xref: /openbmc/linux/drivers/md/dm.c (revision f31c21e4365c02ccf7226c33ea978cd5dbfc351e)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated per bio.
64  */
65 struct dm_io {
66 	struct mapped_device *md;
67 	blk_status_t status;
68 	atomic_t io_count;
69 	struct bio *bio;
70 	unsigned long start_time;
71 	spinlock_t endio_lock;
72 	struct dm_stats_aux stats_aux;
73 };
74 
75 #define MINOR_ALLOCED ((void *)-1)
76 
77 /*
78  * Bits for the md->flags field.
79  */
80 #define DMF_BLOCK_IO_FOR_SUSPEND 0
81 #define DMF_SUSPENDED 1
82 #define DMF_FROZEN 2
83 #define DMF_FREEING 3
84 #define DMF_DELETING 4
85 #define DMF_NOFLUSH_SUSPENDING 5
86 #define DMF_DEFERRED_REMOVE 6
87 #define DMF_SUSPENDED_INTERNALLY 7
88 
89 #define DM_NUMA_NODE NUMA_NO_NODE
90 static int dm_numa_node = DM_NUMA_NODE;
91 
92 /*
93  * For mempools pre-allocation at the table loading time.
94  */
95 struct dm_md_mempools {
96 	mempool_t *io_pool;
97 	struct bio_set *bs;
98 };
99 
100 struct table_device {
101 	struct list_head list;
102 	refcount_t count;
103 	struct dm_dev dm_dev;
104 };
105 
106 static struct kmem_cache *_io_cache;
107 static struct kmem_cache *_rq_tio_cache;
108 static struct kmem_cache *_rq_cache;
109 
110 /*
111  * Bio-based DM's mempools' reserved IOs set by the user.
112  */
113 #define RESERVED_BIO_BASED_IOS		16
114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115 
116 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 {
118 	int param = READ_ONCE(*module_param);
119 	int modified_param = 0;
120 	bool modified = true;
121 
122 	if (param < min)
123 		modified_param = min;
124 	else if (param > max)
125 		modified_param = max;
126 	else
127 		modified = false;
128 
129 	if (modified) {
130 		(void)cmpxchg(module_param, param, modified_param);
131 		param = modified_param;
132 	}
133 
134 	return param;
135 }
136 
137 unsigned __dm_get_module_param(unsigned *module_param,
138 			       unsigned def, unsigned max)
139 {
140 	unsigned param = READ_ONCE(*module_param);
141 	unsigned modified_param = 0;
142 
143 	if (!param)
144 		modified_param = def;
145 	else if (param > max)
146 		modified_param = max;
147 
148 	if (modified_param) {
149 		(void)cmpxchg(module_param, param, modified_param);
150 		param = modified_param;
151 	}
152 
153 	return param;
154 }
155 
156 unsigned dm_get_reserved_bio_based_ios(void)
157 {
158 	return __dm_get_module_param(&reserved_bio_based_ios,
159 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 }
161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162 
163 static unsigned dm_get_numa_node(void)
164 {
165 	return __dm_get_module_param_int(&dm_numa_node,
166 					 DM_NUMA_NODE, num_online_nodes() - 1);
167 }
168 
169 static int __init local_init(void)
170 {
171 	int r = -ENOMEM;
172 
173 	/* allocate a slab for the dm_ios */
174 	_io_cache = KMEM_CACHE(dm_io, 0);
175 	if (!_io_cache)
176 		return r;
177 
178 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 	if (!_rq_tio_cache)
180 		goto out_free_io_cache;
181 
182 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
183 				      __alignof__(struct request), 0, NULL);
184 	if (!_rq_cache)
185 		goto out_free_rq_tio_cache;
186 
187 	r = dm_uevent_init();
188 	if (r)
189 		goto out_free_rq_cache;
190 
191 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
192 	if (!deferred_remove_workqueue) {
193 		r = -ENOMEM;
194 		goto out_uevent_exit;
195 	}
196 
197 	_major = major;
198 	r = register_blkdev(_major, _name);
199 	if (r < 0)
200 		goto out_free_workqueue;
201 
202 	if (!_major)
203 		_major = r;
204 
205 	return 0;
206 
207 out_free_workqueue:
208 	destroy_workqueue(deferred_remove_workqueue);
209 out_uevent_exit:
210 	dm_uevent_exit();
211 out_free_rq_cache:
212 	kmem_cache_destroy(_rq_cache);
213 out_free_rq_tio_cache:
214 	kmem_cache_destroy(_rq_tio_cache);
215 out_free_io_cache:
216 	kmem_cache_destroy(_io_cache);
217 
218 	return r;
219 }
220 
221 static void local_exit(void)
222 {
223 	flush_scheduled_work();
224 	destroy_workqueue(deferred_remove_workqueue);
225 
226 	kmem_cache_destroy(_rq_cache);
227 	kmem_cache_destroy(_rq_tio_cache);
228 	kmem_cache_destroy(_io_cache);
229 	unregister_blkdev(_major, _name);
230 	dm_uevent_exit();
231 
232 	_major = 0;
233 
234 	DMINFO("cleaned up");
235 }
236 
237 static int (*_inits[])(void) __initdata = {
238 	local_init,
239 	dm_target_init,
240 	dm_linear_init,
241 	dm_stripe_init,
242 	dm_io_init,
243 	dm_kcopyd_init,
244 	dm_interface_init,
245 	dm_statistics_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_io_exit,
254 	dm_kcopyd_exit,
255 	dm_interface_exit,
256 	dm_statistics_exit,
257 };
258 
259 static int __init dm_init(void)
260 {
261 	const int count = ARRAY_SIZE(_inits);
262 
263 	int r, i;
264 
265 	for (i = 0; i < count; i++) {
266 		r = _inits[i]();
267 		if (r)
268 			goto bad;
269 	}
270 
271 	return 0;
272 
273       bad:
274 	while (i--)
275 		_exits[i]();
276 
277 	return r;
278 }
279 
280 static void __exit dm_exit(void)
281 {
282 	int i = ARRAY_SIZE(_exits);
283 
284 	while (i--)
285 		_exits[i]();
286 
287 	/*
288 	 * Should be empty by this point.
289 	 */
290 	idr_destroy(&_minor_idr);
291 }
292 
293 /*
294  * Block device functions
295  */
296 int dm_deleting_md(struct mapped_device *md)
297 {
298 	return test_bit(DMF_DELETING, &md->flags);
299 }
300 
301 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 {
303 	struct mapped_device *md;
304 
305 	spin_lock(&_minor_lock);
306 
307 	md = bdev->bd_disk->private_data;
308 	if (!md)
309 		goto out;
310 
311 	if (test_bit(DMF_FREEING, &md->flags) ||
312 	    dm_deleting_md(md)) {
313 		md = NULL;
314 		goto out;
315 	}
316 
317 	dm_get(md);
318 	atomic_inc(&md->open_count);
319 out:
320 	spin_unlock(&_minor_lock);
321 
322 	return md ? 0 : -ENXIO;
323 }
324 
325 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mapped_device *md;
328 
329 	spin_lock(&_minor_lock);
330 
331 	md = disk->private_data;
332 	if (WARN_ON(!md))
333 		goto out;
334 
335 	if (atomic_dec_and_test(&md->open_count) &&
336 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
337 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
338 
339 	dm_put(md);
340 out:
341 	spin_unlock(&_minor_lock);
342 }
343 
344 int dm_open_count(struct mapped_device *md)
345 {
346 	return atomic_read(&md->open_count);
347 }
348 
349 /*
350  * Guarantees nothing is using the device before it's deleted.
351  */
352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 {
354 	int r = 0;
355 
356 	spin_lock(&_minor_lock);
357 
358 	if (dm_open_count(md)) {
359 		r = -EBUSY;
360 		if (mark_deferred)
361 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
362 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
363 		r = -EEXIST;
364 	else
365 		set_bit(DMF_DELETING, &md->flags);
366 
367 	spin_unlock(&_minor_lock);
368 
369 	return r;
370 }
371 
372 int dm_cancel_deferred_remove(struct mapped_device *md)
373 {
374 	int r = 0;
375 
376 	spin_lock(&_minor_lock);
377 
378 	if (test_bit(DMF_DELETING, &md->flags))
379 		r = -EBUSY;
380 	else
381 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382 
383 	spin_unlock(&_minor_lock);
384 
385 	return r;
386 }
387 
388 static void do_deferred_remove(struct work_struct *w)
389 {
390 	dm_deferred_remove();
391 }
392 
393 sector_t dm_get_size(struct mapped_device *md)
394 {
395 	return get_capacity(md->disk);
396 }
397 
398 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 {
400 	return md->queue;
401 }
402 
403 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 {
405 	return &md->stats;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
416 				  struct block_device **bdev,
417 				  fmode_t *mode)
418 {
419 	struct dm_target *tgt;
420 	struct dm_table *map;
421 	int srcu_idx, r;
422 
423 retry:
424 	r = -ENOTTY;
425 	map = dm_get_live_table(md, &srcu_idx);
426 	if (!map || !dm_table_get_size(map))
427 		goto out;
428 
429 	/* We only support devices that have a single target */
430 	if (dm_table_get_num_targets(map) != 1)
431 		goto out;
432 
433 	tgt = dm_table_get_target(map, 0);
434 	if (!tgt->type->prepare_ioctl)
435 		goto out;
436 
437 	if (dm_suspended_md(md)) {
438 		r = -EAGAIN;
439 		goto out;
440 	}
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
443 	if (r < 0)
444 		goto out;
445 
446 	bdgrab(*bdev);
447 	dm_put_live_table(md, srcu_idx);
448 	return r;
449 
450 out:
451 	dm_put_live_table(md, srcu_idx);
452 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
453 		msleep(10);
454 		goto retry;
455 	}
456 	return r;
457 }
458 
459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
460 			unsigned int cmd, unsigned long arg)
461 {
462 	struct mapped_device *md = bdev->bd_disk->private_data;
463 	int r;
464 
465 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
466 	if (r < 0)
467 		return r;
468 
469 	if (r > 0) {
470 		/*
471 		 * Target determined this ioctl is being issued against a
472 		 * subset of the parent bdev; require extra privileges.
473 		 */
474 		if (!capable(CAP_SYS_RAWIO)) {
475 			DMWARN_LIMIT(
476 	"%s: sending ioctl %x to DM device without required privilege.",
477 				current->comm, cmd);
478 			r = -ENOIOCTLCMD;
479 			goto out;
480 		}
481 	}
482 
483 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
484 out:
485 	bdput(bdev);
486 	return r;
487 }
488 
489 static struct dm_io *alloc_io(struct mapped_device *md)
490 {
491 	return mempool_alloc(md->io_pool, GFP_NOIO);
492 }
493 
494 static void free_io(struct mapped_device *md, struct dm_io *io)
495 {
496 	mempool_free(io, md->io_pool);
497 }
498 
499 static void free_tio(struct dm_target_io *tio)
500 {
501 	bio_put(&tio->clone);
502 }
503 
504 int md_in_flight(struct mapped_device *md)
505 {
506 	return atomic_read(&md->pending[READ]) +
507 	       atomic_read(&md->pending[WRITE]);
508 }
509 
510 static void start_io_acct(struct dm_io *io)
511 {
512 	struct mapped_device *md = io->md;
513 	struct bio *bio = io->bio;
514 	int cpu;
515 	int rw = bio_data_dir(bio);
516 
517 	io->start_time = jiffies;
518 
519 	cpu = part_stat_lock();
520 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
521 	part_stat_unlock();
522 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
523 		atomic_inc_return(&md->pending[rw]));
524 
525 	if (unlikely(dm_stats_used(&md->stats)))
526 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 				    bio->bi_iter.bi_sector, bio_sectors(bio),
528 				    false, 0, &io->stats_aux);
529 }
530 
531 static void end_io_acct(struct dm_io *io)
532 {
533 	struct mapped_device *md = io->md;
534 	struct bio *bio = io->bio;
535 	unsigned long duration = jiffies - io->start_time;
536 	int pending;
537 	int rw = bio_data_dir(bio);
538 
539 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
540 
541 	if (unlikely(dm_stats_used(&md->stats)))
542 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
543 				    bio->bi_iter.bi_sector, bio_sectors(bio),
544 				    true, duration, &io->stats_aux);
545 
546 	/*
547 	 * After this is decremented the bio must not be touched if it is
548 	 * a flush.
549 	 */
550 	pending = atomic_dec_return(&md->pending[rw]);
551 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
552 	pending += atomic_read(&md->pending[rw^0x1]);
553 
554 	/* nudge anyone waiting on suspend queue */
555 	if (!pending)
556 		wake_up(&md->wait);
557 }
558 
559 /*
560  * Add the bio to the list of deferred io.
561  */
562 static void queue_io(struct mapped_device *md, struct bio *bio)
563 {
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(&md->deferred_lock, flags);
567 	bio_list_add(&md->deferred, bio);
568 	spin_unlock_irqrestore(&md->deferred_lock, flags);
569 	queue_work(md->wq, &md->work);
570 }
571 
572 /*
573  * Everyone (including functions in this file), should use this
574  * function to access the md->map field, and make sure they call
575  * dm_put_live_table() when finished.
576  */
577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 {
579 	*srcu_idx = srcu_read_lock(&md->io_barrier);
580 
581 	return srcu_dereference(md->map, &md->io_barrier);
582 }
583 
584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 {
586 	srcu_read_unlock(&md->io_barrier, srcu_idx);
587 }
588 
589 void dm_sync_table(struct mapped_device *md)
590 {
591 	synchronize_srcu(&md->io_barrier);
592 	synchronize_rcu_expedited();
593 }
594 
595 /*
596  * A fast alternative to dm_get_live_table/dm_put_live_table.
597  * The caller must not block between these two functions.
598  */
599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
600 {
601 	rcu_read_lock();
602 	return rcu_dereference(md->map);
603 }
604 
605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
606 {
607 	rcu_read_unlock();
608 }
609 
610 /*
611  * Open a table device so we can use it as a map destination.
612  */
613 static int open_table_device(struct table_device *td, dev_t dev,
614 			     struct mapped_device *md)
615 {
616 	static char *_claim_ptr = "I belong to device-mapper";
617 	struct block_device *bdev;
618 
619 	int r;
620 
621 	BUG_ON(td->dm_dev.bdev);
622 
623 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 	if (IS_ERR(bdev))
625 		return PTR_ERR(bdev);
626 
627 	r = bd_link_disk_holder(bdev, dm_disk(md));
628 	if (r) {
629 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 		return r;
631 	}
632 
633 	td->dm_dev.bdev = bdev;
634 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
635 	return 0;
636 }
637 
638 /*
639  * Close a table device that we've been using.
640  */
641 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 {
643 	if (!td->dm_dev.bdev)
644 		return;
645 
646 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
647 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
648 	put_dax(td->dm_dev.dax_dev);
649 	td->dm_dev.bdev = NULL;
650 	td->dm_dev.dax_dev = NULL;
651 }
652 
653 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 					      fmode_t mode) {
655 	struct table_device *td;
656 
657 	list_for_each_entry(td, l, list)
658 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
659 			return td;
660 
661 	return NULL;
662 }
663 
664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
665 			struct dm_dev **result) {
666 	int r;
667 	struct table_device *td;
668 
669 	mutex_lock(&md->table_devices_lock);
670 	td = find_table_device(&md->table_devices, dev, mode);
671 	if (!td) {
672 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 		if (!td) {
674 			mutex_unlock(&md->table_devices_lock);
675 			return -ENOMEM;
676 		}
677 
678 		td->dm_dev.mode = mode;
679 		td->dm_dev.bdev = NULL;
680 
681 		if ((r = open_table_device(td, dev, md))) {
682 			mutex_unlock(&md->table_devices_lock);
683 			kfree(td);
684 			return r;
685 		}
686 
687 		format_dev_t(td->dm_dev.name, dev);
688 
689 		refcount_set(&td->count, 1);
690 		list_add(&td->list, &md->table_devices);
691 	} else {
692 		refcount_inc(&td->count);
693 	}
694 	mutex_unlock(&md->table_devices_lock);
695 
696 	*result = &td->dm_dev;
697 	return 0;
698 }
699 EXPORT_SYMBOL_GPL(dm_get_table_device);
700 
701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
702 {
703 	struct table_device *td = container_of(d, struct table_device, dm_dev);
704 
705 	mutex_lock(&md->table_devices_lock);
706 	if (refcount_dec_and_test(&td->count)) {
707 		close_table_device(td, md);
708 		list_del(&td->list);
709 		kfree(td);
710 	}
711 	mutex_unlock(&md->table_devices_lock);
712 }
713 EXPORT_SYMBOL(dm_put_table_device);
714 
715 static void free_table_devices(struct list_head *devices)
716 {
717 	struct list_head *tmp, *next;
718 
719 	list_for_each_safe(tmp, next, devices) {
720 		struct table_device *td = list_entry(tmp, struct table_device, list);
721 
722 		DMWARN("dm_destroy: %s still exists with %d references",
723 		       td->dm_dev.name, refcount_read(&td->count));
724 		kfree(td);
725 	}
726 }
727 
728 /*
729  * Get the geometry associated with a dm device
730  */
731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 	*geo = md->geometry;
734 
735 	return 0;
736 }
737 
738 /*
739  * Set the geometry of a device.
740  */
741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
742 {
743 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
744 
745 	if (geo->start > sz) {
746 		DMWARN("Start sector is beyond the geometry limits.");
747 		return -EINVAL;
748 	}
749 
750 	md->geometry = *geo;
751 
752 	return 0;
753 }
754 
755 /*-----------------------------------------------------------------
756  * CRUD START:
757  *   A more elegant soln is in the works that uses the queue
758  *   merge fn, unfortunately there are a couple of changes to
759  *   the block layer that I want to make for this.  So in the
760  *   interests of getting something for people to use I give
761  *   you this clearly demarcated crap.
762  *---------------------------------------------------------------*/
763 
764 static int __noflush_suspending(struct mapped_device *md)
765 {
766 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
767 }
768 
769 /*
770  * Decrements the number of outstanding ios that a bio has been
771  * cloned into, completing the original io if necc.
772  */
773 static void dec_pending(struct dm_io *io, blk_status_t error)
774 {
775 	unsigned long flags;
776 	blk_status_t io_error;
777 	struct bio *bio;
778 	struct mapped_device *md = io->md;
779 
780 	/* Push-back supersedes any I/O errors */
781 	if (unlikely(error)) {
782 		spin_lock_irqsave(&io->endio_lock, flags);
783 		if (!(io->status == BLK_STS_DM_REQUEUE &&
784 				__noflush_suspending(md)))
785 			io->status = error;
786 		spin_unlock_irqrestore(&io->endio_lock, flags);
787 	}
788 
789 	if (atomic_dec_and_test(&io->io_count)) {
790 		if (io->status == BLK_STS_DM_REQUEUE) {
791 			/*
792 			 * Target requested pushing back the I/O.
793 			 */
794 			spin_lock_irqsave(&md->deferred_lock, flags);
795 			if (__noflush_suspending(md))
796 				bio_list_add_head(&md->deferred, io->bio);
797 			else
798 				/* noflush suspend was interrupted. */
799 				io->status = BLK_STS_IOERR;
800 			spin_unlock_irqrestore(&md->deferred_lock, flags);
801 		}
802 
803 		io_error = io->status;
804 		bio = io->bio;
805 		end_io_acct(io);
806 		free_io(md, io);
807 
808 		if (io_error == BLK_STS_DM_REQUEUE)
809 			return;
810 
811 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
812 			/*
813 			 * Preflush done for flush with data, reissue
814 			 * without REQ_PREFLUSH.
815 			 */
816 			bio->bi_opf &= ~REQ_PREFLUSH;
817 			queue_io(md, bio);
818 		} else {
819 			/* done with normal IO or empty flush */
820 			bio->bi_status = io_error;
821 			bio_endio(bio);
822 		}
823 	}
824 }
825 
826 void disable_write_same(struct mapped_device *md)
827 {
828 	struct queue_limits *limits = dm_get_queue_limits(md);
829 
830 	/* device doesn't really support WRITE SAME, disable it */
831 	limits->max_write_same_sectors = 0;
832 }
833 
834 void disable_write_zeroes(struct mapped_device *md)
835 {
836 	struct queue_limits *limits = dm_get_queue_limits(md);
837 
838 	/* device doesn't really support WRITE ZEROES, disable it */
839 	limits->max_write_zeroes_sectors = 0;
840 }
841 
842 static void clone_endio(struct bio *bio)
843 {
844 	blk_status_t error = bio->bi_status;
845 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
846 	struct dm_io *io = tio->io;
847 	struct mapped_device *md = tio->io->md;
848 	dm_endio_fn endio = tio->ti->type->end_io;
849 
850 	if (unlikely(error == BLK_STS_TARGET)) {
851 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
852 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
853 			disable_write_same(md);
854 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
855 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
856 			disable_write_zeroes(md);
857 	}
858 
859 	if (endio) {
860 		int r = endio(tio->ti, bio, &error);
861 		switch (r) {
862 		case DM_ENDIO_REQUEUE:
863 			error = BLK_STS_DM_REQUEUE;
864 			/*FALLTHRU*/
865 		case DM_ENDIO_DONE:
866 			break;
867 		case DM_ENDIO_INCOMPLETE:
868 			/* The target will handle the io */
869 			return;
870 		default:
871 			DMWARN("unimplemented target endio return value: %d", r);
872 			BUG();
873 		}
874 	}
875 
876 	free_tio(tio);
877 	dec_pending(io, error);
878 }
879 
880 /*
881  * Return maximum size of I/O possible at the supplied sector up to the current
882  * target boundary.
883  */
884 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
885 {
886 	sector_t target_offset = dm_target_offset(ti, sector);
887 
888 	return ti->len - target_offset;
889 }
890 
891 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
892 {
893 	sector_t len = max_io_len_target_boundary(sector, ti);
894 	sector_t offset, max_len;
895 
896 	/*
897 	 * Does the target need to split even further?
898 	 */
899 	if (ti->max_io_len) {
900 		offset = dm_target_offset(ti, sector);
901 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
902 			max_len = sector_div(offset, ti->max_io_len);
903 		else
904 			max_len = offset & (ti->max_io_len - 1);
905 		max_len = ti->max_io_len - max_len;
906 
907 		if (len > max_len)
908 			len = max_len;
909 	}
910 
911 	return len;
912 }
913 
914 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
915 {
916 	if (len > UINT_MAX) {
917 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
918 		      (unsigned long long)len, UINT_MAX);
919 		ti->error = "Maximum size of target IO is too large";
920 		return -EINVAL;
921 	}
922 
923 	ti->max_io_len = (uint32_t) len;
924 
925 	return 0;
926 }
927 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
928 
929 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
930 		sector_t sector, int *srcu_idx)
931 {
932 	struct dm_table *map;
933 	struct dm_target *ti;
934 
935 	map = dm_get_live_table(md, srcu_idx);
936 	if (!map)
937 		return NULL;
938 
939 	ti = dm_table_find_target(map, sector);
940 	if (!dm_target_is_valid(ti))
941 		return NULL;
942 
943 	return ti;
944 }
945 
946 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
947 		long nr_pages, void **kaddr, pfn_t *pfn)
948 {
949 	struct mapped_device *md = dax_get_private(dax_dev);
950 	sector_t sector = pgoff * PAGE_SECTORS;
951 	struct dm_target *ti;
952 	long len, ret = -EIO;
953 	int srcu_idx;
954 
955 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
956 
957 	if (!ti)
958 		goto out;
959 	if (!ti->type->direct_access)
960 		goto out;
961 	len = max_io_len(sector, ti) / PAGE_SECTORS;
962 	if (len < 1)
963 		goto out;
964 	nr_pages = min(len, nr_pages);
965 	if (ti->type->direct_access)
966 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
967 
968  out:
969 	dm_put_live_table(md, srcu_idx);
970 
971 	return ret;
972 }
973 
974 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
975 		void *addr, size_t bytes, struct iov_iter *i)
976 {
977 	struct mapped_device *md = dax_get_private(dax_dev);
978 	sector_t sector = pgoff * PAGE_SECTORS;
979 	struct dm_target *ti;
980 	long ret = 0;
981 	int srcu_idx;
982 
983 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
984 
985 	if (!ti)
986 		goto out;
987 	if (!ti->type->dax_copy_from_iter) {
988 		ret = copy_from_iter(addr, bytes, i);
989 		goto out;
990 	}
991 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
992  out:
993 	dm_put_live_table(md, srcu_idx);
994 
995 	return ret;
996 }
997 
998 /*
999  * A target may call dm_accept_partial_bio only from the map routine.  It is
1000  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1001  *
1002  * dm_accept_partial_bio informs the dm that the target only wants to process
1003  * additional n_sectors sectors of the bio and the rest of the data should be
1004  * sent in a next bio.
1005  *
1006  * A diagram that explains the arithmetics:
1007  * +--------------------+---------------+-------+
1008  * |         1          |       2       |   3   |
1009  * +--------------------+---------------+-------+
1010  *
1011  * <-------------- *tio->len_ptr --------------->
1012  *                      <------- bi_size ------->
1013  *                      <-- n_sectors -->
1014  *
1015  * Region 1 was already iterated over with bio_advance or similar function.
1016  *	(it may be empty if the target doesn't use bio_advance)
1017  * Region 2 is the remaining bio size that the target wants to process.
1018  *	(it may be empty if region 1 is non-empty, although there is no reason
1019  *	 to make it empty)
1020  * The target requires that region 3 is to be sent in the next bio.
1021  *
1022  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1023  * the partially processed part (the sum of regions 1+2) must be the same for all
1024  * copies of the bio.
1025  */
1026 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1027 {
1028 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1029 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1030 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1031 	BUG_ON(bi_size > *tio->len_ptr);
1032 	BUG_ON(n_sectors > bi_size);
1033 	*tio->len_ptr -= bi_size - n_sectors;
1034 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1035 }
1036 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1037 
1038 /*
1039  * The zone descriptors obtained with a zone report indicate
1040  * zone positions within the target device. The zone descriptors
1041  * must be remapped to match their position within the dm device.
1042  * A target may call dm_remap_zone_report after completion of a
1043  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1044  * from the target device mapping to the dm device.
1045  */
1046 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1047 {
1048 #ifdef CONFIG_BLK_DEV_ZONED
1049 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1050 	struct bio *report_bio = tio->io->bio;
1051 	struct blk_zone_report_hdr *hdr = NULL;
1052 	struct blk_zone *zone;
1053 	unsigned int nr_rep = 0;
1054 	unsigned int ofst;
1055 	struct bio_vec bvec;
1056 	struct bvec_iter iter;
1057 	void *addr;
1058 
1059 	if (bio->bi_status)
1060 		return;
1061 
1062 	/*
1063 	 * Remap the start sector of the reported zones. For sequential zones,
1064 	 * also remap the write pointer position.
1065 	 */
1066 	bio_for_each_segment(bvec, report_bio, iter) {
1067 		addr = kmap_atomic(bvec.bv_page);
1068 
1069 		/* Remember the report header in the first page */
1070 		if (!hdr) {
1071 			hdr = addr;
1072 			ofst = sizeof(struct blk_zone_report_hdr);
1073 		} else
1074 			ofst = 0;
1075 
1076 		/* Set zones start sector */
1077 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1078 			zone = addr + ofst;
1079 			if (zone->start >= start + ti->len) {
1080 				hdr->nr_zones = 0;
1081 				break;
1082 			}
1083 			zone->start = zone->start + ti->begin - start;
1084 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1085 				if (zone->cond == BLK_ZONE_COND_FULL)
1086 					zone->wp = zone->start + zone->len;
1087 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1088 					zone->wp = zone->start;
1089 				else
1090 					zone->wp = zone->wp + ti->begin - start;
1091 			}
1092 			ofst += sizeof(struct blk_zone);
1093 			hdr->nr_zones--;
1094 			nr_rep++;
1095 		}
1096 
1097 		if (addr != hdr)
1098 			kunmap_atomic(addr);
1099 
1100 		if (!hdr->nr_zones)
1101 			break;
1102 	}
1103 
1104 	if (hdr) {
1105 		hdr->nr_zones = nr_rep;
1106 		kunmap_atomic(hdr);
1107 	}
1108 
1109 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1110 
1111 #else /* !CONFIG_BLK_DEV_ZONED */
1112 	bio->bi_status = BLK_STS_NOTSUPP;
1113 #endif
1114 }
1115 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1116 
1117 /*
1118  * Flush current->bio_list when the target map method blocks.
1119  * This fixes deadlocks in snapshot and possibly in other targets.
1120  */
1121 struct dm_offload {
1122 	struct blk_plug plug;
1123 	struct blk_plug_cb cb;
1124 };
1125 
1126 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1127 {
1128 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1129 	struct bio_list list;
1130 	struct bio *bio;
1131 	int i;
1132 
1133 	INIT_LIST_HEAD(&o->cb.list);
1134 
1135 	if (unlikely(!current->bio_list))
1136 		return;
1137 
1138 	for (i = 0; i < 2; i++) {
1139 		list = current->bio_list[i];
1140 		bio_list_init(&current->bio_list[i]);
1141 
1142 		while ((bio = bio_list_pop(&list))) {
1143 			struct bio_set *bs = bio->bi_pool;
1144 			if (unlikely(!bs) || bs == fs_bio_set ||
1145 			    !bs->rescue_workqueue) {
1146 				bio_list_add(&current->bio_list[i], bio);
1147 				continue;
1148 			}
1149 
1150 			spin_lock(&bs->rescue_lock);
1151 			bio_list_add(&bs->rescue_list, bio);
1152 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1153 			spin_unlock(&bs->rescue_lock);
1154 		}
1155 	}
1156 }
1157 
1158 static void dm_offload_start(struct dm_offload *o)
1159 {
1160 	blk_start_plug(&o->plug);
1161 	o->cb.callback = flush_current_bio_list;
1162 	list_add(&o->cb.list, &current->plug->cb_list);
1163 }
1164 
1165 static void dm_offload_end(struct dm_offload *o)
1166 {
1167 	list_del(&o->cb.list);
1168 	blk_finish_plug(&o->plug);
1169 }
1170 
1171 static void __map_bio(struct dm_target_io *tio)
1172 {
1173 	int r;
1174 	sector_t sector;
1175 	struct dm_offload o;
1176 	struct bio *clone = &tio->clone;
1177 	struct dm_target *ti = tio->ti;
1178 
1179 	clone->bi_end_io = clone_endio;
1180 
1181 	/*
1182 	 * Map the clone.  If r == 0 we don't need to do
1183 	 * anything, the target has assumed ownership of
1184 	 * this io.
1185 	 */
1186 	atomic_inc(&tio->io->io_count);
1187 	sector = clone->bi_iter.bi_sector;
1188 
1189 	dm_offload_start(&o);
1190 	r = ti->type->map(ti, clone);
1191 	dm_offload_end(&o);
1192 
1193 	switch (r) {
1194 	case DM_MAPIO_SUBMITTED:
1195 		break;
1196 	case DM_MAPIO_REMAPPED:
1197 		/* the bio has been remapped so dispatch it */
1198 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1199 				      bio_dev(tio->io->bio), sector);
1200 		generic_make_request(clone);
1201 		break;
1202 	case DM_MAPIO_KILL:
1203 		dec_pending(tio->io, BLK_STS_IOERR);
1204 		free_tio(tio);
1205 		break;
1206 	case DM_MAPIO_REQUEUE:
1207 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1208 		free_tio(tio);
1209 		break;
1210 	default:
1211 		DMWARN("unimplemented target map return value: %d", r);
1212 		BUG();
1213 	}
1214 }
1215 
1216 struct clone_info {
1217 	struct mapped_device *md;
1218 	struct dm_table *map;
1219 	struct bio *bio;
1220 	struct dm_io *io;
1221 	sector_t sector;
1222 	unsigned sector_count;
1223 };
1224 
1225 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1226 {
1227 	bio->bi_iter.bi_sector = sector;
1228 	bio->bi_iter.bi_size = to_bytes(len);
1229 }
1230 
1231 /*
1232  * Creates a bio that consists of range of complete bvecs.
1233  */
1234 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1235 		     sector_t sector, unsigned len)
1236 {
1237 	struct bio *clone = &tio->clone;
1238 
1239 	__bio_clone_fast(clone, bio);
1240 
1241 	if (unlikely(bio_integrity(bio) != NULL)) {
1242 		int r;
1243 
1244 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1245 			     !dm_target_passes_integrity(tio->ti->type))) {
1246 			DMWARN("%s: the target %s doesn't support integrity data.",
1247 				dm_device_name(tio->io->md),
1248 				tio->ti->type->name);
1249 			return -EIO;
1250 		}
1251 
1252 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1253 		if (r < 0)
1254 			return r;
1255 	}
1256 
1257 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1258 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1259 	clone->bi_iter.bi_size = to_bytes(len);
1260 
1261 	if (unlikely(bio_integrity(bio) != NULL))
1262 		bio_integrity_trim(clone);
1263 
1264 	return 0;
1265 }
1266 
1267 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1268 				      struct dm_target *ti,
1269 				      unsigned target_bio_nr)
1270 {
1271 	struct dm_target_io *tio;
1272 	struct bio *clone;
1273 
1274 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1275 	tio = container_of(clone, struct dm_target_io, clone);
1276 
1277 	tio->io = ci->io;
1278 	tio->ti = ti;
1279 	tio->target_bio_nr = target_bio_nr;
1280 
1281 	return tio;
1282 }
1283 
1284 static void __clone_and_map_simple_bio(struct clone_info *ci,
1285 				       struct dm_target *ti,
1286 				       unsigned target_bio_nr, unsigned *len)
1287 {
1288 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1289 	struct bio *clone = &tio->clone;
1290 
1291 	tio->len_ptr = len;
1292 
1293 	__bio_clone_fast(clone, ci->bio);
1294 	if (len)
1295 		bio_setup_sector(clone, ci->sector, *len);
1296 
1297 	__map_bio(tio);
1298 }
1299 
1300 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1301 				  unsigned num_bios, unsigned *len)
1302 {
1303 	unsigned target_bio_nr;
1304 
1305 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1306 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1307 }
1308 
1309 static int __send_empty_flush(struct clone_info *ci)
1310 {
1311 	unsigned target_nr = 0;
1312 	struct dm_target *ti;
1313 
1314 	BUG_ON(bio_has_data(ci->bio));
1315 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1316 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1317 
1318 	return 0;
1319 }
1320 
1321 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1322 				    sector_t sector, unsigned *len)
1323 {
1324 	struct bio *bio = ci->bio;
1325 	struct dm_target_io *tio;
1326 	int r;
1327 
1328 	tio = alloc_tio(ci, ti, 0);
1329 	tio->len_ptr = len;
1330 	r = clone_bio(tio, bio, sector, *len);
1331 	if (r < 0) {
1332 		free_tio(tio);
1333 		return r;
1334 	}
1335 	__map_bio(tio);
1336 
1337 	return 0;
1338 }
1339 
1340 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1341 
1342 static unsigned get_num_discard_bios(struct dm_target *ti)
1343 {
1344 	return ti->num_discard_bios;
1345 }
1346 
1347 static unsigned get_num_write_same_bios(struct dm_target *ti)
1348 {
1349 	return ti->num_write_same_bios;
1350 }
1351 
1352 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1353 {
1354 	return ti->num_write_zeroes_bios;
1355 }
1356 
1357 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1358 
1359 static bool is_split_required_for_discard(struct dm_target *ti)
1360 {
1361 	return ti->split_discard_bios;
1362 }
1363 
1364 static int __send_changing_extent_only(struct clone_info *ci,
1365 				       get_num_bios_fn get_num_bios,
1366 				       is_split_required_fn is_split_required)
1367 {
1368 	struct dm_target *ti;
1369 	unsigned len;
1370 	unsigned num_bios;
1371 
1372 	do {
1373 		ti = dm_table_find_target(ci->map, ci->sector);
1374 		if (!dm_target_is_valid(ti))
1375 			return -EIO;
1376 
1377 		/*
1378 		 * Even though the device advertised support for this type of
1379 		 * request, that does not mean every target supports it, and
1380 		 * reconfiguration might also have changed that since the
1381 		 * check was performed.
1382 		 */
1383 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1384 		if (!num_bios)
1385 			return -EOPNOTSUPP;
1386 
1387 		if (is_split_required && !is_split_required(ti))
1388 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1389 		else
1390 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1391 
1392 		__send_duplicate_bios(ci, ti, num_bios, &len);
1393 
1394 		ci->sector += len;
1395 	} while (ci->sector_count -= len);
1396 
1397 	return 0;
1398 }
1399 
1400 static int __send_discard(struct clone_info *ci)
1401 {
1402 	return __send_changing_extent_only(ci, get_num_discard_bios,
1403 					   is_split_required_for_discard);
1404 }
1405 
1406 static int __send_write_same(struct clone_info *ci)
1407 {
1408 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1409 }
1410 
1411 static int __send_write_zeroes(struct clone_info *ci)
1412 {
1413 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1414 }
1415 
1416 /*
1417  * Select the correct strategy for processing a non-flush bio.
1418  */
1419 static int __split_and_process_non_flush(struct clone_info *ci)
1420 {
1421 	struct bio *bio = ci->bio;
1422 	struct dm_target *ti;
1423 	unsigned len;
1424 	int r;
1425 
1426 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1427 		return __send_discard(ci);
1428 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1429 		return __send_write_same(ci);
1430 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1431 		return __send_write_zeroes(ci);
1432 
1433 	ti = dm_table_find_target(ci->map, ci->sector);
1434 	if (!dm_target_is_valid(ti))
1435 		return -EIO;
1436 
1437 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1438 		len = ci->sector_count;
1439 	else
1440 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1441 			    ci->sector_count);
1442 
1443 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1444 	if (r < 0)
1445 		return r;
1446 
1447 	ci->sector += len;
1448 	ci->sector_count -= len;
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Entry point to split a bio into clones and submit them to the targets.
1455  */
1456 static void __split_and_process_bio(struct mapped_device *md,
1457 				    struct dm_table *map, struct bio *bio)
1458 {
1459 	struct clone_info ci;
1460 	int error = 0;
1461 
1462 	if (unlikely(!map)) {
1463 		bio_io_error(bio);
1464 		return;
1465 	}
1466 
1467 	ci.map = map;
1468 	ci.md = md;
1469 	ci.io = alloc_io(md);
1470 	ci.io->status = 0;
1471 	atomic_set(&ci.io->io_count, 1);
1472 	ci.io->bio = bio;
1473 	ci.io->md = md;
1474 	spin_lock_init(&ci.io->endio_lock);
1475 	ci.sector = bio->bi_iter.bi_sector;
1476 
1477 	start_io_acct(ci.io);
1478 
1479 	if (bio->bi_opf & REQ_PREFLUSH) {
1480 		ci.bio = &ci.md->flush_bio;
1481 		ci.sector_count = 0;
1482 		error = __send_empty_flush(&ci);
1483 		/* dec_pending submits any data associated with flush */
1484 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1485 		ci.bio = bio;
1486 		ci.sector_count = 0;
1487 		error = __split_and_process_non_flush(&ci);
1488 	} else {
1489 		ci.bio = bio;
1490 		ci.sector_count = bio_sectors(bio);
1491 		while (ci.sector_count && !error) {
1492 			error = __split_and_process_non_flush(&ci);
1493 			if (current->bio_list && ci.sector_count && !error) {
1494 				/*
1495 				 * Remainder must be passed to generic_make_request()
1496 				 * so that it gets handled *after* bios already submitted
1497 				 * have been completely processed.
1498 				 * We take a clone of the original to store in
1499 				 * ci.io->bio to be used by end_io_acct() and
1500 				 * for dec_pending to use for completion handling.
1501 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1502 				 * the usage of io->bio in dm_remap_zone_report()
1503 				 * won't be affected by this reassignment.
1504 				 */
1505 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1506 								 md->queue->bio_split);
1507 				ci.io->bio = b;
1508 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1509 				bio_chain(b, bio);
1510 				generic_make_request(bio);
1511 				break;
1512 			}
1513 		}
1514 	}
1515 
1516 	/* drop the extra reference count */
1517 	dec_pending(ci.io, errno_to_blk_status(error));
1518 }
1519 /*-----------------------------------------------------------------
1520  * CRUD END
1521  *---------------------------------------------------------------*/
1522 
1523 /*
1524  * The request function that remaps the bio to one target and
1525  * splits off any remainder.
1526  */
1527 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1528 {
1529 	int rw = bio_data_dir(bio);
1530 	struct mapped_device *md = q->queuedata;
1531 	int srcu_idx;
1532 	struct dm_table *map;
1533 
1534 	map = dm_get_live_table(md, &srcu_idx);
1535 
1536 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1537 
1538 	/* if we're suspended, we have to queue this io for later */
1539 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1540 		dm_put_live_table(md, srcu_idx);
1541 
1542 		if (!(bio->bi_opf & REQ_RAHEAD))
1543 			queue_io(md, bio);
1544 		else
1545 			bio_io_error(bio);
1546 		return BLK_QC_T_NONE;
1547 	}
1548 
1549 	__split_and_process_bio(md, map, bio);
1550 	dm_put_live_table(md, srcu_idx);
1551 	return BLK_QC_T_NONE;
1552 }
1553 
1554 static int dm_any_congested(void *congested_data, int bdi_bits)
1555 {
1556 	int r = bdi_bits;
1557 	struct mapped_device *md = congested_data;
1558 	struct dm_table *map;
1559 
1560 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1561 		if (dm_request_based(md)) {
1562 			/*
1563 			 * With request-based DM we only need to check the
1564 			 * top-level queue for congestion.
1565 			 */
1566 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1567 		} else {
1568 			map = dm_get_live_table_fast(md);
1569 			if (map)
1570 				r = dm_table_any_congested(map, bdi_bits);
1571 			dm_put_live_table_fast(md);
1572 		}
1573 	}
1574 
1575 	return r;
1576 }
1577 
1578 /*-----------------------------------------------------------------
1579  * An IDR is used to keep track of allocated minor numbers.
1580  *---------------------------------------------------------------*/
1581 static void free_minor(int minor)
1582 {
1583 	spin_lock(&_minor_lock);
1584 	idr_remove(&_minor_idr, minor);
1585 	spin_unlock(&_minor_lock);
1586 }
1587 
1588 /*
1589  * See if the device with a specific minor # is free.
1590  */
1591 static int specific_minor(int minor)
1592 {
1593 	int r;
1594 
1595 	if (minor >= (1 << MINORBITS))
1596 		return -EINVAL;
1597 
1598 	idr_preload(GFP_KERNEL);
1599 	spin_lock(&_minor_lock);
1600 
1601 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1602 
1603 	spin_unlock(&_minor_lock);
1604 	idr_preload_end();
1605 	if (r < 0)
1606 		return r == -ENOSPC ? -EBUSY : r;
1607 	return 0;
1608 }
1609 
1610 static int next_free_minor(int *minor)
1611 {
1612 	int r;
1613 
1614 	idr_preload(GFP_KERNEL);
1615 	spin_lock(&_minor_lock);
1616 
1617 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1618 
1619 	spin_unlock(&_minor_lock);
1620 	idr_preload_end();
1621 	if (r < 0)
1622 		return r;
1623 	*minor = r;
1624 	return 0;
1625 }
1626 
1627 static const struct block_device_operations dm_blk_dops;
1628 static const struct dax_operations dm_dax_ops;
1629 
1630 static void dm_wq_work(struct work_struct *work);
1631 
1632 void dm_init_md_queue(struct mapped_device *md)
1633 {
1634 	/*
1635 	 * Initialize data that will only be used by a non-blk-mq DM queue
1636 	 * - must do so here (in alloc_dev callchain) before queue is used
1637 	 */
1638 	md->queue->queuedata = md;
1639 	md->queue->backing_dev_info->congested_data = md;
1640 }
1641 
1642 void dm_init_normal_md_queue(struct mapped_device *md)
1643 {
1644 	md->use_blk_mq = false;
1645 	dm_init_md_queue(md);
1646 
1647 	/*
1648 	 * Initialize aspects of queue that aren't relevant for blk-mq
1649 	 */
1650 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1651 }
1652 
1653 static void cleanup_mapped_device(struct mapped_device *md)
1654 {
1655 	if (md->wq)
1656 		destroy_workqueue(md->wq);
1657 	if (md->kworker_task)
1658 		kthread_stop(md->kworker_task);
1659 	mempool_destroy(md->io_pool);
1660 	if (md->bs)
1661 		bioset_free(md->bs);
1662 
1663 	if (md->dax_dev) {
1664 		kill_dax(md->dax_dev);
1665 		put_dax(md->dax_dev);
1666 		md->dax_dev = NULL;
1667 	}
1668 
1669 	if (md->disk) {
1670 		spin_lock(&_minor_lock);
1671 		md->disk->private_data = NULL;
1672 		spin_unlock(&_minor_lock);
1673 		del_gendisk(md->disk);
1674 		put_disk(md->disk);
1675 	}
1676 
1677 	if (md->queue)
1678 		blk_cleanup_queue(md->queue);
1679 
1680 	cleanup_srcu_struct(&md->io_barrier);
1681 
1682 	if (md->bdev) {
1683 		bdput(md->bdev);
1684 		md->bdev = NULL;
1685 	}
1686 
1687 	dm_mq_cleanup_mapped_device(md);
1688 }
1689 
1690 /*
1691  * Allocate and initialise a blank device with a given minor.
1692  */
1693 static struct mapped_device *alloc_dev(int minor)
1694 {
1695 	int r, numa_node_id = dm_get_numa_node();
1696 	struct dax_device *dax_dev;
1697 	struct mapped_device *md;
1698 	void *old_md;
1699 
1700 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1701 	if (!md) {
1702 		DMWARN("unable to allocate device, out of memory.");
1703 		return NULL;
1704 	}
1705 
1706 	if (!try_module_get(THIS_MODULE))
1707 		goto bad_module_get;
1708 
1709 	/* get a minor number for the dev */
1710 	if (minor == DM_ANY_MINOR)
1711 		r = next_free_minor(&minor);
1712 	else
1713 		r = specific_minor(minor);
1714 	if (r < 0)
1715 		goto bad_minor;
1716 
1717 	r = init_srcu_struct(&md->io_barrier);
1718 	if (r < 0)
1719 		goto bad_io_barrier;
1720 
1721 	md->numa_node_id = numa_node_id;
1722 	md->use_blk_mq = dm_use_blk_mq_default();
1723 	md->init_tio_pdu = false;
1724 	md->type = DM_TYPE_NONE;
1725 	mutex_init(&md->suspend_lock);
1726 	mutex_init(&md->type_lock);
1727 	mutex_init(&md->table_devices_lock);
1728 	spin_lock_init(&md->deferred_lock);
1729 	atomic_set(&md->holders, 1);
1730 	atomic_set(&md->open_count, 0);
1731 	atomic_set(&md->event_nr, 0);
1732 	atomic_set(&md->uevent_seq, 0);
1733 	INIT_LIST_HEAD(&md->uevent_list);
1734 	INIT_LIST_HEAD(&md->table_devices);
1735 	spin_lock_init(&md->uevent_lock);
1736 
1737 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1738 	if (!md->queue)
1739 		goto bad;
1740 
1741 	dm_init_md_queue(md);
1742 
1743 	md->disk = alloc_disk_node(1, numa_node_id);
1744 	if (!md->disk)
1745 		goto bad;
1746 
1747 	atomic_set(&md->pending[0], 0);
1748 	atomic_set(&md->pending[1], 0);
1749 	init_waitqueue_head(&md->wait);
1750 	INIT_WORK(&md->work, dm_wq_work);
1751 	init_waitqueue_head(&md->eventq);
1752 	init_completion(&md->kobj_holder.completion);
1753 	md->kworker_task = NULL;
1754 
1755 	md->disk->major = _major;
1756 	md->disk->first_minor = minor;
1757 	md->disk->fops = &dm_blk_dops;
1758 	md->disk->queue = md->queue;
1759 	md->disk->private_data = md;
1760 	sprintf(md->disk->disk_name, "dm-%d", minor);
1761 
1762 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1763 	if (!dax_dev)
1764 		goto bad;
1765 	md->dax_dev = dax_dev;
1766 
1767 	add_disk(md->disk);
1768 	format_dev_t(md->name, MKDEV(_major, minor));
1769 
1770 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1771 	if (!md->wq)
1772 		goto bad;
1773 
1774 	md->bdev = bdget_disk(md->disk, 0);
1775 	if (!md->bdev)
1776 		goto bad;
1777 
1778 	bio_init(&md->flush_bio, NULL, 0);
1779 	bio_set_dev(&md->flush_bio, md->bdev);
1780 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1781 
1782 	dm_stats_init(&md->stats);
1783 
1784 	/* Populate the mapping, nobody knows we exist yet */
1785 	spin_lock(&_minor_lock);
1786 	old_md = idr_replace(&_minor_idr, md, minor);
1787 	spin_unlock(&_minor_lock);
1788 
1789 	BUG_ON(old_md != MINOR_ALLOCED);
1790 
1791 	return md;
1792 
1793 bad:
1794 	cleanup_mapped_device(md);
1795 bad_io_barrier:
1796 	free_minor(minor);
1797 bad_minor:
1798 	module_put(THIS_MODULE);
1799 bad_module_get:
1800 	kvfree(md);
1801 	return NULL;
1802 }
1803 
1804 static void unlock_fs(struct mapped_device *md);
1805 
1806 static void free_dev(struct mapped_device *md)
1807 {
1808 	int minor = MINOR(disk_devt(md->disk));
1809 
1810 	unlock_fs(md);
1811 
1812 	cleanup_mapped_device(md);
1813 
1814 	free_table_devices(&md->table_devices);
1815 	dm_stats_cleanup(&md->stats);
1816 	free_minor(minor);
1817 
1818 	module_put(THIS_MODULE);
1819 	kvfree(md);
1820 }
1821 
1822 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1823 {
1824 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1825 
1826 	if (md->bs) {
1827 		/* The md already has necessary mempools. */
1828 		if (dm_table_bio_based(t)) {
1829 			/*
1830 			 * Reload bioset because front_pad may have changed
1831 			 * because a different table was loaded.
1832 			 */
1833 			bioset_free(md->bs);
1834 			md->bs = p->bs;
1835 			p->bs = NULL;
1836 		}
1837 		/*
1838 		 * There's no need to reload with request-based dm
1839 		 * because the size of front_pad doesn't change.
1840 		 * Note for future: If you are to reload bioset,
1841 		 * prep-ed requests in the queue may refer
1842 		 * to bio from the old bioset, so you must walk
1843 		 * through the queue to unprep.
1844 		 */
1845 		goto out;
1846 	}
1847 
1848 	BUG_ON(!p || md->io_pool || md->bs);
1849 
1850 	md->io_pool = p->io_pool;
1851 	p->io_pool = NULL;
1852 	md->bs = p->bs;
1853 	p->bs = NULL;
1854 
1855 out:
1856 	/* mempool bind completed, no longer need any mempools in the table */
1857 	dm_table_free_md_mempools(t);
1858 }
1859 
1860 /*
1861  * Bind a table to the device.
1862  */
1863 static void event_callback(void *context)
1864 {
1865 	unsigned long flags;
1866 	LIST_HEAD(uevents);
1867 	struct mapped_device *md = (struct mapped_device *) context;
1868 
1869 	spin_lock_irqsave(&md->uevent_lock, flags);
1870 	list_splice_init(&md->uevent_list, &uevents);
1871 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1872 
1873 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1874 
1875 	atomic_inc(&md->event_nr);
1876 	wake_up(&md->eventq);
1877 	dm_issue_global_event();
1878 }
1879 
1880 /*
1881  * Protected by md->suspend_lock obtained by dm_swap_table().
1882  */
1883 static void __set_size(struct mapped_device *md, sector_t size)
1884 {
1885 	lockdep_assert_held(&md->suspend_lock);
1886 
1887 	set_capacity(md->disk, size);
1888 
1889 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1890 }
1891 
1892 /*
1893  * Returns old map, which caller must destroy.
1894  */
1895 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1896 			       struct queue_limits *limits)
1897 {
1898 	struct dm_table *old_map;
1899 	struct request_queue *q = md->queue;
1900 	sector_t size;
1901 
1902 	lockdep_assert_held(&md->suspend_lock);
1903 
1904 	size = dm_table_get_size(t);
1905 
1906 	/*
1907 	 * Wipe any geometry if the size of the table changed.
1908 	 */
1909 	if (size != dm_get_size(md))
1910 		memset(&md->geometry, 0, sizeof(md->geometry));
1911 
1912 	__set_size(md, size);
1913 
1914 	dm_table_event_callback(t, event_callback, md);
1915 
1916 	/*
1917 	 * The queue hasn't been stopped yet, if the old table type wasn't
1918 	 * for request-based during suspension.  So stop it to prevent
1919 	 * I/O mapping before resume.
1920 	 * This must be done before setting the queue restrictions,
1921 	 * because request-based dm may be run just after the setting.
1922 	 */
1923 	if (dm_table_request_based(t)) {
1924 		dm_stop_queue(q);
1925 		/*
1926 		 * Leverage the fact that request-based DM targets are
1927 		 * immutable singletons and establish md->immutable_target
1928 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1929 		 */
1930 		md->immutable_target = dm_table_get_immutable_target(t);
1931 	}
1932 
1933 	__bind_mempools(md, t);
1934 
1935 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1936 	rcu_assign_pointer(md->map, (void *)t);
1937 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1938 
1939 	dm_table_set_restrictions(t, q, limits);
1940 	if (old_map)
1941 		dm_sync_table(md);
1942 
1943 	return old_map;
1944 }
1945 
1946 /*
1947  * Returns unbound table for the caller to free.
1948  */
1949 static struct dm_table *__unbind(struct mapped_device *md)
1950 {
1951 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1952 
1953 	if (!map)
1954 		return NULL;
1955 
1956 	dm_table_event_callback(map, NULL, NULL);
1957 	RCU_INIT_POINTER(md->map, NULL);
1958 	dm_sync_table(md);
1959 
1960 	return map;
1961 }
1962 
1963 /*
1964  * Constructor for a new device.
1965  */
1966 int dm_create(int minor, struct mapped_device **result)
1967 {
1968 	struct mapped_device *md;
1969 
1970 	md = alloc_dev(minor);
1971 	if (!md)
1972 		return -ENXIO;
1973 
1974 	dm_sysfs_init(md);
1975 
1976 	*result = md;
1977 	return 0;
1978 }
1979 
1980 /*
1981  * Functions to manage md->type.
1982  * All are required to hold md->type_lock.
1983  */
1984 void dm_lock_md_type(struct mapped_device *md)
1985 {
1986 	mutex_lock(&md->type_lock);
1987 }
1988 
1989 void dm_unlock_md_type(struct mapped_device *md)
1990 {
1991 	mutex_unlock(&md->type_lock);
1992 }
1993 
1994 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1995 {
1996 	BUG_ON(!mutex_is_locked(&md->type_lock));
1997 	md->type = type;
1998 }
1999 
2000 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2001 {
2002 	return md->type;
2003 }
2004 
2005 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2006 {
2007 	return md->immutable_target_type;
2008 }
2009 
2010 /*
2011  * The queue_limits are only valid as long as you have a reference
2012  * count on 'md'.
2013  */
2014 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2015 {
2016 	BUG_ON(!atomic_read(&md->holders));
2017 	return &md->queue->limits;
2018 }
2019 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2020 
2021 /*
2022  * Setup the DM device's queue based on md's type
2023  */
2024 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2025 {
2026 	int r;
2027 	enum dm_queue_mode type = dm_get_md_type(md);
2028 
2029 	switch (type) {
2030 	case DM_TYPE_REQUEST_BASED:
2031 		r = dm_old_init_request_queue(md, t);
2032 		if (r) {
2033 			DMERR("Cannot initialize queue for request-based mapped device");
2034 			return r;
2035 		}
2036 		break;
2037 	case DM_TYPE_MQ_REQUEST_BASED:
2038 		r = dm_mq_init_request_queue(md, t);
2039 		if (r) {
2040 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2041 			return r;
2042 		}
2043 		break;
2044 	case DM_TYPE_BIO_BASED:
2045 	case DM_TYPE_DAX_BIO_BASED:
2046 		dm_init_normal_md_queue(md);
2047 		blk_queue_make_request(md->queue, dm_make_request);
2048 
2049 		if (type == DM_TYPE_DAX_BIO_BASED)
2050 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2051 		break;
2052 	case DM_TYPE_NONE:
2053 		WARN_ON_ONCE(true);
2054 		break;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 struct mapped_device *dm_get_md(dev_t dev)
2061 {
2062 	struct mapped_device *md;
2063 	unsigned minor = MINOR(dev);
2064 
2065 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2066 		return NULL;
2067 
2068 	spin_lock(&_minor_lock);
2069 
2070 	md = idr_find(&_minor_idr, minor);
2071 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2072 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2073 		md = NULL;
2074 		goto out;
2075 	}
2076 	dm_get(md);
2077 out:
2078 	spin_unlock(&_minor_lock);
2079 
2080 	return md;
2081 }
2082 EXPORT_SYMBOL_GPL(dm_get_md);
2083 
2084 void *dm_get_mdptr(struct mapped_device *md)
2085 {
2086 	return md->interface_ptr;
2087 }
2088 
2089 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2090 {
2091 	md->interface_ptr = ptr;
2092 }
2093 
2094 void dm_get(struct mapped_device *md)
2095 {
2096 	atomic_inc(&md->holders);
2097 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2098 }
2099 
2100 int dm_hold(struct mapped_device *md)
2101 {
2102 	spin_lock(&_minor_lock);
2103 	if (test_bit(DMF_FREEING, &md->flags)) {
2104 		spin_unlock(&_minor_lock);
2105 		return -EBUSY;
2106 	}
2107 	dm_get(md);
2108 	spin_unlock(&_minor_lock);
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL_GPL(dm_hold);
2112 
2113 const char *dm_device_name(struct mapped_device *md)
2114 {
2115 	return md->name;
2116 }
2117 EXPORT_SYMBOL_GPL(dm_device_name);
2118 
2119 static void __dm_destroy(struct mapped_device *md, bool wait)
2120 {
2121 	struct request_queue *q = dm_get_md_queue(md);
2122 	struct dm_table *map;
2123 	int srcu_idx;
2124 
2125 	might_sleep();
2126 
2127 	spin_lock(&_minor_lock);
2128 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2129 	set_bit(DMF_FREEING, &md->flags);
2130 	spin_unlock(&_minor_lock);
2131 
2132 	blk_set_queue_dying(q);
2133 
2134 	if (dm_request_based(md) && md->kworker_task)
2135 		kthread_flush_worker(&md->kworker);
2136 
2137 	/*
2138 	 * Take suspend_lock so that presuspend and postsuspend methods
2139 	 * do not race with internal suspend.
2140 	 */
2141 	mutex_lock(&md->suspend_lock);
2142 	map = dm_get_live_table(md, &srcu_idx);
2143 	if (!dm_suspended_md(md)) {
2144 		dm_table_presuspend_targets(map);
2145 		dm_table_postsuspend_targets(map);
2146 	}
2147 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2148 	dm_put_live_table(md, srcu_idx);
2149 	mutex_unlock(&md->suspend_lock);
2150 
2151 	/*
2152 	 * Rare, but there may be I/O requests still going to complete,
2153 	 * for example.  Wait for all references to disappear.
2154 	 * No one should increment the reference count of the mapped_device,
2155 	 * after the mapped_device state becomes DMF_FREEING.
2156 	 */
2157 	if (wait)
2158 		while (atomic_read(&md->holders))
2159 			msleep(1);
2160 	else if (atomic_read(&md->holders))
2161 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2162 		       dm_device_name(md), atomic_read(&md->holders));
2163 
2164 	dm_sysfs_exit(md);
2165 	dm_table_destroy(__unbind(md));
2166 	free_dev(md);
2167 }
2168 
2169 void dm_destroy(struct mapped_device *md)
2170 {
2171 	__dm_destroy(md, true);
2172 }
2173 
2174 void dm_destroy_immediate(struct mapped_device *md)
2175 {
2176 	__dm_destroy(md, false);
2177 }
2178 
2179 void dm_put(struct mapped_device *md)
2180 {
2181 	atomic_dec(&md->holders);
2182 }
2183 EXPORT_SYMBOL_GPL(dm_put);
2184 
2185 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2186 {
2187 	int r = 0;
2188 	DEFINE_WAIT(wait);
2189 
2190 	while (1) {
2191 		prepare_to_wait(&md->wait, &wait, task_state);
2192 
2193 		if (!md_in_flight(md))
2194 			break;
2195 
2196 		if (signal_pending_state(task_state, current)) {
2197 			r = -EINTR;
2198 			break;
2199 		}
2200 
2201 		io_schedule();
2202 	}
2203 	finish_wait(&md->wait, &wait);
2204 
2205 	return r;
2206 }
2207 
2208 /*
2209  * Process the deferred bios
2210  */
2211 static void dm_wq_work(struct work_struct *work)
2212 {
2213 	struct mapped_device *md = container_of(work, struct mapped_device,
2214 						work);
2215 	struct bio *c;
2216 	int srcu_idx;
2217 	struct dm_table *map;
2218 
2219 	map = dm_get_live_table(md, &srcu_idx);
2220 
2221 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2222 		spin_lock_irq(&md->deferred_lock);
2223 		c = bio_list_pop(&md->deferred);
2224 		spin_unlock_irq(&md->deferred_lock);
2225 
2226 		if (!c)
2227 			break;
2228 
2229 		if (dm_request_based(md))
2230 			generic_make_request(c);
2231 		else
2232 			__split_and_process_bio(md, map, c);
2233 	}
2234 
2235 	dm_put_live_table(md, srcu_idx);
2236 }
2237 
2238 static void dm_queue_flush(struct mapped_device *md)
2239 {
2240 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2241 	smp_mb__after_atomic();
2242 	queue_work(md->wq, &md->work);
2243 }
2244 
2245 /*
2246  * Swap in a new table, returning the old one for the caller to destroy.
2247  */
2248 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2249 {
2250 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2251 	struct queue_limits limits;
2252 	int r;
2253 
2254 	mutex_lock(&md->suspend_lock);
2255 
2256 	/* device must be suspended */
2257 	if (!dm_suspended_md(md))
2258 		goto out;
2259 
2260 	/*
2261 	 * If the new table has no data devices, retain the existing limits.
2262 	 * This helps multipath with queue_if_no_path if all paths disappear,
2263 	 * then new I/O is queued based on these limits, and then some paths
2264 	 * reappear.
2265 	 */
2266 	if (dm_table_has_no_data_devices(table)) {
2267 		live_map = dm_get_live_table_fast(md);
2268 		if (live_map)
2269 			limits = md->queue->limits;
2270 		dm_put_live_table_fast(md);
2271 	}
2272 
2273 	if (!live_map) {
2274 		r = dm_calculate_queue_limits(table, &limits);
2275 		if (r) {
2276 			map = ERR_PTR(r);
2277 			goto out;
2278 		}
2279 	}
2280 
2281 	map = __bind(md, table, &limits);
2282 	dm_issue_global_event();
2283 
2284 out:
2285 	mutex_unlock(&md->suspend_lock);
2286 	return map;
2287 }
2288 
2289 /*
2290  * Functions to lock and unlock any filesystem running on the
2291  * device.
2292  */
2293 static int lock_fs(struct mapped_device *md)
2294 {
2295 	int r;
2296 
2297 	WARN_ON(md->frozen_sb);
2298 
2299 	md->frozen_sb = freeze_bdev(md->bdev);
2300 	if (IS_ERR(md->frozen_sb)) {
2301 		r = PTR_ERR(md->frozen_sb);
2302 		md->frozen_sb = NULL;
2303 		return r;
2304 	}
2305 
2306 	set_bit(DMF_FROZEN, &md->flags);
2307 
2308 	return 0;
2309 }
2310 
2311 static void unlock_fs(struct mapped_device *md)
2312 {
2313 	if (!test_bit(DMF_FROZEN, &md->flags))
2314 		return;
2315 
2316 	thaw_bdev(md->bdev, md->frozen_sb);
2317 	md->frozen_sb = NULL;
2318 	clear_bit(DMF_FROZEN, &md->flags);
2319 }
2320 
2321 /*
2322  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2323  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2324  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2325  *
2326  * If __dm_suspend returns 0, the device is completely quiescent
2327  * now. There is no request-processing activity. All new requests
2328  * are being added to md->deferred list.
2329  */
2330 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2331 			unsigned suspend_flags, long task_state,
2332 			int dmf_suspended_flag)
2333 {
2334 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2335 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2336 	int r;
2337 
2338 	lockdep_assert_held(&md->suspend_lock);
2339 
2340 	/*
2341 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2342 	 * This flag is cleared before dm_suspend returns.
2343 	 */
2344 	if (noflush)
2345 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2346 	else
2347 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2348 
2349 	/*
2350 	 * This gets reverted if there's an error later and the targets
2351 	 * provide the .presuspend_undo hook.
2352 	 */
2353 	dm_table_presuspend_targets(map);
2354 
2355 	/*
2356 	 * Flush I/O to the device.
2357 	 * Any I/O submitted after lock_fs() may not be flushed.
2358 	 * noflush takes precedence over do_lockfs.
2359 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2360 	 */
2361 	if (!noflush && do_lockfs) {
2362 		r = lock_fs(md);
2363 		if (r) {
2364 			dm_table_presuspend_undo_targets(map);
2365 			return r;
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * Here we must make sure that no processes are submitting requests
2371 	 * to target drivers i.e. no one may be executing
2372 	 * __split_and_process_bio. This is called from dm_request and
2373 	 * dm_wq_work.
2374 	 *
2375 	 * To get all processes out of __split_and_process_bio in dm_request,
2376 	 * we take the write lock. To prevent any process from reentering
2377 	 * __split_and_process_bio from dm_request and quiesce the thread
2378 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2379 	 * flush_workqueue(md->wq).
2380 	 */
2381 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2382 	if (map)
2383 		synchronize_srcu(&md->io_barrier);
2384 
2385 	/*
2386 	 * Stop md->queue before flushing md->wq in case request-based
2387 	 * dm defers requests to md->wq from md->queue.
2388 	 */
2389 	if (dm_request_based(md)) {
2390 		dm_stop_queue(md->queue);
2391 		if (md->kworker_task)
2392 			kthread_flush_worker(&md->kworker);
2393 	}
2394 
2395 	flush_workqueue(md->wq);
2396 
2397 	/*
2398 	 * At this point no more requests are entering target request routines.
2399 	 * We call dm_wait_for_completion to wait for all existing requests
2400 	 * to finish.
2401 	 */
2402 	r = dm_wait_for_completion(md, task_state);
2403 	if (!r)
2404 		set_bit(dmf_suspended_flag, &md->flags);
2405 
2406 	if (noflush)
2407 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2408 	if (map)
2409 		synchronize_srcu(&md->io_barrier);
2410 
2411 	/* were we interrupted ? */
2412 	if (r < 0) {
2413 		dm_queue_flush(md);
2414 
2415 		if (dm_request_based(md))
2416 			dm_start_queue(md->queue);
2417 
2418 		unlock_fs(md);
2419 		dm_table_presuspend_undo_targets(map);
2420 		/* pushback list is already flushed, so skip flush */
2421 	}
2422 
2423 	return r;
2424 }
2425 
2426 /*
2427  * We need to be able to change a mapping table under a mounted
2428  * filesystem.  For example we might want to move some data in
2429  * the background.  Before the table can be swapped with
2430  * dm_bind_table, dm_suspend must be called to flush any in
2431  * flight bios and ensure that any further io gets deferred.
2432  */
2433 /*
2434  * Suspend mechanism in request-based dm.
2435  *
2436  * 1. Flush all I/Os by lock_fs() if needed.
2437  * 2. Stop dispatching any I/O by stopping the request_queue.
2438  * 3. Wait for all in-flight I/Os to be completed or requeued.
2439  *
2440  * To abort suspend, start the request_queue.
2441  */
2442 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2443 {
2444 	struct dm_table *map = NULL;
2445 	int r = 0;
2446 
2447 retry:
2448 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2449 
2450 	if (dm_suspended_md(md)) {
2451 		r = -EINVAL;
2452 		goto out_unlock;
2453 	}
2454 
2455 	if (dm_suspended_internally_md(md)) {
2456 		/* already internally suspended, wait for internal resume */
2457 		mutex_unlock(&md->suspend_lock);
2458 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2459 		if (r)
2460 			return r;
2461 		goto retry;
2462 	}
2463 
2464 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2465 
2466 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2467 	if (r)
2468 		goto out_unlock;
2469 
2470 	dm_table_postsuspend_targets(map);
2471 
2472 out_unlock:
2473 	mutex_unlock(&md->suspend_lock);
2474 	return r;
2475 }
2476 
2477 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2478 {
2479 	if (map) {
2480 		int r = dm_table_resume_targets(map);
2481 		if (r)
2482 			return r;
2483 	}
2484 
2485 	dm_queue_flush(md);
2486 
2487 	/*
2488 	 * Flushing deferred I/Os must be done after targets are resumed
2489 	 * so that mapping of targets can work correctly.
2490 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2491 	 */
2492 	if (dm_request_based(md))
2493 		dm_start_queue(md->queue);
2494 
2495 	unlock_fs(md);
2496 
2497 	return 0;
2498 }
2499 
2500 int dm_resume(struct mapped_device *md)
2501 {
2502 	int r;
2503 	struct dm_table *map = NULL;
2504 
2505 retry:
2506 	r = -EINVAL;
2507 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2508 
2509 	if (!dm_suspended_md(md))
2510 		goto out;
2511 
2512 	if (dm_suspended_internally_md(md)) {
2513 		/* already internally suspended, wait for internal resume */
2514 		mutex_unlock(&md->suspend_lock);
2515 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2516 		if (r)
2517 			return r;
2518 		goto retry;
2519 	}
2520 
2521 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2522 	if (!map || !dm_table_get_size(map))
2523 		goto out;
2524 
2525 	r = __dm_resume(md, map);
2526 	if (r)
2527 		goto out;
2528 
2529 	clear_bit(DMF_SUSPENDED, &md->flags);
2530 out:
2531 	mutex_unlock(&md->suspend_lock);
2532 
2533 	return r;
2534 }
2535 
2536 /*
2537  * Internal suspend/resume works like userspace-driven suspend. It waits
2538  * until all bios finish and prevents issuing new bios to the target drivers.
2539  * It may be used only from the kernel.
2540  */
2541 
2542 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2543 {
2544 	struct dm_table *map = NULL;
2545 
2546 	lockdep_assert_held(&md->suspend_lock);
2547 
2548 	if (md->internal_suspend_count++)
2549 		return; /* nested internal suspend */
2550 
2551 	if (dm_suspended_md(md)) {
2552 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2553 		return; /* nest suspend */
2554 	}
2555 
2556 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2557 
2558 	/*
2559 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2560 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2561 	 * would require changing .presuspend to return an error -- avoid this
2562 	 * until there is a need for more elaborate variants of internal suspend.
2563 	 */
2564 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2565 			    DMF_SUSPENDED_INTERNALLY);
2566 
2567 	dm_table_postsuspend_targets(map);
2568 }
2569 
2570 static void __dm_internal_resume(struct mapped_device *md)
2571 {
2572 	BUG_ON(!md->internal_suspend_count);
2573 
2574 	if (--md->internal_suspend_count)
2575 		return; /* resume from nested internal suspend */
2576 
2577 	if (dm_suspended_md(md))
2578 		goto done; /* resume from nested suspend */
2579 
2580 	/*
2581 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2582 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2583 	 */
2584 	(void) __dm_resume(md, NULL);
2585 
2586 done:
2587 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2588 	smp_mb__after_atomic();
2589 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2590 }
2591 
2592 void dm_internal_suspend_noflush(struct mapped_device *md)
2593 {
2594 	mutex_lock(&md->suspend_lock);
2595 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2596 	mutex_unlock(&md->suspend_lock);
2597 }
2598 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2599 
2600 void dm_internal_resume(struct mapped_device *md)
2601 {
2602 	mutex_lock(&md->suspend_lock);
2603 	__dm_internal_resume(md);
2604 	mutex_unlock(&md->suspend_lock);
2605 }
2606 EXPORT_SYMBOL_GPL(dm_internal_resume);
2607 
2608 /*
2609  * Fast variants of internal suspend/resume hold md->suspend_lock,
2610  * which prevents interaction with userspace-driven suspend.
2611  */
2612 
2613 void dm_internal_suspend_fast(struct mapped_device *md)
2614 {
2615 	mutex_lock(&md->suspend_lock);
2616 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2617 		return;
2618 
2619 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620 	synchronize_srcu(&md->io_barrier);
2621 	flush_workqueue(md->wq);
2622 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2623 }
2624 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2625 
2626 void dm_internal_resume_fast(struct mapped_device *md)
2627 {
2628 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2629 		goto done;
2630 
2631 	dm_queue_flush(md);
2632 
2633 done:
2634 	mutex_unlock(&md->suspend_lock);
2635 }
2636 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2637 
2638 /*-----------------------------------------------------------------
2639  * Event notification.
2640  *---------------------------------------------------------------*/
2641 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2642 		       unsigned cookie)
2643 {
2644 	char udev_cookie[DM_COOKIE_LENGTH];
2645 	char *envp[] = { udev_cookie, NULL };
2646 
2647 	if (!cookie)
2648 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2649 	else {
2650 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2651 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2652 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2653 					  action, envp);
2654 	}
2655 }
2656 
2657 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2658 {
2659 	return atomic_add_return(1, &md->uevent_seq);
2660 }
2661 
2662 uint32_t dm_get_event_nr(struct mapped_device *md)
2663 {
2664 	return atomic_read(&md->event_nr);
2665 }
2666 
2667 int dm_wait_event(struct mapped_device *md, int event_nr)
2668 {
2669 	return wait_event_interruptible(md->eventq,
2670 			(event_nr != atomic_read(&md->event_nr)));
2671 }
2672 
2673 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2674 {
2675 	unsigned long flags;
2676 
2677 	spin_lock_irqsave(&md->uevent_lock, flags);
2678 	list_add(elist, &md->uevent_list);
2679 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2680 }
2681 
2682 /*
2683  * The gendisk is only valid as long as you have a reference
2684  * count on 'md'.
2685  */
2686 struct gendisk *dm_disk(struct mapped_device *md)
2687 {
2688 	return md->disk;
2689 }
2690 EXPORT_SYMBOL_GPL(dm_disk);
2691 
2692 struct kobject *dm_kobject(struct mapped_device *md)
2693 {
2694 	return &md->kobj_holder.kobj;
2695 }
2696 
2697 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2698 {
2699 	struct mapped_device *md;
2700 
2701 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2702 
2703 	spin_lock(&_minor_lock);
2704 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2705 		md = NULL;
2706 		goto out;
2707 	}
2708 	dm_get(md);
2709 out:
2710 	spin_unlock(&_minor_lock);
2711 
2712 	return md;
2713 }
2714 
2715 int dm_suspended_md(struct mapped_device *md)
2716 {
2717 	return test_bit(DMF_SUSPENDED, &md->flags);
2718 }
2719 
2720 int dm_suspended_internally_md(struct mapped_device *md)
2721 {
2722 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2723 }
2724 
2725 int dm_test_deferred_remove_flag(struct mapped_device *md)
2726 {
2727 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2728 }
2729 
2730 int dm_suspended(struct dm_target *ti)
2731 {
2732 	return dm_suspended_md(dm_table_get_md(ti->table));
2733 }
2734 EXPORT_SYMBOL_GPL(dm_suspended);
2735 
2736 int dm_noflush_suspending(struct dm_target *ti)
2737 {
2738 	return __noflush_suspending(dm_table_get_md(ti->table));
2739 }
2740 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2741 
2742 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2743 					    unsigned integrity, unsigned per_io_data_size)
2744 {
2745 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2746 	unsigned int pool_size = 0;
2747 	unsigned int front_pad;
2748 
2749 	if (!pools)
2750 		return NULL;
2751 
2752 	switch (type) {
2753 	case DM_TYPE_BIO_BASED:
2754 	case DM_TYPE_DAX_BIO_BASED:
2755 		pool_size = dm_get_reserved_bio_based_ios();
2756 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2757 
2758 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2759 		if (!pools->io_pool)
2760 			goto out;
2761 		break;
2762 	case DM_TYPE_REQUEST_BASED:
2763 	case DM_TYPE_MQ_REQUEST_BASED:
2764 		pool_size = dm_get_reserved_rq_based_ios();
2765 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2766 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2767 		break;
2768 	default:
2769 		BUG();
2770 	}
2771 
2772 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2773 	if (!pools->bs)
2774 		goto out;
2775 
2776 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2777 		goto out;
2778 
2779 	return pools;
2780 
2781 out:
2782 	dm_free_md_mempools(pools);
2783 
2784 	return NULL;
2785 }
2786 
2787 void dm_free_md_mempools(struct dm_md_mempools *pools)
2788 {
2789 	if (!pools)
2790 		return;
2791 
2792 	mempool_destroy(pools->io_pool);
2793 
2794 	if (pools->bs)
2795 		bioset_free(pools->bs);
2796 
2797 	kfree(pools);
2798 }
2799 
2800 struct dm_pr {
2801 	u64	old_key;
2802 	u64	new_key;
2803 	u32	flags;
2804 	bool	fail_early;
2805 };
2806 
2807 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2808 		      void *data)
2809 {
2810 	struct mapped_device *md = bdev->bd_disk->private_data;
2811 	struct dm_table *table;
2812 	struct dm_target *ti;
2813 	int ret = -ENOTTY, srcu_idx;
2814 
2815 	table = dm_get_live_table(md, &srcu_idx);
2816 	if (!table || !dm_table_get_size(table))
2817 		goto out;
2818 
2819 	/* We only support devices that have a single target */
2820 	if (dm_table_get_num_targets(table) != 1)
2821 		goto out;
2822 	ti = dm_table_get_target(table, 0);
2823 
2824 	ret = -EINVAL;
2825 	if (!ti->type->iterate_devices)
2826 		goto out;
2827 
2828 	ret = ti->type->iterate_devices(ti, fn, data);
2829 out:
2830 	dm_put_live_table(md, srcu_idx);
2831 	return ret;
2832 }
2833 
2834 /*
2835  * For register / unregister we need to manually call out to every path.
2836  */
2837 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2838 			    sector_t start, sector_t len, void *data)
2839 {
2840 	struct dm_pr *pr = data;
2841 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2842 
2843 	if (!ops || !ops->pr_register)
2844 		return -EOPNOTSUPP;
2845 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2846 }
2847 
2848 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2849 			  u32 flags)
2850 {
2851 	struct dm_pr pr = {
2852 		.old_key	= old_key,
2853 		.new_key	= new_key,
2854 		.flags		= flags,
2855 		.fail_early	= true,
2856 	};
2857 	int ret;
2858 
2859 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2860 	if (ret && new_key) {
2861 		/* unregister all paths if we failed to register any path */
2862 		pr.old_key = new_key;
2863 		pr.new_key = 0;
2864 		pr.flags = 0;
2865 		pr.fail_early = false;
2866 		dm_call_pr(bdev, __dm_pr_register, &pr);
2867 	}
2868 
2869 	return ret;
2870 }
2871 
2872 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2873 			 u32 flags)
2874 {
2875 	struct mapped_device *md = bdev->bd_disk->private_data;
2876 	const struct pr_ops *ops;
2877 	fmode_t mode;
2878 	int r;
2879 
2880 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2881 	if (r < 0)
2882 		return r;
2883 
2884 	ops = bdev->bd_disk->fops->pr_ops;
2885 	if (ops && ops->pr_reserve)
2886 		r = ops->pr_reserve(bdev, key, type, flags);
2887 	else
2888 		r = -EOPNOTSUPP;
2889 
2890 	bdput(bdev);
2891 	return r;
2892 }
2893 
2894 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2895 {
2896 	struct mapped_device *md = bdev->bd_disk->private_data;
2897 	const struct pr_ops *ops;
2898 	fmode_t mode;
2899 	int r;
2900 
2901 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2902 	if (r < 0)
2903 		return r;
2904 
2905 	ops = bdev->bd_disk->fops->pr_ops;
2906 	if (ops && ops->pr_release)
2907 		r = ops->pr_release(bdev, key, type);
2908 	else
2909 		r = -EOPNOTSUPP;
2910 
2911 	bdput(bdev);
2912 	return r;
2913 }
2914 
2915 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2916 			 enum pr_type type, bool abort)
2917 {
2918 	struct mapped_device *md = bdev->bd_disk->private_data;
2919 	const struct pr_ops *ops;
2920 	fmode_t mode;
2921 	int r;
2922 
2923 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2924 	if (r < 0)
2925 		return r;
2926 
2927 	ops = bdev->bd_disk->fops->pr_ops;
2928 	if (ops && ops->pr_preempt)
2929 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2930 	else
2931 		r = -EOPNOTSUPP;
2932 
2933 	bdput(bdev);
2934 	return r;
2935 }
2936 
2937 static int dm_pr_clear(struct block_device *bdev, u64 key)
2938 {
2939 	struct mapped_device *md = bdev->bd_disk->private_data;
2940 	const struct pr_ops *ops;
2941 	fmode_t mode;
2942 	int r;
2943 
2944 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2945 	if (r < 0)
2946 		return r;
2947 
2948 	ops = bdev->bd_disk->fops->pr_ops;
2949 	if (ops && ops->pr_clear)
2950 		r = ops->pr_clear(bdev, key);
2951 	else
2952 		r = -EOPNOTSUPP;
2953 
2954 	bdput(bdev);
2955 	return r;
2956 }
2957 
2958 static const struct pr_ops dm_pr_ops = {
2959 	.pr_register	= dm_pr_register,
2960 	.pr_reserve	= dm_pr_reserve,
2961 	.pr_release	= dm_pr_release,
2962 	.pr_preempt	= dm_pr_preempt,
2963 	.pr_clear	= dm_pr_clear,
2964 };
2965 
2966 static const struct block_device_operations dm_blk_dops = {
2967 	.open = dm_blk_open,
2968 	.release = dm_blk_close,
2969 	.ioctl = dm_blk_ioctl,
2970 	.getgeo = dm_blk_getgeo,
2971 	.pr_ops = &dm_pr_ops,
2972 	.owner = THIS_MODULE
2973 };
2974 
2975 static const struct dax_operations dm_dax_ops = {
2976 	.direct_access = dm_dax_direct_access,
2977 	.copy_from_iter = dm_dax_copy_from_iter,
2978 };
2979 
2980 /*
2981  * module hooks
2982  */
2983 module_init(dm_init);
2984 module_exit(dm_exit);
2985 
2986 module_param(major, uint, 0);
2987 MODULE_PARM_DESC(major, "The major number of the device mapper");
2988 
2989 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2990 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2991 
2992 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2993 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2994 
2995 MODULE_DESCRIPTION(DM_NAME " driver");
2996 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2997 MODULE_LICENSE("GPL");
2998