xref: /openbmc/linux/drivers/md/dm.c (revision f7b58a69fad9d2c4c90cab0247811155dd0d48e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = bdev->bd_disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static void dm_io_acct(struct dm_io *io, bool end)
496 {
497 	struct dm_stats_aux *stats_aux = &io->stats_aux;
498 	unsigned long start_time = io->start_time;
499 	struct mapped_device *md = io->md;
500 	struct bio *bio = io->orig_bio;
501 	unsigned int sectors;
502 
503 	/*
504 	 * If REQ_PREFLUSH set, don't account payload, it will be
505 	 * submitted (and accounted) after this flush completes.
506 	 */
507 	if (bio_is_flush_with_data(bio))
508 		sectors = 0;
509 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 		sectors = bio_sectors(bio);
511 	else
512 		sectors = io->sectors;
513 
514 	if (!end)
515 		bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors,
518 				 start_time);
519 
520 	if (static_branch_unlikely(&stats_enabled) &&
521 	    unlikely(dm_stats_used(&md->stats))) {
522 		sector_t sector;
523 
524 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 			sector = bio->bi_iter.bi_sector;
526 		else
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 
529 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 				    sector, sectors,
531 				    end, start_time, stats_aux);
532 	}
533 }
534 
535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 	dm_io_acct(io, false);
538 }
539 
540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 	/*
543 	 * Ensure IO accounting is only ever started once.
544 	 */
545 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 		return;
547 
548 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 	} else {
552 		unsigned long flags;
553 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 		spin_lock_irqsave(&io->lock, flags);
555 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 			spin_unlock_irqrestore(&io->lock, flags);
557 			return;
558 		}
559 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 		spin_unlock_irqrestore(&io->lock, flags);
561 	}
562 
563 	__dm_start_io_acct(io);
564 }
565 
566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 	dm_io_acct(io, true);
569 }
570 
571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
572 {
573 	struct dm_io *io;
574 	struct dm_target_io *tio;
575 	struct bio *clone;
576 
577 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 	tio = clone_to_tio(clone);
579 	tio->flags = 0;
580 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
581 	tio->io = NULL;
582 
583 	io = container_of(tio, struct dm_io, tio);
584 	io->magic = DM_IO_MAGIC;
585 	io->status = BLK_STS_OK;
586 
587 	/* one ref is for submission, the other is for completion */
588 	atomic_set(&io->io_count, 2);
589 	this_cpu_inc(*md->pending_io);
590 	io->orig_bio = bio;
591 	io->md = md;
592 	spin_lock_init(&io->lock);
593 	io->start_time = jiffies;
594 	io->flags = 0;
595 
596 	if (static_branch_unlikely(&stats_enabled))
597 		dm_stats_record_start(&md->stats, &io->stats_aux);
598 
599 	return io;
600 }
601 
602 static void free_io(struct dm_io *io)
603 {
604 	bio_put(&io->tio.clone);
605 }
606 
607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
609 {
610 	struct mapped_device *md = ci->io->md;
611 	struct dm_target_io *tio;
612 	struct bio *clone;
613 
614 	if (!ci->io->tio.io) {
615 		/* the dm_target_io embedded in ci->io is available */
616 		tio = &ci->io->tio;
617 		/* alloc_io() already initialized embedded clone */
618 		clone = &tio->clone;
619 	} else {
620 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
621 					&md->mempools->bs);
622 		if (!clone)
623 			return NULL;
624 
625 		/* REQ_DM_POLL_LIST shouldn't be inherited */
626 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
627 
628 		tio = clone_to_tio(clone);
629 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
630 	}
631 
632 	tio->magic = DM_TIO_MAGIC;
633 	tio->io = ci->io;
634 	tio->ti = ti;
635 	tio->target_bio_nr = target_bio_nr;
636 	tio->len_ptr = len;
637 	tio->old_sector = 0;
638 
639 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
640 	clone->bi_bdev = md->disk->part0;
641 	if (unlikely(ti->needs_bio_set_dev))
642 		bio_set_dev(clone, md->disk->part0);
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 					int *srcu_idx, blk_opf_t bio_opf)
715 {
716 	if (bio_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 blk_opf_t bio_opf)
724 {
725 	if (bio_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static struct table_device *open_table_device(struct mapped_device *md,
737 		dev_t dev, fmode_t mode)
738 {
739 	struct table_device *td;
740 	struct block_device *bdev;
741 	u64 part_off;
742 	int r;
743 
744 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
745 	if (!td)
746 		return ERR_PTR(-ENOMEM);
747 	refcount_set(&td->count, 1);
748 
749 	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
750 	if (IS_ERR(bdev)) {
751 		r = PTR_ERR(bdev);
752 		goto out_free_td;
753 	}
754 
755 	/*
756 	 * We can be called before the dm disk is added.  In that case we can't
757 	 * register the holder relation here.  It will be done once add_disk was
758 	 * called.
759 	 */
760 	if (md->disk->slave_dir) {
761 		r = bd_link_disk_holder(bdev, md->disk);
762 		if (r)
763 			goto out_blkdev_put;
764 	}
765 
766 	td->dm_dev.mode = mode;
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 	format_dev_t(td->dm_dev.name, dev);
770 	list_add(&td->list, &md->table_devices);
771 	return td;
772 
773 out_blkdev_put:
774 	blkdev_put(bdev, mode | FMODE_EXCL);
775 out_free_td:
776 	kfree(td);
777 	return ERR_PTR(r);
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (md->disk->slave_dir)
786 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      fmode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 void disable_discard(struct mapped_device *md)
1076 {
1077 	struct queue_limits *limits = dm_get_queue_limits(md);
1078 
1079 	/* device doesn't really support DISCARD, disable it */
1080 	limits->max_discard_sectors = 0;
1081 }
1082 
1083 void disable_write_zeroes(struct mapped_device *md)
1084 {
1085 	struct queue_limits *limits = dm_get_queue_limits(md);
1086 
1087 	/* device doesn't really support WRITE ZEROES, disable it */
1088 	limits->max_write_zeroes_sectors = 0;
1089 }
1090 
1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092 {
1093 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094 }
1095 
1096 static void clone_endio(struct bio *bio)
1097 {
1098 	blk_status_t error = bio->bi_status;
1099 	struct dm_target_io *tio = clone_to_tio(bio);
1100 	struct dm_target *ti = tio->ti;
1101 	dm_endio_fn endio = ti->type->end_io;
1102 	struct dm_io *io = tio->io;
1103 	struct mapped_device *md = io->md;
1104 
1105 	if (unlikely(error == BLK_STS_TARGET)) {
1106 		if (bio_op(bio) == REQ_OP_DISCARD &&
1107 		    !bdev_max_discard_sectors(bio->bi_bdev))
1108 			disable_discard(md);
1109 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 			disable_write_zeroes(md);
1112 	}
1113 
1114 	if (static_branch_unlikely(&zoned_enabled) &&
1115 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 		dm_zone_endio(io, bio);
1117 
1118 	if (endio) {
1119 		int r = endio(ti, bio, &error);
1120 
1121 		switch (r) {
1122 		case DM_ENDIO_REQUEUE:
1123 			if (static_branch_unlikely(&zoned_enabled)) {
1124 				/*
1125 				 * Requeuing writes to a sequential zone of a zoned
1126 				 * target will break the sequential write pattern:
1127 				 * fail such IO.
1128 				 */
1129 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 					error = BLK_STS_IOERR;
1131 				else
1132 					error = BLK_STS_DM_REQUEUE;
1133 			} else
1134 				error = BLK_STS_DM_REQUEUE;
1135 			fallthrough;
1136 		case DM_ENDIO_DONE:
1137 			break;
1138 		case DM_ENDIO_INCOMPLETE:
1139 			/* The target will handle the io */
1140 			return;
1141 		default:
1142 			DMCRIT("unimplemented target endio return value: %d", r);
1143 			BUG();
1144 		}
1145 	}
1146 
1147 	if (static_branch_unlikely(&swap_bios_enabled) &&
1148 	    unlikely(swap_bios_limit(ti, bio)))
1149 		up(&md->swap_bios_semaphore);
1150 
1151 	free_tio(bio);
1152 	dm_io_dec_pending(io, error);
1153 }
1154 
1155 /*
1156  * Return maximum size of I/O possible at the supplied sector up to the current
1157  * target boundary.
1158  */
1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 						  sector_t target_offset)
1161 {
1162 	return ti->len - target_offset;
1163 }
1164 
1165 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1166 {
1167 	sector_t target_offset = dm_target_offset(ti, sector);
1168 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1169 
1170 	/*
1171 	 * Does the target need to split IO even further?
1172 	 * - varied (per target) IO splitting is a tenet of DM; this
1173 	 *   explains why stacked chunk_sectors based splitting via
1174 	 *   bio_split_to_limits() isn't possible here.
1175 	 */
1176 	if (!ti->max_io_len)
1177 		return len;
1178 	return min_t(sector_t, len,
1179 		min(queue_max_sectors(ti->table->md->queue),
1180 		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1181 }
1182 
1183 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1184 {
1185 	if (len > UINT_MAX) {
1186 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1187 		      (unsigned long long)len, UINT_MAX);
1188 		ti->error = "Maximum size of target IO is too large";
1189 		return -EINVAL;
1190 	}
1191 
1192 	ti->max_io_len = (uint32_t) len;
1193 
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1197 
1198 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1199 						sector_t sector, int *srcu_idx)
1200 	__acquires(md->io_barrier)
1201 {
1202 	struct dm_table *map;
1203 	struct dm_target *ti;
1204 
1205 	map = dm_get_live_table(md, srcu_idx);
1206 	if (!map)
1207 		return NULL;
1208 
1209 	ti = dm_table_find_target(map, sector);
1210 	if (!ti)
1211 		return NULL;
1212 
1213 	return ti;
1214 }
1215 
1216 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1217 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1218 		pfn_t *pfn)
1219 {
1220 	struct mapped_device *md = dax_get_private(dax_dev);
1221 	sector_t sector = pgoff * PAGE_SECTORS;
1222 	struct dm_target *ti;
1223 	long len, ret = -EIO;
1224 	int srcu_idx;
1225 
1226 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1227 
1228 	if (!ti)
1229 		goto out;
1230 	if (!ti->type->direct_access)
1231 		goto out;
1232 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1233 	if (len < 1)
1234 		goto out;
1235 	nr_pages = min(len, nr_pages);
1236 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1237 
1238  out:
1239 	dm_put_live_table(md, srcu_idx);
1240 
1241 	return ret;
1242 }
1243 
1244 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1245 				  size_t nr_pages)
1246 {
1247 	struct mapped_device *md = dax_get_private(dax_dev);
1248 	sector_t sector = pgoff * PAGE_SECTORS;
1249 	struct dm_target *ti;
1250 	int ret = -EIO;
1251 	int srcu_idx;
1252 
1253 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1254 
1255 	if (!ti)
1256 		goto out;
1257 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1258 		/*
1259 		 * ->zero_page_range() is mandatory dax operation. If we are
1260 		 *  here, something is wrong.
1261 		 */
1262 		goto out;
1263 	}
1264 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1265  out:
1266 	dm_put_live_table(md, srcu_idx);
1267 
1268 	return ret;
1269 }
1270 
1271 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1272 		void *addr, size_t bytes, struct iov_iter *i)
1273 {
1274 	struct mapped_device *md = dax_get_private(dax_dev);
1275 	sector_t sector = pgoff * PAGE_SECTORS;
1276 	struct dm_target *ti;
1277 	int srcu_idx;
1278 	long ret = 0;
1279 
1280 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1281 	if (!ti || !ti->type->dax_recovery_write)
1282 		goto out;
1283 
1284 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1285 out:
1286 	dm_put_live_table(md, srcu_idx);
1287 	return ret;
1288 }
1289 
1290 /*
1291  * A target may call dm_accept_partial_bio only from the map routine.  It is
1292  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1293  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1294  * __send_duplicate_bios().
1295  *
1296  * dm_accept_partial_bio informs the dm that the target only wants to process
1297  * additional n_sectors sectors of the bio and the rest of the data should be
1298  * sent in a next bio.
1299  *
1300  * A diagram that explains the arithmetics:
1301  * +--------------------+---------------+-------+
1302  * |         1          |       2       |   3   |
1303  * +--------------------+---------------+-------+
1304  *
1305  * <-------------- *tio->len_ptr --------------->
1306  *                      <----- bio_sectors ----->
1307  *                      <-- n_sectors -->
1308  *
1309  * Region 1 was already iterated over with bio_advance or similar function.
1310  *	(it may be empty if the target doesn't use bio_advance)
1311  * Region 2 is the remaining bio size that the target wants to process.
1312  *	(it may be empty if region 1 is non-empty, although there is no reason
1313  *	 to make it empty)
1314  * The target requires that region 3 is to be sent in the next bio.
1315  *
1316  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1317  * the partially processed part (the sum of regions 1+2) must be the same for all
1318  * copies of the bio.
1319  */
1320 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1321 {
1322 	struct dm_target_io *tio = clone_to_tio(bio);
1323 	struct dm_io *io = tio->io;
1324 	unsigned int bio_sectors = bio_sectors(bio);
1325 
1326 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1327 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1328 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1329 	BUG_ON(bio_sectors > *tio->len_ptr);
1330 	BUG_ON(n_sectors > bio_sectors);
1331 
1332 	*tio->len_ptr -= bio_sectors - n_sectors;
1333 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1334 
1335 	/*
1336 	 * __split_and_process_bio() may have already saved mapped part
1337 	 * for accounting but it is being reduced so update accordingly.
1338 	 */
1339 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1340 	io->sectors = n_sectors;
1341 	io->sector_offset = bio_sectors(io->orig_bio);
1342 }
1343 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1344 
1345 /*
1346  * @clone: clone bio that DM core passed to target's .map function
1347  * @tgt_clone: clone of @clone bio that target needs submitted
1348  *
1349  * Targets should use this interface to submit bios they take
1350  * ownership of when returning DM_MAPIO_SUBMITTED.
1351  *
1352  * Target should also enable ti->accounts_remapped_io
1353  */
1354 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1355 {
1356 	struct dm_target_io *tio = clone_to_tio(clone);
1357 	struct dm_io *io = tio->io;
1358 
1359 	/* establish bio that will get submitted */
1360 	if (!tgt_clone)
1361 		tgt_clone = clone;
1362 
1363 	/*
1364 	 * Account io->origin_bio to DM dev on behalf of target
1365 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1366 	 */
1367 	dm_start_io_acct(io, clone);
1368 
1369 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1370 			      tio->old_sector);
1371 	submit_bio_noacct(tgt_clone);
1372 }
1373 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1374 
1375 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1376 {
1377 	mutex_lock(&md->swap_bios_lock);
1378 	while (latch < md->swap_bios) {
1379 		cond_resched();
1380 		down(&md->swap_bios_semaphore);
1381 		md->swap_bios--;
1382 	}
1383 	while (latch > md->swap_bios) {
1384 		cond_resched();
1385 		up(&md->swap_bios_semaphore);
1386 		md->swap_bios++;
1387 	}
1388 	mutex_unlock(&md->swap_bios_lock);
1389 }
1390 
1391 static void __map_bio(struct bio *clone)
1392 {
1393 	struct dm_target_io *tio = clone_to_tio(clone);
1394 	struct dm_target *ti = tio->ti;
1395 	struct dm_io *io = tio->io;
1396 	struct mapped_device *md = io->md;
1397 	int r;
1398 
1399 	clone->bi_end_io = clone_endio;
1400 
1401 	/*
1402 	 * Map the clone.
1403 	 */
1404 	tio->old_sector = clone->bi_iter.bi_sector;
1405 
1406 	if (static_branch_unlikely(&swap_bios_enabled) &&
1407 	    unlikely(swap_bios_limit(ti, clone))) {
1408 		int latch = get_swap_bios();
1409 
1410 		if (unlikely(latch != md->swap_bios))
1411 			__set_swap_bios_limit(md, latch);
1412 		down(&md->swap_bios_semaphore);
1413 	}
1414 
1415 	if (static_branch_unlikely(&zoned_enabled)) {
1416 		/*
1417 		 * Check if the IO needs a special mapping due to zone append
1418 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1419 		 * calls the target map operation.
1420 		 */
1421 		if (unlikely(dm_emulate_zone_append(md)))
1422 			r = dm_zone_map_bio(tio);
1423 		else
1424 			r = ti->type->map(ti, clone);
1425 	} else
1426 		r = ti->type->map(ti, clone);
1427 
1428 	switch (r) {
1429 	case DM_MAPIO_SUBMITTED:
1430 		/* target has assumed ownership of this io */
1431 		if (!ti->accounts_remapped_io)
1432 			dm_start_io_acct(io, clone);
1433 		break;
1434 	case DM_MAPIO_REMAPPED:
1435 		dm_submit_bio_remap(clone, NULL);
1436 		break;
1437 	case DM_MAPIO_KILL:
1438 	case DM_MAPIO_REQUEUE:
1439 		if (static_branch_unlikely(&swap_bios_enabled) &&
1440 		    unlikely(swap_bios_limit(ti, clone)))
1441 			up(&md->swap_bios_semaphore);
1442 		free_tio(clone);
1443 		if (r == DM_MAPIO_KILL)
1444 			dm_io_dec_pending(io, BLK_STS_IOERR);
1445 		else
1446 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1447 		break;
1448 	default:
1449 		DMCRIT("unimplemented target map return value: %d", r);
1450 		BUG();
1451 	}
1452 }
1453 
1454 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1455 {
1456 	struct dm_io *io = ci->io;
1457 
1458 	if (ci->sector_count > len) {
1459 		/*
1460 		 * Split needed, save the mapped part for accounting.
1461 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1462 		 */
1463 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1464 		io->sectors = len;
1465 		io->sector_offset = bio_sectors(ci->bio);
1466 	}
1467 }
1468 
1469 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1470 				struct dm_target *ti, unsigned int num_bios,
1471 				unsigned *len)
1472 {
1473 	struct bio *bio;
1474 	int try;
1475 
1476 	for (try = 0; try < 2; try++) {
1477 		int bio_nr;
1478 
1479 		if (try)
1480 			mutex_lock(&ci->io->md->table_devices_lock);
1481 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1482 			bio = alloc_tio(ci, ti, bio_nr, len,
1483 					try ? GFP_NOIO : GFP_NOWAIT);
1484 			if (!bio)
1485 				break;
1486 
1487 			bio_list_add(blist, bio);
1488 		}
1489 		if (try)
1490 			mutex_unlock(&ci->io->md->table_devices_lock);
1491 		if (bio_nr == num_bios)
1492 			return;
1493 
1494 		while ((bio = bio_list_pop(blist)))
1495 			free_tio(bio);
1496 	}
1497 }
1498 
1499 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1500 				 unsigned int num_bios, unsigned int *len)
1501 {
1502 	struct bio_list blist = BIO_EMPTY_LIST;
1503 	struct bio *clone;
1504 	unsigned int ret = 0;
1505 
1506 	switch (num_bios) {
1507 	case 0:
1508 		break;
1509 	case 1:
1510 		if (len)
1511 			setup_split_accounting(ci, *len);
1512 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1513 		__map_bio(clone);
1514 		ret = 1;
1515 		break;
1516 	default:
1517 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1518 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1519 		while ((clone = bio_list_pop(&blist))) {
1520 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1521 			__map_bio(clone);
1522 			ret += 1;
1523 		}
1524 		break;
1525 	}
1526 
1527 	return ret;
1528 }
1529 
1530 static void __send_empty_flush(struct clone_info *ci)
1531 {
1532 	struct dm_table *t = ci->map;
1533 	struct bio flush_bio;
1534 
1535 	/*
1536 	 * Use an on-stack bio for this, it's safe since we don't
1537 	 * need to reference it after submit. It's just used as
1538 	 * the basis for the clone(s).
1539 	 */
1540 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1541 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1542 
1543 	ci->bio = &flush_bio;
1544 	ci->sector_count = 0;
1545 	ci->io->tio.clone.bi_iter.bi_size = 0;
1546 
1547 	for (unsigned int i = 0; i < t->num_targets; i++) {
1548 		unsigned int bios;
1549 		struct dm_target *ti = dm_table_get_target(t, i);
1550 
1551 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1552 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1553 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1554 	}
1555 
1556 	/*
1557 	 * alloc_io() takes one extra reference for submission, so the
1558 	 * reference won't reach 0 without the following subtraction
1559 	 */
1560 	atomic_sub(1, &ci->io->io_count);
1561 
1562 	bio_uninit(ci->bio);
1563 }
1564 
1565 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1566 					unsigned int num_bios)
1567 {
1568 	unsigned int len, bios;
1569 
1570 	len = min_t(sector_t, ci->sector_count,
1571 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1572 
1573 	atomic_add(num_bios, &ci->io->io_count);
1574 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1575 	/*
1576 	 * alloc_io() takes one extra reference for submission, so the
1577 	 * reference won't reach 0 without the following (+1) subtraction
1578 	 */
1579 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1580 
1581 	ci->sector += len;
1582 	ci->sector_count -= len;
1583 }
1584 
1585 static bool is_abnormal_io(struct bio *bio)
1586 {
1587 	enum req_op op = bio_op(bio);
1588 
1589 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1590 		switch (op) {
1591 		case REQ_OP_DISCARD:
1592 		case REQ_OP_SECURE_ERASE:
1593 		case REQ_OP_WRITE_ZEROES:
1594 			return true;
1595 		default:
1596 			break;
1597 		}
1598 	}
1599 
1600 	return false;
1601 }
1602 
1603 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1604 					  struct dm_target *ti)
1605 {
1606 	unsigned int num_bios = 0;
1607 
1608 	switch (bio_op(ci->bio)) {
1609 	case REQ_OP_DISCARD:
1610 		num_bios = ti->num_discard_bios;
1611 		break;
1612 	case REQ_OP_SECURE_ERASE:
1613 		num_bios = ti->num_secure_erase_bios;
1614 		break;
1615 	case REQ_OP_WRITE_ZEROES:
1616 		num_bios = ti->num_write_zeroes_bios;
1617 		break;
1618 	default:
1619 		break;
1620 	}
1621 
1622 	/*
1623 	 * Even though the device advertised support for this type of
1624 	 * request, that does not mean every target supports it, and
1625 	 * reconfiguration might also have changed that since the
1626 	 * check was performed.
1627 	 */
1628 	if (unlikely(!num_bios))
1629 		return BLK_STS_NOTSUPP;
1630 
1631 	__send_changing_extent_only(ci, ti, num_bios);
1632 	return BLK_STS_OK;
1633 }
1634 
1635 /*
1636  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1637  * associated with this bio, and this bio's bi_private needs to be
1638  * stored in dm_io->data before the reuse.
1639  *
1640  * bio->bi_private is owned by fs or upper layer, so block layer won't
1641  * touch it after splitting. Meantime it won't be changed by anyone after
1642  * bio is submitted. So this reuse is safe.
1643  */
1644 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1645 {
1646 	return (struct dm_io **)&bio->bi_private;
1647 }
1648 
1649 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1650 {
1651 	struct dm_io **head = dm_poll_list_head(bio);
1652 
1653 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1654 		bio->bi_opf |= REQ_DM_POLL_LIST;
1655 		/*
1656 		 * Save .bi_private into dm_io, so that we can reuse
1657 		 * .bi_private as dm_io list head for storing dm_io list
1658 		 */
1659 		io->data = bio->bi_private;
1660 
1661 		/* tell block layer to poll for completion */
1662 		bio->bi_cookie = ~BLK_QC_T_NONE;
1663 
1664 		io->next = NULL;
1665 	} else {
1666 		/*
1667 		 * bio recursed due to split, reuse original poll list,
1668 		 * and save bio->bi_private too.
1669 		 */
1670 		io->data = (*head)->data;
1671 		io->next = *head;
1672 	}
1673 
1674 	*head = io;
1675 }
1676 
1677 /*
1678  * Select the correct strategy for processing a non-flush bio.
1679  */
1680 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1681 {
1682 	struct bio *clone;
1683 	struct dm_target *ti;
1684 	unsigned int len;
1685 
1686 	ti = dm_table_find_target(ci->map, ci->sector);
1687 	if (unlikely(!ti))
1688 		return BLK_STS_IOERR;
1689 
1690 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1691 	    unlikely(!dm_target_supports_nowait(ti->type)))
1692 		return BLK_STS_NOTSUPP;
1693 
1694 	if (unlikely(ci->is_abnormal_io))
1695 		return __process_abnormal_io(ci, ti);
1696 
1697 	/*
1698 	 * Only support bio polling for normal IO, and the target io is
1699 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1700 	 */
1701 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1702 
1703 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1704 	setup_split_accounting(ci, len);
1705 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1706 	__map_bio(clone);
1707 
1708 	ci->sector += len;
1709 	ci->sector_count -= len;
1710 
1711 	return BLK_STS_OK;
1712 }
1713 
1714 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1715 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1716 {
1717 	ci->map = map;
1718 	ci->io = alloc_io(md, bio);
1719 	ci->bio = bio;
1720 	ci->is_abnormal_io = is_abnormal;
1721 	ci->submit_as_polled = false;
1722 	ci->sector = bio->bi_iter.bi_sector;
1723 	ci->sector_count = bio_sectors(bio);
1724 
1725 	/* Shouldn't happen but sector_count was being set to 0 so... */
1726 	if (static_branch_unlikely(&zoned_enabled) &&
1727 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1728 		ci->sector_count = 0;
1729 }
1730 
1731 /*
1732  * Entry point to split a bio into clones and submit them to the targets.
1733  */
1734 static void dm_split_and_process_bio(struct mapped_device *md,
1735 				     struct dm_table *map, struct bio *bio)
1736 {
1737 	struct clone_info ci;
1738 	struct dm_io *io;
1739 	blk_status_t error = BLK_STS_OK;
1740 	bool is_abnormal;
1741 
1742 	is_abnormal = is_abnormal_io(bio);
1743 	if (unlikely(is_abnormal)) {
1744 		/*
1745 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1746 		 * otherwise associated queue_limits won't be imposed.
1747 		 */
1748 		bio = bio_split_to_limits(bio);
1749 		if (!bio)
1750 			return;
1751 	}
1752 
1753 	init_clone_info(&ci, md, map, bio, is_abnormal);
1754 	io = ci.io;
1755 
1756 	if (bio->bi_opf & REQ_PREFLUSH) {
1757 		__send_empty_flush(&ci);
1758 		/* dm_io_complete submits any data associated with flush */
1759 		goto out;
1760 	}
1761 
1762 	error = __split_and_process_bio(&ci);
1763 	if (error || !ci.sector_count)
1764 		goto out;
1765 	/*
1766 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1767 	 * *after* bios already submitted have been completely processed.
1768 	 */
1769 	bio_trim(bio, io->sectors, ci.sector_count);
1770 	trace_block_split(bio, bio->bi_iter.bi_sector);
1771 	bio_inc_remaining(bio);
1772 	submit_bio_noacct(bio);
1773 out:
1774 	/*
1775 	 * Drop the extra reference count for non-POLLED bio, and hold one
1776 	 * reference for POLLED bio, which will be released in dm_poll_bio
1777 	 *
1778 	 * Add every dm_io instance into the dm_io list head which is stored
1779 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1780 	 */
1781 	if (error || !ci.submit_as_polled) {
1782 		/*
1783 		 * In case of submission failure, the extra reference for
1784 		 * submitting io isn't consumed yet
1785 		 */
1786 		if (error)
1787 			atomic_dec(&io->io_count);
1788 		dm_io_dec_pending(io, error);
1789 	} else
1790 		dm_queue_poll_io(bio, io);
1791 }
1792 
1793 static void dm_submit_bio(struct bio *bio)
1794 {
1795 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1796 	int srcu_idx;
1797 	struct dm_table *map;
1798 	blk_opf_t bio_opf = bio->bi_opf;
1799 
1800 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1801 
1802 	/* If suspended, or map not yet available, queue this IO for later */
1803 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1804 	    unlikely(!map)) {
1805 		if (bio->bi_opf & REQ_NOWAIT)
1806 			bio_wouldblock_error(bio);
1807 		else if (bio->bi_opf & REQ_RAHEAD)
1808 			bio_io_error(bio);
1809 		else
1810 			queue_io(md, bio);
1811 		goto out;
1812 	}
1813 
1814 	dm_split_and_process_bio(md, map, bio);
1815 out:
1816 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1817 }
1818 
1819 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1820 			  unsigned int flags)
1821 {
1822 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1823 
1824 	/* don't poll if the mapped io is done */
1825 	if (atomic_read(&io->io_count) > 1)
1826 		bio_poll(&io->tio.clone, iob, flags);
1827 
1828 	/* bio_poll holds the last reference */
1829 	return atomic_read(&io->io_count) == 1;
1830 }
1831 
1832 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1833 		       unsigned int flags)
1834 {
1835 	struct dm_io **head = dm_poll_list_head(bio);
1836 	struct dm_io *list = *head;
1837 	struct dm_io *tmp = NULL;
1838 	struct dm_io *curr, *next;
1839 
1840 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1841 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1842 		return 0;
1843 
1844 	WARN_ON_ONCE(!list);
1845 
1846 	/*
1847 	 * Restore .bi_private before possibly completing dm_io.
1848 	 *
1849 	 * bio_poll() is only possible once @bio has been completely
1850 	 * submitted via submit_bio_noacct()'s depth-first submission.
1851 	 * So there is no dm_queue_poll_io() race associated with
1852 	 * clearing REQ_DM_POLL_LIST here.
1853 	 */
1854 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1855 	bio->bi_private = list->data;
1856 
1857 	for (curr = list, next = curr->next; curr; curr = next, next =
1858 			curr ? curr->next : NULL) {
1859 		if (dm_poll_dm_io(curr, iob, flags)) {
1860 			/*
1861 			 * clone_endio() has already occurred, so no
1862 			 * error handling is needed here.
1863 			 */
1864 			__dm_io_dec_pending(curr);
1865 		} else {
1866 			curr->next = tmp;
1867 			tmp = curr;
1868 		}
1869 	}
1870 
1871 	/* Not done? */
1872 	if (tmp) {
1873 		bio->bi_opf |= REQ_DM_POLL_LIST;
1874 		/* Reset bio->bi_private to dm_io list head */
1875 		*head = tmp;
1876 		return 0;
1877 	}
1878 	return 1;
1879 }
1880 
1881 /*
1882  *---------------------------------------------------------------
1883  * An IDR is used to keep track of allocated minor numbers.
1884  *---------------------------------------------------------------
1885  */
1886 static void free_minor(int minor)
1887 {
1888 	spin_lock(&_minor_lock);
1889 	idr_remove(&_minor_idr, minor);
1890 	spin_unlock(&_minor_lock);
1891 }
1892 
1893 /*
1894  * See if the device with a specific minor # is free.
1895  */
1896 static int specific_minor(int minor)
1897 {
1898 	int r;
1899 
1900 	if (minor >= (1 << MINORBITS))
1901 		return -EINVAL;
1902 
1903 	idr_preload(GFP_KERNEL);
1904 	spin_lock(&_minor_lock);
1905 
1906 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1907 
1908 	spin_unlock(&_minor_lock);
1909 	idr_preload_end();
1910 	if (r < 0)
1911 		return r == -ENOSPC ? -EBUSY : r;
1912 	return 0;
1913 }
1914 
1915 static int next_free_minor(int *minor)
1916 {
1917 	int r;
1918 
1919 	idr_preload(GFP_KERNEL);
1920 	spin_lock(&_minor_lock);
1921 
1922 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1923 
1924 	spin_unlock(&_minor_lock);
1925 	idr_preload_end();
1926 	if (r < 0)
1927 		return r;
1928 	*minor = r;
1929 	return 0;
1930 }
1931 
1932 static const struct block_device_operations dm_blk_dops;
1933 static const struct block_device_operations dm_rq_blk_dops;
1934 static const struct dax_operations dm_dax_ops;
1935 
1936 static void dm_wq_work(struct work_struct *work);
1937 
1938 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1939 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1940 {
1941 	dm_destroy_crypto_profile(q->crypto_profile);
1942 }
1943 
1944 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1945 
1946 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1947 {
1948 }
1949 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1950 
1951 static void cleanup_mapped_device(struct mapped_device *md)
1952 {
1953 	if (md->wq)
1954 		destroy_workqueue(md->wq);
1955 	dm_free_md_mempools(md->mempools);
1956 
1957 	if (md->dax_dev) {
1958 		dax_remove_host(md->disk);
1959 		kill_dax(md->dax_dev);
1960 		put_dax(md->dax_dev);
1961 		md->dax_dev = NULL;
1962 	}
1963 
1964 	dm_cleanup_zoned_dev(md);
1965 	if (md->disk) {
1966 		spin_lock(&_minor_lock);
1967 		md->disk->private_data = NULL;
1968 		spin_unlock(&_minor_lock);
1969 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1970 			struct table_device *td;
1971 
1972 			dm_sysfs_exit(md);
1973 			list_for_each_entry(td, &md->table_devices, list) {
1974 				bd_unlink_disk_holder(td->dm_dev.bdev,
1975 						      md->disk);
1976 			}
1977 
1978 			/*
1979 			 * Hold lock to make sure del_gendisk() won't concurrent
1980 			 * with open/close_table_device().
1981 			 */
1982 			mutex_lock(&md->table_devices_lock);
1983 			del_gendisk(md->disk);
1984 			mutex_unlock(&md->table_devices_lock);
1985 		}
1986 		dm_queue_destroy_crypto_profile(md->queue);
1987 		put_disk(md->disk);
1988 	}
1989 
1990 	if (md->pending_io) {
1991 		free_percpu(md->pending_io);
1992 		md->pending_io = NULL;
1993 	}
1994 
1995 	cleanup_srcu_struct(&md->io_barrier);
1996 
1997 	mutex_destroy(&md->suspend_lock);
1998 	mutex_destroy(&md->type_lock);
1999 	mutex_destroy(&md->table_devices_lock);
2000 	mutex_destroy(&md->swap_bios_lock);
2001 
2002 	dm_mq_cleanup_mapped_device(md);
2003 }
2004 
2005 /*
2006  * Allocate and initialise a blank device with a given minor.
2007  */
2008 static struct mapped_device *alloc_dev(int minor)
2009 {
2010 	int r, numa_node_id = dm_get_numa_node();
2011 	struct mapped_device *md;
2012 	void *old_md;
2013 
2014 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2015 	if (!md) {
2016 		DMERR("unable to allocate device, out of memory.");
2017 		return NULL;
2018 	}
2019 
2020 	if (!try_module_get(THIS_MODULE))
2021 		goto bad_module_get;
2022 
2023 	/* get a minor number for the dev */
2024 	if (minor == DM_ANY_MINOR)
2025 		r = next_free_minor(&minor);
2026 	else
2027 		r = specific_minor(minor);
2028 	if (r < 0)
2029 		goto bad_minor;
2030 
2031 	r = init_srcu_struct(&md->io_barrier);
2032 	if (r < 0)
2033 		goto bad_io_barrier;
2034 
2035 	md->numa_node_id = numa_node_id;
2036 	md->init_tio_pdu = false;
2037 	md->type = DM_TYPE_NONE;
2038 	mutex_init(&md->suspend_lock);
2039 	mutex_init(&md->type_lock);
2040 	mutex_init(&md->table_devices_lock);
2041 	spin_lock_init(&md->deferred_lock);
2042 	atomic_set(&md->holders, 1);
2043 	atomic_set(&md->open_count, 0);
2044 	atomic_set(&md->event_nr, 0);
2045 	atomic_set(&md->uevent_seq, 0);
2046 	INIT_LIST_HEAD(&md->uevent_list);
2047 	INIT_LIST_HEAD(&md->table_devices);
2048 	spin_lock_init(&md->uevent_lock);
2049 
2050 	/*
2051 	 * default to bio-based until DM table is loaded and md->type
2052 	 * established. If request-based table is loaded: blk-mq will
2053 	 * override accordingly.
2054 	 */
2055 	md->disk = blk_alloc_disk(md->numa_node_id);
2056 	if (!md->disk)
2057 		goto bad;
2058 	md->queue = md->disk->queue;
2059 
2060 	init_waitqueue_head(&md->wait);
2061 	INIT_WORK(&md->work, dm_wq_work);
2062 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2063 	init_waitqueue_head(&md->eventq);
2064 	init_completion(&md->kobj_holder.completion);
2065 
2066 	md->requeue_list = NULL;
2067 	md->swap_bios = get_swap_bios();
2068 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2069 	mutex_init(&md->swap_bios_lock);
2070 
2071 	md->disk->major = _major;
2072 	md->disk->first_minor = minor;
2073 	md->disk->minors = 1;
2074 	md->disk->flags |= GENHD_FL_NO_PART;
2075 	md->disk->fops = &dm_blk_dops;
2076 	md->disk->private_data = md;
2077 	sprintf(md->disk->disk_name, "dm-%d", minor);
2078 
2079 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2080 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2081 		if (IS_ERR(md->dax_dev)) {
2082 			md->dax_dev = NULL;
2083 			goto bad;
2084 		}
2085 		set_dax_nocache(md->dax_dev);
2086 		set_dax_nomc(md->dax_dev);
2087 		if (dax_add_host(md->dax_dev, md->disk))
2088 			goto bad;
2089 	}
2090 
2091 	format_dev_t(md->name, MKDEV(_major, minor));
2092 
2093 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2094 	if (!md->wq)
2095 		goto bad;
2096 
2097 	md->pending_io = alloc_percpu(unsigned long);
2098 	if (!md->pending_io)
2099 		goto bad;
2100 
2101 	r = dm_stats_init(&md->stats);
2102 	if (r < 0)
2103 		goto bad;
2104 
2105 	/* Populate the mapping, nobody knows we exist yet */
2106 	spin_lock(&_minor_lock);
2107 	old_md = idr_replace(&_minor_idr, md, minor);
2108 	spin_unlock(&_minor_lock);
2109 
2110 	BUG_ON(old_md != MINOR_ALLOCED);
2111 
2112 	return md;
2113 
2114 bad:
2115 	cleanup_mapped_device(md);
2116 bad_io_barrier:
2117 	free_minor(minor);
2118 bad_minor:
2119 	module_put(THIS_MODULE);
2120 bad_module_get:
2121 	kvfree(md);
2122 	return NULL;
2123 }
2124 
2125 static void unlock_fs(struct mapped_device *md);
2126 
2127 static void free_dev(struct mapped_device *md)
2128 {
2129 	int minor = MINOR(disk_devt(md->disk));
2130 
2131 	unlock_fs(md);
2132 
2133 	cleanup_mapped_device(md);
2134 
2135 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2136 	dm_stats_cleanup(&md->stats);
2137 	free_minor(minor);
2138 
2139 	module_put(THIS_MODULE);
2140 	kvfree(md);
2141 }
2142 
2143 /*
2144  * Bind a table to the device.
2145  */
2146 static void event_callback(void *context)
2147 {
2148 	unsigned long flags;
2149 	LIST_HEAD(uevents);
2150 	struct mapped_device *md = context;
2151 
2152 	spin_lock_irqsave(&md->uevent_lock, flags);
2153 	list_splice_init(&md->uevent_list, &uevents);
2154 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2155 
2156 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2157 
2158 	atomic_inc(&md->event_nr);
2159 	wake_up(&md->eventq);
2160 	dm_issue_global_event();
2161 }
2162 
2163 /*
2164  * Returns old map, which caller must destroy.
2165  */
2166 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2167 			       struct queue_limits *limits)
2168 {
2169 	struct dm_table *old_map;
2170 	sector_t size;
2171 	int ret;
2172 
2173 	lockdep_assert_held(&md->suspend_lock);
2174 
2175 	size = dm_table_get_size(t);
2176 
2177 	/*
2178 	 * Wipe any geometry if the size of the table changed.
2179 	 */
2180 	if (size != dm_get_size(md))
2181 		memset(&md->geometry, 0, sizeof(md->geometry));
2182 
2183 	set_capacity(md->disk, size);
2184 
2185 	dm_table_event_callback(t, event_callback, md);
2186 
2187 	if (dm_table_request_based(t)) {
2188 		/*
2189 		 * Leverage the fact that request-based DM targets are
2190 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2191 		 */
2192 		md->immutable_target = dm_table_get_immutable_target(t);
2193 
2194 		/*
2195 		 * There is no need to reload with request-based dm because the
2196 		 * size of front_pad doesn't change.
2197 		 *
2198 		 * Note for future: If you are to reload bioset, prep-ed
2199 		 * requests in the queue may refer to bio from the old bioset,
2200 		 * so you must walk through the queue to unprep.
2201 		 */
2202 		if (!md->mempools) {
2203 			md->mempools = t->mempools;
2204 			t->mempools = NULL;
2205 		}
2206 	} else {
2207 		/*
2208 		 * The md may already have mempools that need changing.
2209 		 * If so, reload bioset because front_pad may have changed
2210 		 * because a different table was loaded.
2211 		 */
2212 		dm_free_md_mempools(md->mempools);
2213 		md->mempools = t->mempools;
2214 		t->mempools = NULL;
2215 	}
2216 
2217 	ret = dm_table_set_restrictions(t, md->queue, limits);
2218 	if (ret) {
2219 		old_map = ERR_PTR(ret);
2220 		goto out;
2221 	}
2222 
2223 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2224 	rcu_assign_pointer(md->map, (void *)t);
2225 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2226 
2227 	if (old_map)
2228 		dm_sync_table(md);
2229 out:
2230 	return old_map;
2231 }
2232 
2233 /*
2234  * Returns unbound table for the caller to free.
2235  */
2236 static struct dm_table *__unbind(struct mapped_device *md)
2237 {
2238 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2239 
2240 	if (!map)
2241 		return NULL;
2242 
2243 	dm_table_event_callback(map, NULL, NULL);
2244 	RCU_INIT_POINTER(md->map, NULL);
2245 	dm_sync_table(md);
2246 
2247 	return map;
2248 }
2249 
2250 /*
2251  * Constructor for a new device.
2252  */
2253 int dm_create(int minor, struct mapped_device **result)
2254 {
2255 	struct mapped_device *md;
2256 
2257 	md = alloc_dev(minor);
2258 	if (!md)
2259 		return -ENXIO;
2260 
2261 	dm_ima_reset_data(md);
2262 
2263 	*result = md;
2264 	return 0;
2265 }
2266 
2267 /*
2268  * Functions to manage md->type.
2269  * All are required to hold md->type_lock.
2270  */
2271 void dm_lock_md_type(struct mapped_device *md)
2272 {
2273 	mutex_lock(&md->type_lock);
2274 }
2275 
2276 void dm_unlock_md_type(struct mapped_device *md)
2277 {
2278 	mutex_unlock(&md->type_lock);
2279 }
2280 
2281 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2282 {
2283 	BUG_ON(!mutex_is_locked(&md->type_lock));
2284 	md->type = type;
2285 }
2286 
2287 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2288 {
2289 	return md->type;
2290 }
2291 
2292 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2293 {
2294 	return md->immutable_target_type;
2295 }
2296 
2297 /*
2298  * The queue_limits are only valid as long as you have a reference
2299  * count on 'md'.
2300  */
2301 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2302 {
2303 	BUG_ON(!atomic_read(&md->holders));
2304 	return &md->queue->limits;
2305 }
2306 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2307 
2308 /*
2309  * Setup the DM device's queue based on md's type
2310  */
2311 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2312 {
2313 	enum dm_queue_mode type = dm_table_get_type(t);
2314 	struct queue_limits limits;
2315 	struct table_device *td;
2316 	int r;
2317 
2318 	switch (type) {
2319 	case DM_TYPE_REQUEST_BASED:
2320 		md->disk->fops = &dm_rq_blk_dops;
2321 		r = dm_mq_init_request_queue(md, t);
2322 		if (r) {
2323 			DMERR("Cannot initialize queue for request-based dm mapped device");
2324 			return r;
2325 		}
2326 		break;
2327 	case DM_TYPE_BIO_BASED:
2328 	case DM_TYPE_DAX_BIO_BASED:
2329 		break;
2330 	case DM_TYPE_NONE:
2331 		WARN_ON_ONCE(true);
2332 		break;
2333 	}
2334 
2335 	r = dm_calculate_queue_limits(t, &limits);
2336 	if (r) {
2337 		DMERR("Cannot calculate initial queue limits");
2338 		return r;
2339 	}
2340 	r = dm_table_set_restrictions(t, md->queue, &limits);
2341 	if (r)
2342 		return r;
2343 
2344 	/*
2345 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2346 	 * with open_table_device() and close_table_device().
2347 	 */
2348 	mutex_lock(&md->table_devices_lock);
2349 	r = add_disk(md->disk);
2350 	mutex_unlock(&md->table_devices_lock);
2351 	if (r)
2352 		return r;
2353 
2354 	/*
2355 	 * Register the holder relationship for devices added before the disk
2356 	 * was live.
2357 	 */
2358 	list_for_each_entry(td, &md->table_devices, list) {
2359 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2360 		if (r)
2361 			goto out_undo_holders;
2362 	}
2363 
2364 	r = dm_sysfs_init(md);
2365 	if (r)
2366 		goto out_undo_holders;
2367 
2368 	md->type = type;
2369 	return 0;
2370 
2371 out_undo_holders:
2372 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2373 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2374 	mutex_lock(&md->table_devices_lock);
2375 	del_gendisk(md->disk);
2376 	mutex_unlock(&md->table_devices_lock);
2377 	return r;
2378 }
2379 
2380 struct mapped_device *dm_get_md(dev_t dev)
2381 {
2382 	struct mapped_device *md;
2383 	unsigned int minor = MINOR(dev);
2384 
2385 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2386 		return NULL;
2387 
2388 	spin_lock(&_minor_lock);
2389 
2390 	md = idr_find(&_minor_idr, minor);
2391 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2392 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2393 		md = NULL;
2394 		goto out;
2395 	}
2396 	dm_get(md);
2397 out:
2398 	spin_unlock(&_minor_lock);
2399 
2400 	return md;
2401 }
2402 EXPORT_SYMBOL_GPL(dm_get_md);
2403 
2404 void *dm_get_mdptr(struct mapped_device *md)
2405 {
2406 	return md->interface_ptr;
2407 }
2408 
2409 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2410 {
2411 	md->interface_ptr = ptr;
2412 }
2413 
2414 void dm_get(struct mapped_device *md)
2415 {
2416 	atomic_inc(&md->holders);
2417 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2418 }
2419 
2420 int dm_hold(struct mapped_device *md)
2421 {
2422 	spin_lock(&_minor_lock);
2423 	if (test_bit(DMF_FREEING, &md->flags)) {
2424 		spin_unlock(&_minor_lock);
2425 		return -EBUSY;
2426 	}
2427 	dm_get(md);
2428 	spin_unlock(&_minor_lock);
2429 	return 0;
2430 }
2431 EXPORT_SYMBOL_GPL(dm_hold);
2432 
2433 const char *dm_device_name(struct mapped_device *md)
2434 {
2435 	return md->name;
2436 }
2437 EXPORT_SYMBOL_GPL(dm_device_name);
2438 
2439 static void __dm_destroy(struct mapped_device *md, bool wait)
2440 {
2441 	struct dm_table *map;
2442 	int srcu_idx;
2443 
2444 	might_sleep();
2445 
2446 	spin_lock(&_minor_lock);
2447 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2448 	set_bit(DMF_FREEING, &md->flags);
2449 	spin_unlock(&_minor_lock);
2450 
2451 	blk_mark_disk_dead(md->disk);
2452 
2453 	/*
2454 	 * Take suspend_lock so that presuspend and postsuspend methods
2455 	 * do not race with internal suspend.
2456 	 */
2457 	mutex_lock(&md->suspend_lock);
2458 	map = dm_get_live_table(md, &srcu_idx);
2459 	if (!dm_suspended_md(md)) {
2460 		dm_table_presuspend_targets(map);
2461 		set_bit(DMF_SUSPENDED, &md->flags);
2462 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2463 		dm_table_postsuspend_targets(map);
2464 	}
2465 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2466 	dm_put_live_table(md, srcu_idx);
2467 	mutex_unlock(&md->suspend_lock);
2468 
2469 	/*
2470 	 * Rare, but there may be I/O requests still going to complete,
2471 	 * for example.  Wait for all references to disappear.
2472 	 * No one should increment the reference count of the mapped_device,
2473 	 * after the mapped_device state becomes DMF_FREEING.
2474 	 */
2475 	if (wait)
2476 		while (atomic_read(&md->holders))
2477 			fsleep(1000);
2478 	else if (atomic_read(&md->holders))
2479 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2480 		       dm_device_name(md), atomic_read(&md->holders));
2481 
2482 	dm_table_destroy(__unbind(md));
2483 	free_dev(md);
2484 }
2485 
2486 void dm_destroy(struct mapped_device *md)
2487 {
2488 	__dm_destroy(md, true);
2489 }
2490 
2491 void dm_destroy_immediate(struct mapped_device *md)
2492 {
2493 	__dm_destroy(md, false);
2494 }
2495 
2496 void dm_put(struct mapped_device *md)
2497 {
2498 	atomic_dec(&md->holders);
2499 }
2500 EXPORT_SYMBOL_GPL(dm_put);
2501 
2502 static bool dm_in_flight_bios(struct mapped_device *md)
2503 {
2504 	int cpu;
2505 	unsigned long sum = 0;
2506 
2507 	for_each_possible_cpu(cpu)
2508 		sum += *per_cpu_ptr(md->pending_io, cpu);
2509 
2510 	return sum != 0;
2511 }
2512 
2513 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2514 {
2515 	int r = 0;
2516 	DEFINE_WAIT(wait);
2517 
2518 	while (true) {
2519 		prepare_to_wait(&md->wait, &wait, task_state);
2520 
2521 		if (!dm_in_flight_bios(md))
2522 			break;
2523 
2524 		if (signal_pending_state(task_state, current)) {
2525 			r = -EINTR;
2526 			break;
2527 		}
2528 
2529 		io_schedule();
2530 	}
2531 	finish_wait(&md->wait, &wait);
2532 
2533 	smp_rmb();
2534 
2535 	return r;
2536 }
2537 
2538 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2539 {
2540 	int r = 0;
2541 
2542 	if (!queue_is_mq(md->queue))
2543 		return dm_wait_for_bios_completion(md, task_state);
2544 
2545 	while (true) {
2546 		if (!blk_mq_queue_inflight(md->queue))
2547 			break;
2548 
2549 		if (signal_pending_state(task_state, current)) {
2550 			r = -EINTR;
2551 			break;
2552 		}
2553 
2554 		fsleep(5000);
2555 	}
2556 
2557 	return r;
2558 }
2559 
2560 /*
2561  * Process the deferred bios
2562  */
2563 static void dm_wq_work(struct work_struct *work)
2564 {
2565 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2566 	struct bio *bio;
2567 
2568 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2569 		spin_lock_irq(&md->deferred_lock);
2570 		bio = bio_list_pop(&md->deferred);
2571 		spin_unlock_irq(&md->deferred_lock);
2572 
2573 		if (!bio)
2574 			break;
2575 
2576 		submit_bio_noacct(bio);
2577 		cond_resched();
2578 	}
2579 }
2580 
2581 static void dm_queue_flush(struct mapped_device *md)
2582 {
2583 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2584 	smp_mb__after_atomic();
2585 	queue_work(md->wq, &md->work);
2586 }
2587 
2588 /*
2589  * Swap in a new table, returning the old one for the caller to destroy.
2590  */
2591 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2592 {
2593 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2594 	struct queue_limits limits;
2595 	int r;
2596 
2597 	mutex_lock(&md->suspend_lock);
2598 
2599 	/* device must be suspended */
2600 	if (!dm_suspended_md(md))
2601 		goto out;
2602 
2603 	/*
2604 	 * If the new table has no data devices, retain the existing limits.
2605 	 * This helps multipath with queue_if_no_path if all paths disappear,
2606 	 * then new I/O is queued based on these limits, and then some paths
2607 	 * reappear.
2608 	 */
2609 	if (dm_table_has_no_data_devices(table)) {
2610 		live_map = dm_get_live_table_fast(md);
2611 		if (live_map)
2612 			limits = md->queue->limits;
2613 		dm_put_live_table_fast(md);
2614 	}
2615 
2616 	if (!live_map) {
2617 		r = dm_calculate_queue_limits(table, &limits);
2618 		if (r) {
2619 			map = ERR_PTR(r);
2620 			goto out;
2621 		}
2622 	}
2623 
2624 	map = __bind(md, table, &limits);
2625 	dm_issue_global_event();
2626 
2627 out:
2628 	mutex_unlock(&md->suspend_lock);
2629 	return map;
2630 }
2631 
2632 /*
2633  * Functions to lock and unlock any filesystem running on the
2634  * device.
2635  */
2636 static int lock_fs(struct mapped_device *md)
2637 {
2638 	int r;
2639 
2640 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2641 
2642 	r = freeze_bdev(md->disk->part0);
2643 	if (!r)
2644 		set_bit(DMF_FROZEN, &md->flags);
2645 	return r;
2646 }
2647 
2648 static void unlock_fs(struct mapped_device *md)
2649 {
2650 	if (!test_bit(DMF_FROZEN, &md->flags))
2651 		return;
2652 	thaw_bdev(md->disk->part0);
2653 	clear_bit(DMF_FROZEN, &md->flags);
2654 }
2655 
2656 /*
2657  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2658  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2659  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2660  *
2661  * If __dm_suspend returns 0, the device is completely quiescent
2662  * now. There is no request-processing activity. All new requests
2663  * are being added to md->deferred list.
2664  */
2665 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2666 			unsigned int suspend_flags, unsigned int task_state,
2667 			int dmf_suspended_flag)
2668 {
2669 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2670 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2671 	int r;
2672 
2673 	lockdep_assert_held(&md->suspend_lock);
2674 
2675 	/*
2676 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2677 	 * This flag is cleared before dm_suspend returns.
2678 	 */
2679 	if (noflush)
2680 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2681 	else
2682 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2683 
2684 	/*
2685 	 * This gets reverted if there's an error later and the targets
2686 	 * provide the .presuspend_undo hook.
2687 	 */
2688 	dm_table_presuspend_targets(map);
2689 
2690 	/*
2691 	 * Flush I/O to the device.
2692 	 * Any I/O submitted after lock_fs() may not be flushed.
2693 	 * noflush takes precedence over do_lockfs.
2694 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2695 	 */
2696 	if (!noflush && do_lockfs) {
2697 		r = lock_fs(md);
2698 		if (r) {
2699 			dm_table_presuspend_undo_targets(map);
2700 			return r;
2701 		}
2702 	}
2703 
2704 	/*
2705 	 * Here we must make sure that no processes are submitting requests
2706 	 * to target drivers i.e. no one may be executing
2707 	 * dm_split_and_process_bio from dm_submit_bio.
2708 	 *
2709 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2710 	 * we take the write lock. To prevent any process from reentering
2711 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2712 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2713 	 * flush_workqueue(md->wq).
2714 	 */
2715 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2716 	if (map)
2717 		synchronize_srcu(&md->io_barrier);
2718 
2719 	/*
2720 	 * Stop md->queue before flushing md->wq in case request-based
2721 	 * dm defers requests to md->wq from md->queue.
2722 	 */
2723 	if (dm_request_based(md))
2724 		dm_stop_queue(md->queue);
2725 
2726 	flush_workqueue(md->wq);
2727 
2728 	/*
2729 	 * At this point no more requests are entering target request routines.
2730 	 * We call dm_wait_for_completion to wait for all existing requests
2731 	 * to finish.
2732 	 */
2733 	r = dm_wait_for_completion(md, task_state);
2734 	if (!r)
2735 		set_bit(dmf_suspended_flag, &md->flags);
2736 
2737 	if (noflush)
2738 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2739 	if (map)
2740 		synchronize_srcu(&md->io_barrier);
2741 
2742 	/* were we interrupted ? */
2743 	if (r < 0) {
2744 		dm_queue_flush(md);
2745 
2746 		if (dm_request_based(md))
2747 			dm_start_queue(md->queue);
2748 
2749 		unlock_fs(md);
2750 		dm_table_presuspend_undo_targets(map);
2751 		/* pushback list is already flushed, so skip flush */
2752 	}
2753 
2754 	return r;
2755 }
2756 
2757 /*
2758  * We need to be able to change a mapping table under a mounted
2759  * filesystem.  For example we might want to move some data in
2760  * the background.  Before the table can be swapped with
2761  * dm_bind_table, dm_suspend must be called to flush any in
2762  * flight bios and ensure that any further io gets deferred.
2763  */
2764 /*
2765  * Suspend mechanism in request-based dm.
2766  *
2767  * 1. Flush all I/Os by lock_fs() if needed.
2768  * 2. Stop dispatching any I/O by stopping the request_queue.
2769  * 3. Wait for all in-flight I/Os to be completed or requeued.
2770  *
2771  * To abort suspend, start the request_queue.
2772  */
2773 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2774 {
2775 	struct dm_table *map = NULL;
2776 	int r = 0;
2777 
2778 retry:
2779 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2780 
2781 	if (dm_suspended_md(md)) {
2782 		r = -EINVAL;
2783 		goto out_unlock;
2784 	}
2785 
2786 	if (dm_suspended_internally_md(md)) {
2787 		/* already internally suspended, wait for internal resume */
2788 		mutex_unlock(&md->suspend_lock);
2789 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2790 		if (r)
2791 			return r;
2792 		goto retry;
2793 	}
2794 
2795 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796 
2797 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2798 	if (r)
2799 		goto out_unlock;
2800 
2801 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2802 	dm_table_postsuspend_targets(map);
2803 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2804 
2805 out_unlock:
2806 	mutex_unlock(&md->suspend_lock);
2807 	return r;
2808 }
2809 
2810 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2811 {
2812 	if (map) {
2813 		int r = dm_table_resume_targets(map);
2814 
2815 		if (r)
2816 			return r;
2817 	}
2818 
2819 	dm_queue_flush(md);
2820 
2821 	/*
2822 	 * Flushing deferred I/Os must be done after targets are resumed
2823 	 * so that mapping of targets can work correctly.
2824 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2825 	 */
2826 	if (dm_request_based(md))
2827 		dm_start_queue(md->queue);
2828 
2829 	unlock_fs(md);
2830 
2831 	return 0;
2832 }
2833 
2834 int dm_resume(struct mapped_device *md)
2835 {
2836 	int r;
2837 	struct dm_table *map = NULL;
2838 
2839 retry:
2840 	r = -EINVAL;
2841 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2842 
2843 	if (!dm_suspended_md(md))
2844 		goto out;
2845 
2846 	if (dm_suspended_internally_md(md)) {
2847 		/* already internally suspended, wait for internal resume */
2848 		mutex_unlock(&md->suspend_lock);
2849 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2850 		if (r)
2851 			return r;
2852 		goto retry;
2853 	}
2854 
2855 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2856 	if (!map || !dm_table_get_size(map))
2857 		goto out;
2858 
2859 	r = __dm_resume(md, map);
2860 	if (r)
2861 		goto out;
2862 
2863 	clear_bit(DMF_SUSPENDED, &md->flags);
2864 out:
2865 	mutex_unlock(&md->suspend_lock);
2866 
2867 	return r;
2868 }
2869 
2870 /*
2871  * Internal suspend/resume works like userspace-driven suspend. It waits
2872  * until all bios finish and prevents issuing new bios to the target drivers.
2873  * It may be used only from the kernel.
2874  */
2875 
2876 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2877 {
2878 	struct dm_table *map = NULL;
2879 
2880 	lockdep_assert_held(&md->suspend_lock);
2881 
2882 	if (md->internal_suspend_count++)
2883 		return; /* nested internal suspend */
2884 
2885 	if (dm_suspended_md(md)) {
2886 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2887 		return; /* nest suspend */
2888 	}
2889 
2890 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2891 
2892 	/*
2893 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2894 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2895 	 * would require changing .presuspend to return an error -- avoid this
2896 	 * until there is a need for more elaborate variants of internal suspend.
2897 	 */
2898 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2899 			    DMF_SUSPENDED_INTERNALLY);
2900 
2901 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2902 	dm_table_postsuspend_targets(map);
2903 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2904 }
2905 
2906 static void __dm_internal_resume(struct mapped_device *md)
2907 {
2908 	BUG_ON(!md->internal_suspend_count);
2909 
2910 	if (--md->internal_suspend_count)
2911 		return; /* resume from nested internal suspend */
2912 
2913 	if (dm_suspended_md(md))
2914 		goto done; /* resume from nested suspend */
2915 
2916 	/*
2917 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2918 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2919 	 */
2920 	(void) __dm_resume(md, NULL);
2921 
2922 done:
2923 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2924 	smp_mb__after_atomic();
2925 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2926 }
2927 
2928 void dm_internal_suspend_noflush(struct mapped_device *md)
2929 {
2930 	mutex_lock(&md->suspend_lock);
2931 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2932 	mutex_unlock(&md->suspend_lock);
2933 }
2934 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2935 
2936 void dm_internal_resume(struct mapped_device *md)
2937 {
2938 	mutex_lock(&md->suspend_lock);
2939 	__dm_internal_resume(md);
2940 	mutex_unlock(&md->suspend_lock);
2941 }
2942 EXPORT_SYMBOL_GPL(dm_internal_resume);
2943 
2944 /*
2945  * Fast variants of internal suspend/resume hold md->suspend_lock,
2946  * which prevents interaction with userspace-driven suspend.
2947  */
2948 
2949 void dm_internal_suspend_fast(struct mapped_device *md)
2950 {
2951 	mutex_lock(&md->suspend_lock);
2952 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2953 		return;
2954 
2955 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2956 	synchronize_srcu(&md->io_barrier);
2957 	flush_workqueue(md->wq);
2958 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2959 }
2960 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2961 
2962 void dm_internal_resume_fast(struct mapped_device *md)
2963 {
2964 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2965 		goto done;
2966 
2967 	dm_queue_flush(md);
2968 
2969 done:
2970 	mutex_unlock(&md->suspend_lock);
2971 }
2972 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2973 
2974 /*
2975  *---------------------------------------------------------------
2976  * Event notification.
2977  *---------------------------------------------------------------
2978  */
2979 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2980 		      unsigned int cookie, bool need_resize_uevent)
2981 {
2982 	int r;
2983 	unsigned int noio_flag;
2984 	char udev_cookie[DM_COOKIE_LENGTH];
2985 	char *envp[3] = { NULL, NULL, NULL };
2986 	char **envpp = envp;
2987 	if (cookie) {
2988 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2989 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2990 		*envpp++ = udev_cookie;
2991 	}
2992 	if (need_resize_uevent) {
2993 		*envpp++ = "RESIZE=1";
2994 	}
2995 
2996 	noio_flag = memalloc_noio_save();
2997 
2998 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2999 
3000 	memalloc_noio_restore(noio_flag);
3001 
3002 	return r;
3003 }
3004 
3005 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3006 {
3007 	return atomic_add_return(1, &md->uevent_seq);
3008 }
3009 
3010 uint32_t dm_get_event_nr(struct mapped_device *md)
3011 {
3012 	return atomic_read(&md->event_nr);
3013 }
3014 
3015 int dm_wait_event(struct mapped_device *md, int event_nr)
3016 {
3017 	return wait_event_interruptible(md->eventq,
3018 			(event_nr != atomic_read(&md->event_nr)));
3019 }
3020 
3021 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3022 {
3023 	unsigned long flags;
3024 
3025 	spin_lock_irqsave(&md->uevent_lock, flags);
3026 	list_add(elist, &md->uevent_list);
3027 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3028 }
3029 
3030 /*
3031  * The gendisk is only valid as long as you have a reference
3032  * count on 'md'.
3033  */
3034 struct gendisk *dm_disk(struct mapped_device *md)
3035 {
3036 	return md->disk;
3037 }
3038 EXPORT_SYMBOL_GPL(dm_disk);
3039 
3040 struct kobject *dm_kobject(struct mapped_device *md)
3041 {
3042 	return &md->kobj_holder.kobj;
3043 }
3044 
3045 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3046 {
3047 	struct mapped_device *md;
3048 
3049 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3050 
3051 	spin_lock(&_minor_lock);
3052 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3053 		md = NULL;
3054 		goto out;
3055 	}
3056 	dm_get(md);
3057 out:
3058 	spin_unlock(&_minor_lock);
3059 
3060 	return md;
3061 }
3062 
3063 int dm_suspended_md(struct mapped_device *md)
3064 {
3065 	return test_bit(DMF_SUSPENDED, &md->flags);
3066 }
3067 
3068 static int dm_post_suspending_md(struct mapped_device *md)
3069 {
3070 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3071 }
3072 
3073 int dm_suspended_internally_md(struct mapped_device *md)
3074 {
3075 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3076 }
3077 
3078 int dm_test_deferred_remove_flag(struct mapped_device *md)
3079 {
3080 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3081 }
3082 
3083 int dm_suspended(struct dm_target *ti)
3084 {
3085 	return dm_suspended_md(ti->table->md);
3086 }
3087 EXPORT_SYMBOL_GPL(dm_suspended);
3088 
3089 int dm_post_suspending(struct dm_target *ti)
3090 {
3091 	return dm_post_suspending_md(ti->table->md);
3092 }
3093 EXPORT_SYMBOL_GPL(dm_post_suspending);
3094 
3095 int dm_noflush_suspending(struct dm_target *ti)
3096 {
3097 	return __noflush_suspending(ti->table->md);
3098 }
3099 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3100 
3101 void dm_free_md_mempools(struct dm_md_mempools *pools)
3102 {
3103 	if (!pools)
3104 		return;
3105 
3106 	bioset_exit(&pools->bs);
3107 	bioset_exit(&pools->io_bs);
3108 
3109 	kfree(pools);
3110 }
3111 
3112 struct dm_pr {
3113 	u64	old_key;
3114 	u64	new_key;
3115 	u32	flags;
3116 	bool	abort;
3117 	bool	fail_early;
3118 	int	ret;
3119 	enum pr_type type;
3120 };
3121 
3122 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3123 		      struct dm_pr *pr)
3124 {
3125 	struct mapped_device *md = bdev->bd_disk->private_data;
3126 	struct dm_table *table;
3127 	struct dm_target *ti;
3128 	int ret = -ENOTTY, srcu_idx;
3129 
3130 	table = dm_get_live_table(md, &srcu_idx);
3131 	if (!table || !dm_table_get_size(table))
3132 		goto out;
3133 
3134 	/* We only support devices that have a single target */
3135 	if (table->num_targets != 1)
3136 		goto out;
3137 	ti = dm_table_get_target(table, 0);
3138 
3139 	if (dm_suspended_md(md)) {
3140 		ret = -EAGAIN;
3141 		goto out;
3142 	}
3143 
3144 	ret = -EINVAL;
3145 	if (!ti->type->iterate_devices)
3146 		goto out;
3147 
3148 	ti->type->iterate_devices(ti, fn, pr);
3149 	ret = 0;
3150 out:
3151 	dm_put_live_table(md, srcu_idx);
3152 	return ret;
3153 }
3154 
3155 /*
3156  * For register / unregister we need to manually call out to every path.
3157  */
3158 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3159 			    sector_t start, sector_t len, void *data)
3160 {
3161 	struct dm_pr *pr = data;
3162 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3163 	int ret;
3164 
3165 	if (!ops || !ops->pr_register) {
3166 		pr->ret = -EOPNOTSUPP;
3167 		return -1;
3168 	}
3169 
3170 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3171 	if (!ret)
3172 		return 0;
3173 
3174 	if (!pr->ret)
3175 		pr->ret = ret;
3176 
3177 	if (pr->fail_early)
3178 		return -1;
3179 
3180 	return 0;
3181 }
3182 
3183 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3184 			  u32 flags)
3185 {
3186 	struct dm_pr pr = {
3187 		.old_key	= old_key,
3188 		.new_key	= new_key,
3189 		.flags		= flags,
3190 		.fail_early	= true,
3191 		.ret		= 0,
3192 	};
3193 	int ret;
3194 
3195 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3196 	if (ret) {
3197 		/* Didn't even get to register a path */
3198 		return ret;
3199 	}
3200 
3201 	if (!pr.ret)
3202 		return 0;
3203 	ret = pr.ret;
3204 
3205 	if (!new_key)
3206 		return ret;
3207 
3208 	/* unregister all paths if we failed to register any path */
3209 	pr.old_key = new_key;
3210 	pr.new_key = 0;
3211 	pr.flags = 0;
3212 	pr.fail_early = false;
3213 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3214 	return ret;
3215 }
3216 
3217 
3218 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3219 			   sector_t start, sector_t len, void *data)
3220 {
3221 	struct dm_pr *pr = data;
3222 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3223 
3224 	if (!ops || !ops->pr_reserve) {
3225 		pr->ret = -EOPNOTSUPP;
3226 		return -1;
3227 	}
3228 
3229 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3230 	if (!pr->ret)
3231 		return -1;
3232 
3233 	return 0;
3234 }
3235 
3236 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3237 			 u32 flags)
3238 {
3239 	struct dm_pr pr = {
3240 		.old_key	= key,
3241 		.flags		= flags,
3242 		.type		= type,
3243 		.fail_early	= false,
3244 		.ret		= 0,
3245 	};
3246 	int ret;
3247 
3248 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3249 	if (ret)
3250 		return ret;
3251 
3252 	return pr.ret;
3253 }
3254 
3255 /*
3256  * If there is a non-All Registrants type of reservation, the release must be
3257  * sent down the holding path. For the cases where there is no reservation or
3258  * the path is not the holder the device will also return success, so we must
3259  * try each path to make sure we got the correct path.
3260  */
3261 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3262 			   sector_t start, sector_t len, void *data)
3263 {
3264 	struct dm_pr *pr = data;
3265 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3266 
3267 	if (!ops || !ops->pr_release) {
3268 		pr->ret = -EOPNOTSUPP;
3269 		return -1;
3270 	}
3271 
3272 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3273 	if (pr->ret)
3274 		return -1;
3275 
3276 	return 0;
3277 }
3278 
3279 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3280 {
3281 	struct dm_pr pr = {
3282 		.old_key	= key,
3283 		.type		= type,
3284 		.fail_early	= false,
3285 	};
3286 	int ret;
3287 
3288 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3289 	if (ret)
3290 		return ret;
3291 
3292 	return pr.ret;
3293 }
3294 
3295 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3296 			   sector_t start, sector_t len, void *data)
3297 {
3298 	struct dm_pr *pr = data;
3299 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3300 
3301 	if (!ops || !ops->pr_preempt) {
3302 		pr->ret = -EOPNOTSUPP;
3303 		return -1;
3304 	}
3305 
3306 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3307 				  pr->abort);
3308 	if (!pr->ret)
3309 		return -1;
3310 
3311 	return 0;
3312 }
3313 
3314 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3315 			 enum pr_type type, bool abort)
3316 {
3317 	struct dm_pr pr = {
3318 		.new_key	= new_key,
3319 		.old_key	= old_key,
3320 		.type		= type,
3321 		.fail_early	= false,
3322 	};
3323 	int ret;
3324 
3325 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3326 	if (ret)
3327 		return ret;
3328 
3329 	return pr.ret;
3330 }
3331 
3332 static int dm_pr_clear(struct block_device *bdev, u64 key)
3333 {
3334 	struct mapped_device *md = bdev->bd_disk->private_data;
3335 	const struct pr_ops *ops;
3336 	int r, srcu_idx;
3337 
3338 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3339 	if (r < 0)
3340 		goto out;
3341 
3342 	ops = bdev->bd_disk->fops->pr_ops;
3343 	if (ops && ops->pr_clear)
3344 		r = ops->pr_clear(bdev, key);
3345 	else
3346 		r = -EOPNOTSUPP;
3347 out:
3348 	dm_unprepare_ioctl(md, srcu_idx);
3349 	return r;
3350 }
3351 
3352 static const struct pr_ops dm_pr_ops = {
3353 	.pr_register	= dm_pr_register,
3354 	.pr_reserve	= dm_pr_reserve,
3355 	.pr_release	= dm_pr_release,
3356 	.pr_preempt	= dm_pr_preempt,
3357 	.pr_clear	= dm_pr_clear,
3358 };
3359 
3360 static const struct block_device_operations dm_blk_dops = {
3361 	.submit_bio = dm_submit_bio,
3362 	.poll_bio = dm_poll_bio,
3363 	.open = dm_blk_open,
3364 	.release = dm_blk_close,
3365 	.ioctl = dm_blk_ioctl,
3366 	.getgeo = dm_blk_getgeo,
3367 	.report_zones = dm_blk_report_zones,
3368 	.pr_ops = &dm_pr_ops,
3369 	.owner = THIS_MODULE
3370 };
3371 
3372 static const struct block_device_operations dm_rq_blk_dops = {
3373 	.open = dm_blk_open,
3374 	.release = dm_blk_close,
3375 	.ioctl = dm_blk_ioctl,
3376 	.getgeo = dm_blk_getgeo,
3377 	.pr_ops = &dm_pr_ops,
3378 	.owner = THIS_MODULE
3379 };
3380 
3381 static const struct dax_operations dm_dax_ops = {
3382 	.direct_access = dm_dax_direct_access,
3383 	.zero_page_range = dm_dax_zero_page_range,
3384 	.recovery_write = dm_dax_recovery_write,
3385 };
3386 
3387 /*
3388  * module hooks
3389  */
3390 module_init(dm_init);
3391 module_exit(dm_exit);
3392 
3393 module_param(major, uint, 0);
3394 MODULE_PARM_DESC(major, "The major number of the device mapper");
3395 
3396 module_param(reserved_bio_based_ios, uint, 0644);
3397 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3398 
3399 module_param(dm_numa_node, int, 0644);
3400 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3401 
3402 module_param(swap_bios, int, 0644);
3403 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3404 
3405 MODULE_DESCRIPTION(DM_NAME " driver");
3406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3407 MODULE_LICENSE("GPL");
3408