xref: /openbmc/linux/drivers/md/dm.c (revision f9ab94cee313746573b2d693bc2afb807ebb0998)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * For bio-based dm.
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * For bio-based dm.
47  * One of these is allocated per target within a bio.  Hopefully
48  * this will be simplified out one day.
49  */
50 struct dm_target_io {
51 	struct dm_io *io;
52 	struct dm_target *ti;
53 	union map_info info;
54 };
55 
56 /*
57  * For request-based dm.
58  * One of these is allocated per request.
59  */
60 struct dm_rq_target_io {
61 	struct mapped_device *md;
62 	struct dm_target *ti;
63 	struct request *orig, clone;
64 	int error;
65 	union map_info info;
66 };
67 
68 /*
69  * For request-based dm.
70  * One of these is allocated per bio.
71  */
72 struct dm_rq_clone_bio_info {
73 	struct bio *orig;
74 	struct request *rq;
75 };
76 
77 union map_info *dm_get_mapinfo(struct bio *bio)
78 {
79 	if (bio && bio->bi_private)
80 		return &((struct dm_target_io *)bio->bi_private)->info;
81 	return NULL;
82 }
83 
84 #define MINOR_ALLOCED ((void *)-1)
85 
86 /*
87  * Bits for the md->flags field.
88  */
89 #define DMF_BLOCK_IO_FOR_SUSPEND 0
90 #define DMF_SUSPENDED 1
91 #define DMF_FROZEN 2
92 #define DMF_FREEING 3
93 #define DMF_DELETING 4
94 #define DMF_NOFLUSH_SUSPENDING 5
95 #define DMF_QUEUE_IO_TO_THREAD 6
96 
97 /*
98  * Work processed by per-device workqueue.
99  */
100 struct mapped_device {
101 	struct rw_semaphore io_lock;
102 	struct mutex suspend_lock;
103 	rwlock_t map_lock;
104 	atomic_t holders;
105 	atomic_t open_count;
106 
107 	unsigned long flags;
108 
109 	struct request_queue *queue;
110 	struct gendisk *disk;
111 	char name[16];
112 
113 	void *interface_ptr;
114 
115 	/*
116 	 * A list of ios that arrived while we were suspended.
117 	 */
118 	atomic_t pending;
119 	wait_queue_head_t wait;
120 	struct work_struct work;
121 	struct bio_list deferred;
122 	spinlock_t deferred_lock;
123 
124 	/*
125 	 * An error from the barrier request currently being processed.
126 	 */
127 	int barrier_error;
128 
129 	/*
130 	 * Processing queue (flush/barriers)
131 	 */
132 	struct workqueue_struct *wq;
133 
134 	/*
135 	 * The current mapping.
136 	 */
137 	struct dm_table *map;
138 
139 	/*
140 	 * io objects are allocated from here.
141 	 */
142 	mempool_t *io_pool;
143 	mempool_t *tio_pool;
144 
145 	struct bio_set *bs;
146 
147 	/*
148 	 * Event handling.
149 	 */
150 	atomic_t event_nr;
151 	wait_queue_head_t eventq;
152 	atomic_t uevent_seq;
153 	struct list_head uevent_list;
154 	spinlock_t uevent_lock; /* Protect access to uevent_list */
155 
156 	/*
157 	 * freeze/thaw support require holding onto a super block
158 	 */
159 	struct super_block *frozen_sb;
160 	struct block_device *bdev;
161 
162 	/* forced geometry settings */
163 	struct hd_geometry geometry;
164 
165 	/* sysfs handle */
166 	struct kobject kobj;
167 };
168 
169 #define MIN_IOS 256
170 static struct kmem_cache *_io_cache;
171 static struct kmem_cache *_tio_cache;
172 static struct kmem_cache *_rq_tio_cache;
173 static struct kmem_cache *_rq_bio_info_cache;
174 
175 static int __init local_init(void)
176 {
177 	int r = -ENOMEM;
178 
179 	/* allocate a slab for the dm_ios */
180 	_io_cache = KMEM_CACHE(dm_io, 0);
181 	if (!_io_cache)
182 		return r;
183 
184 	/* allocate a slab for the target ios */
185 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
186 	if (!_tio_cache)
187 		goto out_free_io_cache;
188 
189 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
190 	if (!_rq_tio_cache)
191 		goto out_free_tio_cache;
192 
193 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
194 	if (!_rq_bio_info_cache)
195 		goto out_free_rq_tio_cache;
196 
197 	r = dm_uevent_init();
198 	if (r)
199 		goto out_free_rq_bio_info_cache;
200 
201 	_major = major;
202 	r = register_blkdev(_major, _name);
203 	if (r < 0)
204 		goto out_uevent_exit;
205 
206 	if (!_major)
207 		_major = r;
208 
209 	return 0;
210 
211 out_uevent_exit:
212 	dm_uevent_exit();
213 out_free_rq_bio_info_cache:
214 	kmem_cache_destroy(_rq_bio_info_cache);
215 out_free_rq_tio_cache:
216 	kmem_cache_destroy(_rq_tio_cache);
217 out_free_tio_cache:
218 	kmem_cache_destroy(_tio_cache);
219 out_free_io_cache:
220 	kmem_cache_destroy(_io_cache);
221 
222 	return r;
223 }
224 
225 static void local_exit(void)
226 {
227 	kmem_cache_destroy(_rq_bio_info_cache);
228 	kmem_cache_destroy(_rq_tio_cache);
229 	kmem_cache_destroy(_tio_cache);
230 	kmem_cache_destroy(_io_cache);
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_kcopyd_init,
245 	dm_interface_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_kcopyd_exit,
254 	dm_interface_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 }
285 
286 /*
287  * Block device functions
288  */
289 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 	struct mapped_device *md;
292 
293 	spin_lock(&_minor_lock);
294 
295 	md = bdev->bd_disk->private_data;
296 	if (!md)
297 		goto out;
298 
299 	if (test_bit(DMF_FREEING, &md->flags) ||
300 	    test_bit(DMF_DELETING, &md->flags)) {
301 		md = NULL;
302 		goto out;
303 	}
304 
305 	dm_get(md);
306 	atomic_inc(&md->open_count);
307 
308 out:
309 	spin_unlock(&_minor_lock);
310 
311 	return md ? 0 : -ENXIO;
312 }
313 
314 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
315 {
316 	struct mapped_device *md = disk->private_data;
317 	atomic_dec(&md->open_count);
318 	dm_put(md);
319 	return 0;
320 }
321 
322 int dm_open_count(struct mapped_device *md)
323 {
324 	return atomic_read(&md->open_count);
325 }
326 
327 /*
328  * Guarantees nothing is using the device before it's deleted.
329  */
330 int dm_lock_for_deletion(struct mapped_device *md)
331 {
332 	int r = 0;
333 
334 	spin_lock(&_minor_lock);
335 
336 	if (dm_open_count(md))
337 		r = -EBUSY;
338 	else
339 		set_bit(DMF_DELETING, &md->flags);
340 
341 	spin_unlock(&_minor_lock);
342 
343 	return r;
344 }
345 
346 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
347 {
348 	struct mapped_device *md = bdev->bd_disk->private_data;
349 
350 	return dm_get_geometry(md, geo);
351 }
352 
353 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
354 			unsigned int cmd, unsigned long arg)
355 {
356 	struct mapped_device *md = bdev->bd_disk->private_data;
357 	struct dm_table *map = dm_get_table(md);
358 	struct dm_target *tgt;
359 	int r = -ENOTTY;
360 
361 	if (!map || !dm_table_get_size(map))
362 		goto out;
363 
364 	/* We only support devices that have a single target */
365 	if (dm_table_get_num_targets(map) != 1)
366 		goto out;
367 
368 	tgt = dm_table_get_target(map, 0);
369 
370 	if (dm_suspended(md)) {
371 		r = -EAGAIN;
372 		goto out;
373 	}
374 
375 	if (tgt->type->ioctl)
376 		r = tgt->type->ioctl(tgt, cmd, arg);
377 
378 out:
379 	dm_table_put(map);
380 
381 	return r;
382 }
383 
384 static struct dm_io *alloc_io(struct mapped_device *md)
385 {
386 	return mempool_alloc(md->io_pool, GFP_NOIO);
387 }
388 
389 static void free_io(struct mapped_device *md, struct dm_io *io)
390 {
391 	mempool_free(io, md->io_pool);
392 }
393 
394 static struct dm_target_io *alloc_tio(struct mapped_device *md)
395 {
396 	return mempool_alloc(md->tio_pool, GFP_NOIO);
397 }
398 
399 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
400 {
401 	mempool_free(tio, md->tio_pool);
402 }
403 
404 static void start_io_acct(struct dm_io *io)
405 {
406 	struct mapped_device *md = io->md;
407 	int cpu;
408 
409 	io->start_time = jiffies;
410 
411 	cpu = part_stat_lock();
412 	part_round_stats(cpu, &dm_disk(md)->part0);
413 	part_stat_unlock();
414 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
415 }
416 
417 static void end_io_acct(struct dm_io *io)
418 {
419 	struct mapped_device *md = io->md;
420 	struct bio *bio = io->bio;
421 	unsigned long duration = jiffies - io->start_time;
422 	int pending, cpu;
423 	int rw = bio_data_dir(bio);
424 
425 	cpu = part_stat_lock();
426 	part_round_stats(cpu, &dm_disk(md)->part0);
427 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
428 	part_stat_unlock();
429 
430 	/*
431 	 * After this is decremented the bio must not be touched if it is
432 	 * a barrier.
433 	 */
434 	dm_disk(md)->part0.in_flight = pending =
435 		atomic_dec_return(&md->pending);
436 
437 	/* nudge anyone waiting on suspend queue */
438 	if (!pending)
439 		wake_up(&md->wait);
440 }
441 
442 /*
443  * Add the bio to the list of deferred io.
444  */
445 static void queue_io(struct mapped_device *md, struct bio *bio)
446 {
447 	down_write(&md->io_lock);
448 
449 	spin_lock_irq(&md->deferred_lock);
450 	bio_list_add(&md->deferred, bio);
451 	spin_unlock_irq(&md->deferred_lock);
452 
453 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
454 		queue_work(md->wq, &md->work);
455 
456 	up_write(&md->io_lock);
457 }
458 
459 /*
460  * Everyone (including functions in this file), should use this
461  * function to access the md->map field, and make sure they call
462  * dm_table_put() when finished.
463  */
464 struct dm_table *dm_get_table(struct mapped_device *md)
465 {
466 	struct dm_table *t;
467 
468 	read_lock(&md->map_lock);
469 	t = md->map;
470 	if (t)
471 		dm_table_get(t);
472 	read_unlock(&md->map_lock);
473 
474 	return t;
475 }
476 
477 /*
478  * Get the geometry associated with a dm device
479  */
480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
481 {
482 	*geo = md->geometry;
483 
484 	return 0;
485 }
486 
487 /*
488  * Set the geometry of a device.
489  */
490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
491 {
492 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
493 
494 	if (geo->start > sz) {
495 		DMWARN("Start sector is beyond the geometry limits.");
496 		return -EINVAL;
497 	}
498 
499 	md->geometry = *geo;
500 
501 	return 0;
502 }
503 
504 /*-----------------------------------------------------------------
505  * CRUD START:
506  *   A more elegant soln is in the works that uses the queue
507  *   merge fn, unfortunately there are a couple of changes to
508  *   the block layer that I want to make for this.  So in the
509  *   interests of getting something for people to use I give
510  *   you this clearly demarcated crap.
511  *---------------------------------------------------------------*/
512 
513 static int __noflush_suspending(struct mapped_device *md)
514 {
515 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
516 }
517 
518 /*
519  * Decrements the number of outstanding ios that a bio has been
520  * cloned into, completing the original io if necc.
521  */
522 static void dec_pending(struct dm_io *io, int error)
523 {
524 	unsigned long flags;
525 	int io_error;
526 	struct bio *bio;
527 	struct mapped_device *md = io->md;
528 
529 	/* Push-back supersedes any I/O errors */
530 	if (error && !(io->error > 0 && __noflush_suspending(md)))
531 		io->error = error;
532 
533 	if (atomic_dec_and_test(&io->io_count)) {
534 		if (io->error == DM_ENDIO_REQUEUE) {
535 			/*
536 			 * Target requested pushing back the I/O.
537 			 */
538 			spin_lock_irqsave(&md->deferred_lock, flags);
539 			if (__noflush_suspending(md)) {
540 				if (!bio_barrier(io->bio))
541 					bio_list_add_head(&md->deferred,
542 							  io->bio);
543 			} else
544 				/* noflush suspend was interrupted. */
545 				io->error = -EIO;
546 			spin_unlock_irqrestore(&md->deferred_lock, flags);
547 		}
548 
549 		io_error = io->error;
550 		bio = io->bio;
551 
552 		if (bio_barrier(bio)) {
553 			/*
554 			 * There can be just one barrier request so we use
555 			 * a per-device variable for error reporting.
556 			 * Note that you can't touch the bio after end_io_acct
557 			 */
558 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
559 				md->barrier_error = io_error;
560 			end_io_acct(io);
561 		} else {
562 			end_io_acct(io);
563 
564 			if (io_error != DM_ENDIO_REQUEUE) {
565 				trace_block_bio_complete(md->queue, bio);
566 
567 				bio_endio(bio, io_error);
568 			}
569 		}
570 
571 		free_io(md, io);
572 	}
573 }
574 
575 static void clone_endio(struct bio *bio, int error)
576 {
577 	int r = 0;
578 	struct dm_target_io *tio = bio->bi_private;
579 	struct dm_io *io = tio->io;
580 	struct mapped_device *md = tio->io->md;
581 	dm_endio_fn endio = tio->ti->type->end_io;
582 
583 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
584 		error = -EIO;
585 
586 	if (endio) {
587 		r = endio(tio->ti, bio, error, &tio->info);
588 		if (r < 0 || r == DM_ENDIO_REQUEUE)
589 			/*
590 			 * error and requeue request are handled
591 			 * in dec_pending().
592 			 */
593 			error = r;
594 		else if (r == DM_ENDIO_INCOMPLETE)
595 			/* The target will handle the io */
596 			return;
597 		else if (r) {
598 			DMWARN("unimplemented target endio return value: %d", r);
599 			BUG();
600 		}
601 	}
602 
603 	/*
604 	 * Store md for cleanup instead of tio which is about to get freed.
605 	 */
606 	bio->bi_private = md->bs;
607 
608 	free_tio(md, tio);
609 	bio_put(bio);
610 	dec_pending(io, error);
611 }
612 
613 static sector_t max_io_len(struct mapped_device *md,
614 			   sector_t sector, struct dm_target *ti)
615 {
616 	sector_t offset = sector - ti->begin;
617 	sector_t len = ti->len - offset;
618 
619 	/*
620 	 * Does the target need to split even further ?
621 	 */
622 	if (ti->split_io) {
623 		sector_t boundary;
624 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
625 			   - offset;
626 		if (len > boundary)
627 			len = boundary;
628 	}
629 
630 	return len;
631 }
632 
633 static void __map_bio(struct dm_target *ti, struct bio *clone,
634 		      struct dm_target_io *tio)
635 {
636 	int r;
637 	sector_t sector;
638 	struct mapped_device *md;
639 
640 	clone->bi_end_io = clone_endio;
641 	clone->bi_private = tio;
642 
643 	/*
644 	 * Map the clone.  If r == 0 we don't need to do
645 	 * anything, the target has assumed ownership of
646 	 * this io.
647 	 */
648 	atomic_inc(&tio->io->io_count);
649 	sector = clone->bi_sector;
650 	r = ti->type->map(ti, clone, &tio->info);
651 	if (r == DM_MAPIO_REMAPPED) {
652 		/* the bio has been remapped so dispatch it */
653 
654 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
655 				    tio->io->bio->bi_bdev->bd_dev, sector);
656 
657 		generic_make_request(clone);
658 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
659 		/* error the io and bail out, or requeue it if needed */
660 		md = tio->io->md;
661 		dec_pending(tio->io, r);
662 		/*
663 		 * Store bio_set for cleanup.
664 		 */
665 		clone->bi_private = md->bs;
666 		bio_put(clone);
667 		free_tio(md, tio);
668 	} else if (r) {
669 		DMWARN("unimplemented target map return value: %d", r);
670 		BUG();
671 	}
672 }
673 
674 struct clone_info {
675 	struct mapped_device *md;
676 	struct dm_table *map;
677 	struct bio *bio;
678 	struct dm_io *io;
679 	sector_t sector;
680 	sector_t sector_count;
681 	unsigned short idx;
682 };
683 
684 static void dm_bio_destructor(struct bio *bio)
685 {
686 	struct bio_set *bs = bio->bi_private;
687 
688 	bio_free(bio, bs);
689 }
690 
691 /*
692  * Creates a little bio that is just does part of a bvec.
693  */
694 static struct bio *split_bvec(struct bio *bio, sector_t sector,
695 			      unsigned short idx, unsigned int offset,
696 			      unsigned int len, struct bio_set *bs)
697 {
698 	struct bio *clone;
699 	struct bio_vec *bv = bio->bi_io_vec + idx;
700 
701 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
702 	clone->bi_destructor = dm_bio_destructor;
703 	*clone->bi_io_vec = *bv;
704 
705 	clone->bi_sector = sector;
706 	clone->bi_bdev = bio->bi_bdev;
707 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
708 	clone->bi_vcnt = 1;
709 	clone->bi_size = to_bytes(len);
710 	clone->bi_io_vec->bv_offset = offset;
711 	clone->bi_io_vec->bv_len = clone->bi_size;
712 	clone->bi_flags |= 1 << BIO_CLONED;
713 
714 	if (bio_integrity(bio)) {
715 		bio_integrity_clone(clone, bio, GFP_NOIO);
716 		bio_integrity_trim(clone,
717 				   bio_sector_offset(bio, idx, offset), len);
718 	}
719 
720 	return clone;
721 }
722 
723 /*
724  * Creates a bio that consists of range of complete bvecs.
725  */
726 static struct bio *clone_bio(struct bio *bio, sector_t sector,
727 			     unsigned short idx, unsigned short bv_count,
728 			     unsigned int len, struct bio_set *bs)
729 {
730 	struct bio *clone;
731 
732 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
733 	__bio_clone(clone, bio);
734 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
735 	clone->bi_destructor = dm_bio_destructor;
736 	clone->bi_sector = sector;
737 	clone->bi_idx = idx;
738 	clone->bi_vcnt = idx + bv_count;
739 	clone->bi_size = to_bytes(len);
740 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
741 
742 	if (bio_integrity(bio)) {
743 		bio_integrity_clone(clone, bio, GFP_NOIO);
744 
745 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
746 			bio_integrity_trim(clone,
747 					   bio_sector_offset(bio, idx, 0), len);
748 	}
749 
750 	return clone;
751 }
752 
753 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
754 			  unsigned flush_nr)
755 {
756 	struct dm_target_io *tio = alloc_tio(ci->md);
757 	struct bio *clone;
758 
759 	tio->io = ci->io;
760 	tio->ti = ti;
761 
762 	memset(&tio->info, 0, sizeof(tio->info));
763 	tio->info.flush_request = flush_nr;
764 
765 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
766 	__bio_clone(clone, ci->bio);
767 	clone->bi_destructor = dm_bio_destructor;
768 
769 	__map_bio(ti, clone, tio);
770 }
771 
772 static int __clone_and_map_empty_barrier(struct clone_info *ci)
773 {
774 	unsigned target_nr = 0, flush_nr;
775 	struct dm_target *ti;
776 
777 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
778 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
779 		     flush_nr++)
780 			__flush_target(ci, ti, flush_nr);
781 
782 	ci->sector_count = 0;
783 
784 	return 0;
785 }
786 
787 static int __clone_and_map(struct clone_info *ci)
788 {
789 	struct bio *clone, *bio = ci->bio;
790 	struct dm_target *ti;
791 	sector_t len = 0, max;
792 	struct dm_target_io *tio;
793 
794 	if (unlikely(bio_empty_barrier(bio)))
795 		return __clone_and_map_empty_barrier(ci);
796 
797 	ti = dm_table_find_target(ci->map, ci->sector);
798 	if (!dm_target_is_valid(ti))
799 		return -EIO;
800 
801 	max = max_io_len(ci->md, ci->sector, ti);
802 
803 	/*
804 	 * Allocate a target io object.
805 	 */
806 	tio = alloc_tio(ci->md);
807 	tio->io = ci->io;
808 	tio->ti = ti;
809 	memset(&tio->info, 0, sizeof(tio->info));
810 
811 	if (ci->sector_count <= max) {
812 		/*
813 		 * Optimise for the simple case where we can do all of
814 		 * the remaining io with a single clone.
815 		 */
816 		clone = clone_bio(bio, ci->sector, ci->idx,
817 				  bio->bi_vcnt - ci->idx, ci->sector_count,
818 				  ci->md->bs);
819 		__map_bio(ti, clone, tio);
820 		ci->sector_count = 0;
821 
822 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
823 		/*
824 		 * There are some bvecs that don't span targets.
825 		 * Do as many of these as possible.
826 		 */
827 		int i;
828 		sector_t remaining = max;
829 		sector_t bv_len;
830 
831 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
832 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
833 
834 			if (bv_len > remaining)
835 				break;
836 
837 			remaining -= bv_len;
838 			len += bv_len;
839 		}
840 
841 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
842 				  ci->md->bs);
843 		__map_bio(ti, clone, tio);
844 
845 		ci->sector += len;
846 		ci->sector_count -= len;
847 		ci->idx = i;
848 
849 	} else {
850 		/*
851 		 * Handle a bvec that must be split between two or more targets.
852 		 */
853 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
854 		sector_t remaining = to_sector(bv->bv_len);
855 		unsigned int offset = 0;
856 
857 		do {
858 			if (offset) {
859 				ti = dm_table_find_target(ci->map, ci->sector);
860 				if (!dm_target_is_valid(ti))
861 					return -EIO;
862 
863 				max = max_io_len(ci->md, ci->sector, ti);
864 
865 				tio = alloc_tio(ci->md);
866 				tio->io = ci->io;
867 				tio->ti = ti;
868 				memset(&tio->info, 0, sizeof(tio->info));
869 			}
870 
871 			len = min(remaining, max);
872 
873 			clone = split_bvec(bio, ci->sector, ci->idx,
874 					   bv->bv_offset + offset, len,
875 					   ci->md->bs);
876 
877 			__map_bio(ti, clone, tio);
878 
879 			ci->sector += len;
880 			ci->sector_count -= len;
881 			offset += to_bytes(len);
882 		} while (remaining -= len);
883 
884 		ci->idx++;
885 	}
886 
887 	return 0;
888 }
889 
890 /*
891  * Split the bio into several clones and submit it to targets.
892  */
893 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
894 {
895 	struct clone_info ci;
896 	int error = 0;
897 
898 	ci.map = dm_get_table(md);
899 	if (unlikely(!ci.map)) {
900 		if (!bio_barrier(bio))
901 			bio_io_error(bio);
902 		else
903 			if (!md->barrier_error)
904 				md->barrier_error = -EIO;
905 		return;
906 	}
907 
908 	ci.md = md;
909 	ci.bio = bio;
910 	ci.io = alloc_io(md);
911 	ci.io->error = 0;
912 	atomic_set(&ci.io->io_count, 1);
913 	ci.io->bio = bio;
914 	ci.io->md = md;
915 	ci.sector = bio->bi_sector;
916 	ci.sector_count = bio_sectors(bio);
917 	if (unlikely(bio_empty_barrier(bio)))
918 		ci.sector_count = 1;
919 	ci.idx = bio->bi_idx;
920 
921 	start_io_acct(ci.io);
922 	while (ci.sector_count && !error)
923 		error = __clone_and_map(&ci);
924 
925 	/* drop the extra reference count */
926 	dec_pending(ci.io, error);
927 	dm_table_put(ci.map);
928 }
929 /*-----------------------------------------------------------------
930  * CRUD END
931  *---------------------------------------------------------------*/
932 
933 static int dm_merge_bvec(struct request_queue *q,
934 			 struct bvec_merge_data *bvm,
935 			 struct bio_vec *biovec)
936 {
937 	struct mapped_device *md = q->queuedata;
938 	struct dm_table *map = dm_get_table(md);
939 	struct dm_target *ti;
940 	sector_t max_sectors;
941 	int max_size = 0;
942 
943 	if (unlikely(!map))
944 		goto out;
945 
946 	ti = dm_table_find_target(map, bvm->bi_sector);
947 	if (!dm_target_is_valid(ti))
948 		goto out_table;
949 
950 	/*
951 	 * Find maximum amount of I/O that won't need splitting
952 	 */
953 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
954 			  (sector_t) BIO_MAX_SECTORS);
955 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
956 	if (max_size < 0)
957 		max_size = 0;
958 
959 	/*
960 	 * merge_bvec_fn() returns number of bytes
961 	 * it can accept at this offset
962 	 * max is precomputed maximal io size
963 	 */
964 	if (max_size && ti->type->merge)
965 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
966 	/*
967 	 * If the target doesn't support merge method and some of the devices
968 	 * provided their merge_bvec method (we know this by looking at
969 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
970 	 * entries.  So always set max_size to 0, and the code below allows
971 	 * just one page.
972 	 */
973 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
974 
975 		max_size = 0;
976 
977 out_table:
978 	dm_table_put(map);
979 
980 out:
981 	/*
982 	 * Always allow an entire first page
983 	 */
984 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
985 		max_size = biovec->bv_len;
986 
987 	return max_size;
988 }
989 
990 /*
991  * The request function that just remaps the bio built up by
992  * dm_merge_bvec.
993  */
994 static int dm_request(struct request_queue *q, struct bio *bio)
995 {
996 	int rw = bio_data_dir(bio);
997 	struct mapped_device *md = q->queuedata;
998 	int cpu;
999 
1000 	down_read(&md->io_lock);
1001 
1002 	cpu = part_stat_lock();
1003 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1004 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1005 	part_stat_unlock();
1006 
1007 	/*
1008 	 * If we're suspended or the thread is processing barriers
1009 	 * we have to queue this io for later.
1010 	 */
1011 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1012 	    unlikely(bio_barrier(bio))) {
1013 		up_read(&md->io_lock);
1014 
1015 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1016 		    bio_rw(bio) == READA) {
1017 			bio_io_error(bio);
1018 			return 0;
1019 		}
1020 
1021 		queue_io(md, bio);
1022 
1023 		return 0;
1024 	}
1025 
1026 	__split_and_process_bio(md, bio);
1027 	up_read(&md->io_lock);
1028 	return 0;
1029 }
1030 
1031 static void dm_unplug_all(struct request_queue *q)
1032 {
1033 	struct mapped_device *md = q->queuedata;
1034 	struct dm_table *map = dm_get_table(md);
1035 
1036 	if (map) {
1037 		dm_table_unplug_all(map);
1038 		dm_table_put(map);
1039 	}
1040 }
1041 
1042 static int dm_any_congested(void *congested_data, int bdi_bits)
1043 {
1044 	int r = bdi_bits;
1045 	struct mapped_device *md = congested_data;
1046 	struct dm_table *map;
1047 
1048 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1049 		map = dm_get_table(md);
1050 		if (map) {
1051 			r = dm_table_any_congested(map, bdi_bits);
1052 			dm_table_put(map);
1053 		}
1054 	}
1055 
1056 	return r;
1057 }
1058 
1059 /*-----------------------------------------------------------------
1060  * An IDR is used to keep track of allocated minor numbers.
1061  *---------------------------------------------------------------*/
1062 static DEFINE_IDR(_minor_idr);
1063 
1064 static void free_minor(int minor)
1065 {
1066 	spin_lock(&_minor_lock);
1067 	idr_remove(&_minor_idr, minor);
1068 	spin_unlock(&_minor_lock);
1069 }
1070 
1071 /*
1072  * See if the device with a specific minor # is free.
1073  */
1074 static int specific_minor(int minor)
1075 {
1076 	int r, m;
1077 
1078 	if (minor >= (1 << MINORBITS))
1079 		return -EINVAL;
1080 
1081 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1082 	if (!r)
1083 		return -ENOMEM;
1084 
1085 	spin_lock(&_minor_lock);
1086 
1087 	if (idr_find(&_minor_idr, minor)) {
1088 		r = -EBUSY;
1089 		goto out;
1090 	}
1091 
1092 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1093 	if (r)
1094 		goto out;
1095 
1096 	if (m != minor) {
1097 		idr_remove(&_minor_idr, m);
1098 		r = -EBUSY;
1099 		goto out;
1100 	}
1101 
1102 out:
1103 	spin_unlock(&_minor_lock);
1104 	return r;
1105 }
1106 
1107 static int next_free_minor(int *minor)
1108 {
1109 	int r, m;
1110 
1111 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1112 	if (!r)
1113 		return -ENOMEM;
1114 
1115 	spin_lock(&_minor_lock);
1116 
1117 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1118 	if (r)
1119 		goto out;
1120 
1121 	if (m >= (1 << MINORBITS)) {
1122 		idr_remove(&_minor_idr, m);
1123 		r = -ENOSPC;
1124 		goto out;
1125 	}
1126 
1127 	*minor = m;
1128 
1129 out:
1130 	spin_unlock(&_minor_lock);
1131 	return r;
1132 }
1133 
1134 static struct block_device_operations dm_blk_dops;
1135 
1136 static void dm_wq_work(struct work_struct *work);
1137 
1138 /*
1139  * Allocate and initialise a blank device with a given minor.
1140  */
1141 static struct mapped_device *alloc_dev(int minor)
1142 {
1143 	int r;
1144 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1145 	void *old_md;
1146 
1147 	if (!md) {
1148 		DMWARN("unable to allocate device, out of memory.");
1149 		return NULL;
1150 	}
1151 
1152 	if (!try_module_get(THIS_MODULE))
1153 		goto bad_module_get;
1154 
1155 	/* get a minor number for the dev */
1156 	if (minor == DM_ANY_MINOR)
1157 		r = next_free_minor(&minor);
1158 	else
1159 		r = specific_minor(minor);
1160 	if (r < 0)
1161 		goto bad_minor;
1162 
1163 	init_rwsem(&md->io_lock);
1164 	mutex_init(&md->suspend_lock);
1165 	spin_lock_init(&md->deferred_lock);
1166 	rwlock_init(&md->map_lock);
1167 	atomic_set(&md->holders, 1);
1168 	atomic_set(&md->open_count, 0);
1169 	atomic_set(&md->event_nr, 0);
1170 	atomic_set(&md->uevent_seq, 0);
1171 	INIT_LIST_HEAD(&md->uevent_list);
1172 	spin_lock_init(&md->uevent_lock);
1173 
1174 	md->queue = blk_alloc_queue(GFP_KERNEL);
1175 	if (!md->queue)
1176 		goto bad_queue;
1177 
1178 	md->queue->queuedata = md;
1179 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1180 	md->queue->backing_dev_info.congested_data = md;
1181 	blk_queue_make_request(md->queue, dm_request);
1182 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1183 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1184 	md->queue->unplug_fn = dm_unplug_all;
1185 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1186 
1187 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1188 	if (!md->io_pool)
1189 		goto bad_io_pool;
1190 
1191 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1192 	if (!md->tio_pool)
1193 		goto bad_tio_pool;
1194 
1195 	md->bs = bioset_create(16, 0);
1196 	if (!md->bs)
1197 		goto bad_no_bioset;
1198 
1199 	md->disk = alloc_disk(1);
1200 	if (!md->disk)
1201 		goto bad_disk;
1202 
1203 	atomic_set(&md->pending, 0);
1204 	init_waitqueue_head(&md->wait);
1205 	INIT_WORK(&md->work, dm_wq_work);
1206 	init_waitqueue_head(&md->eventq);
1207 
1208 	md->disk->major = _major;
1209 	md->disk->first_minor = minor;
1210 	md->disk->fops = &dm_blk_dops;
1211 	md->disk->queue = md->queue;
1212 	md->disk->private_data = md;
1213 	sprintf(md->disk->disk_name, "dm-%d", minor);
1214 	add_disk(md->disk);
1215 	format_dev_t(md->name, MKDEV(_major, minor));
1216 
1217 	md->wq = create_singlethread_workqueue("kdmflush");
1218 	if (!md->wq)
1219 		goto bad_thread;
1220 
1221 	md->bdev = bdget_disk(md->disk, 0);
1222 	if (!md->bdev)
1223 		goto bad_bdev;
1224 
1225 	/* Populate the mapping, nobody knows we exist yet */
1226 	spin_lock(&_minor_lock);
1227 	old_md = idr_replace(&_minor_idr, md, minor);
1228 	spin_unlock(&_minor_lock);
1229 
1230 	BUG_ON(old_md != MINOR_ALLOCED);
1231 
1232 	return md;
1233 
1234 bad_bdev:
1235 	destroy_workqueue(md->wq);
1236 bad_thread:
1237 	put_disk(md->disk);
1238 bad_disk:
1239 	bioset_free(md->bs);
1240 bad_no_bioset:
1241 	mempool_destroy(md->tio_pool);
1242 bad_tio_pool:
1243 	mempool_destroy(md->io_pool);
1244 bad_io_pool:
1245 	blk_cleanup_queue(md->queue);
1246 bad_queue:
1247 	free_minor(minor);
1248 bad_minor:
1249 	module_put(THIS_MODULE);
1250 bad_module_get:
1251 	kfree(md);
1252 	return NULL;
1253 }
1254 
1255 static void unlock_fs(struct mapped_device *md);
1256 
1257 static void free_dev(struct mapped_device *md)
1258 {
1259 	int minor = MINOR(disk_devt(md->disk));
1260 
1261 	unlock_fs(md);
1262 	bdput(md->bdev);
1263 	destroy_workqueue(md->wq);
1264 	mempool_destroy(md->tio_pool);
1265 	mempool_destroy(md->io_pool);
1266 	bioset_free(md->bs);
1267 	blk_integrity_unregister(md->disk);
1268 	del_gendisk(md->disk);
1269 	free_minor(minor);
1270 
1271 	spin_lock(&_minor_lock);
1272 	md->disk->private_data = NULL;
1273 	spin_unlock(&_minor_lock);
1274 
1275 	put_disk(md->disk);
1276 	blk_cleanup_queue(md->queue);
1277 	module_put(THIS_MODULE);
1278 	kfree(md);
1279 }
1280 
1281 /*
1282  * Bind a table to the device.
1283  */
1284 static void event_callback(void *context)
1285 {
1286 	unsigned long flags;
1287 	LIST_HEAD(uevents);
1288 	struct mapped_device *md = (struct mapped_device *) context;
1289 
1290 	spin_lock_irqsave(&md->uevent_lock, flags);
1291 	list_splice_init(&md->uevent_list, &uevents);
1292 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1293 
1294 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1295 
1296 	atomic_inc(&md->event_nr);
1297 	wake_up(&md->eventq);
1298 }
1299 
1300 static void __set_size(struct mapped_device *md, sector_t size)
1301 {
1302 	set_capacity(md->disk, size);
1303 
1304 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1305 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1306 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1307 }
1308 
1309 static int __bind(struct mapped_device *md, struct dm_table *t)
1310 {
1311 	struct request_queue *q = md->queue;
1312 	sector_t size;
1313 
1314 	size = dm_table_get_size(t);
1315 
1316 	/*
1317 	 * Wipe any geometry if the size of the table changed.
1318 	 */
1319 	if (size != get_capacity(md->disk))
1320 		memset(&md->geometry, 0, sizeof(md->geometry));
1321 
1322 	__set_size(md, size);
1323 
1324 	if (!size) {
1325 		dm_table_destroy(t);
1326 		return 0;
1327 	}
1328 
1329 	dm_table_event_callback(t, event_callback, md);
1330 
1331 	write_lock(&md->map_lock);
1332 	md->map = t;
1333 	dm_table_set_restrictions(t, q);
1334 	write_unlock(&md->map_lock);
1335 
1336 	return 0;
1337 }
1338 
1339 static void __unbind(struct mapped_device *md)
1340 {
1341 	struct dm_table *map = md->map;
1342 
1343 	if (!map)
1344 		return;
1345 
1346 	dm_table_event_callback(map, NULL, NULL);
1347 	write_lock(&md->map_lock);
1348 	md->map = NULL;
1349 	write_unlock(&md->map_lock);
1350 	dm_table_destroy(map);
1351 }
1352 
1353 /*
1354  * Constructor for a new device.
1355  */
1356 int dm_create(int minor, struct mapped_device **result)
1357 {
1358 	struct mapped_device *md;
1359 
1360 	md = alloc_dev(minor);
1361 	if (!md)
1362 		return -ENXIO;
1363 
1364 	dm_sysfs_init(md);
1365 
1366 	*result = md;
1367 	return 0;
1368 }
1369 
1370 static struct mapped_device *dm_find_md(dev_t dev)
1371 {
1372 	struct mapped_device *md;
1373 	unsigned minor = MINOR(dev);
1374 
1375 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1376 		return NULL;
1377 
1378 	spin_lock(&_minor_lock);
1379 
1380 	md = idr_find(&_minor_idr, minor);
1381 	if (md && (md == MINOR_ALLOCED ||
1382 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1383 		   test_bit(DMF_FREEING, &md->flags))) {
1384 		md = NULL;
1385 		goto out;
1386 	}
1387 
1388 out:
1389 	spin_unlock(&_minor_lock);
1390 
1391 	return md;
1392 }
1393 
1394 struct mapped_device *dm_get_md(dev_t dev)
1395 {
1396 	struct mapped_device *md = dm_find_md(dev);
1397 
1398 	if (md)
1399 		dm_get(md);
1400 
1401 	return md;
1402 }
1403 
1404 void *dm_get_mdptr(struct mapped_device *md)
1405 {
1406 	return md->interface_ptr;
1407 }
1408 
1409 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1410 {
1411 	md->interface_ptr = ptr;
1412 }
1413 
1414 void dm_get(struct mapped_device *md)
1415 {
1416 	atomic_inc(&md->holders);
1417 }
1418 
1419 const char *dm_device_name(struct mapped_device *md)
1420 {
1421 	return md->name;
1422 }
1423 EXPORT_SYMBOL_GPL(dm_device_name);
1424 
1425 void dm_put(struct mapped_device *md)
1426 {
1427 	struct dm_table *map;
1428 
1429 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1430 
1431 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1432 		map = dm_get_table(md);
1433 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1434 			    MINOR(disk_devt(dm_disk(md))));
1435 		set_bit(DMF_FREEING, &md->flags);
1436 		spin_unlock(&_minor_lock);
1437 		if (!dm_suspended(md)) {
1438 			dm_table_presuspend_targets(map);
1439 			dm_table_postsuspend_targets(map);
1440 		}
1441 		dm_sysfs_exit(md);
1442 		dm_table_put(map);
1443 		__unbind(md);
1444 		free_dev(md);
1445 	}
1446 }
1447 EXPORT_SYMBOL_GPL(dm_put);
1448 
1449 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1450 {
1451 	int r = 0;
1452 	DECLARE_WAITQUEUE(wait, current);
1453 
1454 	dm_unplug_all(md->queue);
1455 
1456 	add_wait_queue(&md->wait, &wait);
1457 
1458 	while (1) {
1459 		set_current_state(interruptible);
1460 
1461 		smp_mb();
1462 		if (!atomic_read(&md->pending))
1463 			break;
1464 
1465 		if (interruptible == TASK_INTERRUPTIBLE &&
1466 		    signal_pending(current)) {
1467 			r = -EINTR;
1468 			break;
1469 		}
1470 
1471 		io_schedule();
1472 	}
1473 	set_current_state(TASK_RUNNING);
1474 
1475 	remove_wait_queue(&md->wait, &wait);
1476 
1477 	return r;
1478 }
1479 
1480 static void dm_flush(struct mapped_device *md)
1481 {
1482 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1483 }
1484 
1485 static void process_barrier(struct mapped_device *md, struct bio *bio)
1486 {
1487 	md->barrier_error = 0;
1488 
1489 	dm_flush(md);
1490 
1491 	if (!bio_empty_barrier(bio)) {
1492 		__split_and_process_bio(md, bio);
1493 		dm_flush(md);
1494 	}
1495 
1496 	if (md->barrier_error != DM_ENDIO_REQUEUE)
1497 		bio_endio(bio, md->barrier_error);
1498 	else {
1499 		spin_lock_irq(&md->deferred_lock);
1500 		bio_list_add_head(&md->deferred, bio);
1501 		spin_unlock_irq(&md->deferred_lock);
1502 	}
1503 }
1504 
1505 /*
1506  * Process the deferred bios
1507  */
1508 static void dm_wq_work(struct work_struct *work)
1509 {
1510 	struct mapped_device *md = container_of(work, struct mapped_device,
1511 						work);
1512 	struct bio *c;
1513 
1514 	down_write(&md->io_lock);
1515 
1516 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1517 		spin_lock_irq(&md->deferred_lock);
1518 		c = bio_list_pop(&md->deferred);
1519 		spin_unlock_irq(&md->deferred_lock);
1520 
1521 		if (!c) {
1522 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1523 			break;
1524 		}
1525 
1526 		up_write(&md->io_lock);
1527 
1528 		if (bio_barrier(c))
1529 			process_barrier(md, c);
1530 		else
1531 			__split_and_process_bio(md, c);
1532 
1533 		down_write(&md->io_lock);
1534 	}
1535 
1536 	up_write(&md->io_lock);
1537 }
1538 
1539 static void dm_queue_flush(struct mapped_device *md)
1540 {
1541 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1542 	smp_mb__after_clear_bit();
1543 	queue_work(md->wq, &md->work);
1544 }
1545 
1546 /*
1547  * Swap in a new table (destroying old one).
1548  */
1549 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1550 {
1551 	int r = -EINVAL;
1552 
1553 	mutex_lock(&md->suspend_lock);
1554 
1555 	/* device must be suspended */
1556 	if (!dm_suspended(md))
1557 		goto out;
1558 
1559 	__unbind(md);
1560 	r = __bind(md, table);
1561 
1562 out:
1563 	mutex_unlock(&md->suspend_lock);
1564 	return r;
1565 }
1566 
1567 /*
1568  * Functions to lock and unlock any filesystem running on the
1569  * device.
1570  */
1571 static int lock_fs(struct mapped_device *md)
1572 {
1573 	int r;
1574 
1575 	WARN_ON(md->frozen_sb);
1576 
1577 	md->frozen_sb = freeze_bdev(md->bdev);
1578 	if (IS_ERR(md->frozen_sb)) {
1579 		r = PTR_ERR(md->frozen_sb);
1580 		md->frozen_sb = NULL;
1581 		return r;
1582 	}
1583 
1584 	set_bit(DMF_FROZEN, &md->flags);
1585 
1586 	return 0;
1587 }
1588 
1589 static void unlock_fs(struct mapped_device *md)
1590 {
1591 	if (!test_bit(DMF_FROZEN, &md->flags))
1592 		return;
1593 
1594 	thaw_bdev(md->bdev, md->frozen_sb);
1595 	md->frozen_sb = NULL;
1596 	clear_bit(DMF_FROZEN, &md->flags);
1597 }
1598 
1599 /*
1600  * We need to be able to change a mapping table under a mounted
1601  * filesystem.  For example we might want to move some data in
1602  * the background.  Before the table can be swapped with
1603  * dm_bind_table, dm_suspend must be called to flush any in
1604  * flight bios and ensure that any further io gets deferred.
1605  */
1606 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1607 {
1608 	struct dm_table *map = NULL;
1609 	int r = 0;
1610 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1611 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1612 
1613 	mutex_lock(&md->suspend_lock);
1614 
1615 	if (dm_suspended(md)) {
1616 		r = -EINVAL;
1617 		goto out_unlock;
1618 	}
1619 
1620 	map = dm_get_table(md);
1621 
1622 	/*
1623 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1624 	 * This flag is cleared before dm_suspend returns.
1625 	 */
1626 	if (noflush)
1627 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1628 
1629 	/* This does not get reverted if there's an error later. */
1630 	dm_table_presuspend_targets(map);
1631 
1632 	/*
1633 	 * Flush I/O to the device. noflush supersedes do_lockfs,
1634 	 * because lock_fs() needs to flush I/Os.
1635 	 */
1636 	if (!noflush && do_lockfs) {
1637 		r = lock_fs(md);
1638 		if (r)
1639 			goto out;
1640 	}
1641 
1642 	/*
1643 	 * Here we must make sure that no processes are submitting requests
1644 	 * to target drivers i.e. no one may be executing
1645 	 * __split_and_process_bio. This is called from dm_request and
1646 	 * dm_wq_work.
1647 	 *
1648 	 * To get all processes out of __split_and_process_bio in dm_request,
1649 	 * we take the write lock. To prevent any process from reentering
1650 	 * __split_and_process_bio from dm_request, we set
1651 	 * DMF_QUEUE_IO_TO_THREAD.
1652 	 *
1653 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1654 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1655 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1656 	 * further calls to __split_and_process_bio from dm_wq_work.
1657 	 */
1658 	down_write(&md->io_lock);
1659 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1660 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1661 	up_write(&md->io_lock);
1662 
1663 	flush_workqueue(md->wq);
1664 
1665 	/*
1666 	 * At this point no more requests are entering target request routines.
1667 	 * We call dm_wait_for_completion to wait for all existing requests
1668 	 * to finish.
1669 	 */
1670 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1671 
1672 	down_write(&md->io_lock);
1673 	if (noflush)
1674 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1675 	up_write(&md->io_lock);
1676 
1677 	/* were we interrupted ? */
1678 	if (r < 0) {
1679 		dm_queue_flush(md);
1680 
1681 		unlock_fs(md);
1682 		goto out; /* pushback list is already flushed, so skip flush */
1683 	}
1684 
1685 	/*
1686 	 * If dm_wait_for_completion returned 0, the device is completely
1687 	 * quiescent now. There is no request-processing activity. All new
1688 	 * requests are being added to md->deferred list.
1689 	 */
1690 
1691 	dm_table_postsuspend_targets(map);
1692 
1693 	set_bit(DMF_SUSPENDED, &md->flags);
1694 
1695 out:
1696 	dm_table_put(map);
1697 
1698 out_unlock:
1699 	mutex_unlock(&md->suspend_lock);
1700 	return r;
1701 }
1702 
1703 int dm_resume(struct mapped_device *md)
1704 {
1705 	int r = -EINVAL;
1706 	struct dm_table *map = NULL;
1707 
1708 	mutex_lock(&md->suspend_lock);
1709 	if (!dm_suspended(md))
1710 		goto out;
1711 
1712 	map = dm_get_table(md);
1713 	if (!map || !dm_table_get_size(map))
1714 		goto out;
1715 
1716 	r = dm_table_resume_targets(map);
1717 	if (r)
1718 		goto out;
1719 
1720 	dm_queue_flush(md);
1721 
1722 	unlock_fs(md);
1723 
1724 	clear_bit(DMF_SUSPENDED, &md->flags);
1725 
1726 	dm_table_unplug_all(map);
1727 
1728 	dm_kobject_uevent(md);
1729 
1730 	r = 0;
1731 
1732 out:
1733 	dm_table_put(map);
1734 	mutex_unlock(&md->suspend_lock);
1735 
1736 	return r;
1737 }
1738 
1739 /*-----------------------------------------------------------------
1740  * Event notification.
1741  *---------------------------------------------------------------*/
1742 void dm_kobject_uevent(struct mapped_device *md)
1743 {
1744 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1745 }
1746 
1747 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1748 {
1749 	return atomic_add_return(1, &md->uevent_seq);
1750 }
1751 
1752 uint32_t dm_get_event_nr(struct mapped_device *md)
1753 {
1754 	return atomic_read(&md->event_nr);
1755 }
1756 
1757 int dm_wait_event(struct mapped_device *md, int event_nr)
1758 {
1759 	return wait_event_interruptible(md->eventq,
1760 			(event_nr != atomic_read(&md->event_nr)));
1761 }
1762 
1763 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1764 {
1765 	unsigned long flags;
1766 
1767 	spin_lock_irqsave(&md->uevent_lock, flags);
1768 	list_add(elist, &md->uevent_list);
1769 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1770 }
1771 
1772 /*
1773  * The gendisk is only valid as long as you have a reference
1774  * count on 'md'.
1775  */
1776 struct gendisk *dm_disk(struct mapped_device *md)
1777 {
1778 	return md->disk;
1779 }
1780 
1781 struct kobject *dm_kobject(struct mapped_device *md)
1782 {
1783 	return &md->kobj;
1784 }
1785 
1786 /*
1787  * struct mapped_device should not be exported outside of dm.c
1788  * so use this check to verify that kobj is part of md structure
1789  */
1790 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1791 {
1792 	struct mapped_device *md;
1793 
1794 	md = container_of(kobj, struct mapped_device, kobj);
1795 	if (&md->kobj != kobj)
1796 		return NULL;
1797 
1798 	if (test_bit(DMF_FREEING, &md->flags) ||
1799 	    test_bit(DMF_DELETING, &md->flags))
1800 		return NULL;
1801 
1802 	dm_get(md);
1803 	return md;
1804 }
1805 
1806 int dm_suspended(struct mapped_device *md)
1807 {
1808 	return test_bit(DMF_SUSPENDED, &md->flags);
1809 }
1810 
1811 int dm_noflush_suspending(struct dm_target *ti)
1812 {
1813 	struct mapped_device *md = dm_table_get_md(ti->table);
1814 	int r = __noflush_suspending(md);
1815 
1816 	dm_put(md);
1817 
1818 	return r;
1819 }
1820 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1821 
1822 static struct block_device_operations dm_blk_dops = {
1823 	.open = dm_blk_open,
1824 	.release = dm_blk_close,
1825 	.ioctl = dm_blk_ioctl,
1826 	.getgeo = dm_blk_getgeo,
1827 	.owner = THIS_MODULE
1828 };
1829 
1830 EXPORT_SYMBOL(dm_get_mapinfo);
1831 
1832 /*
1833  * module hooks
1834  */
1835 module_init(dm_init);
1836 module_exit(dm_exit);
1837 
1838 module_param(major, uint, 0);
1839 MODULE_PARM_DESC(major, "The major number of the device mapper");
1840 MODULE_DESCRIPTION(DM_NAME " driver");
1841 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1842 MODULE_LICENSE("GPL");
1843