector; 3206 else if (kstrtoull(buf, 10, &recovery_start)) 3207 return -EINVAL; 3208 3209 if (rdev->mddev->pers && 3210 rdev->raid_disk >= 0) 3211 return -EBUSY; 3212 3213 rdev->recovery_offset = recovery_start; 3214 if (recovery_start == MaxSector) 3215 set_bit(In_sync, &rdev->flags); 3216 else 3217 clear_bit(In_sync, &rdev->flags); 3218 return len; 3219 } 3220 3221 static struct rdev_sysfs_entry rdev_recovery_start = 3222 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3223 3224 /* sysfs access to bad-blocks list. 3225 * We present two files. 3226 * 'bad-blocks' lists sector numbers and lengths of ranges that 3227 * are recorded as bad. The list is truncated to fit within 3228 * the one-page limit of sysfs. 3229 * Writing "sector length" to this file adds an acknowledged 3230 * bad block list. 3231 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3232 * been acknowledged. Writing to this file adds bad blocks 3233 * without acknowledging them. This is largely for testing. 3234 */ 3235 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3236 { 3237 return badblocks_show(&rdev->badblocks, page, 0); 3238 } 3239 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3240 { 3241 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3242 /* Maybe that ack was all we needed */ 3243 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3244 wake_up(&rdev->blocked_wait); 3245 return rv; 3246 } 3247 static struct rdev_sysfs_entry rdev_bad_blocks = 3248 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3249 3250 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3251 { 3252 return badblocks_show(&rdev->badblocks, page, 1); 3253 } 3254 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3255 { 3256 return badblocks_store(&rdev->badblocks, page, len, 1); 3257 } 3258 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3259 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3260 3261 static ssize_t 3262 ppl_sector_show(struct md_rdev *rdev, char *page) 3263 { 3264 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3265 } 3266 3267 static ssize_t 3268 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3269 { 3270 unsigned long long sector; 3271 3272 if (kstrtoull(buf, 10, §or) < 0) 3273 return -EINVAL; 3274 if (sector != (sector_t)sector) 3275 return -EINVAL; 3276 3277 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3278 rdev->raid_disk >= 0) 3279 return -EBUSY; 3280 3281 if (rdev->mddev->persistent) { 3282 if (rdev->mddev->major_version == 0) 3283 return -EINVAL; 3284 if ((sector > rdev->sb_start && 3285 sector - rdev->sb_start > S16_MAX) || 3286 (sector < rdev->sb_start && 3287 rdev->sb_start - sector > -S16_MIN)) 3288 return -EINVAL; 3289 rdev->ppl.offset = sector - rdev->sb_start; 3290 } else if (!rdev->mddev->external) { 3291 return -EBUSY; 3292 } 3293 rdev->ppl.sector = sector; 3294 return len; 3295 } 3296 3297 static struct rdev_sysfs_entry rdev_ppl_sector = 3298 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3299 3300 static ssize_t 3301 ppl_size_show(struct md_rdev *rdev, char *page) 3302 { 3303 return sprintf(page, "%u\n", rdev->ppl.size); 3304 } 3305 3306 static ssize_t 3307 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3308 { 3309 unsigned int size; 3310 3311 if (kstrtouint(buf, 10, &size) < 0) 3312 return -EINVAL; 3313 3314 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3315 rdev->raid_disk >= 0) 3316 return -EBUSY; 3317 3318 if (rdev->mddev->persistent) { 3319 if (rdev->mddev->major_version == 0) 3320 return -EINVAL; 3321 if (size > U16_MAX) 3322 return -EINVAL; 3323 } else if (!rdev->mddev->external) { 3324 return -EBUSY; 3325 } 3326 rdev->ppl.size = size; 3327 return len; 3328 } 3329 3330 static struct rdev_sysfs_entry rdev_ppl_size = 3331 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3332 3333 static struct attribute *rdev_default_attrs[] = { 3334 &rdev_state.attr, 3335 &rdev_errors.attr, 3336 &rdev_slot.attr, 3337 &rdev_offset.attr, 3338 &rdev_new_offset.attr, 3339 &rdev_size.attr, 3340 &rdev_recovery_start.attr, 3341 &rdev_bad_blocks.attr, 3342 &rdev_unack_bad_blocks.attr, 3343 &rdev_ppl_sector.attr, 3344 &rdev_ppl_size.attr, 3345 NULL, 3346 }; 3347 static ssize_t 3348 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3349 { 3350 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3351 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3352 3353 if (!entry->show) 3354 return -EIO; 3355 if (!rdev->mddev) 3356 return -EBUSY; 3357 return entry->show(rdev, page); 3358 } 3359 3360 static ssize_t 3361 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3362 const char *page, size_t length) 3363 { 3364 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3365 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3366 ssize_t rv; 3367 struct mddev *mddev = rdev->mddev; 3368 3369 if (!entry->store) 3370 return -EIO; 3371 if (!capable(CAP_SYS_ADMIN)) 3372 return -EACCES; 3373 rv = mddev ? mddev_lock(mddev): -EBUSY; 3374 if (!rv) { 3375 if (rdev->mddev == NULL) 3376 rv = -EBUSY; 3377 else 3378 rv = entry->store(rdev, page, length); 3379 mddev_unlock(mddev); 3380 } 3381 return rv; 3382 } 3383 3384 static void rdev_free(struct kobject *ko) 3385 { 3386 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3387 kfree(rdev); 3388 } 3389 static const struct sysfs_ops rdev_sysfs_ops = { 3390 .show = rdev_attr_show, 3391 .store = rdev_attr_store, 3392 }; 3393 static struct kobj_type rdev_ktype = { 3394 .release = rdev_free, 3395 .sysfs_ops = &rdev_sysfs_ops, 3396 .default_attrs = rdev_default_attrs, 3397 }; 3398 3399 int md_rdev_init(struct md_rdev *rdev) 3400 { 3401 rdev->desc_nr = -1; 3402 rdev->saved_raid_disk = -1; 3403 rdev->raid_disk = -1; 3404 rdev->flags = 0; 3405 rdev->data_offset = 0; 3406 rdev->new_data_offset = 0; 3407 rdev->sb_events = 0; 3408 rdev->last_read_error = 0; 3409 rdev->sb_loaded = 0; 3410 rdev->bb_page = NULL; 3411 atomic_set(&rdev->nr_pending, 0); 3412 atomic_set(&rdev->read_errors, 0); 3413 atomic_set(&rdev->corrected_errors, 0); 3414 3415 INIT_LIST_HEAD(&rdev->same_set); 3416 init_waitqueue_head(&rdev->blocked_wait); 3417 3418 /* Add space to store bad block list. 3419 * This reserves the space even on arrays where it cannot 3420 * be used - I wonder if that matters 3421 */ 3422 return badblocks_init(&rdev->badblocks, 0); 3423 } 3424 EXPORT_SYMBOL_GPL(md_rdev_init); 3425 /* 3426 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3427 * 3428 * mark the device faulty if: 3429 * 3430 * - the device is nonexistent (zero size) 3431 * - the device has no valid superblock 3432 * 3433 * a faulty rdev _never_ has rdev->sb set. 3434 */ 3435 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3436 { 3437 char b[BDEVNAME_SIZE]; 3438 int err; 3439 struct md_rdev *rdev; 3440 sector_t size; 3441 3442 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3443 if (!rdev) 3444 return ERR_PTR(-ENOMEM); 3445 3446 err = md_rdev_init(rdev); 3447 if (err) 3448 goto abort_free; 3449 err = alloc_disk_sb(rdev); 3450 if (err) 3451 goto abort_free; 3452 3453 err = lock_rdev(rdev, newdev, super_format == -2); 3454 if (err) 3455 goto abort_free; 3456 3457 kobject_init(&rdev->kobj, &rdev_ktype); 3458 3459 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3460 if (!size) { 3461 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3462 bdevname(rdev->bdev,b)); 3463 err = -EINVAL; 3464 goto abort_free; 3465 } 3466 3467 if (super_format >= 0) { 3468 err = super_types[super_format]. 3469 load_super(rdev, NULL, super_minor); 3470 if (err == -EINVAL) { 3471 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3472 bdevname(rdev->bdev,b), 3473 super_format, super_minor); 3474 goto abort_free; 3475 } 3476 if (err < 0) { 3477 pr_warn("md: could not read %s's sb, not importing!\n", 3478 bdevname(rdev->bdev,b)); 3479 goto abort_free; 3480 } 3481 } 3482 3483 return rdev; 3484 3485 abort_free: 3486 if (rdev->bdev) 3487 unlock_rdev(rdev); 3488 md_rdev_clear(rdev); 3489 kfree(rdev); 3490 return ERR_PTR(err); 3491 } 3492 3493 /* 3494 * Check a full RAID array for plausibility 3495 */ 3496 3497 static void analyze_sbs(struct mddev *mddev) 3498 { 3499 int i; 3500 struct md_rdev *rdev, *freshest, *tmp; 3501 char b[BDEVNAME_SIZE]; 3502 3503 freshest = NULL; 3504 rdev_for_each_safe(rdev, tmp, mddev) 3505 switch (super_types[mddev->major_version]. 3506 load_super(rdev, freshest, mddev->minor_version)) { 3507 case 1: 3508 freshest = rdev; 3509 break; 3510 case 0: 3511 break; 3512 default: 3513 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3514 bdevname(rdev->bdev,b)); 3515 md_kick_rdev_from_array(rdev); 3516 } 3517 3518 super_types[mddev->major_version]. 3519 validate_super(mddev, freshest); 3520 3521 i = 0; 3522 rdev_for_each_safe(rdev, tmp, mddev) { 3523 if (mddev->max_disks && 3524 (rdev->desc_nr >= mddev->max_disks || 3525 i > mddev->max_disks)) { 3526 pr_warn("md: %s: %s: only %d devices permitted\n", 3527 mdname(mddev), bdevname(rdev->bdev, b), 3528 mddev->max_disks); 3529 md_kick_rdev_from_array(rdev); 3530 continue; 3531 } 3532 if (rdev != freshest) { 3533 if (super_types[mddev->major_version]. 3534 validate_super(mddev, rdev)) { 3535 pr_warn("md: kicking non-fresh %s from array!\n", 3536 bdevname(rdev->bdev,b)); 3537 md_kick_rdev_from_array(rdev); 3538 continue; 3539 } 3540 } 3541 if (mddev->level == LEVEL_MULTIPATH) { 3542 rdev->desc_nr = i++; 3543 rdev->raid_disk = rdev->desc_nr; 3544 set_bit(In_sync, &rdev->flags); 3545 } else if (rdev->raid_disk >= 3546 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3547 !test_bit(Journal, &rdev->flags)) { 3548 rdev->raid_disk = -1; 3549 clear_bit(In_sync, &rdev->flags); 3550 } 3551 } 3552 } 3553 3554 /* Read a fixed-point number. 3555 * Numbers in sysfs attributes should be in "standard" units where 3556 * possible, so time should be in seconds. 3557 * However we internally use a a much smaller unit such as 3558 * milliseconds or jiffies. 3559 * This function takes a decimal number with a possible fractional 3560 * component, and produces an integer which is the result of 3561 * multiplying that number by 10^'scale'. 3562 * all without any floating-point arithmetic. 3563 */ 3564 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3565 { 3566 unsigned long result = 0; 3567 long decimals = -1; 3568 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3569 if (*cp == '.') 3570 decimals = 0; 3571 else if (decimals < scale) { 3572 unsigned int value; 3573 value = *cp - '0'; 3574 result = result * 10 + value; 3575 if (decimals >= 0) 3576 decimals++; 3577 } 3578 cp++; 3579 } 3580 if (*cp == '\n') 3581 cp++; 3582 if (*cp) 3583 return -EINVAL; 3584 if (decimals < 0) 3585 decimals = 0; 3586 while (decimals < scale) { 3587 result *= 10; 3588 decimals ++; 3589 } 3590 *res = result; 3591 return 0; 3592 } 3593 3594 static ssize_t 3595 safe_delay_show(struct mddev *mddev, char *page) 3596 { 3597 int msec = (mddev->safemode_delay*1000)/HZ; 3598 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3599 } 3600 static ssize_t 3601 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3602 { 3603 unsigned long msec; 3604 3605 if (mddev_is_clustered(mddev)) { 3606 pr_warn("md: Safemode is disabled for clustered mode\n"); 3607 return -EINVAL; 3608 } 3609 3610 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3611 return -EINVAL; 3612 if (msec == 0) 3613 mddev->safemode_delay = 0; 3614 else { 3615 unsigned long old_delay = mddev->safemode_delay; 3616 unsigned long new_delay = (msec*HZ)/1000; 3617 3618 if (new_delay == 0) 3619 new_delay = 1; 3620 mddev->safemode_delay = new_delay; 3621 if (new_delay < old_delay || old_delay == 0) 3622 mod_timer(&mddev->safemode_timer, jiffies+1); 3623 } 3624 return len; 3625 } 3626 static struct md_sysfs_entry md_safe_delay = 3627 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3628 3629 static ssize_t 3630 level_show(struct mddev *mddev, char *page) 3631 { 3632 struct md_personality *p; 3633 int ret; 3634 spin_lock(&mddev->lock); 3635 p = mddev->pers; 3636 if (p) 3637 ret = sprintf(page, "%s\n", p->name); 3638 else if (mddev->clevel[0]) 3639 ret = sprintf(page, "%s\n", mddev->clevel); 3640 else if (mddev->level != LEVEL_NONE) 3641 ret = sprintf(page, "%d\n", mddev->level); 3642 else 3643 ret = 0; 3644 spin_unlock(&mddev->lock); 3645 return ret; 3646 } 3647 3648 static ssize_t 3649 level_store(struct mddev *mddev, const char *buf, size_t len) 3650 { 3651 char clevel[16]; 3652 ssize_t rv; 3653 size_t slen = len; 3654 struct md_personality *pers, *oldpers; 3655 long level; 3656 void *priv, *oldpriv; 3657 struct md_rdev *rdev; 3658 3659 if (slen == 0 || slen >= sizeof(clevel)) 3660 return -EINVAL; 3661 3662 rv = mddev_lock(mddev); 3663 if (rv) 3664 return rv; 3665 3666 if (mddev->pers == NULL) { 3667 strncpy(mddev->clevel, buf, slen); 3668 if (mddev->clevel[slen-1] == '\n') 3669 slen--; 3670 mddev->clevel[slen] = 0; 3671 mddev->level = LEVEL_NONE; 3672 rv = len; 3673 goto out_unlock; 3674 } 3675 rv = -EROFS; 3676 if (mddev->ro) 3677 goto out_unlock; 3678 3679 /* request to change the personality. Need to ensure: 3680 * - array is not engaged in resync/recovery/reshape 3681 * - old personality can be suspended 3682 * - new personality will access other array. 3683 */ 3684 3685 rv = -EBUSY; 3686 if (mddev->sync_thread || 3687 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3688 mddev->reshape_position != MaxSector || 3689 mddev->sysfs_active) 3690 goto out_unlock; 3691 3692 rv = -EINVAL; 3693 if (!mddev->pers->quiesce) { 3694 pr_warn("md: %s: %s does not support online personality change\n", 3695 mdname(mddev), mddev->pers->name); 3696 goto out_unlock; 3697 } 3698 3699 /* Now find the new personality */ 3700 strncpy(clevel, buf, slen); 3701 if (clevel[slen-1] == '\n') 3702 slen--; 3703 clevel[slen] = 0; 3704 if (kstrtol(clevel, 10, &level)) 3705 level = LEVEL_NONE; 3706 3707 if (request_module("md-%s", clevel) != 0) 3708 request_module("md-level-%s", clevel); 3709 spin_lock(&pers_lock); 3710 pers = find_pers(level, clevel); 3711 if (!pers || !try_module_get(pers->owner)) { 3712 spin_unlock(&pers_lock); 3713 pr_warn("md: personality %s not loaded\n", clevel); 3714 rv = -EINVAL; 3715 goto out_unlock; 3716 } 3717 spin_unlock(&pers_lock); 3718 3719 if (pers == mddev->pers) { 3720 /* Nothing to do! */ 3721 module_put(pers->owner); 3722 rv = len; 3723 goto out_unlock; 3724 } 3725 if (!pers->takeover) { 3726 module_put(pers->owner); 3727 pr_warn("md: %s: %s does not support personality takeover\n", 3728 mdname(mddev), clevel); 3729 rv = -EINVAL; 3730 goto out_unlock; 3731 } 3732 3733 rdev_for_each(rdev, mddev) 3734 rdev->new_raid_disk = rdev->raid_disk; 3735 3736 /* ->takeover must set new_* and/or delta_disks 3737 * if it succeeds, and may set them when it fails. 3738 */ 3739 priv = pers->takeover(mddev); 3740 if (IS_ERR(priv)) { 3741 mddev->new_level = mddev->level; 3742 mddev->new_layout = mddev->layout; 3743 mddev->new_chunk_sectors = mddev->chunk_sectors; 3744 mddev->raid_disks -= mddev->delta_disks; 3745 mddev->delta_disks = 0; 3746 mddev->reshape_backwards = 0; 3747 module_put(pers->owner); 3748 pr_warn("md: %s: %s would not accept array\n", 3749 mdname(mddev), clevel); 3750 rv = PTR_ERR(priv); 3751 goto out_unlock; 3752 } 3753 3754 /* Looks like we have a winner */ 3755 mddev_suspend(mddev); 3756 mddev_detach(mddev); 3757 3758 spin_lock(&mddev->lock); 3759 oldpers = mddev->pers; 3760 oldpriv = mddev->private; 3761 mddev->pers = pers; 3762 mddev->private = priv; 3763 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3764 mddev->level = mddev->new_level; 3765 mddev->layout = mddev->new_layout; 3766 mddev->chunk_sectors = mddev->new_chunk_sectors; 3767 mddev->delta_disks = 0; 3768 mddev->reshape_backwards = 0; 3769 mddev->degraded = 0; 3770 spin_unlock(&mddev->lock); 3771 3772 if (oldpers->sync_request == NULL && 3773 mddev->external) { 3774 /* We are converting from a no-redundancy array 3775 * to a redundancy array and metadata is managed 3776 * externally so we need to be sure that writes 3777 * won't block due to a need to transition 3778 * clean->dirty 3779 * until external management is started. 3780 */ 3781 mddev->in_sync = 0; 3782 mddev->safemode_delay = 0; 3783 mddev->safemode = 0; 3784 } 3785 3786 oldpers->free(mddev, oldpriv); 3787 3788 if (oldpers->sync_request == NULL && 3789 pers->sync_request != NULL) { 3790 /* need to add the md_redundancy_group */ 3791 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3792 pr_warn("md: cannot register extra attributes for %s\n", 3793 mdname(mddev)); 3794 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3795 } 3796 if (oldpers->sync_request != NULL && 3797 pers->sync_request == NULL) { 3798 /* need to remove the md_redundancy_group */ 3799 if (mddev->to_remove == NULL) 3800 mddev->to_remove = &md_redundancy_group; 3801 } 3802 3803 module_put(oldpers->owner); 3804 3805 rdev_for_each(rdev, mddev) { 3806 if (rdev->raid_disk < 0) 3807 continue; 3808 if (rdev->new_raid_disk >= mddev->raid_disks) 3809 rdev->new_raid_disk = -1; 3810 if (rdev->new_raid_disk == rdev->raid_disk) 3811 continue; 3812 sysfs_unlink_rdev(mddev, rdev); 3813 } 3814 rdev_for_each(rdev, mddev) { 3815 if (rdev->raid_disk < 0) 3816 continue; 3817 if (rdev->new_raid_disk == rdev->raid_disk) 3818 continue; 3819 rdev->raid_disk = rdev->new_raid_disk; 3820 if (rdev->raid_disk < 0) 3821 clear_bit(In_sync, &rdev->flags); 3822 else { 3823 if (sysfs_link_rdev(mddev, rdev)) 3824 pr_warn("md: cannot register rd%d for %s after level change\n", 3825 rdev->raid_disk, mdname(mddev)); 3826 } 3827 } 3828 3829 if (pers->sync_request == NULL) { 3830 /* this is now an array without redundancy, so 3831 * it must always be in_sync 3832 */ 3833 mddev->in_sync = 1; 3834 del_timer_sync(&mddev->safemode_timer); 3835 } 3836 blk_set_stacking_limits(&mddev->queue->limits); 3837 pers->run(mddev); 3838 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3839 mddev_resume(mddev); 3840 if (!mddev->thread) 3841 md_update_sb(mddev, 1); 3842 sysfs_notify(&mddev->kobj, NULL, "level"); 3843 md_new_event(mddev); 3844 rv = len; 3845 out_unlock: 3846 mddev_unlock(mddev); 3847 return rv; 3848 } 3849 3850 static struct md_sysfs_entry md_level = 3851 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3852 3853 static ssize_t 3854 layout_show(struct mddev *mddev, char *page) 3855 { 3856 /* just a number, not meaningful for all levels */ 3857 if (mddev->reshape_position != MaxSector && 3858 mddev->layout != mddev->new_layout) 3859 return sprintf(page, "%d (%d)\n", 3860 mddev->new_layout, mddev->layout); 3861 return sprintf(page, "%d\n", mddev->layout); 3862 } 3863 3864 static ssize_t 3865 layout_store(struct mddev *mddev, const char *buf, size_t len) 3866 { 3867 unsigned int n; 3868 int err; 3869 3870 err = kstrtouint(buf, 10, &n); 3871 if (err < 0) 3872 return err; 3873 err = mddev_lock(mddev); 3874 if (err) 3875 return err; 3876 3877 if (mddev->pers) { 3878 if (mddev->pers->check_reshape == NULL) 3879 err = -EBUSY; 3880 else if (mddev->ro) 3881 err = -EROFS; 3882 else { 3883 mddev->new_layout = n; 3884 err = mddev->pers->check_reshape(mddev); 3885 if (err) 3886 mddev->new_layout = mddev->layout; 3887 } 3888 } else { 3889 mddev->new_layout = n; 3890 if (mddev->reshape_position == MaxSector) 3891 mddev->layout = n; 3892 } 3893 mddev_unlock(mddev); 3894 return err ?: len; 3895 } 3896 static struct md_sysfs_entry md_layout = 3897 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3898 3899 static ssize_t 3900 raid_disks_show(struct mddev *mddev, char *page) 3901 { 3902 if (mddev->raid_disks == 0) 3903 return 0; 3904 if (mddev->reshape_position != MaxSector && 3905 mddev->delta_disks != 0) 3906 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3907 mddev->raid_disks - mddev->delta_disks); 3908 return sprintf(page, "%d\n", mddev->raid_disks); 3909 } 3910 3911 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3912 3913 static ssize_t 3914 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3915 { 3916 unsigned int n; 3917 int err; 3918 3919 err = kstrtouint(buf, 10, &n); 3920 if (err < 0) 3921 return err; 3922 3923 err = mddev_lock(mddev); 3924 if (err) 3925 return err; 3926 if (mddev->pers) 3927 err = update_raid_disks(mddev, n); 3928 else if (mddev->reshape_position != MaxSector) { 3929 struct md_rdev *rdev; 3930 int olddisks = mddev->raid_disks - mddev->delta_disks; 3931 3932 err = -EINVAL; 3933 rdev_for_each(rdev, mddev) { 3934 if (olddisks < n && 3935 rdev->data_offset < rdev->new_data_offset) 3936 goto out_unlock; 3937 if (olddisks > n && 3938 rdev->data_offset > rdev->new_data_offset) 3939 goto out_unlock; 3940 } 3941 err = 0; 3942 mddev->delta_disks = n - olddisks; 3943 mddev->raid_disks = n; 3944 mddev->reshape_backwards = (mddev->delta_disks < 0); 3945 } else 3946 mddev->raid_disks = n; 3947 out_unlock: 3948 mddev_unlock(mddev); 3949 return err ? err : len; 3950 } 3951 static struct md_sysfs_entry md_raid_disks = 3952 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3953 3954 static ssize_t 3955 chunk_size_show(struct mddev *mddev, char *page) 3956 { 3957 if (mddev->reshape_position != MaxSector && 3958 mddev->chunk_sectors != mddev->new_chunk_sectors) 3959 return sprintf(page, "%d (%d)\n", 3960 mddev->new_chunk_sectors << 9, 3961 mddev->chunk_sectors << 9); 3962 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3963 } 3964 3965 static ssize_t 3966 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3967 { 3968 unsigned long n; 3969 int err; 3970 3971 err = kstrtoul(buf, 10, &n); 3972 if (err < 0) 3973 return err; 3974 3975 err = mddev_lock(mddev); 3976 if (err) 3977 return err; 3978 if (mddev->pers) { 3979 if (mddev->pers->check_reshape == NULL) 3980 err = -EBUSY; 3981 else if (mddev->ro) 3982 err = -EROFS; 3983 else { 3984 mddev->new_chunk_sectors = n >> 9; 3985 err = mddev->pers->check_reshape(mddev); 3986 if (err) 3987 mddev->new_chunk_sectors = mddev->chunk_sectors; 3988 } 3989 } else { 3990 mddev->new_chunk_sectors = n >> 9; 3991 if (mddev->reshape_position == MaxSector) 3992 mddev->chunk_sectors = n >> 9; 3993 } 3994 mddev_unlock(mddev); 3995 return err ?: len; 3996 } 3997 static struct md_sysfs_entry md_chunk_size = 3998 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3999 4000 static ssize_t 4001 resync_start_show(struct mddev *mddev, char *page) 4002 { 4003 if (mddev->recovery_cp == MaxSector) 4004 return sprintf(page, "none\n"); 4005 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4006 } 4007 4008 static ssize_t 4009 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4010 { 4011 unsigned long long n; 4012 int err; 4013 4014 if (cmd_match(buf, "none")) 4015 n = MaxSector; 4016 else { 4017 err = kstrtoull(buf, 10, &n); 4018 if (err < 0) 4019 return err; 4020 if (n != (sector_t)n) 4021 return -EINVAL; 4022 } 4023 4024 err = mddev_lock(mddev); 4025 if (err) 4026 return err; 4027 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4028 err = -EBUSY; 4029 4030 if (!err) { 4031 mddev->recovery_cp = n; 4032 if (mddev->pers) 4033 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4034 } 4035 mddev_unlock(mddev); 4036 return err ?: len; 4037 } 4038 static struct md_sysfs_entry md_resync_start = 4039 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4040 resync_start_show, resync_start_store); 4041 4042 /* 4043 * The array state can be: 4044 * 4045 * clear 4046 * No devices, no size, no level 4047 * Equivalent to STOP_ARRAY ioctl 4048 * inactive 4049 * May have some settings, but array is not active 4050 * all IO results in error 4051 * When written, doesn't tear down array, but just stops it 4052 * suspended (not supported yet) 4053 * All IO requests will block. The array can be reconfigured. 4054 * Writing this, if accepted, will block until array is quiescent 4055 * readonly 4056 * no resync can happen. no superblocks get written. 4057 * write requests fail 4058 * read-auto 4059 * like readonly, but behaves like 'clean' on a write request. 4060 * 4061 * clean - no pending writes, but otherwise active. 4062 * When written to inactive array, starts without resync 4063 * If a write request arrives then 4064 * if metadata is known, mark 'dirty' and switch to 'active'. 4065 * if not known, block and switch to write-pending 4066 * If written to an active array that has pending writes, then fails. 4067 * active 4068 * fully active: IO and resync can be happening. 4069 * When written to inactive array, starts with resync 4070 * 4071 * write-pending 4072 * clean, but writes are blocked waiting for 'active' to be written. 4073 * 4074 * active-idle 4075 * like active, but no writes have been seen for a while (100msec). 4076 * 4077 */ 4078 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4079 write_pending, active_idle, bad_word}; 4080 static char *array_states[] = { 4081 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4082 "write-pending", "active-idle", NULL }; 4083 4084 static int match_word(const char *word, char **list) 4085 { 4086 int n; 4087 for (n=0; list[n]; n++) 4088 if (cmd_match(word, list[n])) 4089 break; 4090 return n; 4091 } 4092 4093 static ssize_t 4094 array_state_show(struct mddev *mddev, char *page) 4095 { 4096 enum array_state st = inactive; 4097 4098 if (mddev->pers) 4099 switch(mddev->ro) { 4100 case 1: 4101 st = readonly; 4102 break; 4103 case 2: 4104 st = read_auto; 4105 break; 4106 case 0: 4107 spin_lock(&mddev->lock); 4108 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4109 st = write_pending; 4110 else if (mddev->in_sync) 4111 st = clean; 4112 else if (mddev->safemode) 4113 st = active_idle; 4114 else 4115 st = active; 4116 spin_unlock(&mddev->lock); 4117 } 4118 else { 4119 if (list_empty(&mddev->disks) && 4120 mddev->raid_disks == 0 && 4121 mddev->dev_sectors == 0) 4122 st = clear; 4123 else 4124 st = inactive; 4125 } 4126 return sprintf(page, "%s\n", array_states[st]); 4127 } 4128 4129 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4130 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4131 static int do_md_run(struct mddev *mddev); 4132 static int restart_array(struct mddev *mddev); 4133 4134 static ssize_t 4135 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4136 { 4137 int err = 0; 4138 enum array_state st = match_word(buf, array_states); 4139 4140 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4141 /* don't take reconfig_mutex when toggling between 4142 * clean and active 4143 */ 4144 spin_lock(&mddev->lock); 4145 if (st == active) { 4146 restart_array(mddev); 4147 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4148 md_wakeup_thread(mddev->thread); 4149 wake_up(&mddev->sb_wait); 4150 } else /* st == clean */ { 4151 restart_array(mddev); 4152 if (!set_in_sync(mddev)) 4153 err = -EBUSY; 4154 } 4155 if (!err) 4156 sysfs_notify_dirent_safe(mddev->sysfs_state); 4157 spin_unlock(&mddev->lock); 4158 return err ?: len; 4159 } 4160 err = mddev_lock(mddev); 4161 if (err) 4162 return err; 4163 err = -EINVAL; 4164 switch(st) { 4165 case bad_word: 4166 break; 4167 case clear: 4168 /* stopping an active array */ 4169 err = do_md_stop(mddev, 0, NULL); 4170 break; 4171 case inactive: 4172 /* stopping an active array */ 4173 if (mddev->pers) 4174 err = do_md_stop(mddev, 2, NULL); 4175 else 4176 err = 0; /* already inactive */ 4177 break; 4178 case suspended: 4179 break; /* not supported yet */ 4180 case readonly: 4181 if (mddev->pers) 4182 err = md_set_readonly(mddev, NULL); 4183 else { 4184 mddev->ro = 1; 4185 set_disk_ro(mddev->gendisk, 1); 4186 err = do_md_run(mddev); 4187 } 4188 break; 4189 case read_auto: 4190 if (mddev->pers) { 4191 if (mddev->ro == 0) 4192 err = md_set_readonly(mddev, NULL); 4193 else if (mddev->ro == 1) 4194 err = restart_array(mddev); 4195 if (err == 0) { 4196 mddev->ro = 2; 4197 set_disk_ro(mddev->gendisk, 0); 4198 } 4199 } else { 4200 mddev->ro = 2; 4201 err = do_md_run(mddev); 4202 } 4203 break; 4204 case clean: 4205 if (mddev->pers) { 4206 err = restart_array(mddev); 4207 if (err) 4208 break; 4209 spin_lock(&mddev->lock); 4210 if (!set_in_sync(mddev)) 4211 err = -EBUSY; 4212 spin_unlock(&mddev->lock); 4213 } else 4214 err = -EINVAL; 4215 break; 4216 case active: 4217 if (mddev->pers) { 4218 err = restart_array(mddev); 4219 if (err) 4220 break; 4221 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4222 wake_up(&mddev->sb_wait); 4223 err = 0; 4224 } else { 4225 mddev->ro = 0; 4226 set_disk_ro(mddev->gendisk, 0); 4227 err = do_md_run(mddev); 4228 } 4229 break; 4230 case write_pending: 4231 case active_idle: 4232 /* these cannot be set */ 4233 break; 4234 } 4235 4236 if (!err) { 4237 if (mddev->hold_active == UNTIL_IOCTL) 4238 mddev->hold_active = 0; 4239 sysfs_notify_dirent_safe(mddev->sysfs_state); 4240 } 4241 mddev_unlock(mddev); 4242 return err ?: len; 4243 } 4244 static struct md_sysfs_entry md_array_state = 4245 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4246 4247 static ssize_t 4248 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4249 return sprintf(page, "%d\n", 4250 atomic_read(&mddev->max_corr_read_errors)); 4251 } 4252 4253 static ssize_t 4254 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4255 { 4256 unsigned int n; 4257 int rv; 4258 4259 rv = kstrtouint(buf, 10, &n); 4260 if (rv < 0) 4261 return rv; 4262 atomic_set(&mddev->max_corr_read_errors, n); 4263 return len; 4264 } 4265 4266 static struct md_sysfs_entry max_corr_read_errors = 4267 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4268 max_corrected_read_errors_store); 4269 4270 static ssize_t 4271 null_show(struct mddev *mddev, char *page) 4272 { 4273 return -EINVAL; 4274 } 4275 4276 static ssize_t 4277 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4278 { 4279 /* buf must be %d:%d\n? giving major and minor numbers */ 4280 /* The new device is added to the array. 4281 * If the array has a persistent superblock, we read the 4282 * superblock to initialise info and check validity. 4283 * Otherwise, only checking done is that in bind_rdev_to_array, 4284 * which mainly checks size. 4285 */ 4286 char *e; 4287 int major = simple_strtoul(buf, &e, 10); 4288 int minor; 4289 dev_t dev; 4290 struct md_rdev *rdev; 4291 int err; 4292 4293 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4294 return -EINVAL; 4295 minor = simple_strtoul(e+1, &e, 10); 4296 if (*e && *e != '\n') 4297 return -EINVAL; 4298 dev = MKDEV(major, minor); 4299 if (major != MAJOR(dev) || 4300 minor != MINOR(dev)) 4301 return -EOVERFLOW; 4302 4303 flush_workqueue(md_misc_wq); 4304 4305 err = mddev_lock(mddev); 4306 if (err) 4307 return err; 4308 if (mddev->persistent) { 4309 rdev = md_import_device(dev, mddev->major_version, 4310 mddev->minor_version); 4311 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4312 struct md_rdev *rdev0 4313 = list_entry(mddev->disks.next, 4314 struct md_rdev, same_set); 4315 err = super_types[mddev->major_version] 4316 .load_super(rdev, rdev0, mddev->minor_version); 4317 if (err < 0) 4318 goto out; 4319 } 4320 } else if (mddev->external) 4321 rdev = md_import_device(dev, -2, -1); 4322 else 4323 rdev = md_import_device(dev, -1, -1); 4324 4325 if (IS_ERR(rdev)) { 4326 mddev_unlock(mddev); 4327 return PTR_ERR(rdev); 4328 } 4329 err = bind_rdev_to_array(rdev, mddev); 4330 out: 4331 if (err) 4332 export_rdev(rdev); 4333 mddev_unlock(mddev); 4334 if (!err) 4335 md_new_event(mddev); 4336 return err ? err : len; 4337 } 4338 4339 static struct md_sysfs_entry md_new_device = 4340 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4341 4342 static ssize_t 4343 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4344 { 4345 char *end; 4346 unsigned long chunk, end_chunk; 4347 int err; 4348 4349 err = mddev_lock(mddev); 4350 if (err) 4351 return err; 4352 if (!mddev->bitmap) 4353 goto out; 4354 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4355 while (*buf) { 4356 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4357 if (buf == end) break; 4358 if (*end == '-') { /* range */ 4359 buf = end + 1; 4360 end_chunk = simple_strtoul(buf, &end, 0); 4361 if (buf == end) break; 4362 } 4363 if (*end && !isspace(*end)) break; 4364 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4365 buf = skip_spaces(end); 4366 } 4367 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4368 out: 4369 mddev_unlock(mddev); 4370 return len; 4371 } 4372 4373 static struct md_sysfs_entry md_bitmap = 4374 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4375 4376 static ssize_t 4377 size_show(struct mddev *mddev, char *page) 4378 { 4379 return sprintf(page, "%llu\n", 4380 (unsigned long long)mddev->dev_sectors / 2); 4381 } 4382 4383 static int update_size(struct mddev *mddev, sector_t num_sectors); 4384 4385 static ssize_t 4386 size_store(struct mddev *mddev, const char *buf, size_t len) 4387 { 4388 /* If array is inactive, we can reduce the component size, but 4389 * not increase it (except from 0). 4390 * If array is active, we can try an on-line resize 4391 */ 4392 sector_t sectors; 4393 int err = strict_blocks_to_sectors(buf, §ors); 4394 4395 if (err < 0) 4396 return err; 4397 err = mddev_lock(mddev); 4398 if (err) 4399 return err; 4400 if (mddev->pers) { 4401 err = update_size(mddev, sectors); 4402 if (err == 0) 4403 md_update_sb(mddev, 1); 4404 } else { 4405 if (mddev->dev_sectors == 0 || 4406 mddev->dev_sectors > sectors) 4407 mddev->dev_sectors = sectors; 4408 else 4409 err = -ENOSPC; 4410 } 4411 mddev_unlock(mddev); 4412 return err ? err : len; 4413 } 4414 4415 static struct md_sysfs_entry md_size = 4416 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4417 4418 /* Metadata version. 4419 * This is one of 4420 * 'none' for arrays with no metadata (good luck...) 4421 * 'external' for arrays with externally managed metadata, 4422 * or N.M for internally known formats 4423 */ 4424 static ssize_t 4425 metadata_show(struct mddev *mddev, char *page) 4426 { 4427 if (mddev->persistent) 4428 return sprintf(page, "%d.%d\n", 4429 mddev->major_version, mddev->minor_version); 4430 else if (mddev->external) 4431 return sprintf(page, "external:%s\n", mddev->metadata_type); 4432 else 4433 return sprintf(page, "none\n"); 4434 } 4435 4436 static ssize_t 4437 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4438 { 4439 int major, minor; 4440 char *e; 4441 int err; 4442 /* Changing the details of 'external' metadata is 4443 * always permitted. Otherwise there must be 4444 * no devices attached to the array. 4445 */ 4446 4447 err = mddev_lock(mddev); 4448 if (err) 4449 return err; 4450 err = -EBUSY; 4451 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4452 ; 4453 else if (!list_empty(&mddev->disks)) 4454 goto out_unlock; 4455 4456 err = 0; 4457 if (cmd_match(buf, "none")) { 4458 mddev->persistent = 0; 4459 mddev->external = 0; 4460 mddev->major_version = 0; 4461 mddev->minor_version = 90; 4462 goto out_unlock; 4463 } 4464 if (strncmp(buf, "external:", 9) == 0) { 4465 size_t namelen = len-9; 4466 if (namelen >= sizeof(mddev->metadata_type)) 4467 namelen = sizeof(mddev->metadata_type)-1; 4468 strncpy(mddev->metadata_type, buf+9, namelen); 4469 mddev->metadata_type[namelen] = 0; 4470 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4471 mddev->metadata_type[--namelen] = 0; 4472 mddev->persistent = 0; 4473 mddev->external = 1; 4474 mddev->major_version = 0; 4475 mddev->minor_version = 90; 4476 goto out_unlock; 4477 } 4478 major = simple_strtoul(buf, &e, 10); 4479 err = -EINVAL; 4480 if (e==buf || *e != '.') 4481 goto out_unlock; 4482 buf = e+1; 4483 minor = simple_strtoul(buf, &e, 10); 4484 if (e==buf || (*e && *e != '\n') ) 4485 goto out_unlock; 4486 err = -ENOENT; 4487 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4488 goto out_unlock; 4489 mddev->major_version = major; 4490 mddev->minor_version = minor; 4491 mddev->persistent = 1; 4492 mddev->external = 0; 4493 err = 0; 4494 out_unlock: 4495 mddev_unlock(mddev); 4496 return err ?: len; 4497 } 4498 4499 static struct md_sysfs_entry md_metadata = 4500 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4501 4502 static ssize_t 4503 action_show(struct mddev *mddev, char *page) 4504 { 4505 char *type = "idle"; 4506 unsigned long recovery = mddev->recovery; 4507 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4508 type = "frozen"; 4509 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4510 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4511 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4512 type = "reshape"; 4513 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4514 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4515 type = "resync"; 4516 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4517 type = "check"; 4518 else 4519 type = "repair"; 4520 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4521 type = "recover"; 4522 else if (mddev->reshape_position != MaxSector) 4523 type = "reshape"; 4524 } 4525 return sprintf(page, "%s\n", type); 4526 } 4527 4528 static ssize_t 4529 action_store(struct mddev *mddev, const char *page, size_t len) 4530 { 4531 if (!mddev->pers || !mddev->pers->sync_request) 4532 return -EINVAL; 4533 4534 4535 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4536 if (cmd_match(page, "frozen")) 4537 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4538 else 4539 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4540 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4541 mddev_lock(mddev) == 0) { 4542 flush_workqueue(md_misc_wq); 4543 if (mddev->sync_thread) { 4544 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4545 md_reap_sync_thread(mddev); 4546 } 4547 mddev_unlock(mddev); 4548 } 4549 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4550 return -EBUSY; 4551 else if (cmd_match(page, "resync")) 4552 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4553 else if (cmd_match(page, "recover")) { 4554 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4555 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4556 } else if (cmd_match(page, "reshape")) { 4557 int err; 4558 if (mddev->pers->start_reshape == NULL) 4559 return -EINVAL; 4560 err = mddev_lock(mddev); 4561 if (!err) { 4562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4563 err = -EBUSY; 4564 else { 4565 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4566 err = mddev->pers->start_reshape(mddev); 4567 } 4568 mddev_unlock(mddev); 4569 } 4570 if (err) 4571 return err; 4572 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4573 } else { 4574 if (cmd_match(page, "check")) 4575 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4576 else if (!cmd_match(page, "repair")) 4577 return -EINVAL; 4578 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4579 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4580 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4581 } 4582 if (mddev->ro == 2) { 4583 /* A write to sync_action is enough to justify 4584 * canceling read-auto mode 4585 */ 4586 mddev->ro = 0; 4587 md_wakeup_thread(mddev->sync_thread); 4588 } 4589 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4590 md_wakeup_thread(mddev->thread); 4591 sysfs_notify_dirent_safe(mddev->sysfs_action); 4592 return len; 4593 } 4594 4595 static struct md_sysfs_entry md_scan_mode = 4596 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4597 4598 static ssize_t 4599 last_sync_action_show(struct mddev *mddev, char *page) 4600 { 4601 return sprintf(page, "%s\n", mddev->last_sync_action); 4602 } 4603 4604 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4605 4606 static ssize_t 4607 mismatch_cnt_show(struct mddev *mddev, char *page) 4608 { 4609 return sprintf(page, "%llu\n", 4610 (unsigned long long) 4611 atomic64_read(&mddev->resync_mismatches)); 4612 } 4613 4614 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4615 4616 static ssize_t 4617 sync_min_show(struct mddev *mddev, char *page) 4618 { 4619 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4620 mddev->sync_speed_min ? "local": "system"); 4621 } 4622 4623 static ssize_t 4624 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4625 { 4626 unsigned int min; 4627 int rv; 4628 4629 if (strncmp(buf, "system", 6)==0) { 4630 min = 0; 4631 } else { 4632 rv = kstrtouint(buf, 10, &min); 4633 if (rv < 0) 4634 return rv; 4635 if (min == 0) 4636 return -EINVAL; 4637 } 4638 mddev->sync_speed_min = min; 4639 return len; 4640 } 4641 4642 static struct md_sysfs_entry md_sync_min = 4643 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4644 4645 static ssize_t 4646 sync_max_show(struct mddev *mddev, char *page) 4647 { 4648 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4649 mddev->sync_speed_max ? "local": "system"); 4650 } 4651 4652 static ssize_t 4653 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4654 { 4655 unsigned int max; 4656 int rv; 4657 4658 if (strncmp(buf, "system", 6)==0) { 4659 max = 0; 4660 } else { 4661 rv = kstrtouint(buf, 10, &max); 4662 if (rv < 0) 4663 return rv; 4664 if (max == 0) 4665 return -EINVAL; 4666 } 4667 mddev->sync_speed_max = max; 4668 return len; 4669 } 4670 4671 static struct md_sysfs_entry md_sync_max = 4672 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4673 4674 static ssize_t 4675 degraded_show(struct mddev *mddev, char *page) 4676 { 4677 return sprintf(page, "%d\n", mddev->degraded); 4678 } 4679 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4680 4681 static ssize_t 4682 sync_force_parallel_show(struct mddev *mddev, char *page) 4683 { 4684 return sprintf(page, "%d\n", mddev->parallel_resync); 4685 } 4686 4687 static ssize_t 4688 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4689 { 4690 long n; 4691 4692 if (kstrtol(buf, 10, &n)) 4693 return -EINVAL; 4694 4695 if (n != 0 && n != 1) 4696 return -EINVAL; 4697 4698 mddev->parallel_resync = n; 4699 4700 if (mddev->sync_thread) 4701 wake_up(&resync_wait); 4702 4703 return len; 4704 } 4705 4706 /* force parallel resync, even with shared block devices */ 4707 static struct md_sysfs_entry md_sync_force_parallel = 4708 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4709 sync_force_parallel_show, sync_force_parallel_store); 4710 4711 static ssize_t 4712 sync_speed_show(struct mddev *mddev, char *page) 4713 { 4714 unsigned long resync, dt, db; 4715 if (mddev->curr_resync == 0) 4716 return sprintf(page, "none\n"); 4717 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4718 dt = (jiffies - mddev->resync_mark) / HZ; 4719 if (!dt) dt++; 4720 db = resync - mddev->resync_mark_cnt; 4721 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4722 } 4723 4724 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4725 4726 static ssize_t 4727 sync_completed_show(struct mddev *mddev, char *page) 4728 { 4729 unsigned long long max_sectors, resync; 4730 4731 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4732 return sprintf(page, "none\n"); 4733 4734 if (mddev->curr_resync == 1 || 4735 mddev->curr_resync == 2) 4736 return sprintf(page, "delayed\n"); 4737 4738 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4739 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4740 max_sectors = mddev->resync_max_sectors; 4741 else 4742 max_sectors = mddev->dev_sectors; 4743 4744 resync = mddev->curr_resync_completed; 4745 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4746 } 4747 4748 static struct md_sysfs_entry md_sync_completed = 4749 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4750 4751 static ssize_t 4752 min_sync_show(struct mddev *mddev, char *page) 4753 { 4754 return sprintf(page, "%llu\n", 4755 (unsigned long long)mddev->resync_min); 4756 } 4757 static ssize_t 4758 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4759 { 4760 unsigned long long min; 4761 int err; 4762 4763 if (kstrtoull(buf, 10, &min)) 4764 return -EINVAL; 4765 4766 spin_lock(&mddev->lock); 4767 err = -EINVAL; 4768 if (min > mddev->resync_max) 4769 goto out_unlock; 4770 4771 err = -EBUSY; 4772 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4773 goto out_unlock; 4774 4775 /* Round down to multiple of 4K for safety */ 4776 mddev->resync_min = round_down(min, 8); 4777 err = 0; 4778 4779 out_unlock: 4780 spin_unlock(&mddev->lock); 4781 return err ?: len; 4782 } 4783 4784 static struct md_sysfs_entry md_min_sync = 4785 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4786 4787 static ssize_t 4788 max_sync_show(struct mddev *mddev, char *page) 4789 { 4790 if (mddev->resync_max == MaxSector) 4791 return sprintf(page, "max\n"); 4792 else 4793 return sprintf(page, "%llu\n", 4794 (unsigned long long)mddev->resync_max); 4795 } 4796 static ssize_t 4797 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4798 { 4799 int err; 4800 spin_lock(&mddev->lock); 4801 if (strncmp(buf, "max", 3) == 0) 4802 mddev->resync_max = MaxSector; 4803 else { 4804 unsigned long long max; 4805 int chunk; 4806 4807 err = -EINVAL; 4808 if (kstrtoull(buf, 10, &max)) 4809 goto out_unlock; 4810 if (max < mddev->resync_min) 4811 goto out_unlock; 4812 4813 err = -EBUSY; 4814 if (max < mddev->resync_max && 4815 mddev->ro == 0 && 4816 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4817 goto out_unlock; 4818 4819 /* Must be a multiple of chunk_size */ 4820 chunk = mddev->chunk_sectors; 4821 if (chunk) { 4822 sector_t temp = max; 4823 4824 err = -EINVAL; 4825 if (sector_div(temp, chunk)) 4826 goto out_unlock; 4827 } 4828 mddev->resync_max = max; 4829 } 4830 wake_up(&mddev->recovery_wait); 4831 err = 0; 4832 out_unlock: 4833 spin_unlock(&mddev->lock); 4834 return err ?: len; 4835 } 4836 4837 static struct md_sysfs_entry md_max_sync = 4838 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4839 4840 static ssize_t 4841 suspend_lo_show(struct mddev *mddev, char *page) 4842 { 4843 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4844 } 4845 4846 static ssize_t 4847 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4848 { 4849 unsigned long long new; 4850 int err; 4851 4852 err = kstrtoull(buf, 10, &new); 4853 if (err < 0) 4854 return err; 4855 if (new != (sector_t)new) 4856 return -EINVAL; 4857 4858 err = mddev_lock(mddev); 4859 if (err) 4860 return err; 4861 err = -EINVAL; 4862 if (mddev->pers == NULL || 4863 mddev->pers->quiesce == NULL) 4864 goto unlock; 4865 mddev_suspend(mddev); 4866 mddev->suspend_lo = new; 4867 mddev_resume(mddev); 4868 4869 err = 0; 4870 unlock: 4871 mddev_unlock(mddev); 4872 return err ?: len; 4873 } 4874 static struct md_sysfs_entry md_suspend_lo = 4875 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4876 4877 static ssize_t 4878 suspend_hi_show(struct mddev *mddev, char *page) 4879 { 4880 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4881 } 4882 4883 static ssize_t 4884 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4885 { 4886 unsigned long long new; 4887 int err; 4888 4889 err = kstrtoull(buf, 10, &new); 4890 if (err < 0) 4891 return err; 4892 if (new != (sector_t)new) 4893 return -EINVAL; 4894 4895 err = mddev_lock(mddev); 4896 if (err) 4897 return err; 4898 err = -EINVAL; 4899 if (mddev->pers == NULL) 4900 goto unlock; 4901 4902 mddev_suspend(mddev); 4903 mddev->suspend_hi = new; 4904 mddev_resume(mddev); 4905 4906 err = 0; 4907 unlock: 4908 mddev_unlock(mddev); 4909 return err ?: len; 4910 } 4911 static struct md_sysfs_entry md_suspend_hi = 4912 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4913 4914 static ssize_t 4915 reshape_position_show(struct mddev *mddev, char *page) 4916 { 4917 if (mddev->reshape_position != MaxSector) 4918 return sprintf(page, "%llu\n", 4919 (unsigned long long)mddev->reshape_position); 4920 strcpy(page, "none\n"); 4921 return 5; 4922 } 4923 4924 static ssize_t 4925 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4926 { 4927 struct md_rdev *rdev; 4928 unsigned long long new; 4929 int err; 4930 4931 err = kstrtoull(buf, 10, &new); 4932 if (err < 0) 4933 return err; 4934 if (new != (sector_t)new) 4935 return -EINVAL; 4936 err = mddev_lock(mddev); 4937 if (err) 4938 return err; 4939 err = -EBUSY; 4940 if (mddev->pers) 4941 goto unlock; 4942 mddev->reshape_position = new; 4943 mddev->delta_disks = 0; 4944 mddev->reshape_backwards = 0; 4945 mddev->new_level = mddev->level; 4946 mddev->new_layout = mddev->layout; 4947 mddev->new_chunk_sectors = mddev->chunk_sectors; 4948 rdev_for_each(rdev, mddev) 4949 rdev->new_data_offset = rdev->data_offset; 4950 err = 0; 4951 unlock: 4952 mddev_unlock(mddev); 4953 return err ?: len; 4954 } 4955 4956 static struct md_sysfs_entry md_reshape_position = 4957 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4958 reshape_position_store); 4959 4960 static ssize_t 4961 reshape_direction_show(struct mddev *mddev, char *page) 4962 { 4963 return sprintf(page, "%s\n", 4964 mddev->reshape_backwards ? "backwards" : "forwards"); 4965 } 4966 4967 static ssize_t 4968 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4969 { 4970 int backwards = 0; 4971 int err; 4972 4973 if (cmd_match(buf, "forwards")) 4974 backwards = 0; 4975 else if (cmd_match(buf, "backwards")) 4976 backwards = 1; 4977 else 4978 return -EINVAL; 4979 if (mddev->reshape_backwards == backwards) 4980 return len; 4981 4982 err = mddev_lock(mddev); 4983 if (err) 4984 return err; 4985 /* check if we are allowed to change */ 4986 if (mddev->delta_disks) 4987 err = -EBUSY; 4988 else if (mddev->persistent && 4989 mddev->major_version == 0) 4990 err = -EINVAL; 4991 else 4992 mddev->reshape_backwards = backwards; 4993 mddev_unlock(mddev); 4994 return err ?: len; 4995 } 4996 4997 static struct md_sysfs_entry md_reshape_direction = 4998 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4999 reshape_direction_store); 5000 5001 static ssize_t 5002 array_size_show(struct mddev *mddev, char *page) 5003 { 5004 if (mddev->external_size) 5005 return sprintf(page, "%llu\n", 5006 (unsigned long long)mddev->array_sectors/2); 5007 else 5008 return sprintf(page, "default\n"); 5009 } 5010 5011 static ssize_t 5012 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5013 { 5014 sector_t sectors; 5015 int err; 5016 5017 err = mddev_lock(mddev); 5018 if (err) 5019 return err; 5020 5021 /* cluster raid doesn't support change array_sectors */ 5022 if (mddev_is_clustered(mddev)) { 5023 mddev_unlock(mddev); 5024 return -EINVAL; 5025 } 5026 5027 if (strncmp(buf, "default", 7) == 0) { 5028 if (mddev->pers) 5029 sectors = mddev->pers->size(mddev, 0, 0); 5030 else 5031 sectors = mddev->array_sectors; 5032 5033 mddev->external_size = 0; 5034 } else { 5035 if (strict_blocks_to_sectors(buf, §ors) < 0) 5036 err = -EINVAL; 5037 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5038 err = -E2BIG; 5039 else 5040 mddev->external_size = 1; 5041 } 5042 5043 if (!err) { 5044 mddev->array_sectors = sectors; 5045 if (mddev->pers) { 5046 set_capacity(mddev->gendisk, mddev->array_sectors); 5047 revalidate_disk(mddev->gendisk); 5048 } 5049 } 5050 mddev_unlock(mddev); 5051 return err ?: len; 5052 } 5053 5054 static struct md_sysfs_entry md_array_size = 5055 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5056 array_size_store); 5057 5058 static ssize_t 5059 consistency_policy_show(struct mddev *mddev, char *page) 5060 { 5061 int ret; 5062 5063 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5064 ret = sprintf(page, "journal\n"); 5065 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5066 ret = sprintf(page, "ppl\n"); 5067 } else if (mddev->bitmap) { 5068 ret = sprintf(page, "bitmap\n"); 5069 } else if (mddev->pers) { 5070 if (mddev->pers->sync_request) 5071 ret = sprintf(page, "resync\n"); 5072 else 5073 ret = sprintf(page, "none\n"); 5074 } else { 5075 ret = sprintf(page, "unknown\n"); 5076 } 5077 5078 return ret; 5079 } 5080 5081 static ssize_t 5082 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5083 { 5084 int err = 0; 5085 5086 if (mddev->pers) { 5087 if (mddev->pers->change_consistency_policy) 5088 err = mddev->pers->change_consistency_policy(mddev, buf); 5089 else 5090 err = -EBUSY; 5091 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5092 set_bit(MD_HAS_PPL, &mddev->flags); 5093 } else { 5094 err = -EINVAL; 5095 } 5096 5097 return err ? err : len; 5098 } 5099 5100 static struct md_sysfs_entry md_consistency_policy = 5101 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5102 consistency_policy_store); 5103 5104 static struct attribute *md_default_attrs[] = { 5105 &md_level.attr, 5106 &md_layout.attr, 5107 &md_raid_disks.attr, 5108 &md_chunk_size.attr, 5109 &md_size.attr, 5110 &md_resync_start.attr, 5111 &md_metadata.attr, 5112 &md_new_device.attr, 5113 &md_safe_delay.attr, 5114 &md_array_state.attr, 5115 &md_reshape_position.attr, 5116 &md_reshape_direction.attr, 5117 &md_array_size.attr, 5118 &max_corr_read_errors.attr, 5119 &md_consistency_policy.attr, 5120 NULL, 5121 }; 5122 5123 static struct attribute *md_redundancy_attrs[] = { 5124 &md_scan_mode.attr, 5125 &md_last_scan_mode.attr, 5126 &md_mismatches.attr, 5127 &md_sync_min.attr, 5128 &md_sync_max.attr, 5129 &md_sync_speed.attr, 5130 &md_sync_force_parallel.attr, 5131 &md_sync_completed.attr, 5132 &md_min_sync.attr, 5133 &md_max_sync.attr, 5134 &md_suspend_lo.attr, 5135 &md_suspend_hi.attr, 5136 &md_bitmap.attr, 5137 &md_degraded.attr, 5138 NULL, 5139 }; 5140 static struct attribute_group md_redundancy_group = { 5141 .name = NULL, 5142 .attrs = md_redundancy_attrs, 5143 }; 5144 5145 static ssize_t 5146 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5147 { 5148 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5149 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5150 ssize_t rv; 5151 5152 if (!entry->show) 5153 return -EIO; 5154 spin_lock(&all_mddevs_lock); 5155 if (list_empty(&mddev->all_mddevs)) { 5156 spin_unlock(&all_mddevs_lock); 5157 return -EBUSY; 5158 } 5159 mddev_get(mddev); 5160 spin_unlock(&all_mddevs_lock); 5161 5162 rv = entry->show(mddev, page); 5163 mddev_put(mddev); 5164 return rv; 5165 } 5166 5167 static ssize_t 5168 md_attr_store(struct kobject *kobj, struct attribute *attr, 5169 const char *page, size_t length) 5170 { 5171 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5172 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5173 ssize_t rv; 5174 5175 if (!entry->store) 5176 return -EIO; 5177 if (!capable(CAP_SYS_ADMIN)) 5178 return -EACCES; 5179 spin_lock(&all_mddevs_lock); 5180 if (list_empty(&mddev->all_mddevs)) { 5181 spin_unlock(&all_mddevs_lock); 5182 return -EBUSY; 5183 } 5184 mddev_get(mddev); 5185 spin_unlock(&all_mddevs_lock); 5186 rv = entry->store(mddev, page, length); 5187 mddev_put(mddev); 5188 return rv; 5189 } 5190 5191 static void md_free(struct kobject *ko) 5192 { 5193 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5194 5195 if (mddev->sysfs_state) 5196 sysfs_put(mddev->sysfs_state); 5197 5198 if (mddev->queue) 5199 blk_cleanup_queue(mddev->queue); 5200 if (mddev->gendisk) { 5201 del_gendisk(mddev->gendisk); 5202 put_disk(mddev->gendisk); 5203 } 5204 percpu_ref_exit(&mddev->writes_pending); 5205 5206 kfree(mddev); 5207 } 5208 5209 static const struct sysfs_ops md_sysfs_ops = { 5210 .show = md_attr_show, 5211 .store = md_attr_store, 5212 }; 5213 static struct kobj_type md_ktype = { 5214 .release = md_free, 5215 .sysfs_ops = &md_sysfs_ops, 5216 .default_attrs = md_default_attrs, 5217 }; 5218 5219 int mdp_major = 0; 5220 5221 static void mddev_delayed_delete(struct work_struct *ws) 5222 { 5223 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5224 5225 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5226 kobject_del(&mddev->kobj); 5227 kobject_put(&mddev->kobj); 5228 } 5229 5230 static void no_op(struct percpu_ref *r) {} 5231 5232 int mddev_init_writes_pending(struct mddev *mddev) 5233 { 5234 if (mddev->writes_pending.percpu_count_ptr) 5235 return 0; 5236 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5237 return -ENOMEM; 5238 /* We want to start with the refcount at zero */ 5239 percpu_ref_put(&mddev->writes_pending); 5240 return 0; 5241 } 5242 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5243 5244 static int md_alloc(dev_t dev, char *name) 5245 { 5246 /* 5247 * If dev is zero, name is the name of a device to allocate with 5248 * an arbitrary minor number. It will be "md_???" 5249 * If dev is non-zero it must be a device number with a MAJOR of 5250 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5251 * the device is being created by opening a node in /dev. 5252 * If "name" is not NULL, the device is being created by 5253 * writing to /sys/module/md_mod/parameters/new_array. 5254 */ 5255 static DEFINE_MUTEX(disks_mutex); 5256 struct mddev *mddev = mddev_find(dev); 5257 struct gendisk *disk; 5258 int partitioned; 5259 int shift; 5260 int unit; 5261 int error; 5262 5263 if (!mddev) 5264 return -ENODEV; 5265 5266 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5267 shift = partitioned ? MdpMinorShift : 0; 5268 unit = MINOR(mddev->unit) >> shift; 5269 5270 /* wait for any previous instance of this device to be 5271 * completely removed (mddev_delayed_delete). 5272 */ 5273 flush_workqueue(md_misc_wq); 5274 5275 mutex_lock(&disks_mutex); 5276 error = -EEXIST; 5277 if (mddev->gendisk) 5278 goto abort; 5279 5280 if (name && !dev) { 5281 /* Need to ensure that 'name' is not a duplicate. 5282 */ 5283 struct mddev *mddev2; 5284 spin_lock(&all_mddevs_lock); 5285 5286 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5287 if (mddev2->gendisk && 5288 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5289 spin_unlock(&all_mddevs_lock); 5290 goto abort; 5291 } 5292 spin_unlock(&all_mddevs_lock); 5293 } 5294 if (name && dev) 5295 /* 5296 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5297 */ 5298 mddev->hold_active = UNTIL_STOP; 5299 5300 error = -ENOMEM; 5301 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5302 if (!mddev->queue) 5303 goto abort; 5304 mddev->queue->queuedata = mddev; 5305 5306 blk_queue_make_request(mddev->queue, md_make_request); 5307 blk_set_stacking_limits(&mddev->queue->limits); 5308 5309 disk = alloc_disk(1 << shift); 5310 if (!disk) { 5311 blk_cleanup_queue(mddev->queue); 5312 mddev->queue = NULL; 5313 goto abort; 5314 } 5315 disk->major = MAJOR(mddev->unit); 5316 disk->first_minor = unit << shift; 5317 if (name) 5318 strcpy(disk->disk_name, name); 5319 else if (partitioned) 5320 sprintf(disk->disk_name, "md_d%d", unit); 5321 else 5322 sprintf(disk->disk_name, "md%d", unit); 5323 disk->fops = &md_fops; 5324 disk->private_data = mddev; 5325 disk->queue = mddev->queue; 5326 blk_queue_write_cache(mddev->queue, true, true); 5327 /* Allow extended partitions. This makes the 5328 * 'mdp' device redundant, but we can't really 5329 * remove it now. 5330 */ 5331 disk->flags |= GENHD_FL_EXT_DEVT; 5332 mddev->gendisk = disk; 5333 /* As soon as we call add_disk(), another thread could get 5334 * through to md_open, so make sure it doesn't get too far 5335 */ 5336 mutex_lock(&mddev->open_mutex); 5337 add_disk(disk); 5338 5339 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5340 &disk_to_dev(disk)->kobj, "%s", "md"); 5341 if (error) { 5342 /* This isn't possible, but as kobject_init_and_add is marked 5343 * __must_check, we must do something with the result 5344 */ 5345 pr_debug("md: cannot register %s/md - name in use\n", 5346 disk->disk_name); 5347 error = 0; 5348 } 5349 if (mddev->kobj.sd && 5350 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5351 pr_debug("pointless warning\n"); 5352 mutex_unlock(&mddev->open_mutex); 5353 abort: 5354 mutex_unlock(&disks_mutex); 5355 if (!error && mddev->kobj.sd) { 5356 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5357 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5358 } 5359 mddev_put(mddev); 5360 return error; 5361 } 5362 5363 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5364 { 5365 if (create_on_open) 5366 md_alloc(dev, NULL); 5367 return NULL; 5368 } 5369 5370 static int add_named_array(const char *val, struct kernel_param *kp) 5371 { 5372 /* 5373 * val must be "md_*" or "mdNNN". 5374 * For "md_*" we allocate an array with a large free minor number, and 5375 * set the name to val. val must not already be an active name. 5376 * For "mdNNN" we allocate an array with the minor number NNN 5377 * which must not already be in use. 5378 */ 5379 int len = strlen(val); 5380 char buf[DISK_NAME_LEN]; 5381 unsigned long devnum; 5382 5383 while (len && val[len-1] == '\n') 5384 len--; 5385 if (len >= DISK_NAME_LEN) 5386 return -E2BIG; 5387 strlcpy(buf, val, len+1); 5388 if (strncmp(buf, "md_", 3) == 0) 5389 return md_alloc(0, buf); 5390 if (strncmp(buf, "md", 2) == 0 && 5391 isdigit(buf[2]) && 5392 kstrtoul(buf+2, 10, &devnum) == 0 && 5393 devnum <= MINORMASK) 5394 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5395 5396 return -EINVAL; 5397 } 5398 5399 static void md_safemode_timeout(unsigned long data) 5400 { 5401 struct mddev *mddev = (struct mddev *) data; 5402 5403 mddev->safemode = 1; 5404 if (mddev->external) 5405 sysfs_notify_dirent_safe(mddev->sysfs_state); 5406 5407 md_wakeup_thread(mddev->thread); 5408 } 5409 5410 static int start_dirty_degraded; 5411 5412 int md_run(struct mddev *mddev) 5413 { 5414 int err; 5415 struct md_rdev *rdev; 5416 struct md_personality *pers; 5417 5418 if (list_empty(&mddev->disks)) 5419 /* cannot run an array with no devices.. */ 5420 return -EINVAL; 5421 5422 if (mddev->pers) 5423 return -EBUSY; 5424 /* Cannot run until previous stop completes properly */ 5425 if (mddev->sysfs_active) 5426 return -EBUSY; 5427 5428 /* 5429 * Analyze all RAID superblock(s) 5430 */ 5431 if (!mddev->raid_disks) { 5432 if (!mddev->persistent) 5433 return -EINVAL; 5434 analyze_sbs(mddev); 5435 } 5436 5437 if (mddev->level != LEVEL_NONE) 5438 request_module("md-level-%d", mddev->level); 5439 else if (mddev->clevel[0]) 5440 request_module("md-%s", mddev->clevel); 5441 5442 /* 5443 * Drop all container device buffers, from now on 5444 * the only valid external interface is through the md 5445 * device. 5446 */ 5447 rdev_for_each(rdev, mddev) { 5448 if (test_bit(Faulty, &rdev->flags)) 5449 continue; 5450 sync_blockdev(rdev->bdev); 5451 invalidate_bdev(rdev->bdev); 5452 if (mddev->ro != 1 && 5453 (bdev_read_only(rdev->bdev) || 5454 bdev_read_only(rdev->meta_bdev))) { 5455 mddev->ro = 1; 5456 if (mddev->gendisk) 5457 set_disk_ro(mddev->gendisk, 1); 5458 } 5459 5460 /* perform some consistency tests on the device. 5461 * We don't want the data to overlap the metadata, 5462 * Internal Bitmap issues have been handled elsewhere. 5463 */ 5464 if (rdev->meta_bdev) { 5465 /* Nothing to check */; 5466 } else if (rdev->data_offset < rdev->sb_start) { 5467 if (mddev->dev_sectors && 5468 rdev->data_offset + mddev->dev_sectors 5469 > rdev->sb_start) { 5470 pr_warn("md: %s: data overlaps metadata\n", 5471 mdname(mddev)); 5472 return -EINVAL; 5473 } 5474 } else { 5475 if (rdev->sb_start + rdev->sb_size/512 5476 > rdev->data_offset) { 5477 pr_warn("md: %s: metadata overlaps data\n", 5478 mdname(mddev)); 5479 return -EINVAL; 5480 } 5481 } 5482 sysfs_notify_dirent_safe(rdev->sysfs_state); 5483 } 5484 5485 if (mddev->bio_set == NULL) { 5486 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5487 if (!mddev->bio_set) 5488 return -ENOMEM; 5489 } 5490 if (mddev->sync_set == NULL) { 5491 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5492 if (!mddev->sync_set) 5493 return -ENOMEM; 5494 } 5495 5496 spin_lock(&pers_lock); 5497 pers = find_pers(mddev->level, mddev->clevel); 5498 if (!pers || !try_module_get(pers->owner)) { 5499 spin_unlock(&pers_lock); 5500 if (mddev->level != LEVEL_NONE) 5501 pr_warn("md: personality for level %d is not loaded!\n", 5502 mddev->level); 5503 else 5504 pr_warn("md: personality for level %s is not loaded!\n", 5505 mddev->clevel); 5506 return -EINVAL; 5507 } 5508 spin_unlock(&pers_lock); 5509 if (mddev->level != pers->level) { 5510 mddev->level = pers->level; 5511 mddev->new_level = pers->level; 5512 } 5513 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5514 5515 if (mddev->reshape_position != MaxSector && 5516 pers->start_reshape == NULL) { 5517 /* This personality cannot handle reshaping... */ 5518 module_put(pers->owner); 5519 return -EINVAL; 5520 } 5521 5522 if (pers->sync_request) { 5523 /* Warn if this is a potentially silly 5524 * configuration. 5525 */ 5526 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5527 struct md_rdev *rdev2; 5528 int warned = 0; 5529 5530 rdev_for_each(rdev, mddev) 5531 rdev_for_each(rdev2, mddev) { 5532 if (rdev < rdev2 && 5533 rdev->bdev->bd_contains == 5534 rdev2->bdev->bd_contains) { 5535 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5536 mdname(mddev), 5537 bdevname(rdev->bdev,b), 5538 bdevname(rdev2->bdev,b2)); 5539 warned = 1; 5540 } 5541 } 5542 5543 if (warned) 5544 pr_warn("True protection against single-disk failure might be compromised.\n"); 5545 } 5546 5547 mddev->recovery = 0; 5548 /* may be over-ridden by personality */ 5549 mddev->resync_max_sectors = mddev->dev_sectors; 5550 5551 mddev->ok_start_degraded = start_dirty_degraded; 5552 5553 if (start_readonly && mddev->ro == 0) 5554 mddev->ro = 2; /* read-only, but switch on first write */ 5555 5556 /* 5557 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes 5558 * up mddev->thread. It is important to initialize critical 5559 * resources for mddev->thread BEFORE calling pers->run(). 5560 */ 5561 err = pers->run(mddev); 5562 if (err) 5563 pr_warn("md: pers->run() failed ...\n"); 5564 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5565 WARN_ONCE(!mddev->external_size, 5566 "%s: default size too small, but 'external_size' not in effect?\n", 5567 __func__); 5568 pr_warn("md: invalid array_size %llu > default size %llu\n", 5569 (unsigned long long)mddev->array_sectors / 2, 5570 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5571 err = -EINVAL; 5572 } 5573 if (err == 0 && pers->sync_request && 5574 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5575 struct bitmap *bitmap; 5576 5577 bitmap = bitmap_create(mddev, -1); 5578 if (IS_ERR(bitmap)) { 5579 err = PTR_ERR(bitmap); 5580 pr_warn("%s: failed to create bitmap (%d)\n", 5581 mdname(mddev), err); 5582 } else 5583 mddev->bitmap = bitmap; 5584 5585 } 5586 if (err) { 5587 mddev_detach(mddev); 5588 if (mddev->private) 5589 pers->free(mddev, mddev->private); 5590 mddev->private = NULL; 5591 module_put(pers->owner); 5592 bitmap_destroy(mddev); 5593 return err; 5594 } 5595 if (mddev->queue) { 5596 bool nonrot = true; 5597 5598 rdev_for_each(rdev, mddev) { 5599 if (rdev->raid_disk >= 0 && 5600 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5601 nonrot = false; 5602 break; 5603 } 5604 } 5605 if (mddev->degraded) 5606 nonrot = false; 5607 if (nonrot) 5608 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5609 else 5610 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5611 mddev->queue->backing_dev_info->congested_data = mddev; 5612 mddev->queue->backing_dev_info->congested_fn = md_congested; 5613 } 5614 if (pers->sync_request) { 5615 if (mddev->kobj.sd && 5616 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5617 pr_warn("md: cannot register extra attributes for %s\n", 5618 mdname(mddev)); 5619 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5620 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5621 mddev->ro = 0; 5622 5623 atomic_set(&mddev->max_corr_read_errors, 5624 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5625 mddev->safemode = 0; 5626 if (mddev_is_clustered(mddev)) 5627 mddev->safemode_delay = 0; 5628 else 5629 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5630 mddev->in_sync = 1; 5631 smp_wmb(); 5632 spin_lock(&mddev->lock); 5633 mddev->pers = pers; 5634 spin_unlock(&mddev->lock); 5635 rdev_for_each(rdev, mddev) 5636 if (rdev->raid_disk >= 0) 5637 if (sysfs_link_rdev(mddev, rdev)) 5638 /* failure here is OK */; 5639 5640 if (mddev->degraded && !mddev->ro) 5641 /* This ensures that recovering status is reported immediately 5642 * via sysfs - until a lack of spares is confirmed. 5643 */ 5644 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5645 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5646 5647 if (mddev->sb_flags) 5648 md_update_sb(mddev, 0); 5649 5650 md_new_event(mddev); 5651 sysfs_notify_dirent_safe(mddev->sysfs_state); 5652 sysfs_notify_dirent_safe(mddev->sysfs_action); 5653 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5654 return 0; 5655 } 5656 EXPORT_SYMBOL_GPL(md_run); 5657 5658 static int do_md_run(struct mddev *mddev) 5659 { 5660 int err; 5661 5662 err = md_run(mddev); 5663 if (err) 5664 goto out; 5665 err = bitmap_load(mddev); 5666 if (err) { 5667 bitmap_destroy(mddev); 5668 goto out; 5669 } 5670 5671 if (mddev_is_clustered(mddev)) 5672 md_allow_write(mddev); 5673 5674 md_wakeup_thread(mddev->thread); 5675 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5676 5677 set_capacity(mddev->gendisk, mddev->array_sectors); 5678 revalidate_disk(mddev->gendisk); 5679 mddev->changed = 1; 5680 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5681 out: 5682 return err; 5683 } 5684 5685 static int restart_array(struct mddev *mddev) 5686 { 5687 struct gendisk *disk = mddev->gendisk; 5688 struct md_rdev *rdev; 5689 bool has_journal = false; 5690 bool has_readonly = false; 5691 5692 /* Complain if it has no devices */ 5693 if (list_empty(&mddev->disks)) 5694 return -ENXIO; 5695 if (!mddev->pers) 5696 return -EINVAL; 5697 if (!mddev->ro) 5698 return -EBUSY; 5699 5700 rcu_read_lock(); 5701 rdev_for_each_rcu(rdev, mddev) { 5702 if (test_bit(Journal, &rdev->flags) && 5703 !test_bit(Faulty, &rdev->flags)) 5704 has_journal = true; 5705 if (bdev_read_only(rdev->bdev)) 5706 has_readonly = true; 5707 } 5708 rcu_read_unlock(); 5709 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5710 /* Don't restart rw with journal missing/faulty */ 5711 return -EINVAL; 5712 if (has_readonly) 5713 return -EROFS; 5714 5715 mddev->safemode = 0; 5716 mddev->ro = 0; 5717 set_disk_ro(disk, 0); 5718 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5719 /* Kick recovery or resync if necessary */ 5720 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5721 md_wakeup_thread(mddev->thread); 5722 md_wakeup_thread(mddev->sync_thread); 5723 sysfs_notify_dirent_safe(mddev->sysfs_state); 5724 return 0; 5725 } 5726 5727 static void md_clean(struct mddev *mddev) 5728 { 5729 mddev->array_sectors = 0; 5730 mddev->external_size = 0; 5731 mddev->dev_sectors = 0; 5732 mddev->raid_disks = 0; 5733 mddev->recovery_cp = 0; 5734 mddev->resync_min = 0; 5735 mddev->resync_max = MaxSector; 5736 mddev->reshape_position = MaxSector; 5737 mddev->external = 0; 5738 mddev->persistent = 0; 5739 mddev->level = LEVEL_NONE; 5740 mddev->clevel[0] = 0; 5741 mddev->flags = 0; 5742 mddev->sb_flags = 0; 5743 mddev->ro = 0; 5744 mddev->metadata_type[0] = 0; 5745 mddev->chunk_sectors = 0; 5746 mddev->ctime = mddev->utime = 0; 5747 mddev->layout = 0; 5748 mddev->max_disks = 0; 5749 mddev->events = 0; 5750 mddev->can_decrease_events = 0; 5751 mddev->delta_disks = 0; 5752 mddev->reshape_backwards = 0; 5753 mddev->new_level = LEVEL_NONE; 5754 mddev->new_layout = 0; 5755 mddev->new_chunk_sectors = 0; 5756 mddev->curr_resync = 0; 5757 atomic64_set(&mddev->resync_mismatches, 0); 5758 mddev->suspend_lo = mddev->suspend_hi = 0; 5759 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5760 mddev->recovery = 0; 5761 mddev->in_sync = 0; 5762 mddev->changed = 0; 5763 mddev->degraded = 0; 5764 mddev->safemode = 0; 5765 mddev->private = NULL; 5766 mddev->cluster_info = NULL; 5767 mddev->bitmap_info.offset = 0; 5768 mddev->bitmap_info.default_offset = 0; 5769 mddev->bitmap_info.default_space = 0; 5770 mddev->bitmap_info.chunksize = 0; 5771 mddev->bitmap_info.daemon_sleep = 0; 5772 mddev->bitmap_info.max_write_behind = 0; 5773 mddev->bitmap_info.nodes = 0; 5774 } 5775 5776 static void __md_stop_writes(struct mddev *mddev) 5777 { 5778 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5779 flush_workqueue(md_misc_wq); 5780 if (mddev->sync_thread) { 5781 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5782 md_reap_sync_thread(mddev); 5783 } 5784 5785 del_timer_sync(&mddev->safemode_timer); 5786 5787 if (mddev->pers && mddev->pers->quiesce) { 5788 mddev->pers->quiesce(mddev, 1); 5789 mddev->pers->quiesce(mddev, 0); 5790 } 5791 bitmap_flush(mddev); 5792 5793 if (mddev->ro == 0 && 5794 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5795 mddev->sb_flags)) { 5796 /* mark array as shutdown cleanly */ 5797 if (!mddev_is_clustered(mddev)) 5798 mddev->in_sync = 1; 5799 md_update_sb(mddev, 1); 5800 } 5801 } 5802 5803 void md_stop_writes(struct mddev *mddev) 5804 { 5805 mddev_lock_nointr(mddev); 5806 __md_stop_writes(mddev); 5807 mddev_unlock(mddev); 5808 } 5809 EXPORT_SYMBOL_GPL(md_stop_writes); 5810 5811 static void mddev_detach(struct mddev *mddev) 5812 { 5813 bitmap_wait_behind_writes(mddev); 5814 if (mddev->pers && mddev->pers->quiesce) { 5815 mddev->pers->quiesce(mddev, 1); 5816 mddev->pers->quiesce(mddev, 0); 5817 } 5818 md_unregister_thread(&mddev->thread); 5819 if (mddev->queue) 5820 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5821 } 5822 5823 static void __md_stop(struct mddev *mddev) 5824 { 5825 struct md_personality *pers = mddev->pers; 5826 bitmap_destroy(mddev); 5827 mddev_detach(mddev); 5828 /* Ensure ->event_work is done */ 5829 flush_workqueue(md_misc_wq); 5830 spin_lock(&mddev->lock); 5831 mddev->pers = NULL; 5832 spin_unlock(&mddev->lock); 5833 pers->free(mddev, mddev->private); 5834 mddev->private = NULL; 5835 if (pers->sync_request && mddev->to_remove == NULL) 5836 mddev->to_remove = &md_redundancy_group; 5837 module_put(pers->owner); 5838 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5839 } 5840 5841 void md_stop(struct mddev *mddev) 5842 { 5843 /* stop the array and free an attached data structures. 5844 * This is called from dm-raid 5845 */ 5846 __md_stop(mddev); 5847 if (mddev->bio_set) 5848 bioset_free(mddev->bio_set); 5849 } 5850 5851 EXPORT_SYMBOL_GPL(md_stop); 5852 5853 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5854 { 5855 int err = 0; 5856 int did_freeze = 0; 5857 5858 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5859 did_freeze = 1; 5860 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5861 md_wakeup_thread(mddev->thread); 5862 } 5863 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5864 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5865 if (mddev->sync_thread) 5866 /* Thread might be blocked waiting for metadata update 5867 * which will now never happen */ 5868 wake_up_process(mddev->sync_thread->tsk); 5869 5870 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5871 return -EBUSY; 5872 mddev_unlock(mddev); 5873 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5874 &mddev->recovery)); 5875 wait_event(mddev->sb_wait, 5876 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5877 mddev_lock_nointr(mddev); 5878 5879 mutex_lock(&mddev->open_mutex); 5880 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5881 mddev->sync_thread || 5882 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5883 pr_warn("md: %s still in use.\n",mdname(mddev)); 5884 if (did_freeze) { 5885 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5886 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5887 md_wakeup_thread(mddev->thread); 5888 } 5889 err = -EBUSY; 5890 goto out; 5891 } 5892 if (mddev->pers) { 5893 __md_stop_writes(mddev); 5894 5895 err = -ENXIO; 5896 if (mddev->ro==1) 5897 goto out; 5898 mddev->ro = 1; 5899 set_disk_ro(mddev->gendisk, 1); 5900 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5901 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5902 md_wakeup_thread(mddev->thread); 5903 sysfs_notify_dirent_safe(mddev->sysfs_state); 5904 err = 0; 5905 } 5906 out: 5907 mutex_unlock(&mddev->open_mutex); 5908 return err; 5909 } 5910 5911 /* mode: 5912 * 0 - completely stop and dis-assemble array 5913 * 2 - stop but do not disassemble array 5914 */ 5915 static int do_md_stop(struct mddev *mddev, int mode, 5916 struct block_device *bdev) 5917 { 5918 struct gendisk *disk = mddev->gendisk; 5919 struct md_rdev *rdev; 5920 int did_freeze = 0; 5921 5922 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5923 did_freeze = 1; 5924 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5925 md_wakeup_thread(mddev->thread); 5926 } 5927 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5928 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5929 if (mddev->sync_thread) 5930 /* Thread might be blocked waiting for metadata update 5931 * which will now never happen */ 5932 wake_up_process(mddev->sync_thread->tsk); 5933 5934 mddev_unlock(mddev); 5935 wait_event(resync_wait, (mddev->sync_thread == NULL && 5936 !test_bit(MD_RECOVERY_RUNNING, 5937 &mddev->recovery))); 5938 mddev_lock_nointr(mddev); 5939 5940 mutex_lock(&mddev->open_mutex); 5941 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5942 mddev->sysfs_active || 5943 mddev->sync_thread || 5944 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5945 pr_warn("md: %s still in use.\n",mdname(mddev)); 5946 mutex_unlock(&mddev->open_mutex); 5947 if (did_freeze) { 5948 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5949 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5950 md_wakeup_thread(mddev->thread); 5951 } 5952 return -EBUSY; 5953 } 5954 if (mddev->pers) { 5955 if (mddev->ro) 5956 set_disk_ro(disk, 0); 5957 5958 __md_stop_writes(mddev); 5959 __md_stop(mddev); 5960 mddev->queue->backing_dev_info->congested_fn = NULL; 5961 5962 /* tell userspace to handle 'inactive' */ 5963 sysfs_notify_dirent_safe(mddev->sysfs_state); 5964 5965 rdev_for_each(rdev, mddev) 5966 if (rdev->raid_disk >= 0) 5967 sysfs_unlink_rdev(mddev, rdev); 5968 5969 set_capacity(disk, 0); 5970 mutex_unlock(&mddev->open_mutex); 5971 mddev->changed = 1; 5972 revalidate_disk(disk); 5973 5974 if (mddev->ro) 5975 mddev->ro = 0; 5976 } else 5977 mutex_unlock(&mddev->open_mutex); 5978 /* 5979 * Free resources if final stop 5980 */ 5981 if (mode == 0) { 5982 pr_info("md: %s stopped.\n", mdname(mddev)); 5983 5984 if (mddev->bitmap_info.file) { 5985 struct file *f = mddev->bitmap_info.file; 5986 spin_lock(&mddev->lock); 5987 mddev->bitmap_info.file = NULL; 5988 spin_unlock(&mddev->lock); 5989 fput(f); 5990 } 5991 mddev->bitmap_info.offset = 0; 5992 5993 export_array(mddev); 5994 5995 md_clean(mddev); 5996 if (mddev->hold_active == UNTIL_STOP) 5997 mddev->hold_active = 0; 5998 } 5999 md_new_event(mddev); 6000 sysfs_notify_dirent_safe(mddev->sysfs_state); 6001 return 0; 6002 } 6003 6004 #ifndef MODULE 6005 static void autorun_array(struct mddev *mddev) 6006 { 6007 struct md_rdev *rdev; 6008 int err; 6009 6010 if (list_empty(&mddev->disks)) 6011 return; 6012 6013 pr_info("md: running: "); 6014 6015 rdev_for_each(rdev, mddev) { 6016 char b[BDEVNAME_SIZE]; 6017 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6018 } 6019 pr_cont("\n"); 6020 6021 err = do_md_run(mddev); 6022 if (err) { 6023 pr_warn("md: do_md_run() returned %d\n", err); 6024 do_md_stop(mddev, 0, NULL); 6025 } 6026 } 6027 6028 /* 6029 * lets try to run arrays based on all disks that have arrived 6030 * until now. (those are in pending_raid_disks) 6031 * 6032 * the method: pick the first pending disk, collect all disks with 6033 * the same UUID, remove all from the pending list and put them into 6034 * the 'same_array' list. Then order this list based on superblock 6035 * update time (freshest comes first), kick out 'old' disks and 6036 * compare superblocks. If everything's fine then run it. 6037 * 6038 * If "unit" is allocated, then bump its reference count 6039 */ 6040 static void autorun_devices(int part) 6041 { 6042 struct md_rdev *rdev0, *rdev, *tmp; 6043 struct mddev *mddev; 6044 char b[BDEVNAME_SIZE]; 6045 6046 pr_info("md: autorun ...\n"); 6047 while (!list_empty(&pending_raid_disks)) { 6048 int unit; 6049 dev_t dev; 6050 LIST_HEAD(candidates); 6051 rdev0 = list_entry(pending_raid_disks.next, 6052 struct md_rdev, same_set); 6053 6054 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6055 INIT_LIST_HEAD(&candidates); 6056 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6057 if (super_90_load(rdev, rdev0, 0) >= 0) { 6058 pr_debug("md: adding %s ...\n", 6059 bdevname(rdev->bdev,b)); 6060 list_move(&rdev->same_set, &candidates); 6061 } 6062 /* 6063 * now we have a set of devices, with all of them having 6064 * mostly sane superblocks. It's time to allocate the 6065 * mddev. 6066 */ 6067 if (part) { 6068 dev = MKDEV(mdp_major, 6069 rdev0->preferred_minor << MdpMinorShift); 6070 unit = MINOR(dev) >> MdpMinorShift; 6071 } else { 6072 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6073 unit = MINOR(dev); 6074 } 6075 if (rdev0->preferred_minor != unit) { 6076 pr_warn("md: unit number in %s is bad: %d\n", 6077 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6078 break; 6079 } 6080 6081 md_probe(dev, NULL, NULL); 6082 mddev = mddev_find(dev); 6083 if (!mddev || !mddev->gendisk) { 6084 if (mddev) 6085 mddev_put(mddev); 6086 break; 6087 } 6088 if (mddev_lock(mddev)) 6089 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6090 else if (mddev->raid_disks || mddev->major_version 6091 || !list_empty(&mddev->disks)) { 6092 pr_warn("md: %s already running, cannot run %s\n", 6093 mdname(mddev), bdevname(rdev0->bdev,b)); 6094 mddev_unlock(mddev); 6095 } else { 6096 pr_debug("md: created %s\n", mdname(mddev)); 6097 mddev->persistent = 1; 6098 rdev_for_each_list(rdev, tmp, &candidates) { 6099 list_del_init(&rdev->same_set); 6100 if (bind_rdev_to_array(rdev, mddev)) 6101 export_rdev(rdev); 6102 } 6103 autorun_array(mddev); 6104 mddev_unlock(mddev); 6105 } 6106 /* on success, candidates will be empty, on error 6107 * it won't... 6108 */ 6109 rdev_for_each_list(rdev, tmp, &candidates) { 6110 list_del_init(&rdev->same_set); 6111 export_rdev(rdev); 6112 } 6113 mddev_put(mddev); 6114 } 6115 pr_info("md: ... autorun DONE.\n"); 6116 } 6117 #endif /* !MODULE */ 6118 6119 static int get_version(void __user *arg) 6120 { 6121 mdu_version_t ver; 6122 6123 ver.major = MD_MAJOR_VERSION; 6124 ver.minor = MD_MINOR_VERSION; 6125 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6126 6127 if (copy_to_user(arg, &ver, sizeof(ver))) 6128 return -EFAULT; 6129 6130 return 0; 6131 } 6132 6133 static int get_array_info(struct mddev *mddev, void __user *arg) 6134 { 6135 mdu_array_info_t info; 6136 int nr,working,insync,failed,spare; 6137 struct md_rdev *rdev; 6138 6139 nr = working = insync = failed = spare = 0; 6140 rcu_read_lock(); 6141 rdev_for_each_rcu(rdev, mddev) { 6142 nr++; 6143 if (test_bit(Faulty, &rdev->flags)) 6144 failed++; 6145 else { 6146 working++; 6147 if (test_bit(In_sync, &rdev->flags)) 6148 insync++; 6149 else if (test_bit(Journal, &rdev->flags)) 6150 /* TODO: add journal count to md_u.h */ 6151 ; 6152 else 6153 spare++; 6154 } 6155 } 6156 rcu_read_unlock(); 6157 6158 info.major_version = mddev->major_version; 6159 info.minor_version = mddev->minor_version; 6160 info.patch_version = MD_PATCHLEVEL_VERSION; 6161 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6162 info.level = mddev->level; 6163 info.size = mddev->dev_sectors / 2; 6164 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6165 info.size = -1; 6166 info.nr_disks = nr; 6167 info.raid_disks = mddev->raid_disks; 6168 info.md_minor = mddev->md_minor; 6169 info.not_persistent= !mddev->persistent; 6170 6171 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6172 info.state = 0; 6173 if (mddev->in_sync) 6174 info.state = (1<<MD_SB_CLEAN); 6175 if (mddev->bitmap && mddev->bitmap_info.offset) 6176 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6177 if (mddev_is_clustered(mddev)) 6178 info.state |= (1<<MD_SB_CLUSTERED); 6179 info.active_disks = insync; 6180 info.working_disks = working; 6181 info.failed_disks = failed; 6182 info.spare_disks = spare; 6183 6184 info.layout = mddev->layout; 6185 info.chunk_size = mddev->chunk_sectors << 9; 6186 6187 if (copy_to_user(arg, &info, sizeof(info))) 6188 return -EFAULT; 6189 6190 return 0; 6191 } 6192 6193 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6194 { 6195 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6196 char *ptr; 6197 int err; 6198 6199 file = kzalloc(sizeof(*file), GFP_NOIO); 6200 if (!file) 6201 return -ENOMEM; 6202 6203 err = 0; 6204 spin_lock(&mddev->lock); 6205 /* bitmap enabled */ 6206 if (mddev->bitmap_info.file) { 6207 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6208 sizeof(file->pathname)); 6209 if (IS_ERR(ptr)) 6210 err = PTR_ERR(ptr); 6211 else 6212 memmove(file->pathname, ptr, 6213 sizeof(file->pathname)-(ptr-file->pathname)); 6214 } 6215 spin_unlock(&mddev->lock); 6216 6217 if (err == 0 && 6218 copy_to_user(arg, file, sizeof(*file))) 6219 err = -EFAULT; 6220 6221 kfree(file); 6222 return err; 6223 } 6224 6225 static int get_disk_info(struct mddev *mddev, void __user * arg) 6226 { 6227 mdu_disk_info_t info; 6228 struct md_rdev *rdev; 6229 6230 if (copy_from_user(&info, arg, sizeof(info))) 6231 return -EFAULT; 6232 6233 rcu_read_lock(); 6234 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6235 if (rdev) { 6236 info.major = MAJOR(rdev->bdev->bd_dev); 6237 info.minor = MINOR(rdev->bdev->bd_dev); 6238 info.raid_disk = rdev->raid_disk; 6239 info.state = 0; 6240 if (test_bit(Faulty, &rdev->flags)) 6241 info.state |= (1<<MD_DISK_FAULTY); 6242 else if (test_bit(In_sync, &rdev->flags)) { 6243 info.state |= (1<<MD_DISK_ACTIVE); 6244 info.state |= (1<<MD_DISK_SYNC); 6245 } 6246 if (test_bit(Journal, &rdev->flags)) 6247 info.state |= (1<<MD_DISK_JOURNAL); 6248 if (test_bit(WriteMostly, &rdev->flags)) 6249 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6250 if (test_bit(FailFast, &rdev->flags)) 6251 info.state |= (1<<MD_DISK_FAILFAST); 6252 } else { 6253 info.major = info.minor = 0; 6254 info.raid_disk = -1; 6255 info.state = (1<<MD_DISK_REMOVED); 6256 } 6257 rcu_read_unlock(); 6258 6259 if (copy_to_user(arg, &info, sizeof(info))) 6260 return -EFAULT; 6261 6262 return 0; 6263 } 6264 6265 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6266 { 6267 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6268 struct md_rdev *rdev; 6269 dev_t dev = MKDEV(info->major,info->minor); 6270 6271 if (mddev_is_clustered(mddev) && 6272 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6273 pr_warn("%s: Cannot add to clustered mddev.\n", 6274 mdname(mddev)); 6275 return -EINVAL; 6276 } 6277 6278 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6279 return -EOVERFLOW; 6280 6281 if (!mddev->raid_disks) { 6282 int err; 6283 /* expecting a device which has a superblock */ 6284 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6285 if (IS_ERR(rdev)) { 6286 pr_warn("md: md_import_device returned %ld\n", 6287 PTR_ERR(rdev)); 6288 return PTR_ERR(rdev); 6289 } 6290 if (!list_empty(&mddev->disks)) { 6291 struct md_rdev *rdev0 6292 = list_entry(mddev->disks.next, 6293 struct md_rdev, same_set); 6294 err = super_types[mddev->major_version] 6295 .load_super(rdev, rdev0, mddev->minor_version); 6296 if (err < 0) { 6297 pr_warn("md: %s has different UUID to %s\n", 6298 bdevname(rdev->bdev,b), 6299 bdevname(rdev0->bdev,b2)); 6300 export_rdev(rdev); 6301 return -EINVAL; 6302 } 6303 } 6304 err = bind_rdev_to_array(rdev, mddev); 6305 if (err) 6306 export_rdev(rdev); 6307 return err; 6308 } 6309 6310 /* 6311 * add_new_disk can be used once the array is assembled 6312 * to add "hot spares". They must already have a superblock 6313 * written 6314 */ 6315 if (mddev->pers) { 6316 int err; 6317 if (!mddev->pers->hot_add_disk) { 6318 pr_warn("%s: personality does not support diskops!\n", 6319 mdname(mddev)); 6320 return -EINVAL; 6321 } 6322 if (mddev->persistent) 6323 rdev = md_import_device(dev, mddev->major_version, 6324 mddev->minor_version); 6325 else 6326 rdev = md_import_device(dev, -1, -1); 6327 if (IS_ERR(rdev)) { 6328 pr_warn("md: md_import_device returned %ld\n", 6329 PTR_ERR(rdev)); 6330 return PTR_ERR(rdev); 6331 } 6332 /* set saved_raid_disk if appropriate */ 6333 if (!mddev->persistent) { 6334 if (info->state & (1<<MD_DISK_SYNC) && 6335 info->raid_disk < mddev->raid_disks) { 6336 rdev->raid_disk = info->raid_disk; 6337 set_bit(In_sync, &rdev->flags); 6338 clear_bit(Bitmap_sync, &rdev->flags); 6339 } else 6340 rdev->raid_disk = -1; 6341 rdev->saved_raid_disk = rdev->raid_disk; 6342 } else 6343 super_types[mddev->major_version]. 6344 validate_super(mddev, rdev); 6345 if ((info->state & (1<<MD_DISK_SYNC)) && 6346 rdev->raid_disk != info->raid_disk) { 6347 /* This was a hot-add request, but events doesn't 6348 * match, so reject it. 6349 */ 6350 export_rdev(rdev); 6351 return -EINVAL; 6352 } 6353 6354 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6355 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6356 set_bit(WriteMostly, &rdev->flags); 6357 else 6358 clear_bit(WriteMostly, &rdev->flags); 6359 if (info->state & (1<<MD_DISK_FAILFAST)) 6360 set_bit(FailFast, &rdev->flags); 6361 else 6362 clear_bit(FailFast, &rdev->flags); 6363 6364 if (info->state & (1<<MD_DISK_JOURNAL)) { 6365 struct md_rdev *rdev2; 6366 bool has_journal = false; 6367 6368 /* make sure no existing journal disk */ 6369 rdev_for_each(rdev2, mddev) { 6370 if (test_bit(Journal, &rdev2->flags)) { 6371 has_journal = true; 6372 break; 6373 } 6374 } 6375 if (has_journal || mddev->bitmap) { 6376 export_rdev(rdev); 6377 return -EBUSY; 6378 } 6379 set_bit(Journal, &rdev->flags); 6380 } 6381 /* 6382 * check whether the device shows up in other nodes 6383 */ 6384 if (mddev_is_clustered(mddev)) { 6385 if (info->state & (1 << MD_DISK_CANDIDATE)) 6386 set_bit(Candidate, &rdev->flags); 6387 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6388 /* --add initiated by this node */ 6389 err = md_cluster_ops->add_new_disk(mddev, rdev); 6390 if (err) { 6391 export_rdev(rdev); 6392 return err; 6393 } 6394 } 6395 } 6396 6397 rdev->raid_disk = -1; 6398 err = bind_rdev_to_array(rdev, mddev); 6399 6400 if (err) 6401 export_rdev(rdev); 6402 6403 if (mddev_is_clustered(mddev)) { 6404 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6405 if (!err) { 6406 err = md_cluster_ops->new_disk_ack(mddev, 6407 err == 0); 6408 if (err) 6409 md_kick_rdev_from_array(rdev); 6410 } 6411 } else { 6412 if (err) 6413 md_cluster_ops->add_new_disk_cancel(mddev); 6414 else 6415 err = add_bound_rdev(rdev); 6416 } 6417 6418 } else if (!err) 6419 err = add_bound_rdev(rdev); 6420 6421 return err; 6422 } 6423 6424 /* otherwise, add_new_disk is only allowed 6425 * for major_version==0 superblocks 6426 */ 6427 if (mddev->major_version != 0) { 6428 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6429 return -EINVAL; 6430 } 6431 6432 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6433 int err; 6434 rdev = md_import_device(dev, -1, 0); 6435 if (IS_ERR(rdev)) { 6436 pr_warn("md: error, md_import_device() returned %ld\n", 6437 PTR_ERR(rdev)); 6438 return PTR_ERR(rdev); 6439 } 6440 rdev->desc_nr = info->number; 6441 if (info->raid_disk < mddev->raid_disks) 6442 rdev->raid_disk = info->raid_disk; 6443 else 6444 rdev->raid_disk = -1; 6445 6446 if (rdev->raid_disk < mddev->raid_disks) 6447 if (info->state & (1<<MD_DISK_SYNC)) 6448 set_bit(In_sync, &rdev->flags); 6449 6450 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6451 set_bit(WriteMostly, &rdev->flags); 6452 if (info->state & (1<<MD_DISK_FAILFAST)) 6453 set_bit(FailFast, &rdev->flags); 6454 6455 if (!mddev->persistent) { 6456 pr_debug("md: nonpersistent superblock ...\n"); 6457 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6458 } else 6459 rdev->sb_start = calc_dev_sboffset(rdev); 6460 rdev->sectors = rdev->sb_start; 6461 6462 err = bind_rdev_to_array(rdev, mddev); 6463 if (err) { 6464 export_rdev(rdev); 6465 return err; 6466 } 6467 } 6468 6469 return 0; 6470 } 6471 6472 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6473 { 6474 char b[BDEVNAME_SIZE]; 6475 struct md_rdev *rdev; 6476 6477 rdev = find_rdev(mddev, dev); 6478 if (!rdev) 6479 return -ENXIO; 6480 6481 if (rdev->raid_disk < 0) 6482 goto kick_rdev; 6483 6484 clear_bit(Blocked, &rdev->flags); 6485 remove_and_add_spares(mddev, rdev); 6486 6487 if (rdev->raid_disk >= 0) 6488 goto busy; 6489 6490 kick_rdev: 6491 if (mddev_is_clustered(mddev)) 6492 md_cluster_ops->remove_disk(mddev, rdev); 6493 6494 md_kick_rdev_from_array(rdev); 6495 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6496 if (mddev->thread) 6497 md_wakeup_thread(mddev->thread); 6498 else 6499 md_update_sb(mddev, 1); 6500 md_new_event(mddev); 6501 6502 return 0; 6503 busy: 6504 pr_debug("md: cannot remove active disk %s from %s ...\n", 6505 bdevname(rdev->bdev,b), mdname(mddev)); 6506 return -EBUSY; 6507 } 6508 6509 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6510 { 6511 char b[BDEVNAME_SIZE]; 6512 int err; 6513 struct md_rdev *rdev; 6514 6515 if (!mddev->pers) 6516 return -ENODEV; 6517 6518 if (mddev->major_version != 0) { 6519 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6520 mdname(mddev)); 6521 return -EINVAL; 6522 } 6523 if (!mddev->pers->hot_add_disk) { 6524 pr_warn("%s: personality does not support diskops!\n", 6525 mdname(mddev)); 6526 return -EINVAL; 6527 } 6528 6529 rdev = md_import_device(dev, -1, 0); 6530 if (IS_ERR(rdev)) { 6531 pr_warn("md: error, md_import_device() returned %ld\n", 6532 PTR_ERR(rdev)); 6533 return -EINVAL; 6534 } 6535 6536 if (mddev->persistent) 6537 rdev->sb_start = calc_dev_sboffset(rdev); 6538 else 6539 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6540 6541 rdev->sectors = rdev->sb_start; 6542 6543 if (test_bit(Faulty, &rdev->flags)) { 6544 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6545 bdevname(rdev->bdev,b), mdname(mddev)); 6546 err = -EINVAL; 6547 goto abort_export; 6548 } 6549 6550 clear_bit(In_sync, &rdev->flags); 6551 rdev->desc_nr = -1; 6552 rdev->saved_raid_disk = -1; 6553 err = bind_rdev_to_array(rdev, mddev); 6554 if (err) 6555 goto abort_export; 6556 6557 /* 6558 * The rest should better be atomic, we can have disk failures 6559 * noticed in interrupt contexts ... 6560 */ 6561 6562 rdev->raid_disk = -1; 6563 6564 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6565 if (!mddev->thread) 6566 md_update_sb(mddev, 1); 6567 /* 6568 * Kick recovery, maybe this spare has to be added to the 6569 * array immediately. 6570 */ 6571 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6572 md_wakeup_thread(mddev->thread); 6573 md_new_event(mddev); 6574 return 0; 6575 6576 abort_export: 6577 export_rdev(rdev); 6578 return err; 6579 } 6580 6581 static int set_bitmap_file(struct mddev *mddev, int fd) 6582 { 6583 int err = 0; 6584 6585 if (mddev->pers) { 6586 if (!mddev->pers->quiesce || !mddev->thread) 6587 return -EBUSY; 6588 if (mddev->recovery || mddev->sync_thread) 6589 return -EBUSY; 6590 /* we should be able to change the bitmap.. */ 6591 } 6592 6593 if (fd >= 0) { 6594 struct inode *inode; 6595 struct file *f; 6596 6597 if (mddev->bitmap || mddev->bitmap_info.file) 6598 return -EEXIST; /* cannot add when bitmap is present */ 6599 f = fget(fd); 6600 6601 if (f == NULL) { 6602 pr_warn("%s: error: failed to get bitmap file\n", 6603 mdname(mddev)); 6604 return -EBADF; 6605 } 6606 6607 inode = f->f_mapping->host; 6608 if (!S_ISREG(inode->i_mode)) { 6609 pr_warn("%s: error: bitmap file must be a regular file\n", 6610 mdname(mddev)); 6611 err = -EBADF; 6612 } else if (!(f->f_mode & FMODE_WRITE)) { 6613 pr_warn("%s: error: bitmap file must open for write\n", 6614 mdname(mddev)); 6615 err = -EBADF; 6616 } else if (atomic_read(&inode->i_writecount) != 1) { 6617 pr_warn("%s: error: bitmap file is already in use\n", 6618 mdname(mddev)); 6619 err = -EBUSY; 6620 } 6621 if (err) { 6622 fput(f); 6623 return err; 6624 } 6625 mddev->bitmap_info.file = f; 6626 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6627 } else if (mddev->bitmap == NULL) 6628 return -ENOENT; /* cannot remove what isn't there */ 6629 err = 0; 6630 if (mddev->pers) { 6631 if (fd >= 0) { 6632 struct bitmap *bitmap; 6633 6634 bitmap = bitmap_create(mddev, -1); 6635 mddev_suspend(mddev); 6636 if (!IS_ERR(bitmap)) { 6637 mddev->bitmap = bitmap; 6638 err = bitmap_load(mddev); 6639 } else 6640 err = PTR_ERR(bitmap); 6641 if (err) { 6642 bitmap_destroy(mddev); 6643 fd = -1; 6644 } 6645 mddev_resume(mddev); 6646 } else if (fd < 0) { 6647 mddev_suspend(mddev); 6648 bitmap_destroy(mddev); 6649 mddev_resume(mddev); 6650 } 6651 } 6652 if (fd < 0) { 6653 struct file *f = mddev->bitmap_info.file; 6654 if (f) { 6655 spin_lock(&mddev->lock); 6656 mddev->bitmap_info.file = NULL; 6657 spin_unlock(&mddev->lock); 6658 fput(f); 6659 } 6660 } 6661 6662 return err; 6663 } 6664 6665 /* 6666 * set_array_info is used two different ways 6667 * The original usage is when creating a new array. 6668 * In this usage, raid_disks is > 0 and it together with 6669 * level, size, not_persistent,layout,chunksize determine the 6670 * shape of the array. 6671 * This will always create an array with a type-0.90.0 superblock. 6672 * The newer usage is when assembling an array. 6673 * In this case raid_disks will be 0, and the major_version field is 6674 * use to determine which style super-blocks are to be found on the devices. 6675 * The minor and patch _version numbers are also kept incase the 6676 * super_block handler wishes to interpret them. 6677 */ 6678 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6679 { 6680 6681 if (info->raid_disks == 0) { 6682 /* just setting version number for superblock loading */ 6683 if (info->major_version < 0 || 6684 info->major_version >= ARRAY_SIZE(super_types) || 6685 super_types[info->major_version].name == NULL) { 6686 /* maybe try to auto-load a module? */ 6687 pr_warn("md: superblock version %d not known\n", 6688 info->major_version); 6689 return -EINVAL; 6690 } 6691 mddev->major_version = info->major_version; 6692 mddev->minor_version = info->minor_version; 6693 mddev->patch_version = info->patch_version; 6694 mddev->persistent = !info->not_persistent; 6695 /* ensure mddev_put doesn't delete this now that there 6696 * is some minimal configuration. 6697 */ 6698 mddev->ctime = ktime_get_real_seconds(); 6699 return 0; 6700 } 6701 mddev->major_version = MD_MAJOR_VERSION; 6702 mddev->minor_version = MD_MINOR_VERSION; 6703 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6704 mddev->ctime = ktime_get_real_seconds(); 6705 6706 mddev->level = info->level; 6707 mddev->clevel[0] = 0; 6708 mddev->dev_sectors = 2 * (sector_t)info->size; 6709 mddev->raid_disks = info->raid_disks; 6710 /* don't set md_minor, it is determined by which /dev/md* was 6711 * openned 6712 */ 6713 if (info->state & (1<<MD_SB_CLEAN)) 6714 mddev->recovery_cp = MaxSector; 6715 else 6716 mddev->recovery_cp = 0; 6717 mddev->persistent = ! info->not_persistent; 6718 mddev->external = 0; 6719 6720 mddev->layout = info->layout; 6721 mddev->chunk_sectors = info->chunk_size >> 9; 6722 6723 if (mddev->persistent) { 6724 mddev->max_disks = MD_SB_DISKS; 6725 mddev->flags = 0; 6726 mddev->sb_flags = 0; 6727 } 6728 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6729 6730 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6731 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6732 mddev->bitmap_info.offset = 0; 6733 6734 mddev->reshape_position = MaxSector; 6735 6736 /* 6737 * Generate a 128 bit UUID 6738 */ 6739 get_random_bytes(mddev->uuid, 16); 6740 6741 mddev->new_level = mddev->level; 6742 mddev->new_chunk_sectors = mddev->chunk_sectors; 6743 mddev->new_layout = mddev->layout; 6744 mddev->delta_disks = 0; 6745 mddev->reshape_backwards = 0; 6746 6747 return 0; 6748 } 6749 6750 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6751 { 6752 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6753 6754 if (mddev->external_size) 6755 return; 6756 6757 mddev->array_sectors = array_sectors; 6758 } 6759 EXPORT_SYMBOL(md_set_array_sectors); 6760 6761 static int update_size(struct mddev *mddev, sector_t num_sectors) 6762 { 6763 struct md_rdev *rdev; 6764 int rv; 6765 int fit = (num_sectors == 0); 6766 sector_t old_dev_sectors = mddev->dev_sectors; 6767 6768 if (mddev->pers->resize == NULL) 6769 return -EINVAL; 6770 /* The "num_sectors" is the number of sectors of each device that 6771 * is used. This can only make sense for arrays with redundancy. 6772 * linear and raid0 always use whatever space is available. We can only 6773 * consider changing this number if no resync or reconstruction is 6774 * happening, and if the new size is acceptable. It must fit before the 6775 * sb_start or, if that is <data_offset, it must fit before the size 6776 * of each device. If num_sectors is zero, we find the largest size 6777 * that fits. 6778 */ 6779 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6780 mddev->sync_thread) 6781 return -EBUSY; 6782 if (mddev->ro) 6783 return -EROFS; 6784 6785 rdev_for_each(rdev, mddev) { 6786 sector_t avail = rdev->sectors; 6787 6788 if (fit && (num_sectors == 0 || num_sectors > avail)) 6789 num_sectors = avail; 6790 if (avail < num_sectors) 6791 return -ENOSPC; 6792 } 6793 rv = mddev->pers->resize(mddev, num_sectors); 6794 if (!rv) { 6795 if (mddev_is_clustered(mddev)) 6796 md_cluster_ops->update_size(mddev, old_dev_sectors); 6797 else if (mddev->queue) { 6798 set_capacity(mddev->gendisk, mddev->array_sectors); 6799 revalidate_disk(mddev->gendisk); 6800 } 6801 } 6802 return rv; 6803 } 6804 6805 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6806 { 6807 int rv; 6808 struct md_rdev *rdev; 6809 /* change the number of raid disks */ 6810 if (mddev->pers->check_reshape == NULL) 6811 return -EINVAL; 6812 if (mddev->ro) 6813 return -EROFS; 6814 if (raid_disks <= 0 || 6815 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6816 return -EINVAL; 6817 if (mddev->sync_thread || 6818 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6819 mddev->reshape_position != MaxSector) 6820 return -EBUSY; 6821 6822 rdev_for_each(rdev, mddev) { 6823 if (mddev->raid_disks < raid_disks && 6824 rdev->data_offset < rdev->new_data_offset) 6825 return -EINVAL; 6826 if (mddev->raid_disks > raid_disks && 6827 rdev->data_offset > rdev->new_data_offset) 6828 return -EINVAL; 6829 } 6830 6831 mddev->delta_disks = raid_disks - mddev->raid_disks; 6832 if (mddev->delta_disks < 0) 6833 mddev->reshape_backwards = 1; 6834 else if (mddev->delta_disks > 0) 6835 mddev->reshape_backwards = 0; 6836 6837 rv = mddev->pers->check_reshape(mddev); 6838 if (rv < 0) { 6839 mddev->delta_disks = 0; 6840 mddev->reshape_backwards = 0; 6841 } 6842 return rv; 6843 } 6844 6845 /* 6846 * update_array_info is used to change the configuration of an 6847 * on-line array. 6848 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6849 * fields in the info are checked against the array. 6850 * Any differences that cannot be handled will cause an error. 6851 * Normally, only one change can be managed at a time. 6852 */ 6853 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6854 { 6855 int rv = 0; 6856 int cnt = 0; 6857 int state = 0; 6858 6859 /* calculate expected state,ignoring low bits */ 6860 if (mddev->bitmap && mddev->bitmap_info.offset) 6861 state |= (1 << MD_SB_BITMAP_PRESENT); 6862 6863 if (mddev->major_version != info->major_version || 6864 mddev->minor_version != info->minor_version || 6865 /* mddev->patch_version != info->patch_version || */ 6866 mddev->ctime != info->ctime || 6867 mddev->level != info->level || 6868 /* mddev->layout != info->layout || */ 6869 mddev->persistent != !info->not_persistent || 6870 mddev->chunk_sectors != info->chunk_size >> 9 || 6871 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6872 ((state^info->state) & 0xfffffe00) 6873 ) 6874 return -EINVAL; 6875 /* Check there is only one change */ 6876 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6877 cnt++; 6878 if (mddev->raid_disks != info->raid_disks) 6879 cnt++; 6880 if (mddev->layout != info->layout) 6881 cnt++; 6882 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6883 cnt++; 6884 if (cnt == 0) 6885 return 0; 6886 if (cnt > 1) 6887 return -EINVAL; 6888 6889 if (mddev->layout != info->layout) { 6890 /* Change layout 6891 * we don't need to do anything at the md level, the 6892 * personality will take care of it all. 6893 */ 6894 if (mddev->pers->check_reshape == NULL) 6895 return -EINVAL; 6896 else { 6897 mddev->new_layout = info->layout; 6898 rv = mddev->pers->check_reshape(mddev); 6899 if (rv) 6900 mddev->new_layout = mddev->layout; 6901 return rv; 6902 } 6903 } 6904 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6905 rv = update_size(mddev, (sector_t)info->size * 2); 6906 6907 if (mddev->raid_disks != info->raid_disks) 6908 rv = update_raid_disks(mddev, info->raid_disks); 6909 6910 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6911 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6912 rv = -EINVAL; 6913 goto err; 6914 } 6915 if (mddev->recovery || mddev->sync_thread) { 6916 rv = -EBUSY; 6917 goto err; 6918 } 6919 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6920 struct bitmap *bitmap; 6921 /* add the bitmap */ 6922 if (mddev->bitmap) { 6923 rv = -EEXIST; 6924 goto err; 6925 } 6926 if (mddev->bitmap_info.default_offset == 0) { 6927 rv = -EINVAL; 6928 goto err; 6929 } 6930 mddev->bitmap_info.offset = 6931 mddev->bitmap_info.default_offset; 6932 mddev->bitmap_info.space = 6933 mddev->bitmap_info.default_space; 6934 bitmap = bitmap_create(mddev, -1); 6935 mddev_suspend(mddev); 6936 if (!IS_ERR(bitmap)) { 6937 mddev->bitmap = bitmap; 6938 rv = bitmap_load(mddev); 6939 } else 6940 rv = PTR_ERR(bitmap); 6941 if (rv) 6942 bitmap_destroy(mddev); 6943 mddev_resume(mddev); 6944 } else { 6945 /* remove the bitmap */ 6946 if (!mddev->bitmap) { 6947 rv = -ENOENT; 6948 goto err; 6949 } 6950 if (mddev->bitmap->storage.file) { 6951 rv = -EINVAL; 6952 goto err; 6953 } 6954 if (mddev->bitmap_info.nodes) { 6955 /* hold PW on all the bitmap lock */ 6956 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6957 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 6958 rv = -EPERM; 6959 md_cluster_ops->unlock_all_bitmaps(mddev); 6960 goto err; 6961 } 6962 6963 mddev->bitmap_info.nodes = 0; 6964 md_cluster_ops->leave(mddev); 6965 } 6966 mddev_suspend(mddev); 6967 bitmap_destroy(mddev); 6968 mddev_resume(mddev); 6969 mddev->bitmap_info.offset = 0; 6970 } 6971 } 6972 md_update_sb(mddev, 1); 6973 return rv; 6974 err: 6975 return rv; 6976 } 6977 6978 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6979 { 6980 struct md_rdev *rdev; 6981 int err = 0; 6982 6983 if (mddev->pers == NULL) 6984 return -ENODEV; 6985 6986 rcu_read_lock(); 6987 rdev = find_rdev_rcu(mddev, dev); 6988 if (!rdev) 6989 err = -ENODEV; 6990 else { 6991 md_error(mddev, rdev); 6992 if (!test_bit(Faulty, &rdev->flags)) 6993 err = -EBUSY; 6994 } 6995 rcu_read_unlock(); 6996 return err; 6997 } 6998 6999 /* 7000 * We have a problem here : there is no easy way to give a CHS 7001 * virtual geometry. We currently pretend that we have a 2 heads 7002 * 4 sectors (with a BIG number of cylinders...). This drives 7003 * dosfs just mad... ;-) 7004 */ 7005 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7006 { 7007 struct mddev *mddev = bdev->bd_disk->private_data; 7008 7009 geo->heads = 2; 7010 geo->sectors = 4; 7011 geo->cylinders = mddev->array_sectors / 8; 7012 return 0; 7013 } 7014 7015 static inline bool md_ioctl_valid(unsigned int cmd) 7016 { 7017 switch (cmd) { 7018 case ADD_NEW_DISK: 7019 case BLKROSET: 7020 case GET_ARRAY_INFO: 7021 case GET_BITMAP_FILE: 7022 case GET_DISK_INFO: 7023 case HOT_ADD_DISK: 7024 case HOT_REMOVE_DISK: 7025 case RAID_AUTORUN: 7026 case RAID_VERSION: 7027 case RESTART_ARRAY_RW: 7028 case RUN_ARRAY: 7029 case SET_ARRAY_INFO: 7030 case SET_BITMAP_FILE: 7031 case SET_DISK_FAULTY: 7032 case STOP_ARRAY: 7033 case STOP_ARRAY_RO: 7034 case CLUSTERED_DISK_NACK: 7035 return true; 7036 default: 7037 return false; 7038 } 7039 } 7040 7041 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7042 unsigned int cmd, unsigned long arg) 7043 { 7044 int err = 0; 7045 void __user *argp = (void __user *)arg; 7046 struct mddev *mddev = NULL; 7047 int ro; 7048 bool did_set_md_closing = false; 7049 7050 if (!md_ioctl_valid(cmd)) 7051 return -ENOTTY; 7052 7053 switch (cmd) { 7054 case RAID_VERSION: 7055 case GET_ARRAY_INFO: 7056 case GET_DISK_INFO: 7057 break; 7058 default: 7059 if (!capable(CAP_SYS_ADMIN)) 7060 return -EACCES; 7061 } 7062 7063 /* 7064 * Commands dealing with the RAID driver but not any 7065 * particular array: 7066 */ 7067 switch (cmd) { 7068 case RAID_VERSION: 7069 err = get_version(argp); 7070 goto out; 7071 7072 #ifndef MODULE 7073 case RAID_AUTORUN: 7074 err = 0; 7075 autostart_arrays(arg); 7076 goto out; 7077 #endif 7078 default:; 7079 } 7080 7081 /* 7082 * Commands creating/starting a new array: 7083 */ 7084 7085 mddev = bdev->bd_disk->private_data; 7086 7087 if (!mddev) { 7088 BUG(); 7089 goto out; 7090 } 7091 7092 /* Some actions do not requires the mutex */ 7093 switch (cmd) { 7094 case GET_ARRAY_INFO: 7095 if (!mddev->raid_disks && !mddev->external) 7096 err = -ENODEV; 7097 else 7098 err = get_array_info(mddev, argp); 7099 goto out; 7100 7101 case GET_DISK_INFO: 7102 if (!mddev->raid_disks && !mddev->external) 7103 err = -ENODEV; 7104 else 7105 err = get_disk_info(mddev, argp); 7106 goto out; 7107 7108 case SET_DISK_FAULTY: 7109 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7110 goto out; 7111 7112 case GET_BITMAP_FILE: 7113 err = get_bitmap_file(mddev, argp); 7114 goto out; 7115 7116 } 7117 7118 if (cmd == ADD_NEW_DISK) 7119 /* need to ensure md_delayed_delete() has completed */ 7120 flush_workqueue(md_misc_wq); 7121 7122 if (cmd == HOT_REMOVE_DISK) 7123 /* need to ensure recovery thread has run */ 7124 wait_event_interruptible_timeout(mddev->sb_wait, 7125 !test_bit(MD_RECOVERY_NEEDED, 7126 &mddev->recovery), 7127 msecs_to_jiffies(5000)); 7128 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7129 /* Need to flush page cache, and ensure no-one else opens 7130 * and writes 7131 */ 7132 mutex_lock(&mddev->open_mutex); 7133 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7134 mutex_unlock(&mddev->open_mutex); 7135 err = -EBUSY; 7136 goto out; 7137 } 7138 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7139 set_bit(MD_CLOSING, &mddev->flags); 7140 did_set_md_closing = true; 7141 mutex_unlock(&mddev->open_mutex); 7142 sync_blockdev(bdev); 7143 } 7144 err = mddev_lock(mddev); 7145 if (err) { 7146 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7147 err, cmd); 7148 goto out; 7149 } 7150 7151 if (cmd == SET_ARRAY_INFO) { 7152 mdu_array_info_t info; 7153 if (!arg) 7154 memset(&info, 0, sizeof(info)); 7155 else if (copy_from_user(&info, argp, sizeof(info))) { 7156 err = -EFAULT; 7157 goto unlock; 7158 } 7159 if (mddev->pers) { 7160 err = update_array_info(mddev, &info); 7161 if (err) { 7162 pr_warn("md: couldn't update array info. %d\n", err); 7163 goto unlock; 7164 } 7165 goto unlock; 7166 } 7167 if (!list_empty(&mddev->disks)) { 7168 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7169 err = -EBUSY; 7170 goto unlock; 7171 } 7172 if (mddev->raid_disks) { 7173 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7174 err = -EBUSY; 7175 goto unlock; 7176 } 7177 err = set_array_info(mddev, &info); 7178 if (err) { 7179 pr_warn("md: couldn't set array info. %d\n", err); 7180 goto unlock; 7181 } 7182 goto unlock; 7183 } 7184 7185 /* 7186 * Commands querying/configuring an existing array: 7187 */ 7188 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7189 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7190 if ((!mddev->raid_disks && !mddev->external) 7191 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7192 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7193 && cmd != GET_BITMAP_FILE) { 7194 err = -ENODEV; 7195 goto unlock; 7196 } 7197 7198 /* 7199 * Commands even a read-only array can execute: 7200 */ 7201 switch (cmd) { 7202 case RESTART_ARRAY_RW: 7203 err = restart_array(mddev); 7204 goto unlock; 7205 7206 case STOP_ARRAY: 7207 err = do_md_stop(mddev, 0, bdev); 7208 goto unlock; 7209 7210 case STOP_ARRAY_RO: 7211 err = md_set_readonly(mddev, bdev); 7212 goto unlock; 7213 7214 case HOT_REMOVE_DISK: 7215 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7216 goto unlock; 7217 7218 case ADD_NEW_DISK: 7219 /* We can support ADD_NEW_DISK on read-only arrays 7220 * only if we are re-adding a preexisting device. 7221 * So require mddev->pers and MD_DISK_SYNC. 7222 */ 7223 if (mddev->pers) { 7224 mdu_disk_info_t info; 7225 if (copy_from_user(&info, argp, sizeof(info))) 7226 err = -EFAULT; 7227 else if (!(info.state & (1<<MD_DISK_SYNC))) 7228 /* Need to clear read-only for this */ 7229 break; 7230 else 7231 err = add_new_disk(mddev, &info); 7232 goto unlock; 7233 } 7234 break; 7235 7236 case BLKROSET: 7237 if (get_user(ro, (int __user *)(arg))) { 7238 err = -EFAULT; 7239 goto unlock; 7240 } 7241 err = -EINVAL; 7242 7243 /* if the bdev is going readonly the value of mddev->ro 7244 * does not matter, no writes are coming 7245 */ 7246 if (ro) 7247 goto unlock; 7248 7249 /* are we are already prepared for writes? */ 7250 if (mddev->ro != 1) 7251 goto unlock; 7252 7253 /* transitioning to readauto need only happen for 7254 * arrays that call md_write_start 7255 */ 7256 if (mddev->pers) { 7257 err = restart_array(mddev); 7258 if (err == 0) { 7259 mddev->ro = 2; 7260 set_disk_ro(mddev->gendisk, 0); 7261 } 7262 } 7263 goto unlock; 7264 } 7265 7266 /* 7267 * The remaining ioctls are changing the state of the 7268 * superblock, so we do not allow them on read-only arrays. 7269 */ 7270 if (mddev->ro && mddev->pers) { 7271 if (mddev->ro == 2) { 7272 mddev->ro = 0; 7273 sysfs_notify_dirent_safe(mddev->sysfs_state); 7274 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7275 /* mddev_unlock will wake thread */ 7276 /* If a device failed while we were read-only, we 7277 * need to make sure the metadata is updated now. 7278 */ 7279 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7280 mddev_unlock(mddev); 7281 wait_event(mddev->sb_wait, 7282 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7283 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7284 mddev_lock_nointr(mddev); 7285 } 7286 } else { 7287 err = -EROFS; 7288 goto unlock; 7289 } 7290 } 7291 7292 switch (cmd) { 7293 case ADD_NEW_DISK: 7294 { 7295 mdu_disk_info_t info; 7296 if (copy_from_user(&info, argp, sizeof(info))) 7297 err = -EFAULT; 7298 else 7299 err = add_new_disk(mddev, &info); 7300 goto unlock; 7301 } 7302 7303 case CLUSTERED_DISK_NACK: 7304 if (mddev_is_clustered(mddev)) 7305 md_cluster_ops->new_disk_ack(mddev, false); 7306 else 7307 err = -EINVAL; 7308 goto unlock; 7309 7310 case HOT_ADD_DISK: 7311 err = hot_add_disk(mddev, new_decode_dev(arg)); 7312 goto unlock; 7313 7314 case RUN_ARRAY: 7315 err = do_md_run(mddev); 7316 goto unlock; 7317 7318 case SET_BITMAP_FILE: 7319 err = set_bitmap_file(mddev, (int)arg); 7320 goto unlock; 7321 7322 default: 7323 err = -EINVAL; 7324 goto unlock; 7325 } 7326 7327 unlock: 7328 if (mddev->hold_active == UNTIL_IOCTL && 7329 err != -EINVAL) 7330 mddev->hold_active = 0; 7331 mddev_unlock(mddev); 7332 out: 7333 if(did_set_md_closing) 7334 clear_bit(MD_CLOSING, &mddev->flags); 7335 return err; 7336 } 7337 #ifdef CONFIG_COMPAT 7338 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7339 unsigned int cmd, unsigned long arg) 7340 { 7341 switch (cmd) { 7342 case HOT_REMOVE_DISK: 7343 case HOT_ADD_DISK: 7344 case SET_DISK_FAULTY: 7345 case SET_BITMAP_FILE: 7346 /* These take in integer arg, do not convert */ 7347 break; 7348 default: 7349 arg = (unsigned long)compat_ptr(arg); 7350 break; 7351 } 7352 7353 return md_ioctl(bdev, mode, cmd, arg); 7354 } 7355 #endif /* CONFIG_COMPAT */ 7356 7357 static int md_open(struct block_device *bdev, fmode_t mode) 7358 { 7359 /* 7360 * Succeed if we can lock the mddev, which confirms that 7361 * it isn't being stopped right now. 7362 */ 7363 struct mddev *mddev = mddev_find(bdev->bd_dev); 7364 int err; 7365 7366 if (!mddev) 7367 return -ENODEV; 7368 7369 if (mddev->gendisk != bdev->bd_disk) { 7370 /* we are racing with mddev_put which is discarding this 7371 * bd_disk. 7372 */ 7373 mddev_put(mddev); 7374 /* Wait until bdev->bd_disk is definitely gone */ 7375 flush_workqueue(md_misc_wq); 7376 /* Then retry the open from the top */ 7377 return -ERESTARTSYS; 7378 } 7379 BUG_ON(mddev != bdev->bd_disk->private_data); 7380 7381 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7382 goto out; 7383 7384 if (test_bit(MD_CLOSING, &mddev->flags)) { 7385 mutex_unlock(&mddev->open_mutex); 7386 err = -ENODEV; 7387 goto out; 7388 } 7389 7390 err = 0; 7391 atomic_inc(&mddev->openers); 7392 mutex_unlock(&mddev->open_mutex); 7393 7394 check_disk_change(bdev); 7395 out: 7396 if (err) 7397 mddev_put(mddev); 7398 return err; 7399 } 7400 7401 static void md_release(struct gendisk *disk, fmode_t mode) 7402 { 7403 struct mddev *mddev = disk->private_data; 7404 7405 BUG_ON(!mddev); 7406 atomic_dec(&mddev->openers); 7407 mddev_put(mddev); 7408 } 7409 7410 static int md_media_changed(struct gendisk *disk) 7411 { 7412 struct mddev *mddev = disk->private_data; 7413 7414 return mddev->changed; 7415 } 7416 7417 static int md_revalidate(struct gendisk *disk) 7418 { 7419 struct mddev *mddev = disk->private_data; 7420 7421 mddev->changed = 0; 7422 return 0; 7423 } 7424 static const struct block_device_operations md_fops = 7425 { 7426 .owner = THIS_MODULE, 7427 .open = md_open, 7428 .release = md_release, 7429 .ioctl = md_ioctl, 7430 #ifdef CONFIG_COMPAT 7431 .compat_ioctl = md_compat_ioctl, 7432 #endif 7433 .getgeo = md_getgeo, 7434 .media_changed = md_media_changed, 7435 .revalidate_disk= md_revalidate, 7436 }; 7437 7438 static int md_thread(void *arg) 7439 { 7440 struct md_thread *thread = arg; 7441 7442 /* 7443 * md_thread is a 'system-thread', it's priority should be very 7444 * high. We avoid resource deadlocks individually in each 7445 * raid personality. (RAID5 does preallocation) We also use RR and 7446 * the very same RT priority as kswapd, thus we will never get 7447 * into a priority inversion deadlock. 7448 * 7449 * we definitely have to have equal or higher priority than 7450 * bdflush, otherwise bdflush will deadlock if there are too 7451 * many dirty RAID5 blocks. 7452 */ 7453 7454 allow_signal(SIGKILL); 7455 while (!kthread_should_stop()) { 7456 7457 /* We need to wait INTERRUPTIBLE so that 7458 * we don't add to the load-average. 7459 * That means we need to be sure no signals are 7460 * pending 7461 */ 7462 if (signal_pending(current)) 7463 flush_signals(current); 7464 7465 wait_event_interruptible_timeout 7466 (thread->wqueue, 7467 test_bit(THREAD_WAKEUP, &thread->flags) 7468 || kthread_should_stop() || kthread_should_park(), 7469 thread->timeout); 7470 7471 clear_bit(THREAD_WAKEUP, &thread->flags); 7472 if (kthread_should_park()) 7473 kthread_parkme(); 7474 if (!kthread_should_stop()) 7475 thread->run(thread); 7476 } 7477 7478 return 0; 7479 } 7480 7481 void md_wakeup_thread(struct md_thread *thread) 7482 { 7483 if (thread) { 7484 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7485 set_bit(THREAD_WAKEUP, &thread->flags); 7486 wake_up(&thread->wqueue); 7487 } 7488 } 7489 EXPORT_SYMBOL(md_wakeup_thread); 7490 7491 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7492 struct mddev *mddev, const char *name) 7493 { 7494 struct md_thread *thread; 7495 7496 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7497 if (!thread) 7498 return NULL; 7499 7500 init_waitqueue_head(&thread->wqueue); 7501 7502 thread->run = run; 7503 thread->mddev = mddev; 7504 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7505 thread->tsk = kthread_run(md_thread, thread, 7506 "%s_%s", 7507 mdname(thread->mddev), 7508 name); 7509 if (IS_ERR(thread->tsk)) { 7510 kfree(thread); 7511 return NULL; 7512 } 7513 return thread; 7514 } 7515 EXPORT_SYMBOL(md_register_thread); 7516 7517 void md_unregister_thread(struct md_thread **threadp) 7518 { 7519 struct md_thread *thread = *threadp; 7520 if (!thread) 7521 return; 7522 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7523 /* Locking ensures that mddev_unlock does not wake_up a 7524 * non-existent thread 7525 */ 7526 spin_lock(&pers_lock); 7527 *threadp = NULL; 7528 spin_unlock(&pers_lock); 7529 7530 kthread_stop(thread->tsk); 7531 kfree(thread); 7532 } 7533 EXPORT_SYMBOL(md_unregister_thread); 7534 7535 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7536 { 7537 if (!rdev || test_bit(Faulty, &rdev->flags)) 7538 return; 7539 7540 if (!mddev->pers || !mddev->pers->error_handler) 7541 return; 7542 mddev->pers->error_handler(mddev,rdev); 7543 if (mddev->degraded) 7544 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7545 sysfs_notify_dirent_safe(rdev->sysfs_state); 7546 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7547 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7548 md_wakeup_thread(mddev->thread); 7549 if (mddev->event_work.func) 7550 queue_work(md_misc_wq, &mddev->event_work); 7551 md_new_event(mddev); 7552 } 7553 EXPORT_SYMBOL(md_error); 7554 7555 /* seq_file implementation /proc/mdstat */ 7556 7557 static void status_unused(struct seq_file *seq) 7558 { 7559 int i = 0; 7560 struct md_rdev *rdev; 7561 7562 seq_printf(seq, "unused devices: "); 7563 7564 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7565 char b[BDEVNAME_SIZE]; 7566 i++; 7567 seq_printf(seq, "%s ", 7568 bdevname(rdev->bdev,b)); 7569 } 7570 if (!i) 7571 seq_printf(seq, "<none>"); 7572 7573 seq_printf(seq, "\n"); 7574 } 7575 7576 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7577 { 7578 sector_t max_sectors, resync, res; 7579 unsigned long dt, db; 7580 sector_t rt; 7581 int scale; 7582 unsigned int per_milli; 7583 7584 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7585 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7586 max_sectors = mddev->resync_max_sectors; 7587 else 7588 max_sectors = mddev->dev_sectors; 7589 7590 resync = mddev->curr_resync; 7591 if (resync <= 3) { 7592 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7593 /* Still cleaning up */ 7594 resync = max_sectors; 7595 } else 7596 resync -= atomic_read(&mddev->recovery_active); 7597 7598 if (resync == 0) { 7599 if (mddev->recovery_cp < MaxSector) { 7600 seq_printf(seq, "\tresync=PENDING"); 7601 return 1; 7602 } 7603 return 0; 7604 } 7605 if (resync < 3) { 7606 seq_printf(seq, "\tresync=DELAYED"); 7607 return 1; 7608 } 7609 7610 WARN_ON(max_sectors == 0); 7611 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7612 * in a sector_t, and (max_sectors>>scale) will fit in a 7613 * u32, as those are the requirements for sector_div. 7614 * Thus 'scale' must be at least 10 7615 */ 7616 scale = 10; 7617 if (sizeof(sector_t) > sizeof(unsigned long)) { 7618 while ( max_sectors/2 > (1ULL<<(scale+32))) 7619 scale++; 7620 } 7621 res = (resync>>scale)*1000; 7622 sector_div(res, (u32)((max_sectors>>scale)+1)); 7623 7624 per_milli = res; 7625 { 7626 int i, x = per_milli/50, y = 20-x; 7627 seq_printf(seq, "["); 7628 for (i = 0; i < x; i++) 7629 seq_printf(seq, "="); 7630 seq_printf(seq, ">"); 7631 for (i = 0; i < y; i++) 7632 seq_printf(seq, "."); 7633 seq_printf(seq, "] "); 7634 } 7635 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7636 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7637 "reshape" : 7638 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7639 "check" : 7640 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7641 "resync" : "recovery"))), 7642 per_milli/10, per_milli % 10, 7643 (unsigned long long) resync/2, 7644 (unsigned long long) max_sectors/2); 7645 7646 /* 7647 * dt: time from mark until now 7648 * db: blocks written from mark until now 7649 * rt: remaining time 7650 * 7651 * rt is a sector_t, so could be 32bit or 64bit. 7652 * So we divide before multiply in case it is 32bit and close 7653 * to the limit. 7654 * We scale the divisor (db) by 32 to avoid losing precision 7655 * near the end of resync when the number of remaining sectors 7656 * is close to 'db'. 7657 * We then divide rt by 32 after multiplying by db to compensate. 7658 * The '+1' avoids division by zero if db is very small. 7659 */ 7660 dt = ((jiffies - mddev->resync_mark) / HZ); 7661 if (!dt) dt++; 7662 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7663 - mddev->resync_mark_cnt; 7664 7665 rt = max_sectors - resync; /* number of remaining sectors */ 7666 sector_div(rt, db/32+1); 7667 rt *= dt; 7668 rt >>= 5; 7669 7670 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7671 ((unsigned long)rt % 60)/6); 7672 7673 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7674 return 1; 7675 } 7676 7677 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7678 { 7679 struct list_head *tmp; 7680 loff_t l = *pos; 7681 struct mddev *mddev; 7682 7683 if (l >= 0x10000) 7684 return NULL; 7685 if (!l--) 7686 /* header */ 7687 return (void*)1; 7688 7689 spin_lock(&all_mddevs_lock); 7690 list_for_each(tmp,&all_mddevs) 7691 if (!l--) { 7692 mddev = list_entry(tmp, struct mddev, all_mddevs); 7693 mddev_get(mddev); 7694 spin_unlock(&all_mddevs_lock); 7695 return mddev; 7696 } 7697 spin_unlock(&all_mddevs_lock); 7698 if (!l--) 7699 return (void*)2;/* tail */ 7700 return NULL; 7701 } 7702 7703 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7704 { 7705 struct list_head *tmp; 7706 struct mddev *next_mddev, *mddev = v; 7707 7708 ++*pos; 7709 if (v == (void*)2) 7710 return NULL; 7711 7712 spin_lock(&all_mddevs_lock); 7713 if (v == (void*)1) 7714 tmp = all_mddevs.next; 7715 else 7716 tmp = mddev->all_mddevs.next; 7717 if (tmp != &all_mddevs) 7718 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7719 else { 7720 next_mddev = (void*)2; 7721 *pos = 0x10000; 7722 } 7723 spin_unlock(&all_mddevs_lock); 7724 7725 if (v != (void*)1) 7726 mddev_put(mddev); 7727 return next_mddev; 7728 7729 } 7730 7731 static void md_seq_stop(struct seq_file *seq, void *v) 7732 { 7733 struct mddev *mddev = v; 7734 7735 if (mddev && v != (void*)1 && v != (void*)2) 7736 mddev_put(mddev); 7737 } 7738 7739 static int md_seq_show(struct seq_file *seq, void *v) 7740 { 7741 struct mddev *mddev = v; 7742 sector_t sectors; 7743 struct md_rdev *rdev; 7744 7745 if (v == (void*)1) { 7746 struct md_personality *pers; 7747 seq_printf(seq, "Personalities : "); 7748 spin_lock(&pers_lock); 7749 list_for_each_entry(pers, &pers_list, list) 7750 seq_printf(seq, "[%s] ", pers->name); 7751 7752 spin_unlock(&pers_lock); 7753 seq_printf(seq, "\n"); 7754 seq->poll_event = atomic_read(&md_event_count); 7755 return 0; 7756 } 7757 if (v == (void*)2) { 7758 status_unused(seq); 7759 return 0; 7760 } 7761 7762 spin_lock(&mddev->lock); 7763 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7764 seq_printf(seq, "%s : %sactive", mdname(mddev), 7765 mddev->pers ? "" : "in"); 7766 if (mddev->pers) { 7767 if (mddev->ro==1) 7768 seq_printf(seq, " (read-only)"); 7769 if (mddev->ro==2) 7770 seq_printf(seq, " (auto-read-only)"); 7771 seq_printf(seq, " %s", mddev->pers->name); 7772 } 7773 7774 sectors = 0; 7775 rcu_read_lock(); 7776 rdev_for_each_rcu(rdev, mddev) { 7777 char b[BDEVNAME_SIZE]; 7778 seq_printf(seq, " %s[%d]", 7779 bdevname(rdev->bdev,b), rdev->desc_nr); 7780 if (test_bit(WriteMostly, &rdev->flags)) 7781 seq_printf(seq, "(W)"); 7782 if (test_bit(Journal, &rdev->flags)) 7783 seq_printf(seq, "(J)"); 7784 if (test_bit(Faulty, &rdev->flags)) { 7785 seq_printf(seq, "(F)"); 7786 continue; 7787 } 7788 if (rdev->raid_disk < 0) 7789 seq_printf(seq, "(S)"); /* spare */ 7790 if (test_bit(Replacement, &rdev->flags)) 7791 seq_printf(seq, "(R)"); 7792 sectors += rdev->sectors; 7793 } 7794 rcu_read_unlock(); 7795 7796 if (!list_empty(&mddev->disks)) { 7797 if (mddev->pers) 7798 seq_printf(seq, "\n %llu blocks", 7799 (unsigned long long) 7800 mddev->array_sectors / 2); 7801 else 7802 seq_printf(seq, "\n %llu blocks", 7803 (unsigned long long)sectors / 2); 7804 } 7805 if (mddev->persistent) { 7806 if (mddev->major_version != 0 || 7807 mddev->minor_version != 90) { 7808 seq_printf(seq," super %d.%d", 7809 mddev->major_version, 7810 mddev->minor_version); 7811 } 7812 } else if (mddev->external) 7813 seq_printf(seq, " super external:%s", 7814 mddev->metadata_type); 7815 else 7816 seq_printf(seq, " super non-persistent"); 7817 7818 if (mddev->pers) { 7819 mddev->pers->status(seq, mddev); 7820 seq_printf(seq, "\n "); 7821 if (mddev->pers->sync_request) { 7822 if (status_resync(seq, mddev)) 7823 seq_printf(seq, "\n "); 7824 } 7825 } else 7826 seq_printf(seq, "\n "); 7827 7828 bitmap_status(seq, mddev->bitmap); 7829 7830 seq_printf(seq, "\n"); 7831 } 7832 spin_unlock(&mddev->lock); 7833 7834 return 0; 7835 } 7836 7837 static const struct seq_operations md_seq_ops = { 7838 .start = md_seq_start, 7839 .next = md_seq_next, 7840 .stop = md_seq_stop, 7841 .show = md_seq_show, 7842 }; 7843 7844 static int md_seq_open(struct inode *inode, struct file *file) 7845 { 7846 struct seq_file *seq; 7847 int error; 7848 7849 error = seq_open(file, &md_seq_ops); 7850 if (error) 7851 return error; 7852 7853 seq = file->private_data; 7854 seq->poll_event = atomic_read(&md_event_count); 7855 return error; 7856 } 7857 7858 static int md_unloading; 7859 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7860 { 7861 struct seq_file *seq = filp->private_data; 7862 int mask; 7863 7864 if (md_unloading) 7865 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7866 poll_wait(filp, &md_event_waiters, wait); 7867 7868 /* always allow read */ 7869 mask = POLLIN | POLLRDNORM; 7870 7871 if (seq->poll_event != atomic_read(&md_event_count)) 7872 mask |= POLLERR | POLLPRI; 7873 return mask; 7874 } 7875 7876 static const struct file_operations md_seq_fops = { 7877 .owner = THIS_MODULE, 7878 .open = md_seq_open, 7879 .read = seq_read, 7880 .llseek = seq_lseek, 7881 .release = seq_release, 7882 .poll = mdstat_poll, 7883 }; 7884 7885 int register_md_personality(struct md_personality *p) 7886 { 7887 pr_debug("md: %s personality registered for level %d\n", 7888 p->name, p->level); 7889 spin_lock(&pers_lock); 7890 list_add_tail(&p->list, &pers_list); 7891 spin_unlock(&pers_lock); 7892 return 0; 7893 } 7894 EXPORT_SYMBOL(register_md_personality); 7895 7896 int unregister_md_personality(struct md_personality *p) 7897 { 7898 pr_debug("md: %s personality unregistered\n", p->name); 7899 spin_lock(&pers_lock); 7900 list_del_init(&p->list); 7901 spin_unlock(&pers_lock); 7902 return 0; 7903 } 7904 EXPORT_SYMBOL(unregister_md_personality); 7905 7906 int register_md_cluster_operations(struct md_cluster_operations *ops, 7907 struct module *module) 7908 { 7909 int ret = 0; 7910 spin_lock(&pers_lock); 7911 if (md_cluster_ops != NULL) 7912 ret = -EALREADY; 7913 else { 7914 md_cluster_ops = ops; 7915 md_cluster_mod = module; 7916 } 7917 spin_unlock(&pers_lock); 7918 return ret; 7919 } 7920 EXPORT_SYMBOL(register_md_cluster_operations); 7921 7922 int unregister_md_cluster_operations(void) 7923 { 7924 spin_lock(&pers_lock); 7925 md_cluster_ops = NULL; 7926 spin_unlock(&pers_lock); 7927 return 0; 7928 } 7929 EXPORT_SYMBOL(unregister_md_cluster_operations); 7930 7931 int md_setup_cluster(struct mddev *mddev, int nodes) 7932 { 7933 if (!md_cluster_ops) 7934 request_module("md-cluster"); 7935 spin_lock(&pers_lock); 7936 /* ensure module won't be unloaded */ 7937 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7938 pr_warn("can't find md-cluster module or get it's reference.\n"); 7939 spin_unlock(&pers_lock); 7940 return -ENOENT; 7941 } 7942 spin_unlock(&pers_lock); 7943 7944 return md_cluster_ops->join(mddev, nodes); 7945 } 7946 7947 void md_cluster_stop(struct mddev *mddev) 7948 { 7949 if (!md_cluster_ops) 7950 return; 7951 md_cluster_ops->leave(mddev); 7952 module_put(md_cluster_mod); 7953 } 7954 7955 static int is_mddev_idle(struct mddev *mddev, int init) 7956 { 7957 struct md_rdev *rdev; 7958 int idle; 7959 int curr_events; 7960 7961 idle = 1; 7962 rcu_read_lock(); 7963 rdev_for_each_rcu(rdev, mddev) { 7964 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7965 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7966 (int)part_stat_read(&disk->part0, sectors[1]) - 7967 atomic_read(&disk->sync_io); 7968 /* sync IO will cause sync_io to increase before the disk_stats 7969 * as sync_io is counted when a request starts, and 7970 * disk_stats is counted when it completes. 7971 * So resync activity will cause curr_events to be smaller than 7972 * when there was no such activity. 7973 * non-sync IO will cause disk_stat to increase without 7974 * increasing sync_io so curr_events will (eventually) 7975 * be larger than it was before. Once it becomes 7976 * substantially larger, the test below will cause 7977 * the array to appear non-idle, and resync will slow 7978 * down. 7979 * If there is a lot of outstanding resync activity when 7980 * we set last_event to curr_events, then all that activity 7981 * completing might cause the array to appear non-idle 7982 * and resync will be slowed down even though there might 7983 * not have been non-resync activity. This will only 7984 * happen once though. 'last_events' will soon reflect 7985 * the state where there is little or no outstanding 7986 * resync requests, and further resync activity will 7987 * always make curr_events less than last_events. 7988 * 7989 */ 7990 if (init || curr_events - rdev->last_events > 64) { 7991 rdev->last_events = curr_events; 7992 idle = 0; 7993 } 7994 } 7995 rcu_read_unlock(); 7996 return idle; 7997 } 7998 7999 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8000 { 8001 /* another "blocks" (512byte) blocks have been synced */ 8002 atomic_sub(blocks, &mddev->recovery_active); 8003 wake_up(&mddev->recovery_wait); 8004 if (!ok) { 8005 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8006 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8007 md_wakeup_thread(mddev->thread); 8008 // stop recovery, signal do_sync .... 8009 } 8010 } 8011 EXPORT_SYMBOL(md_done_sync); 8012 8013 /* md_write_start(mddev, bi) 8014 * If we need to update some array metadata (e.g. 'active' flag 8015 * in superblock) before writing, schedule a superblock update 8016 * and wait for it to complete. 8017 * A return value of 'false' means that the write wasn't recorded 8018 * and cannot proceed as the array is being suspend. 8019 */ 8020 bool md_write_start(struct mddev *mddev, struct bio *bi) 8021 { 8022 int did_change = 0; 8023 if (bio_data_dir(bi) != WRITE) 8024 return true; 8025 8026 BUG_ON(mddev->ro == 1); 8027 if (mddev->ro == 2) { 8028 /* need to switch to read/write */ 8029 mddev->ro = 0; 8030 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8031 md_wakeup_thread(mddev->thread); 8032 md_wakeup_thread(mddev->sync_thread); 8033 did_change = 1; 8034 } 8035 rcu_read_lock(); 8036 percpu_ref_get(&mddev->writes_pending); 8037 smp_mb(); /* Match smp_mb in set_in_sync() */ 8038 if (mddev->safemode == 1) 8039 mddev->safemode = 0; 8040 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8041 if (mddev->in_sync || mddev->sync_checkers) { 8042 spin_lock(&mddev->lock); 8043 if (mddev->in_sync) { 8044 mddev->in_sync = 0; 8045 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8046 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8047 md_wakeup_thread(mddev->thread); 8048 did_change = 1; 8049 } 8050 spin_unlock(&mddev->lock); 8051 } 8052 rcu_read_unlock(); 8053 if (did_change) 8054 sysfs_notify_dirent_safe(mddev->sysfs_state); 8055 wait_event(mddev->sb_wait, 8056 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8057 mddev->suspended); 8058 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8059 percpu_ref_put(&mddev->writes_pending); 8060 return false; 8061 } 8062 return true; 8063 } 8064 EXPORT_SYMBOL(md_write_start); 8065 8066 /* md_write_inc can only be called when md_write_start() has 8067 * already been called at least once of the current request. 8068 * It increments the counter and is useful when a single request 8069 * is split into several parts. Each part causes an increment and 8070 * so needs a matching md_write_end(). 8071 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8072 * a spinlocked region. 8073 */ 8074 void md_write_inc(struct mddev *mddev, struct bio *bi) 8075 { 8076 if (bio_data_dir(bi) != WRITE) 8077 return; 8078 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8079 percpu_ref_get(&mddev->writes_pending); 8080 } 8081 EXPORT_SYMBOL(md_write_inc); 8082 8083 void md_write_end(struct mddev *mddev) 8084 { 8085 percpu_ref_put(&mddev->writes_pending); 8086 8087 if (mddev->safemode == 2) 8088 md_wakeup_thread(mddev->thread); 8089 else if (mddev->safemode_delay) 8090 /* The roundup() ensures this only performs locking once 8091 * every ->safemode_delay jiffies 8092 */ 8093 mod_timer(&mddev->safemode_timer, 8094 roundup(jiffies, mddev->safemode_delay) + 8095 mddev->safemode_delay); 8096 } 8097 8098 EXPORT_SYMBOL(md_write_end); 8099 8100 /* md_allow_write(mddev) 8101 * Calling this ensures that the array is marked 'active' so that writes 8102 * may proceed without blocking. It is important to call this before 8103 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8104 * Must be called with mddev_lock held. 8105 */ 8106 void md_allow_write(struct mddev *mddev) 8107 { 8108 if (!mddev->pers) 8109 return; 8110 if (mddev->ro) 8111 return; 8112 if (!mddev->pers->sync_request) 8113 return; 8114 8115 spin_lock(&mddev->lock); 8116 if (mddev->in_sync) { 8117 mddev->in_sync = 0; 8118 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8119 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8120 if (mddev->safemode_delay && 8121 mddev->safemode == 0) 8122 mddev->safemode = 1; 8123 spin_unlock(&mddev->lock); 8124 md_update_sb(mddev, 0); 8125 sysfs_notify_dirent_safe(mddev->sysfs_state); 8126 /* wait for the dirty state to be recorded in the metadata */ 8127 wait_event(mddev->sb_wait, 8128 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) && 8129 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8130 } else 8131 spin_unlock(&mddev->lock); 8132 } 8133 EXPORT_SYMBOL_GPL(md_allow_write); 8134 8135 #define SYNC_MARKS 10 8136 #define SYNC_MARK_STEP (3*HZ) 8137 #define UPDATE_FREQUENCY (5*60*HZ) 8138 void md_do_sync(struct md_thread *thread) 8139 { 8140 struct mddev *mddev = thread->mddev; 8141 struct mddev *mddev2; 8142 unsigned int currspeed = 0, 8143 window; 8144 sector_t max_sectors,j, io_sectors, recovery_done; 8145 unsigned long mark[SYNC_MARKS]; 8146 unsigned long update_time; 8147 sector_t mark_cnt[SYNC_MARKS]; 8148 int last_mark,m; 8149 struct list_head *tmp; 8150 sector_t last_check; 8151 int skipped = 0; 8152 struct md_rdev *rdev; 8153 char *desc, *action = NULL; 8154 struct blk_plug plug; 8155 int ret; 8156 8157 /* just incase thread restarts... */ 8158 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8159 return; 8160 if (mddev->ro) {/* never try to sync a read-only array */ 8161 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8162 return; 8163 } 8164 8165 if (mddev_is_clustered(mddev)) { 8166 ret = md_cluster_ops->resync_start(mddev); 8167 if (ret) 8168 goto skip; 8169 8170 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8171 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8172 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8173 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8174 && ((unsigned long long)mddev->curr_resync_completed 8175 < (unsigned long long)mddev->resync_max_sectors)) 8176 goto skip; 8177 } 8178 8179 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8180 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8181 desc = "data-check"; 8182 action = "check"; 8183 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8184 desc = "requested-resync"; 8185 action = "repair"; 8186 } else 8187 desc = "resync"; 8188 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8189 desc = "reshape"; 8190 else 8191 desc = "recovery"; 8192 8193 mddev->last_sync_action = action ?: desc; 8194 8195 /* we overload curr_resync somewhat here. 8196 * 0 == not engaged in resync at all 8197 * 2 == checking that there is no conflict with another sync 8198 * 1 == like 2, but have yielded to allow conflicting resync to 8199 * commense 8200 * other == active in resync - this many blocks 8201 * 8202 * Before starting a resync we must have set curr_resync to 8203 * 2, and then checked that every "conflicting" array has curr_resync 8204 * less than ours. When we find one that is the same or higher 8205 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8206 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8207 * This will mean we have to start checking from the beginning again. 8208 * 8209 */ 8210 8211 do { 8212 int mddev2_minor = -1; 8213 mddev->curr_resync = 2; 8214 8215 try_again: 8216 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8217 goto skip; 8218 for_each_mddev(mddev2, tmp) { 8219 if (mddev2 == mddev) 8220 continue; 8221 if (!mddev->parallel_resync 8222 && mddev2->curr_resync 8223 && match_mddev_units(mddev, mddev2)) { 8224 DEFINE_WAIT(wq); 8225 if (mddev < mddev2 && mddev->curr_resync == 2) { 8226 /* arbitrarily yield */ 8227 mddev->curr_resync = 1; 8228 wake_up(&resync_wait); 8229 } 8230 if (mddev > mddev2 && mddev->curr_resync == 1) 8231 /* no need to wait here, we can wait the next 8232 * time 'round when curr_resync == 2 8233 */ 8234 continue; 8235 /* We need to wait 'interruptible' so as not to 8236 * contribute to the load average, and not to 8237 * be caught by 'softlockup' 8238 */ 8239 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8240 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8241 mddev2->curr_resync >= mddev->curr_resync) { 8242 if (mddev2_minor != mddev2->md_minor) { 8243 mddev2_minor = mddev2->md_minor; 8244 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8245 desc, mdname(mddev), 8246 mdname(mddev2)); 8247 } 8248 mddev_put(mddev2); 8249 if (signal_pending(current)) 8250 flush_signals(current); 8251 schedule(); 8252 finish_wait(&resync_wait, &wq); 8253 goto try_again; 8254 } 8255 finish_wait(&resync_wait, &wq); 8256 } 8257 } 8258 } while (mddev->curr_resync < 2); 8259 8260 j = 0; 8261 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8262 /* resync follows the size requested by the personality, 8263 * which defaults to physical size, but can be virtual size 8264 */ 8265 max_sectors = mddev->resync_max_sectors; 8266 atomic64_set(&mddev->resync_mismatches, 0); 8267 /* we don't use the checkpoint if there's a bitmap */ 8268 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8269 j = mddev->resync_min; 8270 else if (!mddev->bitmap) 8271 j = mddev->recovery_cp; 8272 8273 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8274 max_sectors = mddev->resync_max_sectors; 8275 else { 8276 /* recovery follows the physical size of devices */ 8277 max_sectors = mddev->dev_sectors; 8278 j = MaxSector; 8279 rcu_read_lock(); 8280 rdev_for_each_rcu(rdev, mddev) 8281 if (rdev->raid_disk >= 0 && 8282 !test_bit(Journal, &rdev->flags) && 8283 !test_bit(Faulty, &rdev->flags) && 8284 !test_bit(In_sync, &rdev->flags) && 8285 rdev->recovery_offset < j) 8286 j = rdev->recovery_offset; 8287 rcu_read_unlock(); 8288 8289 /* If there is a bitmap, we need to make sure all 8290 * writes that started before we added a spare 8291 * complete before we start doing a recovery. 8292 * Otherwise the write might complete and (via 8293 * bitmap_endwrite) set a bit in the bitmap after the 8294 * recovery has checked that bit and skipped that 8295 * region. 8296 */ 8297 if (mddev->bitmap) { 8298 mddev->pers->quiesce(mddev, 1); 8299 mddev->pers->quiesce(mddev, 0); 8300 } 8301 } 8302 8303 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8304 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8305 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8306 speed_max(mddev), desc); 8307 8308 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8309 8310 io_sectors = 0; 8311 for (m = 0; m < SYNC_MARKS; m++) { 8312 mark[m] = jiffies; 8313 mark_cnt[m] = io_sectors; 8314 } 8315 last_mark = 0; 8316 mddev->resync_mark = mark[last_mark]; 8317 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8318 8319 /* 8320 * Tune reconstruction: 8321 */ 8322 window = 32*(PAGE_SIZE/512); 8323 pr_debug("md: using %dk window, over a total of %lluk.\n", 8324 window/2, (unsigned long long)max_sectors/2); 8325 8326 atomic_set(&mddev->recovery_active, 0); 8327 last_check = 0; 8328 8329 if (j>2) { 8330 pr_debug("md: resuming %s of %s from checkpoint.\n", 8331 desc, mdname(mddev)); 8332 mddev->curr_resync = j; 8333 } else 8334 mddev->curr_resync = 3; /* no longer delayed */ 8335 mddev->curr_resync_completed = j; 8336 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8337 md_new_event(mddev); 8338 update_time = jiffies; 8339 8340 blk_start_plug(&plug); 8341 while (j < max_sectors) { 8342 sector_t sectors; 8343 8344 skipped = 0; 8345 8346 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8347 ((mddev->curr_resync > mddev->curr_resync_completed && 8348 (mddev->curr_resync - mddev->curr_resync_completed) 8349 > (max_sectors >> 4)) || 8350 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8351 (j - mddev->curr_resync_completed)*2 8352 >= mddev->resync_max - mddev->curr_resync_completed || 8353 mddev->curr_resync_completed > mddev->resync_max 8354 )) { 8355 /* time to update curr_resync_completed */ 8356 wait_event(mddev->recovery_wait, 8357 atomic_read(&mddev->recovery_active) == 0); 8358 mddev->curr_resync_completed = j; 8359 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8360 j > mddev->recovery_cp) 8361 mddev->recovery_cp = j; 8362 update_time = jiffies; 8363 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8364 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8365 } 8366 8367 while (j >= mddev->resync_max && 8368 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8369 /* As this condition is controlled by user-space, 8370 * we can block indefinitely, so use '_interruptible' 8371 * to avoid triggering warnings. 8372 */ 8373 flush_signals(current); /* just in case */ 8374 wait_event_interruptible(mddev->recovery_wait, 8375 mddev->resync_max > j 8376 || test_bit(MD_RECOVERY_INTR, 8377 &mddev->recovery)); 8378 } 8379 8380 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8381 break; 8382 8383 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8384 if (sectors == 0) { 8385 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8386 break; 8387 } 8388 8389 if (!skipped) { /* actual IO requested */ 8390 io_sectors += sectors; 8391 atomic_add(sectors, &mddev->recovery_active); 8392 } 8393 8394 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8395 break; 8396 8397 j += sectors; 8398 if (j > max_sectors) 8399 /* when skipping, extra large numbers can be returned. */ 8400 j = max_sectors; 8401 if (j > 2) 8402 mddev->curr_resync = j; 8403 mddev->curr_mark_cnt = io_sectors; 8404 if (last_check == 0) 8405 /* this is the earliest that rebuild will be 8406 * visible in /proc/mdstat 8407 */ 8408 md_new_event(mddev); 8409 8410 if (last_check + window > io_sectors || j == max_sectors) 8411 continue; 8412 8413 last_check = io_sectors; 8414 repeat: 8415 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8416 /* step marks */ 8417 int next = (last_mark+1) % SYNC_MARKS; 8418 8419 mddev->resync_mark = mark[next]; 8420 mddev->resync_mark_cnt = mark_cnt[next]; 8421 mark[next] = jiffies; 8422 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8423 last_mark = next; 8424 } 8425 8426 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8427 break; 8428 8429 /* 8430 * this loop exits only if either when we are slower than 8431 * the 'hard' speed limit, or the system was IO-idle for 8432 * a jiffy. 8433 * the system might be non-idle CPU-wise, but we only care 8434 * about not overloading the IO subsystem. (things like an 8435 * e2fsck being done on the RAID array should execute fast) 8436 */ 8437 cond_resched(); 8438 8439 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8440 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8441 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8442 8443 if (currspeed > speed_min(mddev)) { 8444 if (currspeed > speed_max(mddev)) { 8445 msleep(500); 8446 goto repeat; 8447 } 8448 if (!is_mddev_idle(mddev, 0)) { 8449 /* 8450 * Give other IO more of a chance. 8451 * The faster the devices, the less we wait. 8452 */ 8453 wait_event(mddev->recovery_wait, 8454 !atomic_read(&mddev->recovery_active)); 8455 } 8456 } 8457 } 8458 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8459 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8460 ? "interrupted" : "done"); 8461 /* 8462 * this also signals 'finished resyncing' to md_stop 8463 */ 8464 blk_finish_plug(&plug); 8465 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8466 8467 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8468 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8469 mddev->curr_resync > 3) { 8470 mddev->curr_resync_completed = mddev->curr_resync; 8471 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8472 } 8473 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8474 8475 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8476 mddev->curr_resync > 3) { 8477 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8478 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8479 if (mddev->curr_resync >= mddev->recovery_cp) { 8480 pr_debug("md: checkpointing %s of %s.\n", 8481 desc, mdname(mddev)); 8482 if (test_bit(MD_RECOVERY_ERROR, 8483 &mddev->recovery)) 8484 mddev->recovery_cp = 8485 mddev->curr_resync_completed; 8486 else 8487 mddev->recovery_cp = 8488 mddev->curr_resync; 8489 } 8490 } else 8491 mddev->recovery_cp = MaxSector; 8492 } else { 8493 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8494 mddev->curr_resync = MaxSector; 8495 rcu_read_lock(); 8496 rdev_for_each_rcu(rdev, mddev) 8497 if (rdev->raid_disk >= 0 && 8498 mddev->delta_disks >= 0 && 8499 !test_bit(Journal, &rdev->flags) && 8500 !test_bit(Faulty, &rdev->flags) && 8501 !test_bit(In_sync, &rdev->flags) && 8502 rdev->recovery_offset < mddev->curr_resync) 8503 rdev->recovery_offset = mddev->curr_resync; 8504 rcu_read_unlock(); 8505 } 8506 } 8507 skip: 8508 /* set CHANGE_PENDING here since maybe another update is needed, 8509 * so other nodes are informed. It should be harmless for normal 8510 * raid */ 8511 set_mask_bits(&mddev->sb_flags, 0, 8512 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8513 8514 spin_lock(&mddev->lock); 8515 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8516 /* We completed so min/max setting can be forgotten if used. */ 8517 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8518 mddev->resync_min = 0; 8519 mddev->resync_max = MaxSector; 8520 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8521 mddev->resync_min = mddev->curr_resync_completed; 8522 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8523 mddev->curr_resync = 0; 8524 spin_unlock(&mddev->lock); 8525 8526 wake_up(&resync_wait); 8527 md_wakeup_thread(mddev->thread); 8528 return; 8529 } 8530 EXPORT_SYMBOL_GPL(md_do_sync); 8531 8532 static int remove_and_add_spares(struct mddev *mddev, 8533 struct md_rdev *this) 8534 { 8535 struct md_rdev *rdev; 8536 int spares = 0; 8537 int removed = 0; 8538 bool remove_some = false; 8539 8540 rdev_for_each(rdev, mddev) { 8541 if ((this == NULL || rdev == this) && 8542 rdev->raid_disk >= 0 && 8543 !test_bit(Blocked, &rdev->flags) && 8544 test_bit(Faulty, &rdev->flags) && 8545 atomic_read(&rdev->nr_pending)==0) { 8546 /* Faulty non-Blocked devices with nr_pending == 0 8547 * never get nr_pending incremented, 8548 * never get Faulty cleared, and never get Blocked set. 8549 * So we can synchronize_rcu now rather than once per device 8550 */ 8551 remove_some = true; 8552 set_bit(RemoveSynchronized, &rdev->flags); 8553 } 8554 } 8555 8556 if (remove_some) 8557 synchronize_rcu(); 8558 rdev_for_each(rdev, mddev) { 8559 if ((this == NULL || rdev == this) && 8560 rdev->raid_disk >= 0 && 8561 !test_bit(Blocked, &rdev->flags) && 8562 ((test_bit(RemoveSynchronized, &rdev->flags) || 8563 (!test_bit(In_sync, &rdev->flags) && 8564 !test_bit(Journal, &rdev->flags))) && 8565 atomic_read(&rdev->nr_pending)==0)) { 8566 if (mddev->pers->hot_remove_disk( 8567 mddev, rdev) == 0) { 8568 sysfs_unlink_rdev(mddev, rdev); 8569 rdev->raid_disk = -1; 8570 removed++; 8571 } 8572 } 8573 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8574 clear_bit(RemoveSynchronized, &rdev->flags); 8575 } 8576 8577 if (removed && mddev->kobj.sd) 8578 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8579 8580 if (this && removed) 8581 goto no_add; 8582 8583 rdev_for_each(rdev, mddev) { 8584 if (this && this != rdev) 8585 continue; 8586 if (test_bit(Candidate, &rdev->flags)) 8587 continue; 8588 if (rdev->raid_disk >= 0 && 8589 !test_bit(In_sync, &rdev->flags) && 8590 !test_bit(Journal, &rdev->flags) && 8591 !test_bit(Faulty, &rdev->flags)) 8592 spares++; 8593 if (rdev->raid_disk >= 0) 8594 continue; 8595 if (test_bit(Faulty, &rdev->flags)) 8596 continue; 8597 if (!test_bit(Journal, &rdev->flags)) { 8598 if (mddev->ro && 8599 ! (rdev->saved_raid_disk >= 0 && 8600 !test_bit(Bitmap_sync, &rdev->flags))) 8601 continue; 8602 8603 rdev->recovery_offset = 0; 8604 } 8605 if (mddev->pers-> 8606 hot_add_disk(mddev, rdev) == 0) { 8607 if (sysfs_link_rdev(mddev, rdev)) 8608 /* failure here is OK */; 8609 if (!test_bit(Journal, &rdev->flags)) 8610 spares++; 8611 md_new_event(mddev); 8612 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8613 } 8614 } 8615 no_add: 8616 if (removed) 8617 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8618 return spares; 8619 } 8620 8621 static void md_start_sync(struct work_struct *ws) 8622 { 8623 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8624 8625 mddev->sync_thread = md_register_thread(md_do_sync, 8626 mddev, 8627 "resync"); 8628 if (!mddev->sync_thread) { 8629 pr_warn("%s: could not start resync thread...\n", 8630 mdname(mddev)); 8631 /* leave the spares where they are, it shouldn't hurt */ 8632 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8633 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8634 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8635 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8636 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8637 wake_up(&resync_wait); 8638 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8639 &mddev->recovery)) 8640 if (mddev->sysfs_action) 8641 sysfs_notify_dirent_safe(mddev->sysfs_action); 8642 } else 8643 md_wakeup_thread(mddev->sync_thread); 8644 sysfs_notify_dirent_safe(mddev->sysfs_action); 8645 md_new_event(mddev); 8646 } 8647 8648 /* 8649 * This routine is regularly called by all per-raid-array threads to 8650 * deal with generic issues like resync and super-block update. 8651 * Raid personalities that don't have a thread (linear/raid0) do not 8652 * need this as they never do any recovery or update the superblock. 8653 * 8654 * It does not do any resync itself, but rather "forks" off other threads 8655 * to do that as needed. 8656 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8657 * "->recovery" and create a thread at ->sync_thread. 8658 * When the thread finishes it sets MD_RECOVERY_DONE 8659 * and wakeups up this thread which will reap the thread and finish up. 8660 * This thread also removes any faulty devices (with nr_pending == 0). 8661 * 8662 * The overall approach is: 8663 * 1/ if the superblock needs updating, update it. 8664 * 2/ If a recovery thread is running, don't do anything else. 8665 * 3/ If recovery has finished, clean up, possibly marking spares active. 8666 * 4/ If there are any faulty devices, remove them. 8667 * 5/ If array is degraded, try to add spares devices 8668 * 6/ If array has spares or is not in-sync, start a resync thread. 8669 */ 8670 void md_check_recovery(struct mddev *mddev) 8671 { 8672 if (mddev->suspended) 8673 return; 8674 8675 if (mddev->bitmap) 8676 bitmap_daemon_work(mddev); 8677 8678 if (signal_pending(current)) { 8679 if (mddev->pers->sync_request && !mddev->external) { 8680 pr_debug("md: %s in immediate safe mode\n", 8681 mdname(mddev)); 8682 mddev->safemode = 2; 8683 } 8684 flush_signals(current); 8685 } 8686 8687 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8688 return; 8689 if ( ! ( 8690 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8691 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8692 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8693 (mddev->external == 0 && mddev->safemode == 1) || 8694 (mddev->safemode == 2 8695 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8696 )) 8697 return; 8698 8699 if (mddev_trylock(mddev)) { 8700 int spares = 0; 8701 8702 if (!mddev->external && mddev->safemode == 1) 8703 mddev->safemode = 0; 8704 8705 if (mddev->ro) { 8706 struct md_rdev *rdev; 8707 if (!mddev->external && mddev->in_sync) 8708 /* 'Blocked' flag not needed as failed devices 8709 * will be recorded if array switched to read/write. 8710 * Leaving it set will prevent the device 8711 * from being removed. 8712 */ 8713 rdev_for_each(rdev, mddev) 8714 clear_bit(Blocked, &rdev->flags); 8715 /* On a read-only array we can: 8716 * - remove failed devices 8717 * - add already-in_sync devices if the array itself 8718 * is in-sync. 8719 * As we only add devices that are already in-sync, 8720 * we can activate the spares immediately. 8721 */ 8722 remove_and_add_spares(mddev, NULL); 8723 /* There is no thread, but we need to call 8724 * ->spare_active and clear saved_raid_disk 8725 */ 8726 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8727 md_reap_sync_thread(mddev); 8728 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8729 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8730 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8731 goto unlock; 8732 } 8733 8734 if (mddev_is_clustered(mddev)) { 8735 struct md_rdev *rdev; 8736 /* kick the device if another node issued a 8737 * remove disk. 8738 */ 8739 rdev_for_each(rdev, mddev) { 8740 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8741 rdev->raid_disk < 0) 8742 md_kick_rdev_from_array(rdev); 8743 } 8744 } 8745 8746 if (!mddev->external && !mddev->in_sync) { 8747 spin_lock(&mddev->lock); 8748 set_in_sync(mddev); 8749 spin_unlock(&mddev->lock); 8750 } 8751 8752 if (mddev->sb_flags) 8753 md_update_sb(mddev, 0); 8754 8755 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8756 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8757 /* resync/recovery still happening */ 8758 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8759 goto unlock; 8760 } 8761 if (mddev->sync_thread) { 8762 md_reap_sync_thread(mddev); 8763 goto unlock; 8764 } 8765 /* Set RUNNING before clearing NEEDED to avoid 8766 * any transients in the value of "sync_action". 8767 */ 8768 mddev->curr_resync_completed = 0; 8769 spin_lock(&mddev->lock); 8770 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8771 spin_unlock(&mddev->lock); 8772 /* Clear some bits that don't mean anything, but 8773 * might be left set 8774 */ 8775 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8776 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8777 8778 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8779 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8780 goto not_running; 8781 /* no recovery is running. 8782 * remove any failed drives, then 8783 * add spares if possible. 8784 * Spares are also removed and re-added, to allow 8785 * the personality to fail the re-add. 8786 */ 8787 8788 if (mddev->reshape_position != MaxSector) { 8789 if (mddev->pers->check_reshape == NULL || 8790 mddev->pers->check_reshape(mddev) != 0) 8791 /* Cannot proceed */ 8792 goto not_running; 8793 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8794 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8795 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8796 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8797 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8798 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8799 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8800 } else if (mddev->recovery_cp < MaxSector) { 8801 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8802 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8803 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8804 /* nothing to be done ... */ 8805 goto not_running; 8806 8807 if (mddev->pers->sync_request) { 8808 if (spares) { 8809 /* We are adding a device or devices to an array 8810 * which has the bitmap stored on all devices. 8811 * So make sure all bitmap pages get written 8812 */ 8813 bitmap_write_all(mddev->bitmap); 8814 } 8815 INIT_WORK(&mddev->del_work, md_start_sync); 8816 queue_work(md_misc_wq, &mddev->del_work); 8817 goto unlock; 8818 } 8819 not_running: 8820 if (!mddev->sync_thread) { 8821 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8822 wake_up(&resync_wait); 8823 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8824 &mddev->recovery)) 8825 if (mddev->sysfs_action) 8826 sysfs_notify_dirent_safe(mddev->sysfs_action); 8827 } 8828 unlock: 8829 wake_up(&mddev->sb_wait); 8830 mddev_unlock(mddev); 8831 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8832 /* Write superblock - thread that called mddev_suspend() 8833 * holds reconfig_mutex for us. 8834 */ 8835 set_bit(MD_UPDATING_SB, &mddev->flags); 8836 smp_mb__after_atomic(); 8837 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8838 md_update_sb(mddev, 0); 8839 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8840 wake_up(&mddev->sb_wait); 8841 } 8842 } 8843 EXPORT_SYMBOL(md_check_recovery); 8844 8845 void md_reap_sync_thread(struct mddev *mddev) 8846 { 8847 struct md_rdev *rdev; 8848 8849 /* resync has finished, collect result */ 8850 md_unregister_thread(&mddev->sync_thread); 8851 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8852 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8853 /* success...*/ 8854 /* activate any spares */ 8855 if (mddev->pers->spare_active(mddev)) { 8856 sysfs_notify(&mddev->kobj, NULL, 8857 "degraded"); 8858 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8859 } 8860 } 8861 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8862 mddev->pers->finish_reshape) 8863 mddev->pers->finish_reshape(mddev); 8864 8865 /* If array is no-longer degraded, then any saved_raid_disk 8866 * information must be scrapped. 8867 */ 8868 if (!mddev->degraded) 8869 rdev_for_each(rdev, mddev) 8870 rdev->saved_raid_disk = -1; 8871 8872 md_update_sb(mddev, 1); 8873 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8874 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8875 * clustered raid */ 8876 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8877 md_cluster_ops->resync_finish(mddev); 8878 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8879 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8880 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8881 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8882 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8883 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8884 wake_up(&resync_wait); 8885 /* flag recovery needed just to double check */ 8886 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8887 sysfs_notify_dirent_safe(mddev->sysfs_action); 8888 md_new_event(mddev); 8889 if (mddev->event_work.func) 8890 queue_work(md_misc_wq, &mddev->event_work); 8891 } 8892 EXPORT_SYMBOL(md_reap_sync_thread); 8893 8894 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8895 { 8896 sysfs_notify_dirent_safe(rdev->sysfs_state); 8897 wait_event_timeout(rdev->blocked_wait, 8898 !test_bit(Blocked, &rdev->flags) && 8899 !test_bit(BlockedBadBlocks, &rdev->flags), 8900 msecs_to_jiffies(5000)); 8901 rdev_dec_pending(rdev, mddev); 8902 } 8903 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8904 8905 void md_finish_reshape(struct mddev *mddev) 8906 { 8907 /* called be personality module when reshape completes. */ 8908 struct md_rdev *rdev; 8909 8910 rdev_for_each(rdev, mddev) { 8911 if (rdev->data_offset > rdev->new_data_offset) 8912 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8913 else 8914 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8915 rdev->data_offset = rdev->new_data_offset; 8916 } 8917 } 8918 EXPORT_SYMBOL(md_finish_reshape); 8919 8920 /* Bad block management */ 8921 8922 /* Returns 1 on success, 0 on failure */ 8923 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8924 int is_new) 8925 { 8926 struct mddev *mddev = rdev->mddev; 8927 int rv; 8928 if (is_new) 8929 s += rdev->new_data_offset; 8930 else 8931 s += rdev->data_offset; 8932 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8933 if (rv == 0) { 8934 /* Make sure they get written out promptly */ 8935 if (test_bit(ExternalBbl, &rdev->flags)) 8936 sysfs_notify(&rdev->kobj, NULL, 8937 "unacknowledged_bad_blocks"); 8938 sysfs_notify_dirent_safe(rdev->sysfs_state); 8939 set_mask_bits(&mddev->sb_flags, 0, 8940 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 8941 md_wakeup_thread(rdev->mddev->thread); 8942 return 1; 8943 } else 8944 return 0; 8945 } 8946 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8947 8948 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8949 int is_new) 8950 { 8951 int rv; 8952 if (is_new) 8953 s += rdev->new_data_offset; 8954 else 8955 s += rdev->data_offset; 8956 rv = badblocks_clear(&rdev->badblocks, s, sectors); 8957 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 8958 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 8959 return rv; 8960 } 8961 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8962 8963 static int md_notify_reboot(struct notifier_block *this, 8964 unsigned long code, void *x) 8965 { 8966 struct list_head *tmp; 8967 struct mddev *mddev; 8968 int need_delay = 0; 8969 8970 for_each_mddev(mddev, tmp) { 8971 if (mddev_trylock(mddev)) { 8972 if (mddev->pers) 8973 __md_stop_writes(mddev); 8974 if (mddev->persistent) 8975 mddev->safemode = 2; 8976 mddev_unlock(mddev); 8977 } 8978 need_delay = 1; 8979 } 8980 /* 8981 * certain more exotic SCSI devices are known to be 8982 * volatile wrt too early system reboots. While the 8983 * right place to handle this issue is the given 8984 * driver, we do want to have a safe RAID driver ... 8985 */ 8986 if (need_delay) 8987 mdelay(1000*1); 8988 8989 return NOTIFY_DONE; 8990 } 8991 8992 static struct notifier_block md_notifier = { 8993 .notifier_call = md_notify_reboot, 8994 .next = NULL, 8995 .priority = INT_MAX, /* before any real devices */ 8996 }; 8997 8998 static void md_geninit(void) 8999 { 9000 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9001 9002 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9003 } 9004 9005 static int __init md_init(void) 9006 { 9007 int ret = -ENOMEM; 9008 9009 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9010 if (!md_wq) 9011 goto err_wq; 9012 9013 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9014 if (!md_misc_wq) 9015 goto err_misc_wq; 9016 9017 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9018 goto err_md; 9019 9020 if ((ret = register_blkdev(0, "mdp")) < 0) 9021 goto err_mdp; 9022 mdp_major = ret; 9023 9024 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9025 md_probe, NULL, NULL); 9026 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9027 md_probe, NULL, NULL); 9028 9029 register_reboot_notifier(&md_notifier); 9030 raid_table_header = register_sysctl_table(raid_root_table); 9031 9032 md_geninit(); 9033 return 0; 9034 9035 err_mdp: 9036 unregister_blkdev(MD_MAJOR, "md"); 9037 err_md: 9038 destroy_workqueue(md_misc_wq); 9039 err_misc_wq: 9040 destroy_workqueue(md_wq); 9041 err_wq: 9042 return ret; 9043 } 9044 9045 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9046 { 9047 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9048 struct md_rdev *rdev2; 9049 int role, ret; 9050 char b[BDEVNAME_SIZE]; 9051 9052 /* 9053 * If size is changed in another node then we need to 9054 * do resize as well. 9055 */ 9056 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9057 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9058 if (ret) 9059 pr_info("md-cluster: resize failed\n"); 9060 else 9061 bitmap_update_sb(mddev->bitmap); 9062 } 9063 9064 /* Check for change of roles in the active devices */ 9065 rdev_for_each(rdev2, mddev) { 9066 if (test_bit(Faulty, &rdev2->flags)) 9067 continue; 9068 9069 /* Check if the roles changed */ 9070 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9071 9072 if (test_bit(Candidate, &rdev2->flags)) { 9073 if (role == 0xfffe) { 9074 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9075 md_kick_rdev_from_array(rdev2); 9076 continue; 9077 } 9078 else 9079 clear_bit(Candidate, &rdev2->flags); 9080 } 9081 9082 if (role != rdev2->raid_disk) { 9083 /* got activated */ 9084 if (rdev2->raid_disk == -1 && role != 0xffff) { 9085 rdev2->saved_raid_disk = role; 9086 ret = remove_and_add_spares(mddev, rdev2); 9087 pr_info("Activated spare: %s\n", 9088 bdevname(rdev2->bdev,b)); 9089 /* wakeup mddev->thread here, so array could 9090 * perform resync with the new activated disk */ 9091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9092 md_wakeup_thread(mddev->thread); 9093 9094 } 9095 /* device faulty 9096 * We just want to do the minimum to mark the disk 9097 * as faulty. The recovery is performed by the 9098 * one who initiated the error. 9099 */ 9100 if ((role == 0xfffe) || (role == 0xfffd)) { 9101 md_error(mddev, rdev2); 9102 clear_bit(Blocked, &rdev2->flags); 9103 } 9104 } 9105 } 9106 9107 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9108 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9109 9110 /* Finally set the event to be up to date */ 9111 mddev->events = le64_to_cpu(sb->events); 9112 } 9113 9114 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9115 { 9116 int err; 9117 struct page *swapout = rdev->sb_page; 9118 struct mdp_superblock_1 *sb; 9119 9120 /* Store the sb page of the rdev in the swapout temporary 9121 * variable in case we err in the future 9122 */ 9123 rdev->sb_page = NULL; 9124 err = alloc_disk_sb(rdev); 9125 if (err == 0) { 9126 ClearPageUptodate(rdev->sb_page); 9127 rdev->sb_loaded = 0; 9128 err = super_types[mddev->major_version]. 9129 load_super(rdev, NULL, mddev->minor_version); 9130 } 9131 if (err < 0) { 9132 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9133 __func__, __LINE__, rdev->desc_nr, err); 9134 if (rdev->sb_page) 9135 put_page(rdev->sb_page); 9136 rdev->sb_page = swapout; 9137 rdev->sb_loaded = 1; 9138 return err; 9139 } 9140 9141 sb = page_address(rdev->sb_page); 9142 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9143 * is not set 9144 */ 9145 9146 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9147 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9148 9149 /* The other node finished recovery, call spare_active to set 9150 * device In_sync and mddev->degraded 9151 */ 9152 if (rdev->recovery_offset == MaxSector && 9153 !test_bit(In_sync, &rdev->flags) && 9154 mddev->pers->spare_active(mddev)) 9155 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9156 9157 put_page(swapout); 9158 return 0; 9159 } 9160 9161 void md_reload_sb(struct mddev *mddev, int nr) 9162 { 9163 struct md_rdev *rdev; 9164 int err; 9165 9166 /* Find the rdev */ 9167 rdev_for_each_rcu(rdev, mddev) { 9168 if (rdev->desc_nr == nr) 9169 break; 9170 } 9171 9172 if (!rdev || rdev->desc_nr != nr) { 9173 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9174 return; 9175 } 9176 9177 err = read_rdev(mddev, rdev); 9178 if (err < 0) 9179 return; 9180 9181 check_sb_changes(mddev, rdev); 9182 9183 /* Read all rdev's to update recovery_offset */ 9184 rdev_for_each_rcu(rdev, mddev) 9185 read_rdev(mddev, rdev); 9186 } 9187 EXPORT_SYMBOL(md_reload_sb); 9188 9189 #ifndef MODULE 9190 9191 /* 9192 * Searches all registered partitions for autorun RAID arrays 9193 * at boot time. 9194 */ 9195 9196 static DEFINE_MUTEX(detected_devices_mutex); 9197 static LIST_HEAD(all_detected_devices); 9198 struct detected_devices_node { 9199 struct list_head list; 9200 dev_t dev; 9201 }; 9202 9203 void md_autodetect_dev(dev_t dev) 9204 { 9205 struct detected_devices_node *node_detected_dev; 9206 9207 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9208 if (node_detected_dev) { 9209 node_detected_dev->dev = dev; 9210 mutex_lock(&detected_devices_mutex); 9211 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9212 mutex_unlock(&detected_devices_mutex); 9213 } 9214 } 9215 9216 static void autostart_arrays(int part) 9217 { 9218 struct md_rdev *rdev; 9219 struct detected_devices_node *node_detected_dev; 9220 dev_t dev; 9221 int i_scanned, i_passed; 9222 9223 i_scanned = 0; 9224 i_passed = 0; 9225 9226 pr_info("md: Autodetecting RAID arrays.\n"); 9227 9228 mutex_lock(&detected_devices_mutex); 9229 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9230 i_scanned++; 9231 node_detected_dev = list_entry(all_detected_devices.next, 9232 struct detected_devices_node, list); 9233 list_del(&node_detected_dev->list); 9234 dev = node_detected_dev->dev; 9235 kfree(node_detected_dev); 9236 mutex_unlock(&detected_devices_mutex); 9237 rdev = md_import_device(dev,0, 90); 9238 mutex_lock(&detected_devices_mutex); 9239 if (IS_ERR(rdev)) 9240 continue; 9241 9242 if (test_bit(Faulty, &rdev->flags)) 9243 continue; 9244 9245 set_bit(AutoDetected, &rdev->flags); 9246 list_add(&rdev->same_set, &pending_raid_disks); 9247 i_passed++; 9248 } 9249 mutex_unlock(&detected_devices_mutex); 9250 9251 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9252 9253 autorun_devices(part); 9254 } 9255 9256 #endif /* !MODULE */ 9257 9258 static __exit void md_exit(void) 9259 { 9260 struct mddev *mddev; 9261 struct list_head *tmp; 9262 int delay = 1; 9263 9264 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9265 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9266 9267 unregister_blkdev(MD_MAJOR,"md"); 9268 unregister_blkdev(mdp_major, "mdp"); 9269 unregister_reboot_notifier(&md_notifier); 9270 unregister_sysctl_table(raid_table_header); 9271 9272 /* We cannot unload the modules while some process is 9273 * waiting for us in select() or poll() - wake them up 9274 */ 9275 md_unloading = 1; 9276 while (waitqueue_active(&md_event_waiters)) { 9277 /* not safe to leave yet */ 9278 wake_up(&md_event_waiters); 9279 msleep(delay); 9280 delay += delay; 9281 } 9282 remove_proc_entry("mdstat", NULL); 9283 9284 for_each_mddev(mddev, tmp) { 9285 export_array(mddev); 9286 mddev->ctime = 0; 9287 mddev->hold_active = 0; 9288 /* 9289 * for_each_mddev() will call mddev_put() at the end of each 9290 * iteration. As the mddev is now fully clear, this will 9291 * schedule the mddev for destruction by a workqueue, and the 9292 * destroy_workqueue() below will wait for that to complete. 9293 */ 9294 } 9295 destroy_workqueue(md_misc_wq); 9296 destroy_workqueue(md_wq); 9297 } 9298 9299 subsys_initcall(md_init); 9300 module_exit(md_exit) 9301 9302 static int get_ro(char *buffer, struct kernel_param *kp) 9303 { 9304 return sprintf(buffer, "%d", start_readonly); 9305 } 9306 static int set_ro(const char *val, struct kernel_param *kp) 9307 { 9308 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9309 } 9310 9311 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9312 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9313 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9314 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9315 9316 MODULE_LICENSE("GPL"); 9317 MODULE_DESCRIPTION("MD RAID framework"); 9318 MODULE_ALIAS("md"); 9319 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9320