xref: /openbmc/linux/drivers/md/md.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define ITERATE_MDDEV(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 	bio_io_error(bio);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_unregister(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 
279 	new->queue = blk_alloc_queue(GFP_KERNEL);
280 	if (!new->queue) {
281 		kfree(new);
282 		return NULL;
283 	}
284 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
285 
286 	blk_queue_make_request(new->queue, md_fail_request);
287 
288 	goto retry;
289 }
290 
291 static inline int mddev_lock(mddev_t * mddev)
292 {
293 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 }
295 
296 static inline int mddev_trylock(mddev_t * mddev)
297 {
298 	return mutex_trylock(&mddev->reconfig_mutex);
299 }
300 
301 static inline void mddev_unlock(mddev_t * mddev)
302 {
303 	mutex_unlock(&mddev->reconfig_mutex);
304 
305 	md_wakeup_thread(mddev->thread);
306 }
307 
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 {
310 	mdk_rdev_t * rdev;
311 	struct list_head *tmp;
312 
313 	ITERATE_RDEV(mddev,rdev,tmp) {
314 		if (rdev->desc_nr == nr)
315 			return rdev;
316 	}
317 	return NULL;
318 }
319 
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
321 {
322 	struct list_head *tmp;
323 	mdk_rdev_t *rdev;
324 
325 	ITERATE_RDEV(mddev,rdev,tmp) {
326 		if (rdev->bdev->bd_dev == dev)
327 			return rdev;
328 	}
329 	return NULL;
330 }
331 
332 static struct mdk_personality *find_pers(int level, char *clevel)
333 {
334 	struct mdk_personality *pers;
335 	list_for_each_entry(pers, &pers_list, list) {
336 		if (level != LEVEL_NONE && pers->level == level)
337 			return pers;
338 		if (strcmp(pers->name, clevel)==0)
339 			return pers;
340 	}
341 	return NULL;
342 }
343 
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
345 {
346 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 	return MD_NEW_SIZE_BLOCKS(size);
348 }
349 
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
351 {
352 	sector_t size;
353 
354 	size = rdev->sb_offset;
355 
356 	if (chunk_size)
357 		size &= ~((sector_t)chunk_size/1024 - 1);
358 	return size;
359 }
360 
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page)
364 		MD_BUG();
365 
366 	rdev->sb_page = alloc_page(GFP_KERNEL);
367 	if (!rdev->sb_page) {
368 		printk(KERN_ALERT "md: out of memory.\n");
369 		return -EINVAL;
370 	}
371 
372 	return 0;
373 }
374 
375 static void free_disk_sb(mdk_rdev_t * rdev)
376 {
377 	if (rdev->sb_page) {
378 		put_page(rdev->sb_page);
379 		rdev->sb_loaded = 0;
380 		rdev->sb_page = NULL;
381 		rdev->sb_offset = 0;
382 		rdev->size = 0;
383 	}
384 }
385 
386 
387 static void super_written(struct bio *bio, int error)
388 {
389 	mdk_rdev_t *rdev = bio->bi_private;
390 	mddev_t *mddev = rdev->mddev;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 		printk("md: super_written gets error=%d, uptodate=%d\n",
394 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		md_error(mddev, rdev);
397 	}
398 
399 	if (atomic_dec_and_test(&mddev->pending_writes))
400 		wake_up(&mddev->sb_wait);
401 	bio_put(bio);
402 }
403 
404 static void super_written_barrier(struct bio *bio, int error)
405 {
406 	struct bio *bio2 = bio->bi_private;
407 	mdk_rdev_t *rdev = bio2->bi_private;
408 	mddev_t *mddev = rdev->mddev;
409 
410 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
411 	    error == -EOPNOTSUPP) {
412 		unsigned long flags;
413 		/* barriers don't appear to be supported :-( */
414 		set_bit(BarriersNotsupp, &rdev->flags);
415 		mddev->barriers_work = 0;
416 		spin_lock_irqsave(&mddev->write_lock, flags);
417 		bio2->bi_next = mddev->biolist;
418 		mddev->biolist = bio2;
419 		spin_unlock_irqrestore(&mddev->write_lock, flags);
420 		wake_up(&mddev->sb_wait);
421 		bio_put(bio);
422 	} else {
423 		bio_put(bio2);
424 		bio->bi_private = rdev;
425 		super_written(bio, error);
426 	}
427 }
428 
429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
430 		   sector_t sector, int size, struct page *page)
431 {
432 	/* write first size bytes of page to sector of rdev
433 	 * Increment mddev->pending_writes before returning
434 	 * and decrement it on completion, waking up sb_wait
435 	 * if zero is reached.
436 	 * If an error occurred, call md_error
437 	 *
438 	 * As we might need to resubmit the request if BIO_RW_BARRIER
439 	 * causes ENOTSUPP, we allocate a spare bio...
440 	 */
441 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
442 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443 
444 	bio->bi_bdev = rdev->bdev;
445 	bio->bi_sector = sector;
446 	bio_add_page(bio, page, size, 0);
447 	bio->bi_private = rdev;
448 	bio->bi_end_io = super_written;
449 	bio->bi_rw = rw;
450 
451 	atomic_inc(&mddev->pending_writes);
452 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
453 		struct bio *rbio;
454 		rw |= (1<<BIO_RW_BARRIER);
455 		rbio = bio_clone(bio, GFP_NOIO);
456 		rbio->bi_private = bio;
457 		rbio->bi_end_io = super_written_barrier;
458 		submit_bio(rw, rbio);
459 	} else
460 		submit_bio(rw, bio);
461 }
462 
463 void md_super_wait(mddev_t *mddev)
464 {
465 	/* wait for all superblock writes that were scheduled to complete.
466 	 * if any had to be retried (due to BARRIER problems), retry them
467 	 */
468 	DEFINE_WAIT(wq);
469 	for(;;) {
470 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
471 		if (atomic_read(&mddev->pending_writes)==0)
472 			break;
473 		while (mddev->biolist) {
474 			struct bio *bio;
475 			spin_lock_irq(&mddev->write_lock);
476 			bio = mddev->biolist;
477 			mddev->biolist = bio->bi_next ;
478 			bio->bi_next = NULL;
479 			spin_unlock_irq(&mddev->write_lock);
480 			submit_bio(bio->bi_rw, bio);
481 		}
482 		schedule();
483 	}
484 	finish_wait(&mddev->sb_wait, &wq);
485 }
486 
487 static void bi_complete(struct bio *bio, int error)
488 {
489 	complete((struct completion*)bio->bi_private);
490 }
491 
492 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
493 		   struct page *page, int rw)
494 {
495 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
496 	struct completion event;
497 	int ret;
498 
499 	rw |= (1 << BIO_RW_SYNC);
500 
501 	bio->bi_bdev = bdev;
502 	bio->bi_sector = sector;
503 	bio_add_page(bio, page, size, 0);
504 	init_completion(&event);
505 	bio->bi_private = &event;
506 	bio->bi_end_io = bi_complete;
507 	submit_bio(rw, bio);
508 	wait_for_completion(&event);
509 
510 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
511 	bio_put(bio);
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(sync_page_io);
515 
516 static int read_disk_sb(mdk_rdev_t * rdev, int size)
517 {
518 	char b[BDEVNAME_SIZE];
519 	if (!rdev->sb_page) {
520 		MD_BUG();
521 		return -EINVAL;
522 	}
523 	if (rdev->sb_loaded)
524 		return 0;
525 
526 
527 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
528 		goto fail;
529 	rdev->sb_loaded = 1;
530 	return 0;
531 
532 fail:
533 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
534 		bdevname(rdev->bdev,b));
535 	return -EINVAL;
536 }
537 
538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
539 {
540 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
541 		(sb1->set_uuid1 == sb2->set_uuid1) &&
542 		(sb1->set_uuid2 == sb2->set_uuid2) &&
543 		(sb1->set_uuid3 == sb2->set_uuid3))
544 
545 		return 1;
546 
547 	return 0;
548 }
549 
550 
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
552 {
553 	int ret;
554 	mdp_super_t *tmp1, *tmp2;
555 
556 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
558 
559 	if (!tmp1 || !tmp2) {
560 		ret = 0;
561 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
562 		goto abort;
563 	}
564 
565 	*tmp1 = *sb1;
566 	*tmp2 = *sb2;
567 
568 	/*
569 	 * nr_disks is not constant
570 	 */
571 	tmp1->nr_disks = 0;
572 	tmp2->nr_disks = 0;
573 
574 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
575 		ret = 0;
576 	else
577 		ret = 1;
578 
579 abort:
580 	kfree(tmp1);
581 	kfree(tmp2);
582 	return ret;
583 }
584 
585 
586 static u32 md_csum_fold(u32 csum)
587 {
588 	csum = (csum & 0xffff) + (csum >> 16);
589 	return (csum & 0xffff) + (csum >> 16);
590 }
591 
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 	u64 newcsum = 0;
595 	u32 *sb32 = (u32*)sb;
596 	int i;
597 	unsigned int disk_csum, csum;
598 
599 	disk_csum = sb->sb_csum;
600 	sb->sb_csum = 0;
601 
602 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
603 		newcsum += sb32[i];
604 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
605 
606 
607 #ifdef CONFIG_ALPHA
608 	/* This used to use csum_partial, which was wrong for several
609 	 * reasons including that different results are returned on
610 	 * different architectures.  It isn't critical that we get exactly
611 	 * the same return value as before (we always csum_fold before
612 	 * testing, and that removes any differences).  However as we
613 	 * know that csum_partial always returned a 16bit value on
614 	 * alphas, do a fold to maximise conformity to previous behaviour.
615 	 */
616 	sb->sb_csum = md_csum_fold(disk_csum);
617 #else
618 	sb->sb_csum = disk_csum;
619 #endif
620 	return csum;
621 }
622 
623 
624 /*
625  * Handle superblock details.
626  * We want to be able to handle multiple superblock formats
627  * so we have a common interface to them all, and an array of
628  * different handlers.
629  * We rely on user-space to write the initial superblock, and support
630  * reading and updating of superblocks.
631  * Interface methods are:
632  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
633  *      loads and validates a superblock on dev.
634  *      if refdev != NULL, compare superblocks on both devices
635  *    Return:
636  *      0 - dev has a superblock that is compatible with refdev
637  *      1 - dev has a superblock that is compatible and newer than refdev
638  *          so dev should be used as the refdev in future
639  *     -EINVAL superblock incompatible or invalid
640  *     -othererror e.g. -EIO
641  *
642  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
643  *      Verify that dev is acceptable into mddev.
644  *       The first time, mddev->raid_disks will be 0, and data from
645  *       dev should be merged in.  Subsequent calls check that dev
646  *       is new enough.  Return 0 or -EINVAL
647  *
648  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
649  *     Update the superblock for rdev with data in mddev
650  *     This does not write to disc.
651  *
652  */
653 
654 struct super_type  {
655 	char 		*name;
656 	struct module	*owner;
657 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
658 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
659 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 };
661 
662 /*
663  * load_super for 0.90.0
664  */
665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
666 {
667 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
668 	mdp_super_t *sb;
669 	int ret;
670 	sector_t sb_offset;
671 
672 	/*
673 	 * Calculate the position of the superblock,
674 	 * it's at the end of the disk.
675 	 *
676 	 * It also happens to be a multiple of 4Kb.
677 	 */
678 	sb_offset = calc_dev_sboffset(rdev->bdev);
679 	rdev->sb_offset = sb_offset;
680 
681 	ret = read_disk_sb(rdev, MD_SB_BYTES);
682 	if (ret) return ret;
683 
684 	ret = -EINVAL;
685 
686 	bdevname(rdev->bdev, b);
687 	sb = (mdp_super_t*)page_address(rdev->sb_page);
688 
689 	if (sb->md_magic != MD_SB_MAGIC) {
690 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
691 		       b);
692 		goto abort;
693 	}
694 
695 	if (sb->major_version != 0 ||
696 	    sb->minor_version < 90 ||
697 	    sb->minor_version > 91) {
698 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
699 			sb->major_version, sb->minor_version,
700 			b);
701 		goto abort;
702 	}
703 
704 	if (sb->raid_disks <= 0)
705 		goto abort;
706 
707 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
708 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
709 			b);
710 		goto abort;
711 	}
712 
713 	rdev->preferred_minor = sb->md_minor;
714 	rdev->data_offset = 0;
715 	rdev->sb_size = MD_SB_BYTES;
716 
717 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
718 		if (sb->level != 1 && sb->level != 4
719 		    && sb->level != 5 && sb->level != 6
720 		    && sb->level != 10) {
721 			/* FIXME use a better test */
722 			printk(KERN_WARNING
723 			       "md: bitmaps not supported for this level.\n");
724 			goto abort;
725 		}
726 	}
727 
728 	if (sb->level == LEVEL_MULTIPATH)
729 		rdev->desc_nr = -1;
730 	else
731 		rdev->desc_nr = sb->this_disk.number;
732 
733 	if (refdev == 0)
734 		ret = 1;
735 	else {
736 		__u64 ev1, ev2;
737 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
738 		if (!uuid_equal(refsb, sb)) {
739 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
740 				b, bdevname(refdev->bdev,b2));
741 			goto abort;
742 		}
743 		if (!sb_equal(refsb, sb)) {
744 			printk(KERN_WARNING "md: %s has same UUID"
745 			       " but different superblock to %s\n",
746 			       b, bdevname(refdev->bdev, b2));
747 			goto abort;
748 		}
749 		ev1 = md_event(sb);
750 		ev2 = md_event(refsb);
751 		if (ev1 > ev2)
752 			ret = 1;
753 		else
754 			ret = 0;
755 	}
756 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
757 
758 	if (rdev->size < sb->size && sb->level > 1)
759 		/* "this cannot possibly happen" ... */
760 		ret = -EINVAL;
761 
762  abort:
763 	return ret;
764 }
765 
766 /*
767  * validate_super for 0.90.0
768  */
769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
770 {
771 	mdp_disk_t *desc;
772 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
773 	__u64 ev1 = md_event(sb);
774 
775 	rdev->raid_disk = -1;
776 	rdev->flags = 0;
777 	if (mddev->raid_disks == 0) {
778 		mddev->major_version = 0;
779 		mddev->minor_version = sb->minor_version;
780 		mddev->patch_version = sb->patch_version;
781 		mddev->persistent = ! sb->not_persistent;
782 		mddev->chunk_size = sb->chunk_size;
783 		mddev->ctime = sb->ctime;
784 		mddev->utime = sb->utime;
785 		mddev->level = sb->level;
786 		mddev->clevel[0] = 0;
787 		mddev->layout = sb->layout;
788 		mddev->raid_disks = sb->raid_disks;
789 		mddev->size = sb->size;
790 		mddev->events = ev1;
791 		mddev->bitmap_offset = 0;
792 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
793 
794 		if (mddev->minor_version >= 91) {
795 			mddev->reshape_position = sb->reshape_position;
796 			mddev->delta_disks = sb->delta_disks;
797 			mddev->new_level = sb->new_level;
798 			mddev->new_layout = sb->new_layout;
799 			mddev->new_chunk = sb->new_chunk;
800 		} else {
801 			mddev->reshape_position = MaxSector;
802 			mddev->delta_disks = 0;
803 			mddev->new_level = mddev->level;
804 			mddev->new_layout = mddev->layout;
805 			mddev->new_chunk = mddev->chunk_size;
806 		}
807 
808 		if (sb->state & (1<<MD_SB_CLEAN))
809 			mddev->recovery_cp = MaxSector;
810 		else {
811 			if (sb->events_hi == sb->cp_events_hi &&
812 				sb->events_lo == sb->cp_events_lo) {
813 				mddev->recovery_cp = sb->recovery_cp;
814 			} else
815 				mddev->recovery_cp = 0;
816 		}
817 
818 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
819 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
820 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
821 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
822 
823 		mddev->max_disks = MD_SB_DISKS;
824 
825 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
826 		    mddev->bitmap_file == NULL)
827 			mddev->bitmap_offset = mddev->default_bitmap_offset;
828 
829 	} else if (mddev->pers == NULL) {
830 		/* Insist on good event counter while assembling */
831 		++ev1;
832 		if (ev1 < mddev->events)
833 			return -EINVAL;
834 	} else if (mddev->bitmap) {
835 		/* if adding to array with a bitmap, then we can accept an
836 		 * older device ... but not too old.
837 		 */
838 		if (ev1 < mddev->bitmap->events_cleared)
839 			return 0;
840 	} else {
841 		if (ev1 < mddev->events)
842 			/* just a hot-add of a new device, leave raid_disk at -1 */
843 			return 0;
844 	}
845 
846 	if (mddev->level != LEVEL_MULTIPATH) {
847 		desc = sb->disks + rdev->desc_nr;
848 
849 		if (desc->state & (1<<MD_DISK_FAULTY))
850 			set_bit(Faulty, &rdev->flags);
851 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
852 			    desc->raid_disk < mddev->raid_disks */) {
853 			set_bit(In_sync, &rdev->flags);
854 			rdev->raid_disk = desc->raid_disk;
855 		}
856 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
857 			set_bit(WriteMostly, &rdev->flags);
858 	} else /* MULTIPATH are always insync */
859 		set_bit(In_sync, &rdev->flags);
860 	return 0;
861 }
862 
863 /*
864  * sync_super for 0.90.0
865  */
866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
867 {
868 	mdp_super_t *sb;
869 	struct list_head *tmp;
870 	mdk_rdev_t *rdev2;
871 	int next_spare = mddev->raid_disks;
872 
873 
874 	/* make rdev->sb match mddev data..
875 	 *
876 	 * 1/ zero out disks
877 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
878 	 * 3/ any empty disks < next_spare become removed
879 	 *
880 	 * disks[0] gets initialised to REMOVED because
881 	 * we cannot be sure from other fields if it has
882 	 * been initialised or not.
883 	 */
884 	int i;
885 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
886 
887 	rdev->sb_size = MD_SB_BYTES;
888 
889 	sb = (mdp_super_t*)page_address(rdev->sb_page);
890 
891 	memset(sb, 0, sizeof(*sb));
892 
893 	sb->md_magic = MD_SB_MAGIC;
894 	sb->major_version = mddev->major_version;
895 	sb->patch_version = mddev->patch_version;
896 	sb->gvalid_words  = 0; /* ignored */
897 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
898 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
899 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
900 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
901 
902 	sb->ctime = mddev->ctime;
903 	sb->level = mddev->level;
904 	sb->size  = mddev->size;
905 	sb->raid_disks = mddev->raid_disks;
906 	sb->md_minor = mddev->md_minor;
907 	sb->not_persistent = !mddev->persistent;
908 	sb->utime = mddev->utime;
909 	sb->state = 0;
910 	sb->events_hi = (mddev->events>>32);
911 	sb->events_lo = (u32)mddev->events;
912 
913 	if (mddev->reshape_position == MaxSector)
914 		sb->minor_version = 90;
915 	else {
916 		sb->minor_version = 91;
917 		sb->reshape_position = mddev->reshape_position;
918 		sb->new_level = mddev->new_level;
919 		sb->delta_disks = mddev->delta_disks;
920 		sb->new_layout = mddev->new_layout;
921 		sb->new_chunk = mddev->new_chunk;
922 	}
923 	mddev->minor_version = sb->minor_version;
924 	if (mddev->in_sync)
925 	{
926 		sb->recovery_cp = mddev->recovery_cp;
927 		sb->cp_events_hi = (mddev->events>>32);
928 		sb->cp_events_lo = (u32)mddev->events;
929 		if (mddev->recovery_cp == MaxSector)
930 			sb->state = (1<< MD_SB_CLEAN);
931 	} else
932 		sb->recovery_cp = 0;
933 
934 	sb->layout = mddev->layout;
935 	sb->chunk_size = mddev->chunk_size;
936 
937 	if (mddev->bitmap && mddev->bitmap_file == NULL)
938 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
939 
940 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
941 	ITERATE_RDEV(mddev,rdev2,tmp) {
942 		mdp_disk_t *d;
943 		int desc_nr;
944 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
945 		    && !test_bit(Faulty, &rdev2->flags))
946 			desc_nr = rdev2->raid_disk;
947 		else
948 			desc_nr = next_spare++;
949 		rdev2->desc_nr = desc_nr;
950 		d = &sb->disks[rdev2->desc_nr];
951 		nr_disks++;
952 		d->number = rdev2->desc_nr;
953 		d->major = MAJOR(rdev2->bdev->bd_dev);
954 		d->minor = MINOR(rdev2->bdev->bd_dev);
955 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
956 		    && !test_bit(Faulty, &rdev2->flags))
957 			d->raid_disk = rdev2->raid_disk;
958 		else
959 			d->raid_disk = rdev2->desc_nr; /* compatibility */
960 		if (test_bit(Faulty, &rdev2->flags))
961 			d->state = (1<<MD_DISK_FAULTY);
962 		else if (test_bit(In_sync, &rdev2->flags)) {
963 			d->state = (1<<MD_DISK_ACTIVE);
964 			d->state |= (1<<MD_DISK_SYNC);
965 			active++;
966 			working++;
967 		} else {
968 			d->state = 0;
969 			spare++;
970 			working++;
971 		}
972 		if (test_bit(WriteMostly, &rdev2->flags))
973 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
974 	}
975 	/* now set the "removed" and "faulty" bits on any missing devices */
976 	for (i=0 ; i < mddev->raid_disks ; i++) {
977 		mdp_disk_t *d = &sb->disks[i];
978 		if (d->state == 0 && d->number == 0) {
979 			d->number = i;
980 			d->raid_disk = i;
981 			d->state = (1<<MD_DISK_REMOVED);
982 			d->state |= (1<<MD_DISK_FAULTY);
983 			failed++;
984 		}
985 	}
986 	sb->nr_disks = nr_disks;
987 	sb->active_disks = active;
988 	sb->working_disks = working;
989 	sb->failed_disks = failed;
990 	sb->spare_disks = spare;
991 
992 	sb->this_disk = sb->disks[rdev->desc_nr];
993 	sb->sb_csum = calc_sb_csum(sb);
994 }
995 
996 /*
997  * version 1 superblock
998  */
999 
1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1001 {
1002 	__le32 disk_csum;
1003 	u32 csum;
1004 	unsigned long long newcsum;
1005 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1006 	__le32 *isuper = (__le32*)sb;
1007 	int i;
1008 
1009 	disk_csum = sb->sb_csum;
1010 	sb->sb_csum = 0;
1011 	newcsum = 0;
1012 	for (i=0; size>=4; size -= 4 )
1013 		newcsum += le32_to_cpu(*isuper++);
1014 
1015 	if (size == 2)
1016 		newcsum += le16_to_cpu(*(__le16*) isuper);
1017 
1018 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1019 	sb->sb_csum = disk_csum;
1020 	return cpu_to_le32(csum);
1021 }
1022 
1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1024 {
1025 	struct mdp_superblock_1 *sb;
1026 	int ret;
1027 	sector_t sb_offset;
1028 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1029 	int bmask;
1030 
1031 	/*
1032 	 * Calculate the position of the superblock.
1033 	 * It is always aligned to a 4K boundary and
1034 	 * depeding on minor_version, it can be:
1035 	 * 0: At least 8K, but less than 12K, from end of device
1036 	 * 1: At start of device
1037 	 * 2: 4K from start of device.
1038 	 */
1039 	switch(minor_version) {
1040 	case 0:
1041 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1042 		sb_offset -= 8*2;
1043 		sb_offset &= ~(sector_t)(4*2-1);
1044 		/* convert from sectors to K */
1045 		sb_offset /= 2;
1046 		break;
1047 	case 1:
1048 		sb_offset = 0;
1049 		break;
1050 	case 2:
1051 		sb_offset = 4;
1052 		break;
1053 	default:
1054 		return -EINVAL;
1055 	}
1056 	rdev->sb_offset = sb_offset;
1057 
1058 	/* superblock is rarely larger than 1K, but it can be larger,
1059 	 * and it is safe to read 4k, so we do that
1060 	 */
1061 	ret = read_disk_sb(rdev, 4096);
1062 	if (ret) return ret;
1063 
1064 
1065 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1066 
1067 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1068 	    sb->major_version != cpu_to_le32(1) ||
1069 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1070 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1071 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1072 		return -EINVAL;
1073 
1074 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1075 		printk("md: invalid superblock checksum on %s\n",
1076 			bdevname(rdev->bdev,b));
1077 		return -EINVAL;
1078 	}
1079 	if (le64_to_cpu(sb->data_size) < 10) {
1080 		printk("md: data_size too small on %s\n",
1081 		       bdevname(rdev->bdev,b));
1082 		return -EINVAL;
1083 	}
1084 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1085 		if (sb->level != cpu_to_le32(1) &&
1086 		    sb->level != cpu_to_le32(4) &&
1087 		    sb->level != cpu_to_le32(5) &&
1088 		    sb->level != cpu_to_le32(6) &&
1089 		    sb->level != cpu_to_le32(10)) {
1090 			printk(KERN_WARNING
1091 			       "md: bitmaps not supported for this level.\n");
1092 			return -EINVAL;
1093 		}
1094 	}
1095 
1096 	rdev->preferred_minor = 0xffff;
1097 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1098 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1099 
1100 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1101 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1102 	if (rdev->sb_size & bmask)
1103 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1104 
1105 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1106 		rdev->desc_nr = -1;
1107 	else
1108 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1109 
1110 	if (refdev == 0)
1111 		ret = 1;
1112 	else {
1113 		__u64 ev1, ev2;
1114 		struct mdp_superblock_1 *refsb =
1115 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1116 
1117 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1118 		    sb->level != refsb->level ||
1119 		    sb->layout != refsb->layout ||
1120 		    sb->chunksize != refsb->chunksize) {
1121 			printk(KERN_WARNING "md: %s has strangely different"
1122 				" superblock to %s\n",
1123 				bdevname(rdev->bdev,b),
1124 				bdevname(refdev->bdev,b2));
1125 			return -EINVAL;
1126 		}
1127 		ev1 = le64_to_cpu(sb->events);
1128 		ev2 = le64_to_cpu(refsb->events);
1129 
1130 		if (ev1 > ev2)
1131 			ret = 1;
1132 		else
1133 			ret = 0;
1134 	}
1135 	if (minor_version)
1136 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1137 	else
1138 		rdev->size = rdev->sb_offset;
1139 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1140 		return -EINVAL;
1141 	rdev->size = le64_to_cpu(sb->data_size)/2;
1142 	if (le32_to_cpu(sb->chunksize))
1143 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1144 
1145 	if (le64_to_cpu(sb->size) > rdev->size*2)
1146 		return -EINVAL;
1147 	return ret;
1148 }
1149 
1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1151 {
1152 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1153 	__u64 ev1 = le64_to_cpu(sb->events);
1154 
1155 	rdev->raid_disk = -1;
1156 	rdev->flags = 0;
1157 	if (mddev->raid_disks == 0) {
1158 		mddev->major_version = 1;
1159 		mddev->patch_version = 0;
1160 		mddev->persistent = 1;
1161 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1162 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1163 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1164 		mddev->level = le32_to_cpu(sb->level);
1165 		mddev->clevel[0] = 0;
1166 		mddev->layout = le32_to_cpu(sb->layout);
1167 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1168 		mddev->size = le64_to_cpu(sb->size)/2;
1169 		mddev->events = ev1;
1170 		mddev->bitmap_offset = 0;
1171 		mddev->default_bitmap_offset = 1024 >> 9;
1172 
1173 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1174 		memcpy(mddev->uuid, sb->set_uuid, 16);
1175 
1176 		mddev->max_disks =  (4096-256)/2;
1177 
1178 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1179 		    mddev->bitmap_file == NULL )
1180 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1181 
1182 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1183 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1184 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1185 			mddev->new_level = le32_to_cpu(sb->new_level);
1186 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1187 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1188 		} else {
1189 			mddev->reshape_position = MaxSector;
1190 			mddev->delta_disks = 0;
1191 			mddev->new_level = mddev->level;
1192 			mddev->new_layout = mddev->layout;
1193 			mddev->new_chunk = mddev->chunk_size;
1194 		}
1195 
1196 	} else if (mddev->pers == NULL) {
1197 		/* Insist of good event counter while assembling */
1198 		++ev1;
1199 		if (ev1 < mddev->events)
1200 			return -EINVAL;
1201 	} else if (mddev->bitmap) {
1202 		/* If adding to array with a bitmap, then we can accept an
1203 		 * older device, but not too old.
1204 		 */
1205 		if (ev1 < mddev->bitmap->events_cleared)
1206 			return 0;
1207 	} else {
1208 		if (ev1 < mddev->events)
1209 			/* just a hot-add of a new device, leave raid_disk at -1 */
1210 			return 0;
1211 	}
1212 	if (mddev->level != LEVEL_MULTIPATH) {
1213 		int role;
1214 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1215 		switch(role) {
1216 		case 0xffff: /* spare */
1217 			break;
1218 		case 0xfffe: /* faulty */
1219 			set_bit(Faulty, &rdev->flags);
1220 			break;
1221 		default:
1222 			if ((le32_to_cpu(sb->feature_map) &
1223 			     MD_FEATURE_RECOVERY_OFFSET))
1224 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1225 			else
1226 				set_bit(In_sync, &rdev->flags);
1227 			rdev->raid_disk = role;
1228 			break;
1229 		}
1230 		if (sb->devflags & WriteMostly1)
1231 			set_bit(WriteMostly, &rdev->flags);
1232 	} else /* MULTIPATH are always insync */
1233 		set_bit(In_sync, &rdev->flags);
1234 
1235 	return 0;
1236 }
1237 
1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1239 {
1240 	struct mdp_superblock_1 *sb;
1241 	struct list_head *tmp;
1242 	mdk_rdev_t *rdev2;
1243 	int max_dev, i;
1244 	/* make rdev->sb match mddev and rdev data. */
1245 
1246 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1247 
1248 	sb->feature_map = 0;
1249 	sb->pad0 = 0;
1250 	sb->recovery_offset = cpu_to_le64(0);
1251 	memset(sb->pad1, 0, sizeof(sb->pad1));
1252 	memset(sb->pad2, 0, sizeof(sb->pad2));
1253 	memset(sb->pad3, 0, sizeof(sb->pad3));
1254 
1255 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1256 	sb->events = cpu_to_le64(mddev->events);
1257 	if (mddev->in_sync)
1258 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1259 	else
1260 		sb->resync_offset = cpu_to_le64(0);
1261 
1262 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1263 
1264 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1265 	sb->size = cpu_to_le64(mddev->size<<1);
1266 
1267 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1268 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1269 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1270 	}
1271 
1272 	if (rdev->raid_disk >= 0 &&
1273 	    !test_bit(In_sync, &rdev->flags) &&
1274 	    rdev->recovery_offset > 0) {
1275 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1276 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1277 	}
1278 
1279 	if (mddev->reshape_position != MaxSector) {
1280 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1281 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1282 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1283 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1284 		sb->new_level = cpu_to_le32(mddev->new_level);
1285 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1286 	}
1287 
1288 	max_dev = 0;
1289 	ITERATE_RDEV(mddev,rdev2,tmp)
1290 		if (rdev2->desc_nr+1 > max_dev)
1291 			max_dev = rdev2->desc_nr+1;
1292 
1293 	if (max_dev > le32_to_cpu(sb->max_dev))
1294 		sb->max_dev = cpu_to_le32(max_dev);
1295 	for (i=0; i<max_dev;i++)
1296 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1297 
1298 	ITERATE_RDEV(mddev,rdev2,tmp) {
1299 		i = rdev2->desc_nr;
1300 		if (test_bit(Faulty, &rdev2->flags))
1301 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1302 		else if (test_bit(In_sync, &rdev2->flags))
1303 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1304 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1305 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1306 		else
1307 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1308 	}
1309 
1310 	sb->sb_csum = calc_sb_1_csum(sb);
1311 }
1312 
1313 
1314 static struct super_type super_types[] = {
1315 	[0] = {
1316 		.name	= "0.90.0",
1317 		.owner	= THIS_MODULE,
1318 		.load_super	= super_90_load,
1319 		.validate_super	= super_90_validate,
1320 		.sync_super	= super_90_sync,
1321 	},
1322 	[1] = {
1323 		.name	= "md-1",
1324 		.owner	= THIS_MODULE,
1325 		.load_super	= super_1_load,
1326 		.validate_super	= super_1_validate,
1327 		.sync_super	= super_1_sync,
1328 	},
1329 };
1330 
1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1332 {
1333 	struct list_head *tmp, *tmp2;
1334 	mdk_rdev_t *rdev, *rdev2;
1335 
1336 	ITERATE_RDEV(mddev1,rdev,tmp)
1337 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1338 			if (rdev->bdev->bd_contains ==
1339 			    rdev2->bdev->bd_contains)
1340 				return 1;
1341 
1342 	return 0;
1343 }
1344 
1345 static LIST_HEAD(pending_raid_disks);
1346 
1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1348 {
1349 	char b[BDEVNAME_SIZE];
1350 	struct kobject *ko;
1351 	char *s;
1352 	int err;
1353 
1354 	if (rdev->mddev) {
1355 		MD_BUG();
1356 		return -EINVAL;
1357 	}
1358 	/* make sure rdev->size exceeds mddev->size */
1359 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1360 		if (mddev->pers) {
1361 			/* Cannot change size, so fail
1362 			 * If mddev->level <= 0, then we don't care
1363 			 * about aligning sizes (e.g. linear)
1364 			 */
1365 			if (mddev->level > 0)
1366 				return -ENOSPC;
1367 		} else
1368 			mddev->size = rdev->size;
1369 	}
1370 
1371 	/* Verify rdev->desc_nr is unique.
1372 	 * If it is -1, assign a free number, else
1373 	 * check number is not in use
1374 	 */
1375 	if (rdev->desc_nr < 0) {
1376 		int choice = 0;
1377 		if (mddev->pers) choice = mddev->raid_disks;
1378 		while (find_rdev_nr(mddev, choice))
1379 			choice++;
1380 		rdev->desc_nr = choice;
1381 	} else {
1382 		if (find_rdev_nr(mddev, rdev->desc_nr))
1383 			return -EBUSY;
1384 	}
1385 	bdevname(rdev->bdev,b);
1386 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1387 		return -ENOMEM;
1388 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1389 		*s = '!';
1390 
1391 	rdev->mddev = mddev;
1392 	printk(KERN_INFO "md: bind<%s>\n", b);
1393 
1394 	rdev->kobj.parent = &mddev->kobj;
1395 	if ((err = kobject_add(&rdev->kobj)))
1396 		goto fail;
1397 
1398 	if (rdev->bdev->bd_part)
1399 		ko = &rdev->bdev->bd_part->kobj;
1400 	else
1401 		ko = &rdev->bdev->bd_disk->kobj;
1402 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1403 		kobject_del(&rdev->kobj);
1404 		goto fail;
1405 	}
1406 	list_add(&rdev->same_set, &mddev->disks);
1407 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1408 	return 0;
1409 
1410  fail:
1411 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1412 	       b, mdname(mddev));
1413 	return err;
1414 }
1415 
1416 static void delayed_delete(struct work_struct *ws)
1417 {
1418 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1419 	kobject_del(&rdev->kobj);
1420 }
1421 
1422 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1423 {
1424 	char b[BDEVNAME_SIZE];
1425 	if (!rdev->mddev) {
1426 		MD_BUG();
1427 		return;
1428 	}
1429 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1430 	list_del_init(&rdev->same_set);
1431 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1432 	rdev->mddev = NULL;
1433 	sysfs_remove_link(&rdev->kobj, "block");
1434 
1435 	/* We need to delay this, otherwise we can deadlock when
1436 	 * writing to 'remove' to "dev/state"
1437 	 */
1438 	INIT_WORK(&rdev->del_work, delayed_delete);
1439 	schedule_work(&rdev->del_work);
1440 }
1441 
1442 /*
1443  * prevent the device from being mounted, repartitioned or
1444  * otherwise reused by a RAID array (or any other kernel
1445  * subsystem), by bd_claiming the device.
1446  */
1447 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1448 {
1449 	int err = 0;
1450 	struct block_device *bdev;
1451 	char b[BDEVNAME_SIZE];
1452 
1453 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1454 	if (IS_ERR(bdev)) {
1455 		printk(KERN_ERR "md: could not open %s.\n",
1456 			__bdevname(dev, b));
1457 		return PTR_ERR(bdev);
1458 	}
1459 	err = bd_claim(bdev, rdev);
1460 	if (err) {
1461 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1462 			bdevname(bdev, b));
1463 		blkdev_put(bdev);
1464 		return err;
1465 	}
1466 	rdev->bdev = bdev;
1467 	return err;
1468 }
1469 
1470 static void unlock_rdev(mdk_rdev_t *rdev)
1471 {
1472 	struct block_device *bdev = rdev->bdev;
1473 	rdev->bdev = NULL;
1474 	if (!bdev)
1475 		MD_BUG();
1476 	bd_release(bdev);
1477 	blkdev_put(bdev);
1478 }
1479 
1480 void md_autodetect_dev(dev_t dev);
1481 
1482 static void export_rdev(mdk_rdev_t * rdev)
1483 {
1484 	char b[BDEVNAME_SIZE];
1485 	printk(KERN_INFO "md: export_rdev(%s)\n",
1486 		bdevname(rdev->bdev,b));
1487 	if (rdev->mddev)
1488 		MD_BUG();
1489 	free_disk_sb(rdev);
1490 	list_del_init(&rdev->same_set);
1491 #ifndef MODULE
1492 	md_autodetect_dev(rdev->bdev->bd_dev);
1493 #endif
1494 	unlock_rdev(rdev);
1495 	kobject_put(&rdev->kobj);
1496 }
1497 
1498 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1499 {
1500 	unbind_rdev_from_array(rdev);
1501 	export_rdev(rdev);
1502 }
1503 
1504 static void export_array(mddev_t *mddev)
1505 {
1506 	struct list_head *tmp;
1507 	mdk_rdev_t *rdev;
1508 
1509 	ITERATE_RDEV(mddev,rdev,tmp) {
1510 		if (!rdev->mddev) {
1511 			MD_BUG();
1512 			continue;
1513 		}
1514 		kick_rdev_from_array(rdev);
1515 	}
1516 	if (!list_empty(&mddev->disks))
1517 		MD_BUG();
1518 	mddev->raid_disks = 0;
1519 	mddev->major_version = 0;
1520 }
1521 
1522 static void print_desc(mdp_disk_t *desc)
1523 {
1524 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1525 		desc->major,desc->minor,desc->raid_disk,desc->state);
1526 }
1527 
1528 static void print_sb(mdp_super_t *sb)
1529 {
1530 	int i;
1531 
1532 	printk(KERN_INFO
1533 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1534 		sb->major_version, sb->minor_version, sb->patch_version,
1535 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1536 		sb->ctime);
1537 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1538 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1539 		sb->md_minor, sb->layout, sb->chunk_size);
1540 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1541 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1542 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1543 		sb->failed_disks, sb->spare_disks,
1544 		sb->sb_csum, (unsigned long)sb->events_lo);
1545 
1546 	printk(KERN_INFO);
1547 	for (i = 0; i < MD_SB_DISKS; i++) {
1548 		mdp_disk_t *desc;
1549 
1550 		desc = sb->disks + i;
1551 		if (desc->number || desc->major || desc->minor ||
1552 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1553 			printk("     D %2d: ", i);
1554 			print_desc(desc);
1555 		}
1556 	}
1557 	printk(KERN_INFO "md:     THIS: ");
1558 	print_desc(&sb->this_disk);
1559 
1560 }
1561 
1562 static void print_rdev(mdk_rdev_t *rdev)
1563 {
1564 	char b[BDEVNAME_SIZE];
1565 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1566 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1567 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1568 	        rdev->desc_nr);
1569 	if (rdev->sb_loaded) {
1570 		printk(KERN_INFO "md: rdev superblock:\n");
1571 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1572 	} else
1573 		printk(KERN_INFO "md: no rdev superblock!\n");
1574 }
1575 
1576 static void md_print_devices(void)
1577 {
1578 	struct list_head *tmp, *tmp2;
1579 	mdk_rdev_t *rdev;
1580 	mddev_t *mddev;
1581 	char b[BDEVNAME_SIZE];
1582 
1583 	printk("\n");
1584 	printk("md:	**********************************\n");
1585 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1586 	printk("md:	**********************************\n");
1587 	ITERATE_MDDEV(mddev,tmp) {
1588 
1589 		if (mddev->bitmap)
1590 			bitmap_print_sb(mddev->bitmap);
1591 		else
1592 			printk("%s: ", mdname(mddev));
1593 		ITERATE_RDEV(mddev,rdev,tmp2)
1594 			printk("<%s>", bdevname(rdev->bdev,b));
1595 		printk("\n");
1596 
1597 		ITERATE_RDEV(mddev,rdev,tmp2)
1598 			print_rdev(rdev);
1599 	}
1600 	printk("md:	**********************************\n");
1601 	printk("\n");
1602 }
1603 
1604 
1605 static void sync_sbs(mddev_t * mddev, int nospares)
1606 {
1607 	/* Update each superblock (in-memory image), but
1608 	 * if we are allowed to, skip spares which already
1609 	 * have the right event counter, or have one earlier
1610 	 * (which would mean they aren't being marked as dirty
1611 	 * with the rest of the array)
1612 	 */
1613 	mdk_rdev_t *rdev;
1614 	struct list_head *tmp;
1615 
1616 	ITERATE_RDEV(mddev,rdev,tmp) {
1617 		if (rdev->sb_events == mddev->events ||
1618 		    (nospares &&
1619 		     rdev->raid_disk < 0 &&
1620 		     (rdev->sb_events&1)==0 &&
1621 		     rdev->sb_events+1 == mddev->events)) {
1622 			/* Don't update this superblock */
1623 			rdev->sb_loaded = 2;
1624 		} else {
1625 			super_types[mddev->major_version].
1626 				sync_super(mddev, rdev);
1627 			rdev->sb_loaded = 1;
1628 		}
1629 	}
1630 }
1631 
1632 static void md_update_sb(mddev_t * mddev, int force_change)
1633 {
1634 	struct list_head *tmp;
1635 	mdk_rdev_t *rdev;
1636 	int sync_req;
1637 	int nospares = 0;
1638 
1639 repeat:
1640 	spin_lock_irq(&mddev->write_lock);
1641 
1642 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1643 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1644 		force_change = 1;
1645 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1646 		/* just a clean<-> dirty transition, possibly leave spares alone,
1647 		 * though if events isn't the right even/odd, we will have to do
1648 		 * spares after all
1649 		 */
1650 		nospares = 1;
1651 	if (force_change)
1652 		nospares = 0;
1653 	if (mddev->degraded)
1654 		/* If the array is degraded, then skipping spares is both
1655 		 * dangerous and fairly pointless.
1656 		 * Dangerous because a device that was removed from the array
1657 		 * might have a event_count that still looks up-to-date,
1658 		 * so it can be re-added without a resync.
1659 		 * Pointless because if there are any spares to skip,
1660 		 * then a recovery will happen and soon that array won't
1661 		 * be degraded any more and the spare can go back to sleep then.
1662 		 */
1663 		nospares = 0;
1664 
1665 	sync_req = mddev->in_sync;
1666 	mddev->utime = get_seconds();
1667 
1668 	/* If this is just a dirty<->clean transition, and the array is clean
1669 	 * and 'events' is odd, we can roll back to the previous clean state */
1670 	if (nospares
1671 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1672 	    && (mddev->events & 1)
1673 	    && mddev->events != 1)
1674 		mddev->events--;
1675 	else {
1676 		/* otherwise we have to go forward and ... */
1677 		mddev->events ++;
1678 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1679 			/* .. if the array isn't clean, insist on an odd 'events' */
1680 			if ((mddev->events&1)==0) {
1681 				mddev->events++;
1682 				nospares = 0;
1683 			}
1684 		} else {
1685 			/* otherwise insist on an even 'events' (for clean states) */
1686 			if ((mddev->events&1)) {
1687 				mddev->events++;
1688 				nospares = 0;
1689 			}
1690 		}
1691 	}
1692 
1693 	if (!mddev->events) {
1694 		/*
1695 		 * oops, this 64-bit counter should never wrap.
1696 		 * Either we are in around ~1 trillion A.C., assuming
1697 		 * 1 reboot per second, or we have a bug:
1698 		 */
1699 		MD_BUG();
1700 		mddev->events --;
1701 	}
1702 	sync_sbs(mddev, nospares);
1703 
1704 	/*
1705 	 * do not write anything to disk if using
1706 	 * nonpersistent superblocks
1707 	 */
1708 	if (!mddev->persistent) {
1709 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1710 		spin_unlock_irq(&mddev->write_lock);
1711 		wake_up(&mddev->sb_wait);
1712 		return;
1713 	}
1714 	spin_unlock_irq(&mddev->write_lock);
1715 
1716 	dprintk(KERN_INFO
1717 		"md: updating %s RAID superblock on device (in sync %d)\n",
1718 		mdname(mddev),mddev->in_sync);
1719 
1720 	bitmap_update_sb(mddev->bitmap);
1721 	ITERATE_RDEV(mddev,rdev,tmp) {
1722 		char b[BDEVNAME_SIZE];
1723 		dprintk(KERN_INFO "md: ");
1724 		if (rdev->sb_loaded != 1)
1725 			continue; /* no noise on spare devices */
1726 		if (test_bit(Faulty, &rdev->flags))
1727 			dprintk("(skipping faulty ");
1728 
1729 		dprintk("%s ", bdevname(rdev->bdev,b));
1730 		if (!test_bit(Faulty, &rdev->flags)) {
1731 			md_super_write(mddev,rdev,
1732 				       rdev->sb_offset<<1, rdev->sb_size,
1733 				       rdev->sb_page);
1734 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1735 				bdevname(rdev->bdev,b),
1736 				(unsigned long long)rdev->sb_offset);
1737 			rdev->sb_events = mddev->events;
1738 
1739 		} else
1740 			dprintk(")\n");
1741 		if (mddev->level == LEVEL_MULTIPATH)
1742 			/* only need to write one superblock... */
1743 			break;
1744 	}
1745 	md_super_wait(mddev);
1746 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1747 
1748 	spin_lock_irq(&mddev->write_lock);
1749 	if (mddev->in_sync != sync_req ||
1750 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1751 		/* have to write it out again */
1752 		spin_unlock_irq(&mddev->write_lock);
1753 		goto repeat;
1754 	}
1755 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1756 	spin_unlock_irq(&mddev->write_lock);
1757 	wake_up(&mddev->sb_wait);
1758 
1759 }
1760 
1761 /* words written to sysfs files may, or my not, be \n terminated.
1762  * We want to accept with case. For this we use cmd_match.
1763  */
1764 static int cmd_match(const char *cmd, const char *str)
1765 {
1766 	/* See if cmd, written into a sysfs file, matches
1767 	 * str.  They must either be the same, or cmd can
1768 	 * have a trailing newline
1769 	 */
1770 	while (*cmd && *str && *cmd == *str) {
1771 		cmd++;
1772 		str++;
1773 	}
1774 	if (*cmd == '\n')
1775 		cmd++;
1776 	if (*str || *cmd)
1777 		return 0;
1778 	return 1;
1779 }
1780 
1781 struct rdev_sysfs_entry {
1782 	struct attribute attr;
1783 	ssize_t (*show)(mdk_rdev_t *, char *);
1784 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1785 };
1786 
1787 static ssize_t
1788 state_show(mdk_rdev_t *rdev, char *page)
1789 {
1790 	char *sep = "";
1791 	int len=0;
1792 
1793 	if (test_bit(Faulty, &rdev->flags)) {
1794 		len+= sprintf(page+len, "%sfaulty",sep);
1795 		sep = ",";
1796 	}
1797 	if (test_bit(In_sync, &rdev->flags)) {
1798 		len += sprintf(page+len, "%sin_sync",sep);
1799 		sep = ",";
1800 	}
1801 	if (test_bit(WriteMostly, &rdev->flags)) {
1802 		len += sprintf(page+len, "%swrite_mostly",sep);
1803 		sep = ",";
1804 	}
1805 	if (!test_bit(Faulty, &rdev->flags) &&
1806 	    !test_bit(In_sync, &rdev->flags)) {
1807 		len += sprintf(page+len, "%sspare", sep);
1808 		sep = ",";
1809 	}
1810 	return len+sprintf(page+len, "\n");
1811 }
1812 
1813 static ssize_t
1814 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1815 {
1816 	/* can write
1817 	 *  faulty  - simulates and error
1818 	 *  remove  - disconnects the device
1819 	 *  writemostly - sets write_mostly
1820 	 *  -writemostly - clears write_mostly
1821 	 */
1822 	int err = -EINVAL;
1823 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1824 		md_error(rdev->mddev, rdev);
1825 		err = 0;
1826 	} else if (cmd_match(buf, "remove")) {
1827 		if (rdev->raid_disk >= 0)
1828 			err = -EBUSY;
1829 		else {
1830 			mddev_t *mddev = rdev->mddev;
1831 			kick_rdev_from_array(rdev);
1832 			if (mddev->pers)
1833 				md_update_sb(mddev, 1);
1834 			md_new_event(mddev);
1835 			err = 0;
1836 		}
1837 	} else if (cmd_match(buf, "writemostly")) {
1838 		set_bit(WriteMostly, &rdev->flags);
1839 		err = 0;
1840 	} else if (cmd_match(buf, "-writemostly")) {
1841 		clear_bit(WriteMostly, &rdev->flags);
1842 		err = 0;
1843 	}
1844 	return err ? err : len;
1845 }
1846 static struct rdev_sysfs_entry rdev_state =
1847 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1848 
1849 static ssize_t
1850 super_show(mdk_rdev_t *rdev, char *page)
1851 {
1852 	if (rdev->sb_loaded && rdev->sb_size) {
1853 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1854 		return rdev->sb_size;
1855 	} else
1856 		return 0;
1857 }
1858 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1859 
1860 static ssize_t
1861 errors_show(mdk_rdev_t *rdev, char *page)
1862 {
1863 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1864 }
1865 
1866 static ssize_t
1867 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1868 {
1869 	char *e;
1870 	unsigned long n = simple_strtoul(buf, &e, 10);
1871 	if (*buf && (*e == 0 || *e == '\n')) {
1872 		atomic_set(&rdev->corrected_errors, n);
1873 		return len;
1874 	}
1875 	return -EINVAL;
1876 }
1877 static struct rdev_sysfs_entry rdev_errors =
1878 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1879 
1880 static ssize_t
1881 slot_show(mdk_rdev_t *rdev, char *page)
1882 {
1883 	if (rdev->raid_disk < 0)
1884 		return sprintf(page, "none\n");
1885 	else
1886 		return sprintf(page, "%d\n", rdev->raid_disk);
1887 }
1888 
1889 static ssize_t
1890 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1891 {
1892 	char *e;
1893 	int slot = simple_strtoul(buf, &e, 10);
1894 	if (strncmp(buf, "none", 4)==0)
1895 		slot = -1;
1896 	else if (e==buf || (*e && *e!= '\n'))
1897 		return -EINVAL;
1898 	if (rdev->mddev->pers)
1899 		/* Cannot set slot in active array (yet) */
1900 		return -EBUSY;
1901 	if (slot >= rdev->mddev->raid_disks)
1902 		return -ENOSPC;
1903 	rdev->raid_disk = slot;
1904 	/* assume it is working */
1905 	rdev->flags = 0;
1906 	set_bit(In_sync, &rdev->flags);
1907 	return len;
1908 }
1909 
1910 
1911 static struct rdev_sysfs_entry rdev_slot =
1912 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1913 
1914 static ssize_t
1915 offset_show(mdk_rdev_t *rdev, char *page)
1916 {
1917 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1918 }
1919 
1920 static ssize_t
1921 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1922 {
1923 	char *e;
1924 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1925 	if (e==buf || (*e && *e != '\n'))
1926 		return -EINVAL;
1927 	if (rdev->mddev->pers)
1928 		return -EBUSY;
1929 	rdev->data_offset = offset;
1930 	return len;
1931 }
1932 
1933 static struct rdev_sysfs_entry rdev_offset =
1934 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1935 
1936 static ssize_t
1937 rdev_size_show(mdk_rdev_t *rdev, char *page)
1938 {
1939 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1940 }
1941 
1942 static ssize_t
1943 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1944 {
1945 	char *e;
1946 	unsigned long long size = simple_strtoull(buf, &e, 10);
1947 	if (e==buf || (*e && *e != '\n'))
1948 		return -EINVAL;
1949 	if (rdev->mddev->pers)
1950 		return -EBUSY;
1951 	rdev->size = size;
1952 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1953 		rdev->mddev->size = size;
1954 	return len;
1955 }
1956 
1957 static struct rdev_sysfs_entry rdev_size =
1958 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1959 
1960 static struct attribute *rdev_default_attrs[] = {
1961 	&rdev_state.attr,
1962 	&rdev_super.attr,
1963 	&rdev_errors.attr,
1964 	&rdev_slot.attr,
1965 	&rdev_offset.attr,
1966 	&rdev_size.attr,
1967 	NULL,
1968 };
1969 static ssize_t
1970 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1971 {
1972 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1973 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1974 
1975 	if (!entry->show)
1976 		return -EIO;
1977 	return entry->show(rdev, page);
1978 }
1979 
1980 static ssize_t
1981 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1982 	      const char *page, size_t length)
1983 {
1984 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1985 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1986 
1987 	if (!entry->store)
1988 		return -EIO;
1989 	if (!capable(CAP_SYS_ADMIN))
1990 		return -EACCES;
1991 	return entry->store(rdev, page, length);
1992 }
1993 
1994 static void rdev_free(struct kobject *ko)
1995 {
1996 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1997 	kfree(rdev);
1998 }
1999 static struct sysfs_ops rdev_sysfs_ops = {
2000 	.show		= rdev_attr_show,
2001 	.store		= rdev_attr_store,
2002 };
2003 static struct kobj_type rdev_ktype = {
2004 	.release	= rdev_free,
2005 	.sysfs_ops	= &rdev_sysfs_ops,
2006 	.default_attrs	= rdev_default_attrs,
2007 };
2008 
2009 /*
2010  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2011  *
2012  * mark the device faulty if:
2013  *
2014  *   - the device is nonexistent (zero size)
2015  *   - the device has no valid superblock
2016  *
2017  * a faulty rdev _never_ has rdev->sb set.
2018  */
2019 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2020 {
2021 	char b[BDEVNAME_SIZE];
2022 	int err;
2023 	mdk_rdev_t *rdev;
2024 	sector_t size;
2025 
2026 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2027 	if (!rdev) {
2028 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2029 		return ERR_PTR(-ENOMEM);
2030 	}
2031 
2032 	if ((err = alloc_disk_sb(rdev)))
2033 		goto abort_free;
2034 
2035 	err = lock_rdev(rdev, newdev);
2036 	if (err)
2037 		goto abort_free;
2038 
2039 	rdev->kobj.parent = NULL;
2040 	rdev->kobj.ktype = &rdev_ktype;
2041 	kobject_init(&rdev->kobj);
2042 
2043 	rdev->desc_nr = -1;
2044 	rdev->saved_raid_disk = -1;
2045 	rdev->raid_disk = -1;
2046 	rdev->flags = 0;
2047 	rdev->data_offset = 0;
2048 	rdev->sb_events = 0;
2049 	atomic_set(&rdev->nr_pending, 0);
2050 	atomic_set(&rdev->read_errors, 0);
2051 	atomic_set(&rdev->corrected_errors, 0);
2052 
2053 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2054 	if (!size) {
2055 		printk(KERN_WARNING
2056 			"md: %s has zero or unknown size, marking faulty!\n",
2057 			bdevname(rdev->bdev,b));
2058 		err = -EINVAL;
2059 		goto abort_free;
2060 	}
2061 
2062 	if (super_format >= 0) {
2063 		err = super_types[super_format].
2064 			load_super(rdev, NULL, super_minor);
2065 		if (err == -EINVAL) {
2066 			printk(KERN_WARNING
2067 				"md: %s does not have a valid v%d.%d "
2068 			       "superblock, not importing!\n",
2069 				bdevname(rdev->bdev,b),
2070 			       super_format, super_minor);
2071 			goto abort_free;
2072 		}
2073 		if (err < 0) {
2074 			printk(KERN_WARNING
2075 				"md: could not read %s's sb, not importing!\n",
2076 				bdevname(rdev->bdev,b));
2077 			goto abort_free;
2078 		}
2079 	}
2080 	INIT_LIST_HEAD(&rdev->same_set);
2081 
2082 	return rdev;
2083 
2084 abort_free:
2085 	if (rdev->sb_page) {
2086 		if (rdev->bdev)
2087 			unlock_rdev(rdev);
2088 		free_disk_sb(rdev);
2089 	}
2090 	kfree(rdev);
2091 	return ERR_PTR(err);
2092 }
2093 
2094 /*
2095  * Check a full RAID array for plausibility
2096  */
2097 
2098 
2099 static void analyze_sbs(mddev_t * mddev)
2100 {
2101 	int i;
2102 	struct list_head *tmp;
2103 	mdk_rdev_t *rdev, *freshest;
2104 	char b[BDEVNAME_SIZE];
2105 
2106 	freshest = NULL;
2107 	ITERATE_RDEV(mddev,rdev,tmp)
2108 		switch (super_types[mddev->major_version].
2109 			load_super(rdev, freshest, mddev->minor_version)) {
2110 		case 1:
2111 			freshest = rdev;
2112 			break;
2113 		case 0:
2114 			break;
2115 		default:
2116 			printk( KERN_ERR \
2117 				"md: fatal superblock inconsistency in %s"
2118 				" -- removing from array\n",
2119 				bdevname(rdev->bdev,b));
2120 			kick_rdev_from_array(rdev);
2121 		}
2122 
2123 
2124 	super_types[mddev->major_version].
2125 		validate_super(mddev, freshest);
2126 
2127 	i = 0;
2128 	ITERATE_RDEV(mddev,rdev,tmp) {
2129 		if (rdev != freshest)
2130 			if (super_types[mddev->major_version].
2131 			    validate_super(mddev, rdev)) {
2132 				printk(KERN_WARNING "md: kicking non-fresh %s"
2133 					" from array!\n",
2134 					bdevname(rdev->bdev,b));
2135 				kick_rdev_from_array(rdev);
2136 				continue;
2137 			}
2138 		if (mddev->level == LEVEL_MULTIPATH) {
2139 			rdev->desc_nr = i++;
2140 			rdev->raid_disk = rdev->desc_nr;
2141 			set_bit(In_sync, &rdev->flags);
2142 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2143 			rdev->raid_disk = -1;
2144 			clear_bit(In_sync, &rdev->flags);
2145 		}
2146 	}
2147 
2148 
2149 
2150 	if (mddev->recovery_cp != MaxSector &&
2151 	    mddev->level >= 1)
2152 		printk(KERN_ERR "md: %s: raid array is not clean"
2153 		       " -- starting background reconstruction\n",
2154 		       mdname(mddev));
2155 
2156 }
2157 
2158 static ssize_t
2159 safe_delay_show(mddev_t *mddev, char *page)
2160 {
2161 	int msec = (mddev->safemode_delay*1000)/HZ;
2162 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2163 }
2164 static ssize_t
2165 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2166 {
2167 	int scale=1;
2168 	int dot=0;
2169 	int i;
2170 	unsigned long msec;
2171 	char buf[30];
2172 	char *e;
2173 	/* remove a period, and count digits after it */
2174 	if (len >= sizeof(buf))
2175 		return -EINVAL;
2176 	strlcpy(buf, cbuf, len);
2177 	buf[len] = 0;
2178 	for (i=0; i<len; i++) {
2179 		if (dot) {
2180 			if (isdigit(buf[i])) {
2181 				buf[i-1] = buf[i];
2182 				scale *= 10;
2183 			}
2184 			buf[i] = 0;
2185 		} else if (buf[i] == '.') {
2186 			dot=1;
2187 			buf[i] = 0;
2188 		}
2189 	}
2190 	msec = simple_strtoul(buf, &e, 10);
2191 	if (e == buf || (*e && *e != '\n'))
2192 		return -EINVAL;
2193 	msec = (msec * 1000) / scale;
2194 	if (msec == 0)
2195 		mddev->safemode_delay = 0;
2196 	else {
2197 		mddev->safemode_delay = (msec*HZ)/1000;
2198 		if (mddev->safemode_delay == 0)
2199 			mddev->safemode_delay = 1;
2200 	}
2201 	return len;
2202 }
2203 static struct md_sysfs_entry md_safe_delay =
2204 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2205 
2206 static ssize_t
2207 level_show(mddev_t *mddev, char *page)
2208 {
2209 	struct mdk_personality *p = mddev->pers;
2210 	if (p)
2211 		return sprintf(page, "%s\n", p->name);
2212 	else if (mddev->clevel[0])
2213 		return sprintf(page, "%s\n", mddev->clevel);
2214 	else if (mddev->level != LEVEL_NONE)
2215 		return sprintf(page, "%d\n", mddev->level);
2216 	else
2217 		return 0;
2218 }
2219 
2220 static ssize_t
2221 level_store(mddev_t *mddev, const char *buf, size_t len)
2222 {
2223 	int rv = len;
2224 	if (mddev->pers)
2225 		return -EBUSY;
2226 	if (len == 0)
2227 		return 0;
2228 	if (len >= sizeof(mddev->clevel))
2229 		return -ENOSPC;
2230 	strncpy(mddev->clevel, buf, len);
2231 	if (mddev->clevel[len-1] == '\n')
2232 		len--;
2233 	mddev->clevel[len] = 0;
2234 	mddev->level = LEVEL_NONE;
2235 	return rv;
2236 }
2237 
2238 static struct md_sysfs_entry md_level =
2239 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2240 
2241 
2242 static ssize_t
2243 layout_show(mddev_t *mddev, char *page)
2244 {
2245 	/* just a number, not meaningful for all levels */
2246 	if (mddev->reshape_position != MaxSector &&
2247 	    mddev->layout != mddev->new_layout)
2248 		return sprintf(page, "%d (%d)\n",
2249 			       mddev->new_layout, mddev->layout);
2250 	return sprintf(page, "%d\n", mddev->layout);
2251 }
2252 
2253 static ssize_t
2254 layout_store(mddev_t *mddev, const char *buf, size_t len)
2255 {
2256 	char *e;
2257 	unsigned long n = simple_strtoul(buf, &e, 10);
2258 
2259 	if (!*buf || (*e && *e != '\n'))
2260 		return -EINVAL;
2261 
2262 	if (mddev->pers)
2263 		return -EBUSY;
2264 	if (mddev->reshape_position != MaxSector)
2265 		mddev->new_layout = n;
2266 	else
2267 		mddev->layout = n;
2268 	return len;
2269 }
2270 static struct md_sysfs_entry md_layout =
2271 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2272 
2273 
2274 static ssize_t
2275 raid_disks_show(mddev_t *mddev, char *page)
2276 {
2277 	if (mddev->raid_disks == 0)
2278 		return 0;
2279 	if (mddev->reshape_position != MaxSector &&
2280 	    mddev->delta_disks != 0)
2281 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2282 			       mddev->raid_disks - mddev->delta_disks);
2283 	return sprintf(page, "%d\n", mddev->raid_disks);
2284 }
2285 
2286 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2287 
2288 static ssize_t
2289 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2290 {
2291 	char *e;
2292 	int rv = 0;
2293 	unsigned long n = simple_strtoul(buf, &e, 10);
2294 
2295 	if (!*buf || (*e && *e != '\n'))
2296 		return -EINVAL;
2297 
2298 	if (mddev->pers)
2299 		rv = update_raid_disks(mddev, n);
2300 	else if (mddev->reshape_position != MaxSector) {
2301 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2302 		mddev->delta_disks = n - olddisks;
2303 		mddev->raid_disks = n;
2304 	} else
2305 		mddev->raid_disks = n;
2306 	return rv ? rv : len;
2307 }
2308 static struct md_sysfs_entry md_raid_disks =
2309 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2310 
2311 static ssize_t
2312 chunk_size_show(mddev_t *mddev, char *page)
2313 {
2314 	if (mddev->reshape_position != MaxSector &&
2315 	    mddev->chunk_size != mddev->new_chunk)
2316 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2317 			       mddev->chunk_size);
2318 	return sprintf(page, "%d\n", mddev->chunk_size);
2319 }
2320 
2321 static ssize_t
2322 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2323 {
2324 	/* can only set chunk_size if array is not yet active */
2325 	char *e;
2326 	unsigned long n = simple_strtoul(buf, &e, 10);
2327 
2328 	if (!*buf || (*e && *e != '\n'))
2329 		return -EINVAL;
2330 
2331 	if (mddev->pers)
2332 		return -EBUSY;
2333 	else if (mddev->reshape_position != MaxSector)
2334 		mddev->new_chunk = n;
2335 	else
2336 		mddev->chunk_size = n;
2337 	return len;
2338 }
2339 static struct md_sysfs_entry md_chunk_size =
2340 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2341 
2342 static ssize_t
2343 resync_start_show(mddev_t *mddev, char *page)
2344 {
2345 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2346 }
2347 
2348 static ssize_t
2349 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2350 {
2351 	/* can only set chunk_size if array is not yet active */
2352 	char *e;
2353 	unsigned long long n = simple_strtoull(buf, &e, 10);
2354 
2355 	if (mddev->pers)
2356 		return -EBUSY;
2357 	if (!*buf || (*e && *e != '\n'))
2358 		return -EINVAL;
2359 
2360 	mddev->recovery_cp = n;
2361 	return len;
2362 }
2363 static struct md_sysfs_entry md_resync_start =
2364 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2365 
2366 /*
2367  * The array state can be:
2368  *
2369  * clear
2370  *     No devices, no size, no level
2371  *     Equivalent to STOP_ARRAY ioctl
2372  * inactive
2373  *     May have some settings, but array is not active
2374  *        all IO results in error
2375  *     When written, doesn't tear down array, but just stops it
2376  * suspended (not supported yet)
2377  *     All IO requests will block. The array can be reconfigured.
2378  *     Writing this, if accepted, will block until array is quiessent
2379  * readonly
2380  *     no resync can happen.  no superblocks get written.
2381  *     write requests fail
2382  * read-auto
2383  *     like readonly, but behaves like 'clean' on a write request.
2384  *
2385  * clean - no pending writes, but otherwise active.
2386  *     When written to inactive array, starts without resync
2387  *     If a write request arrives then
2388  *       if metadata is known, mark 'dirty' and switch to 'active'.
2389  *       if not known, block and switch to write-pending
2390  *     If written to an active array that has pending writes, then fails.
2391  * active
2392  *     fully active: IO and resync can be happening.
2393  *     When written to inactive array, starts with resync
2394  *
2395  * write-pending
2396  *     clean, but writes are blocked waiting for 'active' to be written.
2397  *
2398  * active-idle
2399  *     like active, but no writes have been seen for a while (100msec).
2400  *
2401  */
2402 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2403 		   write_pending, active_idle, bad_word};
2404 static char *array_states[] = {
2405 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2406 	"write-pending", "active-idle", NULL };
2407 
2408 static int match_word(const char *word, char **list)
2409 {
2410 	int n;
2411 	for (n=0; list[n]; n++)
2412 		if (cmd_match(word, list[n]))
2413 			break;
2414 	return n;
2415 }
2416 
2417 static ssize_t
2418 array_state_show(mddev_t *mddev, char *page)
2419 {
2420 	enum array_state st = inactive;
2421 
2422 	if (mddev->pers)
2423 		switch(mddev->ro) {
2424 		case 1:
2425 			st = readonly;
2426 			break;
2427 		case 2:
2428 			st = read_auto;
2429 			break;
2430 		case 0:
2431 			if (mddev->in_sync)
2432 				st = clean;
2433 			else if (mddev->safemode)
2434 				st = active_idle;
2435 			else
2436 				st = active;
2437 		}
2438 	else {
2439 		if (list_empty(&mddev->disks) &&
2440 		    mddev->raid_disks == 0 &&
2441 		    mddev->size == 0)
2442 			st = clear;
2443 		else
2444 			st = inactive;
2445 	}
2446 	return sprintf(page, "%s\n", array_states[st]);
2447 }
2448 
2449 static int do_md_stop(mddev_t * mddev, int ro);
2450 static int do_md_run(mddev_t * mddev);
2451 static int restart_array(mddev_t *mddev);
2452 
2453 static ssize_t
2454 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2455 {
2456 	int err = -EINVAL;
2457 	enum array_state st = match_word(buf, array_states);
2458 	switch(st) {
2459 	case bad_word:
2460 		break;
2461 	case clear:
2462 		/* stopping an active array */
2463 		if (mddev->pers) {
2464 			if (atomic_read(&mddev->active) > 1)
2465 				return -EBUSY;
2466 			err = do_md_stop(mddev, 0);
2467 		}
2468 		break;
2469 	case inactive:
2470 		/* stopping an active array */
2471 		if (mddev->pers) {
2472 			if (atomic_read(&mddev->active) > 1)
2473 				return -EBUSY;
2474 			err = do_md_stop(mddev, 2);
2475 		}
2476 		break;
2477 	case suspended:
2478 		break; /* not supported yet */
2479 	case readonly:
2480 		if (mddev->pers)
2481 			err = do_md_stop(mddev, 1);
2482 		else {
2483 			mddev->ro = 1;
2484 			err = do_md_run(mddev);
2485 		}
2486 		break;
2487 	case read_auto:
2488 		/* stopping an active array */
2489 		if (mddev->pers) {
2490 			err = do_md_stop(mddev, 1);
2491 			if (err == 0)
2492 				mddev->ro = 2; /* FIXME mark devices writable */
2493 		} else {
2494 			mddev->ro = 2;
2495 			err = do_md_run(mddev);
2496 		}
2497 		break;
2498 	case clean:
2499 		if (mddev->pers) {
2500 			restart_array(mddev);
2501 			spin_lock_irq(&mddev->write_lock);
2502 			if (atomic_read(&mddev->writes_pending) == 0) {
2503 				mddev->in_sync = 1;
2504 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2505 			}
2506 			spin_unlock_irq(&mddev->write_lock);
2507 		} else {
2508 			mddev->ro = 0;
2509 			mddev->recovery_cp = MaxSector;
2510 			err = do_md_run(mddev);
2511 		}
2512 		break;
2513 	case active:
2514 		if (mddev->pers) {
2515 			restart_array(mddev);
2516 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2517 			wake_up(&mddev->sb_wait);
2518 			err = 0;
2519 		} else {
2520 			mddev->ro = 0;
2521 			err = do_md_run(mddev);
2522 		}
2523 		break;
2524 	case write_pending:
2525 	case active_idle:
2526 		/* these cannot be set */
2527 		break;
2528 	}
2529 	if (err)
2530 		return err;
2531 	else
2532 		return len;
2533 }
2534 static struct md_sysfs_entry md_array_state =
2535 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2536 
2537 static ssize_t
2538 null_show(mddev_t *mddev, char *page)
2539 {
2540 	return -EINVAL;
2541 }
2542 
2543 static ssize_t
2544 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2545 {
2546 	/* buf must be %d:%d\n? giving major and minor numbers */
2547 	/* The new device is added to the array.
2548 	 * If the array has a persistent superblock, we read the
2549 	 * superblock to initialise info and check validity.
2550 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2551 	 * which mainly checks size.
2552 	 */
2553 	char *e;
2554 	int major = simple_strtoul(buf, &e, 10);
2555 	int minor;
2556 	dev_t dev;
2557 	mdk_rdev_t *rdev;
2558 	int err;
2559 
2560 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2561 		return -EINVAL;
2562 	minor = simple_strtoul(e+1, &e, 10);
2563 	if (*e && *e != '\n')
2564 		return -EINVAL;
2565 	dev = MKDEV(major, minor);
2566 	if (major != MAJOR(dev) ||
2567 	    minor != MINOR(dev))
2568 		return -EOVERFLOW;
2569 
2570 
2571 	if (mddev->persistent) {
2572 		rdev = md_import_device(dev, mddev->major_version,
2573 					mddev->minor_version);
2574 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2575 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2576 						       mdk_rdev_t, same_set);
2577 			err = super_types[mddev->major_version]
2578 				.load_super(rdev, rdev0, mddev->minor_version);
2579 			if (err < 0)
2580 				goto out;
2581 		}
2582 	} else
2583 		rdev = md_import_device(dev, -1, -1);
2584 
2585 	if (IS_ERR(rdev))
2586 		return PTR_ERR(rdev);
2587 	err = bind_rdev_to_array(rdev, mddev);
2588  out:
2589 	if (err)
2590 		export_rdev(rdev);
2591 	return err ? err : len;
2592 }
2593 
2594 static struct md_sysfs_entry md_new_device =
2595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2596 
2597 static ssize_t
2598 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2599 {
2600 	char *end;
2601 	unsigned long chunk, end_chunk;
2602 
2603 	if (!mddev->bitmap)
2604 		goto out;
2605 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2606 	while (*buf) {
2607 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2608 		if (buf == end) break;
2609 		if (*end == '-') { /* range */
2610 			buf = end + 1;
2611 			end_chunk = simple_strtoul(buf, &end, 0);
2612 			if (buf == end) break;
2613 		}
2614 		if (*end && !isspace(*end)) break;
2615 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2616 		buf = end;
2617 		while (isspace(*buf)) buf++;
2618 	}
2619 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2620 out:
2621 	return len;
2622 }
2623 
2624 static struct md_sysfs_entry md_bitmap =
2625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2626 
2627 static ssize_t
2628 size_show(mddev_t *mddev, char *page)
2629 {
2630 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2631 }
2632 
2633 static int update_size(mddev_t *mddev, unsigned long size);
2634 
2635 static ssize_t
2636 size_store(mddev_t *mddev, const char *buf, size_t len)
2637 {
2638 	/* If array is inactive, we can reduce the component size, but
2639 	 * not increase it (except from 0).
2640 	 * If array is active, we can try an on-line resize
2641 	 */
2642 	char *e;
2643 	int err = 0;
2644 	unsigned long long size = simple_strtoull(buf, &e, 10);
2645 	if (!*buf || *buf == '\n' ||
2646 	    (*e && *e != '\n'))
2647 		return -EINVAL;
2648 
2649 	if (mddev->pers) {
2650 		err = update_size(mddev, size);
2651 		md_update_sb(mddev, 1);
2652 	} else {
2653 		if (mddev->size == 0 ||
2654 		    mddev->size > size)
2655 			mddev->size = size;
2656 		else
2657 			err = -ENOSPC;
2658 	}
2659 	return err ? err : len;
2660 }
2661 
2662 static struct md_sysfs_entry md_size =
2663 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2664 
2665 
2666 /* Metdata version.
2667  * This is either 'none' for arrays with externally managed metadata,
2668  * or N.M for internally known formats
2669  */
2670 static ssize_t
2671 metadata_show(mddev_t *mddev, char *page)
2672 {
2673 	if (mddev->persistent)
2674 		return sprintf(page, "%d.%d\n",
2675 			       mddev->major_version, mddev->minor_version);
2676 	else
2677 		return sprintf(page, "none\n");
2678 }
2679 
2680 static ssize_t
2681 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2682 {
2683 	int major, minor;
2684 	char *e;
2685 	if (!list_empty(&mddev->disks))
2686 		return -EBUSY;
2687 
2688 	if (cmd_match(buf, "none")) {
2689 		mddev->persistent = 0;
2690 		mddev->major_version = 0;
2691 		mddev->minor_version = 90;
2692 		return len;
2693 	}
2694 	major = simple_strtoul(buf, &e, 10);
2695 	if (e==buf || *e != '.')
2696 		return -EINVAL;
2697 	buf = e+1;
2698 	minor = simple_strtoul(buf, &e, 10);
2699 	if (e==buf || (*e && *e != '\n') )
2700 		return -EINVAL;
2701 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2702 		return -ENOENT;
2703 	mddev->major_version = major;
2704 	mddev->minor_version = minor;
2705 	mddev->persistent = 1;
2706 	return len;
2707 }
2708 
2709 static struct md_sysfs_entry md_metadata =
2710 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2711 
2712 static ssize_t
2713 action_show(mddev_t *mddev, char *page)
2714 {
2715 	char *type = "idle";
2716 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2717 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2718 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2719 			type = "reshape";
2720 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2721 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2722 				type = "resync";
2723 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2724 				type = "check";
2725 			else
2726 				type = "repair";
2727 		} else
2728 			type = "recover";
2729 	}
2730 	return sprintf(page, "%s\n", type);
2731 }
2732 
2733 static ssize_t
2734 action_store(mddev_t *mddev, const char *page, size_t len)
2735 {
2736 	if (!mddev->pers || !mddev->pers->sync_request)
2737 		return -EINVAL;
2738 
2739 	if (cmd_match(page, "idle")) {
2740 		if (mddev->sync_thread) {
2741 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2742 			md_unregister_thread(mddev->sync_thread);
2743 			mddev->sync_thread = NULL;
2744 			mddev->recovery = 0;
2745 		}
2746 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2747 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2748 		return -EBUSY;
2749 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2750 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2751 	else if (cmd_match(page, "reshape")) {
2752 		int err;
2753 		if (mddev->pers->start_reshape == NULL)
2754 			return -EINVAL;
2755 		err = mddev->pers->start_reshape(mddev);
2756 		if (err)
2757 			return err;
2758 	} else {
2759 		if (cmd_match(page, "check"))
2760 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2761 		else if (!cmd_match(page, "repair"))
2762 			return -EINVAL;
2763 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2764 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2765 	}
2766 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2767 	md_wakeup_thread(mddev->thread);
2768 	return len;
2769 }
2770 
2771 static ssize_t
2772 mismatch_cnt_show(mddev_t *mddev, char *page)
2773 {
2774 	return sprintf(page, "%llu\n",
2775 		       (unsigned long long) mddev->resync_mismatches);
2776 }
2777 
2778 static struct md_sysfs_entry md_scan_mode =
2779 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2780 
2781 
2782 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2783 
2784 static ssize_t
2785 sync_min_show(mddev_t *mddev, char *page)
2786 {
2787 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2788 		       mddev->sync_speed_min ? "local": "system");
2789 }
2790 
2791 static ssize_t
2792 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2793 {
2794 	int min;
2795 	char *e;
2796 	if (strncmp(buf, "system", 6)==0) {
2797 		mddev->sync_speed_min = 0;
2798 		return len;
2799 	}
2800 	min = simple_strtoul(buf, &e, 10);
2801 	if (buf == e || (*e && *e != '\n') || min <= 0)
2802 		return -EINVAL;
2803 	mddev->sync_speed_min = min;
2804 	return len;
2805 }
2806 
2807 static struct md_sysfs_entry md_sync_min =
2808 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2809 
2810 static ssize_t
2811 sync_max_show(mddev_t *mddev, char *page)
2812 {
2813 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2814 		       mddev->sync_speed_max ? "local": "system");
2815 }
2816 
2817 static ssize_t
2818 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2819 {
2820 	int max;
2821 	char *e;
2822 	if (strncmp(buf, "system", 6)==0) {
2823 		mddev->sync_speed_max = 0;
2824 		return len;
2825 	}
2826 	max = simple_strtoul(buf, &e, 10);
2827 	if (buf == e || (*e && *e != '\n') || max <= 0)
2828 		return -EINVAL;
2829 	mddev->sync_speed_max = max;
2830 	return len;
2831 }
2832 
2833 static struct md_sysfs_entry md_sync_max =
2834 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2835 
2836 static ssize_t
2837 degraded_show(mddev_t *mddev, char *page)
2838 {
2839 	return sprintf(page, "%d\n", mddev->degraded);
2840 }
2841 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
2842 
2843 static ssize_t
2844 sync_speed_show(mddev_t *mddev, char *page)
2845 {
2846 	unsigned long resync, dt, db;
2847 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2848 	dt = ((jiffies - mddev->resync_mark) / HZ);
2849 	if (!dt) dt++;
2850 	db = resync - (mddev->resync_mark_cnt);
2851 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2852 }
2853 
2854 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2855 
2856 static ssize_t
2857 sync_completed_show(mddev_t *mddev, char *page)
2858 {
2859 	unsigned long max_blocks, resync;
2860 
2861 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2862 		max_blocks = mddev->resync_max_sectors;
2863 	else
2864 		max_blocks = mddev->size << 1;
2865 
2866 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2867 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2868 }
2869 
2870 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2871 
2872 static ssize_t
2873 suspend_lo_show(mddev_t *mddev, char *page)
2874 {
2875 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2876 }
2877 
2878 static ssize_t
2879 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2880 {
2881 	char *e;
2882 	unsigned long long new = simple_strtoull(buf, &e, 10);
2883 
2884 	if (mddev->pers->quiesce == NULL)
2885 		return -EINVAL;
2886 	if (buf == e || (*e && *e != '\n'))
2887 		return -EINVAL;
2888 	if (new >= mddev->suspend_hi ||
2889 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2890 		mddev->suspend_lo = new;
2891 		mddev->pers->quiesce(mddev, 2);
2892 		return len;
2893 	} else
2894 		return -EINVAL;
2895 }
2896 static struct md_sysfs_entry md_suspend_lo =
2897 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2898 
2899 
2900 static ssize_t
2901 suspend_hi_show(mddev_t *mddev, char *page)
2902 {
2903 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2904 }
2905 
2906 static ssize_t
2907 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2908 {
2909 	char *e;
2910 	unsigned long long new = simple_strtoull(buf, &e, 10);
2911 
2912 	if (mddev->pers->quiesce == NULL)
2913 		return -EINVAL;
2914 	if (buf == e || (*e && *e != '\n'))
2915 		return -EINVAL;
2916 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2917 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2918 		mddev->suspend_hi = new;
2919 		mddev->pers->quiesce(mddev, 1);
2920 		mddev->pers->quiesce(mddev, 0);
2921 		return len;
2922 	} else
2923 		return -EINVAL;
2924 }
2925 static struct md_sysfs_entry md_suspend_hi =
2926 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2927 
2928 static ssize_t
2929 reshape_position_show(mddev_t *mddev, char *page)
2930 {
2931 	if (mddev->reshape_position != MaxSector)
2932 		return sprintf(page, "%llu\n",
2933 			       (unsigned long long)mddev->reshape_position);
2934 	strcpy(page, "none\n");
2935 	return 5;
2936 }
2937 
2938 static ssize_t
2939 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2940 {
2941 	char *e;
2942 	unsigned long long new = simple_strtoull(buf, &e, 10);
2943 	if (mddev->pers)
2944 		return -EBUSY;
2945 	if (buf == e || (*e && *e != '\n'))
2946 		return -EINVAL;
2947 	mddev->reshape_position = new;
2948 	mddev->delta_disks = 0;
2949 	mddev->new_level = mddev->level;
2950 	mddev->new_layout = mddev->layout;
2951 	mddev->new_chunk = mddev->chunk_size;
2952 	return len;
2953 }
2954 
2955 static struct md_sysfs_entry md_reshape_position =
2956 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2957        reshape_position_store);
2958 
2959 
2960 static struct attribute *md_default_attrs[] = {
2961 	&md_level.attr,
2962 	&md_layout.attr,
2963 	&md_raid_disks.attr,
2964 	&md_chunk_size.attr,
2965 	&md_size.attr,
2966 	&md_resync_start.attr,
2967 	&md_metadata.attr,
2968 	&md_new_device.attr,
2969 	&md_safe_delay.attr,
2970 	&md_array_state.attr,
2971 	&md_reshape_position.attr,
2972 	NULL,
2973 };
2974 
2975 static struct attribute *md_redundancy_attrs[] = {
2976 	&md_scan_mode.attr,
2977 	&md_mismatches.attr,
2978 	&md_sync_min.attr,
2979 	&md_sync_max.attr,
2980 	&md_sync_speed.attr,
2981 	&md_sync_completed.attr,
2982 	&md_suspend_lo.attr,
2983 	&md_suspend_hi.attr,
2984 	&md_bitmap.attr,
2985 	&md_degraded.attr,
2986 	NULL,
2987 };
2988 static struct attribute_group md_redundancy_group = {
2989 	.name = NULL,
2990 	.attrs = md_redundancy_attrs,
2991 };
2992 
2993 
2994 static ssize_t
2995 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2996 {
2997 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2998 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2999 	ssize_t rv;
3000 
3001 	if (!entry->show)
3002 		return -EIO;
3003 	rv = mddev_lock(mddev);
3004 	if (!rv) {
3005 		rv = entry->show(mddev, page);
3006 		mddev_unlock(mddev);
3007 	}
3008 	return rv;
3009 }
3010 
3011 static ssize_t
3012 md_attr_store(struct kobject *kobj, struct attribute *attr,
3013 	      const char *page, size_t length)
3014 {
3015 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3016 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3017 	ssize_t rv;
3018 
3019 	if (!entry->store)
3020 		return -EIO;
3021 	if (!capable(CAP_SYS_ADMIN))
3022 		return -EACCES;
3023 	rv = mddev_lock(mddev);
3024 	if (!rv) {
3025 		rv = entry->store(mddev, page, length);
3026 		mddev_unlock(mddev);
3027 	}
3028 	return rv;
3029 }
3030 
3031 static void md_free(struct kobject *ko)
3032 {
3033 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3034 	kfree(mddev);
3035 }
3036 
3037 static struct sysfs_ops md_sysfs_ops = {
3038 	.show	= md_attr_show,
3039 	.store	= md_attr_store,
3040 };
3041 static struct kobj_type md_ktype = {
3042 	.release	= md_free,
3043 	.sysfs_ops	= &md_sysfs_ops,
3044 	.default_attrs	= md_default_attrs,
3045 };
3046 
3047 int mdp_major = 0;
3048 
3049 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3050 {
3051 	static DEFINE_MUTEX(disks_mutex);
3052 	mddev_t *mddev = mddev_find(dev);
3053 	struct gendisk *disk;
3054 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3055 	int shift = partitioned ? MdpMinorShift : 0;
3056 	int unit = MINOR(dev) >> shift;
3057 
3058 	if (!mddev)
3059 		return NULL;
3060 
3061 	mutex_lock(&disks_mutex);
3062 	if (mddev->gendisk) {
3063 		mutex_unlock(&disks_mutex);
3064 		mddev_put(mddev);
3065 		return NULL;
3066 	}
3067 	disk = alloc_disk(1 << shift);
3068 	if (!disk) {
3069 		mutex_unlock(&disks_mutex);
3070 		mddev_put(mddev);
3071 		return NULL;
3072 	}
3073 	disk->major = MAJOR(dev);
3074 	disk->first_minor = unit << shift;
3075 	if (partitioned)
3076 		sprintf(disk->disk_name, "md_d%d", unit);
3077 	else
3078 		sprintf(disk->disk_name, "md%d", unit);
3079 	disk->fops = &md_fops;
3080 	disk->private_data = mddev;
3081 	disk->queue = mddev->queue;
3082 	add_disk(disk);
3083 	mddev->gendisk = disk;
3084 	mutex_unlock(&disks_mutex);
3085 	mddev->kobj.parent = &disk->kobj;
3086 	kobject_set_name(&mddev->kobj, "%s", "md");
3087 	mddev->kobj.ktype = &md_ktype;
3088 	if (kobject_register(&mddev->kobj))
3089 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3090 		       disk->disk_name);
3091 	return NULL;
3092 }
3093 
3094 static void md_safemode_timeout(unsigned long data)
3095 {
3096 	mddev_t *mddev = (mddev_t *) data;
3097 
3098 	mddev->safemode = 1;
3099 	md_wakeup_thread(mddev->thread);
3100 }
3101 
3102 static int start_dirty_degraded;
3103 
3104 static int do_md_run(mddev_t * mddev)
3105 {
3106 	int err;
3107 	int chunk_size;
3108 	struct list_head *tmp;
3109 	mdk_rdev_t *rdev;
3110 	struct gendisk *disk;
3111 	struct mdk_personality *pers;
3112 	char b[BDEVNAME_SIZE];
3113 
3114 	if (list_empty(&mddev->disks))
3115 		/* cannot run an array with no devices.. */
3116 		return -EINVAL;
3117 
3118 	if (mddev->pers)
3119 		return -EBUSY;
3120 
3121 	/*
3122 	 * Analyze all RAID superblock(s)
3123 	 */
3124 	if (!mddev->raid_disks)
3125 		analyze_sbs(mddev);
3126 
3127 	chunk_size = mddev->chunk_size;
3128 
3129 	if (chunk_size) {
3130 		if (chunk_size > MAX_CHUNK_SIZE) {
3131 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3132 				chunk_size, MAX_CHUNK_SIZE);
3133 			return -EINVAL;
3134 		}
3135 		/*
3136 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3137 		 */
3138 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3139 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3140 			return -EINVAL;
3141 		}
3142 		if (chunk_size < PAGE_SIZE) {
3143 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3144 				chunk_size, PAGE_SIZE);
3145 			return -EINVAL;
3146 		}
3147 
3148 		/* devices must have minimum size of one chunk */
3149 		ITERATE_RDEV(mddev,rdev,tmp) {
3150 			if (test_bit(Faulty, &rdev->flags))
3151 				continue;
3152 			if (rdev->size < chunk_size / 1024) {
3153 				printk(KERN_WARNING
3154 					"md: Dev %s smaller than chunk_size:"
3155 					" %lluk < %dk\n",
3156 					bdevname(rdev->bdev,b),
3157 					(unsigned long long)rdev->size,
3158 					chunk_size / 1024);
3159 				return -EINVAL;
3160 			}
3161 		}
3162 	}
3163 
3164 #ifdef CONFIG_KMOD
3165 	if (mddev->level != LEVEL_NONE)
3166 		request_module("md-level-%d", mddev->level);
3167 	else if (mddev->clevel[0])
3168 		request_module("md-%s", mddev->clevel);
3169 #endif
3170 
3171 	/*
3172 	 * Drop all container device buffers, from now on
3173 	 * the only valid external interface is through the md
3174 	 * device.
3175 	 */
3176 	ITERATE_RDEV(mddev,rdev,tmp) {
3177 		if (test_bit(Faulty, &rdev->flags))
3178 			continue;
3179 		sync_blockdev(rdev->bdev);
3180 		invalidate_bdev(rdev->bdev);
3181 
3182 		/* perform some consistency tests on the device.
3183 		 * We don't want the data to overlap the metadata,
3184 		 * Internal Bitmap issues has handled elsewhere.
3185 		 */
3186 		if (rdev->data_offset < rdev->sb_offset) {
3187 			if (mddev->size &&
3188 			    rdev->data_offset + mddev->size*2
3189 			    > rdev->sb_offset*2) {
3190 				printk("md: %s: data overlaps metadata\n",
3191 				       mdname(mddev));
3192 				return -EINVAL;
3193 			}
3194 		} else {
3195 			if (rdev->sb_offset*2 + rdev->sb_size/512
3196 			    > rdev->data_offset) {
3197 				printk("md: %s: metadata overlaps data\n",
3198 				       mdname(mddev));
3199 				return -EINVAL;
3200 			}
3201 		}
3202 	}
3203 
3204 	md_probe(mddev->unit, NULL, NULL);
3205 	disk = mddev->gendisk;
3206 	if (!disk)
3207 		return -ENOMEM;
3208 
3209 	spin_lock(&pers_lock);
3210 	pers = find_pers(mddev->level, mddev->clevel);
3211 	if (!pers || !try_module_get(pers->owner)) {
3212 		spin_unlock(&pers_lock);
3213 		if (mddev->level != LEVEL_NONE)
3214 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3215 			       mddev->level);
3216 		else
3217 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3218 			       mddev->clevel);
3219 		return -EINVAL;
3220 	}
3221 	mddev->pers = pers;
3222 	spin_unlock(&pers_lock);
3223 	mddev->level = pers->level;
3224 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3225 
3226 	if (mddev->reshape_position != MaxSector &&
3227 	    pers->start_reshape == NULL) {
3228 		/* This personality cannot handle reshaping... */
3229 		mddev->pers = NULL;
3230 		module_put(pers->owner);
3231 		return -EINVAL;
3232 	}
3233 
3234 	if (pers->sync_request) {
3235 		/* Warn if this is a potentially silly
3236 		 * configuration.
3237 		 */
3238 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3239 		mdk_rdev_t *rdev2;
3240 		struct list_head *tmp2;
3241 		int warned = 0;
3242 		ITERATE_RDEV(mddev, rdev, tmp) {
3243 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3244 				if (rdev < rdev2 &&
3245 				    rdev->bdev->bd_contains ==
3246 				    rdev2->bdev->bd_contains) {
3247 					printk(KERN_WARNING
3248 					       "%s: WARNING: %s appears to be"
3249 					       " on the same physical disk as"
3250 					       " %s.\n",
3251 					       mdname(mddev),
3252 					       bdevname(rdev->bdev,b),
3253 					       bdevname(rdev2->bdev,b2));
3254 					warned = 1;
3255 				}
3256 			}
3257 		}
3258 		if (warned)
3259 			printk(KERN_WARNING
3260 			       "True protection against single-disk"
3261 			       " failure might be compromised.\n");
3262 	}
3263 
3264 	mddev->recovery = 0;
3265 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3266 	mddev->barriers_work = 1;
3267 	mddev->ok_start_degraded = start_dirty_degraded;
3268 
3269 	if (start_readonly)
3270 		mddev->ro = 2; /* read-only, but switch on first write */
3271 
3272 	err = mddev->pers->run(mddev);
3273 	if (!err && mddev->pers->sync_request) {
3274 		err = bitmap_create(mddev);
3275 		if (err) {
3276 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3277 			       mdname(mddev), err);
3278 			mddev->pers->stop(mddev);
3279 		}
3280 	}
3281 	if (err) {
3282 		printk(KERN_ERR "md: pers->run() failed ...\n");
3283 		module_put(mddev->pers->owner);
3284 		mddev->pers = NULL;
3285 		bitmap_destroy(mddev);
3286 		return err;
3287 	}
3288 	if (mddev->pers->sync_request) {
3289 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3290 			printk(KERN_WARNING
3291 			       "md: cannot register extra attributes for %s\n",
3292 			       mdname(mddev));
3293 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3294 		mddev->ro = 0;
3295 
3296  	atomic_set(&mddev->writes_pending,0);
3297 	mddev->safemode = 0;
3298 	mddev->safemode_timer.function = md_safemode_timeout;
3299 	mddev->safemode_timer.data = (unsigned long) mddev;
3300 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3301 	mddev->in_sync = 1;
3302 
3303 	ITERATE_RDEV(mddev,rdev,tmp)
3304 		if (rdev->raid_disk >= 0) {
3305 			char nm[20];
3306 			sprintf(nm, "rd%d", rdev->raid_disk);
3307 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3308 				printk("md: cannot register %s for %s\n",
3309 				       nm, mdname(mddev));
3310 		}
3311 
3312 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3313 
3314 	if (mddev->flags)
3315 		md_update_sb(mddev, 0);
3316 
3317 	set_capacity(disk, mddev->array_size<<1);
3318 
3319 	/* If we call blk_queue_make_request here, it will
3320 	 * re-initialise max_sectors etc which may have been
3321 	 * refined inside -> run.  So just set the bits we need to set.
3322 	 * Most initialisation happended when we called
3323 	 * blk_queue_make_request(..., md_fail_request)
3324 	 * earlier.
3325 	 */
3326 	mddev->queue->queuedata = mddev;
3327 	mddev->queue->make_request_fn = mddev->pers->make_request;
3328 
3329 	/* If there is a partially-recovered drive we need to
3330 	 * start recovery here.  If we leave it to md_check_recovery,
3331 	 * it will remove the drives and not do the right thing
3332 	 */
3333 	if (mddev->degraded && !mddev->sync_thread) {
3334 		struct list_head *rtmp;
3335 		int spares = 0;
3336 		ITERATE_RDEV(mddev,rdev,rtmp)
3337 			if (rdev->raid_disk >= 0 &&
3338 			    !test_bit(In_sync, &rdev->flags) &&
3339 			    !test_bit(Faulty, &rdev->flags))
3340 				/* complete an interrupted recovery */
3341 				spares++;
3342 		if (spares && mddev->pers->sync_request) {
3343 			mddev->recovery = 0;
3344 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3345 			mddev->sync_thread = md_register_thread(md_do_sync,
3346 								mddev,
3347 								"%s_resync");
3348 			if (!mddev->sync_thread) {
3349 				printk(KERN_ERR "%s: could not start resync"
3350 				       " thread...\n",
3351 				       mdname(mddev));
3352 				/* leave the spares where they are, it shouldn't hurt */
3353 				mddev->recovery = 0;
3354 			}
3355 		}
3356 	}
3357 	md_wakeup_thread(mddev->thread);
3358 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3359 
3360 	mddev->changed = 1;
3361 	md_new_event(mddev);
3362 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3363 	return 0;
3364 }
3365 
3366 static int restart_array(mddev_t *mddev)
3367 {
3368 	struct gendisk *disk = mddev->gendisk;
3369 	int err;
3370 
3371 	/*
3372 	 * Complain if it has no devices
3373 	 */
3374 	err = -ENXIO;
3375 	if (list_empty(&mddev->disks))
3376 		goto out;
3377 
3378 	if (mddev->pers) {
3379 		err = -EBUSY;
3380 		if (!mddev->ro)
3381 			goto out;
3382 
3383 		mddev->safemode = 0;
3384 		mddev->ro = 0;
3385 		set_disk_ro(disk, 0);
3386 
3387 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3388 			mdname(mddev));
3389 		/*
3390 		 * Kick recovery or resync if necessary
3391 		 */
3392 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3393 		md_wakeup_thread(mddev->thread);
3394 		md_wakeup_thread(mddev->sync_thread);
3395 		err = 0;
3396 	} else
3397 		err = -EINVAL;
3398 
3399 out:
3400 	return err;
3401 }
3402 
3403 /* similar to deny_write_access, but accounts for our holding a reference
3404  * to the file ourselves */
3405 static int deny_bitmap_write_access(struct file * file)
3406 {
3407 	struct inode *inode = file->f_mapping->host;
3408 
3409 	spin_lock(&inode->i_lock);
3410 	if (atomic_read(&inode->i_writecount) > 1) {
3411 		spin_unlock(&inode->i_lock);
3412 		return -ETXTBSY;
3413 	}
3414 	atomic_set(&inode->i_writecount, -1);
3415 	spin_unlock(&inode->i_lock);
3416 
3417 	return 0;
3418 }
3419 
3420 static void restore_bitmap_write_access(struct file *file)
3421 {
3422 	struct inode *inode = file->f_mapping->host;
3423 
3424 	spin_lock(&inode->i_lock);
3425 	atomic_set(&inode->i_writecount, 1);
3426 	spin_unlock(&inode->i_lock);
3427 }
3428 
3429 /* mode:
3430  *   0 - completely stop and dis-assemble array
3431  *   1 - switch to readonly
3432  *   2 - stop but do not disassemble array
3433  */
3434 static int do_md_stop(mddev_t * mddev, int mode)
3435 {
3436 	int err = 0;
3437 	struct gendisk *disk = mddev->gendisk;
3438 
3439 	if (mddev->pers) {
3440 		if (atomic_read(&mddev->active)>2) {
3441 			printk("md: %s still in use.\n",mdname(mddev));
3442 			return -EBUSY;
3443 		}
3444 
3445 		if (mddev->sync_thread) {
3446 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3447 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3448 			md_unregister_thread(mddev->sync_thread);
3449 			mddev->sync_thread = NULL;
3450 		}
3451 
3452 		del_timer_sync(&mddev->safemode_timer);
3453 
3454 		invalidate_partition(disk, 0);
3455 
3456 		switch(mode) {
3457 		case 1: /* readonly */
3458 			err  = -ENXIO;
3459 			if (mddev->ro==1)
3460 				goto out;
3461 			mddev->ro = 1;
3462 			break;
3463 		case 0: /* disassemble */
3464 		case 2: /* stop */
3465 			bitmap_flush(mddev);
3466 			md_super_wait(mddev);
3467 			if (mddev->ro)
3468 				set_disk_ro(disk, 0);
3469 			blk_queue_make_request(mddev->queue, md_fail_request);
3470 			mddev->pers->stop(mddev);
3471 			mddev->queue->merge_bvec_fn = NULL;
3472 			mddev->queue->unplug_fn = NULL;
3473 			mddev->queue->backing_dev_info.congested_fn = NULL;
3474 			if (mddev->pers->sync_request)
3475 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3476 
3477 			module_put(mddev->pers->owner);
3478 			mddev->pers = NULL;
3479 
3480 			set_capacity(disk, 0);
3481 			mddev->changed = 1;
3482 
3483 			if (mddev->ro)
3484 				mddev->ro = 0;
3485 		}
3486 		if (!mddev->in_sync || mddev->flags) {
3487 			/* mark array as shutdown cleanly */
3488 			mddev->in_sync = 1;
3489 			md_update_sb(mddev, 1);
3490 		}
3491 		if (mode == 1)
3492 			set_disk_ro(disk, 1);
3493 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3494 	}
3495 
3496 	/*
3497 	 * Free resources if final stop
3498 	 */
3499 	if (mode == 0) {
3500 		mdk_rdev_t *rdev;
3501 		struct list_head *tmp;
3502 
3503 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3504 
3505 		bitmap_destroy(mddev);
3506 		if (mddev->bitmap_file) {
3507 			restore_bitmap_write_access(mddev->bitmap_file);
3508 			fput(mddev->bitmap_file);
3509 			mddev->bitmap_file = NULL;
3510 		}
3511 		mddev->bitmap_offset = 0;
3512 
3513 		ITERATE_RDEV(mddev,rdev,tmp)
3514 			if (rdev->raid_disk >= 0) {
3515 				char nm[20];
3516 				sprintf(nm, "rd%d", rdev->raid_disk);
3517 				sysfs_remove_link(&mddev->kobj, nm);
3518 			}
3519 
3520 		/* make sure all delayed_delete calls have finished */
3521 		flush_scheduled_work();
3522 
3523 		export_array(mddev);
3524 
3525 		mddev->array_size = 0;
3526 		mddev->size = 0;
3527 		mddev->raid_disks = 0;
3528 		mddev->recovery_cp = 0;
3529 		mddev->reshape_position = MaxSector;
3530 
3531 	} else if (mddev->pers)
3532 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3533 			mdname(mddev));
3534 	err = 0;
3535 	md_new_event(mddev);
3536 out:
3537 	return err;
3538 }
3539 
3540 #ifndef MODULE
3541 static void autorun_array(mddev_t *mddev)
3542 {
3543 	mdk_rdev_t *rdev;
3544 	struct list_head *tmp;
3545 	int err;
3546 
3547 	if (list_empty(&mddev->disks))
3548 		return;
3549 
3550 	printk(KERN_INFO "md: running: ");
3551 
3552 	ITERATE_RDEV(mddev,rdev,tmp) {
3553 		char b[BDEVNAME_SIZE];
3554 		printk("<%s>", bdevname(rdev->bdev,b));
3555 	}
3556 	printk("\n");
3557 
3558 	err = do_md_run (mddev);
3559 	if (err) {
3560 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3561 		do_md_stop (mddev, 0);
3562 	}
3563 }
3564 
3565 /*
3566  * lets try to run arrays based on all disks that have arrived
3567  * until now. (those are in pending_raid_disks)
3568  *
3569  * the method: pick the first pending disk, collect all disks with
3570  * the same UUID, remove all from the pending list and put them into
3571  * the 'same_array' list. Then order this list based on superblock
3572  * update time (freshest comes first), kick out 'old' disks and
3573  * compare superblocks. If everything's fine then run it.
3574  *
3575  * If "unit" is allocated, then bump its reference count
3576  */
3577 static void autorun_devices(int part)
3578 {
3579 	struct list_head *tmp;
3580 	mdk_rdev_t *rdev0, *rdev;
3581 	mddev_t *mddev;
3582 	char b[BDEVNAME_SIZE];
3583 
3584 	printk(KERN_INFO "md: autorun ...\n");
3585 	while (!list_empty(&pending_raid_disks)) {
3586 		int unit;
3587 		dev_t dev;
3588 		LIST_HEAD(candidates);
3589 		rdev0 = list_entry(pending_raid_disks.next,
3590 					 mdk_rdev_t, same_set);
3591 
3592 		printk(KERN_INFO "md: considering %s ...\n",
3593 			bdevname(rdev0->bdev,b));
3594 		INIT_LIST_HEAD(&candidates);
3595 		ITERATE_RDEV_PENDING(rdev,tmp)
3596 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3597 				printk(KERN_INFO "md:  adding %s ...\n",
3598 					bdevname(rdev->bdev,b));
3599 				list_move(&rdev->same_set, &candidates);
3600 			}
3601 		/*
3602 		 * now we have a set of devices, with all of them having
3603 		 * mostly sane superblocks. It's time to allocate the
3604 		 * mddev.
3605 		 */
3606 		if (part) {
3607 			dev = MKDEV(mdp_major,
3608 				    rdev0->preferred_minor << MdpMinorShift);
3609 			unit = MINOR(dev) >> MdpMinorShift;
3610 		} else {
3611 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3612 			unit = MINOR(dev);
3613 		}
3614 		if (rdev0->preferred_minor != unit) {
3615 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3616 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3617 			break;
3618 		}
3619 
3620 		md_probe(dev, NULL, NULL);
3621 		mddev = mddev_find(dev);
3622 		if (!mddev) {
3623 			printk(KERN_ERR
3624 				"md: cannot allocate memory for md drive.\n");
3625 			break;
3626 		}
3627 		if (mddev_lock(mddev))
3628 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3629 			       mdname(mddev));
3630 		else if (mddev->raid_disks || mddev->major_version
3631 			 || !list_empty(&mddev->disks)) {
3632 			printk(KERN_WARNING
3633 				"md: %s already running, cannot run %s\n",
3634 				mdname(mddev), bdevname(rdev0->bdev,b));
3635 			mddev_unlock(mddev);
3636 		} else {
3637 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3638 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3639 				list_del_init(&rdev->same_set);
3640 				if (bind_rdev_to_array(rdev, mddev))
3641 					export_rdev(rdev);
3642 			}
3643 			autorun_array(mddev);
3644 			mddev_unlock(mddev);
3645 		}
3646 		/* on success, candidates will be empty, on error
3647 		 * it won't...
3648 		 */
3649 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3650 			export_rdev(rdev);
3651 		mddev_put(mddev);
3652 	}
3653 	printk(KERN_INFO "md: ... autorun DONE.\n");
3654 }
3655 #endif /* !MODULE */
3656 
3657 static int get_version(void __user * arg)
3658 {
3659 	mdu_version_t ver;
3660 
3661 	ver.major = MD_MAJOR_VERSION;
3662 	ver.minor = MD_MINOR_VERSION;
3663 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3664 
3665 	if (copy_to_user(arg, &ver, sizeof(ver)))
3666 		return -EFAULT;
3667 
3668 	return 0;
3669 }
3670 
3671 static int get_array_info(mddev_t * mddev, void __user * arg)
3672 {
3673 	mdu_array_info_t info;
3674 	int nr,working,active,failed,spare;
3675 	mdk_rdev_t *rdev;
3676 	struct list_head *tmp;
3677 
3678 	nr=working=active=failed=spare=0;
3679 	ITERATE_RDEV(mddev,rdev,tmp) {
3680 		nr++;
3681 		if (test_bit(Faulty, &rdev->flags))
3682 			failed++;
3683 		else {
3684 			working++;
3685 			if (test_bit(In_sync, &rdev->flags))
3686 				active++;
3687 			else
3688 				spare++;
3689 		}
3690 	}
3691 
3692 	info.major_version = mddev->major_version;
3693 	info.minor_version = mddev->minor_version;
3694 	info.patch_version = MD_PATCHLEVEL_VERSION;
3695 	info.ctime         = mddev->ctime;
3696 	info.level         = mddev->level;
3697 	info.size          = mddev->size;
3698 	if (info.size != mddev->size) /* overflow */
3699 		info.size = -1;
3700 	info.nr_disks      = nr;
3701 	info.raid_disks    = mddev->raid_disks;
3702 	info.md_minor      = mddev->md_minor;
3703 	info.not_persistent= !mddev->persistent;
3704 
3705 	info.utime         = mddev->utime;
3706 	info.state         = 0;
3707 	if (mddev->in_sync)
3708 		info.state = (1<<MD_SB_CLEAN);
3709 	if (mddev->bitmap && mddev->bitmap_offset)
3710 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3711 	info.active_disks  = active;
3712 	info.working_disks = working;
3713 	info.failed_disks  = failed;
3714 	info.spare_disks   = spare;
3715 
3716 	info.layout        = mddev->layout;
3717 	info.chunk_size    = mddev->chunk_size;
3718 
3719 	if (copy_to_user(arg, &info, sizeof(info)))
3720 		return -EFAULT;
3721 
3722 	return 0;
3723 }
3724 
3725 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3726 {
3727 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3728 	char *ptr, *buf = NULL;
3729 	int err = -ENOMEM;
3730 
3731 	md_allow_write(mddev);
3732 
3733 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3734 	if (!file)
3735 		goto out;
3736 
3737 	/* bitmap disabled, zero the first byte and copy out */
3738 	if (!mddev->bitmap || !mddev->bitmap->file) {
3739 		file->pathname[0] = '\0';
3740 		goto copy_out;
3741 	}
3742 
3743 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3744 	if (!buf)
3745 		goto out;
3746 
3747 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3748 	if (!ptr)
3749 		goto out;
3750 
3751 	strcpy(file->pathname, ptr);
3752 
3753 copy_out:
3754 	err = 0;
3755 	if (copy_to_user(arg, file, sizeof(*file)))
3756 		err = -EFAULT;
3757 out:
3758 	kfree(buf);
3759 	kfree(file);
3760 	return err;
3761 }
3762 
3763 static int get_disk_info(mddev_t * mddev, void __user * arg)
3764 {
3765 	mdu_disk_info_t info;
3766 	unsigned int nr;
3767 	mdk_rdev_t *rdev;
3768 
3769 	if (copy_from_user(&info, arg, sizeof(info)))
3770 		return -EFAULT;
3771 
3772 	nr = info.number;
3773 
3774 	rdev = find_rdev_nr(mddev, nr);
3775 	if (rdev) {
3776 		info.major = MAJOR(rdev->bdev->bd_dev);
3777 		info.minor = MINOR(rdev->bdev->bd_dev);
3778 		info.raid_disk = rdev->raid_disk;
3779 		info.state = 0;
3780 		if (test_bit(Faulty, &rdev->flags))
3781 			info.state |= (1<<MD_DISK_FAULTY);
3782 		else if (test_bit(In_sync, &rdev->flags)) {
3783 			info.state |= (1<<MD_DISK_ACTIVE);
3784 			info.state |= (1<<MD_DISK_SYNC);
3785 		}
3786 		if (test_bit(WriteMostly, &rdev->flags))
3787 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3788 	} else {
3789 		info.major = info.minor = 0;
3790 		info.raid_disk = -1;
3791 		info.state = (1<<MD_DISK_REMOVED);
3792 	}
3793 
3794 	if (copy_to_user(arg, &info, sizeof(info)))
3795 		return -EFAULT;
3796 
3797 	return 0;
3798 }
3799 
3800 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3801 {
3802 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3803 	mdk_rdev_t *rdev;
3804 	dev_t dev = MKDEV(info->major,info->minor);
3805 
3806 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3807 		return -EOVERFLOW;
3808 
3809 	if (!mddev->raid_disks) {
3810 		int err;
3811 		/* expecting a device which has a superblock */
3812 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3813 		if (IS_ERR(rdev)) {
3814 			printk(KERN_WARNING
3815 				"md: md_import_device returned %ld\n",
3816 				PTR_ERR(rdev));
3817 			return PTR_ERR(rdev);
3818 		}
3819 		if (!list_empty(&mddev->disks)) {
3820 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3821 							mdk_rdev_t, same_set);
3822 			int err = super_types[mddev->major_version]
3823 				.load_super(rdev, rdev0, mddev->minor_version);
3824 			if (err < 0) {
3825 				printk(KERN_WARNING
3826 					"md: %s has different UUID to %s\n",
3827 					bdevname(rdev->bdev,b),
3828 					bdevname(rdev0->bdev,b2));
3829 				export_rdev(rdev);
3830 				return -EINVAL;
3831 			}
3832 		}
3833 		err = bind_rdev_to_array(rdev, mddev);
3834 		if (err)
3835 			export_rdev(rdev);
3836 		return err;
3837 	}
3838 
3839 	/*
3840 	 * add_new_disk can be used once the array is assembled
3841 	 * to add "hot spares".  They must already have a superblock
3842 	 * written
3843 	 */
3844 	if (mddev->pers) {
3845 		int err;
3846 		if (!mddev->pers->hot_add_disk) {
3847 			printk(KERN_WARNING
3848 				"%s: personality does not support diskops!\n",
3849 			       mdname(mddev));
3850 			return -EINVAL;
3851 		}
3852 		if (mddev->persistent)
3853 			rdev = md_import_device(dev, mddev->major_version,
3854 						mddev->minor_version);
3855 		else
3856 			rdev = md_import_device(dev, -1, -1);
3857 		if (IS_ERR(rdev)) {
3858 			printk(KERN_WARNING
3859 				"md: md_import_device returned %ld\n",
3860 				PTR_ERR(rdev));
3861 			return PTR_ERR(rdev);
3862 		}
3863 		/* set save_raid_disk if appropriate */
3864 		if (!mddev->persistent) {
3865 			if (info->state & (1<<MD_DISK_SYNC)  &&
3866 			    info->raid_disk < mddev->raid_disks)
3867 				rdev->raid_disk = info->raid_disk;
3868 			else
3869 				rdev->raid_disk = -1;
3870 		} else
3871 			super_types[mddev->major_version].
3872 				validate_super(mddev, rdev);
3873 		rdev->saved_raid_disk = rdev->raid_disk;
3874 
3875 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3876 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3877 			set_bit(WriteMostly, &rdev->flags);
3878 
3879 		rdev->raid_disk = -1;
3880 		err = bind_rdev_to_array(rdev, mddev);
3881 		if (!err && !mddev->pers->hot_remove_disk) {
3882 			/* If there is hot_add_disk but no hot_remove_disk
3883 			 * then added disks for geometry changes,
3884 			 * and should be added immediately.
3885 			 */
3886 			super_types[mddev->major_version].
3887 				validate_super(mddev, rdev);
3888 			err = mddev->pers->hot_add_disk(mddev, rdev);
3889 			if (err)
3890 				unbind_rdev_from_array(rdev);
3891 		}
3892 		if (err)
3893 			export_rdev(rdev);
3894 
3895 		md_update_sb(mddev, 1);
3896 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3897 		md_wakeup_thread(mddev->thread);
3898 		return err;
3899 	}
3900 
3901 	/* otherwise, add_new_disk is only allowed
3902 	 * for major_version==0 superblocks
3903 	 */
3904 	if (mddev->major_version != 0) {
3905 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3906 		       mdname(mddev));
3907 		return -EINVAL;
3908 	}
3909 
3910 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3911 		int err;
3912 		rdev = md_import_device (dev, -1, 0);
3913 		if (IS_ERR(rdev)) {
3914 			printk(KERN_WARNING
3915 				"md: error, md_import_device() returned %ld\n",
3916 				PTR_ERR(rdev));
3917 			return PTR_ERR(rdev);
3918 		}
3919 		rdev->desc_nr = info->number;
3920 		if (info->raid_disk < mddev->raid_disks)
3921 			rdev->raid_disk = info->raid_disk;
3922 		else
3923 			rdev->raid_disk = -1;
3924 
3925 		rdev->flags = 0;
3926 
3927 		if (rdev->raid_disk < mddev->raid_disks)
3928 			if (info->state & (1<<MD_DISK_SYNC))
3929 				set_bit(In_sync, &rdev->flags);
3930 
3931 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3932 			set_bit(WriteMostly, &rdev->flags);
3933 
3934 		if (!mddev->persistent) {
3935 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3936 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3937 		} else
3938 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3939 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3940 
3941 		err = bind_rdev_to_array(rdev, mddev);
3942 		if (err) {
3943 			export_rdev(rdev);
3944 			return err;
3945 		}
3946 	}
3947 
3948 	return 0;
3949 }
3950 
3951 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3952 {
3953 	char b[BDEVNAME_SIZE];
3954 	mdk_rdev_t *rdev;
3955 
3956 	if (!mddev->pers)
3957 		return -ENODEV;
3958 
3959 	rdev = find_rdev(mddev, dev);
3960 	if (!rdev)
3961 		return -ENXIO;
3962 
3963 	if (rdev->raid_disk >= 0)
3964 		goto busy;
3965 
3966 	kick_rdev_from_array(rdev);
3967 	md_update_sb(mddev, 1);
3968 	md_new_event(mddev);
3969 
3970 	return 0;
3971 busy:
3972 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3973 		bdevname(rdev->bdev,b), mdname(mddev));
3974 	return -EBUSY;
3975 }
3976 
3977 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3978 {
3979 	char b[BDEVNAME_SIZE];
3980 	int err;
3981 	unsigned int size;
3982 	mdk_rdev_t *rdev;
3983 
3984 	if (!mddev->pers)
3985 		return -ENODEV;
3986 
3987 	if (mddev->major_version != 0) {
3988 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3989 			" version-0 superblocks.\n",
3990 			mdname(mddev));
3991 		return -EINVAL;
3992 	}
3993 	if (!mddev->pers->hot_add_disk) {
3994 		printk(KERN_WARNING
3995 			"%s: personality does not support diskops!\n",
3996 			mdname(mddev));
3997 		return -EINVAL;
3998 	}
3999 
4000 	rdev = md_import_device (dev, -1, 0);
4001 	if (IS_ERR(rdev)) {
4002 		printk(KERN_WARNING
4003 			"md: error, md_import_device() returned %ld\n",
4004 			PTR_ERR(rdev));
4005 		return -EINVAL;
4006 	}
4007 
4008 	if (mddev->persistent)
4009 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4010 	else
4011 		rdev->sb_offset =
4012 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4013 
4014 	size = calc_dev_size(rdev, mddev->chunk_size);
4015 	rdev->size = size;
4016 
4017 	if (test_bit(Faulty, &rdev->flags)) {
4018 		printk(KERN_WARNING
4019 			"md: can not hot-add faulty %s disk to %s!\n",
4020 			bdevname(rdev->bdev,b), mdname(mddev));
4021 		err = -EINVAL;
4022 		goto abort_export;
4023 	}
4024 	clear_bit(In_sync, &rdev->flags);
4025 	rdev->desc_nr = -1;
4026 	rdev->saved_raid_disk = -1;
4027 	err = bind_rdev_to_array(rdev, mddev);
4028 	if (err)
4029 		goto abort_export;
4030 
4031 	/*
4032 	 * The rest should better be atomic, we can have disk failures
4033 	 * noticed in interrupt contexts ...
4034 	 */
4035 
4036 	if (rdev->desc_nr == mddev->max_disks) {
4037 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4038 			mdname(mddev));
4039 		err = -EBUSY;
4040 		goto abort_unbind_export;
4041 	}
4042 
4043 	rdev->raid_disk = -1;
4044 
4045 	md_update_sb(mddev, 1);
4046 
4047 	/*
4048 	 * Kick recovery, maybe this spare has to be added to the
4049 	 * array immediately.
4050 	 */
4051 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4052 	md_wakeup_thread(mddev->thread);
4053 	md_new_event(mddev);
4054 	return 0;
4055 
4056 abort_unbind_export:
4057 	unbind_rdev_from_array(rdev);
4058 
4059 abort_export:
4060 	export_rdev(rdev);
4061 	return err;
4062 }
4063 
4064 static int set_bitmap_file(mddev_t *mddev, int fd)
4065 {
4066 	int err;
4067 
4068 	if (mddev->pers) {
4069 		if (!mddev->pers->quiesce)
4070 			return -EBUSY;
4071 		if (mddev->recovery || mddev->sync_thread)
4072 			return -EBUSY;
4073 		/* we should be able to change the bitmap.. */
4074 	}
4075 
4076 
4077 	if (fd >= 0) {
4078 		if (mddev->bitmap)
4079 			return -EEXIST; /* cannot add when bitmap is present */
4080 		mddev->bitmap_file = fget(fd);
4081 
4082 		if (mddev->bitmap_file == NULL) {
4083 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4084 			       mdname(mddev));
4085 			return -EBADF;
4086 		}
4087 
4088 		err = deny_bitmap_write_access(mddev->bitmap_file);
4089 		if (err) {
4090 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4091 			       mdname(mddev));
4092 			fput(mddev->bitmap_file);
4093 			mddev->bitmap_file = NULL;
4094 			return err;
4095 		}
4096 		mddev->bitmap_offset = 0; /* file overrides offset */
4097 	} else if (mddev->bitmap == NULL)
4098 		return -ENOENT; /* cannot remove what isn't there */
4099 	err = 0;
4100 	if (mddev->pers) {
4101 		mddev->pers->quiesce(mddev, 1);
4102 		if (fd >= 0)
4103 			err = bitmap_create(mddev);
4104 		if (fd < 0 || err) {
4105 			bitmap_destroy(mddev);
4106 			fd = -1; /* make sure to put the file */
4107 		}
4108 		mddev->pers->quiesce(mddev, 0);
4109 	}
4110 	if (fd < 0) {
4111 		if (mddev->bitmap_file) {
4112 			restore_bitmap_write_access(mddev->bitmap_file);
4113 			fput(mddev->bitmap_file);
4114 		}
4115 		mddev->bitmap_file = NULL;
4116 	}
4117 
4118 	return err;
4119 }
4120 
4121 /*
4122  * set_array_info is used two different ways
4123  * The original usage is when creating a new array.
4124  * In this usage, raid_disks is > 0 and it together with
4125  *  level, size, not_persistent,layout,chunksize determine the
4126  *  shape of the array.
4127  *  This will always create an array with a type-0.90.0 superblock.
4128  * The newer usage is when assembling an array.
4129  *  In this case raid_disks will be 0, and the major_version field is
4130  *  use to determine which style super-blocks are to be found on the devices.
4131  *  The minor and patch _version numbers are also kept incase the
4132  *  super_block handler wishes to interpret them.
4133  */
4134 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4135 {
4136 
4137 	if (info->raid_disks == 0) {
4138 		/* just setting version number for superblock loading */
4139 		if (info->major_version < 0 ||
4140 		    info->major_version >= ARRAY_SIZE(super_types) ||
4141 		    super_types[info->major_version].name == NULL) {
4142 			/* maybe try to auto-load a module? */
4143 			printk(KERN_INFO
4144 				"md: superblock version %d not known\n",
4145 				info->major_version);
4146 			return -EINVAL;
4147 		}
4148 		mddev->major_version = info->major_version;
4149 		mddev->minor_version = info->minor_version;
4150 		mddev->patch_version = info->patch_version;
4151 		mddev->persistent = !info->not_persistent;
4152 		return 0;
4153 	}
4154 	mddev->major_version = MD_MAJOR_VERSION;
4155 	mddev->minor_version = MD_MINOR_VERSION;
4156 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4157 	mddev->ctime         = get_seconds();
4158 
4159 	mddev->level         = info->level;
4160 	mddev->clevel[0]     = 0;
4161 	mddev->size          = info->size;
4162 	mddev->raid_disks    = info->raid_disks;
4163 	/* don't set md_minor, it is determined by which /dev/md* was
4164 	 * openned
4165 	 */
4166 	if (info->state & (1<<MD_SB_CLEAN))
4167 		mddev->recovery_cp = MaxSector;
4168 	else
4169 		mddev->recovery_cp = 0;
4170 	mddev->persistent    = ! info->not_persistent;
4171 
4172 	mddev->layout        = info->layout;
4173 	mddev->chunk_size    = info->chunk_size;
4174 
4175 	mddev->max_disks     = MD_SB_DISKS;
4176 
4177 	mddev->flags         = 0;
4178 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4179 
4180 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4181 	mddev->bitmap_offset = 0;
4182 
4183 	mddev->reshape_position = MaxSector;
4184 
4185 	/*
4186 	 * Generate a 128 bit UUID
4187 	 */
4188 	get_random_bytes(mddev->uuid, 16);
4189 
4190 	mddev->new_level = mddev->level;
4191 	mddev->new_chunk = mddev->chunk_size;
4192 	mddev->new_layout = mddev->layout;
4193 	mddev->delta_disks = 0;
4194 
4195 	return 0;
4196 }
4197 
4198 static int update_size(mddev_t *mddev, unsigned long size)
4199 {
4200 	mdk_rdev_t * rdev;
4201 	int rv;
4202 	struct list_head *tmp;
4203 	int fit = (size == 0);
4204 
4205 	if (mddev->pers->resize == NULL)
4206 		return -EINVAL;
4207 	/* The "size" is the amount of each device that is used.
4208 	 * This can only make sense for arrays with redundancy.
4209 	 * linear and raid0 always use whatever space is available
4210 	 * We can only consider changing the size if no resync
4211 	 * or reconstruction is happening, and if the new size
4212 	 * is acceptable. It must fit before the sb_offset or,
4213 	 * if that is <data_offset, it must fit before the
4214 	 * size of each device.
4215 	 * If size is zero, we find the largest size that fits.
4216 	 */
4217 	if (mddev->sync_thread)
4218 		return -EBUSY;
4219 	ITERATE_RDEV(mddev,rdev,tmp) {
4220 		sector_t avail;
4221 		avail = rdev->size * 2;
4222 
4223 		if (fit && (size == 0 || size > avail/2))
4224 			size = avail/2;
4225 		if (avail < ((sector_t)size << 1))
4226 			return -ENOSPC;
4227 	}
4228 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4229 	if (!rv) {
4230 		struct block_device *bdev;
4231 
4232 		bdev = bdget_disk(mddev->gendisk, 0);
4233 		if (bdev) {
4234 			mutex_lock(&bdev->bd_inode->i_mutex);
4235 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4236 			mutex_unlock(&bdev->bd_inode->i_mutex);
4237 			bdput(bdev);
4238 		}
4239 	}
4240 	return rv;
4241 }
4242 
4243 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4244 {
4245 	int rv;
4246 	/* change the number of raid disks */
4247 	if (mddev->pers->check_reshape == NULL)
4248 		return -EINVAL;
4249 	if (raid_disks <= 0 ||
4250 	    raid_disks >= mddev->max_disks)
4251 		return -EINVAL;
4252 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4253 		return -EBUSY;
4254 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4255 
4256 	rv = mddev->pers->check_reshape(mddev);
4257 	return rv;
4258 }
4259 
4260 
4261 /*
4262  * update_array_info is used to change the configuration of an
4263  * on-line array.
4264  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4265  * fields in the info are checked against the array.
4266  * Any differences that cannot be handled will cause an error.
4267  * Normally, only one change can be managed at a time.
4268  */
4269 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4270 {
4271 	int rv = 0;
4272 	int cnt = 0;
4273 	int state = 0;
4274 
4275 	/* calculate expected state,ignoring low bits */
4276 	if (mddev->bitmap && mddev->bitmap_offset)
4277 		state |= (1 << MD_SB_BITMAP_PRESENT);
4278 
4279 	if (mddev->major_version != info->major_version ||
4280 	    mddev->minor_version != info->minor_version ||
4281 /*	    mddev->patch_version != info->patch_version || */
4282 	    mddev->ctime         != info->ctime         ||
4283 	    mddev->level         != info->level         ||
4284 /*	    mddev->layout        != info->layout        || */
4285 	    !mddev->persistent	 != info->not_persistent||
4286 	    mddev->chunk_size    != info->chunk_size    ||
4287 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4288 	    ((state^info->state) & 0xfffffe00)
4289 		)
4290 		return -EINVAL;
4291 	/* Check there is only one change */
4292 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4293 	if (mddev->raid_disks != info->raid_disks) cnt++;
4294 	if (mddev->layout != info->layout) cnt++;
4295 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4296 	if (cnt == 0) return 0;
4297 	if (cnt > 1) return -EINVAL;
4298 
4299 	if (mddev->layout != info->layout) {
4300 		/* Change layout
4301 		 * we don't need to do anything at the md level, the
4302 		 * personality will take care of it all.
4303 		 */
4304 		if (mddev->pers->reconfig == NULL)
4305 			return -EINVAL;
4306 		else
4307 			return mddev->pers->reconfig(mddev, info->layout, -1);
4308 	}
4309 	if (info->size >= 0 && mddev->size != info->size)
4310 		rv = update_size(mddev, info->size);
4311 
4312 	if (mddev->raid_disks    != info->raid_disks)
4313 		rv = update_raid_disks(mddev, info->raid_disks);
4314 
4315 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4316 		if (mddev->pers->quiesce == NULL)
4317 			return -EINVAL;
4318 		if (mddev->recovery || mddev->sync_thread)
4319 			return -EBUSY;
4320 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4321 			/* add the bitmap */
4322 			if (mddev->bitmap)
4323 				return -EEXIST;
4324 			if (mddev->default_bitmap_offset == 0)
4325 				return -EINVAL;
4326 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4327 			mddev->pers->quiesce(mddev, 1);
4328 			rv = bitmap_create(mddev);
4329 			if (rv)
4330 				bitmap_destroy(mddev);
4331 			mddev->pers->quiesce(mddev, 0);
4332 		} else {
4333 			/* remove the bitmap */
4334 			if (!mddev->bitmap)
4335 				return -ENOENT;
4336 			if (mddev->bitmap->file)
4337 				return -EINVAL;
4338 			mddev->pers->quiesce(mddev, 1);
4339 			bitmap_destroy(mddev);
4340 			mddev->pers->quiesce(mddev, 0);
4341 			mddev->bitmap_offset = 0;
4342 		}
4343 	}
4344 	md_update_sb(mddev, 1);
4345 	return rv;
4346 }
4347 
4348 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4349 {
4350 	mdk_rdev_t *rdev;
4351 
4352 	if (mddev->pers == NULL)
4353 		return -ENODEV;
4354 
4355 	rdev = find_rdev(mddev, dev);
4356 	if (!rdev)
4357 		return -ENODEV;
4358 
4359 	md_error(mddev, rdev);
4360 	return 0;
4361 }
4362 
4363 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4364 {
4365 	mddev_t *mddev = bdev->bd_disk->private_data;
4366 
4367 	geo->heads = 2;
4368 	geo->sectors = 4;
4369 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4370 	return 0;
4371 }
4372 
4373 static int md_ioctl(struct inode *inode, struct file *file,
4374 			unsigned int cmd, unsigned long arg)
4375 {
4376 	int err = 0;
4377 	void __user *argp = (void __user *)arg;
4378 	mddev_t *mddev = NULL;
4379 
4380 	if (!capable(CAP_SYS_ADMIN))
4381 		return -EACCES;
4382 
4383 	/*
4384 	 * Commands dealing with the RAID driver but not any
4385 	 * particular array:
4386 	 */
4387 	switch (cmd)
4388 	{
4389 		case RAID_VERSION:
4390 			err = get_version(argp);
4391 			goto done;
4392 
4393 		case PRINT_RAID_DEBUG:
4394 			err = 0;
4395 			md_print_devices();
4396 			goto done;
4397 
4398 #ifndef MODULE
4399 		case RAID_AUTORUN:
4400 			err = 0;
4401 			autostart_arrays(arg);
4402 			goto done;
4403 #endif
4404 		default:;
4405 	}
4406 
4407 	/*
4408 	 * Commands creating/starting a new array:
4409 	 */
4410 
4411 	mddev = inode->i_bdev->bd_disk->private_data;
4412 
4413 	if (!mddev) {
4414 		BUG();
4415 		goto abort;
4416 	}
4417 
4418 	err = mddev_lock(mddev);
4419 	if (err) {
4420 		printk(KERN_INFO
4421 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4422 			err, cmd);
4423 		goto abort;
4424 	}
4425 
4426 	switch (cmd)
4427 	{
4428 		case SET_ARRAY_INFO:
4429 			{
4430 				mdu_array_info_t info;
4431 				if (!arg)
4432 					memset(&info, 0, sizeof(info));
4433 				else if (copy_from_user(&info, argp, sizeof(info))) {
4434 					err = -EFAULT;
4435 					goto abort_unlock;
4436 				}
4437 				if (mddev->pers) {
4438 					err = update_array_info(mddev, &info);
4439 					if (err) {
4440 						printk(KERN_WARNING "md: couldn't update"
4441 						       " array info. %d\n", err);
4442 						goto abort_unlock;
4443 					}
4444 					goto done_unlock;
4445 				}
4446 				if (!list_empty(&mddev->disks)) {
4447 					printk(KERN_WARNING
4448 					       "md: array %s already has disks!\n",
4449 					       mdname(mddev));
4450 					err = -EBUSY;
4451 					goto abort_unlock;
4452 				}
4453 				if (mddev->raid_disks) {
4454 					printk(KERN_WARNING
4455 					       "md: array %s already initialised!\n",
4456 					       mdname(mddev));
4457 					err = -EBUSY;
4458 					goto abort_unlock;
4459 				}
4460 				err = set_array_info(mddev, &info);
4461 				if (err) {
4462 					printk(KERN_WARNING "md: couldn't set"
4463 					       " array info. %d\n", err);
4464 					goto abort_unlock;
4465 				}
4466 			}
4467 			goto done_unlock;
4468 
4469 		default:;
4470 	}
4471 
4472 	/*
4473 	 * Commands querying/configuring an existing array:
4474 	 */
4475 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4476 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4477 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4478 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4479 	    		&& cmd != GET_BITMAP_FILE) {
4480 		err = -ENODEV;
4481 		goto abort_unlock;
4482 	}
4483 
4484 	/*
4485 	 * Commands even a read-only array can execute:
4486 	 */
4487 	switch (cmd)
4488 	{
4489 		case GET_ARRAY_INFO:
4490 			err = get_array_info(mddev, argp);
4491 			goto done_unlock;
4492 
4493 		case GET_BITMAP_FILE:
4494 			err = get_bitmap_file(mddev, argp);
4495 			goto done_unlock;
4496 
4497 		case GET_DISK_INFO:
4498 			err = get_disk_info(mddev, argp);
4499 			goto done_unlock;
4500 
4501 		case RESTART_ARRAY_RW:
4502 			err = restart_array(mddev);
4503 			goto done_unlock;
4504 
4505 		case STOP_ARRAY:
4506 			err = do_md_stop (mddev, 0);
4507 			goto done_unlock;
4508 
4509 		case STOP_ARRAY_RO:
4510 			err = do_md_stop (mddev, 1);
4511 			goto done_unlock;
4512 
4513 	/*
4514 	 * We have a problem here : there is no easy way to give a CHS
4515 	 * virtual geometry. We currently pretend that we have a 2 heads
4516 	 * 4 sectors (with a BIG number of cylinders...). This drives
4517 	 * dosfs just mad... ;-)
4518 	 */
4519 	}
4520 
4521 	/*
4522 	 * The remaining ioctls are changing the state of the
4523 	 * superblock, so we do not allow them on read-only arrays.
4524 	 * However non-MD ioctls (e.g. get-size) will still come through
4525 	 * here and hit the 'default' below, so only disallow
4526 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4527 	 */
4528 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4529 	    mddev->ro && mddev->pers) {
4530 		if (mddev->ro == 2) {
4531 			mddev->ro = 0;
4532 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4533 		md_wakeup_thread(mddev->thread);
4534 
4535 		} else {
4536 			err = -EROFS;
4537 			goto abort_unlock;
4538 		}
4539 	}
4540 
4541 	switch (cmd)
4542 	{
4543 		case ADD_NEW_DISK:
4544 		{
4545 			mdu_disk_info_t info;
4546 			if (copy_from_user(&info, argp, sizeof(info)))
4547 				err = -EFAULT;
4548 			else
4549 				err = add_new_disk(mddev, &info);
4550 			goto done_unlock;
4551 		}
4552 
4553 		case HOT_REMOVE_DISK:
4554 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4555 			goto done_unlock;
4556 
4557 		case HOT_ADD_DISK:
4558 			err = hot_add_disk(mddev, new_decode_dev(arg));
4559 			goto done_unlock;
4560 
4561 		case SET_DISK_FAULTY:
4562 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4563 			goto done_unlock;
4564 
4565 		case RUN_ARRAY:
4566 			err = do_md_run (mddev);
4567 			goto done_unlock;
4568 
4569 		case SET_BITMAP_FILE:
4570 			err = set_bitmap_file(mddev, (int)arg);
4571 			goto done_unlock;
4572 
4573 		default:
4574 			err = -EINVAL;
4575 			goto abort_unlock;
4576 	}
4577 
4578 done_unlock:
4579 abort_unlock:
4580 	mddev_unlock(mddev);
4581 
4582 	return err;
4583 done:
4584 	if (err)
4585 		MD_BUG();
4586 abort:
4587 	return err;
4588 }
4589 
4590 static int md_open(struct inode *inode, struct file *file)
4591 {
4592 	/*
4593 	 * Succeed if we can lock the mddev, which confirms that
4594 	 * it isn't being stopped right now.
4595 	 */
4596 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4597 	int err;
4598 
4599 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4600 		goto out;
4601 
4602 	err = 0;
4603 	mddev_get(mddev);
4604 	mddev_unlock(mddev);
4605 
4606 	check_disk_change(inode->i_bdev);
4607  out:
4608 	return err;
4609 }
4610 
4611 static int md_release(struct inode *inode, struct file * file)
4612 {
4613  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4614 
4615 	BUG_ON(!mddev);
4616 	mddev_put(mddev);
4617 
4618 	return 0;
4619 }
4620 
4621 static int md_media_changed(struct gendisk *disk)
4622 {
4623 	mddev_t *mddev = disk->private_data;
4624 
4625 	return mddev->changed;
4626 }
4627 
4628 static int md_revalidate(struct gendisk *disk)
4629 {
4630 	mddev_t *mddev = disk->private_data;
4631 
4632 	mddev->changed = 0;
4633 	return 0;
4634 }
4635 static struct block_device_operations md_fops =
4636 {
4637 	.owner		= THIS_MODULE,
4638 	.open		= md_open,
4639 	.release	= md_release,
4640 	.ioctl		= md_ioctl,
4641 	.getgeo		= md_getgeo,
4642 	.media_changed	= md_media_changed,
4643 	.revalidate_disk= md_revalidate,
4644 };
4645 
4646 static int md_thread(void * arg)
4647 {
4648 	mdk_thread_t *thread = arg;
4649 
4650 	/*
4651 	 * md_thread is a 'system-thread', it's priority should be very
4652 	 * high. We avoid resource deadlocks individually in each
4653 	 * raid personality. (RAID5 does preallocation) We also use RR and
4654 	 * the very same RT priority as kswapd, thus we will never get
4655 	 * into a priority inversion deadlock.
4656 	 *
4657 	 * we definitely have to have equal or higher priority than
4658 	 * bdflush, otherwise bdflush will deadlock if there are too
4659 	 * many dirty RAID5 blocks.
4660 	 */
4661 
4662 	allow_signal(SIGKILL);
4663 	while (!kthread_should_stop()) {
4664 
4665 		/* We need to wait INTERRUPTIBLE so that
4666 		 * we don't add to the load-average.
4667 		 * That means we need to be sure no signals are
4668 		 * pending
4669 		 */
4670 		if (signal_pending(current))
4671 			flush_signals(current);
4672 
4673 		wait_event_interruptible_timeout
4674 			(thread->wqueue,
4675 			 test_bit(THREAD_WAKEUP, &thread->flags)
4676 			 || kthread_should_stop(),
4677 			 thread->timeout);
4678 
4679 		clear_bit(THREAD_WAKEUP, &thread->flags);
4680 
4681 		thread->run(thread->mddev);
4682 	}
4683 
4684 	return 0;
4685 }
4686 
4687 void md_wakeup_thread(mdk_thread_t *thread)
4688 {
4689 	if (thread) {
4690 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4691 		set_bit(THREAD_WAKEUP, &thread->flags);
4692 		wake_up(&thread->wqueue);
4693 	}
4694 }
4695 
4696 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4697 				 const char *name)
4698 {
4699 	mdk_thread_t *thread;
4700 
4701 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4702 	if (!thread)
4703 		return NULL;
4704 
4705 	init_waitqueue_head(&thread->wqueue);
4706 
4707 	thread->run = run;
4708 	thread->mddev = mddev;
4709 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4710 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4711 	if (IS_ERR(thread->tsk)) {
4712 		kfree(thread);
4713 		return NULL;
4714 	}
4715 	return thread;
4716 }
4717 
4718 void md_unregister_thread(mdk_thread_t *thread)
4719 {
4720 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
4721 
4722 	kthread_stop(thread->tsk);
4723 	kfree(thread);
4724 }
4725 
4726 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4727 {
4728 	if (!mddev) {
4729 		MD_BUG();
4730 		return;
4731 	}
4732 
4733 	if (!rdev || test_bit(Faulty, &rdev->flags))
4734 		return;
4735 /*
4736 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4737 		mdname(mddev),
4738 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4739 		__builtin_return_address(0),__builtin_return_address(1),
4740 		__builtin_return_address(2),__builtin_return_address(3));
4741 */
4742 	if (!mddev->pers)
4743 		return;
4744 	if (!mddev->pers->error_handler)
4745 		return;
4746 	mddev->pers->error_handler(mddev,rdev);
4747 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4748 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4749 	md_wakeup_thread(mddev->thread);
4750 	md_new_event_inintr(mddev);
4751 }
4752 
4753 /* seq_file implementation /proc/mdstat */
4754 
4755 static void status_unused(struct seq_file *seq)
4756 {
4757 	int i = 0;
4758 	mdk_rdev_t *rdev;
4759 	struct list_head *tmp;
4760 
4761 	seq_printf(seq, "unused devices: ");
4762 
4763 	ITERATE_RDEV_PENDING(rdev,tmp) {
4764 		char b[BDEVNAME_SIZE];
4765 		i++;
4766 		seq_printf(seq, "%s ",
4767 			      bdevname(rdev->bdev,b));
4768 	}
4769 	if (!i)
4770 		seq_printf(seq, "<none>");
4771 
4772 	seq_printf(seq, "\n");
4773 }
4774 
4775 
4776 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4777 {
4778 	sector_t max_blocks, resync, res;
4779 	unsigned long dt, db, rt;
4780 	int scale;
4781 	unsigned int per_milli;
4782 
4783 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4784 
4785 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4786 		max_blocks = mddev->resync_max_sectors >> 1;
4787 	else
4788 		max_blocks = mddev->size;
4789 
4790 	/*
4791 	 * Should not happen.
4792 	 */
4793 	if (!max_blocks) {
4794 		MD_BUG();
4795 		return;
4796 	}
4797 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4798 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4799 	 * u32, as those are the requirements for sector_div.
4800 	 * Thus 'scale' must be at least 10
4801 	 */
4802 	scale = 10;
4803 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4804 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4805 			scale++;
4806 	}
4807 	res = (resync>>scale)*1000;
4808 	sector_div(res, (u32)((max_blocks>>scale)+1));
4809 
4810 	per_milli = res;
4811 	{
4812 		int i, x = per_milli/50, y = 20-x;
4813 		seq_printf(seq, "[");
4814 		for (i = 0; i < x; i++)
4815 			seq_printf(seq, "=");
4816 		seq_printf(seq, ">");
4817 		for (i = 0; i < y; i++)
4818 			seq_printf(seq, ".");
4819 		seq_printf(seq, "] ");
4820 	}
4821 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4822 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4823 		    "reshape" :
4824 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4825 		     "check" :
4826 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4827 		      "resync" : "recovery"))),
4828 		   per_milli/10, per_milli % 10,
4829 		   (unsigned long long) resync,
4830 		   (unsigned long long) max_blocks);
4831 
4832 	/*
4833 	 * We do not want to overflow, so the order of operands and
4834 	 * the * 100 / 100 trick are important. We do a +1 to be
4835 	 * safe against division by zero. We only estimate anyway.
4836 	 *
4837 	 * dt: time from mark until now
4838 	 * db: blocks written from mark until now
4839 	 * rt: remaining time
4840 	 */
4841 	dt = ((jiffies - mddev->resync_mark) / HZ);
4842 	if (!dt) dt++;
4843 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4844 		- mddev->resync_mark_cnt;
4845 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4846 
4847 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4848 
4849 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4850 }
4851 
4852 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4853 {
4854 	struct list_head *tmp;
4855 	loff_t l = *pos;
4856 	mddev_t *mddev;
4857 
4858 	if (l >= 0x10000)
4859 		return NULL;
4860 	if (!l--)
4861 		/* header */
4862 		return (void*)1;
4863 
4864 	spin_lock(&all_mddevs_lock);
4865 	list_for_each(tmp,&all_mddevs)
4866 		if (!l--) {
4867 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4868 			mddev_get(mddev);
4869 			spin_unlock(&all_mddevs_lock);
4870 			return mddev;
4871 		}
4872 	spin_unlock(&all_mddevs_lock);
4873 	if (!l--)
4874 		return (void*)2;/* tail */
4875 	return NULL;
4876 }
4877 
4878 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4879 {
4880 	struct list_head *tmp;
4881 	mddev_t *next_mddev, *mddev = v;
4882 
4883 	++*pos;
4884 	if (v == (void*)2)
4885 		return NULL;
4886 
4887 	spin_lock(&all_mddevs_lock);
4888 	if (v == (void*)1)
4889 		tmp = all_mddevs.next;
4890 	else
4891 		tmp = mddev->all_mddevs.next;
4892 	if (tmp != &all_mddevs)
4893 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4894 	else {
4895 		next_mddev = (void*)2;
4896 		*pos = 0x10000;
4897 	}
4898 	spin_unlock(&all_mddevs_lock);
4899 
4900 	if (v != (void*)1)
4901 		mddev_put(mddev);
4902 	return next_mddev;
4903 
4904 }
4905 
4906 static void md_seq_stop(struct seq_file *seq, void *v)
4907 {
4908 	mddev_t *mddev = v;
4909 
4910 	if (mddev && v != (void*)1 && v != (void*)2)
4911 		mddev_put(mddev);
4912 }
4913 
4914 struct mdstat_info {
4915 	int event;
4916 };
4917 
4918 static int md_seq_show(struct seq_file *seq, void *v)
4919 {
4920 	mddev_t *mddev = v;
4921 	sector_t size;
4922 	struct list_head *tmp2;
4923 	mdk_rdev_t *rdev;
4924 	struct mdstat_info *mi = seq->private;
4925 	struct bitmap *bitmap;
4926 
4927 	if (v == (void*)1) {
4928 		struct mdk_personality *pers;
4929 		seq_printf(seq, "Personalities : ");
4930 		spin_lock(&pers_lock);
4931 		list_for_each_entry(pers, &pers_list, list)
4932 			seq_printf(seq, "[%s] ", pers->name);
4933 
4934 		spin_unlock(&pers_lock);
4935 		seq_printf(seq, "\n");
4936 		mi->event = atomic_read(&md_event_count);
4937 		return 0;
4938 	}
4939 	if (v == (void*)2) {
4940 		status_unused(seq);
4941 		return 0;
4942 	}
4943 
4944 	if (mddev_lock(mddev) < 0)
4945 		return -EINTR;
4946 
4947 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4948 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4949 						mddev->pers ? "" : "in");
4950 		if (mddev->pers) {
4951 			if (mddev->ro==1)
4952 				seq_printf(seq, " (read-only)");
4953 			if (mddev->ro==2)
4954 				seq_printf(seq, "(auto-read-only)");
4955 			seq_printf(seq, " %s", mddev->pers->name);
4956 		}
4957 
4958 		size = 0;
4959 		ITERATE_RDEV(mddev,rdev,tmp2) {
4960 			char b[BDEVNAME_SIZE];
4961 			seq_printf(seq, " %s[%d]",
4962 				bdevname(rdev->bdev,b), rdev->desc_nr);
4963 			if (test_bit(WriteMostly, &rdev->flags))
4964 				seq_printf(seq, "(W)");
4965 			if (test_bit(Faulty, &rdev->flags)) {
4966 				seq_printf(seq, "(F)");
4967 				continue;
4968 			} else if (rdev->raid_disk < 0)
4969 				seq_printf(seq, "(S)"); /* spare */
4970 			size += rdev->size;
4971 		}
4972 
4973 		if (!list_empty(&mddev->disks)) {
4974 			if (mddev->pers)
4975 				seq_printf(seq, "\n      %llu blocks",
4976 					(unsigned long long)mddev->array_size);
4977 			else
4978 				seq_printf(seq, "\n      %llu blocks",
4979 					(unsigned long long)size);
4980 		}
4981 		if (mddev->persistent) {
4982 			if (mddev->major_version != 0 ||
4983 			    mddev->minor_version != 90) {
4984 				seq_printf(seq," super %d.%d",
4985 					   mddev->major_version,
4986 					   mddev->minor_version);
4987 			}
4988 		} else
4989 			seq_printf(seq, " super non-persistent");
4990 
4991 		if (mddev->pers) {
4992 			mddev->pers->status (seq, mddev);
4993 	 		seq_printf(seq, "\n      ");
4994 			if (mddev->pers->sync_request) {
4995 				if (mddev->curr_resync > 2) {
4996 					status_resync (seq, mddev);
4997 					seq_printf(seq, "\n      ");
4998 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4999 					seq_printf(seq, "\tresync=DELAYED\n      ");
5000 				else if (mddev->recovery_cp < MaxSector)
5001 					seq_printf(seq, "\tresync=PENDING\n      ");
5002 			}
5003 		} else
5004 			seq_printf(seq, "\n       ");
5005 
5006 		if ((bitmap = mddev->bitmap)) {
5007 			unsigned long chunk_kb;
5008 			unsigned long flags;
5009 			spin_lock_irqsave(&bitmap->lock, flags);
5010 			chunk_kb = bitmap->chunksize >> 10;
5011 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5012 				"%lu%s chunk",
5013 				bitmap->pages - bitmap->missing_pages,
5014 				bitmap->pages,
5015 				(bitmap->pages - bitmap->missing_pages)
5016 					<< (PAGE_SHIFT - 10),
5017 				chunk_kb ? chunk_kb : bitmap->chunksize,
5018 				chunk_kb ? "KB" : "B");
5019 			if (bitmap->file) {
5020 				seq_printf(seq, ", file: ");
5021 				seq_path(seq, bitmap->file->f_path.mnt,
5022 					 bitmap->file->f_path.dentry," \t\n");
5023 			}
5024 
5025 			seq_printf(seq, "\n");
5026 			spin_unlock_irqrestore(&bitmap->lock, flags);
5027 		}
5028 
5029 		seq_printf(seq, "\n");
5030 	}
5031 	mddev_unlock(mddev);
5032 
5033 	return 0;
5034 }
5035 
5036 static struct seq_operations md_seq_ops = {
5037 	.start  = md_seq_start,
5038 	.next   = md_seq_next,
5039 	.stop   = md_seq_stop,
5040 	.show   = md_seq_show,
5041 };
5042 
5043 static int md_seq_open(struct inode *inode, struct file *file)
5044 {
5045 	int error;
5046 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5047 	if (mi == NULL)
5048 		return -ENOMEM;
5049 
5050 	error = seq_open(file, &md_seq_ops);
5051 	if (error)
5052 		kfree(mi);
5053 	else {
5054 		struct seq_file *p = file->private_data;
5055 		p->private = mi;
5056 		mi->event = atomic_read(&md_event_count);
5057 	}
5058 	return error;
5059 }
5060 
5061 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5062 {
5063 	struct seq_file *m = filp->private_data;
5064 	struct mdstat_info *mi = m->private;
5065 	int mask;
5066 
5067 	poll_wait(filp, &md_event_waiters, wait);
5068 
5069 	/* always allow read */
5070 	mask = POLLIN | POLLRDNORM;
5071 
5072 	if (mi->event != atomic_read(&md_event_count))
5073 		mask |= POLLERR | POLLPRI;
5074 	return mask;
5075 }
5076 
5077 static const struct file_operations md_seq_fops = {
5078 	.owner		= THIS_MODULE,
5079 	.open           = md_seq_open,
5080 	.read           = seq_read,
5081 	.llseek         = seq_lseek,
5082 	.release	= seq_release_private,
5083 	.poll		= mdstat_poll,
5084 };
5085 
5086 int register_md_personality(struct mdk_personality *p)
5087 {
5088 	spin_lock(&pers_lock);
5089 	list_add_tail(&p->list, &pers_list);
5090 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5091 	spin_unlock(&pers_lock);
5092 	return 0;
5093 }
5094 
5095 int unregister_md_personality(struct mdk_personality *p)
5096 {
5097 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5098 	spin_lock(&pers_lock);
5099 	list_del_init(&p->list);
5100 	spin_unlock(&pers_lock);
5101 	return 0;
5102 }
5103 
5104 static int is_mddev_idle(mddev_t *mddev)
5105 {
5106 	mdk_rdev_t * rdev;
5107 	struct list_head *tmp;
5108 	int idle;
5109 	long curr_events;
5110 
5111 	idle = 1;
5112 	ITERATE_RDEV(mddev,rdev,tmp) {
5113 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5114 		curr_events = disk_stat_read(disk, sectors[0]) +
5115 				disk_stat_read(disk, sectors[1]) -
5116 				atomic_read(&disk->sync_io);
5117 		/* sync IO will cause sync_io to increase before the disk_stats
5118 		 * as sync_io is counted when a request starts, and
5119 		 * disk_stats is counted when it completes.
5120 		 * So resync activity will cause curr_events to be smaller than
5121 		 * when there was no such activity.
5122 		 * non-sync IO will cause disk_stat to increase without
5123 		 * increasing sync_io so curr_events will (eventually)
5124 		 * be larger than it was before.  Once it becomes
5125 		 * substantially larger, the test below will cause
5126 		 * the array to appear non-idle, and resync will slow
5127 		 * down.
5128 		 * If there is a lot of outstanding resync activity when
5129 		 * we set last_event to curr_events, then all that activity
5130 		 * completing might cause the array to appear non-idle
5131 		 * and resync will be slowed down even though there might
5132 		 * not have been non-resync activity.  This will only
5133 		 * happen once though.  'last_events' will soon reflect
5134 		 * the state where there is little or no outstanding
5135 		 * resync requests, and further resync activity will
5136 		 * always make curr_events less than last_events.
5137 		 *
5138 		 */
5139 		if (curr_events - rdev->last_events > 4096) {
5140 			rdev->last_events = curr_events;
5141 			idle = 0;
5142 		}
5143 	}
5144 	return idle;
5145 }
5146 
5147 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5148 {
5149 	/* another "blocks" (512byte) blocks have been synced */
5150 	atomic_sub(blocks, &mddev->recovery_active);
5151 	wake_up(&mddev->recovery_wait);
5152 	if (!ok) {
5153 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5154 		md_wakeup_thread(mddev->thread);
5155 		// stop recovery, signal do_sync ....
5156 	}
5157 }
5158 
5159 
5160 /* md_write_start(mddev, bi)
5161  * If we need to update some array metadata (e.g. 'active' flag
5162  * in superblock) before writing, schedule a superblock update
5163  * and wait for it to complete.
5164  */
5165 void md_write_start(mddev_t *mddev, struct bio *bi)
5166 {
5167 	if (bio_data_dir(bi) != WRITE)
5168 		return;
5169 
5170 	BUG_ON(mddev->ro == 1);
5171 	if (mddev->ro == 2) {
5172 		/* need to switch to read/write */
5173 		mddev->ro = 0;
5174 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5175 		md_wakeup_thread(mddev->thread);
5176 	}
5177 	atomic_inc(&mddev->writes_pending);
5178 	if (mddev->in_sync) {
5179 		spin_lock_irq(&mddev->write_lock);
5180 		if (mddev->in_sync) {
5181 			mddev->in_sync = 0;
5182 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5183 			md_wakeup_thread(mddev->thread);
5184 		}
5185 		spin_unlock_irq(&mddev->write_lock);
5186 	}
5187 	wait_event(mddev->sb_wait, mddev->flags==0);
5188 }
5189 
5190 void md_write_end(mddev_t *mddev)
5191 {
5192 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5193 		if (mddev->safemode == 2)
5194 			md_wakeup_thread(mddev->thread);
5195 		else if (mddev->safemode_delay)
5196 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5197 	}
5198 }
5199 
5200 /* md_allow_write(mddev)
5201  * Calling this ensures that the array is marked 'active' so that writes
5202  * may proceed without blocking.  It is important to call this before
5203  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5204  * Must be called with mddev_lock held.
5205  */
5206 void md_allow_write(mddev_t *mddev)
5207 {
5208 	if (!mddev->pers)
5209 		return;
5210 	if (mddev->ro)
5211 		return;
5212 
5213 	spin_lock_irq(&mddev->write_lock);
5214 	if (mddev->in_sync) {
5215 		mddev->in_sync = 0;
5216 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5217 		if (mddev->safemode_delay &&
5218 		    mddev->safemode == 0)
5219 			mddev->safemode = 1;
5220 		spin_unlock_irq(&mddev->write_lock);
5221 		md_update_sb(mddev, 0);
5222 	} else
5223 		spin_unlock_irq(&mddev->write_lock);
5224 }
5225 EXPORT_SYMBOL_GPL(md_allow_write);
5226 
5227 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5228 
5229 #define SYNC_MARKS	10
5230 #define	SYNC_MARK_STEP	(3*HZ)
5231 void md_do_sync(mddev_t *mddev)
5232 {
5233 	mddev_t *mddev2;
5234 	unsigned int currspeed = 0,
5235 		 window;
5236 	sector_t max_sectors,j, io_sectors;
5237 	unsigned long mark[SYNC_MARKS];
5238 	sector_t mark_cnt[SYNC_MARKS];
5239 	int last_mark,m;
5240 	struct list_head *tmp;
5241 	sector_t last_check;
5242 	int skipped = 0;
5243 	struct list_head *rtmp;
5244 	mdk_rdev_t *rdev;
5245 	char *desc;
5246 
5247 	/* just incase thread restarts... */
5248 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5249 		return;
5250 	if (mddev->ro) /* never try to sync a read-only array */
5251 		return;
5252 
5253 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5254 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5255 			desc = "data-check";
5256 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5257 			desc = "requested-resync";
5258 		else
5259 			desc = "resync";
5260 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5261 		desc = "reshape";
5262 	else
5263 		desc = "recovery";
5264 
5265 	/* we overload curr_resync somewhat here.
5266 	 * 0 == not engaged in resync at all
5267 	 * 2 == checking that there is no conflict with another sync
5268 	 * 1 == like 2, but have yielded to allow conflicting resync to
5269 	 *		commense
5270 	 * other == active in resync - this many blocks
5271 	 *
5272 	 * Before starting a resync we must have set curr_resync to
5273 	 * 2, and then checked that every "conflicting" array has curr_resync
5274 	 * less than ours.  When we find one that is the same or higher
5275 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5276 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5277 	 * This will mean we have to start checking from the beginning again.
5278 	 *
5279 	 */
5280 
5281 	do {
5282 		mddev->curr_resync = 2;
5283 
5284 	try_again:
5285 		if (kthread_should_stop()) {
5286 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5287 			goto skip;
5288 		}
5289 		ITERATE_MDDEV(mddev2,tmp) {
5290 			if (mddev2 == mddev)
5291 				continue;
5292 			if (mddev2->curr_resync &&
5293 			    match_mddev_units(mddev,mddev2)) {
5294 				DEFINE_WAIT(wq);
5295 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5296 					/* arbitrarily yield */
5297 					mddev->curr_resync = 1;
5298 					wake_up(&resync_wait);
5299 				}
5300 				if (mddev > mddev2 && mddev->curr_resync == 1)
5301 					/* no need to wait here, we can wait the next
5302 					 * time 'round when curr_resync == 2
5303 					 */
5304 					continue;
5305 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5306 				if (!kthread_should_stop() &&
5307 				    mddev2->curr_resync >= mddev->curr_resync) {
5308 					printk(KERN_INFO "md: delaying %s of %s"
5309 					       " until %s has finished (they"
5310 					       " share one or more physical units)\n",
5311 					       desc, mdname(mddev), mdname(mddev2));
5312 					mddev_put(mddev2);
5313 					schedule();
5314 					finish_wait(&resync_wait, &wq);
5315 					goto try_again;
5316 				}
5317 				finish_wait(&resync_wait, &wq);
5318 			}
5319 		}
5320 	} while (mddev->curr_resync < 2);
5321 
5322 	j = 0;
5323 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5324 		/* resync follows the size requested by the personality,
5325 		 * which defaults to physical size, but can be virtual size
5326 		 */
5327 		max_sectors = mddev->resync_max_sectors;
5328 		mddev->resync_mismatches = 0;
5329 		/* we don't use the checkpoint if there's a bitmap */
5330 		if (!mddev->bitmap &&
5331 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5332 			j = mddev->recovery_cp;
5333 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5334 		max_sectors = mddev->size << 1;
5335 	else {
5336 		/* recovery follows the physical size of devices */
5337 		max_sectors = mddev->size << 1;
5338 		j = MaxSector;
5339 		ITERATE_RDEV(mddev,rdev,rtmp)
5340 			if (rdev->raid_disk >= 0 &&
5341 			    !test_bit(Faulty, &rdev->flags) &&
5342 			    !test_bit(In_sync, &rdev->flags) &&
5343 			    rdev->recovery_offset < j)
5344 				j = rdev->recovery_offset;
5345 	}
5346 
5347 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5348 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5349 		" %d KB/sec/disk.\n", speed_min(mddev));
5350 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5351 	       "(but not more than %d KB/sec) for %s.\n",
5352 	       speed_max(mddev), desc);
5353 
5354 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5355 
5356 	io_sectors = 0;
5357 	for (m = 0; m < SYNC_MARKS; m++) {
5358 		mark[m] = jiffies;
5359 		mark_cnt[m] = io_sectors;
5360 	}
5361 	last_mark = 0;
5362 	mddev->resync_mark = mark[last_mark];
5363 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5364 
5365 	/*
5366 	 * Tune reconstruction:
5367 	 */
5368 	window = 32*(PAGE_SIZE/512);
5369 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5370 		window/2,(unsigned long long) max_sectors/2);
5371 
5372 	atomic_set(&mddev->recovery_active, 0);
5373 	init_waitqueue_head(&mddev->recovery_wait);
5374 	last_check = 0;
5375 
5376 	if (j>2) {
5377 		printk(KERN_INFO
5378 		       "md: resuming %s of %s from checkpoint.\n",
5379 		       desc, mdname(mddev));
5380 		mddev->curr_resync = j;
5381 	}
5382 
5383 	while (j < max_sectors) {
5384 		sector_t sectors;
5385 
5386 		skipped = 0;
5387 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5388 					    currspeed < speed_min(mddev));
5389 		if (sectors == 0) {
5390 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5391 			goto out;
5392 		}
5393 
5394 		if (!skipped) { /* actual IO requested */
5395 			io_sectors += sectors;
5396 			atomic_add(sectors, &mddev->recovery_active);
5397 		}
5398 
5399 		j += sectors;
5400 		if (j>1) mddev->curr_resync = j;
5401 		mddev->curr_mark_cnt = io_sectors;
5402 		if (last_check == 0)
5403 			/* this is the earliers that rebuilt will be
5404 			 * visible in /proc/mdstat
5405 			 */
5406 			md_new_event(mddev);
5407 
5408 		if (last_check + window > io_sectors || j == max_sectors)
5409 			continue;
5410 
5411 		last_check = io_sectors;
5412 
5413 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5414 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5415 			break;
5416 
5417 	repeat:
5418 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5419 			/* step marks */
5420 			int next = (last_mark+1) % SYNC_MARKS;
5421 
5422 			mddev->resync_mark = mark[next];
5423 			mddev->resync_mark_cnt = mark_cnt[next];
5424 			mark[next] = jiffies;
5425 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5426 			last_mark = next;
5427 		}
5428 
5429 
5430 		if (kthread_should_stop()) {
5431 			/*
5432 			 * got a signal, exit.
5433 			 */
5434 			printk(KERN_INFO
5435 				"md: md_do_sync() got signal ... exiting\n");
5436 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5437 			goto out;
5438 		}
5439 
5440 		/*
5441 		 * this loop exits only if either when we are slower than
5442 		 * the 'hard' speed limit, or the system was IO-idle for
5443 		 * a jiffy.
5444 		 * the system might be non-idle CPU-wise, but we only care
5445 		 * about not overloading the IO subsystem. (things like an
5446 		 * e2fsck being done on the RAID array should execute fast)
5447 		 */
5448 		mddev->queue->unplug_fn(mddev->queue);
5449 		cond_resched();
5450 
5451 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5452 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5453 
5454 		if (currspeed > speed_min(mddev)) {
5455 			if ((currspeed > speed_max(mddev)) ||
5456 					!is_mddev_idle(mddev)) {
5457 				msleep(500);
5458 				goto repeat;
5459 			}
5460 		}
5461 	}
5462 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5463 	/*
5464 	 * this also signals 'finished resyncing' to md_stop
5465 	 */
5466  out:
5467 	mddev->queue->unplug_fn(mddev->queue);
5468 
5469 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5470 
5471 	/* tell personality that we are finished */
5472 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5473 
5474 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5475 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5476 	    mddev->curr_resync > 2) {
5477 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5478 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5479 				if (mddev->curr_resync >= mddev->recovery_cp) {
5480 					printk(KERN_INFO
5481 					       "md: checkpointing %s of %s.\n",
5482 					       desc, mdname(mddev));
5483 					mddev->recovery_cp = mddev->curr_resync;
5484 				}
5485 			} else
5486 				mddev->recovery_cp = MaxSector;
5487 		} else {
5488 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5489 				mddev->curr_resync = MaxSector;
5490 			ITERATE_RDEV(mddev,rdev,rtmp)
5491 				if (rdev->raid_disk >= 0 &&
5492 				    !test_bit(Faulty, &rdev->flags) &&
5493 				    !test_bit(In_sync, &rdev->flags) &&
5494 				    rdev->recovery_offset < mddev->curr_resync)
5495 					rdev->recovery_offset = mddev->curr_resync;
5496 		}
5497 	}
5498 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5499 
5500  skip:
5501 	mddev->curr_resync = 0;
5502 	wake_up(&resync_wait);
5503 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5504 	md_wakeup_thread(mddev->thread);
5505 }
5506 EXPORT_SYMBOL_GPL(md_do_sync);
5507 
5508 
5509 static int remove_and_add_spares(mddev_t *mddev)
5510 {
5511 	mdk_rdev_t *rdev;
5512 	struct list_head *rtmp;
5513 	int spares = 0;
5514 
5515 	ITERATE_RDEV(mddev,rdev,rtmp)
5516 		if (rdev->raid_disk >= 0 &&
5517 		    (test_bit(Faulty, &rdev->flags) ||
5518 		     ! test_bit(In_sync, &rdev->flags)) &&
5519 		    atomic_read(&rdev->nr_pending)==0) {
5520 			if (mddev->pers->hot_remove_disk(
5521 				    mddev, rdev->raid_disk)==0) {
5522 				char nm[20];
5523 				sprintf(nm,"rd%d", rdev->raid_disk);
5524 				sysfs_remove_link(&mddev->kobj, nm);
5525 				rdev->raid_disk = -1;
5526 			}
5527 		}
5528 
5529 	if (mddev->degraded) {
5530 		ITERATE_RDEV(mddev,rdev,rtmp)
5531 			if (rdev->raid_disk < 0
5532 			    && !test_bit(Faulty, &rdev->flags)) {
5533 				rdev->recovery_offset = 0;
5534 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5535 					char nm[20];
5536 					sprintf(nm, "rd%d", rdev->raid_disk);
5537 					if (sysfs_create_link(&mddev->kobj,
5538 							      &rdev->kobj, nm))
5539 						printk(KERN_WARNING
5540 						       "md: cannot register "
5541 						       "%s for %s\n",
5542 						       nm, mdname(mddev));
5543 					spares++;
5544 					md_new_event(mddev);
5545 				} else
5546 					break;
5547 			}
5548 	}
5549 	return spares;
5550 }
5551 /*
5552  * This routine is regularly called by all per-raid-array threads to
5553  * deal with generic issues like resync and super-block update.
5554  * Raid personalities that don't have a thread (linear/raid0) do not
5555  * need this as they never do any recovery or update the superblock.
5556  *
5557  * It does not do any resync itself, but rather "forks" off other threads
5558  * to do that as needed.
5559  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5560  * "->recovery" and create a thread at ->sync_thread.
5561  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5562  * and wakeups up this thread which will reap the thread and finish up.
5563  * This thread also removes any faulty devices (with nr_pending == 0).
5564  *
5565  * The overall approach is:
5566  *  1/ if the superblock needs updating, update it.
5567  *  2/ If a recovery thread is running, don't do anything else.
5568  *  3/ If recovery has finished, clean up, possibly marking spares active.
5569  *  4/ If there are any faulty devices, remove them.
5570  *  5/ If array is degraded, try to add spares devices
5571  *  6/ If array has spares or is not in-sync, start a resync thread.
5572  */
5573 void md_check_recovery(mddev_t *mddev)
5574 {
5575 	mdk_rdev_t *rdev;
5576 	struct list_head *rtmp;
5577 
5578 
5579 	if (mddev->bitmap)
5580 		bitmap_daemon_work(mddev->bitmap);
5581 
5582 	if (mddev->ro)
5583 		return;
5584 
5585 	if (signal_pending(current)) {
5586 		if (mddev->pers->sync_request) {
5587 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5588 			       mdname(mddev));
5589 			mddev->safemode = 2;
5590 		}
5591 		flush_signals(current);
5592 	}
5593 
5594 	if ( ! (
5595 		mddev->flags ||
5596 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5597 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5598 		(mddev->safemode == 1) ||
5599 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5600 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5601 		))
5602 		return;
5603 
5604 	if (mddev_trylock(mddev)) {
5605 		int spares = 0;
5606 
5607 		spin_lock_irq(&mddev->write_lock);
5608 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5609 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5610 			mddev->in_sync = 1;
5611 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5612 		}
5613 		if (mddev->safemode == 1)
5614 			mddev->safemode = 0;
5615 		spin_unlock_irq(&mddev->write_lock);
5616 
5617 		if (mddev->flags)
5618 			md_update_sb(mddev, 0);
5619 
5620 
5621 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5622 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5623 			/* resync/recovery still happening */
5624 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5625 			goto unlock;
5626 		}
5627 		if (mddev->sync_thread) {
5628 			/* resync has finished, collect result */
5629 			md_unregister_thread(mddev->sync_thread);
5630 			mddev->sync_thread = NULL;
5631 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5632 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5633 				/* success...*/
5634 				/* activate any spares */
5635 				mddev->pers->spare_active(mddev);
5636 			}
5637 			md_update_sb(mddev, 1);
5638 
5639 			/* if array is no-longer degraded, then any saved_raid_disk
5640 			 * information must be scrapped
5641 			 */
5642 			if (!mddev->degraded)
5643 				ITERATE_RDEV(mddev,rdev,rtmp)
5644 					rdev->saved_raid_disk = -1;
5645 
5646 			mddev->recovery = 0;
5647 			/* flag recovery needed just to double check */
5648 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5649 			md_new_event(mddev);
5650 			goto unlock;
5651 		}
5652 		/* Clear some bits that don't mean anything, but
5653 		 * might be left set
5654 		 */
5655 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5656 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5657 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5658 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5659 
5660 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5661 			goto unlock;
5662 		/* no recovery is running.
5663 		 * remove any failed drives, then
5664 		 * add spares if possible.
5665 		 * Spare are also removed and re-added, to allow
5666 		 * the personality to fail the re-add.
5667 		 */
5668 
5669 		if (mddev->reshape_position != MaxSector) {
5670 			if (mddev->pers->check_reshape(mddev) != 0)
5671 				/* Cannot proceed */
5672 				goto unlock;
5673 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5674 		} else if ((spares = remove_and_add_spares(mddev))) {
5675 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5676 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5677 		} else if (mddev->recovery_cp < MaxSector) {
5678 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5679 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5680 			/* nothing to be done ... */
5681 			goto unlock;
5682 
5683 		if (mddev->pers->sync_request) {
5684 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5685 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5686 				/* We are adding a device or devices to an array
5687 				 * which has the bitmap stored on all devices.
5688 				 * So make sure all bitmap pages get written
5689 				 */
5690 				bitmap_write_all(mddev->bitmap);
5691 			}
5692 			mddev->sync_thread = md_register_thread(md_do_sync,
5693 								mddev,
5694 								"%s_resync");
5695 			if (!mddev->sync_thread) {
5696 				printk(KERN_ERR "%s: could not start resync"
5697 					" thread...\n",
5698 					mdname(mddev));
5699 				/* leave the spares where they are, it shouldn't hurt */
5700 				mddev->recovery = 0;
5701 			} else
5702 				md_wakeup_thread(mddev->sync_thread);
5703 			md_new_event(mddev);
5704 		}
5705 	unlock:
5706 		mddev_unlock(mddev);
5707 	}
5708 }
5709 
5710 static int md_notify_reboot(struct notifier_block *this,
5711 			    unsigned long code, void *x)
5712 {
5713 	struct list_head *tmp;
5714 	mddev_t *mddev;
5715 
5716 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5717 
5718 		printk(KERN_INFO "md: stopping all md devices.\n");
5719 
5720 		ITERATE_MDDEV(mddev,tmp)
5721 			if (mddev_trylock(mddev)) {
5722 				do_md_stop (mddev, 1);
5723 				mddev_unlock(mddev);
5724 			}
5725 		/*
5726 		 * certain more exotic SCSI devices are known to be
5727 		 * volatile wrt too early system reboots. While the
5728 		 * right place to handle this issue is the given
5729 		 * driver, we do want to have a safe RAID driver ...
5730 		 */
5731 		mdelay(1000*1);
5732 	}
5733 	return NOTIFY_DONE;
5734 }
5735 
5736 static struct notifier_block md_notifier = {
5737 	.notifier_call	= md_notify_reboot,
5738 	.next		= NULL,
5739 	.priority	= INT_MAX, /* before any real devices */
5740 };
5741 
5742 static void md_geninit(void)
5743 {
5744 	struct proc_dir_entry *p;
5745 
5746 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5747 
5748 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5749 	if (p)
5750 		p->proc_fops = &md_seq_fops;
5751 }
5752 
5753 static int __init md_init(void)
5754 {
5755 	if (register_blkdev(MAJOR_NR, "md"))
5756 		return -1;
5757 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5758 		unregister_blkdev(MAJOR_NR, "md");
5759 		return -1;
5760 	}
5761 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5762 			    md_probe, NULL, NULL);
5763 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5764 			    md_probe, NULL, NULL);
5765 
5766 	register_reboot_notifier(&md_notifier);
5767 	raid_table_header = register_sysctl_table(raid_root_table);
5768 
5769 	md_geninit();
5770 	return (0);
5771 }
5772 
5773 
5774 #ifndef MODULE
5775 
5776 /*
5777  * Searches all registered partitions for autorun RAID arrays
5778  * at boot time.
5779  */
5780 
5781 static LIST_HEAD(all_detected_devices);
5782 struct detected_devices_node {
5783 	struct list_head list;
5784 	dev_t dev;
5785 };
5786 
5787 void md_autodetect_dev(dev_t dev)
5788 {
5789 	struct detected_devices_node *node_detected_dev;
5790 
5791 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
5792 	if (node_detected_dev) {
5793 		node_detected_dev->dev = dev;
5794 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
5795 	} else {
5796 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
5797 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
5798 	}
5799 }
5800 
5801 
5802 static void autostart_arrays(int part)
5803 {
5804 	mdk_rdev_t *rdev;
5805 	struct detected_devices_node *node_detected_dev;
5806 	dev_t dev;
5807 	int i_scanned, i_passed;
5808 
5809 	i_scanned = 0;
5810 	i_passed = 0;
5811 
5812 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5813 
5814 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
5815 		i_scanned++;
5816 		node_detected_dev = list_entry(all_detected_devices.next,
5817 					struct detected_devices_node, list);
5818 		list_del(&node_detected_dev->list);
5819 		dev = node_detected_dev->dev;
5820 		kfree(node_detected_dev);
5821 		rdev = md_import_device(dev,0, 90);
5822 		if (IS_ERR(rdev))
5823 			continue;
5824 
5825 		if (test_bit(Faulty, &rdev->flags)) {
5826 			MD_BUG();
5827 			continue;
5828 		}
5829 		list_add(&rdev->same_set, &pending_raid_disks);
5830 		i_passed++;
5831 	}
5832 
5833 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
5834 						i_scanned, i_passed);
5835 
5836 	autorun_devices(part);
5837 }
5838 
5839 #endif /* !MODULE */
5840 
5841 static __exit void md_exit(void)
5842 {
5843 	mddev_t *mddev;
5844 	struct list_head *tmp;
5845 
5846 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5847 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5848 
5849 	unregister_blkdev(MAJOR_NR,"md");
5850 	unregister_blkdev(mdp_major, "mdp");
5851 	unregister_reboot_notifier(&md_notifier);
5852 	unregister_sysctl_table(raid_table_header);
5853 	remove_proc_entry("mdstat", NULL);
5854 	ITERATE_MDDEV(mddev,tmp) {
5855 		struct gendisk *disk = mddev->gendisk;
5856 		if (!disk)
5857 			continue;
5858 		export_array(mddev);
5859 		del_gendisk(disk);
5860 		put_disk(disk);
5861 		mddev->gendisk = NULL;
5862 		mddev_put(mddev);
5863 	}
5864 }
5865 
5866 subsys_initcall(md_init);
5867 module_exit(md_exit)
5868 
5869 static int get_ro(char *buffer, struct kernel_param *kp)
5870 {
5871 	return sprintf(buffer, "%d", start_readonly);
5872 }
5873 static int set_ro(const char *val, struct kernel_param *kp)
5874 {
5875 	char *e;
5876 	int num = simple_strtoul(val, &e, 10);
5877 	if (*val && (*e == '\0' || *e == '\n')) {
5878 		start_readonly = num;
5879 		return 0;
5880 	}
5881 	return -EINVAL;
5882 }
5883 
5884 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5885 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5886 
5887 
5888 EXPORT_SYMBOL(register_md_personality);
5889 EXPORT_SYMBOL(unregister_md_personality);
5890 EXPORT_SYMBOL(md_error);
5891 EXPORT_SYMBOL(md_done_sync);
5892 EXPORT_SYMBOL(md_write_start);
5893 EXPORT_SYMBOL(md_write_end);
5894 EXPORT_SYMBOL(md_register_thread);
5895 EXPORT_SYMBOL(md_unregister_thread);
5896 EXPORT_SYMBOL(md_wakeup_thread);
5897 EXPORT_SYMBOL(md_check_recovery);
5898 MODULE_LICENSE("GPL");
5899 MODULE_ALIAS("md");
5900 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5901