xref: /openbmc/linux/drivers/md/dm.c (revision fbdc86f3bd597e108fa03d998132d04fcfe1d669)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 /*
54  * For bio-based dm.
55  * One of these is allocated per bio.
56  */
57 struct dm_io {
58 	struct mapped_device *md;
59 	int error;
60 	atomic_t io_count;
61 	struct bio *bio;
62 	unsigned long start_time;
63 	spinlock_t endio_lock;
64 };
65 
66 /*
67  * For bio-based dm.
68  * One of these is allocated per target within a bio.  Hopefully
69  * this will be simplified out one day.
70  */
71 struct dm_target_io {
72 	struct dm_io *io;
73 	struct dm_target *ti;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm.
79  * One of these is allocated per request.
80  */
81 struct dm_rq_target_io {
82 	struct mapped_device *md;
83 	struct dm_target *ti;
84 	struct request *orig, clone;
85 	int error;
86 	union map_info info;
87 };
88 
89 /*
90  * For request-based dm.
91  * One of these is allocated per bio.
92  */
93 struct dm_rq_clone_bio_info {
94 	struct bio *orig;
95 	struct dm_rq_target_io *tio;
96 };
97 
98 union map_info *dm_get_mapinfo(struct bio *bio)
99 {
100 	if (bio && bio->bi_private)
101 		return &((struct dm_target_io *)bio->bi_private)->info;
102 	return NULL;
103 }
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 
126 /*
127  * Work processed by per-device workqueue.
128  */
129 struct mapped_device {
130 	struct rw_semaphore io_lock;
131 	struct mutex suspend_lock;
132 	rwlock_t map_lock;
133 	atomic_t holders;
134 	atomic_t open_count;
135 
136 	unsigned long flags;
137 
138 	struct request_queue *queue;
139 	unsigned type;
140 	/* Protect queue and type against concurrent access. */
141 	struct mutex type_lock;
142 
143 	struct gendisk *disk;
144 	char name[16];
145 
146 	void *interface_ptr;
147 
148 	/*
149 	 * A list of ios that arrived while we were suspended.
150 	 */
151 	atomic_t pending[2];
152 	wait_queue_head_t wait;
153 	struct work_struct work;
154 	struct bio_list deferred;
155 	spinlock_t deferred_lock;
156 
157 	/*
158 	 * Processing queue (flush)
159 	 */
160 	struct workqueue_struct *wq;
161 
162 	/*
163 	 * The current mapping.
164 	 */
165 	struct dm_table *map;
166 
167 	/*
168 	 * io objects are allocated from here.
169 	 */
170 	mempool_t *io_pool;
171 	mempool_t *tio_pool;
172 
173 	struct bio_set *bs;
174 
175 	/*
176 	 * Event handling.
177 	 */
178 	atomic_t event_nr;
179 	wait_queue_head_t eventq;
180 	atomic_t uevent_seq;
181 	struct list_head uevent_list;
182 	spinlock_t uevent_lock; /* Protect access to uevent_list */
183 
184 	/*
185 	 * freeze/thaw support require holding onto a super block
186 	 */
187 	struct super_block *frozen_sb;
188 	struct block_device *bdev;
189 
190 	/* forced geometry settings */
191 	struct hd_geometry geometry;
192 
193 	/* For saving the address of __make_request for request based dm */
194 	make_request_fn *saved_make_request_fn;
195 
196 	/* sysfs handle */
197 	struct kobject kobj;
198 
199 	/* zero-length flush that will be cloned and submitted to targets */
200 	struct bio flush_bio;
201 };
202 
203 /*
204  * For mempools pre-allocation at the table loading time.
205  */
206 struct dm_md_mempools {
207 	mempool_t *io_pool;
208 	mempool_t *tio_pool;
209 	struct bio_set *bs;
210 };
211 
212 #define MIN_IOS 256
213 static struct kmem_cache *_io_cache;
214 static struct kmem_cache *_tio_cache;
215 static struct kmem_cache *_rq_tio_cache;
216 static struct kmem_cache *_rq_bio_info_cache;
217 
218 static int __init local_init(void)
219 {
220 	int r = -ENOMEM;
221 
222 	/* allocate a slab for the dm_ios */
223 	_io_cache = KMEM_CACHE(dm_io, 0);
224 	if (!_io_cache)
225 		return r;
226 
227 	/* allocate a slab for the target ios */
228 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
229 	if (!_tio_cache)
230 		goto out_free_io_cache;
231 
232 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
233 	if (!_rq_tio_cache)
234 		goto out_free_tio_cache;
235 
236 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
237 	if (!_rq_bio_info_cache)
238 		goto out_free_rq_tio_cache;
239 
240 	r = dm_uevent_init();
241 	if (r)
242 		goto out_free_rq_bio_info_cache;
243 
244 	_major = major;
245 	r = register_blkdev(_major, _name);
246 	if (r < 0)
247 		goto out_uevent_exit;
248 
249 	if (!_major)
250 		_major = r;
251 
252 	return 0;
253 
254 out_uevent_exit:
255 	dm_uevent_exit();
256 out_free_rq_bio_info_cache:
257 	kmem_cache_destroy(_rq_bio_info_cache);
258 out_free_rq_tio_cache:
259 	kmem_cache_destroy(_rq_tio_cache);
260 out_free_tio_cache:
261 	kmem_cache_destroy(_tio_cache);
262 out_free_io_cache:
263 	kmem_cache_destroy(_io_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	kmem_cache_destroy(_rq_bio_info_cache);
271 	kmem_cache_destroy(_rq_tio_cache);
272 	kmem_cache_destroy(_tio_cache);
273 	kmem_cache_destroy(_io_cache);
274 	unregister_blkdev(_major, _name);
275 	dm_uevent_exit();
276 
277 	_major = 0;
278 
279 	DMINFO("cleaned up");
280 }
281 
282 static int (*_inits[])(void) __initdata = {
283 	local_init,
284 	dm_target_init,
285 	dm_linear_init,
286 	dm_stripe_init,
287 	dm_io_init,
288 	dm_kcopyd_init,
289 	dm_interface_init,
290 };
291 
292 static void (*_exits[])(void) = {
293 	local_exit,
294 	dm_target_exit,
295 	dm_linear_exit,
296 	dm_stripe_exit,
297 	dm_io_exit,
298 	dm_kcopyd_exit,
299 	dm_interface_exit,
300 };
301 
302 static int __init dm_init(void)
303 {
304 	const int count = ARRAY_SIZE(_inits);
305 
306 	int r, i;
307 
308 	for (i = 0; i < count; i++) {
309 		r = _inits[i]();
310 		if (r)
311 			goto bad;
312 	}
313 
314 	return 0;
315 
316       bad:
317 	while (i--)
318 		_exits[i]();
319 
320 	return r;
321 }
322 
323 static void __exit dm_exit(void)
324 {
325 	int i = ARRAY_SIZE(_exits);
326 
327 	while (i--)
328 		_exits[i]();
329 
330 	/*
331 	 * Should be empty by this point.
332 	 */
333 	idr_remove_all(&_minor_idr);
334 	idr_destroy(&_minor_idr);
335 }
336 
337 /*
338  * Block device functions
339  */
340 int dm_deleting_md(struct mapped_device *md)
341 {
342 	return test_bit(DMF_DELETING, &md->flags);
343 }
344 
345 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
346 {
347 	struct mapped_device *md;
348 
349 	spin_lock(&_minor_lock);
350 
351 	md = bdev->bd_disk->private_data;
352 	if (!md)
353 		goto out;
354 
355 	if (test_bit(DMF_FREEING, &md->flags) ||
356 	    dm_deleting_md(md)) {
357 		md = NULL;
358 		goto out;
359 	}
360 
361 	dm_get(md);
362 	atomic_inc(&md->open_count);
363 
364 out:
365 	spin_unlock(&_minor_lock);
366 
367 	return md ? 0 : -ENXIO;
368 }
369 
370 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
371 {
372 	struct mapped_device *md = disk->private_data;
373 
374 	spin_lock(&_minor_lock);
375 
376 	atomic_dec(&md->open_count);
377 	dm_put(md);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return 0;
382 }
383 
384 int dm_open_count(struct mapped_device *md)
385 {
386 	return atomic_read(&md->open_count);
387 }
388 
389 /*
390  * Guarantees nothing is using the device before it's deleted.
391  */
392 int dm_lock_for_deletion(struct mapped_device *md)
393 {
394 	int r = 0;
395 
396 	spin_lock(&_minor_lock);
397 
398 	if (dm_open_count(md))
399 		r = -EBUSY;
400 	else
401 		set_bit(DMF_DELETING, &md->flags);
402 
403 	spin_unlock(&_minor_lock);
404 
405 	return r;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
416 			unsigned int cmd, unsigned long arg)
417 {
418 	struct mapped_device *md = bdev->bd_disk->private_data;
419 	struct dm_table *map = dm_get_live_table(md);
420 	struct dm_target *tgt;
421 	int r = -ENOTTY;
422 
423 	if (!map || !dm_table_get_size(map))
424 		goto out;
425 
426 	/* We only support devices that have a single target */
427 	if (dm_table_get_num_targets(map) != 1)
428 		goto out;
429 
430 	tgt = dm_table_get_target(map, 0);
431 
432 	if (dm_suspended_md(md)) {
433 		r = -EAGAIN;
434 		goto out;
435 	}
436 
437 	if (tgt->type->ioctl)
438 		r = tgt->type->ioctl(tgt, cmd, arg);
439 
440 out:
441 	dm_table_put(map);
442 
443 	return r;
444 }
445 
446 static struct dm_io *alloc_io(struct mapped_device *md)
447 {
448 	return mempool_alloc(md->io_pool, GFP_NOIO);
449 }
450 
451 static void free_io(struct mapped_device *md, struct dm_io *io)
452 {
453 	mempool_free(io, md->io_pool);
454 }
455 
456 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
457 {
458 	mempool_free(tio, md->tio_pool);
459 }
460 
461 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
462 					    gfp_t gfp_mask)
463 {
464 	return mempool_alloc(md->tio_pool, gfp_mask);
465 }
466 
467 static void free_rq_tio(struct dm_rq_target_io *tio)
468 {
469 	mempool_free(tio, tio->md->tio_pool);
470 }
471 
472 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
473 {
474 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
475 }
476 
477 static void free_bio_info(struct dm_rq_clone_bio_info *info)
478 {
479 	mempool_free(info, info->tio->md->io_pool);
480 }
481 
482 static int md_in_flight(struct mapped_device *md)
483 {
484 	return atomic_read(&md->pending[READ]) +
485 	       atomic_read(&md->pending[WRITE]);
486 }
487 
488 static void start_io_acct(struct dm_io *io)
489 {
490 	struct mapped_device *md = io->md;
491 	int cpu;
492 	int rw = bio_data_dir(io->bio);
493 
494 	io->start_time = jiffies;
495 
496 	cpu = part_stat_lock();
497 	part_round_stats(cpu, &dm_disk(md)->part0);
498 	part_stat_unlock();
499 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
500 		atomic_inc_return(&md->pending[rw]));
501 }
502 
503 static void end_io_acct(struct dm_io *io)
504 {
505 	struct mapped_device *md = io->md;
506 	struct bio *bio = io->bio;
507 	unsigned long duration = jiffies - io->start_time;
508 	int pending, cpu;
509 	int rw = bio_data_dir(bio);
510 
511 	cpu = part_stat_lock();
512 	part_round_stats(cpu, &dm_disk(md)->part0);
513 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
514 	part_stat_unlock();
515 
516 	/*
517 	 * After this is decremented the bio must not be touched if it is
518 	 * a flush.
519 	 */
520 	pending = atomic_dec_return(&md->pending[rw]);
521 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
522 	pending += atomic_read(&md->pending[rw^0x1]);
523 
524 	/* nudge anyone waiting on suspend queue */
525 	if (!pending)
526 		wake_up(&md->wait);
527 }
528 
529 /*
530  * Add the bio to the list of deferred io.
531  */
532 static void queue_io(struct mapped_device *md, struct bio *bio)
533 {
534 	unsigned long flags;
535 
536 	spin_lock_irqsave(&md->deferred_lock, flags);
537 	bio_list_add(&md->deferred, bio);
538 	spin_unlock_irqrestore(&md->deferred_lock, flags);
539 	queue_work(md->wq, &md->work);
540 }
541 
542 /*
543  * Everyone (including functions in this file), should use this
544  * function to access the md->map field, and make sure they call
545  * dm_table_put() when finished.
546  */
547 struct dm_table *dm_get_live_table(struct mapped_device *md)
548 {
549 	struct dm_table *t;
550 	unsigned long flags;
551 
552 	read_lock_irqsave(&md->map_lock, flags);
553 	t = md->map;
554 	if (t)
555 		dm_table_get(t);
556 	read_unlock_irqrestore(&md->map_lock, flags);
557 
558 	return t;
559 }
560 
561 /*
562  * Get the geometry associated with a dm device
563  */
564 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 {
566 	*geo = md->geometry;
567 
568 	return 0;
569 }
570 
571 /*
572  * Set the geometry of a device.
573  */
574 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
575 {
576 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
577 
578 	if (geo->start > sz) {
579 		DMWARN("Start sector is beyond the geometry limits.");
580 		return -EINVAL;
581 	}
582 
583 	md->geometry = *geo;
584 
585 	return 0;
586 }
587 
588 /*-----------------------------------------------------------------
589  * CRUD START:
590  *   A more elegant soln is in the works that uses the queue
591  *   merge fn, unfortunately there are a couple of changes to
592  *   the block layer that I want to make for this.  So in the
593  *   interests of getting something for people to use I give
594  *   you this clearly demarcated crap.
595  *---------------------------------------------------------------*/
596 
597 static int __noflush_suspending(struct mapped_device *md)
598 {
599 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
600 }
601 
602 /*
603  * Decrements the number of outstanding ios that a bio has been
604  * cloned into, completing the original io if necc.
605  */
606 static void dec_pending(struct dm_io *io, int error)
607 {
608 	unsigned long flags;
609 	int io_error;
610 	struct bio *bio;
611 	struct mapped_device *md = io->md;
612 
613 	/* Push-back supersedes any I/O errors */
614 	if (unlikely(error)) {
615 		spin_lock_irqsave(&io->endio_lock, flags);
616 		if (!(io->error > 0 && __noflush_suspending(md)))
617 			io->error = error;
618 		spin_unlock_irqrestore(&io->endio_lock, flags);
619 	}
620 
621 	if (atomic_dec_and_test(&io->io_count)) {
622 		if (io->error == DM_ENDIO_REQUEUE) {
623 			/*
624 			 * Target requested pushing back the I/O.
625 			 */
626 			spin_lock_irqsave(&md->deferred_lock, flags);
627 			if (__noflush_suspending(md))
628 				bio_list_add_head(&md->deferred, io->bio);
629 			else
630 				/* noflush suspend was interrupted. */
631 				io->error = -EIO;
632 			spin_unlock_irqrestore(&md->deferred_lock, flags);
633 		}
634 
635 		io_error = io->error;
636 		bio = io->bio;
637 		end_io_acct(io);
638 		free_io(md, io);
639 
640 		if (io_error == DM_ENDIO_REQUEUE)
641 			return;
642 
643 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
644 			/*
645 			 * Preflush done for flush with data, reissue
646 			 * without REQ_FLUSH.
647 			 */
648 			bio->bi_rw &= ~REQ_FLUSH;
649 			queue_io(md, bio);
650 		} else {
651 			/* done with normal IO or empty flush */
652 			trace_block_bio_complete(md->queue, bio, io_error);
653 			bio_endio(bio, io_error);
654 		}
655 	}
656 }
657 
658 static void clone_endio(struct bio *bio, int error)
659 {
660 	int r = 0;
661 	struct dm_target_io *tio = bio->bi_private;
662 	struct dm_io *io = tio->io;
663 	struct mapped_device *md = tio->io->md;
664 	dm_endio_fn endio = tio->ti->type->end_io;
665 
666 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
667 		error = -EIO;
668 
669 	if (endio) {
670 		r = endio(tio->ti, bio, error, &tio->info);
671 		if (r < 0 || r == DM_ENDIO_REQUEUE)
672 			/*
673 			 * error and requeue request are handled
674 			 * in dec_pending().
675 			 */
676 			error = r;
677 		else if (r == DM_ENDIO_INCOMPLETE)
678 			/* The target will handle the io */
679 			return;
680 		else if (r) {
681 			DMWARN("unimplemented target endio return value: %d", r);
682 			BUG();
683 		}
684 	}
685 
686 	/*
687 	 * Store md for cleanup instead of tio which is about to get freed.
688 	 */
689 	bio->bi_private = md->bs;
690 
691 	free_tio(md, tio);
692 	bio_put(bio);
693 	dec_pending(io, error);
694 }
695 
696 /*
697  * Partial completion handling for request-based dm
698  */
699 static void end_clone_bio(struct bio *clone, int error)
700 {
701 	struct dm_rq_clone_bio_info *info = clone->bi_private;
702 	struct dm_rq_target_io *tio = info->tio;
703 	struct bio *bio = info->orig;
704 	unsigned int nr_bytes = info->orig->bi_size;
705 
706 	bio_put(clone);
707 
708 	if (tio->error)
709 		/*
710 		 * An error has already been detected on the request.
711 		 * Once error occurred, just let clone->end_io() handle
712 		 * the remainder.
713 		 */
714 		return;
715 	else if (error) {
716 		/*
717 		 * Don't notice the error to the upper layer yet.
718 		 * The error handling decision is made by the target driver,
719 		 * when the request is completed.
720 		 */
721 		tio->error = error;
722 		return;
723 	}
724 
725 	/*
726 	 * I/O for the bio successfully completed.
727 	 * Notice the data completion to the upper layer.
728 	 */
729 
730 	/*
731 	 * bios are processed from the head of the list.
732 	 * So the completing bio should always be rq->bio.
733 	 * If it's not, something wrong is happening.
734 	 */
735 	if (tio->orig->bio != bio)
736 		DMERR("bio completion is going in the middle of the request");
737 
738 	/*
739 	 * Update the original request.
740 	 * Do not use blk_end_request() here, because it may complete
741 	 * the original request before the clone, and break the ordering.
742 	 */
743 	blk_update_request(tio->orig, 0, nr_bytes);
744 }
745 
746 /*
747  * Don't touch any member of the md after calling this function because
748  * the md may be freed in dm_put() at the end of this function.
749  * Or do dm_get() before calling this function and dm_put() later.
750  */
751 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
752 {
753 	atomic_dec(&md->pending[rw]);
754 
755 	/* nudge anyone waiting on suspend queue */
756 	if (!md_in_flight(md))
757 		wake_up(&md->wait);
758 
759 	if (run_queue)
760 		blk_run_queue(md->queue);
761 
762 	/*
763 	 * dm_put() must be at the end of this function. See the comment above
764 	 */
765 	dm_put(md);
766 }
767 
768 static void free_rq_clone(struct request *clone)
769 {
770 	struct dm_rq_target_io *tio = clone->end_io_data;
771 
772 	blk_rq_unprep_clone(clone);
773 	free_rq_tio(tio);
774 }
775 
776 /*
777  * Complete the clone and the original request.
778  * Must be called without queue lock.
779  */
780 static void dm_end_request(struct request *clone, int error)
781 {
782 	int rw = rq_data_dir(clone);
783 	struct dm_rq_target_io *tio = clone->end_io_data;
784 	struct mapped_device *md = tio->md;
785 	struct request *rq = tio->orig;
786 
787 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
788 		rq->errors = clone->errors;
789 		rq->resid_len = clone->resid_len;
790 
791 		if (rq->sense)
792 			/*
793 			 * We are using the sense buffer of the original
794 			 * request.
795 			 * So setting the length of the sense data is enough.
796 			 */
797 			rq->sense_len = clone->sense_len;
798 	}
799 
800 	free_rq_clone(clone);
801 	blk_end_request_all(rq, error);
802 	rq_completed(md, rw, true);
803 }
804 
805 static void dm_unprep_request(struct request *rq)
806 {
807 	struct request *clone = rq->special;
808 
809 	rq->special = NULL;
810 	rq->cmd_flags &= ~REQ_DONTPREP;
811 
812 	free_rq_clone(clone);
813 }
814 
815 /*
816  * Requeue the original request of a clone.
817  */
818 void dm_requeue_unmapped_request(struct request *clone)
819 {
820 	int rw = rq_data_dir(clone);
821 	struct dm_rq_target_io *tio = clone->end_io_data;
822 	struct mapped_device *md = tio->md;
823 	struct request *rq = tio->orig;
824 	struct request_queue *q = rq->q;
825 	unsigned long flags;
826 
827 	dm_unprep_request(rq);
828 
829 	spin_lock_irqsave(q->queue_lock, flags);
830 	blk_requeue_request(q, rq);
831 	spin_unlock_irqrestore(q->queue_lock, flags);
832 
833 	rq_completed(md, rw, 0);
834 }
835 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
836 
837 static void __stop_queue(struct request_queue *q)
838 {
839 	blk_stop_queue(q);
840 }
841 
842 static void stop_queue(struct request_queue *q)
843 {
844 	unsigned long flags;
845 
846 	spin_lock_irqsave(q->queue_lock, flags);
847 	__stop_queue(q);
848 	spin_unlock_irqrestore(q->queue_lock, flags);
849 }
850 
851 static void __start_queue(struct request_queue *q)
852 {
853 	if (blk_queue_stopped(q))
854 		blk_start_queue(q);
855 }
856 
857 static void start_queue(struct request_queue *q)
858 {
859 	unsigned long flags;
860 
861 	spin_lock_irqsave(q->queue_lock, flags);
862 	__start_queue(q);
863 	spin_unlock_irqrestore(q->queue_lock, flags);
864 }
865 
866 static void dm_done(struct request *clone, int error, bool mapped)
867 {
868 	int r = error;
869 	struct dm_rq_target_io *tio = clone->end_io_data;
870 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
871 
872 	if (mapped && rq_end_io)
873 		r = rq_end_io(tio->ti, clone, error, &tio->info);
874 
875 	if (r <= 0)
876 		/* The target wants to complete the I/O */
877 		dm_end_request(clone, r);
878 	else if (r == DM_ENDIO_INCOMPLETE)
879 		/* The target will handle the I/O */
880 		return;
881 	else if (r == DM_ENDIO_REQUEUE)
882 		/* The target wants to requeue the I/O */
883 		dm_requeue_unmapped_request(clone);
884 	else {
885 		DMWARN("unimplemented target endio return value: %d", r);
886 		BUG();
887 	}
888 }
889 
890 /*
891  * Request completion handler for request-based dm
892  */
893 static void dm_softirq_done(struct request *rq)
894 {
895 	bool mapped = true;
896 	struct request *clone = rq->completion_data;
897 	struct dm_rq_target_io *tio = clone->end_io_data;
898 
899 	if (rq->cmd_flags & REQ_FAILED)
900 		mapped = false;
901 
902 	dm_done(clone, tio->error, mapped);
903 }
904 
905 /*
906  * Complete the clone and the original request with the error status
907  * through softirq context.
908  */
909 static void dm_complete_request(struct request *clone, int error)
910 {
911 	struct dm_rq_target_io *tio = clone->end_io_data;
912 	struct request *rq = tio->orig;
913 
914 	tio->error = error;
915 	rq->completion_data = clone;
916 	blk_complete_request(rq);
917 }
918 
919 /*
920  * Complete the not-mapped clone and the original request with the error status
921  * through softirq context.
922  * Target's rq_end_io() function isn't called.
923  * This may be used when the target's map_rq() function fails.
924  */
925 void dm_kill_unmapped_request(struct request *clone, int error)
926 {
927 	struct dm_rq_target_io *tio = clone->end_io_data;
928 	struct request *rq = tio->orig;
929 
930 	rq->cmd_flags |= REQ_FAILED;
931 	dm_complete_request(clone, error);
932 }
933 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
934 
935 /*
936  * Called with the queue lock held
937  */
938 static void end_clone_request(struct request *clone, int error)
939 {
940 	/*
941 	 * For just cleaning up the information of the queue in which
942 	 * the clone was dispatched.
943 	 * The clone is *NOT* freed actually here because it is alloced from
944 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
945 	 */
946 	__blk_put_request(clone->q, clone);
947 
948 	/*
949 	 * Actual request completion is done in a softirq context which doesn't
950 	 * hold the queue lock.  Otherwise, deadlock could occur because:
951 	 *     - another request may be submitted by the upper level driver
952 	 *       of the stacking during the completion
953 	 *     - the submission which requires queue lock may be done
954 	 *       against this queue
955 	 */
956 	dm_complete_request(clone, error);
957 }
958 
959 /*
960  * Return maximum size of I/O possible at the supplied sector up to the current
961  * target boundary.
962  */
963 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
964 {
965 	sector_t target_offset = dm_target_offset(ti, sector);
966 
967 	return ti->len - target_offset;
968 }
969 
970 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
971 {
972 	sector_t len = max_io_len_target_boundary(sector, ti);
973 
974 	/*
975 	 * Does the target need to split even further ?
976 	 */
977 	if (ti->split_io) {
978 		sector_t boundary;
979 		sector_t offset = dm_target_offset(ti, sector);
980 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
981 			   - offset;
982 		if (len > boundary)
983 			len = boundary;
984 	}
985 
986 	return len;
987 }
988 
989 static void __map_bio(struct dm_target *ti, struct bio *clone,
990 		      struct dm_target_io *tio)
991 {
992 	int r;
993 	sector_t sector;
994 	struct mapped_device *md;
995 
996 	clone->bi_end_io = clone_endio;
997 	clone->bi_private = tio;
998 
999 	/*
1000 	 * Map the clone.  If r == 0 we don't need to do
1001 	 * anything, the target has assumed ownership of
1002 	 * this io.
1003 	 */
1004 	atomic_inc(&tio->io->io_count);
1005 	sector = clone->bi_sector;
1006 	r = ti->type->map(ti, clone, &tio->info);
1007 	if (r == DM_MAPIO_REMAPPED) {
1008 		/* the bio has been remapped so dispatch it */
1009 
1010 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1011 				      tio->io->bio->bi_bdev->bd_dev, sector);
1012 
1013 		generic_make_request(clone);
1014 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1015 		/* error the io and bail out, or requeue it if needed */
1016 		md = tio->io->md;
1017 		dec_pending(tio->io, r);
1018 		/*
1019 		 * Store bio_set for cleanup.
1020 		 */
1021 		clone->bi_private = md->bs;
1022 		bio_put(clone);
1023 		free_tio(md, tio);
1024 	} else if (r) {
1025 		DMWARN("unimplemented target map return value: %d", r);
1026 		BUG();
1027 	}
1028 }
1029 
1030 struct clone_info {
1031 	struct mapped_device *md;
1032 	struct dm_table *map;
1033 	struct bio *bio;
1034 	struct dm_io *io;
1035 	sector_t sector;
1036 	sector_t sector_count;
1037 	unsigned short idx;
1038 };
1039 
1040 static void dm_bio_destructor(struct bio *bio)
1041 {
1042 	struct bio_set *bs = bio->bi_private;
1043 
1044 	bio_free(bio, bs);
1045 }
1046 
1047 /*
1048  * Creates a little bio that just does part of a bvec.
1049  */
1050 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1051 			      unsigned short idx, unsigned int offset,
1052 			      unsigned int len, struct bio_set *bs)
1053 {
1054 	struct bio *clone;
1055 	struct bio_vec *bv = bio->bi_io_vec + idx;
1056 
1057 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1058 	clone->bi_destructor = dm_bio_destructor;
1059 	*clone->bi_io_vec = *bv;
1060 
1061 	clone->bi_sector = sector;
1062 	clone->bi_bdev = bio->bi_bdev;
1063 	clone->bi_rw = bio->bi_rw;
1064 	clone->bi_vcnt = 1;
1065 	clone->bi_size = to_bytes(len);
1066 	clone->bi_io_vec->bv_offset = offset;
1067 	clone->bi_io_vec->bv_len = clone->bi_size;
1068 	clone->bi_flags |= 1 << BIO_CLONED;
1069 
1070 	if (bio_integrity(bio)) {
1071 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1072 		bio_integrity_trim(clone,
1073 				   bio_sector_offset(bio, idx, offset), len);
1074 	}
1075 
1076 	return clone;
1077 }
1078 
1079 /*
1080  * Creates a bio that consists of range of complete bvecs.
1081  */
1082 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1083 			     unsigned short idx, unsigned short bv_count,
1084 			     unsigned int len, struct bio_set *bs)
1085 {
1086 	struct bio *clone;
1087 
1088 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1089 	__bio_clone(clone, bio);
1090 	clone->bi_destructor = dm_bio_destructor;
1091 	clone->bi_sector = sector;
1092 	clone->bi_idx = idx;
1093 	clone->bi_vcnt = idx + bv_count;
1094 	clone->bi_size = to_bytes(len);
1095 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1096 
1097 	if (bio_integrity(bio)) {
1098 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1099 
1100 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1101 			bio_integrity_trim(clone,
1102 					   bio_sector_offset(bio, idx, 0), len);
1103 	}
1104 
1105 	return clone;
1106 }
1107 
1108 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1109 				      struct dm_target *ti)
1110 {
1111 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1112 
1113 	tio->io = ci->io;
1114 	tio->ti = ti;
1115 	memset(&tio->info, 0, sizeof(tio->info));
1116 
1117 	return tio;
1118 }
1119 
1120 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1121 				   unsigned request_nr, sector_t len)
1122 {
1123 	struct dm_target_io *tio = alloc_tio(ci, ti);
1124 	struct bio *clone;
1125 
1126 	tio->info.target_request_nr = request_nr;
1127 
1128 	/*
1129 	 * Discard requests require the bio's inline iovecs be initialized.
1130 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1131 	 * and discard, so no need for concern about wasted bvec allocations.
1132 	 */
1133 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1134 	__bio_clone(clone, ci->bio);
1135 	clone->bi_destructor = dm_bio_destructor;
1136 	if (len) {
1137 		clone->bi_sector = ci->sector;
1138 		clone->bi_size = to_bytes(len);
1139 	}
1140 
1141 	__map_bio(ti, clone, tio);
1142 }
1143 
1144 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1145 				    unsigned num_requests, sector_t len)
1146 {
1147 	unsigned request_nr;
1148 
1149 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1150 		__issue_target_request(ci, ti, request_nr, len);
1151 }
1152 
1153 static int __clone_and_map_empty_flush(struct clone_info *ci)
1154 {
1155 	unsigned target_nr = 0;
1156 	struct dm_target *ti;
1157 
1158 	BUG_ON(bio_has_data(ci->bio));
1159 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1160 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1161 
1162 	return 0;
1163 }
1164 
1165 /*
1166  * Perform all io with a single clone.
1167  */
1168 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1169 {
1170 	struct bio *clone, *bio = ci->bio;
1171 	struct dm_target_io *tio;
1172 
1173 	tio = alloc_tio(ci, ti);
1174 	clone = clone_bio(bio, ci->sector, ci->idx,
1175 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1176 			  ci->md->bs);
1177 	__map_bio(ti, clone, tio);
1178 	ci->sector_count = 0;
1179 }
1180 
1181 static int __clone_and_map_discard(struct clone_info *ci)
1182 {
1183 	struct dm_target *ti;
1184 	sector_t len;
1185 
1186 	do {
1187 		ti = dm_table_find_target(ci->map, ci->sector);
1188 		if (!dm_target_is_valid(ti))
1189 			return -EIO;
1190 
1191 		/*
1192 		 * Even though the device advertised discard support,
1193 		 * that does not mean every target supports it, and
1194 		 * reconfiguration might also have changed that since the
1195 		 * check was performed.
1196 		 */
1197 		if (!ti->num_discard_requests)
1198 			return -EOPNOTSUPP;
1199 
1200 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1201 
1202 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1203 
1204 		ci->sector += len;
1205 	} while (ci->sector_count -= len);
1206 
1207 	return 0;
1208 }
1209 
1210 static int __clone_and_map(struct clone_info *ci)
1211 {
1212 	struct bio *clone, *bio = ci->bio;
1213 	struct dm_target *ti;
1214 	sector_t len = 0, max;
1215 	struct dm_target_io *tio;
1216 
1217 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1218 		return __clone_and_map_discard(ci);
1219 
1220 	ti = dm_table_find_target(ci->map, ci->sector);
1221 	if (!dm_target_is_valid(ti))
1222 		return -EIO;
1223 
1224 	max = max_io_len(ci->sector, ti);
1225 
1226 	if (ci->sector_count <= max) {
1227 		/*
1228 		 * Optimise for the simple case where we can do all of
1229 		 * the remaining io with a single clone.
1230 		 */
1231 		__clone_and_map_simple(ci, ti);
1232 
1233 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1234 		/*
1235 		 * There are some bvecs that don't span targets.
1236 		 * Do as many of these as possible.
1237 		 */
1238 		int i;
1239 		sector_t remaining = max;
1240 		sector_t bv_len;
1241 
1242 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1243 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1244 
1245 			if (bv_len > remaining)
1246 				break;
1247 
1248 			remaining -= bv_len;
1249 			len += bv_len;
1250 		}
1251 
1252 		tio = alloc_tio(ci, ti);
1253 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1254 				  ci->md->bs);
1255 		__map_bio(ti, clone, tio);
1256 
1257 		ci->sector += len;
1258 		ci->sector_count -= len;
1259 		ci->idx = i;
1260 
1261 	} else {
1262 		/*
1263 		 * Handle a bvec that must be split between two or more targets.
1264 		 */
1265 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1266 		sector_t remaining = to_sector(bv->bv_len);
1267 		unsigned int offset = 0;
1268 
1269 		do {
1270 			if (offset) {
1271 				ti = dm_table_find_target(ci->map, ci->sector);
1272 				if (!dm_target_is_valid(ti))
1273 					return -EIO;
1274 
1275 				max = max_io_len(ci->sector, ti);
1276 			}
1277 
1278 			len = min(remaining, max);
1279 
1280 			tio = alloc_tio(ci, ti);
1281 			clone = split_bvec(bio, ci->sector, ci->idx,
1282 					   bv->bv_offset + offset, len,
1283 					   ci->md->bs);
1284 
1285 			__map_bio(ti, clone, tio);
1286 
1287 			ci->sector += len;
1288 			ci->sector_count -= len;
1289 			offset += to_bytes(len);
1290 		} while (remaining -= len);
1291 
1292 		ci->idx++;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Split the bio into several clones and submit it to targets.
1300  */
1301 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1302 {
1303 	struct clone_info ci;
1304 	int error = 0;
1305 
1306 	ci.map = dm_get_live_table(md);
1307 	if (unlikely(!ci.map)) {
1308 		bio_io_error(bio);
1309 		return;
1310 	}
1311 
1312 	ci.md = md;
1313 	ci.io = alloc_io(md);
1314 	ci.io->error = 0;
1315 	atomic_set(&ci.io->io_count, 1);
1316 	ci.io->bio = bio;
1317 	ci.io->md = md;
1318 	spin_lock_init(&ci.io->endio_lock);
1319 	ci.sector = bio->bi_sector;
1320 	ci.idx = bio->bi_idx;
1321 
1322 	start_io_acct(ci.io);
1323 	if (bio->bi_rw & REQ_FLUSH) {
1324 		ci.bio = &ci.md->flush_bio;
1325 		ci.sector_count = 0;
1326 		error = __clone_and_map_empty_flush(&ci);
1327 		/* dec_pending submits any data associated with flush */
1328 	} else {
1329 		ci.bio = bio;
1330 		ci.sector_count = bio_sectors(bio);
1331 		while (ci.sector_count && !error)
1332 			error = __clone_and_map(&ci);
1333 	}
1334 
1335 	/* drop the extra reference count */
1336 	dec_pending(ci.io, error);
1337 	dm_table_put(ci.map);
1338 }
1339 /*-----------------------------------------------------------------
1340  * CRUD END
1341  *---------------------------------------------------------------*/
1342 
1343 static int dm_merge_bvec(struct request_queue *q,
1344 			 struct bvec_merge_data *bvm,
1345 			 struct bio_vec *biovec)
1346 {
1347 	struct mapped_device *md = q->queuedata;
1348 	struct dm_table *map = dm_get_live_table(md);
1349 	struct dm_target *ti;
1350 	sector_t max_sectors;
1351 	int max_size = 0;
1352 
1353 	if (unlikely(!map))
1354 		goto out;
1355 
1356 	ti = dm_table_find_target(map, bvm->bi_sector);
1357 	if (!dm_target_is_valid(ti))
1358 		goto out_table;
1359 
1360 	/*
1361 	 * Find maximum amount of I/O that won't need splitting
1362 	 */
1363 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1364 			  (sector_t) BIO_MAX_SECTORS);
1365 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1366 	if (max_size < 0)
1367 		max_size = 0;
1368 
1369 	/*
1370 	 * merge_bvec_fn() returns number of bytes
1371 	 * it can accept at this offset
1372 	 * max is precomputed maximal io size
1373 	 */
1374 	if (max_size && ti->type->merge)
1375 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1376 	/*
1377 	 * If the target doesn't support merge method and some of the devices
1378 	 * provided their merge_bvec method (we know this by looking at
1379 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1380 	 * entries.  So always set max_size to 0, and the code below allows
1381 	 * just one page.
1382 	 */
1383 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1384 
1385 		max_size = 0;
1386 
1387 out_table:
1388 	dm_table_put(map);
1389 
1390 out:
1391 	/*
1392 	 * Always allow an entire first page
1393 	 */
1394 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1395 		max_size = biovec->bv_len;
1396 
1397 	return max_size;
1398 }
1399 
1400 /*
1401  * The request function that just remaps the bio built up by
1402  * dm_merge_bvec.
1403  */
1404 static int _dm_request(struct request_queue *q, struct bio *bio)
1405 {
1406 	int rw = bio_data_dir(bio);
1407 	struct mapped_device *md = q->queuedata;
1408 	int cpu;
1409 
1410 	down_read(&md->io_lock);
1411 
1412 	cpu = part_stat_lock();
1413 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1414 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1415 	part_stat_unlock();
1416 
1417 	/* if we're suspended, we have to queue this io for later */
1418 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1419 		up_read(&md->io_lock);
1420 
1421 		if (bio_rw(bio) != READA)
1422 			queue_io(md, bio);
1423 		else
1424 			bio_io_error(bio);
1425 		return 0;
1426 	}
1427 
1428 	__split_and_process_bio(md, bio);
1429 	up_read(&md->io_lock);
1430 	return 0;
1431 }
1432 
1433 static int dm_make_request(struct request_queue *q, struct bio *bio)
1434 {
1435 	struct mapped_device *md = q->queuedata;
1436 
1437 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1438 }
1439 
1440 static int dm_request_based(struct mapped_device *md)
1441 {
1442 	return blk_queue_stackable(md->queue);
1443 }
1444 
1445 static int dm_request(struct request_queue *q, struct bio *bio)
1446 {
1447 	struct mapped_device *md = q->queuedata;
1448 
1449 	if (dm_request_based(md))
1450 		return dm_make_request(q, bio);
1451 
1452 	return _dm_request(q, bio);
1453 }
1454 
1455 void dm_dispatch_request(struct request *rq)
1456 {
1457 	int r;
1458 
1459 	if (blk_queue_io_stat(rq->q))
1460 		rq->cmd_flags |= REQ_IO_STAT;
1461 
1462 	rq->start_time = jiffies;
1463 	r = blk_insert_cloned_request(rq->q, rq);
1464 	if (r)
1465 		dm_complete_request(rq, r);
1466 }
1467 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1468 
1469 static void dm_rq_bio_destructor(struct bio *bio)
1470 {
1471 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1472 	struct mapped_device *md = info->tio->md;
1473 
1474 	free_bio_info(info);
1475 	bio_free(bio, md->bs);
1476 }
1477 
1478 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1479 				 void *data)
1480 {
1481 	struct dm_rq_target_io *tio = data;
1482 	struct mapped_device *md = tio->md;
1483 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1484 
1485 	if (!info)
1486 		return -ENOMEM;
1487 
1488 	info->orig = bio_orig;
1489 	info->tio = tio;
1490 	bio->bi_end_io = end_clone_bio;
1491 	bio->bi_private = info;
1492 	bio->bi_destructor = dm_rq_bio_destructor;
1493 
1494 	return 0;
1495 }
1496 
1497 static int setup_clone(struct request *clone, struct request *rq,
1498 		       struct dm_rq_target_io *tio)
1499 {
1500 	int r;
1501 
1502 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1503 			      dm_rq_bio_constructor, tio);
1504 	if (r)
1505 		return r;
1506 
1507 	clone->cmd = rq->cmd;
1508 	clone->cmd_len = rq->cmd_len;
1509 	clone->sense = rq->sense;
1510 	clone->buffer = rq->buffer;
1511 	clone->end_io = end_clone_request;
1512 	clone->end_io_data = tio;
1513 
1514 	return 0;
1515 }
1516 
1517 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1518 				gfp_t gfp_mask)
1519 {
1520 	struct request *clone;
1521 	struct dm_rq_target_io *tio;
1522 
1523 	tio = alloc_rq_tio(md, gfp_mask);
1524 	if (!tio)
1525 		return NULL;
1526 
1527 	tio->md = md;
1528 	tio->ti = NULL;
1529 	tio->orig = rq;
1530 	tio->error = 0;
1531 	memset(&tio->info, 0, sizeof(tio->info));
1532 
1533 	clone = &tio->clone;
1534 	if (setup_clone(clone, rq, tio)) {
1535 		/* -ENOMEM */
1536 		free_rq_tio(tio);
1537 		return NULL;
1538 	}
1539 
1540 	return clone;
1541 }
1542 
1543 /*
1544  * Called with the queue lock held.
1545  */
1546 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1547 {
1548 	struct mapped_device *md = q->queuedata;
1549 	struct request *clone;
1550 
1551 	if (unlikely(rq->special)) {
1552 		DMWARN("Already has something in rq->special.");
1553 		return BLKPREP_KILL;
1554 	}
1555 
1556 	clone = clone_rq(rq, md, GFP_ATOMIC);
1557 	if (!clone)
1558 		return BLKPREP_DEFER;
1559 
1560 	rq->special = clone;
1561 	rq->cmd_flags |= REQ_DONTPREP;
1562 
1563 	return BLKPREP_OK;
1564 }
1565 
1566 /*
1567  * Returns:
1568  * 0  : the request has been processed (not requeued)
1569  * !0 : the request has been requeued
1570  */
1571 static int map_request(struct dm_target *ti, struct request *clone,
1572 		       struct mapped_device *md)
1573 {
1574 	int r, requeued = 0;
1575 	struct dm_rq_target_io *tio = clone->end_io_data;
1576 
1577 	/*
1578 	 * Hold the md reference here for the in-flight I/O.
1579 	 * We can't rely on the reference count by device opener,
1580 	 * because the device may be closed during the request completion
1581 	 * when all bios are completed.
1582 	 * See the comment in rq_completed() too.
1583 	 */
1584 	dm_get(md);
1585 
1586 	tio->ti = ti;
1587 	r = ti->type->map_rq(ti, clone, &tio->info);
1588 	switch (r) {
1589 	case DM_MAPIO_SUBMITTED:
1590 		/* The target has taken the I/O to submit by itself later */
1591 		break;
1592 	case DM_MAPIO_REMAPPED:
1593 		/* The target has remapped the I/O so dispatch it */
1594 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1595 				     blk_rq_pos(tio->orig));
1596 		dm_dispatch_request(clone);
1597 		break;
1598 	case DM_MAPIO_REQUEUE:
1599 		/* The target wants to requeue the I/O */
1600 		dm_requeue_unmapped_request(clone);
1601 		requeued = 1;
1602 		break;
1603 	default:
1604 		if (r > 0) {
1605 			DMWARN("unimplemented target map return value: %d", r);
1606 			BUG();
1607 		}
1608 
1609 		/* The target wants to complete the I/O */
1610 		dm_kill_unmapped_request(clone, r);
1611 		break;
1612 	}
1613 
1614 	return requeued;
1615 }
1616 
1617 /*
1618  * q->request_fn for request-based dm.
1619  * Called with the queue lock held.
1620  */
1621 static void dm_request_fn(struct request_queue *q)
1622 {
1623 	struct mapped_device *md = q->queuedata;
1624 	struct dm_table *map = dm_get_live_table(md);
1625 	struct dm_target *ti;
1626 	struct request *rq, *clone;
1627 	sector_t pos;
1628 
1629 	/*
1630 	 * For suspend, check blk_queue_stopped() and increment
1631 	 * ->pending within a single queue_lock not to increment the
1632 	 * number of in-flight I/Os after the queue is stopped in
1633 	 * dm_suspend().
1634 	 */
1635 	while (!blk_queue_stopped(q)) {
1636 		rq = blk_peek_request(q);
1637 		if (!rq)
1638 			goto delay_and_out;
1639 
1640 		/* always use block 0 to find the target for flushes for now */
1641 		pos = 0;
1642 		if (!(rq->cmd_flags & REQ_FLUSH))
1643 			pos = blk_rq_pos(rq);
1644 
1645 		ti = dm_table_find_target(map, pos);
1646 		BUG_ON(!dm_target_is_valid(ti));
1647 
1648 		if (ti->type->busy && ti->type->busy(ti))
1649 			goto delay_and_out;
1650 
1651 		blk_start_request(rq);
1652 		clone = rq->special;
1653 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1654 
1655 		spin_unlock(q->queue_lock);
1656 		if (map_request(ti, clone, md))
1657 			goto requeued;
1658 
1659 		BUG_ON(!irqs_disabled());
1660 		spin_lock(q->queue_lock);
1661 	}
1662 
1663 	goto out;
1664 
1665 requeued:
1666 	BUG_ON(!irqs_disabled());
1667 	spin_lock(q->queue_lock);
1668 
1669 delay_and_out:
1670 	blk_delay_queue(q, HZ / 10);
1671 out:
1672 	dm_table_put(map);
1673 
1674 	return;
1675 }
1676 
1677 int dm_underlying_device_busy(struct request_queue *q)
1678 {
1679 	return blk_lld_busy(q);
1680 }
1681 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1682 
1683 static int dm_lld_busy(struct request_queue *q)
1684 {
1685 	int r;
1686 	struct mapped_device *md = q->queuedata;
1687 	struct dm_table *map = dm_get_live_table(md);
1688 
1689 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1690 		r = 1;
1691 	else
1692 		r = dm_table_any_busy_target(map);
1693 
1694 	dm_table_put(map);
1695 
1696 	return r;
1697 }
1698 
1699 static int dm_any_congested(void *congested_data, int bdi_bits)
1700 {
1701 	int r = bdi_bits;
1702 	struct mapped_device *md = congested_data;
1703 	struct dm_table *map;
1704 
1705 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1706 		map = dm_get_live_table(md);
1707 		if (map) {
1708 			/*
1709 			 * Request-based dm cares about only own queue for
1710 			 * the query about congestion status of request_queue
1711 			 */
1712 			if (dm_request_based(md))
1713 				r = md->queue->backing_dev_info.state &
1714 				    bdi_bits;
1715 			else
1716 				r = dm_table_any_congested(map, bdi_bits);
1717 
1718 			dm_table_put(map);
1719 		}
1720 	}
1721 
1722 	return r;
1723 }
1724 
1725 /*-----------------------------------------------------------------
1726  * An IDR is used to keep track of allocated minor numbers.
1727  *---------------------------------------------------------------*/
1728 static void free_minor(int minor)
1729 {
1730 	spin_lock(&_minor_lock);
1731 	idr_remove(&_minor_idr, minor);
1732 	spin_unlock(&_minor_lock);
1733 }
1734 
1735 /*
1736  * See if the device with a specific minor # is free.
1737  */
1738 static int specific_minor(int minor)
1739 {
1740 	int r, m;
1741 
1742 	if (minor >= (1 << MINORBITS))
1743 		return -EINVAL;
1744 
1745 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1746 	if (!r)
1747 		return -ENOMEM;
1748 
1749 	spin_lock(&_minor_lock);
1750 
1751 	if (idr_find(&_minor_idr, minor)) {
1752 		r = -EBUSY;
1753 		goto out;
1754 	}
1755 
1756 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1757 	if (r)
1758 		goto out;
1759 
1760 	if (m != minor) {
1761 		idr_remove(&_minor_idr, m);
1762 		r = -EBUSY;
1763 		goto out;
1764 	}
1765 
1766 out:
1767 	spin_unlock(&_minor_lock);
1768 	return r;
1769 }
1770 
1771 static int next_free_minor(int *minor)
1772 {
1773 	int r, m;
1774 
1775 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1776 	if (!r)
1777 		return -ENOMEM;
1778 
1779 	spin_lock(&_minor_lock);
1780 
1781 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1782 	if (r)
1783 		goto out;
1784 
1785 	if (m >= (1 << MINORBITS)) {
1786 		idr_remove(&_minor_idr, m);
1787 		r = -ENOSPC;
1788 		goto out;
1789 	}
1790 
1791 	*minor = m;
1792 
1793 out:
1794 	spin_unlock(&_minor_lock);
1795 	return r;
1796 }
1797 
1798 static const struct block_device_operations dm_blk_dops;
1799 
1800 static void dm_wq_work(struct work_struct *work);
1801 
1802 static void dm_init_md_queue(struct mapped_device *md)
1803 {
1804 	/*
1805 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1806 	 * devices.  The type of this dm device has not been decided yet.
1807 	 * The type is decided at the first table loading time.
1808 	 * To prevent problematic device stacking, clear the queue flag
1809 	 * for request stacking support until then.
1810 	 *
1811 	 * This queue is new, so no concurrency on the queue_flags.
1812 	 */
1813 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1814 
1815 	md->queue->queuedata = md;
1816 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1817 	md->queue->backing_dev_info.congested_data = md;
1818 	blk_queue_make_request(md->queue, dm_request);
1819 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1820 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1821 }
1822 
1823 /*
1824  * Allocate and initialise a blank device with a given minor.
1825  */
1826 static struct mapped_device *alloc_dev(int minor)
1827 {
1828 	int r;
1829 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1830 	void *old_md;
1831 
1832 	if (!md) {
1833 		DMWARN("unable to allocate device, out of memory.");
1834 		return NULL;
1835 	}
1836 
1837 	if (!try_module_get(THIS_MODULE))
1838 		goto bad_module_get;
1839 
1840 	/* get a minor number for the dev */
1841 	if (minor == DM_ANY_MINOR)
1842 		r = next_free_minor(&minor);
1843 	else
1844 		r = specific_minor(minor);
1845 	if (r < 0)
1846 		goto bad_minor;
1847 
1848 	md->type = DM_TYPE_NONE;
1849 	init_rwsem(&md->io_lock);
1850 	mutex_init(&md->suspend_lock);
1851 	mutex_init(&md->type_lock);
1852 	spin_lock_init(&md->deferred_lock);
1853 	rwlock_init(&md->map_lock);
1854 	atomic_set(&md->holders, 1);
1855 	atomic_set(&md->open_count, 0);
1856 	atomic_set(&md->event_nr, 0);
1857 	atomic_set(&md->uevent_seq, 0);
1858 	INIT_LIST_HEAD(&md->uevent_list);
1859 	spin_lock_init(&md->uevent_lock);
1860 
1861 	md->queue = blk_alloc_queue(GFP_KERNEL);
1862 	if (!md->queue)
1863 		goto bad_queue;
1864 
1865 	dm_init_md_queue(md);
1866 
1867 	md->disk = alloc_disk(1);
1868 	if (!md->disk)
1869 		goto bad_disk;
1870 
1871 	atomic_set(&md->pending[0], 0);
1872 	atomic_set(&md->pending[1], 0);
1873 	init_waitqueue_head(&md->wait);
1874 	INIT_WORK(&md->work, dm_wq_work);
1875 	init_waitqueue_head(&md->eventq);
1876 
1877 	md->disk->major = _major;
1878 	md->disk->first_minor = minor;
1879 	md->disk->fops = &dm_blk_dops;
1880 	md->disk->queue = md->queue;
1881 	md->disk->private_data = md;
1882 	sprintf(md->disk->disk_name, "dm-%d", minor);
1883 	add_disk(md->disk);
1884 	format_dev_t(md->name, MKDEV(_major, minor));
1885 
1886 	md->wq = alloc_workqueue("kdmflush",
1887 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1888 	if (!md->wq)
1889 		goto bad_thread;
1890 
1891 	md->bdev = bdget_disk(md->disk, 0);
1892 	if (!md->bdev)
1893 		goto bad_bdev;
1894 
1895 	bio_init(&md->flush_bio);
1896 	md->flush_bio.bi_bdev = md->bdev;
1897 	md->flush_bio.bi_rw = WRITE_FLUSH;
1898 
1899 	/* Populate the mapping, nobody knows we exist yet */
1900 	spin_lock(&_minor_lock);
1901 	old_md = idr_replace(&_minor_idr, md, minor);
1902 	spin_unlock(&_minor_lock);
1903 
1904 	BUG_ON(old_md != MINOR_ALLOCED);
1905 
1906 	return md;
1907 
1908 bad_bdev:
1909 	destroy_workqueue(md->wq);
1910 bad_thread:
1911 	del_gendisk(md->disk);
1912 	put_disk(md->disk);
1913 bad_disk:
1914 	blk_cleanup_queue(md->queue);
1915 bad_queue:
1916 	free_minor(minor);
1917 bad_minor:
1918 	module_put(THIS_MODULE);
1919 bad_module_get:
1920 	kfree(md);
1921 	return NULL;
1922 }
1923 
1924 static void unlock_fs(struct mapped_device *md);
1925 
1926 static void free_dev(struct mapped_device *md)
1927 {
1928 	int minor = MINOR(disk_devt(md->disk));
1929 
1930 	unlock_fs(md);
1931 	bdput(md->bdev);
1932 	destroy_workqueue(md->wq);
1933 	if (md->tio_pool)
1934 		mempool_destroy(md->tio_pool);
1935 	if (md->io_pool)
1936 		mempool_destroy(md->io_pool);
1937 	if (md->bs)
1938 		bioset_free(md->bs);
1939 	blk_integrity_unregister(md->disk);
1940 	del_gendisk(md->disk);
1941 	free_minor(minor);
1942 
1943 	spin_lock(&_minor_lock);
1944 	md->disk->private_data = NULL;
1945 	spin_unlock(&_minor_lock);
1946 
1947 	put_disk(md->disk);
1948 	blk_cleanup_queue(md->queue);
1949 	module_put(THIS_MODULE);
1950 	kfree(md);
1951 }
1952 
1953 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1954 {
1955 	struct dm_md_mempools *p;
1956 
1957 	if (md->io_pool && md->tio_pool && md->bs)
1958 		/* the md already has necessary mempools */
1959 		goto out;
1960 
1961 	p = dm_table_get_md_mempools(t);
1962 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1963 
1964 	md->io_pool = p->io_pool;
1965 	p->io_pool = NULL;
1966 	md->tio_pool = p->tio_pool;
1967 	p->tio_pool = NULL;
1968 	md->bs = p->bs;
1969 	p->bs = NULL;
1970 
1971 out:
1972 	/* mempool bind completed, now no need any mempools in the table */
1973 	dm_table_free_md_mempools(t);
1974 }
1975 
1976 /*
1977  * Bind a table to the device.
1978  */
1979 static void event_callback(void *context)
1980 {
1981 	unsigned long flags;
1982 	LIST_HEAD(uevents);
1983 	struct mapped_device *md = (struct mapped_device *) context;
1984 
1985 	spin_lock_irqsave(&md->uevent_lock, flags);
1986 	list_splice_init(&md->uevent_list, &uevents);
1987 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1988 
1989 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1990 
1991 	atomic_inc(&md->event_nr);
1992 	wake_up(&md->eventq);
1993 }
1994 
1995 /*
1996  * Protected by md->suspend_lock obtained by dm_swap_table().
1997  */
1998 static void __set_size(struct mapped_device *md, sector_t size)
1999 {
2000 	set_capacity(md->disk, size);
2001 
2002 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2003 }
2004 
2005 /*
2006  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2007  *
2008  * If this function returns 0, then the device is either a non-dm
2009  * device without a merge_bvec_fn, or it is a dm device that is
2010  * able to split any bios it receives that are too big.
2011  */
2012 int dm_queue_merge_is_compulsory(struct request_queue *q)
2013 {
2014 	struct mapped_device *dev_md;
2015 
2016 	if (!q->merge_bvec_fn)
2017 		return 0;
2018 
2019 	if (q->make_request_fn == dm_request) {
2020 		dev_md = q->queuedata;
2021 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2022 			return 0;
2023 	}
2024 
2025 	return 1;
2026 }
2027 
2028 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2029 					 struct dm_dev *dev, sector_t start,
2030 					 sector_t len, void *data)
2031 {
2032 	struct block_device *bdev = dev->bdev;
2033 	struct request_queue *q = bdev_get_queue(bdev);
2034 
2035 	return dm_queue_merge_is_compulsory(q);
2036 }
2037 
2038 /*
2039  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2040  * on the properties of the underlying devices.
2041  */
2042 static int dm_table_merge_is_optional(struct dm_table *table)
2043 {
2044 	unsigned i = 0;
2045 	struct dm_target *ti;
2046 
2047 	while (i < dm_table_get_num_targets(table)) {
2048 		ti = dm_table_get_target(table, i++);
2049 
2050 		if (ti->type->iterate_devices &&
2051 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2052 			return 0;
2053 	}
2054 
2055 	return 1;
2056 }
2057 
2058 /*
2059  * Returns old map, which caller must destroy.
2060  */
2061 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2062 			       struct queue_limits *limits)
2063 {
2064 	struct dm_table *old_map;
2065 	struct request_queue *q = md->queue;
2066 	sector_t size;
2067 	unsigned long flags;
2068 	int merge_is_optional;
2069 
2070 	size = dm_table_get_size(t);
2071 
2072 	/*
2073 	 * Wipe any geometry if the size of the table changed.
2074 	 */
2075 	if (size != get_capacity(md->disk))
2076 		memset(&md->geometry, 0, sizeof(md->geometry));
2077 
2078 	__set_size(md, size);
2079 
2080 	dm_table_event_callback(t, event_callback, md);
2081 
2082 	/*
2083 	 * The queue hasn't been stopped yet, if the old table type wasn't
2084 	 * for request-based during suspension.  So stop it to prevent
2085 	 * I/O mapping before resume.
2086 	 * This must be done before setting the queue restrictions,
2087 	 * because request-based dm may be run just after the setting.
2088 	 */
2089 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2090 		stop_queue(q);
2091 
2092 	__bind_mempools(md, t);
2093 
2094 	merge_is_optional = dm_table_merge_is_optional(t);
2095 
2096 	write_lock_irqsave(&md->map_lock, flags);
2097 	old_map = md->map;
2098 	md->map = t;
2099 	dm_table_set_restrictions(t, q, limits);
2100 	if (merge_is_optional)
2101 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2102 	else
2103 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2104 	write_unlock_irqrestore(&md->map_lock, flags);
2105 
2106 	return old_map;
2107 }
2108 
2109 /*
2110  * Returns unbound table for the caller to free.
2111  */
2112 static struct dm_table *__unbind(struct mapped_device *md)
2113 {
2114 	struct dm_table *map = md->map;
2115 	unsigned long flags;
2116 
2117 	if (!map)
2118 		return NULL;
2119 
2120 	dm_table_event_callback(map, NULL, NULL);
2121 	write_lock_irqsave(&md->map_lock, flags);
2122 	md->map = NULL;
2123 	write_unlock_irqrestore(&md->map_lock, flags);
2124 
2125 	return map;
2126 }
2127 
2128 /*
2129  * Constructor for a new device.
2130  */
2131 int dm_create(int minor, struct mapped_device **result)
2132 {
2133 	struct mapped_device *md;
2134 
2135 	md = alloc_dev(minor);
2136 	if (!md)
2137 		return -ENXIO;
2138 
2139 	dm_sysfs_init(md);
2140 
2141 	*result = md;
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Functions to manage md->type.
2147  * All are required to hold md->type_lock.
2148  */
2149 void dm_lock_md_type(struct mapped_device *md)
2150 {
2151 	mutex_lock(&md->type_lock);
2152 }
2153 
2154 void dm_unlock_md_type(struct mapped_device *md)
2155 {
2156 	mutex_unlock(&md->type_lock);
2157 }
2158 
2159 void dm_set_md_type(struct mapped_device *md, unsigned type)
2160 {
2161 	md->type = type;
2162 }
2163 
2164 unsigned dm_get_md_type(struct mapped_device *md)
2165 {
2166 	return md->type;
2167 }
2168 
2169 /*
2170  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2171  */
2172 static int dm_init_request_based_queue(struct mapped_device *md)
2173 {
2174 	struct request_queue *q = NULL;
2175 
2176 	if (md->queue->elevator)
2177 		return 1;
2178 
2179 	/* Fully initialize the queue */
2180 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2181 	if (!q)
2182 		return 0;
2183 
2184 	md->queue = q;
2185 	md->saved_make_request_fn = md->queue->make_request_fn;
2186 	dm_init_md_queue(md);
2187 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2188 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2189 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2190 
2191 	elv_register_queue(md->queue);
2192 
2193 	return 1;
2194 }
2195 
2196 /*
2197  * Setup the DM device's queue based on md's type
2198  */
2199 int dm_setup_md_queue(struct mapped_device *md)
2200 {
2201 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2202 	    !dm_init_request_based_queue(md)) {
2203 		DMWARN("Cannot initialize queue for request-based mapped device");
2204 		return -EINVAL;
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 static struct mapped_device *dm_find_md(dev_t dev)
2211 {
2212 	struct mapped_device *md;
2213 	unsigned minor = MINOR(dev);
2214 
2215 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2216 		return NULL;
2217 
2218 	spin_lock(&_minor_lock);
2219 
2220 	md = idr_find(&_minor_idr, minor);
2221 	if (md && (md == MINOR_ALLOCED ||
2222 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2223 		   dm_deleting_md(md) ||
2224 		   test_bit(DMF_FREEING, &md->flags))) {
2225 		md = NULL;
2226 		goto out;
2227 	}
2228 
2229 out:
2230 	spin_unlock(&_minor_lock);
2231 
2232 	return md;
2233 }
2234 
2235 struct mapped_device *dm_get_md(dev_t dev)
2236 {
2237 	struct mapped_device *md = dm_find_md(dev);
2238 
2239 	if (md)
2240 		dm_get(md);
2241 
2242 	return md;
2243 }
2244 
2245 void *dm_get_mdptr(struct mapped_device *md)
2246 {
2247 	return md->interface_ptr;
2248 }
2249 
2250 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2251 {
2252 	md->interface_ptr = ptr;
2253 }
2254 
2255 void dm_get(struct mapped_device *md)
2256 {
2257 	atomic_inc(&md->holders);
2258 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2259 }
2260 
2261 const char *dm_device_name(struct mapped_device *md)
2262 {
2263 	return md->name;
2264 }
2265 EXPORT_SYMBOL_GPL(dm_device_name);
2266 
2267 static void __dm_destroy(struct mapped_device *md, bool wait)
2268 {
2269 	struct dm_table *map;
2270 
2271 	might_sleep();
2272 
2273 	spin_lock(&_minor_lock);
2274 	map = dm_get_live_table(md);
2275 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2276 	set_bit(DMF_FREEING, &md->flags);
2277 	spin_unlock(&_minor_lock);
2278 
2279 	if (!dm_suspended_md(md)) {
2280 		dm_table_presuspend_targets(map);
2281 		dm_table_postsuspend_targets(map);
2282 	}
2283 
2284 	/*
2285 	 * Rare, but there may be I/O requests still going to complete,
2286 	 * for example.  Wait for all references to disappear.
2287 	 * No one should increment the reference count of the mapped_device,
2288 	 * after the mapped_device state becomes DMF_FREEING.
2289 	 */
2290 	if (wait)
2291 		while (atomic_read(&md->holders))
2292 			msleep(1);
2293 	else if (atomic_read(&md->holders))
2294 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2295 		       dm_device_name(md), atomic_read(&md->holders));
2296 
2297 	dm_sysfs_exit(md);
2298 	dm_table_put(map);
2299 	dm_table_destroy(__unbind(md));
2300 	free_dev(md);
2301 }
2302 
2303 void dm_destroy(struct mapped_device *md)
2304 {
2305 	__dm_destroy(md, true);
2306 }
2307 
2308 void dm_destroy_immediate(struct mapped_device *md)
2309 {
2310 	__dm_destroy(md, false);
2311 }
2312 
2313 void dm_put(struct mapped_device *md)
2314 {
2315 	atomic_dec(&md->holders);
2316 }
2317 EXPORT_SYMBOL_GPL(dm_put);
2318 
2319 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2320 {
2321 	int r = 0;
2322 	DECLARE_WAITQUEUE(wait, current);
2323 
2324 	add_wait_queue(&md->wait, &wait);
2325 
2326 	while (1) {
2327 		set_current_state(interruptible);
2328 
2329 		if (!md_in_flight(md))
2330 			break;
2331 
2332 		if (interruptible == TASK_INTERRUPTIBLE &&
2333 		    signal_pending(current)) {
2334 			r = -EINTR;
2335 			break;
2336 		}
2337 
2338 		io_schedule();
2339 	}
2340 	set_current_state(TASK_RUNNING);
2341 
2342 	remove_wait_queue(&md->wait, &wait);
2343 
2344 	return r;
2345 }
2346 
2347 /*
2348  * Process the deferred bios
2349  */
2350 static void dm_wq_work(struct work_struct *work)
2351 {
2352 	struct mapped_device *md = container_of(work, struct mapped_device,
2353 						work);
2354 	struct bio *c;
2355 
2356 	down_read(&md->io_lock);
2357 
2358 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2359 		spin_lock_irq(&md->deferred_lock);
2360 		c = bio_list_pop(&md->deferred);
2361 		spin_unlock_irq(&md->deferred_lock);
2362 
2363 		if (!c)
2364 			break;
2365 
2366 		up_read(&md->io_lock);
2367 
2368 		if (dm_request_based(md))
2369 			generic_make_request(c);
2370 		else
2371 			__split_and_process_bio(md, c);
2372 
2373 		down_read(&md->io_lock);
2374 	}
2375 
2376 	up_read(&md->io_lock);
2377 }
2378 
2379 static void dm_queue_flush(struct mapped_device *md)
2380 {
2381 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2382 	smp_mb__after_clear_bit();
2383 	queue_work(md->wq, &md->work);
2384 }
2385 
2386 /*
2387  * Swap in a new table, returning the old one for the caller to destroy.
2388  */
2389 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2390 {
2391 	struct dm_table *map = ERR_PTR(-EINVAL);
2392 	struct queue_limits limits;
2393 	int r;
2394 
2395 	mutex_lock(&md->suspend_lock);
2396 
2397 	/* device must be suspended */
2398 	if (!dm_suspended_md(md))
2399 		goto out;
2400 
2401 	r = dm_calculate_queue_limits(table, &limits);
2402 	if (r) {
2403 		map = ERR_PTR(r);
2404 		goto out;
2405 	}
2406 
2407 	map = __bind(md, table, &limits);
2408 
2409 out:
2410 	mutex_unlock(&md->suspend_lock);
2411 	return map;
2412 }
2413 
2414 /*
2415  * Functions to lock and unlock any filesystem running on the
2416  * device.
2417  */
2418 static int lock_fs(struct mapped_device *md)
2419 {
2420 	int r;
2421 
2422 	WARN_ON(md->frozen_sb);
2423 
2424 	md->frozen_sb = freeze_bdev(md->bdev);
2425 	if (IS_ERR(md->frozen_sb)) {
2426 		r = PTR_ERR(md->frozen_sb);
2427 		md->frozen_sb = NULL;
2428 		return r;
2429 	}
2430 
2431 	set_bit(DMF_FROZEN, &md->flags);
2432 
2433 	return 0;
2434 }
2435 
2436 static void unlock_fs(struct mapped_device *md)
2437 {
2438 	if (!test_bit(DMF_FROZEN, &md->flags))
2439 		return;
2440 
2441 	thaw_bdev(md->bdev, md->frozen_sb);
2442 	md->frozen_sb = NULL;
2443 	clear_bit(DMF_FROZEN, &md->flags);
2444 }
2445 
2446 /*
2447  * We need to be able to change a mapping table under a mounted
2448  * filesystem.  For example we might want to move some data in
2449  * the background.  Before the table can be swapped with
2450  * dm_bind_table, dm_suspend must be called to flush any in
2451  * flight bios and ensure that any further io gets deferred.
2452  */
2453 /*
2454  * Suspend mechanism in request-based dm.
2455  *
2456  * 1. Flush all I/Os by lock_fs() if needed.
2457  * 2. Stop dispatching any I/O by stopping the request_queue.
2458  * 3. Wait for all in-flight I/Os to be completed or requeued.
2459  *
2460  * To abort suspend, start the request_queue.
2461  */
2462 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2463 {
2464 	struct dm_table *map = NULL;
2465 	int r = 0;
2466 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2467 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2468 
2469 	mutex_lock(&md->suspend_lock);
2470 
2471 	if (dm_suspended_md(md)) {
2472 		r = -EINVAL;
2473 		goto out_unlock;
2474 	}
2475 
2476 	map = dm_get_live_table(md);
2477 
2478 	/*
2479 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2480 	 * This flag is cleared before dm_suspend returns.
2481 	 */
2482 	if (noflush)
2483 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2484 
2485 	/* This does not get reverted if there's an error later. */
2486 	dm_table_presuspend_targets(map);
2487 
2488 	/*
2489 	 * Flush I/O to the device.
2490 	 * Any I/O submitted after lock_fs() may not be flushed.
2491 	 * noflush takes precedence over do_lockfs.
2492 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2493 	 */
2494 	if (!noflush && do_lockfs) {
2495 		r = lock_fs(md);
2496 		if (r)
2497 			goto out;
2498 	}
2499 
2500 	/*
2501 	 * Here we must make sure that no processes are submitting requests
2502 	 * to target drivers i.e. no one may be executing
2503 	 * __split_and_process_bio. This is called from dm_request and
2504 	 * dm_wq_work.
2505 	 *
2506 	 * To get all processes out of __split_and_process_bio in dm_request,
2507 	 * we take the write lock. To prevent any process from reentering
2508 	 * __split_and_process_bio from dm_request and quiesce the thread
2509 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2510 	 * flush_workqueue(md->wq).
2511 	 */
2512 	down_write(&md->io_lock);
2513 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2514 	up_write(&md->io_lock);
2515 
2516 	/*
2517 	 * Stop md->queue before flushing md->wq in case request-based
2518 	 * dm defers requests to md->wq from md->queue.
2519 	 */
2520 	if (dm_request_based(md))
2521 		stop_queue(md->queue);
2522 
2523 	flush_workqueue(md->wq);
2524 
2525 	/*
2526 	 * At this point no more requests are entering target request routines.
2527 	 * We call dm_wait_for_completion to wait for all existing requests
2528 	 * to finish.
2529 	 */
2530 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2531 
2532 	down_write(&md->io_lock);
2533 	if (noflush)
2534 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2535 	up_write(&md->io_lock);
2536 
2537 	/* were we interrupted ? */
2538 	if (r < 0) {
2539 		dm_queue_flush(md);
2540 
2541 		if (dm_request_based(md))
2542 			start_queue(md->queue);
2543 
2544 		unlock_fs(md);
2545 		goto out; /* pushback list is already flushed, so skip flush */
2546 	}
2547 
2548 	/*
2549 	 * If dm_wait_for_completion returned 0, the device is completely
2550 	 * quiescent now. There is no request-processing activity. All new
2551 	 * requests are being added to md->deferred list.
2552 	 */
2553 
2554 	set_bit(DMF_SUSPENDED, &md->flags);
2555 
2556 	dm_table_postsuspend_targets(map);
2557 
2558 out:
2559 	dm_table_put(map);
2560 
2561 out_unlock:
2562 	mutex_unlock(&md->suspend_lock);
2563 	return r;
2564 }
2565 
2566 int dm_resume(struct mapped_device *md)
2567 {
2568 	int r = -EINVAL;
2569 	struct dm_table *map = NULL;
2570 
2571 	mutex_lock(&md->suspend_lock);
2572 	if (!dm_suspended_md(md))
2573 		goto out;
2574 
2575 	map = dm_get_live_table(md);
2576 	if (!map || !dm_table_get_size(map))
2577 		goto out;
2578 
2579 	r = dm_table_resume_targets(map);
2580 	if (r)
2581 		goto out;
2582 
2583 	dm_queue_flush(md);
2584 
2585 	/*
2586 	 * Flushing deferred I/Os must be done after targets are resumed
2587 	 * so that mapping of targets can work correctly.
2588 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2589 	 */
2590 	if (dm_request_based(md))
2591 		start_queue(md->queue);
2592 
2593 	unlock_fs(md);
2594 
2595 	clear_bit(DMF_SUSPENDED, &md->flags);
2596 
2597 	r = 0;
2598 out:
2599 	dm_table_put(map);
2600 	mutex_unlock(&md->suspend_lock);
2601 
2602 	return r;
2603 }
2604 
2605 /*-----------------------------------------------------------------
2606  * Event notification.
2607  *---------------------------------------------------------------*/
2608 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2609 		       unsigned cookie)
2610 {
2611 	char udev_cookie[DM_COOKIE_LENGTH];
2612 	char *envp[] = { udev_cookie, NULL };
2613 
2614 	if (!cookie)
2615 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2616 	else {
2617 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2618 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2619 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2620 					  action, envp);
2621 	}
2622 }
2623 
2624 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2625 {
2626 	return atomic_add_return(1, &md->uevent_seq);
2627 }
2628 
2629 uint32_t dm_get_event_nr(struct mapped_device *md)
2630 {
2631 	return atomic_read(&md->event_nr);
2632 }
2633 
2634 int dm_wait_event(struct mapped_device *md, int event_nr)
2635 {
2636 	return wait_event_interruptible(md->eventq,
2637 			(event_nr != atomic_read(&md->event_nr)));
2638 }
2639 
2640 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2641 {
2642 	unsigned long flags;
2643 
2644 	spin_lock_irqsave(&md->uevent_lock, flags);
2645 	list_add(elist, &md->uevent_list);
2646 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2647 }
2648 
2649 /*
2650  * The gendisk is only valid as long as you have a reference
2651  * count on 'md'.
2652  */
2653 struct gendisk *dm_disk(struct mapped_device *md)
2654 {
2655 	return md->disk;
2656 }
2657 
2658 struct kobject *dm_kobject(struct mapped_device *md)
2659 {
2660 	return &md->kobj;
2661 }
2662 
2663 /*
2664  * struct mapped_device should not be exported outside of dm.c
2665  * so use this check to verify that kobj is part of md structure
2666  */
2667 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2668 {
2669 	struct mapped_device *md;
2670 
2671 	md = container_of(kobj, struct mapped_device, kobj);
2672 	if (&md->kobj != kobj)
2673 		return NULL;
2674 
2675 	if (test_bit(DMF_FREEING, &md->flags) ||
2676 	    dm_deleting_md(md))
2677 		return NULL;
2678 
2679 	dm_get(md);
2680 	return md;
2681 }
2682 
2683 int dm_suspended_md(struct mapped_device *md)
2684 {
2685 	return test_bit(DMF_SUSPENDED, &md->flags);
2686 }
2687 
2688 int dm_suspended(struct dm_target *ti)
2689 {
2690 	return dm_suspended_md(dm_table_get_md(ti->table));
2691 }
2692 EXPORT_SYMBOL_GPL(dm_suspended);
2693 
2694 int dm_noflush_suspending(struct dm_target *ti)
2695 {
2696 	return __noflush_suspending(dm_table_get_md(ti->table));
2697 }
2698 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2699 
2700 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2701 {
2702 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2703 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2704 
2705 	if (!pools)
2706 		return NULL;
2707 
2708 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2709 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2710 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2711 	if (!pools->io_pool)
2712 		goto free_pools_and_out;
2713 
2714 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2715 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2716 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2717 	if (!pools->tio_pool)
2718 		goto free_io_pool_and_out;
2719 
2720 	pools->bs = bioset_create(pool_size, 0);
2721 	if (!pools->bs)
2722 		goto free_tio_pool_and_out;
2723 
2724 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2725 		goto free_bioset_and_out;
2726 
2727 	return pools;
2728 
2729 free_bioset_and_out:
2730 	bioset_free(pools->bs);
2731 
2732 free_tio_pool_and_out:
2733 	mempool_destroy(pools->tio_pool);
2734 
2735 free_io_pool_and_out:
2736 	mempool_destroy(pools->io_pool);
2737 
2738 free_pools_and_out:
2739 	kfree(pools);
2740 
2741 	return NULL;
2742 }
2743 
2744 void dm_free_md_mempools(struct dm_md_mempools *pools)
2745 {
2746 	if (!pools)
2747 		return;
2748 
2749 	if (pools->io_pool)
2750 		mempool_destroy(pools->io_pool);
2751 
2752 	if (pools->tio_pool)
2753 		mempool_destroy(pools->tio_pool);
2754 
2755 	if (pools->bs)
2756 		bioset_free(pools->bs);
2757 
2758 	kfree(pools);
2759 }
2760 
2761 static const struct block_device_operations dm_blk_dops = {
2762 	.open = dm_blk_open,
2763 	.release = dm_blk_close,
2764 	.ioctl = dm_blk_ioctl,
2765 	.getgeo = dm_blk_getgeo,
2766 	.owner = THIS_MODULE
2767 };
2768 
2769 EXPORT_SYMBOL(dm_get_mapinfo);
2770 
2771 /*
2772  * module hooks
2773  */
2774 module_init(dm_init);
2775 module_exit(dm_exit);
2776 
2777 module_param(major, uint, 0);
2778 MODULE_PARM_DESC(major, "The major number of the device mapper");
2779 MODULE_DESCRIPTION(DM_NAME " driver");
2780 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2781 MODULE_LICENSE("GPL");
2782