1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = bdev->bd_disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static void dm_io_acct(struct dm_io *io, bool end) 496 { 497 struct dm_stats_aux *stats_aux = &io->stats_aux; 498 unsigned long start_time = io->start_time; 499 struct mapped_device *md = io->md; 500 struct bio *bio = io->orig_bio; 501 unsigned int sectors; 502 503 /* 504 * If REQ_PREFLUSH set, don't account payload, it will be 505 * submitted (and accounted) after this flush completes. 506 */ 507 if (bio_is_flush_with_data(bio)) 508 sectors = 0; 509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 510 sectors = bio_sectors(bio); 511 else 512 sectors = io->sectors; 513 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors, 518 start_time); 519 520 if (static_branch_unlikely(&stats_enabled) && 521 unlikely(dm_stats_used(&md->stats))) { 522 sector_t sector; 523 524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 525 sector = bio->bi_iter.bi_sector; 526 else 527 sector = bio_end_sector(bio) - io->sector_offset; 528 529 dm_stats_account_io(&md->stats, bio_data_dir(bio), 530 sector, sectors, 531 end, start_time, stats_aux); 532 } 533 } 534 535 static void __dm_start_io_acct(struct dm_io *io) 536 { 537 dm_io_acct(io, false); 538 } 539 540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 541 { 542 /* 543 * Ensure IO accounting is only ever started once. 544 */ 545 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 546 return; 547 548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 550 dm_io_set_flag(io, DM_IO_ACCOUNTED); 551 } else { 552 unsigned long flags; 553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 554 spin_lock_irqsave(&io->lock, flags); 555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 556 spin_unlock_irqrestore(&io->lock, flags); 557 return; 558 } 559 dm_io_set_flag(io, DM_IO_ACCOUNTED); 560 spin_unlock_irqrestore(&io->lock, flags); 561 } 562 563 __dm_start_io_acct(io); 564 } 565 566 static void dm_end_io_acct(struct dm_io *io) 567 { 568 dm_io_acct(io, true); 569 } 570 571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 572 { 573 struct dm_io *io; 574 struct dm_target_io *tio; 575 struct bio *clone; 576 577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 578 tio = clone_to_tio(clone); 579 tio->flags = 0; 580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 581 tio->io = NULL; 582 583 io = container_of(tio, struct dm_io, tio); 584 io->magic = DM_IO_MAGIC; 585 io->status = BLK_STS_OK; 586 587 /* one ref is for submission, the other is for completion */ 588 atomic_set(&io->io_count, 2); 589 this_cpu_inc(*md->pending_io); 590 io->orig_bio = bio; 591 io->md = md; 592 spin_lock_init(&io->lock); 593 io->start_time = jiffies; 594 io->flags = 0; 595 596 if (static_branch_unlikely(&stats_enabled)) 597 dm_stats_record_start(&md->stats, &io->stats_aux); 598 599 return io; 600 } 601 602 static void free_io(struct dm_io *io) 603 { 604 bio_put(&io->tio.clone); 605 } 606 607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 609 { 610 struct mapped_device *md = ci->io->md; 611 struct dm_target_io *tio; 612 struct bio *clone; 613 614 if (!ci->io->tio.io) { 615 /* the dm_target_io embedded in ci->io is available */ 616 tio = &ci->io->tio; 617 /* alloc_io() already initialized embedded clone */ 618 clone = &tio->clone; 619 } else { 620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 621 &md->mempools->bs); 622 if (!clone) 623 return NULL; 624 625 /* REQ_DM_POLL_LIST shouldn't be inherited */ 626 clone->bi_opf &= ~REQ_DM_POLL_LIST; 627 628 tio = clone_to_tio(clone); 629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 630 } 631 632 tio->magic = DM_TIO_MAGIC; 633 tio->io = ci->io; 634 tio->ti = ti; 635 tio->target_bio_nr = target_bio_nr; 636 tio->len_ptr = len; 637 tio->old_sector = 0; 638 639 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 640 clone->bi_bdev = md->disk->part0; 641 if (unlikely(ti->needs_bio_set_dev)) 642 bio_set_dev(clone, md->disk->part0); 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, blk_opf_t bio_opf) 715 { 716 if (bio_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 blk_opf_t bio_opf) 724 { 725 if (bio_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static struct table_device *open_table_device(struct mapped_device *md, 737 dev_t dev, fmode_t mode) 738 { 739 struct table_device *td; 740 struct block_device *bdev; 741 u64 part_off; 742 int r; 743 744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 745 if (!td) 746 return ERR_PTR(-ENOMEM); 747 refcount_set(&td->count, 1); 748 749 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr); 750 if (IS_ERR(bdev)) { 751 r = PTR_ERR(bdev); 752 goto out_free_td; 753 } 754 755 /* 756 * We can be called before the dm disk is added. In that case we can't 757 * register the holder relation here. It will be done once add_disk was 758 * called. 759 */ 760 if (md->disk->slave_dir) { 761 r = bd_link_disk_holder(bdev, md->disk); 762 if (r) 763 goto out_blkdev_put; 764 } 765 766 td->dm_dev.mode = mode; 767 td->dm_dev.bdev = bdev; 768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 769 format_dev_t(td->dm_dev.name, dev); 770 list_add(&td->list, &md->table_devices); 771 return td; 772 773 out_blkdev_put: 774 blkdev_put(bdev, mode | FMODE_EXCL); 775 out_free_td: 776 kfree(td); 777 return ERR_PTR(r); 778 } 779 780 /* 781 * Close a table device that we've been using. 782 */ 783 static void close_table_device(struct table_device *td, struct mapped_device *md) 784 { 785 if (md->disk->slave_dir) 786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 788 put_dax(td->dm_dev.dax_dev); 789 list_del(&td->list); 790 kfree(td); 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 fmode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 806 struct dm_dev **result) 807 { 808 struct table_device *td; 809 810 mutex_lock(&md->table_devices_lock); 811 td = find_table_device(&md->table_devices, dev, mode); 812 if (!td) { 813 td = open_table_device(md, dev, mode); 814 if (IS_ERR(td)) { 815 mutex_unlock(&md->table_devices_lock); 816 return PTR_ERR(td); 817 } 818 } else { 819 refcount_inc(&td->count); 820 } 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) 833 close_table_device(td, md); 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 /* 838 * Get the geometry associated with a dm device 839 */ 840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 841 { 842 *geo = md->geometry; 843 844 return 0; 845 } 846 847 /* 848 * Set the geometry of a device. 849 */ 850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 851 { 852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 853 854 if (geo->start > sz) { 855 DMERR("Start sector is beyond the geometry limits."); 856 return -EINVAL; 857 } 858 859 md->geometry = *geo; 860 861 return 0; 862 } 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 870 { 871 struct mapped_device *md = io->md; 872 873 if (first_stage) { 874 struct dm_io *next = md->requeue_list; 875 876 md->requeue_list = io; 877 io->next = next; 878 } else { 879 bio_list_add_head(&md->deferred, io->orig_bio); 880 } 881 } 882 883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 884 { 885 if (first_stage) 886 queue_work(md->wq, &md->requeue_work); 887 else 888 queue_work(md->wq, &md->work); 889 } 890 891 /* 892 * Return true if the dm_io's original bio is requeued. 893 * io->status is updated with error if requeue disallowed. 894 */ 895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 896 { 897 struct bio *bio = io->orig_bio; 898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 900 (bio->bi_opf & REQ_POLLED)); 901 struct mapped_device *md = io->md; 902 bool requeued = false; 903 904 if (handle_requeue || handle_polled_eagain) { 905 unsigned long flags; 906 907 if (bio->bi_opf & REQ_POLLED) { 908 /* 909 * Upper layer won't help us poll split bio 910 * (io->orig_bio may only reflect a subset of the 911 * pre-split original) so clear REQ_POLLED. 912 */ 913 bio_clear_polled(bio); 914 } 915 916 /* 917 * Target requested pushing back the I/O or 918 * polled IO hit BLK_STS_AGAIN. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if ((__noflush_suspending(md) && 922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 923 handle_polled_eagain || first_stage) { 924 dm_requeue_add_io(io, first_stage); 925 requeued = true; 926 } else { 927 /* 928 * noflush suspend was interrupted or this is 929 * a write to a zoned target. 930 */ 931 io->status = BLK_STS_IOERR; 932 } 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 if (requeued) 937 dm_kick_requeue(md, first_stage); 938 939 return requeued; 940 } 941 942 static void __dm_io_complete(struct dm_io *io, bool first_stage) 943 { 944 struct bio *bio = io->orig_bio; 945 struct mapped_device *md = io->md; 946 blk_status_t io_error; 947 bool requeued; 948 949 requeued = dm_handle_requeue(io, first_stage); 950 if (requeued && first_stage) 951 return; 952 953 io_error = io->status; 954 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 955 dm_end_io_acct(io); 956 else if (!io_error) { 957 /* 958 * Must handle target that DM_MAPIO_SUBMITTED only to 959 * then bio_endio() rather than dm_submit_bio_remap() 960 */ 961 __dm_start_io_acct(io); 962 dm_end_io_acct(io); 963 } 964 free_io(io); 965 smp_wmb(); 966 this_cpu_dec(*md->pending_io); 967 968 /* nudge anyone waiting on suspend queue */ 969 if (unlikely(wq_has_sleeper(&md->wait))) 970 wake_up(&md->wait); 971 972 /* Return early if the original bio was requeued */ 973 if (requeued) 974 return; 975 976 if (bio_is_flush_with_data(bio)) { 977 /* 978 * Preflush done for flush with data, reissue 979 * without REQ_PREFLUSH. 980 */ 981 bio->bi_opf &= ~REQ_PREFLUSH; 982 queue_io(md, bio); 983 } else { 984 /* done with normal IO or empty flush */ 985 if (io_error) 986 bio->bi_status = io_error; 987 bio_endio(bio); 988 } 989 } 990 991 static void dm_wq_requeue_work(struct work_struct *work) 992 { 993 struct mapped_device *md = container_of(work, struct mapped_device, 994 requeue_work); 995 unsigned long flags; 996 struct dm_io *io; 997 998 /* reuse deferred lock to simplify dm_handle_requeue */ 999 spin_lock_irqsave(&md->deferred_lock, flags); 1000 io = md->requeue_list; 1001 md->requeue_list = NULL; 1002 spin_unlock_irqrestore(&md->deferred_lock, flags); 1003 1004 while (io) { 1005 struct dm_io *next = io->next; 1006 1007 dm_io_rewind(io, &md->disk->bio_split); 1008 1009 io->next = NULL; 1010 __dm_io_complete(io, false); 1011 io = next; 1012 cond_resched(); 1013 } 1014 } 1015 1016 /* 1017 * Two staged requeue: 1018 * 1019 * 1) io->orig_bio points to the real original bio, and the part mapped to 1020 * this io must be requeued, instead of other parts of the original bio. 1021 * 1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1023 */ 1024 static void dm_io_complete(struct dm_io *io) 1025 { 1026 bool first_requeue; 1027 1028 /* 1029 * Only dm_io that has been split needs two stage requeue, otherwise 1030 * we may run into long bio clone chain during suspend and OOM could 1031 * be triggered. 1032 * 1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1034 * also aren't handled via the first stage requeue. 1035 */ 1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1037 first_requeue = true; 1038 else 1039 first_requeue = false; 1040 1041 __dm_io_complete(io, first_requeue); 1042 } 1043 1044 /* 1045 * Decrements the number of outstanding ios that a bio has been 1046 * cloned into, completing the original io if necc. 1047 */ 1048 static inline void __dm_io_dec_pending(struct dm_io *io) 1049 { 1050 if (atomic_dec_and_test(&io->io_count)) 1051 dm_io_complete(io); 1052 } 1053 1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1055 { 1056 unsigned long flags; 1057 1058 /* Push-back supersedes any I/O errors */ 1059 spin_lock_irqsave(&io->lock, flags); 1060 if (!(io->status == BLK_STS_DM_REQUEUE && 1061 __noflush_suspending(io->md))) { 1062 io->status = error; 1063 } 1064 spin_unlock_irqrestore(&io->lock, flags); 1065 } 1066 1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1068 { 1069 if (unlikely(error)) 1070 dm_io_set_error(io, error); 1071 1072 __dm_io_dec_pending(io); 1073 } 1074 1075 void disable_discard(struct mapped_device *md) 1076 { 1077 struct queue_limits *limits = dm_get_queue_limits(md); 1078 1079 /* device doesn't really support DISCARD, disable it */ 1080 limits->max_discard_sectors = 0; 1081 } 1082 1083 void disable_write_zeroes(struct mapped_device *md) 1084 { 1085 struct queue_limits *limits = dm_get_queue_limits(md); 1086 1087 /* device doesn't really support WRITE ZEROES, disable it */ 1088 limits->max_write_zeroes_sectors = 0; 1089 } 1090 1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1092 { 1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1094 } 1095 1096 static void clone_endio(struct bio *bio) 1097 { 1098 blk_status_t error = bio->bi_status; 1099 struct dm_target_io *tio = clone_to_tio(bio); 1100 struct dm_target *ti = tio->ti; 1101 dm_endio_fn endio = ti->type->end_io; 1102 struct dm_io *io = tio->io; 1103 struct mapped_device *md = io->md; 1104 1105 if (unlikely(error == BLK_STS_TARGET)) { 1106 if (bio_op(bio) == REQ_OP_DISCARD && 1107 !bdev_max_discard_sectors(bio->bi_bdev)) 1108 disable_discard(md); 1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1110 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1111 disable_write_zeroes(md); 1112 } 1113 1114 if (static_branch_unlikely(&zoned_enabled) && 1115 unlikely(bdev_is_zoned(bio->bi_bdev))) 1116 dm_zone_endio(io, bio); 1117 1118 if (endio) { 1119 int r = endio(ti, bio, &error); 1120 1121 switch (r) { 1122 case DM_ENDIO_REQUEUE: 1123 if (static_branch_unlikely(&zoned_enabled)) { 1124 /* 1125 * Requeuing writes to a sequential zone of a zoned 1126 * target will break the sequential write pattern: 1127 * fail such IO. 1128 */ 1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1130 error = BLK_STS_IOERR; 1131 else 1132 error = BLK_STS_DM_REQUEUE; 1133 } else 1134 error = BLK_STS_DM_REQUEUE; 1135 fallthrough; 1136 case DM_ENDIO_DONE: 1137 break; 1138 case DM_ENDIO_INCOMPLETE: 1139 /* The target will handle the io */ 1140 return; 1141 default: 1142 DMCRIT("unimplemented target endio return value: %d", r); 1143 BUG(); 1144 } 1145 } 1146 1147 if (static_branch_unlikely(&swap_bios_enabled) && 1148 unlikely(swap_bios_limit(ti, bio))) 1149 up(&md->swap_bios_semaphore); 1150 1151 free_tio(bio); 1152 dm_io_dec_pending(io, error); 1153 } 1154 1155 /* 1156 * Return maximum size of I/O possible at the supplied sector up to the current 1157 * target boundary. 1158 */ 1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1160 sector_t target_offset) 1161 { 1162 return ti->len - target_offset; 1163 } 1164 1165 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1166 { 1167 sector_t target_offset = dm_target_offset(ti, sector); 1168 sector_t len = max_io_len_target_boundary(ti, target_offset); 1169 1170 /* 1171 * Does the target need to split IO even further? 1172 * - varied (per target) IO splitting is a tenet of DM; this 1173 * explains why stacked chunk_sectors based splitting via 1174 * bio_split_to_limits() isn't possible here. 1175 */ 1176 if (!ti->max_io_len) 1177 return len; 1178 return min_t(sector_t, len, 1179 min(queue_max_sectors(ti->table->md->queue), 1180 blk_chunk_sectors_left(target_offset, ti->max_io_len))); 1181 } 1182 1183 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1184 { 1185 if (len > UINT_MAX) { 1186 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1187 (unsigned long long)len, UINT_MAX); 1188 ti->error = "Maximum size of target IO is too large"; 1189 return -EINVAL; 1190 } 1191 1192 ti->max_io_len = (uint32_t) len; 1193 1194 return 0; 1195 } 1196 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1197 1198 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1199 sector_t sector, int *srcu_idx) 1200 __acquires(md->io_barrier) 1201 { 1202 struct dm_table *map; 1203 struct dm_target *ti; 1204 1205 map = dm_get_live_table(md, srcu_idx); 1206 if (!map) 1207 return NULL; 1208 1209 ti = dm_table_find_target(map, sector); 1210 if (!ti) 1211 return NULL; 1212 1213 return ti; 1214 } 1215 1216 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1217 long nr_pages, enum dax_access_mode mode, void **kaddr, 1218 pfn_t *pfn) 1219 { 1220 struct mapped_device *md = dax_get_private(dax_dev); 1221 sector_t sector = pgoff * PAGE_SECTORS; 1222 struct dm_target *ti; 1223 long len, ret = -EIO; 1224 int srcu_idx; 1225 1226 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1227 1228 if (!ti) 1229 goto out; 1230 if (!ti->type->direct_access) 1231 goto out; 1232 len = max_io_len(ti, sector) / PAGE_SECTORS; 1233 if (len < 1) 1234 goto out; 1235 nr_pages = min(len, nr_pages); 1236 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1237 1238 out: 1239 dm_put_live_table(md, srcu_idx); 1240 1241 return ret; 1242 } 1243 1244 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1245 size_t nr_pages) 1246 { 1247 struct mapped_device *md = dax_get_private(dax_dev); 1248 sector_t sector = pgoff * PAGE_SECTORS; 1249 struct dm_target *ti; 1250 int ret = -EIO; 1251 int srcu_idx; 1252 1253 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1254 1255 if (!ti) 1256 goto out; 1257 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1258 /* 1259 * ->zero_page_range() is mandatory dax operation. If we are 1260 * here, something is wrong. 1261 */ 1262 goto out; 1263 } 1264 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1265 out: 1266 dm_put_live_table(md, srcu_idx); 1267 1268 return ret; 1269 } 1270 1271 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1272 void *addr, size_t bytes, struct iov_iter *i) 1273 { 1274 struct mapped_device *md = dax_get_private(dax_dev); 1275 sector_t sector = pgoff * PAGE_SECTORS; 1276 struct dm_target *ti; 1277 int srcu_idx; 1278 long ret = 0; 1279 1280 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1281 if (!ti || !ti->type->dax_recovery_write) 1282 goto out; 1283 1284 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1285 out: 1286 dm_put_live_table(md, srcu_idx); 1287 return ret; 1288 } 1289 1290 /* 1291 * A target may call dm_accept_partial_bio only from the map routine. It is 1292 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1293 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1294 * __send_duplicate_bios(). 1295 * 1296 * dm_accept_partial_bio informs the dm that the target only wants to process 1297 * additional n_sectors sectors of the bio and the rest of the data should be 1298 * sent in a next bio. 1299 * 1300 * A diagram that explains the arithmetics: 1301 * +--------------------+---------------+-------+ 1302 * | 1 | 2 | 3 | 1303 * +--------------------+---------------+-------+ 1304 * 1305 * <-------------- *tio->len_ptr ---------------> 1306 * <----- bio_sectors -----> 1307 * <-- n_sectors --> 1308 * 1309 * Region 1 was already iterated over with bio_advance or similar function. 1310 * (it may be empty if the target doesn't use bio_advance) 1311 * Region 2 is the remaining bio size that the target wants to process. 1312 * (it may be empty if region 1 is non-empty, although there is no reason 1313 * to make it empty) 1314 * The target requires that region 3 is to be sent in the next bio. 1315 * 1316 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1317 * the partially processed part (the sum of regions 1+2) must be the same for all 1318 * copies of the bio. 1319 */ 1320 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1321 { 1322 struct dm_target_io *tio = clone_to_tio(bio); 1323 struct dm_io *io = tio->io; 1324 unsigned int bio_sectors = bio_sectors(bio); 1325 1326 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1327 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1328 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1329 BUG_ON(bio_sectors > *tio->len_ptr); 1330 BUG_ON(n_sectors > bio_sectors); 1331 1332 *tio->len_ptr -= bio_sectors - n_sectors; 1333 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1334 1335 /* 1336 * __split_and_process_bio() may have already saved mapped part 1337 * for accounting but it is being reduced so update accordingly. 1338 */ 1339 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1340 io->sectors = n_sectors; 1341 io->sector_offset = bio_sectors(io->orig_bio); 1342 } 1343 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1344 1345 /* 1346 * @clone: clone bio that DM core passed to target's .map function 1347 * @tgt_clone: clone of @clone bio that target needs submitted 1348 * 1349 * Targets should use this interface to submit bios they take 1350 * ownership of when returning DM_MAPIO_SUBMITTED. 1351 * 1352 * Target should also enable ti->accounts_remapped_io 1353 */ 1354 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1355 { 1356 struct dm_target_io *tio = clone_to_tio(clone); 1357 struct dm_io *io = tio->io; 1358 1359 /* establish bio that will get submitted */ 1360 if (!tgt_clone) 1361 tgt_clone = clone; 1362 1363 /* 1364 * Account io->origin_bio to DM dev on behalf of target 1365 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1366 */ 1367 dm_start_io_acct(io, clone); 1368 1369 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1370 tio->old_sector); 1371 submit_bio_noacct(tgt_clone); 1372 } 1373 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1374 1375 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1376 { 1377 mutex_lock(&md->swap_bios_lock); 1378 while (latch < md->swap_bios) { 1379 cond_resched(); 1380 down(&md->swap_bios_semaphore); 1381 md->swap_bios--; 1382 } 1383 while (latch > md->swap_bios) { 1384 cond_resched(); 1385 up(&md->swap_bios_semaphore); 1386 md->swap_bios++; 1387 } 1388 mutex_unlock(&md->swap_bios_lock); 1389 } 1390 1391 static void __map_bio(struct bio *clone) 1392 { 1393 struct dm_target_io *tio = clone_to_tio(clone); 1394 struct dm_target *ti = tio->ti; 1395 struct dm_io *io = tio->io; 1396 struct mapped_device *md = io->md; 1397 int r; 1398 1399 clone->bi_end_io = clone_endio; 1400 1401 /* 1402 * Map the clone. 1403 */ 1404 tio->old_sector = clone->bi_iter.bi_sector; 1405 1406 if (static_branch_unlikely(&swap_bios_enabled) && 1407 unlikely(swap_bios_limit(ti, clone))) { 1408 int latch = get_swap_bios(); 1409 1410 if (unlikely(latch != md->swap_bios)) 1411 __set_swap_bios_limit(md, latch); 1412 down(&md->swap_bios_semaphore); 1413 } 1414 1415 if (static_branch_unlikely(&zoned_enabled)) { 1416 /* 1417 * Check if the IO needs a special mapping due to zone append 1418 * emulation on zoned target. In this case, dm_zone_map_bio() 1419 * calls the target map operation. 1420 */ 1421 if (unlikely(dm_emulate_zone_append(md))) 1422 r = dm_zone_map_bio(tio); 1423 else 1424 r = ti->type->map(ti, clone); 1425 } else 1426 r = ti->type->map(ti, clone); 1427 1428 switch (r) { 1429 case DM_MAPIO_SUBMITTED: 1430 /* target has assumed ownership of this io */ 1431 if (!ti->accounts_remapped_io) 1432 dm_start_io_acct(io, clone); 1433 break; 1434 case DM_MAPIO_REMAPPED: 1435 dm_submit_bio_remap(clone, NULL); 1436 break; 1437 case DM_MAPIO_KILL: 1438 case DM_MAPIO_REQUEUE: 1439 if (static_branch_unlikely(&swap_bios_enabled) && 1440 unlikely(swap_bios_limit(ti, clone))) 1441 up(&md->swap_bios_semaphore); 1442 free_tio(clone); 1443 if (r == DM_MAPIO_KILL) 1444 dm_io_dec_pending(io, BLK_STS_IOERR); 1445 else 1446 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1447 break; 1448 default: 1449 DMCRIT("unimplemented target map return value: %d", r); 1450 BUG(); 1451 } 1452 } 1453 1454 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1455 { 1456 struct dm_io *io = ci->io; 1457 1458 if (ci->sector_count > len) { 1459 /* 1460 * Split needed, save the mapped part for accounting. 1461 * NOTE: dm_accept_partial_bio() will update accordingly. 1462 */ 1463 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1464 io->sectors = len; 1465 io->sector_offset = bio_sectors(ci->bio); 1466 } 1467 } 1468 1469 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1470 struct dm_target *ti, unsigned int num_bios, 1471 unsigned *len) 1472 { 1473 struct bio *bio; 1474 int try; 1475 1476 for (try = 0; try < 2; try++) { 1477 int bio_nr; 1478 1479 if (try) 1480 mutex_lock(&ci->io->md->table_devices_lock); 1481 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1482 bio = alloc_tio(ci, ti, bio_nr, len, 1483 try ? GFP_NOIO : GFP_NOWAIT); 1484 if (!bio) 1485 break; 1486 1487 bio_list_add(blist, bio); 1488 } 1489 if (try) 1490 mutex_unlock(&ci->io->md->table_devices_lock); 1491 if (bio_nr == num_bios) 1492 return; 1493 1494 while ((bio = bio_list_pop(blist))) 1495 free_tio(bio); 1496 } 1497 } 1498 1499 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1500 unsigned int num_bios, unsigned int *len) 1501 { 1502 struct bio_list blist = BIO_EMPTY_LIST; 1503 struct bio *clone; 1504 unsigned int ret = 0; 1505 1506 switch (num_bios) { 1507 case 0: 1508 break; 1509 case 1: 1510 if (len) 1511 setup_split_accounting(ci, *len); 1512 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1513 __map_bio(clone); 1514 ret = 1; 1515 break; 1516 default: 1517 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1518 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1519 while ((clone = bio_list_pop(&blist))) { 1520 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1521 __map_bio(clone); 1522 ret += 1; 1523 } 1524 break; 1525 } 1526 1527 return ret; 1528 } 1529 1530 static void __send_empty_flush(struct clone_info *ci) 1531 { 1532 struct dm_table *t = ci->map; 1533 struct bio flush_bio; 1534 1535 /* 1536 * Use an on-stack bio for this, it's safe since we don't 1537 * need to reference it after submit. It's just used as 1538 * the basis for the clone(s). 1539 */ 1540 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1541 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1542 1543 ci->bio = &flush_bio; 1544 ci->sector_count = 0; 1545 ci->io->tio.clone.bi_iter.bi_size = 0; 1546 1547 for (unsigned int i = 0; i < t->num_targets; i++) { 1548 unsigned int bios; 1549 struct dm_target *ti = dm_table_get_target(t, i); 1550 1551 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1552 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1553 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1554 } 1555 1556 /* 1557 * alloc_io() takes one extra reference for submission, so the 1558 * reference won't reach 0 without the following subtraction 1559 */ 1560 atomic_sub(1, &ci->io->io_count); 1561 1562 bio_uninit(ci->bio); 1563 } 1564 1565 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1566 unsigned int num_bios) 1567 { 1568 unsigned int len, bios; 1569 1570 len = min_t(sector_t, ci->sector_count, 1571 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1572 1573 atomic_add(num_bios, &ci->io->io_count); 1574 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1575 /* 1576 * alloc_io() takes one extra reference for submission, so the 1577 * reference won't reach 0 without the following (+1) subtraction 1578 */ 1579 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1580 1581 ci->sector += len; 1582 ci->sector_count -= len; 1583 } 1584 1585 static bool is_abnormal_io(struct bio *bio) 1586 { 1587 enum req_op op = bio_op(bio); 1588 1589 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1590 switch (op) { 1591 case REQ_OP_DISCARD: 1592 case REQ_OP_SECURE_ERASE: 1593 case REQ_OP_WRITE_ZEROES: 1594 return true; 1595 default: 1596 break; 1597 } 1598 } 1599 1600 return false; 1601 } 1602 1603 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1604 struct dm_target *ti) 1605 { 1606 unsigned int num_bios = 0; 1607 1608 switch (bio_op(ci->bio)) { 1609 case REQ_OP_DISCARD: 1610 num_bios = ti->num_discard_bios; 1611 break; 1612 case REQ_OP_SECURE_ERASE: 1613 num_bios = ti->num_secure_erase_bios; 1614 break; 1615 case REQ_OP_WRITE_ZEROES: 1616 num_bios = ti->num_write_zeroes_bios; 1617 break; 1618 default: 1619 break; 1620 } 1621 1622 /* 1623 * Even though the device advertised support for this type of 1624 * request, that does not mean every target supports it, and 1625 * reconfiguration might also have changed that since the 1626 * check was performed. 1627 */ 1628 if (unlikely(!num_bios)) 1629 return BLK_STS_NOTSUPP; 1630 1631 __send_changing_extent_only(ci, ti, num_bios); 1632 return BLK_STS_OK; 1633 } 1634 1635 /* 1636 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1637 * associated with this bio, and this bio's bi_private needs to be 1638 * stored in dm_io->data before the reuse. 1639 * 1640 * bio->bi_private is owned by fs or upper layer, so block layer won't 1641 * touch it after splitting. Meantime it won't be changed by anyone after 1642 * bio is submitted. So this reuse is safe. 1643 */ 1644 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1645 { 1646 return (struct dm_io **)&bio->bi_private; 1647 } 1648 1649 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1650 { 1651 struct dm_io **head = dm_poll_list_head(bio); 1652 1653 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1654 bio->bi_opf |= REQ_DM_POLL_LIST; 1655 /* 1656 * Save .bi_private into dm_io, so that we can reuse 1657 * .bi_private as dm_io list head for storing dm_io list 1658 */ 1659 io->data = bio->bi_private; 1660 1661 /* tell block layer to poll for completion */ 1662 bio->bi_cookie = ~BLK_QC_T_NONE; 1663 1664 io->next = NULL; 1665 } else { 1666 /* 1667 * bio recursed due to split, reuse original poll list, 1668 * and save bio->bi_private too. 1669 */ 1670 io->data = (*head)->data; 1671 io->next = *head; 1672 } 1673 1674 *head = io; 1675 } 1676 1677 /* 1678 * Select the correct strategy for processing a non-flush bio. 1679 */ 1680 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1681 { 1682 struct bio *clone; 1683 struct dm_target *ti; 1684 unsigned int len; 1685 1686 ti = dm_table_find_target(ci->map, ci->sector); 1687 if (unlikely(!ti)) 1688 return BLK_STS_IOERR; 1689 1690 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1691 unlikely(!dm_target_supports_nowait(ti->type))) 1692 return BLK_STS_NOTSUPP; 1693 1694 if (unlikely(ci->is_abnormal_io)) 1695 return __process_abnormal_io(ci, ti); 1696 1697 /* 1698 * Only support bio polling for normal IO, and the target io is 1699 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1700 */ 1701 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1702 1703 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1704 setup_split_accounting(ci, len); 1705 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1706 __map_bio(clone); 1707 1708 ci->sector += len; 1709 ci->sector_count -= len; 1710 1711 return BLK_STS_OK; 1712 } 1713 1714 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1715 struct dm_table *map, struct bio *bio, bool is_abnormal) 1716 { 1717 ci->map = map; 1718 ci->io = alloc_io(md, bio); 1719 ci->bio = bio; 1720 ci->is_abnormal_io = is_abnormal; 1721 ci->submit_as_polled = false; 1722 ci->sector = bio->bi_iter.bi_sector; 1723 ci->sector_count = bio_sectors(bio); 1724 1725 /* Shouldn't happen but sector_count was being set to 0 so... */ 1726 if (static_branch_unlikely(&zoned_enabled) && 1727 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1728 ci->sector_count = 0; 1729 } 1730 1731 /* 1732 * Entry point to split a bio into clones and submit them to the targets. 1733 */ 1734 static void dm_split_and_process_bio(struct mapped_device *md, 1735 struct dm_table *map, struct bio *bio) 1736 { 1737 struct clone_info ci; 1738 struct dm_io *io; 1739 blk_status_t error = BLK_STS_OK; 1740 bool is_abnormal; 1741 1742 is_abnormal = is_abnormal_io(bio); 1743 if (unlikely(is_abnormal)) { 1744 /* 1745 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1746 * otherwise associated queue_limits won't be imposed. 1747 */ 1748 bio = bio_split_to_limits(bio); 1749 if (!bio) 1750 return; 1751 } 1752 1753 init_clone_info(&ci, md, map, bio, is_abnormal); 1754 io = ci.io; 1755 1756 if (bio->bi_opf & REQ_PREFLUSH) { 1757 __send_empty_flush(&ci); 1758 /* dm_io_complete submits any data associated with flush */ 1759 goto out; 1760 } 1761 1762 error = __split_and_process_bio(&ci); 1763 if (error || !ci.sector_count) 1764 goto out; 1765 /* 1766 * Remainder must be passed to submit_bio_noacct() so it gets handled 1767 * *after* bios already submitted have been completely processed. 1768 */ 1769 bio_trim(bio, io->sectors, ci.sector_count); 1770 trace_block_split(bio, bio->bi_iter.bi_sector); 1771 bio_inc_remaining(bio); 1772 submit_bio_noacct(bio); 1773 out: 1774 /* 1775 * Drop the extra reference count for non-POLLED bio, and hold one 1776 * reference for POLLED bio, which will be released in dm_poll_bio 1777 * 1778 * Add every dm_io instance into the dm_io list head which is stored 1779 * in bio->bi_private, so that dm_poll_bio can poll them all. 1780 */ 1781 if (error || !ci.submit_as_polled) { 1782 /* 1783 * In case of submission failure, the extra reference for 1784 * submitting io isn't consumed yet 1785 */ 1786 if (error) 1787 atomic_dec(&io->io_count); 1788 dm_io_dec_pending(io, error); 1789 } else 1790 dm_queue_poll_io(bio, io); 1791 } 1792 1793 static void dm_submit_bio(struct bio *bio) 1794 { 1795 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1796 int srcu_idx; 1797 struct dm_table *map; 1798 blk_opf_t bio_opf = bio->bi_opf; 1799 1800 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1801 1802 /* If suspended, or map not yet available, queue this IO for later */ 1803 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1804 unlikely(!map)) { 1805 if (bio->bi_opf & REQ_NOWAIT) 1806 bio_wouldblock_error(bio); 1807 else if (bio->bi_opf & REQ_RAHEAD) 1808 bio_io_error(bio); 1809 else 1810 queue_io(md, bio); 1811 goto out; 1812 } 1813 1814 dm_split_and_process_bio(md, map, bio); 1815 out: 1816 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1817 } 1818 1819 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1820 unsigned int flags) 1821 { 1822 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1823 1824 /* don't poll if the mapped io is done */ 1825 if (atomic_read(&io->io_count) > 1) 1826 bio_poll(&io->tio.clone, iob, flags); 1827 1828 /* bio_poll holds the last reference */ 1829 return atomic_read(&io->io_count) == 1; 1830 } 1831 1832 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1833 unsigned int flags) 1834 { 1835 struct dm_io **head = dm_poll_list_head(bio); 1836 struct dm_io *list = *head; 1837 struct dm_io *tmp = NULL; 1838 struct dm_io *curr, *next; 1839 1840 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1841 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1842 return 0; 1843 1844 WARN_ON_ONCE(!list); 1845 1846 /* 1847 * Restore .bi_private before possibly completing dm_io. 1848 * 1849 * bio_poll() is only possible once @bio has been completely 1850 * submitted via submit_bio_noacct()'s depth-first submission. 1851 * So there is no dm_queue_poll_io() race associated with 1852 * clearing REQ_DM_POLL_LIST here. 1853 */ 1854 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1855 bio->bi_private = list->data; 1856 1857 for (curr = list, next = curr->next; curr; curr = next, next = 1858 curr ? curr->next : NULL) { 1859 if (dm_poll_dm_io(curr, iob, flags)) { 1860 /* 1861 * clone_endio() has already occurred, so no 1862 * error handling is needed here. 1863 */ 1864 __dm_io_dec_pending(curr); 1865 } else { 1866 curr->next = tmp; 1867 tmp = curr; 1868 } 1869 } 1870 1871 /* Not done? */ 1872 if (tmp) { 1873 bio->bi_opf |= REQ_DM_POLL_LIST; 1874 /* Reset bio->bi_private to dm_io list head */ 1875 *head = tmp; 1876 return 0; 1877 } 1878 return 1; 1879 } 1880 1881 /* 1882 *--------------------------------------------------------------- 1883 * An IDR is used to keep track of allocated minor numbers. 1884 *--------------------------------------------------------------- 1885 */ 1886 static void free_minor(int minor) 1887 { 1888 spin_lock(&_minor_lock); 1889 idr_remove(&_minor_idr, minor); 1890 spin_unlock(&_minor_lock); 1891 } 1892 1893 /* 1894 * See if the device with a specific minor # is free. 1895 */ 1896 static int specific_minor(int minor) 1897 { 1898 int r; 1899 1900 if (minor >= (1 << MINORBITS)) 1901 return -EINVAL; 1902 1903 idr_preload(GFP_KERNEL); 1904 spin_lock(&_minor_lock); 1905 1906 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1907 1908 spin_unlock(&_minor_lock); 1909 idr_preload_end(); 1910 if (r < 0) 1911 return r == -ENOSPC ? -EBUSY : r; 1912 return 0; 1913 } 1914 1915 static int next_free_minor(int *minor) 1916 { 1917 int r; 1918 1919 idr_preload(GFP_KERNEL); 1920 spin_lock(&_minor_lock); 1921 1922 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1923 1924 spin_unlock(&_minor_lock); 1925 idr_preload_end(); 1926 if (r < 0) 1927 return r; 1928 *minor = r; 1929 return 0; 1930 } 1931 1932 static const struct block_device_operations dm_blk_dops; 1933 static const struct block_device_operations dm_rq_blk_dops; 1934 static const struct dax_operations dm_dax_ops; 1935 1936 static void dm_wq_work(struct work_struct *work); 1937 1938 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1939 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1940 { 1941 dm_destroy_crypto_profile(q->crypto_profile); 1942 } 1943 1944 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1945 1946 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1947 { 1948 } 1949 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1950 1951 static void cleanup_mapped_device(struct mapped_device *md) 1952 { 1953 if (md->wq) 1954 destroy_workqueue(md->wq); 1955 dm_free_md_mempools(md->mempools); 1956 1957 if (md->dax_dev) { 1958 dax_remove_host(md->disk); 1959 kill_dax(md->dax_dev); 1960 put_dax(md->dax_dev); 1961 md->dax_dev = NULL; 1962 } 1963 1964 dm_cleanup_zoned_dev(md); 1965 if (md->disk) { 1966 spin_lock(&_minor_lock); 1967 md->disk->private_data = NULL; 1968 spin_unlock(&_minor_lock); 1969 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1970 struct table_device *td; 1971 1972 dm_sysfs_exit(md); 1973 list_for_each_entry(td, &md->table_devices, list) { 1974 bd_unlink_disk_holder(td->dm_dev.bdev, 1975 md->disk); 1976 } 1977 1978 /* 1979 * Hold lock to make sure del_gendisk() won't concurrent 1980 * with open/close_table_device(). 1981 */ 1982 mutex_lock(&md->table_devices_lock); 1983 del_gendisk(md->disk); 1984 mutex_unlock(&md->table_devices_lock); 1985 } 1986 dm_queue_destroy_crypto_profile(md->queue); 1987 put_disk(md->disk); 1988 } 1989 1990 if (md->pending_io) { 1991 free_percpu(md->pending_io); 1992 md->pending_io = NULL; 1993 } 1994 1995 cleanup_srcu_struct(&md->io_barrier); 1996 1997 mutex_destroy(&md->suspend_lock); 1998 mutex_destroy(&md->type_lock); 1999 mutex_destroy(&md->table_devices_lock); 2000 mutex_destroy(&md->swap_bios_lock); 2001 2002 dm_mq_cleanup_mapped_device(md); 2003 } 2004 2005 /* 2006 * Allocate and initialise a blank device with a given minor. 2007 */ 2008 static struct mapped_device *alloc_dev(int minor) 2009 { 2010 int r, numa_node_id = dm_get_numa_node(); 2011 struct mapped_device *md; 2012 void *old_md; 2013 2014 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2015 if (!md) { 2016 DMERR("unable to allocate device, out of memory."); 2017 return NULL; 2018 } 2019 2020 if (!try_module_get(THIS_MODULE)) 2021 goto bad_module_get; 2022 2023 /* get a minor number for the dev */ 2024 if (minor == DM_ANY_MINOR) 2025 r = next_free_minor(&minor); 2026 else 2027 r = specific_minor(minor); 2028 if (r < 0) 2029 goto bad_minor; 2030 2031 r = init_srcu_struct(&md->io_barrier); 2032 if (r < 0) 2033 goto bad_io_barrier; 2034 2035 md->numa_node_id = numa_node_id; 2036 md->init_tio_pdu = false; 2037 md->type = DM_TYPE_NONE; 2038 mutex_init(&md->suspend_lock); 2039 mutex_init(&md->type_lock); 2040 mutex_init(&md->table_devices_lock); 2041 spin_lock_init(&md->deferred_lock); 2042 atomic_set(&md->holders, 1); 2043 atomic_set(&md->open_count, 0); 2044 atomic_set(&md->event_nr, 0); 2045 atomic_set(&md->uevent_seq, 0); 2046 INIT_LIST_HEAD(&md->uevent_list); 2047 INIT_LIST_HEAD(&md->table_devices); 2048 spin_lock_init(&md->uevent_lock); 2049 2050 /* 2051 * default to bio-based until DM table is loaded and md->type 2052 * established. If request-based table is loaded: blk-mq will 2053 * override accordingly. 2054 */ 2055 md->disk = blk_alloc_disk(md->numa_node_id); 2056 if (!md->disk) 2057 goto bad; 2058 md->queue = md->disk->queue; 2059 2060 init_waitqueue_head(&md->wait); 2061 INIT_WORK(&md->work, dm_wq_work); 2062 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2063 init_waitqueue_head(&md->eventq); 2064 init_completion(&md->kobj_holder.completion); 2065 2066 md->requeue_list = NULL; 2067 md->swap_bios = get_swap_bios(); 2068 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2069 mutex_init(&md->swap_bios_lock); 2070 2071 md->disk->major = _major; 2072 md->disk->first_minor = minor; 2073 md->disk->minors = 1; 2074 md->disk->flags |= GENHD_FL_NO_PART; 2075 md->disk->fops = &dm_blk_dops; 2076 md->disk->private_data = md; 2077 sprintf(md->disk->disk_name, "dm-%d", minor); 2078 2079 if (IS_ENABLED(CONFIG_FS_DAX)) { 2080 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2081 if (IS_ERR(md->dax_dev)) { 2082 md->dax_dev = NULL; 2083 goto bad; 2084 } 2085 set_dax_nocache(md->dax_dev); 2086 set_dax_nomc(md->dax_dev); 2087 if (dax_add_host(md->dax_dev, md->disk)) 2088 goto bad; 2089 } 2090 2091 format_dev_t(md->name, MKDEV(_major, minor)); 2092 2093 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2094 if (!md->wq) 2095 goto bad; 2096 2097 md->pending_io = alloc_percpu(unsigned long); 2098 if (!md->pending_io) 2099 goto bad; 2100 2101 r = dm_stats_init(&md->stats); 2102 if (r < 0) 2103 goto bad; 2104 2105 /* Populate the mapping, nobody knows we exist yet */ 2106 spin_lock(&_minor_lock); 2107 old_md = idr_replace(&_minor_idr, md, minor); 2108 spin_unlock(&_minor_lock); 2109 2110 BUG_ON(old_md != MINOR_ALLOCED); 2111 2112 return md; 2113 2114 bad: 2115 cleanup_mapped_device(md); 2116 bad_io_barrier: 2117 free_minor(minor); 2118 bad_minor: 2119 module_put(THIS_MODULE); 2120 bad_module_get: 2121 kvfree(md); 2122 return NULL; 2123 } 2124 2125 static void unlock_fs(struct mapped_device *md); 2126 2127 static void free_dev(struct mapped_device *md) 2128 { 2129 int minor = MINOR(disk_devt(md->disk)); 2130 2131 unlock_fs(md); 2132 2133 cleanup_mapped_device(md); 2134 2135 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2136 dm_stats_cleanup(&md->stats); 2137 free_minor(minor); 2138 2139 module_put(THIS_MODULE); 2140 kvfree(md); 2141 } 2142 2143 /* 2144 * Bind a table to the device. 2145 */ 2146 static void event_callback(void *context) 2147 { 2148 unsigned long flags; 2149 LIST_HEAD(uevents); 2150 struct mapped_device *md = context; 2151 2152 spin_lock_irqsave(&md->uevent_lock, flags); 2153 list_splice_init(&md->uevent_list, &uevents); 2154 spin_unlock_irqrestore(&md->uevent_lock, flags); 2155 2156 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2157 2158 atomic_inc(&md->event_nr); 2159 wake_up(&md->eventq); 2160 dm_issue_global_event(); 2161 } 2162 2163 /* 2164 * Returns old map, which caller must destroy. 2165 */ 2166 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2167 struct queue_limits *limits) 2168 { 2169 struct dm_table *old_map; 2170 sector_t size; 2171 int ret; 2172 2173 lockdep_assert_held(&md->suspend_lock); 2174 2175 size = dm_table_get_size(t); 2176 2177 /* 2178 * Wipe any geometry if the size of the table changed. 2179 */ 2180 if (size != dm_get_size(md)) 2181 memset(&md->geometry, 0, sizeof(md->geometry)); 2182 2183 set_capacity(md->disk, size); 2184 2185 dm_table_event_callback(t, event_callback, md); 2186 2187 if (dm_table_request_based(t)) { 2188 /* 2189 * Leverage the fact that request-based DM targets are 2190 * immutable singletons - used to optimize dm_mq_queue_rq. 2191 */ 2192 md->immutable_target = dm_table_get_immutable_target(t); 2193 2194 /* 2195 * There is no need to reload with request-based dm because the 2196 * size of front_pad doesn't change. 2197 * 2198 * Note for future: If you are to reload bioset, prep-ed 2199 * requests in the queue may refer to bio from the old bioset, 2200 * so you must walk through the queue to unprep. 2201 */ 2202 if (!md->mempools) { 2203 md->mempools = t->mempools; 2204 t->mempools = NULL; 2205 } 2206 } else { 2207 /* 2208 * The md may already have mempools that need changing. 2209 * If so, reload bioset because front_pad may have changed 2210 * because a different table was loaded. 2211 */ 2212 dm_free_md_mempools(md->mempools); 2213 md->mempools = t->mempools; 2214 t->mempools = NULL; 2215 } 2216 2217 ret = dm_table_set_restrictions(t, md->queue, limits); 2218 if (ret) { 2219 old_map = ERR_PTR(ret); 2220 goto out; 2221 } 2222 2223 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2224 rcu_assign_pointer(md->map, (void *)t); 2225 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2226 2227 if (old_map) 2228 dm_sync_table(md); 2229 out: 2230 return old_map; 2231 } 2232 2233 /* 2234 * Returns unbound table for the caller to free. 2235 */ 2236 static struct dm_table *__unbind(struct mapped_device *md) 2237 { 2238 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2239 2240 if (!map) 2241 return NULL; 2242 2243 dm_table_event_callback(map, NULL, NULL); 2244 RCU_INIT_POINTER(md->map, NULL); 2245 dm_sync_table(md); 2246 2247 return map; 2248 } 2249 2250 /* 2251 * Constructor for a new device. 2252 */ 2253 int dm_create(int minor, struct mapped_device **result) 2254 { 2255 struct mapped_device *md; 2256 2257 md = alloc_dev(minor); 2258 if (!md) 2259 return -ENXIO; 2260 2261 dm_ima_reset_data(md); 2262 2263 *result = md; 2264 return 0; 2265 } 2266 2267 /* 2268 * Functions to manage md->type. 2269 * All are required to hold md->type_lock. 2270 */ 2271 void dm_lock_md_type(struct mapped_device *md) 2272 { 2273 mutex_lock(&md->type_lock); 2274 } 2275 2276 void dm_unlock_md_type(struct mapped_device *md) 2277 { 2278 mutex_unlock(&md->type_lock); 2279 } 2280 2281 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2282 { 2283 BUG_ON(!mutex_is_locked(&md->type_lock)); 2284 md->type = type; 2285 } 2286 2287 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2288 { 2289 return md->type; 2290 } 2291 2292 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2293 { 2294 return md->immutable_target_type; 2295 } 2296 2297 /* 2298 * The queue_limits are only valid as long as you have a reference 2299 * count on 'md'. 2300 */ 2301 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2302 { 2303 BUG_ON(!atomic_read(&md->holders)); 2304 return &md->queue->limits; 2305 } 2306 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2307 2308 /* 2309 * Setup the DM device's queue based on md's type 2310 */ 2311 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2312 { 2313 enum dm_queue_mode type = dm_table_get_type(t); 2314 struct queue_limits limits; 2315 struct table_device *td; 2316 int r; 2317 2318 switch (type) { 2319 case DM_TYPE_REQUEST_BASED: 2320 md->disk->fops = &dm_rq_blk_dops; 2321 r = dm_mq_init_request_queue(md, t); 2322 if (r) { 2323 DMERR("Cannot initialize queue for request-based dm mapped device"); 2324 return r; 2325 } 2326 break; 2327 case DM_TYPE_BIO_BASED: 2328 case DM_TYPE_DAX_BIO_BASED: 2329 break; 2330 case DM_TYPE_NONE: 2331 WARN_ON_ONCE(true); 2332 break; 2333 } 2334 2335 r = dm_calculate_queue_limits(t, &limits); 2336 if (r) { 2337 DMERR("Cannot calculate initial queue limits"); 2338 return r; 2339 } 2340 r = dm_table_set_restrictions(t, md->queue, &limits); 2341 if (r) 2342 return r; 2343 2344 /* 2345 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2346 * with open_table_device() and close_table_device(). 2347 */ 2348 mutex_lock(&md->table_devices_lock); 2349 r = add_disk(md->disk); 2350 mutex_unlock(&md->table_devices_lock); 2351 if (r) 2352 return r; 2353 2354 /* 2355 * Register the holder relationship for devices added before the disk 2356 * was live. 2357 */ 2358 list_for_each_entry(td, &md->table_devices, list) { 2359 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2360 if (r) 2361 goto out_undo_holders; 2362 } 2363 2364 r = dm_sysfs_init(md); 2365 if (r) 2366 goto out_undo_holders; 2367 2368 md->type = type; 2369 return 0; 2370 2371 out_undo_holders: 2372 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2373 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2374 mutex_lock(&md->table_devices_lock); 2375 del_gendisk(md->disk); 2376 mutex_unlock(&md->table_devices_lock); 2377 return r; 2378 } 2379 2380 struct mapped_device *dm_get_md(dev_t dev) 2381 { 2382 struct mapped_device *md; 2383 unsigned int minor = MINOR(dev); 2384 2385 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2386 return NULL; 2387 2388 spin_lock(&_minor_lock); 2389 2390 md = idr_find(&_minor_idr, minor); 2391 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2392 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2393 md = NULL; 2394 goto out; 2395 } 2396 dm_get(md); 2397 out: 2398 spin_unlock(&_minor_lock); 2399 2400 return md; 2401 } 2402 EXPORT_SYMBOL_GPL(dm_get_md); 2403 2404 void *dm_get_mdptr(struct mapped_device *md) 2405 { 2406 return md->interface_ptr; 2407 } 2408 2409 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2410 { 2411 md->interface_ptr = ptr; 2412 } 2413 2414 void dm_get(struct mapped_device *md) 2415 { 2416 atomic_inc(&md->holders); 2417 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2418 } 2419 2420 int dm_hold(struct mapped_device *md) 2421 { 2422 spin_lock(&_minor_lock); 2423 if (test_bit(DMF_FREEING, &md->flags)) { 2424 spin_unlock(&_minor_lock); 2425 return -EBUSY; 2426 } 2427 dm_get(md); 2428 spin_unlock(&_minor_lock); 2429 return 0; 2430 } 2431 EXPORT_SYMBOL_GPL(dm_hold); 2432 2433 const char *dm_device_name(struct mapped_device *md) 2434 { 2435 return md->name; 2436 } 2437 EXPORT_SYMBOL_GPL(dm_device_name); 2438 2439 static void __dm_destroy(struct mapped_device *md, bool wait) 2440 { 2441 struct dm_table *map; 2442 int srcu_idx; 2443 2444 might_sleep(); 2445 2446 spin_lock(&_minor_lock); 2447 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2448 set_bit(DMF_FREEING, &md->flags); 2449 spin_unlock(&_minor_lock); 2450 2451 blk_mark_disk_dead(md->disk); 2452 2453 /* 2454 * Take suspend_lock so that presuspend and postsuspend methods 2455 * do not race with internal suspend. 2456 */ 2457 mutex_lock(&md->suspend_lock); 2458 map = dm_get_live_table(md, &srcu_idx); 2459 if (!dm_suspended_md(md)) { 2460 dm_table_presuspend_targets(map); 2461 set_bit(DMF_SUSPENDED, &md->flags); 2462 set_bit(DMF_POST_SUSPENDING, &md->flags); 2463 dm_table_postsuspend_targets(map); 2464 } 2465 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2466 dm_put_live_table(md, srcu_idx); 2467 mutex_unlock(&md->suspend_lock); 2468 2469 /* 2470 * Rare, but there may be I/O requests still going to complete, 2471 * for example. Wait for all references to disappear. 2472 * No one should increment the reference count of the mapped_device, 2473 * after the mapped_device state becomes DMF_FREEING. 2474 */ 2475 if (wait) 2476 while (atomic_read(&md->holders)) 2477 fsleep(1000); 2478 else if (atomic_read(&md->holders)) 2479 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2480 dm_device_name(md), atomic_read(&md->holders)); 2481 2482 dm_table_destroy(__unbind(md)); 2483 free_dev(md); 2484 } 2485 2486 void dm_destroy(struct mapped_device *md) 2487 { 2488 __dm_destroy(md, true); 2489 } 2490 2491 void dm_destroy_immediate(struct mapped_device *md) 2492 { 2493 __dm_destroy(md, false); 2494 } 2495 2496 void dm_put(struct mapped_device *md) 2497 { 2498 atomic_dec(&md->holders); 2499 } 2500 EXPORT_SYMBOL_GPL(dm_put); 2501 2502 static bool dm_in_flight_bios(struct mapped_device *md) 2503 { 2504 int cpu; 2505 unsigned long sum = 0; 2506 2507 for_each_possible_cpu(cpu) 2508 sum += *per_cpu_ptr(md->pending_io, cpu); 2509 2510 return sum != 0; 2511 } 2512 2513 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2514 { 2515 int r = 0; 2516 DEFINE_WAIT(wait); 2517 2518 while (true) { 2519 prepare_to_wait(&md->wait, &wait, task_state); 2520 2521 if (!dm_in_flight_bios(md)) 2522 break; 2523 2524 if (signal_pending_state(task_state, current)) { 2525 r = -EINTR; 2526 break; 2527 } 2528 2529 io_schedule(); 2530 } 2531 finish_wait(&md->wait, &wait); 2532 2533 smp_rmb(); 2534 2535 return r; 2536 } 2537 2538 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2539 { 2540 int r = 0; 2541 2542 if (!queue_is_mq(md->queue)) 2543 return dm_wait_for_bios_completion(md, task_state); 2544 2545 while (true) { 2546 if (!blk_mq_queue_inflight(md->queue)) 2547 break; 2548 2549 if (signal_pending_state(task_state, current)) { 2550 r = -EINTR; 2551 break; 2552 } 2553 2554 fsleep(5000); 2555 } 2556 2557 return r; 2558 } 2559 2560 /* 2561 * Process the deferred bios 2562 */ 2563 static void dm_wq_work(struct work_struct *work) 2564 { 2565 struct mapped_device *md = container_of(work, struct mapped_device, work); 2566 struct bio *bio; 2567 2568 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2569 spin_lock_irq(&md->deferred_lock); 2570 bio = bio_list_pop(&md->deferred); 2571 spin_unlock_irq(&md->deferred_lock); 2572 2573 if (!bio) 2574 break; 2575 2576 submit_bio_noacct(bio); 2577 cond_resched(); 2578 } 2579 } 2580 2581 static void dm_queue_flush(struct mapped_device *md) 2582 { 2583 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2584 smp_mb__after_atomic(); 2585 queue_work(md->wq, &md->work); 2586 } 2587 2588 /* 2589 * Swap in a new table, returning the old one for the caller to destroy. 2590 */ 2591 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2592 { 2593 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2594 struct queue_limits limits; 2595 int r; 2596 2597 mutex_lock(&md->suspend_lock); 2598 2599 /* device must be suspended */ 2600 if (!dm_suspended_md(md)) 2601 goto out; 2602 2603 /* 2604 * If the new table has no data devices, retain the existing limits. 2605 * This helps multipath with queue_if_no_path if all paths disappear, 2606 * then new I/O is queued based on these limits, and then some paths 2607 * reappear. 2608 */ 2609 if (dm_table_has_no_data_devices(table)) { 2610 live_map = dm_get_live_table_fast(md); 2611 if (live_map) 2612 limits = md->queue->limits; 2613 dm_put_live_table_fast(md); 2614 } 2615 2616 if (!live_map) { 2617 r = dm_calculate_queue_limits(table, &limits); 2618 if (r) { 2619 map = ERR_PTR(r); 2620 goto out; 2621 } 2622 } 2623 2624 map = __bind(md, table, &limits); 2625 dm_issue_global_event(); 2626 2627 out: 2628 mutex_unlock(&md->suspend_lock); 2629 return map; 2630 } 2631 2632 /* 2633 * Functions to lock and unlock any filesystem running on the 2634 * device. 2635 */ 2636 static int lock_fs(struct mapped_device *md) 2637 { 2638 int r; 2639 2640 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2641 2642 r = freeze_bdev(md->disk->part0); 2643 if (!r) 2644 set_bit(DMF_FROZEN, &md->flags); 2645 return r; 2646 } 2647 2648 static void unlock_fs(struct mapped_device *md) 2649 { 2650 if (!test_bit(DMF_FROZEN, &md->flags)) 2651 return; 2652 thaw_bdev(md->disk->part0); 2653 clear_bit(DMF_FROZEN, &md->flags); 2654 } 2655 2656 /* 2657 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2658 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2659 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2660 * 2661 * If __dm_suspend returns 0, the device is completely quiescent 2662 * now. There is no request-processing activity. All new requests 2663 * are being added to md->deferred list. 2664 */ 2665 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2666 unsigned int suspend_flags, unsigned int task_state, 2667 int dmf_suspended_flag) 2668 { 2669 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2670 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2671 int r; 2672 2673 lockdep_assert_held(&md->suspend_lock); 2674 2675 /* 2676 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2677 * This flag is cleared before dm_suspend returns. 2678 */ 2679 if (noflush) 2680 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2681 else 2682 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2683 2684 /* 2685 * This gets reverted if there's an error later and the targets 2686 * provide the .presuspend_undo hook. 2687 */ 2688 dm_table_presuspend_targets(map); 2689 2690 /* 2691 * Flush I/O to the device. 2692 * Any I/O submitted after lock_fs() may not be flushed. 2693 * noflush takes precedence over do_lockfs. 2694 * (lock_fs() flushes I/Os and waits for them to complete.) 2695 */ 2696 if (!noflush && do_lockfs) { 2697 r = lock_fs(md); 2698 if (r) { 2699 dm_table_presuspend_undo_targets(map); 2700 return r; 2701 } 2702 } 2703 2704 /* 2705 * Here we must make sure that no processes are submitting requests 2706 * to target drivers i.e. no one may be executing 2707 * dm_split_and_process_bio from dm_submit_bio. 2708 * 2709 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2710 * we take the write lock. To prevent any process from reentering 2711 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2712 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2713 * flush_workqueue(md->wq). 2714 */ 2715 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2716 if (map) 2717 synchronize_srcu(&md->io_barrier); 2718 2719 /* 2720 * Stop md->queue before flushing md->wq in case request-based 2721 * dm defers requests to md->wq from md->queue. 2722 */ 2723 if (dm_request_based(md)) 2724 dm_stop_queue(md->queue); 2725 2726 flush_workqueue(md->wq); 2727 2728 /* 2729 * At this point no more requests are entering target request routines. 2730 * We call dm_wait_for_completion to wait for all existing requests 2731 * to finish. 2732 */ 2733 r = dm_wait_for_completion(md, task_state); 2734 if (!r) 2735 set_bit(dmf_suspended_flag, &md->flags); 2736 2737 if (noflush) 2738 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2739 if (map) 2740 synchronize_srcu(&md->io_barrier); 2741 2742 /* were we interrupted ? */ 2743 if (r < 0) { 2744 dm_queue_flush(md); 2745 2746 if (dm_request_based(md)) 2747 dm_start_queue(md->queue); 2748 2749 unlock_fs(md); 2750 dm_table_presuspend_undo_targets(map); 2751 /* pushback list is already flushed, so skip flush */ 2752 } 2753 2754 return r; 2755 } 2756 2757 /* 2758 * We need to be able to change a mapping table under a mounted 2759 * filesystem. For example we might want to move some data in 2760 * the background. Before the table can be swapped with 2761 * dm_bind_table, dm_suspend must be called to flush any in 2762 * flight bios and ensure that any further io gets deferred. 2763 */ 2764 /* 2765 * Suspend mechanism in request-based dm. 2766 * 2767 * 1. Flush all I/Os by lock_fs() if needed. 2768 * 2. Stop dispatching any I/O by stopping the request_queue. 2769 * 3. Wait for all in-flight I/Os to be completed or requeued. 2770 * 2771 * To abort suspend, start the request_queue. 2772 */ 2773 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2774 { 2775 struct dm_table *map = NULL; 2776 int r = 0; 2777 2778 retry: 2779 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2780 2781 if (dm_suspended_md(md)) { 2782 r = -EINVAL; 2783 goto out_unlock; 2784 } 2785 2786 if (dm_suspended_internally_md(md)) { 2787 /* already internally suspended, wait for internal resume */ 2788 mutex_unlock(&md->suspend_lock); 2789 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2790 if (r) 2791 return r; 2792 goto retry; 2793 } 2794 2795 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2796 2797 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2798 if (r) 2799 goto out_unlock; 2800 2801 set_bit(DMF_POST_SUSPENDING, &md->flags); 2802 dm_table_postsuspend_targets(map); 2803 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2804 2805 out_unlock: 2806 mutex_unlock(&md->suspend_lock); 2807 return r; 2808 } 2809 2810 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2811 { 2812 if (map) { 2813 int r = dm_table_resume_targets(map); 2814 2815 if (r) 2816 return r; 2817 } 2818 2819 dm_queue_flush(md); 2820 2821 /* 2822 * Flushing deferred I/Os must be done after targets are resumed 2823 * so that mapping of targets can work correctly. 2824 * Request-based dm is queueing the deferred I/Os in its request_queue. 2825 */ 2826 if (dm_request_based(md)) 2827 dm_start_queue(md->queue); 2828 2829 unlock_fs(md); 2830 2831 return 0; 2832 } 2833 2834 int dm_resume(struct mapped_device *md) 2835 { 2836 int r; 2837 struct dm_table *map = NULL; 2838 2839 retry: 2840 r = -EINVAL; 2841 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2842 2843 if (!dm_suspended_md(md)) 2844 goto out; 2845 2846 if (dm_suspended_internally_md(md)) { 2847 /* already internally suspended, wait for internal resume */ 2848 mutex_unlock(&md->suspend_lock); 2849 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2850 if (r) 2851 return r; 2852 goto retry; 2853 } 2854 2855 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2856 if (!map || !dm_table_get_size(map)) 2857 goto out; 2858 2859 r = __dm_resume(md, map); 2860 if (r) 2861 goto out; 2862 2863 clear_bit(DMF_SUSPENDED, &md->flags); 2864 out: 2865 mutex_unlock(&md->suspend_lock); 2866 2867 return r; 2868 } 2869 2870 /* 2871 * Internal suspend/resume works like userspace-driven suspend. It waits 2872 * until all bios finish and prevents issuing new bios to the target drivers. 2873 * It may be used only from the kernel. 2874 */ 2875 2876 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2877 { 2878 struct dm_table *map = NULL; 2879 2880 lockdep_assert_held(&md->suspend_lock); 2881 2882 if (md->internal_suspend_count++) 2883 return; /* nested internal suspend */ 2884 2885 if (dm_suspended_md(md)) { 2886 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2887 return; /* nest suspend */ 2888 } 2889 2890 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2891 2892 /* 2893 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2894 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2895 * would require changing .presuspend to return an error -- avoid this 2896 * until there is a need for more elaborate variants of internal suspend. 2897 */ 2898 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2899 DMF_SUSPENDED_INTERNALLY); 2900 2901 set_bit(DMF_POST_SUSPENDING, &md->flags); 2902 dm_table_postsuspend_targets(map); 2903 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2904 } 2905 2906 static void __dm_internal_resume(struct mapped_device *md) 2907 { 2908 BUG_ON(!md->internal_suspend_count); 2909 2910 if (--md->internal_suspend_count) 2911 return; /* resume from nested internal suspend */ 2912 2913 if (dm_suspended_md(md)) 2914 goto done; /* resume from nested suspend */ 2915 2916 /* 2917 * NOTE: existing callers don't need to call dm_table_resume_targets 2918 * (which may fail -- so best to avoid it for now by passing NULL map) 2919 */ 2920 (void) __dm_resume(md, NULL); 2921 2922 done: 2923 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2924 smp_mb__after_atomic(); 2925 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2926 } 2927 2928 void dm_internal_suspend_noflush(struct mapped_device *md) 2929 { 2930 mutex_lock(&md->suspend_lock); 2931 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2932 mutex_unlock(&md->suspend_lock); 2933 } 2934 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2935 2936 void dm_internal_resume(struct mapped_device *md) 2937 { 2938 mutex_lock(&md->suspend_lock); 2939 __dm_internal_resume(md); 2940 mutex_unlock(&md->suspend_lock); 2941 } 2942 EXPORT_SYMBOL_GPL(dm_internal_resume); 2943 2944 /* 2945 * Fast variants of internal suspend/resume hold md->suspend_lock, 2946 * which prevents interaction with userspace-driven suspend. 2947 */ 2948 2949 void dm_internal_suspend_fast(struct mapped_device *md) 2950 { 2951 mutex_lock(&md->suspend_lock); 2952 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2953 return; 2954 2955 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2956 synchronize_srcu(&md->io_barrier); 2957 flush_workqueue(md->wq); 2958 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2959 } 2960 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2961 2962 void dm_internal_resume_fast(struct mapped_device *md) 2963 { 2964 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2965 goto done; 2966 2967 dm_queue_flush(md); 2968 2969 done: 2970 mutex_unlock(&md->suspend_lock); 2971 } 2972 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2973 2974 /* 2975 *--------------------------------------------------------------- 2976 * Event notification. 2977 *--------------------------------------------------------------- 2978 */ 2979 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2980 unsigned int cookie, bool need_resize_uevent) 2981 { 2982 int r; 2983 unsigned int noio_flag; 2984 char udev_cookie[DM_COOKIE_LENGTH]; 2985 char *envp[3] = { NULL, NULL, NULL }; 2986 char **envpp = envp; 2987 if (cookie) { 2988 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2989 DM_COOKIE_ENV_VAR_NAME, cookie); 2990 *envpp++ = udev_cookie; 2991 } 2992 if (need_resize_uevent) { 2993 *envpp++ = "RESIZE=1"; 2994 } 2995 2996 noio_flag = memalloc_noio_save(); 2997 2998 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 2999 3000 memalloc_noio_restore(noio_flag); 3001 3002 return r; 3003 } 3004 3005 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3006 { 3007 return atomic_add_return(1, &md->uevent_seq); 3008 } 3009 3010 uint32_t dm_get_event_nr(struct mapped_device *md) 3011 { 3012 return atomic_read(&md->event_nr); 3013 } 3014 3015 int dm_wait_event(struct mapped_device *md, int event_nr) 3016 { 3017 return wait_event_interruptible(md->eventq, 3018 (event_nr != atomic_read(&md->event_nr))); 3019 } 3020 3021 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3022 { 3023 unsigned long flags; 3024 3025 spin_lock_irqsave(&md->uevent_lock, flags); 3026 list_add(elist, &md->uevent_list); 3027 spin_unlock_irqrestore(&md->uevent_lock, flags); 3028 } 3029 3030 /* 3031 * The gendisk is only valid as long as you have a reference 3032 * count on 'md'. 3033 */ 3034 struct gendisk *dm_disk(struct mapped_device *md) 3035 { 3036 return md->disk; 3037 } 3038 EXPORT_SYMBOL_GPL(dm_disk); 3039 3040 struct kobject *dm_kobject(struct mapped_device *md) 3041 { 3042 return &md->kobj_holder.kobj; 3043 } 3044 3045 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3046 { 3047 struct mapped_device *md; 3048 3049 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3050 3051 spin_lock(&_minor_lock); 3052 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3053 md = NULL; 3054 goto out; 3055 } 3056 dm_get(md); 3057 out: 3058 spin_unlock(&_minor_lock); 3059 3060 return md; 3061 } 3062 3063 int dm_suspended_md(struct mapped_device *md) 3064 { 3065 return test_bit(DMF_SUSPENDED, &md->flags); 3066 } 3067 3068 static int dm_post_suspending_md(struct mapped_device *md) 3069 { 3070 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3071 } 3072 3073 int dm_suspended_internally_md(struct mapped_device *md) 3074 { 3075 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3076 } 3077 3078 int dm_test_deferred_remove_flag(struct mapped_device *md) 3079 { 3080 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3081 } 3082 3083 int dm_suspended(struct dm_target *ti) 3084 { 3085 return dm_suspended_md(ti->table->md); 3086 } 3087 EXPORT_SYMBOL_GPL(dm_suspended); 3088 3089 int dm_post_suspending(struct dm_target *ti) 3090 { 3091 return dm_post_suspending_md(ti->table->md); 3092 } 3093 EXPORT_SYMBOL_GPL(dm_post_suspending); 3094 3095 int dm_noflush_suspending(struct dm_target *ti) 3096 { 3097 return __noflush_suspending(ti->table->md); 3098 } 3099 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3100 3101 void dm_free_md_mempools(struct dm_md_mempools *pools) 3102 { 3103 if (!pools) 3104 return; 3105 3106 bioset_exit(&pools->bs); 3107 bioset_exit(&pools->io_bs); 3108 3109 kfree(pools); 3110 } 3111 3112 struct dm_pr { 3113 u64 old_key; 3114 u64 new_key; 3115 u32 flags; 3116 bool abort; 3117 bool fail_early; 3118 int ret; 3119 enum pr_type type; 3120 }; 3121 3122 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3123 struct dm_pr *pr) 3124 { 3125 struct mapped_device *md = bdev->bd_disk->private_data; 3126 struct dm_table *table; 3127 struct dm_target *ti; 3128 int ret = -ENOTTY, srcu_idx; 3129 3130 table = dm_get_live_table(md, &srcu_idx); 3131 if (!table || !dm_table_get_size(table)) 3132 goto out; 3133 3134 /* We only support devices that have a single target */ 3135 if (table->num_targets != 1) 3136 goto out; 3137 ti = dm_table_get_target(table, 0); 3138 3139 if (dm_suspended_md(md)) { 3140 ret = -EAGAIN; 3141 goto out; 3142 } 3143 3144 ret = -EINVAL; 3145 if (!ti->type->iterate_devices) 3146 goto out; 3147 3148 ti->type->iterate_devices(ti, fn, pr); 3149 ret = 0; 3150 out: 3151 dm_put_live_table(md, srcu_idx); 3152 return ret; 3153 } 3154 3155 /* 3156 * For register / unregister we need to manually call out to every path. 3157 */ 3158 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3159 sector_t start, sector_t len, void *data) 3160 { 3161 struct dm_pr *pr = data; 3162 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3163 int ret; 3164 3165 if (!ops || !ops->pr_register) { 3166 pr->ret = -EOPNOTSUPP; 3167 return -1; 3168 } 3169 3170 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3171 if (!ret) 3172 return 0; 3173 3174 if (!pr->ret) 3175 pr->ret = ret; 3176 3177 if (pr->fail_early) 3178 return -1; 3179 3180 return 0; 3181 } 3182 3183 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3184 u32 flags) 3185 { 3186 struct dm_pr pr = { 3187 .old_key = old_key, 3188 .new_key = new_key, 3189 .flags = flags, 3190 .fail_early = true, 3191 .ret = 0, 3192 }; 3193 int ret; 3194 3195 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3196 if (ret) { 3197 /* Didn't even get to register a path */ 3198 return ret; 3199 } 3200 3201 if (!pr.ret) 3202 return 0; 3203 ret = pr.ret; 3204 3205 if (!new_key) 3206 return ret; 3207 3208 /* unregister all paths if we failed to register any path */ 3209 pr.old_key = new_key; 3210 pr.new_key = 0; 3211 pr.flags = 0; 3212 pr.fail_early = false; 3213 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3214 return ret; 3215 } 3216 3217 3218 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3219 sector_t start, sector_t len, void *data) 3220 { 3221 struct dm_pr *pr = data; 3222 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3223 3224 if (!ops || !ops->pr_reserve) { 3225 pr->ret = -EOPNOTSUPP; 3226 return -1; 3227 } 3228 3229 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3230 if (!pr->ret) 3231 return -1; 3232 3233 return 0; 3234 } 3235 3236 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3237 u32 flags) 3238 { 3239 struct dm_pr pr = { 3240 .old_key = key, 3241 .flags = flags, 3242 .type = type, 3243 .fail_early = false, 3244 .ret = 0, 3245 }; 3246 int ret; 3247 3248 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3249 if (ret) 3250 return ret; 3251 3252 return pr.ret; 3253 } 3254 3255 /* 3256 * If there is a non-All Registrants type of reservation, the release must be 3257 * sent down the holding path. For the cases where there is no reservation or 3258 * the path is not the holder the device will also return success, so we must 3259 * try each path to make sure we got the correct path. 3260 */ 3261 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3262 sector_t start, sector_t len, void *data) 3263 { 3264 struct dm_pr *pr = data; 3265 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3266 3267 if (!ops || !ops->pr_release) { 3268 pr->ret = -EOPNOTSUPP; 3269 return -1; 3270 } 3271 3272 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3273 if (pr->ret) 3274 return -1; 3275 3276 return 0; 3277 } 3278 3279 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3280 { 3281 struct dm_pr pr = { 3282 .old_key = key, 3283 .type = type, 3284 .fail_early = false, 3285 }; 3286 int ret; 3287 3288 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3289 if (ret) 3290 return ret; 3291 3292 return pr.ret; 3293 } 3294 3295 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3296 sector_t start, sector_t len, void *data) 3297 { 3298 struct dm_pr *pr = data; 3299 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3300 3301 if (!ops || !ops->pr_preempt) { 3302 pr->ret = -EOPNOTSUPP; 3303 return -1; 3304 } 3305 3306 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3307 pr->abort); 3308 if (!pr->ret) 3309 return -1; 3310 3311 return 0; 3312 } 3313 3314 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3315 enum pr_type type, bool abort) 3316 { 3317 struct dm_pr pr = { 3318 .new_key = new_key, 3319 .old_key = old_key, 3320 .type = type, 3321 .fail_early = false, 3322 }; 3323 int ret; 3324 3325 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3326 if (ret) 3327 return ret; 3328 3329 return pr.ret; 3330 } 3331 3332 static int dm_pr_clear(struct block_device *bdev, u64 key) 3333 { 3334 struct mapped_device *md = bdev->bd_disk->private_data; 3335 const struct pr_ops *ops; 3336 int r, srcu_idx; 3337 3338 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3339 if (r < 0) 3340 goto out; 3341 3342 ops = bdev->bd_disk->fops->pr_ops; 3343 if (ops && ops->pr_clear) 3344 r = ops->pr_clear(bdev, key); 3345 else 3346 r = -EOPNOTSUPP; 3347 out: 3348 dm_unprepare_ioctl(md, srcu_idx); 3349 return r; 3350 } 3351 3352 static const struct pr_ops dm_pr_ops = { 3353 .pr_register = dm_pr_register, 3354 .pr_reserve = dm_pr_reserve, 3355 .pr_release = dm_pr_release, 3356 .pr_preempt = dm_pr_preempt, 3357 .pr_clear = dm_pr_clear, 3358 }; 3359 3360 static const struct block_device_operations dm_blk_dops = { 3361 .submit_bio = dm_submit_bio, 3362 .poll_bio = dm_poll_bio, 3363 .open = dm_blk_open, 3364 .release = dm_blk_close, 3365 .ioctl = dm_blk_ioctl, 3366 .getgeo = dm_blk_getgeo, 3367 .report_zones = dm_blk_report_zones, 3368 .pr_ops = &dm_pr_ops, 3369 .owner = THIS_MODULE 3370 }; 3371 3372 static const struct block_device_operations dm_rq_blk_dops = { 3373 .open = dm_blk_open, 3374 .release = dm_blk_close, 3375 .ioctl = dm_blk_ioctl, 3376 .getgeo = dm_blk_getgeo, 3377 .pr_ops = &dm_pr_ops, 3378 .owner = THIS_MODULE 3379 }; 3380 3381 static const struct dax_operations dm_dax_ops = { 3382 .direct_access = dm_dax_direct_access, 3383 .zero_page_range = dm_dax_zero_page_range, 3384 .recovery_write = dm_dax_recovery_write, 3385 }; 3386 3387 /* 3388 * module hooks 3389 */ 3390 module_init(dm_init); 3391 module_exit(dm_exit); 3392 3393 module_param(major, uint, 0); 3394 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3395 3396 module_param(reserved_bio_based_ios, uint, 0644); 3397 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3398 3399 module_param(dm_numa_node, int, 0644); 3400 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3401 3402 module_param(swap_bios, int, 0644); 3403 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3404 3405 MODULE_DESCRIPTION(DM_NAME " driver"); 3406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3407 MODULE_LICENSE("GPL"); 3408