1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 /* 54 * For bio-based dm. 55 * One of these is allocated per bio. 56 */ 57 struct dm_io { 58 struct mapped_device *md; 59 int error; 60 atomic_t io_count; 61 struct bio *bio; 62 unsigned long start_time; 63 spinlock_t endio_lock; 64 }; 65 66 /* 67 * For bio-based dm. 68 * One of these is allocated per target within a bio. Hopefully 69 * this will be simplified out one day. 70 */ 71 struct dm_target_io { 72 struct dm_io *io; 73 struct dm_target *ti; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm. 79 * One of these is allocated per request. 80 */ 81 struct dm_rq_target_io { 82 struct mapped_device *md; 83 struct dm_target *ti; 84 struct request *orig, clone; 85 int error; 86 union map_info info; 87 }; 88 89 /* 90 * For request-based dm. 91 * One of these is allocated per bio. 92 */ 93 struct dm_rq_clone_bio_info { 94 struct bio *orig; 95 struct dm_rq_target_io *tio; 96 }; 97 98 union map_info *dm_get_mapinfo(struct bio *bio) 99 { 100 if (bio && bio->bi_private) 101 return &((struct dm_target_io *)bio->bi_private)->info; 102 return NULL; 103 } 104 105 union map_info *dm_get_rq_mapinfo(struct request *rq) 106 { 107 if (rq && rq->end_io_data) 108 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 109 return NULL; 110 } 111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 112 113 #define MINOR_ALLOCED ((void *)-1) 114 115 /* 116 * Bits for the md->flags field. 117 */ 118 #define DMF_BLOCK_IO_FOR_SUSPEND 0 119 #define DMF_SUSPENDED 1 120 #define DMF_FROZEN 2 121 #define DMF_FREEING 3 122 #define DMF_DELETING 4 123 #define DMF_NOFLUSH_SUSPENDING 5 124 #define DMF_MERGE_IS_OPTIONAL 6 125 126 /* 127 * Work processed by per-device workqueue. 128 */ 129 struct mapped_device { 130 struct rw_semaphore io_lock; 131 struct mutex suspend_lock; 132 rwlock_t map_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 unsigned long flags; 137 138 struct request_queue *queue; 139 unsigned type; 140 /* Protect queue and type against concurrent access. */ 141 struct mutex type_lock; 142 143 struct gendisk *disk; 144 char name[16]; 145 146 void *interface_ptr; 147 148 /* 149 * A list of ios that arrived while we were suspended. 150 */ 151 atomic_t pending[2]; 152 wait_queue_head_t wait; 153 struct work_struct work; 154 struct bio_list deferred; 155 spinlock_t deferred_lock; 156 157 /* 158 * Processing queue (flush) 159 */ 160 struct workqueue_struct *wq; 161 162 /* 163 * The current mapping. 164 */ 165 struct dm_table *map; 166 167 /* 168 * io objects are allocated from here. 169 */ 170 mempool_t *io_pool; 171 mempool_t *tio_pool; 172 173 struct bio_set *bs; 174 175 /* 176 * Event handling. 177 */ 178 atomic_t event_nr; 179 wait_queue_head_t eventq; 180 atomic_t uevent_seq; 181 struct list_head uevent_list; 182 spinlock_t uevent_lock; /* Protect access to uevent_list */ 183 184 /* 185 * freeze/thaw support require holding onto a super block 186 */ 187 struct super_block *frozen_sb; 188 struct block_device *bdev; 189 190 /* forced geometry settings */ 191 struct hd_geometry geometry; 192 193 /* For saving the address of __make_request for request based dm */ 194 make_request_fn *saved_make_request_fn; 195 196 /* sysfs handle */ 197 struct kobject kobj; 198 199 /* zero-length flush that will be cloned and submitted to targets */ 200 struct bio flush_bio; 201 }; 202 203 /* 204 * For mempools pre-allocation at the table loading time. 205 */ 206 struct dm_md_mempools { 207 mempool_t *io_pool; 208 mempool_t *tio_pool; 209 struct bio_set *bs; 210 }; 211 212 #define MIN_IOS 256 213 static struct kmem_cache *_io_cache; 214 static struct kmem_cache *_tio_cache; 215 static struct kmem_cache *_rq_tio_cache; 216 static struct kmem_cache *_rq_bio_info_cache; 217 218 static int __init local_init(void) 219 { 220 int r = -ENOMEM; 221 222 /* allocate a slab for the dm_ios */ 223 _io_cache = KMEM_CACHE(dm_io, 0); 224 if (!_io_cache) 225 return r; 226 227 /* allocate a slab for the target ios */ 228 _tio_cache = KMEM_CACHE(dm_target_io, 0); 229 if (!_tio_cache) 230 goto out_free_io_cache; 231 232 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 233 if (!_rq_tio_cache) 234 goto out_free_tio_cache; 235 236 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 237 if (!_rq_bio_info_cache) 238 goto out_free_rq_tio_cache; 239 240 r = dm_uevent_init(); 241 if (r) 242 goto out_free_rq_bio_info_cache; 243 244 _major = major; 245 r = register_blkdev(_major, _name); 246 if (r < 0) 247 goto out_uevent_exit; 248 249 if (!_major) 250 _major = r; 251 252 return 0; 253 254 out_uevent_exit: 255 dm_uevent_exit(); 256 out_free_rq_bio_info_cache: 257 kmem_cache_destroy(_rq_bio_info_cache); 258 out_free_rq_tio_cache: 259 kmem_cache_destroy(_rq_tio_cache); 260 out_free_tio_cache: 261 kmem_cache_destroy(_tio_cache); 262 out_free_io_cache: 263 kmem_cache_destroy(_io_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 kmem_cache_destroy(_rq_bio_info_cache); 271 kmem_cache_destroy(_rq_tio_cache); 272 kmem_cache_destroy(_tio_cache); 273 kmem_cache_destroy(_io_cache); 274 unregister_blkdev(_major, _name); 275 dm_uevent_exit(); 276 277 _major = 0; 278 279 DMINFO("cleaned up"); 280 } 281 282 static int (*_inits[])(void) __initdata = { 283 local_init, 284 dm_target_init, 285 dm_linear_init, 286 dm_stripe_init, 287 dm_io_init, 288 dm_kcopyd_init, 289 dm_interface_init, 290 }; 291 292 static void (*_exits[])(void) = { 293 local_exit, 294 dm_target_exit, 295 dm_linear_exit, 296 dm_stripe_exit, 297 dm_io_exit, 298 dm_kcopyd_exit, 299 dm_interface_exit, 300 }; 301 302 static int __init dm_init(void) 303 { 304 const int count = ARRAY_SIZE(_inits); 305 306 int r, i; 307 308 for (i = 0; i < count; i++) { 309 r = _inits[i](); 310 if (r) 311 goto bad; 312 } 313 314 return 0; 315 316 bad: 317 while (i--) 318 _exits[i](); 319 320 return r; 321 } 322 323 static void __exit dm_exit(void) 324 { 325 int i = ARRAY_SIZE(_exits); 326 327 while (i--) 328 _exits[i](); 329 330 /* 331 * Should be empty by this point. 332 */ 333 idr_remove_all(&_minor_idr); 334 idr_destroy(&_minor_idr); 335 } 336 337 /* 338 * Block device functions 339 */ 340 int dm_deleting_md(struct mapped_device *md) 341 { 342 return test_bit(DMF_DELETING, &md->flags); 343 } 344 345 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 346 { 347 struct mapped_device *md; 348 349 spin_lock(&_minor_lock); 350 351 md = bdev->bd_disk->private_data; 352 if (!md) 353 goto out; 354 355 if (test_bit(DMF_FREEING, &md->flags) || 356 dm_deleting_md(md)) { 357 md = NULL; 358 goto out; 359 } 360 361 dm_get(md); 362 atomic_inc(&md->open_count); 363 364 out: 365 spin_unlock(&_minor_lock); 366 367 return md ? 0 : -ENXIO; 368 } 369 370 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 371 { 372 struct mapped_device *md = disk->private_data; 373 374 spin_lock(&_minor_lock); 375 376 atomic_dec(&md->open_count); 377 dm_put(md); 378 379 spin_unlock(&_minor_lock); 380 381 return 0; 382 } 383 384 int dm_open_count(struct mapped_device *md) 385 { 386 return atomic_read(&md->open_count); 387 } 388 389 /* 390 * Guarantees nothing is using the device before it's deleted. 391 */ 392 int dm_lock_for_deletion(struct mapped_device *md) 393 { 394 int r = 0; 395 396 spin_lock(&_minor_lock); 397 398 if (dm_open_count(md)) 399 r = -EBUSY; 400 else 401 set_bit(DMF_DELETING, &md->flags); 402 403 spin_unlock(&_minor_lock); 404 405 return r; 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 416 unsigned int cmd, unsigned long arg) 417 { 418 struct mapped_device *md = bdev->bd_disk->private_data; 419 struct dm_table *map = dm_get_live_table(md); 420 struct dm_target *tgt; 421 int r = -ENOTTY; 422 423 if (!map || !dm_table_get_size(map)) 424 goto out; 425 426 /* We only support devices that have a single target */ 427 if (dm_table_get_num_targets(map) != 1) 428 goto out; 429 430 tgt = dm_table_get_target(map, 0); 431 432 if (dm_suspended_md(md)) { 433 r = -EAGAIN; 434 goto out; 435 } 436 437 if (tgt->type->ioctl) 438 r = tgt->type->ioctl(tgt, cmd, arg); 439 440 out: 441 dm_table_put(map); 442 443 return r; 444 } 445 446 static struct dm_io *alloc_io(struct mapped_device *md) 447 { 448 return mempool_alloc(md->io_pool, GFP_NOIO); 449 } 450 451 static void free_io(struct mapped_device *md, struct dm_io *io) 452 { 453 mempool_free(io, md->io_pool); 454 } 455 456 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 457 { 458 mempool_free(tio, md->tio_pool); 459 } 460 461 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 462 gfp_t gfp_mask) 463 { 464 return mempool_alloc(md->tio_pool, gfp_mask); 465 } 466 467 static void free_rq_tio(struct dm_rq_target_io *tio) 468 { 469 mempool_free(tio, tio->md->tio_pool); 470 } 471 472 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 473 { 474 return mempool_alloc(md->io_pool, GFP_ATOMIC); 475 } 476 477 static void free_bio_info(struct dm_rq_clone_bio_info *info) 478 { 479 mempool_free(info, info->tio->md->io_pool); 480 } 481 482 static int md_in_flight(struct mapped_device *md) 483 { 484 return atomic_read(&md->pending[READ]) + 485 atomic_read(&md->pending[WRITE]); 486 } 487 488 static void start_io_acct(struct dm_io *io) 489 { 490 struct mapped_device *md = io->md; 491 int cpu; 492 int rw = bio_data_dir(io->bio); 493 494 io->start_time = jiffies; 495 496 cpu = part_stat_lock(); 497 part_round_stats(cpu, &dm_disk(md)->part0); 498 part_stat_unlock(); 499 atomic_set(&dm_disk(md)->part0.in_flight[rw], 500 atomic_inc_return(&md->pending[rw])); 501 } 502 503 static void end_io_acct(struct dm_io *io) 504 { 505 struct mapped_device *md = io->md; 506 struct bio *bio = io->bio; 507 unsigned long duration = jiffies - io->start_time; 508 int pending, cpu; 509 int rw = bio_data_dir(bio); 510 511 cpu = part_stat_lock(); 512 part_round_stats(cpu, &dm_disk(md)->part0); 513 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 514 part_stat_unlock(); 515 516 /* 517 * After this is decremented the bio must not be touched if it is 518 * a flush. 519 */ 520 pending = atomic_dec_return(&md->pending[rw]); 521 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 522 pending += atomic_read(&md->pending[rw^0x1]); 523 524 /* nudge anyone waiting on suspend queue */ 525 if (!pending) 526 wake_up(&md->wait); 527 } 528 529 /* 530 * Add the bio to the list of deferred io. 531 */ 532 static void queue_io(struct mapped_device *md, struct bio *bio) 533 { 534 unsigned long flags; 535 536 spin_lock_irqsave(&md->deferred_lock, flags); 537 bio_list_add(&md->deferred, bio); 538 spin_unlock_irqrestore(&md->deferred_lock, flags); 539 queue_work(md->wq, &md->work); 540 } 541 542 /* 543 * Everyone (including functions in this file), should use this 544 * function to access the md->map field, and make sure they call 545 * dm_table_put() when finished. 546 */ 547 struct dm_table *dm_get_live_table(struct mapped_device *md) 548 { 549 struct dm_table *t; 550 unsigned long flags; 551 552 read_lock_irqsave(&md->map_lock, flags); 553 t = md->map; 554 if (t) 555 dm_table_get(t); 556 read_unlock_irqrestore(&md->map_lock, flags); 557 558 return t; 559 } 560 561 /* 562 * Get the geometry associated with a dm device 563 */ 564 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 565 { 566 *geo = md->geometry; 567 568 return 0; 569 } 570 571 /* 572 * Set the geometry of a device. 573 */ 574 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 575 { 576 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 577 578 if (geo->start > sz) { 579 DMWARN("Start sector is beyond the geometry limits."); 580 return -EINVAL; 581 } 582 583 md->geometry = *geo; 584 585 return 0; 586 } 587 588 /*----------------------------------------------------------------- 589 * CRUD START: 590 * A more elegant soln is in the works that uses the queue 591 * merge fn, unfortunately there are a couple of changes to 592 * the block layer that I want to make for this. So in the 593 * interests of getting something for people to use I give 594 * you this clearly demarcated crap. 595 *---------------------------------------------------------------*/ 596 597 static int __noflush_suspending(struct mapped_device *md) 598 { 599 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 600 } 601 602 /* 603 * Decrements the number of outstanding ios that a bio has been 604 * cloned into, completing the original io if necc. 605 */ 606 static void dec_pending(struct dm_io *io, int error) 607 { 608 unsigned long flags; 609 int io_error; 610 struct bio *bio; 611 struct mapped_device *md = io->md; 612 613 /* Push-back supersedes any I/O errors */ 614 if (unlikely(error)) { 615 spin_lock_irqsave(&io->endio_lock, flags); 616 if (!(io->error > 0 && __noflush_suspending(md))) 617 io->error = error; 618 spin_unlock_irqrestore(&io->endio_lock, flags); 619 } 620 621 if (atomic_dec_and_test(&io->io_count)) { 622 if (io->error == DM_ENDIO_REQUEUE) { 623 /* 624 * Target requested pushing back the I/O. 625 */ 626 spin_lock_irqsave(&md->deferred_lock, flags); 627 if (__noflush_suspending(md)) 628 bio_list_add_head(&md->deferred, io->bio); 629 else 630 /* noflush suspend was interrupted. */ 631 io->error = -EIO; 632 spin_unlock_irqrestore(&md->deferred_lock, flags); 633 } 634 635 io_error = io->error; 636 bio = io->bio; 637 end_io_acct(io); 638 free_io(md, io); 639 640 if (io_error == DM_ENDIO_REQUEUE) 641 return; 642 643 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 644 /* 645 * Preflush done for flush with data, reissue 646 * without REQ_FLUSH. 647 */ 648 bio->bi_rw &= ~REQ_FLUSH; 649 queue_io(md, bio); 650 } else { 651 /* done with normal IO or empty flush */ 652 trace_block_bio_complete(md->queue, bio, io_error); 653 bio_endio(bio, io_error); 654 } 655 } 656 } 657 658 static void clone_endio(struct bio *bio, int error) 659 { 660 int r = 0; 661 struct dm_target_io *tio = bio->bi_private; 662 struct dm_io *io = tio->io; 663 struct mapped_device *md = tio->io->md; 664 dm_endio_fn endio = tio->ti->type->end_io; 665 666 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 667 error = -EIO; 668 669 if (endio) { 670 r = endio(tio->ti, bio, error, &tio->info); 671 if (r < 0 || r == DM_ENDIO_REQUEUE) 672 /* 673 * error and requeue request are handled 674 * in dec_pending(). 675 */ 676 error = r; 677 else if (r == DM_ENDIO_INCOMPLETE) 678 /* The target will handle the io */ 679 return; 680 else if (r) { 681 DMWARN("unimplemented target endio return value: %d", r); 682 BUG(); 683 } 684 } 685 686 /* 687 * Store md for cleanup instead of tio which is about to get freed. 688 */ 689 bio->bi_private = md->bs; 690 691 free_tio(md, tio); 692 bio_put(bio); 693 dec_pending(io, error); 694 } 695 696 /* 697 * Partial completion handling for request-based dm 698 */ 699 static void end_clone_bio(struct bio *clone, int error) 700 { 701 struct dm_rq_clone_bio_info *info = clone->bi_private; 702 struct dm_rq_target_io *tio = info->tio; 703 struct bio *bio = info->orig; 704 unsigned int nr_bytes = info->orig->bi_size; 705 706 bio_put(clone); 707 708 if (tio->error) 709 /* 710 * An error has already been detected on the request. 711 * Once error occurred, just let clone->end_io() handle 712 * the remainder. 713 */ 714 return; 715 else if (error) { 716 /* 717 * Don't notice the error to the upper layer yet. 718 * The error handling decision is made by the target driver, 719 * when the request is completed. 720 */ 721 tio->error = error; 722 return; 723 } 724 725 /* 726 * I/O for the bio successfully completed. 727 * Notice the data completion to the upper layer. 728 */ 729 730 /* 731 * bios are processed from the head of the list. 732 * So the completing bio should always be rq->bio. 733 * If it's not, something wrong is happening. 734 */ 735 if (tio->orig->bio != bio) 736 DMERR("bio completion is going in the middle of the request"); 737 738 /* 739 * Update the original request. 740 * Do not use blk_end_request() here, because it may complete 741 * the original request before the clone, and break the ordering. 742 */ 743 blk_update_request(tio->orig, 0, nr_bytes); 744 } 745 746 /* 747 * Don't touch any member of the md after calling this function because 748 * the md may be freed in dm_put() at the end of this function. 749 * Or do dm_get() before calling this function and dm_put() later. 750 */ 751 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 752 { 753 atomic_dec(&md->pending[rw]); 754 755 /* nudge anyone waiting on suspend queue */ 756 if (!md_in_flight(md)) 757 wake_up(&md->wait); 758 759 if (run_queue) 760 blk_run_queue(md->queue); 761 762 /* 763 * dm_put() must be at the end of this function. See the comment above 764 */ 765 dm_put(md); 766 } 767 768 static void free_rq_clone(struct request *clone) 769 { 770 struct dm_rq_target_io *tio = clone->end_io_data; 771 772 blk_rq_unprep_clone(clone); 773 free_rq_tio(tio); 774 } 775 776 /* 777 * Complete the clone and the original request. 778 * Must be called without queue lock. 779 */ 780 static void dm_end_request(struct request *clone, int error) 781 { 782 int rw = rq_data_dir(clone); 783 struct dm_rq_target_io *tio = clone->end_io_data; 784 struct mapped_device *md = tio->md; 785 struct request *rq = tio->orig; 786 787 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 788 rq->errors = clone->errors; 789 rq->resid_len = clone->resid_len; 790 791 if (rq->sense) 792 /* 793 * We are using the sense buffer of the original 794 * request. 795 * So setting the length of the sense data is enough. 796 */ 797 rq->sense_len = clone->sense_len; 798 } 799 800 free_rq_clone(clone); 801 blk_end_request_all(rq, error); 802 rq_completed(md, rw, true); 803 } 804 805 static void dm_unprep_request(struct request *rq) 806 { 807 struct request *clone = rq->special; 808 809 rq->special = NULL; 810 rq->cmd_flags &= ~REQ_DONTPREP; 811 812 free_rq_clone(clone); 813 } 814 815 /* 816 * Requeue the original request of a clone. 817 */ 818 void dm_requeue_unmapped_request(struct request *clone) 819 { 820 int rw = rq_data_dir(clone); 821 struct dm_rq_target_io *tio = clone->end_io_data; 822 struct mapped_device *md = tio->md; 823 struct request *rq = tio->orig; 824 struct request_queue *q = rq->q; 825 unsigned long flags; 826 827 dm_unprep_request(rq); 828 829 spin_lock_irqsave(q->queue_lock, flags); 830 blk_requeue_request(q, rq); 831 spin_unlock_irqrestore(q->queue_lock, flags); 832 833 rq_completed(md, rw, 0); 834 } 835 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 836 837 static void __stop_queue(struct request_queue *q) 838 { 839 blk_stop_queue(q); 840 } 841 842 static void stop_queue(struct request_queue *q) 843 { 844 unsigned long flags; 845 846 spin_lock_irqsave(q->queue_lock, flags); 847 __stop_queue(q); 848 spin_unlock_irqrestore(q->queue_lock, flags); 849 } 850 851 static void __start_queue(struct request_queue *q) 852 { 853 if (blk_queue_stopped(q)) 854 blk_start_queue(q); 855 } 856 857 static void start_queue(struct request_queue *q) 858 { 859 unsigned long flags; 860 861 spin_lock_irqsave(q->queue_lock, flags); 862 __start_queue(q); 863 spin_unlock_irqrestore(q->queue_lock, flags); 864 } 865 866 static void dm_done(struct request *clone, int error, bool mapped) 867 { 868 int r = error; 869 struct dm_rq_target_io *tio = clone->end_io_data; 870 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 871 872 if (mapped && rq_end_io) 873 r = rq_end_io(tio->ti, clone, error, &tio->info); 874 875 if (r <= 0) 876 /* The target wants to complete the I/O */ 877 dm_end_request(clone, r); 878 else if (r == DM_ENDIO_INCOMPLETE) 879 /* The target will handle the I/O */ 880 return; 881 else if (r == DM_ENDIO_REQUEUE) 882 /* The target wants to requeue the I/O */ 883 dm_requeue_unmapped_request(clone); 884 else { 885 DMWARN("unimplemented target endio return value: %d", r); 886 BUG(); 887 } 888 } 889 890 /* 891 * Request completion handler for request-based dm 892 */ 893 static void dm_softirq_done(struct request *rq) 894 { 895 bool mapped = true; 896 struct request *clone = rq->completion_data; 897 struct dm_rq_target_io *tio = clone->end_io_data; 898 899 if (rq->cmd_flags & REQ_FAILED) 900 mapped = false; 901 902 dm_done(clone, tio->error, mapped); 903 } 904 905 /* 906 * Complete the clone and the original request with the error status 907 * through softirq context. 908 */ 909 static void dm_complete_request(struct request *clone, int error) 910 { 911 struct dm_rq_target_io *tio = clone->end_io_data; 912 struct request *rq = tio->orig; 913 914 tio->error = error; 915 rq->completion_data = clone; 916 blk_complete_request(rq); 917 } 918 919 /* 920 * Complete the not-mapped clone and the original request with the error status 921 * through softirq context. 922 * Target's rq_end_io() function isn't called. 923 * This may be used when the target's map_rq() function fails. 924 */ 925 void dm_kill_unmapped_request(struct request *clone, int error) 926 { 927 struct dm_rq_target_io *tio = clone->end_io_data; 928 struct request *rq = tio->orig; 929 930 rq->cmd_flags |= REQ_FAILED; 931 dm_complete_request(clone, error); 932 } 933 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 934 935 /* 936 * Called with the queue lock held 937 */ 938 static void end_clone_request(struct request *clone, int error) 939 { 940 /* 941 * For just cleaning up the information of the queue in which 942 * the clone was dispatched. 943 * The clone is *NOT* freed actually here because it is alloced from 944 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 945 */ 946 __blk_put_request(clone->q, clone); 947 948 /* 949 * Actual request completion is done in a softirq context which doesn't 950 * hold the queue lock. Otherwise, deadlock could occur because: 951 * - another request may be submitted by the upper level driver 952 * of the stacking during the completion 953 * - the submission which requires queue lock may be done 954 * against this queue 955 */ 956 dm_complete_request(clone, error); 957 } 958 959 /* 960 * Return maximum size of I/O possible at the supplied sector up to the current 961 * target boundary. 962 */ 963 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 964 { 965 sector_t target_offset = dm_target_offset(ti, sector); 966 967 return ti->len - target_offset; 968 } 969 970 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 971 { 972 sector_t len = max_io_len_target_boundary(sector, ti); 973 974 /* 975 * Does the target need to split even further ? 976 */ 977 if (ti->split_io) { 978 sector_t boundary; 979 sector_t offset = dm_target_offset(ti, sector); 980 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 981 - offset; 982 if (len > boundary) 983 len = boundary; 984 } 985 986 return len; 987 } 988 989 static void __map_bio(struct dm_target *ti, struct bio *clone, 990 struct dm_target_io *tio) 991 { 992 int r; 993 sector_t sector; 994 struct mapped_device *md; 995 996 clone->bi_end_io = clone_endio; 997 clone->bi_private = tio; 998 999 /* 1000 * Map the clone. If r == 0 we don't need to do 1001 * anything, the target has assumed ownership of 1002 * this io. 1003 */ 1004 atomic_inc(&tio->io->io_count); 1005 sector = clone->bi_sector; 1006 r = ti->type->map(ti, clone, &tio->info); 1007 if (r == DM_MAPIO_REMAPPED) { 1008 /* the bio has been remapped so dispatch it */ 1009 1010 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1011 tio->io->bio->bi_bdev->bd_dev, sector); 1012 1013 generic_make_request(clone); 1014 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1015 /* error the io and bail out, or requeue it if needed */ 1016 md = tio->io->md; 1017 dec_pending(tio->io, r); 1018 /* 1019 * Store bio_set for cleanup. 1020 */ 1021 clone->bi_private = md->bs; 1022 bio_put(clone); 1023 free_tio(md, tio); 1024 } else if (r) { 1025 DMWARN("unimplemented target map return value: %d", r); 1026 BUG(); 1027 } 1028 } 1029 1030 struct clone_info { 1031 struct mapped_device *md; 1032 struct dm_table *map; 1033 struct bio *bio; 1034 struct dm_io *io; 1035 sector_t sector; 1036 sector_t sector_count; 1037 unsigned short idx; 1038 }; 1039 1040 static void dm_bio_destructor(struct bio *bio) 1041 { 1042 struct bio_set *bs = bio->bi_private; 1043 1044 bio_free(bio, bs); 1045 } 1046 1047 /* 1048 * Creates a little bio that just does part of a bvec. 1049 */ 1050 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1051 unsigned short idx, unsigned int offset, 1052 unsigned int len, struct bio_set *bs) 1053 { 1054 struct bio *clone; 1055 struct bio_vec *bv = bio->bi_io_vec + idx; 1056 1057 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1058 clone->bi_destructor = dm_bio_destructor; 1059 *clone->bi_io_vec = *bv; 1060 1061 clone->bi_sector = sector; 1062 clone->bi_bdev = bio->bi_bdev; 1063 clone->bi_rw = bio->bi_rw; 1064 clone->bi_vcnt = 1; 1065 clone->bi_size = to_bytes(len); 1066 clone->bi_io_vec->bv_offset = offset; 1067 clone->bi_io_vec->bv_len = clone->bi_size; 1068 clone->bi_flags |= 1 << BIO_CLONED; 1069 1070 if (bio_integrity(bio)) { 1071 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1072 bio_integrity_trim(clone, 1073 bio_sector_offset(bio, idx, offset), len); 1074 } 1075 1076 return clone; 1077 } 1078 1079 /* 1080 * Creates a bio that consists of range of complete bvecs. 1081 */ 1082 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1083 unsigned short idx, unsigned short bv_count, 1084 unsigned int len, struct bio_set *bs) 1085 { 1086 struct bio *clone; 1087 1088 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1089 __bio_clone(clone, bio); 1090 clone->bi_destructor = dm_bio_destructor; 1091 clone->bi_sector = sector; 1092 clone->bi_idx = idx; 1093 clone->bi_vcnt = idx + bv_count; 1094 clone->bi_size = to_bytes(len); 1095 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1096 1097 if (bio_integrity(bio)) { 1098 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1099 1100 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1101 bio_integrity_trim(clone, 1102 bio_sector_offset(bio, idx, 0), len); 1103 } 1104 1105 return clone; 1106 } 1107 1108 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1109 struct dm_target *ti) 1110 { 1111 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1112 1113 tio->io = ci->io; 1114 tio->ti = ti; 1115 memset(&tio->info, 0, sizeof(tio->info)); 1116 1117 return tio; 1118 } 1119 1120 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1121 unsigned request_nr, sector_t len) 1122 { 1123 struct dm_target_io *tio = alloc_tio(ci, ti); 1124 struct bio *clone; 1125 1126 tio->info.target_request_nr = request_nr; 1127 1128 /* 1129 * Discard requests require the bio's inline iovecs be initialized. 1130 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1131 * and discard, so no need for concern about wasted bvec allocations. 1132 */ 1133 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1134 __bio_clone(clone, ci->bio); 1135 clone->bi_destructor = dm_bio_destructor; 1136 if (len) { 1137 clone->bi_sector = ci->sector; 1138 clone->bi_size = to_bytes(len); 1139 } 1140 1141 __map_bio(ti, clone, tio); 1142 } 1143 1144 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1145 unsigned num_requests, sector_t len) 1146 { 1147 unsigned request_nr; 1148 1149 for (request_nr = 0; request_nr < num_requests; request_nr++) 1150 __issue_target_request(ci, ti, request_nr, len); 1151 } 1152 1153 static int __clone_and_map_empty_flush(struct clone_info *ci) 1154 { 1155 unsigned target_nr = 0; 1156 struct dm_target *ti; 1157 1158 BUG_ON(bio_has_data(ci->bio)); 1159 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1160 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1161 1162 return 0; 1163 } 1164 1165 /* 1166 * Perform all io with a single clone. 1167 */ 1168 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1169 { 1170 struct bio *clone, *bio = ci->bio; 1171 struct dm_target_io *tio; 1172 1173 tio = alloc_tio(ci, ti); 1174 clone = clone_bio(bio, ci->sector, ci->idx, 1175 bio->bi_vcnt - ci->idx, ci->sector_count, 1176 ci->md->bs); 1177 __map_bio(ti, clone, tio); 1178 ci->sector_count = 0; 1179 } 1180 1181 static int __clone_and_map_discard(struct clone_info *ci) 1182 { 1183 struct dm_target *ti; 1184 sector_t len; 1185 1186 do { 1187 ti = dm_table_find_target(ci->map, ci->sector); 1188 if (!dm_target_is_valid(ti)) 1189 return -EIO; 1190 1191 /* 1192 * Even though the device advertised discard support, 1193 * that does not mean every target supports it, and 1194 * reconfiguration might also have changed that since the 1195 * check was performed. 1196 */ 1197 if (!ti->num_discard_requests) 1198 return -EOPNOTSUPP; 1199 1200 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1201 1202 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1203 1204 ci->sector += len; 1205 } while (ci->sector_count -= len); 1206 1207 return 0; 1208 } 1209 1210 static int __clone_and_map(struct clone_info *ci) 1211 { 1212 struct bio *clone, *bio = ci->bio; 1213 struct dm_target *ti; 1214 sector_t len = 0, max; 1215 struct dm_target_io *tio; 1216 1217 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1218 return __clone_and_map_discard(ci); 1219 1220 ti = dm_table_find_target(ci->map, ci->sector); 1221 if (!dm_target_is_valid(ti)) 1222 return -EIO; 1223 1224 max = max_io_len(ci->sector, ti); 1225 1226 if (ci->sector_count <= max) { 1227 /* 1228 * Optimise for the simple case where we can do all of 1229 * the remaining io with a single clone. 1230 */ 1231 __clone_and_map_simple(ci, ti); 1232 1233 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1234 /* 1235 * There are some bvecs that don't span targets. 1236 * Do as many of these as possible. 1237 */ 1238 int i; 1239 sector_t remaining = max; 1240 sector_t bv_len; 1241 1242 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1243 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1244 1245 if (bv_len > remaining) 1246 break; 1247 1248 remaining -= bv_len; 1249 len += bv_len; 1250 } 1251 1252 tio = alloc_tio(ci, ti); 1253 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1254 ci->md->bs); 1255 __map_bio(ti, clone, tio); 1256 1257 ci->sector += len; 1258 ci->sector_count -= len; 1259 ci->idx = i; 1260 1261 } else { 1262 /* 1263 * Handle a bvec that must be split between two or more targets. 1264 */ 1265 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1266 sector_t remaining = to_sector(bv->bv_len); 1267 unsigned int offset = 0; 1268 1269 do { 1270 if (offset) { 1271 ti = dm_table_find_target(ci->map, ci->sector); 1272 if (!dm_target_is_valid(ti)) 1273 return -EIO; 1274 1275 max = max_io_len(ci->sector, ti); 1276 } 1277 1278 len = min(remaining, max); 1279 1280 tio = alloc_tio(ci, ti); 1281 clone = split_bvec(bio, ci->sector, ci->idx, 1282 bv->bv_offset + offset, len, 1283 ci->md->bs); 1284 1285 __map_bio(ti, clone, tio); 1286 1287 ci->sector += len; 1288 ci->sector_count -= len; 1289 offset += to_bytes(len); 1290 } while (remaining -= len); 1291 1292 ci->idx++; 1293 } 1294 1295 return 0; 1296 } 1297 1298 /* 1299 * Split the bio into several clones and submit it to targets. 1300 */ 1301 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1302 { 1303 struct clone_info ci; 1304 int error = 0; 1305 1306 ci.map = dm_get_live_table(md); 1307 if (unlikely(!ci.map)) { 1308 bio_io_error(bio); 1309 return; 1310 } 1311 1312 ci.md = md; 1313 ci.io = alloc_io(md); 1314 ci.io->error = 0; 1315 atomic_set(&ci.io->io_count, 1); 1316 ci.io->bio = bio; 1317 ci.io->md = md; 1318 spin_lock_init(&ci.io->endio_lock); 1319 ci.sector = bio->bi_sector; 1320 ci.idx = bio->bi_idx; 1321 1322 start_io_acct(ci.io); 1323 if (bio->bi_rw & REQ_FLUSH) { 1324 ci.bio = &ci.md->flush_bio; 1325 ci.sector_count = 0; 1326 error = __clone_and_map_empty_flush(&ci); 1327 /* dec_pending submits any data associated with flush */ 1328 } else { 1329 ci.bio = bio; 1330 ci.sector_count = bio_sectors(bio); 1331 while (ci.sector_count && !error) 1332 error = __clone_and_map(&ci); 1333 } 1334 1335 /* drop the extra reference count */ 1336 dec_pending(ci.io, error); 1337 dm_table_put(ci.map); 1338 } 1339 /*----------------------------------------------------------------- 1340 * CRUD END 1341 *---------------------------------------------------------------*/ 1342 1343 static int dm_merge_bvec(struct request_queue *q, 1344 struct bvec_merge_data *bvm, 1345 struct bio_vec *biovec) 1346 { 1347 struct mapped_device *md = q->queuedata; 1348 struct dm_table *map = dm_get_live_table(md); 1349 struct dm_target *ti; 1350 sector_t max_sectors; 1351 int max_size = 0; 1352 1353 if (unlikely(!map)) 1354 goto out; 1355 1356 ti = dm_table_find_target(map, bvm->bi_sector); 1357 if (!dm_target_is_valid(ti)) 1358 goto out_table; 1359 1360 /* 1361 * Find maximum amount of I/O that won't need splitting 1362 */ 1363 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1364 (sector_t) BIO_MAX_SECTORS); 1365 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1366 if (max_size < 0) 1367 max_size = 0; 1368 1369 /* 1370 * merge_bvec_fn() returns number of bytes 1371 * it can accept at this offset 1372 * max is precomputed maximal io size 1373 */ 1374 if (max_size && ti->type->merge) 1375 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1376 /* 1377 * If the target doesn't support merge method and some of the devices 1378 * provided their merge_bvec method (we know this by looking at 1379 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1380 * entries. So always set max_size to 0, and the code below allows 1381 * just one page. 1382 */ 1383 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1384 1385 max_size = 0; 1386 1387 out_table: 1388 dm_table_put(map); 1389 1390 out: 1391 /* 1392 * Always allow an entire first page 1393 */ 1394 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1395 max_size = biovec->bv_len; 1396 1397 return max_size; 1398 } 1399 1400 /* 1401 * The request function that just remaps the bio built up by 1402 * dm_merge_bvec. 1403 */ 1404 static int _dm_request(struct request_queue *q, struct bio *bio) 1405 { 1406 int rw = bio_data_dir(bio); 1407 struct mapped_device *md = q->queuedata; 1408 int cpu; 1409 1410 down_read(&md->io_lock); 1411 1412 cpu = part_stat_lock(); 1413 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1414 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1415 part_stat_unlock(); 1416 1417 /* if we're suspended, we have to queue this io for later */ 1418 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1419 up_read(&md->io_lock); 1420 1421 if (bio_rw(bio) != READA) 1422 queue_io(md, bio); 1423 else 1424 bio_io_error(bio); 1425 return 0; 1426 } 1427 1428 __split_and_process_bio(md, bio); 1429 up_read(&md->io_lock); 1430 return 0; 1431 } 1432 1433 static int dm_make_request(struct request_queue *q, struct bio *bio) 1434 { 1435 struct mapped_device *md = q->queuedata; 1436 1437 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1438 } 1439 1440 static int dm_request_based(struct mapped_device *md) 1441 { 1442 return blk_queue_stackable(md->queue); 1443 } 1444 1445 static int dm_request(struct request_queue *q, struct bio *bio) 1446 { 1447 struct mapped_device *md = q->queuedata; 1448 1449 if (dm_request_based(md)) 1450 return dm_make_request(q, bio); 1451 1452 return _dm_request(q, bio); 1453 } 1454 1455 void dm_dispatch_request(struct request *rq) 1456 { 1457 int r; 1458 1459 if (blk_queue_io_stat(rq->q)) 1460 rq->cmd_flags |= REQ_IO_STAT; 1461 1462 rq->start_time = jiffies; 1463 r = blk_insert_cloned_request(rq->q, rq); 1464 if (r) 1465 dm_complete_request(rq, r); 1466 } 1467 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1468 1469 static void dm_rq_bio_destructor(struct bio *bio) 1470 { 1471 struct dm_rq_clone_bio_info *info = bio->bi_private; 1472 struct mapped_device *md = info->tio->md; 1473 1474 free_bio_info(info); 1475 bio_free(bio, md->bs); 1476 } 1477 1478 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1479 void *data) 1480 { 1481 struct dm_rq_target_io *tio = data; 1482 struct mapped_device *md = tio->md; 1483 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1484 1485 if (!info) 1486 return -ENOMEM; 1487 1488 info->orig = bio_orig; 1489 info->tio = tio; 1490 bio->bi_end_io = end_clone_bio; 1491 bio->bi_private = info; 1492 bio->bi_destructor = dm_rq_bio_destructor; 1493 1494 return 0; 1495 } 1496 1497 static int setup_clone(struct request *clone, struct request *rq, 1498 struct dm_rq_target_io *tio) 1499 { 1500 int r; 1501 1502 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1503 dm_rq_bio_constructor, tio); 1504 if (r) 1505 return r; 1506 1507 clone->cmd = rq->cmd; 1508 clone->cmd_len = rq->cmd_len; 1509 clone->sense = rq->sense; 1510 clone->buffer = rq->buffer; 1511 clone->end_io = end_clone_request; 1512 clone->end_io_data = tio; 1513 1514 return 0; 1515 } 1516 1517 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1518 gfp_t gfp_mask) 1519 { 1520 struct request *clone; 1521 struct dm_rq_target_io *tio; 1522 1523 tio = alloc_rq_tio(md, gfp_mask); 1524 if (!tio) 1525 return NULL; 1526 1527 tio->md = md; 1528 tio->ti = NULL; 1529 tio->orig = rq; 1530 tio->error = 0; 1531 memset(&tio->info, 0, sizeof(tio->info)); 1532 1533 clone = &tio->clone; 1534 if (setup_clone(clone, rq, tio)) { 1535 /* -ENOMEM */ 1536 free_rq_tio(tio); 1537 return NULL; 1538 } 1539 1540 return clone; 1541 } 1542 1543 /* 1544 * Called with the queue lock held. 1545 */ 1546 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1547 { 1548 struct mapped_device *md = q->queuedata; 1549 struct request *clone; 1550 1551 if (unlikely(rq->special)) { 1552 DMWARN("Already has something in rq->special."); 1553 return BLKPREP_KILL; 1554 } 1555 1556 clone = clone_rq(rq, md, GFP_ATOMIC); 1557 if (!clone) 1558 return BLKPREP_DEFER; 1559 1560 rq->special = clone; 1561 rq->cmd_flags |= REQ_DONTPREP; 1562 1563 return BLKPREP_OK; 1564 } 1565 1566 /* 1567 * Returns: 1568 * 0 : the request has been processed (not requeued) 1569 * !0 : the request has been requeued 1570 */ 1571 static int map_request(struct dm_target *ti, struct request *clone, 1572 struct mapped_device *md) 1573 { 1574 int r, requeued = 0; 1575 struct dm_rq_target_io *tio = clone->end_io_data; 1576 1577 /* 1578 * Hold the md reference here for the in-flight I/O. 1579 * We can't rely on the reference count by device opener, 1580 * because the device may be closed during the request completion 1581 * when all bios are completed. 1582 * See the comment in rq_completed() too. 1583 */ 1584 dm_get(md); 1585 1586 tio->ti = ti; 1587 r = ti->type->map_rq(ti, clone, &tio->info); 1588 switch (r) { 1589 case DM_MAPIO_SUBMITTED: 1590 /* The target has taken the I/O to submit by itself later */ 1591 break; 1592 case DM_MAPIO_REMAPPED: 1593 /* The target has remapped the I/O so dispatch it */ 1594 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1595 blk_rq_pos(tio->orig)); 1596 dm_dispatch_request(clone); 1597 break; 1598 case DM_MAPIO_REQUEUE: 1599 /* The target wants to requeue the I/O */ 1600 dm_requeue_unmapped_request(clone); 1601 requeued = 1; 1602 break; 1603 default: 1604 if (r > 0) { 1605 DMWARN("unimplemented target map return value: %d", r); 1606 BUG(); 1607 } 1608 1609 /* The target wants to complete the I/O */ 1610 dm_kill_unmapped_request(clone, r); 1611 break; 1612 } 1613 1614 return requeued; 1615 } 1616 1617 /* 1618 * q->request_fn for request-based dm. 1619 * Called with the queue lock held. 1620 */ 1621 static void dm_request_fn(struct request_queue *q) 1622 { 1623 struct mapped_device *md = q->queuedata; 1624 struct dm_table *map = dm_get_live_table(md); 1625 struct dm_target *ti; 1626 struct request *rq, *clone; 1627 sector_t pos; 1628 1629 /* 1630 * For suspend, check blk_queue_stopped() and increment 1631 * ->pending within a single queue_lock not to increment the 1632 * number of in-flight I/Os after the queue is stopped in 1633 * dm_suspend(). 1634 */ 1635 while (!blk_queue_stopped(q)) { 1636 rq = blk_peek_request(q); 1637 if (!rq) 1638 goto delay_and_out; 1639 1640 /* always use block 0 to find the target for flushes for now */ 1641 pos = 0; 1642 if (!(rq->cmd_flags & REQ_FLUSH)) 1643 pos = blk_rq_pos(rq); 1644 1645 ti = dm_table_find_target(map, pos); 1646 BUG_ON(!dm_target_is_valid(ti)); 1647 1648 if (ti->type->busy && ti->type->busy(ti)) 1649 goto delay_and_out; 1650 1651 blk_start_request(rq); 1652 clone = rq->special; 1653 atomic_inc(&md->pending[rq_data_dir(clone)]); 1654 1655 spin_unlock(q->queue_lock); 1656 if (map_request(ti, clone, md)) 1657 goto requeued; 1658 1659 BUG_ON(!irqs_disabled()); 1660 spin_lock(q->queue_lock); 1661 } 1662 1663 goto out; 1664 1665 requeued: 1666 BUG_ON(!irqs_disabled()); 1667 spin_lock(q->queue_lock); 1668 1669 delay_and_out: 1670 blk_delay_queue(q, HZ / 10); 1671 out: 1672 dm_table_put(map); 1673 1674 return; 1675 } 1676 1677 int dm_underlying_device_busy(struct request_queue *q) 1678 { 1679 return blk_lld_busy(q); 1680 } 1681 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1682 1683 static int dm_lld_busy(struct request_queue *q) 1684 { 1685 int r; 1686 struct mapped_device *md = q->queuedata; 1687 struct dm_table *map = dm_get_live_table(md); 1688 1689 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1690 r = 1; 1691 else 1692 r = dm_table_any_busy_target(map); 1693 1694 dm_table_put(map); 1695 1696 return r; 1697 } 1698 1699 static int dm_any_congested(void *congested_data, int bdi_bits) 1700 { 1701 int r = bdi_bits; 1702 struct mapped_device *md = congested_data; 1703 struct dm_table *map; 1704 1705 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1706 map = dm_get_live_table(md); 1707 if (map) { 1708 /* 1709 * Request-based dm cares about only own queue for 1710 * the query about congestion status of request_queue 1711 */ 1712 if (dm_request_based(md)) 1713 r = md->queue->backing_dev_info.state & 1714 bdi_bits; 1715 else 1716 r = dm_table_any_congested(map, bdi_bits); 1717 1718 dm_table_put(map); 1719 } 1720 } 1721 1722 return r; 1723 } 1724 1725 /*----------------------------------------------------------------- 1726 * An IDR is used to keep track of allocated minor numbers. 1727 *---------------------------------------------------------------*/ 1728 static void free_minor(int minor) 1729 { 1730 spin_lock(&_minor_lock); 1731 idr_remove(&_minor_idr, minor); 1732 spin_unlock(&_minor_lock); 1733 } 1734 1735 /* 1736 * See if the device with a specific minor # is free. 1737 */ 1738 static int specific_minor(int minor) 1739 { 1740 int r, m; 1741 1742 if (minor >= (1 << MINORBITS)) 1743 return -EINVAL; 1744 1745 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1746 if (!r) 1747 return -ENOMEM; 1748 1749 spin_lock(&_minor_lock); 1750 1751 if (idr_find(&_minor_idr, minor)) { 1752 r = -EBUSY; 1753 goto out; 1754 } 1755 1756 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1757 if (r) 1758 goto out; 1759 1760 if (m != minor) { 1761 idr_remove(&_minor_idr, m); 1762 r = -EBUSY; 1763 goto out; 1764 } 1765 1766 out: 1767 spin_unlock(&_minor_lock); 1768 return r; 1769 } 1770 1771 static int next_free_minor(int *minor) 1772 { 1773 int r, m; 1774 1775 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1776 if (!r) 1777 return -ENOMEM; 1778 1779 spin_lock(&_minor_lock); 1780 1781 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1782 if (r) 1783 goto out; 1784 1785 if (m >= (1 << MINORBITS)) { 1786 idr_remove(&_minor_idr, m); 1787 r = -ENOSPC; 1788 goto out; 1789 } 1790 1791 *minor = m; 1792 1793 out: 1794 spin_unlock(&_minor_lock); 1795 return r; 1796 } 1797 1798 static const struct block_device_operations dm_blk_dops; 1799 1800 static void dm_wq_work(struct work_struct *work); 1801 1802 static void dm_init_md_queue(struct mapped_device *md) 1803 { 1804 /* 1805 * Request-based dm devices cannot be stacked on top of bio-based dm 1806 * devices. The type of this dm device has not been decided yet. 1807 * The type is decided at the first table loading time. 1808 * To prevent problematic device stacking, clear the queue flag 1809 * for request stacking support until then. 1810 * 1811 * This queue is new, so no concurrency on the queue_flags. 1812 */ 1813 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1814 1815 md->queue->queuedata = md; 1816 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1817 md->queue->backing_dev_info.congested_data = md; 1818 blk_queue_make_request(md->queue, dm_request); 1819 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1820 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1821 } 1822 1823 /* 1824 * Allocate and initialise a blank device with a given minor. 1825 */ 1826 static struct mapped_device *alloc_dev(int minor) 1827 { 1828 int r; 1829 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1830 void *old_md; 1831 1832 if (!md) { 1833 DMWARN("unable to allocate device, out of memory."); 1834 return NULL; 1835 } 1836 1837 if (!try_module_get(THIS_MODULE)) 1838 goto bad_module_get; 1839 1840 /* get a minor number for the dev */ 1841 if (minor == DM_ANY_MINOR) 1842 r = next_free_minor(&minor); 1843 else 1844 r = specific_minor(minor); 1845 if (r < 0) 1846 goto bad_minor; 1847 1848 md->type = DM_TYPE_NONE; 1849 init_rwsem(&md->io_lock); 1850 mutex_init(&md->suspend_lock); 1851 mutex_init(&md->type_lock); 1852 spin_lock_init(&md->deferred_lock); 1853 rwlock_init(&md->map_lock); 1854 atomic_set(&md->holders, 1); 1855 atomic_set(&md->open_count, 0); 1856 atomic_set(&md->event_nr, 0); 1857 atomic_set(&md->uevent_seq, 0); 1858 INIT_LIST_HEAD(&md->uevent_list); 1859 spin_lock_init(&md->uevent_lock); 1860 1861 md->queue = blk_alloc_queue(GFP_KERNEL); 1862 if (!md->queue) 1863 goto bad_queue; 1864 1865 dm_init_md_queue(md); 1866 1867 md->disk = alloc_disk(1); 1868 if (!md->disk) 1869 goto bad_disk; 1870 1871 atomic_set(&md->pending[0], 0); 1872 atomic_set(&md->pending[1], 0); 1873 init_waitqueue_head(&md->wait); 1874 INIT_WORK(&md->work, dm_wq_work); 1875 init_waitqueue_head(&md->eventq); 1876 1877 md->disk->major = _major; 1878 md->disk->first_minor = minor; 1879 md->disk->fops = &dm_blk_dops; 1880 md->disk->queue = md->queue; 1881 md->disk->private_data = md; 1882 sprintf(md->disk->disk_name, "dm-%d", minor); 1883 add_disk(md->disk); 1884 format_dev_t(md->name, MKDEV(_major, minor)); 1885 1886 md->wq = alloc_workqueue("kdmflush", 1887 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1888 if (!md->wq) 1889 goto bad_thread; 1890 1891 md->bdev = bdget_disk(md->disk, 0); 1892 if (!md->bdev) 1893 goto bad_bdev; 1894 1895 bio_init(&md->flush_bio); 1896 md->flush_bio.bi_bdev = md->bdev; 1897 md->flush_bio.bi_rw = WRITE_FLUSH; 1898 1899 /* Populate the mapping, nobody knows we exist yet */ 1900 spin_lock(&_minor_lock); 1901 old_md = idr_replace(&_minor_idr, md, minor); 1902 spin_unlock(&_minor_lock); 1903 1904 BUG_ON(old_md != MINOR_ALLOCED); 1905 1906 return md; 1907 1908 bad_bdev: 1909 destroy_workqueue(md->wq); 1910 bad_thread: 1911 del_gendisk(md->disk); 1912 put_disk(md->disk); 1913 bad_disk: 1914 blk_cleanup_queue(md->queue); 1915 bad_queue: 1916 free_minor(minor); 1917 bad_minor: 1918 module_put(THIS_MODULE); 1919 bad_module_get: 1920 kfree(md); 1921 return NULL; 1922 } 1923 1924 static void unlock_fs(struct mapped_device *md); 1925 1926 static void free_dev(struct mapped_device *md) 1927 { 1928 int minor = MINOR(disk_devt(md->disk)); 1929 1930 unlock_fs(md); 1931 bdput(md->bdev); 1932 destroy_workqueue(md->wq); 1933 if (md->tio_pool) 1934 mempool_destroy(md->tio_pool); 1935 if (md->io_pool) 1936 mempool_destroy(md->io_pool); 1937 if (md->bs) 1938 bioset_free(md->bs); 1939 blk_integrity_unregister(md->disk); 1940 del_gendisk(md->disk); 1941 free_minor(minor); 1942 1943 spin_lock(&_minor_lock); 1944 md->disk->private_data = NULL; 1945 spin_unlock(&_minor_lock); 1946 1947 put_disk(md->disk); 1948 blk_cleanup_queue(md->queue); 1949 module_put(THIS_MODULE); 1950 kfree(md); 1951 } 1952 1953 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1954 { 1955 struct dm_md_mempools *p; 1956 1957 if (md->io_pool && md->tio_pool && md->bs) 1958 /* the md already has necessary mempools */ 1959 goto out; 1960 1961 p = dm_table_get_md_mempools(t); 1962 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1963 1964 md->io_pool = p->io_pool; 1965 p->io_pool = NULL; 1966 md->tio_pool = p->tio_pool; 1967 p->tio_pool = NULL; 1968 md->bs = p->bs; 1969 p->bs = NULL; 1970 1971 out: 1972 /* mempool bind completed, now no need any mempools in the table */ 1973 dm_table_free_md_mempools(t); 1974 } 1975 1976 /* 1977 * Bind a table to the device. 1978 */ 1979 static void event_callback(void *context) 1980 { 1981 unsigned long flags; 1982 LIST_HEAD(uevents); 1983 struct mapped_device *md = (struct mapped_device *) context; 1984 1985 spin_lock_irqsave(&md->uevent_lock, flags); 1986 list_splice_init(&md->uevent_list, &uevents); 1987 spin_unlock_irqrestore(&md->uevent_lock, flags); 1988 1989 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1990 1991 atomic_inc(&md->event_nr); 1992 wake_up(&md->eventq); 1993 } 1994 1995 /* 1996 * Protected by md->suspend_lock obtained by dm_swap_table(). 1997 */ 1998 static void __set_size(struct mapped_device *md, sector_t size) 1999 { 2000 set_capacity(md->disk, size); 2001 2002 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2003 } 2004 2005 /* 2006 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2007 * 2008 * If this function returns 0, then the device is either a non-dm 2009 * device without a merge_bvec_fn, or it is a dm device that is 2010 * able to split any bios it receives that are too big. 2011 */ 2012 int dm_queue_merge_is_compulsory(struct request_queue *q) 2013 { 2014 struct mapped_device *dev_md; 2015 2016 if (!q->merge_bvec_fn) 2017 return 0; 2018 2019 if (q->make_request_fn == dm_request) { 2020 dev_md = q->queuedata; 2021 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2022 return 0; 2023 } 2024 2025 return 1; 2026 } 2027 2028 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2029 struct dm_dev *dev, sector_t start, 2030 sector_t len, void *data) 2031 { 2032 struct block_device *bdev = dev->bdev; 2033 struct request_queue *q = bdev_get_queue(bdev); 2034 2035 return dm_queue_merge_is_compulsory(q); 2036 } 2037 2038 /* 2039 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2040 * on the properties of the underlying devices. 2041 */ 2042 static int dm_table_merge_is_optional(struct dm_table *table) 2043 { 2044 unsigned i = 0; 2045 struct dm_target *ti; 2046 2047 while (i < dm_table_get_num_targets(table)) { 2048 ti = dm_table_get_target(table, i++); 2049 2050 if (ti->type->iterate_devices && 2051 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2052 return 0; 2053 } 2054 2055 return 1; 2056 } 2057 2058 /* 2059 * Returns old map, which caller must destroy. 2060 */ 2061 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2062 struct queue_limits *limits) 2063 { 2064 struct dm_table *old_map; 2065 struct request_queue *q = md->queue; 2066 sector_t size; 2067 unsigned long flags; 2068 int merge_is_optional; 2069 2070 size = dm_table_get_size(t); 2071 2072 /* 2073 * Wipe any geometry if the size of the table changed. 2074 */ 2075 if (size != get_capacity(md->disk)) 2076 memset(&md->geometry, 0, sizeof(md->geometry)); 2077 2078 __set_size(md, size); 2079 2080 dm_table_event_callback(t, event_callback, md); 2081 2082 /* 2083 * The queue hasn't been stopped yet, if the old table type wasn't 2084 * for request-based during suspension. So stop it to prevent 2085 * I/O mapping before resume. 2086 * This must be done before setting the queue restrictions, 2087 * because request-based dm may be run just after the setting. 2088 */ 2089 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2090 stop_queue(q); 2091 2092 __bind_mempools(md, t); 2093 2094 merge_is_optional = dm_table_merge_is_optional(t); 2095 2096 write_lock_irqsave(&md->map_lock, flags); 2097 old_map = md->map; 2098 md->map = t; 2099 dm_table_set_restrictions(t, q, limits); 2100 if (merge_is_optional) 2101 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2102 else 2103 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2104 write_unlock_irqrestore(&md->map_lock, flags); 2105 2106 return old_map; 2107 } 2108 2109 /* 2110 * Returns unbound table for the caller to free. 2111 */ 2112 static struct dm_table *__unbind(struct mapped_device *md) 2113 { 2114 struct dm_table *map = md->map; 2115 unsigned long flags; 2116 2117 if (!map) 2118 return NULL; 2119 2120 dm_table_event_callback(map, NULL, NULL); 2121 write_lock_irqsave(&md->map_lock, flags); 2122 md->map = NULL; 2123 write_unlock_irqrestore(&md->map_lock, flags); 2124 2125 return map; 2126 } 2127 2128 /* 2129 * Constructor for a new device. 2130 */ 2131 int dm_create(int minor, struct mapped_device **result) 2132 { 2133 struct mapped_device *md; 2134 2135 md = alloc_dev(minor); 2136 if (!md) 2137 return -ENXIO; 2138 2139 dm_sysfs_init(md); 2140 2141 *result = md; 2142 return 0; 2143 } 2144 2145 /* 2146 * Functions to manage md->type. 2147 * All are required to hold md->type_lock. 2148 */ 2149 void dm_lock_md_type(struct mapped_device *md) 2150 { 2151 mutex_lock(&md->type_lock); 2152 } 2153 2154 void dm_unlock_md_type(struct mapped_device *md) 2155 { 2156 mutex_unlock(&md->type_lock); 2157 } 2158 2159 void dm_set_md_type(struct mapped_device *md, unsigned type) 2160 { 2161 md->type = type; 2162 } 2163 2164 unsigned dm_get_md_type(struct mapped_device *md) 2165 { 2166 return md->type; 2167 } 2168 2169 /* 2170 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2171 */ 2172 static int dm_init_request_based_queue(struct mapped_device *md) 2173 { 2174 struct request_queue *q = NULL; 2175 2176 if (md->queue->elevator) 2177 return 1; 2178 2179 /* Fully initialize the queue */ 2180 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2181 if (!q) 2182 return 0; 2183 2184 md->queue = q; 2185 md->saved_make_request_fn = md->queue->make_request_fn; 2186 dm_init_md_queue(md); 2187 blk_queue_softirq_done(md->queue, dm_softirq_done); 2188 blk_queue_prep_rq(md->queue, dm_prep_fn); 2189 blk_queue_lld_busy(md->queue, dm_lld_busy); 2190 2191 elv_register_queue(md->queue); 2192 2193 return 1; 2194 } 2195 2196 /* 2197 * Setup the DM device's queue based on md's type 2198 */ 2199 int dm_setup_md_queue(struct mapped_device *md) 2200 { 2201 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2202 !dm_init_request_based_queue(md)) { 2203 DMWARN("Cannot initialize queue for request-based mapped device"); 2204 return -EINVAL; 2205 } 2206 2207 return 0; 2208 } 2209 2210 static struct mapped_device *dm_find_md(dev_t dev) 2211 { 2212 struct mapped_device *md; 2213 unsigned minor = MINOR(dev); 2214 2215 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2216 return NULL; 2217 2218 spin_lock(&_minor_lock); 2219 2220 md = idr_find(&_minor_idr, minor); 2221 if (md && (md == MINOR_ALLOCED || 2222 (MINOR(disk_devt(dm_disk(md))) != minor) || 2223 dm_deleting_md(md) || 2224 test_bit(DMF_FREEING, &md->flags))) { 2225 md = NULL; 2226 goto out; 2227 } 2228 2229 out: 2230 spin_unlock(&_minor_lock); 2231 2232 return md; 2233 } 2234 2235 struct mapped_device *dm_get_md(dev_t dev) 2236 { 2237 struct mapped_device *md = dm_find_md(dev); 2238 2239 if (md) 2240 dm_get(md); 2241 2242 return md; 2243 } 2244 2245 void *dm_get_mdptr(struct mapped_device *md) 2246 { 2247 return md->interface_ptr; 2248 } 2249 2250 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2251 { 2252 md->interface_ptr = ptr; 2253 } 2254 2255 void dm_get(struct mapped_device *md) 2256 { 2257 atomic_inc(&md->holders); 2258 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2259 } 2260 2261 const char *dm_device_name(struct mapped_device *md) 2262 { 2263 return md->name; 2264 } 2265 EXPORT_SYMBOL_GPL(dm_device_name); 2266 2267 static void __dm_destroy(struct mapped_device *md, bool wait) 2268 { 2269 struct dm_table *map; 2270 2271 might_sleep(); 2272 2273 spin_lock(&_minor_lock); 2274 map = dm_get_live_table(md); 2275 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2276 set_bit(DMF_FREEING, &md->flags); 2277 spin_unlock(&_minor_lock); 2278 2279 if (!dm_suspended_md(md)) { 2280 dm_table_presuspend_targets(map); 2281 dm_table_postsuspend_targets(map); 2282 } 2283 2284 /* 2285 * Rare, but there may be I/O requests still going to complete, 2286 * for example. Wait for all references to disappear. 2287 * No one should increment the reference count of the mapped_device, 2288 * after the mapped_device state becomes DMF_FREEING. 2289 */ 2290 if (wait) 2291 while (atomic_read(&md->holders)) 2292 msleep(1); 2293 else if (atomic_read(&md->holders)) 2294 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2295 dm_device_name(md), atomic_read(&md->holders)); 2296 2297 dm_sysfs_exit(md); 2298 dm_table_put(map); 2299 dm_table_destroy(__unbind(md)); 2300 free_dev(md); 2301 } 2302 2303 void dm_destroy(struct mapped_device *md) 2304 { 2305 __dm_destroy(md, true); 2306 } 2307 2308 void dm_destroy_immediate(struct mapped_device *md) 2309 { 2310 __dm_destroy(md, false); 2311 } 2312 2313 void dm_put(struct mapped_device *md) 2314 { 2315 atomic_dec(&md->holders); 2316 } 2317 EXPORT_SYMBOL_GPL(dm_put); 2318 2319 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2320 { 2321 int r = 0; 2322 DECLARE_WAITQUEUE(wait, current); 2323 2324 add_wait_queue(&md->wait, &wait); 2325 2326 while (1) { 2327 set_current_state(interruptible); 2328 2329 if (!md_in_flight(md)) 2330 break; 2331 2332 if (interruptible == TASK_INTERRUPTIBLE && 2333 signal_pending(current)) { 2334 r = -EINTR; 2335 break; 2336 } 2337 2338 io_schedule(); 2339 } 2340 set_current_state(TASK_RUNNING); 2341 2342 remove_wait_queue(&md->wait, &wait); 2343 2344 return r; 2345 } 2346 2347 /* 2348 * Process the deferred bios 2349 */ 2350 static void dm_wq_work(struct work_struct *work) 2351 { 2352 struct mapped_device *md = container_of(work, struct mapped_device, 2353 work); 2354 struct bio *c; 2355 2356 down_read(&md->io_lock); 2357 2358 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2359 spin_lock_irq(&md->deferred_lock); 2360 c = bio_list_pop(&md->deferred); 2361 spin_unlock_irq(&md->deferred_lock); 2362 2363 if (!c) 2364 break; 2365 2366 up_read(&md->io_lock); 2367 2368 if (dm_request_based(md)) 2369 generic_make_request(c); 2370 else 2371 __split_and_process_bio(md, c); 2372 2373 down_read(&md->io_lock); 2374 } 2375 2376 up_read(&md->io_lock); 2377 } 2378 2379 static void dm_queue_flush(struct mapped_device *md) 2380 { 2381 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2382 smp_mb__after_clear_bit(); 2383 queue_work(md->wq, &md->work); 2384 } 2385 2386 /* 2387 * Swap in a new table, returning the old one for the caller to destroy. 2388 */ 2389 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2390 { 2391 struct dm_table *map = ERR_PTR(-EINVAL); 2392 struct queue_limits limits; 2393 int r; 2394 2395 mutex_lock(&md->suspend_lock); 2396 2397 /* device must be suspended */ 2398 if (!dm_suspended_md(md)) 2399 goto out; 2400 2401 r = dm_calculate_queue_limits(table, &limits); 2402 if (r) { 2403 map = ERR_PTR(r); 2404 goto out; 2405 } 2406 2407 map = __bind(md, table, &limits); 2408 2409 out: 2410 mutex_unlock(&md->suspend_lock); 2411 return map; 2412 } 2413 2414 /* 2415 * Functions to lock and unlock any filesystem running on the 2416 * device. 2417 */ 2418 static int lock_fs(struct mapped_device *md) 2419 { 2420 int r; 2421 2422 WARN_ON(md->frozen_sb); 2423 2424 md->frozen_sb = freeze_bdev(md->bdev); 2425 if (IS_ERR(md->frozen_sb)) { 2426 r = PTR_ERR(md->frozen_sb); 2427 md->frozen_sb = NULL; 2428 return r; 2429 } 2430 2431 set_bit(DMF_FROZEN, &md->flags); 2432 2433 return 0; 2434 } 2435 2436 static void unlock_fs(struct mapped_device *md) 2437 { 2438 if (!test_bit(DMF_FROZEN, &md->flags)) 2439 return; 2440 2441 thaw_bdev(md->bdev, md->frozen_sb); 2442 md->frozen_sb = NULL; 2443 clear_bit(DMF_FROZEN, &md->flags); 2444 } 2445 2446 /* 2447 * We need to be able to change a mapping table under a mounted 2448 * filesystem. For example we might want to move some data in 2449 * the background. Before the table can be swapped with 2450 * dm_bind_table, dm_suspend must be called to flush any in 2451 * flight bios and ensure that any further io gets deferred. 2452 */ 2453 /* 2454 * Suspend mechanism in request-based dm. 2455 * 2456 * 1. Flush all I/Os by lock_fs() if needed. 2457 * 2. Stop dispatching any I/O by stopping the request_queue. 2458 * 3. Wait for all in-flight I/Os to be completed or requeued. 2459 * 2460 * To abort suspend, start the request_queue. 2461 */ 2462 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2463 { 2464 struct dm_table *map = NULL; 2465 int r = 0; 2466 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2467 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2468 2469 mutex_lock(&md->suspend_lock); 2470 2471 if (dm_suspended_md(md)) { 2472 r = -EINVAL; 2473 goto out_unlock; 2474 } 2475 2476 map = dm_get_live_table(md); 2477 2478 /* 2479 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2480 * This flag is cleared before dm_suspend returns. 2481 */ 2482 if (noflush) 2483 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2484 2485 /* This does not get reverted if there's an error later. */ 2486 dm_table_presuspend_targets(map); 2487 2488 /* 2489 * Flush I/O to the device. 2490 * Any I/O submitted after lock_fs() may not be flushed. 2491 * noflush takes precedence over do_lockfs. 2492 * (lock_fs() flushes I/Os and waits for them to complete.) 2493 */ 2494 if (!noflush && do_lockfs) { 2495 r = lock_fs(md); 2496 if (r) 2497 goto out; 2498 } 2499 2500 /* 2501 * Here we must make sure that no processes are submitting requests 2502 * to target drivers i.e. no one may be executing 2503 * __split_and_process_bio. This is called from dm_request and 2504 * dm_wq_work. 2505 * 2506 * To get all processes out of __split_and_process_bio in dm_request, 2507 * we take the write lock. To prevent any process from reentering 2508 * __split_and_process_bio from dm_request and quiesce the thread 2509 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2510 * flush_workqueue(md->wq). 2511 */ 2512 down_write(&md->io_lock); 2513 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2514 up_write(&md->io_lock); 2515 2516 /* 2517 * Stop md->queue before flushing md->wq in case request-based 2518 * dm defers requests to md->wq from md->queue. 2519 */ 2520 if (dm_request_based(md)) 2521 stop_queue(md->queue); 2522 2523 flush_workqueue(md->wq); 2524 2525 /* 2526 * At this point no more requests are entering target request routines. 2527 * We call dm_wait_for_completion to wait for all existing requests 2528 * to finish. 2529 */ 2530 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2531 2532 down_write(&md->io_lock); 2533 if (noflush) 2534 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2535 up_write(&md->io_lock); 2536 2537 /* were we interrupted ? */ 2538 if (r < 0) { 2539 dm_queue_flush(md); 2540 2541 if (dm_request_based(md)) 2542 start_queue(md->queue); 2543 2544 unlock_fs(md); 2545 goto out; /* pushback list is already flushed, so skip flush */ 2546 } 2547 2548 /* 2549 * If dm_wait_for_completion returned 0, the device is completely 2550 * quiescent now. There is no request-processing activity. All new 2551 * requests are being added to md->deferred list. 2552 */ 2553 2554 set_bit(DMF_SUSPENDED, &md->flags); 2555 2556 dm_table_postsuspend_targets(map); 2557 2558 out: 2559 dm_table_put(map); 2560 2561 out_unlock: 2562 mutex_unlock(&md->suspend_lock); 2563 return r; 2564 } 2565 2566 int dm_resume(struct mapped_device *md) 2567 { 2568 int r = -EINVAL; 2569 struct dm_table *map = NULL; 2570 2571 mutex_lock(&md->suspend_lock); 2572 if (!dm_suspended_md(md)) 2573 goto out; 2574 2575 map = dm_get_live_table(md); 2576 if (!map || !dm_table_get_size(map)) 2577 goto out; 2578 2579 r = dm_table_resume_targets(map); 2580 if (r) 2581 goto out; 2582 2583 dm_queue_flush(md); 2584 2585 /* 2586 * Flushing deferred I/Os must be done after targets are resumed 2587 * so that mapping of targets can work correctly. 2588 * Request-based dm is queueing the deferred I/Os in its request_queue. 2589 */ 2590 if (dm_request_based(md)) 2591 start_queue(md->queue); 2592 2593 unlock_fs(md); 2594 2595 clear_bit(DMF_SUSPENDED, &md->flags); 2596 2597 r = 0; 2598 out: 2599 dm_table_put(map); 2600 mutex_unlock(&md->suspend_lock); 2601 2602 return r; 2603 } 2604 2605 /*----------------------------------------------------------------- 2606 * Event notification. 2607 *---------------------------------------------------------------*/ 2608 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2609 unsigned cookie) 2610 { 2611 char udev_cookie[DM_COOKIE_LENGTH]; 2612 char *envp[] = { udev_cookie, NULL }; 2613 2614 if (!cookie) 2615 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2616 else { 2617 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2618 DM_COOKIE_ENV_VAR_NAME, cookie); 2619 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2620 action, envp); 2621 } 2622 } 2623 2624 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2625 { 2626 return atomic_add_return(1, &md->uevent_seq); 2627 } 2628 2629 uint32_t dm_get_event_nr(struct mapped_device *md) 2630 { 2631 return atomic_read(&md->event_nr); 2632 } 2633 2634 int dm_wait_event(struct mapped_device *md, int event_nr) 2635 { 2636 return wait_event_interruptible(md->eventq, 2637 (event_nr != atomic_read(&md->event_nr))); 2638 } 2639 2640 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2641 { 2642 unsigned long flags; 2643 2644 spin_lock_irqsave(&md->uevent_lock, flags); 2645 list_add(elist, &md->uevent_list); 2646 spin_unlock_irqrestore(&md->uevent_lock, flags); 2647 } 2648 2649 /* 2650 * The gendisk is only valid as long as you have a reference 2651 * count on 'md'. 2652 */ 2653 struct gendisk *dm_disk(struct mapped_device *md) 2654 { 2655 return md->disk; 2656 } 2657 2658 struct kobject *dm_kobject(struct mapped_device *md) 2659 { 2660 return &md->kobj; 2661 } 2662 2663 /* 2664 * struct mapped_device should not be exported outside of dm.c 2665 * so use this check to verify that kobj is part of md structure 2666 */ 2667 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2668 { 2669 struct mapped_device *md; 2670 2671 md = container_of(kobj, struct mapped_device, kobj); 2672 if (&md->kobj != kobj) 2673 return NULL; 2674 2675 if (test_bit(DMF_FREEING, &md->flags) || 2676 dm_deleting_md(md)) 2677 return NULL; 2678 2679 dm_get(md); 2680 return md; 2681 } 2682 2683 int dm_suspended_md(struct mapped_device *md) 2684 { 2685 return test_bit(DMF_SUSPENDED, &md->flags); 2686 } 2687 2688 int dm_suspended(struct dm_target *ti) 2689 { 2690 return dm_suspended_md(dm_table_get_md(ti->table)); 2691 } 2692 EXPORT_SYMBOL_GPL(dm_suspended); 2693 2694 int dm_noflush_suspending(struct dm_target *ti) 2695 { 2696 return __noflush_suspending(dm_table_get_md(ti->table)); 2697 } 2698 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2699 2700 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity) 2701 { 2702 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2703 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2704 2705 if (!pools) 2706 return NULL; 2707 2708 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2709 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2710 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2711 if (!pools->io_pool) 2712 goto free_pools_and_out; 2713 2714 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2715 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2716 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2717 if (!pools->tio_pool) 2718 goto free_io_pool_and_out; 2719 2720 pools->bs = bioset_create(pool_size, 0); 2721 if (!pools->bs) 2722 goto free_tio_pool_and_out; 2723 2724 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2725 goto free_bioset_and_out; 2726 2727 return pools; 2728 2729 free_bioset_and_out: 2730 bioset_free(pools->bs); 2731 2732 free_tio_pool_and_out: 2733 mempool_destroy(pools->tio_pool); 2734 2735 free_io_pool_and_out: 2736 mempool_destroy(pools->io_pool); 2737 2738 free_pools_and_out: 2739 kfree(pools); 2740 2741 return NULL; 2742 } 2743 2744 void dm_free_md_mempools(struct dm_md_mempools *pools) 2745 { 2746 if (!pools) 2747 return; 2748 2749 if (pools->io_pool) 2750 mempool_destroy(pools->io_pool); 2751 2752 if (pools->tio_pool) 2753 mempool_destroy(pools->tio_pool); 2754 2755 if (pools->bs) 2756 bioset_free(pools->bs); 2757 2758 kfree(pools); 2759 } 2760 2761 static const struct block_device_operations dm_blk_dops = { 2762 .open = dm_blk_open, 2763 .release = dm_blk_close, 2764 .ioctl = dm_blk_ioctl, 2765 .getgeo = dm_blk_getgeo, 2766 .owner = THIS_MODULE 2767 }; 2768 2769 EXPORT_SYMBOL(dm_get_mapinfo); 2770 2771 /* 2772 * module hooks 2773 */ 2774 module_init(dm_init); 2775 module_exit(dm_exit); 2776 2777 module_param(major, uint, 0); 2778 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2779 MODULE_DESCRIPTION(DM_NAME " driver"); 2780 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2781 MODULE_LICENSE("GPL"); 2782