1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 #include <linux/pr.h> 28 29 #include <trace/events/block.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 #ifdef CONFIG_PRINTK 34 /* 35 * ratelimit state to be used in DMXXX_LIMIT(). 36 */ 37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 38 DEFAULT_RATELIMIT_INTERVAL, 39 DEFAULT_RATELIMIT_BURST); 40 EXPORT_SYMBOL(dm_ratelimit_state); 41 #endif 42 43 /* 44 * Cookies are numeric values sent with CHANGE and REMOVE 45 * uevents while resuming, removing or renaming the device. 46 */ 47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 48 #define DM_COOKIE_LENGTH 24 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per bio. 68 */ 69 struct dm_io { 70 struct mapped_device *md; 71 int error; 72 atomic_t io_count; 73 struct bio *bio; 74 unsigned long start_time; 75 spinlock_t endio_lock; 76 struct dm_stats_aux stats_aux; 77 }; 78 79 /* 80 * For request-based dm. 81 * One of these is allocated per request. 82 */ 83 struct dm_rq_target_io { 84 struct mapped_device *md; 85 struct dm_target *ti; 86 struct request *orig, *clone; 87 struct kthread_work work; 88 int error; 89 union map_info info; 90 struct dm_stats_aux stats_aux; 91 unsigned long duration_jiffies; 92 unsigned n_sectors; 93 }; 94 95 /* 96 * For request-based dm - the bio clones we allocate are embedded in these 97 * structs. 98 * 99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 100 * the bioset is created - this means the bio has to come at the end of the 101 * struct. 102 */ 103 struct dm_rq_clone_bio_info { 104 struct bio *orig; 105 struct dm_rq_target_io *tio; 106 struct bio clone; 107 }; 108 109 #define MINOR_ALLOCED ((void *)-1) 110 111 /* 112 * Bits for the md->flags field. 113 */ 114 #define DMF_BLOCK_IO_FOR_SUSPEND 0 115 #define DMF_SUSPENDED 1 116 #define DMF_FROZEN 2 117 #define DMF_FREEING 3 118 #define DMF_DELETING 4 119 #define DMF_NOFLUSH_SUSPENDING 5 120 #define DMF_DEFERRED_REMOVE 6 121 #define DMF_SUSPENDED_INTERNALLY 7 122 123 /* 124 * A dummy definition to make RCU happy. 125 * struct dm_table should never be dereferenced in this file. 126 */ 127 struct dm_table { 128 int undefined__; 129 }; 130 131 /* 132 * Work processed by per-device workqueue. 133 */ 134 struct mapped_device { 135 struct srcu_struct io_barrier; 136 struct mutex suspend_lock; 137 atomic_t holders; 138 atomic_t open_count; 139 140 /* 141 * The current mapping. 142 * Use dm_get_live_table{_fast} or take suspend_lock for 143 * dereference. 144 */ 145 struct dm_table __rcu *map; 146 147 struct list_head table_devices; 148 struct mutex table_devices_lock; 149 150 unsigned long flags; 151 152 struct request_queue *queue; 153 unsigned type; 154 /* Protect queue and type against concurrent access. */ 155 struct mutex type_lock; 156 157 struct dm_target *immutable_target; 158 struct target_type *immutable_target_type; 159 160 struct gendisk *disk; 161 char name[16]; 162 163 void *interface_ptr; 164 165 /* 166 * A list of ios that arrived while we were suspended. 167 */ 168 atomic_t pending[2]; 169 wait_queue_head_t wait; 170 struct work_struct work; 171 struct bio_list deferred; 172 spinlock_t deferred_lock; 173 174 /* 175 * Processing queue (flush) 176 */ 177 struct workqueue_struct *wq; 178 179 /* 180 * io objects are allocated from here. 181 */ 182 mempool_t *io_pool; 183 mempool_t *rq_pool; 184 185 struct bio_set *bs; 186 187 /* 188 * Event handling. 189 */ 190 atomic_t event_nr; 191 wait_queue_head_t eventq; 192 atomic_t uevent_seq; 193 struct list_head uevent_list; 194 spinlock_t uevent_lock; /* Protect access to uevent_list */ 195 196 /* 197 * freeze/thaw support require holding onto a super block 198 */ 199 struct super_block *frozen_sb; 200 struct block_device *bdev; 201 202 /* forced geometry settings */ 203 struct hd_geometry geometry; 204 205 /* kobject and completion */ 206 struct dm_kobject_holder kobj_holder; 207 208 /* zero-length flush that will be cloned and submitted to targets */ 209 struct bio flush_bio; 210 211 /* the number of internal suspends */ 212 unsigned internal_suspend_count; 213 214 struct dm_stats stats; 215 216 struct kthread_worker kworker; 217 struct task_struct *kworker_task; 218 219 /* for request-based merge heuristic in dm_request_fn() */ 220 unsigned seq_rq_merge_deadline_usecs; 221 int last_rq_rw; 222 sector_t last_rq_pos; 223 ktime_t last_rq_start_time; 224 225 /* for blk-mq request-based DM support */ 226 struct blk_mq_tag_set *tag_set; 227 bool use_blk_mq; 228 }; 229 230 #ifdef CONFIG_DM_MQ_DEFAULT 231 static bool use_blk_mq = true; 232 #else 233 static bool use_blk_mq = false; 234 #endif 235 236 #define DM_MQ_NR_HW_QUEUES 1 237 #define DM_MQ_QUEUE_DEPTH 2048 238 239 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES; 240 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH; 241 242 bool dm_use_blk_mq(struct mapped_device *md) 243 { 244 return md->use_blk_mq; 245 } 246 247 /* 248 * For mempools pre-allocation at the table loading time. 249 */ 250 struct dm_md_mempools { 251 mempool_t *io_pool; 252 mempool_t *rq_pool; 253 struct bio_set *bs; 254 }; 255 256 struct table_device { 257 struct list_head list; 258 atomic_t count; 259 struct dm_dev dm_dev; 260 }; 261 262 #define RESERVED_BIO_BASED_IOS 16 263 #define RESERVED_REQUEST_BASED_IOS 256 264 #define RESERVED_MAX_IOS 1024 265 static struct kmem_cache *_io_cache; 266 static struct kmem_cache *_rq_tio_cache; 267 static struct kmem_cache *_rq_cache; 268 269 /* 270 * Bio-based DM's mempools' reserved IOs set by the user. 271 */ 272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 273 274 /* 275 * Request-based DM's mempools' reserved IOs set by the user. 276 */ 277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 278 279 static unsigned __dm_get_module_param(unsigned *module_param, 280 unsigned def, unsigned max) 281 { 282 unsigned param = ACCESS_ONCE(*module_param); 283 unsigned modified_param = 0; 284 285 if (!param) 286 modified_param = def; 287 else if (param > max) 288 modified_param = max; 289 290 if (modified_param) { 291 (void)cmpxchg(module_param, param, modified_param); 292 param = modified_param; 293 } 294 295 return param; 296 } 297 298 unsigned dm_get_reserved_bio_based_ios(void) 299 { 300 return __dm_get_module_param(&reserved_bio_based_ios, 301 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 302 } 303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 304 305 unsigned dm_get_reserved_rq_based_ios(void) 306 { 307 return __dm_get_module_param(&reserved_rq_based_ios, 308 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 309 } 310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 311 312 static unsigned dm_get_blk_mq_nr_hw_queues(void) 313 { 314 return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32); 315 } 316 317 static unsigned dm_get_blk_mq_queue_depth(void) 318 { 319 return __dm_get_module_param(&dm_mq_queue_depth, 320 DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH); 321 } 322 323 static int __init local_init(void) 324 { 325 int r = -ENOMEM; 326 327 /* allocate a slab for the dm_ios */ 328 _io_cache = KMEM_CACHE(dm_io, 0); 329 if (!_io_cache) 330 return r; 331 332 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 333 if (!_rq_tio_cache) 334 goto out_free_io_cache; 335 336 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 337 __alignof__(struct request), 0, NULL); 338 if (!_rq_cache) 339 goto out_free_rq_tio_cache; 340 341 r = dm_uevent_init(); 342 if (r) 343 goto out_free_rq_cache; 344 345 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 346 if (!deferred_remove_workqueue) { 347 r = -ENOMEM; 348 goto out_uevent_exit; 349 } 350 351 _major = major; 352 r = register_blkdev(_major, _name); 353 if (r < 0) 354 goto out_free_workqueue; 355 356 if (!_major) 357 _major = r; 358 359 return 0; 360 361 out_free_workqueue: 362 destroy_workqueue(deferred_remove_workqueue); 363 out_uevent_exit: 364 dm_uevent_exit(); 365 out_free_rq_cache: 366 kmem_cache_destroy(_rq_cache); 367 out_free_rq_tio_cache: 368 kmem_cache_destroy(_rq_tio_cache); 369 out_free_io_cache: 370 kmem_cache_destroy(_io_cache); 371 372 return r; 373 } 374 375 static void local_exit(void) 376 { 377 flush_scheduled_work(); 378 destroy_workqueue(deferred_remove_workqueue); 379 380 kmem_cache_destroy(_rq_cache); 381 kmem_cache_destroy(_rq_tio_cache); 382 kmem_cache_destroy(_io_cache); 383 unregister_blkdev(_major, _name); 384 dm_uevent_exit(); 385 386 _major = 0; 387 388 DMINFO("cleaned up"); 389 } 390 391 static int (*_inits[])(void) __initdata = { 392 local_init, 393 dm_target_init, 394 dm_linear_init, 395 dm_stripe_init, 396 dm_io_init, 397 dm_kcopyd_init, 398 dm_interface_init, 399 dm_statistics_init, 400 }; 401 402 static void (*_exits[])(void) = { 403 local_exit, 404 dm_target_exit, 405 dm_linear_exit, 406 dm_stripe_exit, 407 dm_io_exit, 408 dm_kcopyd_exit, 409 dm_interface_exit, 410 dm_statistics_exit, 411 }; 412 413 static int __init dm_init(void) 414 { 415 const int count = ARRAY_SIZE(_inits); 416 417 int r, i; 418 419 for (i = 0; i < count; i++) { 420 r = _inits[i](); 421 if (r) 422 goto bad; 423 } 424 425 return 0; 426 427 bad: 428 while (i--) 429 _exits[i](); 430 431 return r; 432 } 433 434 static void __exit dm_exit(void) 435 { 436 int i = ARRAY_SIZE(_exits); 437 438 while (i--) 439 _exits[i](); 440 441 /* 442 * Should be empty by this point. 443 */ 444 idr_destroy(&_minor_idr); 445 } 446 447 /* 448 * Block device functions 449 */ 450 int dm_deleting_md(struct mapped_device *md) 451 { 452 return test_bit(DMF_DELETING, &md->flags); 453 } 454 455 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 456 { 457 struct mapped_device *md; 458 459 spin_lock(&_minor_lock); 460 461 md = bdev->bd_disk->private_data; 462 if (!md) 463 goto out; 464 465 if (test_bit(DMF_FREEING, &md->flags) || 466 dm_deleting_md(md)) { 467 md = NULL; 468 goto out; 469 } 470 471 dm_get(md); 472 atomic_inc(&md->open_count); 473 out: 474 spin_unlock(&_minor_lock); 475 476 return md ? 0 : -ENXIO; 477 } 478 479 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 480 { 481 struct mapped_device *md; 482 483 spin_lock(&_minor_lock); 484 485 md = disk->private_data; 486 if (WARN_ON(!md)) 487 goto out; 488 489 if (atomic_dec_and_test(&md->open_count) && 490 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 491 queue_work(deferred_remove_workqueue, &deferred_remove_work); 492 493 dm_put(md); 494 out: 495 spin_unlock(&_minor_lock); 496 } 497 498 int dm_open_count(struct mapped_device *md) 499 { 500 return atomic_read(&md->open_count); 501 } 502 503 /* 504 * Guarantees nothing is using the device before it's deleted. 505 */ 506 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 507 { 508 int r = 0; 509 510 spin_lock(&_minor_lock); 511 512 if (dm_open_count(md)) { 513 r = -EBUSY; 514 if (mark_deferred) 515 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 516 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 517 r = -EEXIST; 518 else 519 set_bit(DMF_DELETING, &md->flags); 520 521 spin_unlock(&_minor_lock); 522 523 return r; 524 } 525 526 int dm_cancel_deferred_remove(struct mapped_device *md) 527 { 528 int r = 0; 529 530 spin_lock(&_minor_lock); 531 532 if (test_bit(DMF_DELETING, &md->flags)) 533 r = -EBUSY; 534 else 535 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 536 537 spin_unlock(&_minor_lock); 538 539 return r; 540 } 541 542 static void do_deferred_remove(struct work_struct *w) 543 { 544 dm_deferred_remove(); 545 } 546 547 sector_t dm_get_size(struct mapped_device *md) 548 { 549 return get_capacity(md->disk); 550 } 551 552 struct request_queue *dm_get_md_queue(struct mapped_device *md) 553 { 554 return md->queue; 555 } 556 557 struct dm_stats *dm_get_stats(struct mapped_device *md) 558 { 559 return &md->stats; 560 } 561 562 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 563 { 564 struct mapped_device *md = bdev->bd_disk->private_data; 565 566 return dm_get_geometry(md, geo); 567 } 568 569 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 570 struct block_device **bdev, 571 fmode_t *mode) 572 { 573 struct dm_target *tgt; 574 struct dm_table *map; 575 int srcu_idx, r; 576 577 retry: 578 r = -ENOTTY; 579 map = dm_get_live_table(md, &srcu_idx); 580 if (!map || !dm_table_get_size(map)) 581 goto out; 582 583 /* We only support devices that have a single target */ 584 if (dm_table_get_num_targets(map) != 1) 585 goto out; 586 587 tgt = dm_table_get_target(map, 0); 588 if (!tgt->type->prepare_ioctl) 589 goto out; 590 591 if (dm_suspended_md(md)) { 592 r = -EAGAIN; 593 goto out; 594 } 595 596 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 597 if (r < 0) 598 goto out; 599 600 bdgrab(*bdev); 601 dm_put_live_table(md, srcu_idx); 602 return r; 603 604 out: 605 dm_put_live_table(md, srcu_idx); 606 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 607 msleep(10); 608 goto retry; 609 } 610 return r; 611 } 612 613 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 614 unsigned int cmd, unsigned long arg) 615 { 616 struct mapped_device *md = bdev->bd_disk->private_data; 617 int r; 618 619 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 620 if (r < 0) 621 return r; 622 623 if (r > 0) { 624 /* 625 * Target determined this ioctl is being issued against 626 * a logical partition of the parent bdev; so extra 627 * validation is needed. 628 */ 629 r = scsi_verify_blk_ioctl(NULL, cmd); 630 if (r) 631 goto out; 632 } 633 634 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 635 out: 636 bdput(bdev); 637 return r; 638 } 639 640 static struct dm_io *alloc_io(struct mapped_device *md) 641 { 642 return mempool_alloc(md->io_pool, GFP_NOIO); 643 } 644 645 static void free_io(struct mapped_device *md, struct dm_io *io) 646 { 647 mempool_free(io, md->io_pool); 648 } 649 650 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 651 { 652 bio_put(&tio->clone); 653 } 654 655 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md, 656 gfp_t gfp_mask) 657 { 658 return mempool_alloc(md->io_pool, gfp_mask); 659 } 660 661 static void free_old_rq_tio(struct dm_rq_target_io *tio) 662 { 663 mempool_free(tio, tio->md->io_pool); 664 } 665 666 static struct request *alloc_old_clone_request(struct mapped_device *md, 667 gfp_t gfp_mask) 668 { 669 return mempool_alloc(md->rq_pool, gfp_mask); 670 } 671 672 static void free_old_clone_request(struct mapped_device *md, struct request *rq) 673 { 674 mempool_free(rq, md->rq_pool); 675 } 676 677 static int md_in_flight(struct mapped_device *md) 678 { 679 return atomic_read(&md->pending[READ]) + 680 atomic_read(&md->pending[WRITE]); 681 } 682 683 static void start_io_acct(struct dm_io *io) 684 { 685 struct mapped_device *md = io->md; 686 struct bio *bio = io->bio; 687 int cpu; 688 int rw = bio_data_dir(bio); 689 690 io->start_time = jiffies; 691 692 cpu = part_stat_lock(); 693 part_round_stats(cpu, &dm_disk(md)->part0); 694 part_stat_unlock(); 695 atomic_set(&dm_disk(md)->part0.in_flight[rw], 696 atomic_inc_return(&md->pending[rw])); 697 698 if (unlikely(dm_stats_used(&md->stats))) 699 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 700 bio_sectors(bio), false, 0, &io->stats_aux); 701 } 702 703 static void end_io_acct(struct dm_io *io) 704 { 705 struct mapped_device *md = io->md; 706 struct bio *bio = io->bio; 707 unsigned long duration = jiffies - io->start_time; 708 int pending; 709 int rw = bio_data_dir(bio); 710 711 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 712 713 if (unlikely(dm_stats_used(&md->stats))) 714 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 715 bio_sectors(bio), true, duration, &io->stats_aux); 716 717 /* 718 * After this is decremented the bio must not be touched if it is 719 * a flush. 720 */ 721 pending = atomic_dec_return(&md->pending[rw]); 722 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 723 pending += atomic_read(&md->pending[rw^0x1]); 724 725 /* nudge anyone waiting on suspend queue */ 726 if (!pending) 727 wake_up(&md->wait); 728 } 729 730 /* 731 * Add the bio to the list of deferred io. 732 */ 733 static void queue_io(struct mapped_device *md, struct bio *bio) 734 { 735 unsigned long flags; 736 737 spin_lock_irqsave(&md->deferred_lock, flags); 738 bio_list_add(&md->deferred, bio); 739 spin_unlock_irqrestore(&md->deferred_lock, flags); 740 queue_work(md->wq, &md->work); 741 } 742 743 /* 744 * Everyone (including functions in this file), should use this 745 * function to access the md->map field, and make sure they call 746 * dm_put_live_table() when finished. 747 */ 748 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 749 { 750 *srcu_idx = srcu_read_lock(&md->io_barrier); 751 752 return srcu_dereference(md->map, &md->io_barrier); 753 } 754 755 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 756 { 757 srcu_read_unlock(&md->io_barrier, srcu_idx); 758 } 759 760 void dm_sync_table(struct mapped_device *md) 761 { 762 synchronize_srcu(&md->io_barrier); 763 synchronize_rcu_expedited(); 764 } 765 766 /* 767 * A fast alternative to dm_get_live_table/dm_put_live_table. 768 * The caller must not block between these two functions. 769 */ 770 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 771 { 772 rcu_read_lock(); 773 return rcu_dereference(md->map); 774 } 775 776 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 777 { 778 rcu_read_unlock(); 779 } 780 781 /* 782 * Open a table device so we can use it as a map destination. 783 */ 784 static int open_table_device(struct table_device *td, dev_t dev, 785 struct mapped_device *md) 786 { 787 static char *_claim_ptr = "I belong to device-mapper"; 788 struct block_device *bdev; 789 790 int r; 791 792 BUG_ON(td->dm_dev.bdev); 793 794 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 795 if (IS_ERR(bdev)) 796 return PTR_ERR(bdev); 797 798 r = bd_link_disk_holder(bdev, dm_disk(md)); 799 if (r) { 800 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 801 return r; 802 } 803 804 td->dm_dev.bdev = bdev; 805 return 0; 806 } 807 808 /* 809 * Close a table device that we've been using. 810 */ 811 static void close_table_device(struct table_device *td, struct mapped_device *md) 812 { 813 if (!td->dm_dev.bdev) 814 return; 815 816 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 817 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 818 td->dm_dev.bdev = NULL; 819 } 820 821 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 822 fmode_t mode) { 823 struct table_device *td; 824 825 list_for_each_entry(td, l, list) 826 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 827 return td; 828 829 return NULL; 830 } 831 832 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 833 struct dm_dev **result) { 834 int r; 835 struct table_device *td; 836 837 mutex_lock(&md->table_devices_lock); 838 td = find_table_device(&md->table_devices, dev, mode); 839 if (!td) { 840 td = kmalloc(sizeof(*td), GFP_KERNEL); 841 if (!td) { 842 mutex_unlock(&md->table_devices_lock); 843 return -ENOMEM; 844 } 845 846 td->dm_dev.mode = mode; 847 td->dm_dev.bdev = NULL; 848 849 if ((r = open_table_device(td, dev, md))) { 850 mutex_unlock(&md->table_devices_lock); 851 kfree(td); 852 return r; 853 } 854 855 format_dev_t(td->dm_dev.name, dev); 856 857 atomic_set(&td->count, 0); 858 list_add(&td->list, &md->table_devices); 859 } 860 atomic_inc(&td->count); 861 mutex_unlock(&md->table_devices_lock); 862 863 *result = &td->dm_dev; 864 return 0; 865 } 866 EXPORT_SYMBOL_GPL(dm_get_table_device); 867 868 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 869 { 870 struct table_device *td = container_of(d, struct table_device, dm_dev); 871 872 mutex_lock(&md->table_devices_lock); 873 if (atomic_dec_and_test(&td->count)) { 874 close_table_device(td, md); 875 list_del(&td->list); 876 kfree(td); 877 } 878 mutex_unlock(&md->table_devices_lock); 879 } 880 EXPORT_SYMBOL(dm_put_table_device); 881 882 static void free_table_devices(struct list_head *devices) 883 { 884 struct list_head *tmp, *next; 885 886 list_for_each_safe(tmp, next, devices) { 887 struct table_device *td = list_entry(tmp, struct table_device, list); 888 889 DMWARN("dm_destroy: %s still exists with %d references", 890 td->dm_dev.name, atomic_read(&td->count)); 891 kfree(td); 892 } 893 } 894 895 /* 896 * Get the geometry associated with a dm device 897 */ 898 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 899 { 900 *geo = md->geometry; 901 902 return 0; 903 } 904 905 /* 906 * Set the geometry of a device. 907 */ 908 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 909 { 910 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 911 912 if (geo->start > sz) { 913 DMWARN("Start sector is beyond the geometry limits."); 914 return -EINVAL; 915 } 916 917 md->geometry = *geo; 918 919 return 0; 920 } 921 922 /*----------------------------------------------------------------- 923 * CRUD START: 924 * A more elegant soln is in the works that uses the queue 925 * merge fn, unfortunately there are a couple of changes to 926 * the block layer that I want to make for this. So in the 927 * interests of getting something for people to use I give 928 * you this clearly demarcated crap. 929 *---------------------------------------------------------------*/ 930 931 static int __noflush_suspending(struct mapped_device *md) 932 { 933 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 934 } 935 936 /* 937 * Decrements the number of outstanding ios that a bio has been 938 * cloned into, completing the original io if necc. 939 */ 940 static void dec_pending(struct dm_io *io, int error) 941 { 942 unsigned long flags; 943 int io_error; 944 struct bio *bio; 945 struct mapped_device *md = io->md; 946 947 /* Push-back supersedes any I/O errors */ 948 if (unlikely(error)) { 949 spin_lock_irqsave(&io->endio_lock, flags); 950 if (!(io->error > 0 && __noflush_suspending(md))) 951 io->error = error; 952 spin_unlock_irqrestore(&io->endio_lock, flags); 953 } 954 955 if (atomic_dec_and_test(&io->io_count)) { 956 if (io->error == DM_ENDIO_REQUEUE) { 957 /* 958 * Target requested pushing back the I/O. 959 */ 960 spin_lock_irqsave(&md->deferred_lock, flags); 961 if (__noflush_suspending(md)) 962 bio_list_add_head(&md->deferred, io->bio); 963 else 964 /* noflush suspend was interrupted. */ 965 io->error = -EIO; 966 spin_unlock_irqrestore(&md->deferred_lock, flags); 967 } 968 969 io_error = io->error; 970 bio = io->bio; 971 end_io_acct(io); 972 free_io(md, io); 973 974 if (io_error == DM_ENDIO_REQUEUE) 975 return; 976 977 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 978 /* 979 * Preflush done for flush with data, reissue 980 * without REQ_FLUSH. 981 */ 982 bio->bi_rw &= ~REQ_FLUSH; 983 queue_io(md, bio); 984 } else { 985 /* done with normal IO or empty flush */ 986 trace_block_bio_complete(md->queue, bio, io_error); 987 bio->bi_error = io_error; 988 bio_endio(bio); 989 } 990 } 991 } 992 993 static void disable_write_same(struct mapped_device *md) 994 { 995 struct queue_limits *limits = dm_get_queue_limits(md); 996 997 /* device doesn't really support WRITE SAME, disable it */ 998 limits->max_write_same_sectors = 0; 999 } 1000 1001 static void clone_endio(struct bio *bio) 1002 { 1003 int error = bio->bi_error; 1004 int r = error; 1005 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1006 struct dm_io *io = tio->io; 1007 struct mapped_device *md = tio->io->md; 1008 dm_endio_fn endio = tio->ti->type->end_io; 1009 1010 if (endio) { 1011 r = endio(tio->ti, bio, error); 1012 if (r < 0 || r == DM_ENDIO_REQUEUE) 1013 /* 1014 * error and requeue request are handled 1015 * in dec_pending(). 1016 */ 1017 error = r; 1018 else if (r == DM_ENDIO_INCOMPLETE) 1019 /* The target will handle the io */ 1020 return; 1021 else if (r) { 1022 DMWARN("unimplemented target endio return value: %d", r); 1023 BUG(); 1024 } 1025 } 1026 1027 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 1028 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 1029 disable_write_same(md); 1030 1031 free_tio(md, tio); 1032 dec_pending(io, error); 1033 } 1034 1035 /* 1036 * Partial completion handling for request-based dm 1037 */ 1038 static void end_clone_bio(struct bio *clone) 1039 { 1040 struct dm_rq_clone_bio_info *info = 1041 container_of(clone, struct dm_rq_clone_bio_info, clone); 1042 struct dm_rq_target_io *tio = info->tio; 1043 struct bio *bio = info->orig; 1044 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1045 int error = clone->bi_error; 1046 1047 bio_put(clone); 1048 1049 if (tio->error) 1050 /* 1051 * An error has already been detected on the request. 1052 * Once error occurred, just let clone->end_io() handle 1053 * the remainder. 1054 */ 1055 return; 1056 else if (error) { 1057 /* 1058 * Don't notice the error to the upper layer yet. 1059 * The error handling decision is made by the target driver, 1060 * when the request is completed. 1061 */ 1062 tio->error = error; 1063 return; 1064 } 1065 1066 /* 1067 * I/O for the bio successfully completed. 1068 * Notice the data completion to the upper layer. 1069 */ 1070 1071 /* 1072 * bios are processed from the head of the list. 1073 * So the completing bio should always be rq->bio. 1074 * If it's not, something wrong is happening. 1075 */ 1076 if (tio->orig->bio != bio) 1077 DMERR("bio completion is going in the middle of the request"); 1078 1079 /* 1080 * Update the original request. 1081 * Do not use blk_end_request() here, because it may complete 1082 * the original request before the clone, and break the ordering. 1083 */ 1084 blk_update_request(tio->orig, 0, nr_bytes); 1085 } 1086 1087 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1088 { 1089 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1090 } 1091 1092 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1093 { 1094 if (unlikely(dm_stats_used(&md->stats))) { 1095 struct dm_rq_target_io *tio = tio_from_request(orig); 1096 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1097 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1098 tio->n_sectors, true, tio->duration_jiffies, 1099 &tio->stats_aux); 1100 } 1101 } 1102 1103 /* 1104 * Don't touch any member of the md after calling this function because 1105 * the md may be freed in dm_put() at the end of this function. 1106 * Or do dm_get() before calling this function and dm_put() later. 1107 */ 1108 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1109 { 1110 atomic_dec(&md->pending[rw]); 1111 1112 /* nudge anyone waiting on suspend queue */ 1113 if (!md_in_flight(md)) 1114 wake_up(&md->wait); 1115 1116 /* 1117 * Run this off this callpath, as drivers could invoke end_io while 1118 * inside their request_fn (and holding the queue lock). Calling 1119 * back into ->request_fn() could deadlock attempting to grab the 1120 * queue lock again. 1121 */ 1122 if (!md->queue->mq_ops && run_queue) 1123 blk_run_queue_async(md->queue); 1124 1125 /* 1126 * dm_put() must be at the end of this function. See the comment above 1127 */ 1128 dm_put(md); 1129 } 1130 1131 static void free_rq_clone(struct request *clone) 1132 { 1133 struct dm_rq_target_io *tio = clone->end_io_data; 1134 struct mapped_device *md = tio->md; 1135 1136 blk_rq_unprep_clone(clone); 1137 1138 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1139 /* stacked on blk-mq queue(s) */ 1140 tio->ti->type->release_clone_rq(clone); 1141 else if (!md->queue->mq_ops) 1142 /* request_fn queue stacked on request_fn queue(s) */ 1143 free_old_clone_request(md, clone); 1144 1145 if (!md->queue->mq_ops) 1146 free_old_rq_tio(tio); 1147 } 1148 1149 /* 1150 * Complete the clone and the original request. 1151 * Must be called without clone's queue lock held, 1152 * see end_clone_request() for more details. 1153 */ 1154 static void dm_end_request(struct request *clone, int error) 1155 { 1156 int rw = rq_data_dir(clone); 1157 struct dm_rq_target_io *tio = clone->end_io_data; 1158 struct mapped_device *md = tio->md; 1159 struct request *rq = tio->orig; 1160 1161 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1162 rq->errors = clone->errors; 1163 rq->resid_len = clone->resid_len; 1164 1165 if (rq->sense) 1166 /* 1167 * We are using the sense buffer of the original 1168 * request. 1169 * So setting the length of the sense data is enough. 1170 */ 1171 rq->sense_len = clone->sense_len; 1172 } 1173 1174 free_rq_clone(clone); 1175 rq_end_stats(md, rq); 1176 if (!rq->q->mq_ops) 1177 blk_end_request_all(rq, error); 1178 else 1179 blk_mq_end_request(rq, error); 1180 rq_completed(md, rw, true); 1181 } 1182 1183 static void dm_unprep_request(struct request *rq) 1184 { 1185 struct dm_rq_target_io *tio = tio_from_request(rq); 1186 struct request *clone = tio->clone; 1187 1188 if (!rq->q->mq_ops) { 1189 rq->special = NULL; 1190 rq->cmd_flags &= ~REQ_DONTPREP; 1191 } 1192 1193 if (clone) 1194 free_rq_clone(clone); 1195 else if (!tio->md->queue->mq_ops) 1196 free_old_rq_tio(tio); 1197 } 1198 1199 /* 1200 * Requeue the original request of a clone. 1201 */ 1202 static void dm_old_requeue_request(struct request *rq) 1203 { 1204 struct request_queue *q = rq->q; 1205 unsigned long flags; 1206 1207 spin_lock_irqsave(q->queue_lock, flags); 1208 blk_requeue_request(q, rq); 1209 blk_run_queue_async(q); 1210 spin_unlock_irqrestore(q->queue_lock, flags); 1211 } 1212 1213 static void dm_mq_requeue_request(struct request *rq) 1214 { 1215 struct request_queue *q = rq->q; 1216 unsigned long flags; 1217 1218 blk_mq_requeue_request(rq); 1219 spin_lock_irqsave(q->queue_lock, flags); 1220 if (!blk_queue_stopped(q)) 1221 blk_mq_kick_requeue_list(q); 1222 spin_unlock_irqrestore(q->queue_lock, flags); 1223 } 1224 1225 static void dm_requeue_original_request(struct mapped_device *md, 1226 struct request *rq) 1227 { 1228 int rw = rq_data_dir(rq); 1229 1230 dm_unprep_request(rq); 1231 1232 rq_end_stats(md, rq); 1233 if (!rq->q->mq_ops) 1234 dm_old_requeue_request(rq); 1235 else 1236 dm_mq_requeue_request(rq); 1237 1238 rq_completed(md, rw, false); 1239 } 1240 1241 static void dm_old_stop_queue(struct request_queue *q) 1242 { 1243 unsigned long flags; 1244 1245 spin_lock_irqsave(q->queue_lock, flags); 1246 if (blk_queue_stopped(q)) { 1247 spin_unlock_irqrestore(q->queue_lock, flags); 1248 return; 1249 } 1250 1251 blk_stop_queue(q); 1252 spin_unlock_irqrestore(q->queue_lock, flags); 1253 } 1254 1255 static void dm_stop_queue(struct request_queue *q) 1256 { 1257 if (!q->mq_ops) 1258 dm_old_stop_queue(q); 1259 else 1260 blk_mq_stop_hw_queues(q); 1261 } 1262 1263 static void dm_old_start_queue(struct request_queue *q) 1264 { 1265 unsigned long flags; 1266 1267 spin_lock_irqsave(q->queue_lock, flags); 1268 if (blk_queue_stopped(q)) 1269 blk_start_queue(q); 1270 spin_unlock_irqrestore(q->queue_lock, flags); 1271 } 1272 1273 static void dm_start_queue(struct request_queue *q) 1274 { 1275 if (!q->mq_ops) 1276 dm_old_start_queue(q); 1277 else { 1278 blk_mq_start_stopped_hw_queues(q, true); 1279 blk_mq_kick_requeue_list(q); 1280 } 1281 } 1282 1283 static void dm_done(struct request *clone, int error, bool mapped) 1284 { 1285 int r = error; 1286 struct dm_rq_target_io *tio = clone->end_io_data; 1287 dm_request_endio_fn rq_end_io = NULL; 1288 1289 if (tio->ti) { 1290 rq_end_io = tio->ti->type->rq_end_io; 1291 1292 if (mapped && rq_end_io) 1293 r = rq_end_io(tio->ti, clone, error, &tio->info); 1294 } 1295 1296 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1297 !clone->q->limits.max_write_same_sectors)) 1298 disable_write_same(tio->md); 1299 1300 if (r <= 0) 1301 /* The target wants to complete the I/O */ 1302 dm_end_request(clone, r); 1303 else if (r == DM_ENDIO_INCOMPLETE) 1304 /* The target will handle the I/O */ 1305 return; 1306 else if (r == DM_ENDIO_REQUEUE) 1307 /* The target wants to requeue the I/O */ 1308 dm_requeue_original_request(tio->md, tio->orig); 1309 else { 1310 DMWARN("unimplemented target endio return value: %d", r); 1311 BUG(); 1312 } 1313 } 1314 1315 /* 1316 * Request completion handler for request-based dm 1317 */ 1318 static void dm_softirq_done(struct request *rq) 1319 { 1320 bool mapped = true; 1321 struct dm_rq_target_io *tio = tio_from_request(rq); 1322 struct request *clone = tio->clone; 1323 int rw; 1324 1325 if (!clone) { 1326 rq_end_stats(tio->md, rq); 1327 rw = rq_data_dir(rq); 1328 if (!rq->q->mq_ops) { 1329 blk_end_request_all(rq, tio->error); 1330 rq_completed(tio->md, rw, false); 1331 free_old_rq_tio(tio); 1332 } else { 1333 blk_mq_end_request(rq, tio->error); 1334 rq_completed(tio->md, rw, false); 1335 } 1336 return; 1337 } 1338 1339 if (rq->cmd_flags & REQ_FAILED) 1340 mapped = false; 1341 1342 dm_done(clone, tio->error, mapped); 1343 } 1344 1345 /* 1346 * Complete the clone and the original request with the error status 1347 * through softirq context. 1348 */ 1349 static void dm_complete_request(struct request *rq, int error) 1350 { 1351 struct dm_rq_target_io *tio = tio_from_request(rq); 1352 1353 tio->error = error; 1354 if (!rq->q->mq_ops) 1355 blk_complete_request(rq); 1356 else 1357 blk_mq_complete_request(rq, error); 1358 } 1359 1360 /* 1361 * Complete the not-mapped clone and the original request with the error status 1362 * through softirq context. 1363 * Target's rq_end_io() function isn't called. 1364 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1365 */ 1366 static void dm_kill_unmapped_request(struct request *rq, int error) 1367 { 1368 rq->cmd_flags |= REQ_FAILED; 1369 dm_complete_request(rq, error); 1370 } 1371 1372 /* 1373 * Called with the clone's queue lock held (in the case of .request_fn) 1374 */ 1375 static void end_clone_request(struct request *clone, int error) 1376 { 1377 struct dm_rq_target_io *tio = clone->end_io_data; 1378 1379 if (!clone->q->mq_ops) { 1380 /* 1381 * For just cleaning up the information of the queue in which 1382 * the clone was dispatched. 1383 * The clone is *NOT* freed actually here because it is alloced 1384 * from dm own mempool (REQ_ALLOCED isn't set). 1385 */ 1386 __blk_put_request(clone->q, clone); 1387 } 1388 1389 /* 1390 * Actual request completion is done in a softirq context which doesn't 1391 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1392 * - another request may be submitted by the upper level driver 1393 * of the stacking during the completion 1394 * - the submission which requires queue lock may be done 1395 * against this clone's queue 1396 */ 1397 dm_complete_request(tio->orig, error); 1398 } 1399 1400 /* 1401 * Return maximum size of I/O possible at the supplied sector up to the current 1402 * target boundary. 1403 */ 1404 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1405 { 1406 sector_t target_offset = dm_target_offset(ti, sector); 1407 1408 return ti->len - target_offset; 1409 } 1410 1411 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1412 { 1413 sector_t len = max_io_len_target_boundary(sector, ti); 1414 sector_t offset, max_len; 1415 1416 /* 1417 * Does the target need to split even further? 1418 */ 1419 if (ti->max_io_len) { 1420 offset = dm_target_offset(ti, sector); 1421 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1422 max_len = sector_div(offset, ti->max_io_len); 1423 else 1424 max_len = offset & (ti->max_io_len - 1); 1425 max_len = ti->max_io_len - max_len; 1426 1427 if (len > max_len) 1428 len = max_len; 1429 } 1430 1431 return len; 1432 } 1433 1434 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1435 { 1436 if (len > UINT_MAX) { 1437 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1438 (unsigned long long)len, UINT_MAX); 1439 ti->error = "Maximum size of target IO is too large"; 1440 return -EINVAL; 1441 } 1442 1443 ti->max_io_len = (uint32_t) len; 1444 1445 return 0; 1446 } 1447 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1448 1449 /* 1450 * A target may call dm_accept_partial_bio only from the map routine. It is 1451 * allowed for all bio types except REQ_FLUSH. 1452 * 1453 * dm_accept_partial_bio informs the dm that the target only wants to process 1454 * additional n_sectors sectors of the bio and the rest of the data should be 1455 * sent in a next bio. 1456 * 1457 * A diagram that explains the arithmetics: 1458 * +--------------------+---------------+-------+ 1459 * | 1 | 2 | 3 | 1460 * +--------------------+---------------+-------+ 1461 * 1462 * <-------------- *tio->len_ptr ---------------> 1463 * <------- bi_size -------> 1464 * <-- n_sectors --> 1465 * 1466 * Region 1 was already iterated over with bio_advance or similar function. 1467 * (it may be empty if the target doesn't use bio_advance) 1468 * Region 2 is the remaining bio size that the target wants to process. 1469 * (it may be empty if region 1 is non-empty, although there is no reason 1470 * to make it empty) 1471 * The target requires that region 3 is to be sent in the next bio. 1472 * 1473 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1474 * the partially processed part (the sum of regions 1+2) must be the same for all 1475 * copies of the bio. 1476 */ 1477 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1478 { 1479 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1480 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1481 BUG_ON(bio->bi_rw & REQ_FLUSH); 1482 BUG_ON(bi_size > *tio->len_ptr); 1483 BUG_ON(n_sectors > bi_size); 1484 *tio->len_ptr -= bi_size - n_sectors; 1485 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1486 } 1487 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1488 1489 static void __map_bio(struct dm_target_io *tio) 1490 { 1491 int r; 1492 sector_t sector; 1493 struct mapped_device *md; 1494 struct bio *clone = &tio->clone; 1495 struct dm_target *ti = tio->ti; 1496 1497 clone->bi_end_io = clone_endio; 1498 1499 /* 1500 * Map the clone. If r == 0 we don't need to do 1501 * anything, the target has assumed ownership of 1502 * this io. 1503 */ 1504 atomic_inc(&tio->io->io_count); 1505 sector = clone->bi_iter.bi_sector; 1506 r = ti->type->map(ti, clone); 1507 if (r == DM_MAPIO_REMAPPED) { 1508 /* the bio has been remapped so dispatch it */ 1509 1510 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1511 tio->io->bio->bi_bdev->bd_dev, sector); 1512 1513 generic_make_request(clone); 1514 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1515 /* error the io and bail out, or requeue it if needed */ 1516 md = tio->io->md; 1517 dec_pending(tio->io, r); 1518 free_tio(md, tio); 1519 } else if (r != DM_MAPIO_SUBMITTED) { 1520 DMWARN("unimplemented target map return value: %d", r); 1521 BUG(); 1522 } 1523 } 1524 1525 struct clone_info { 1526 struct mapped_device *md; 1527 struct dm_table *map; 1528 struct bio *bio; 1529 struct dm_io *io; 1530 sector_t sector; 1531 unsigned sector_count; 1532 }; 1533 1534 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1535 { 1536 bio->bi_iter.bi_sector = sector; 1537 bio->bi_iter.bi_size = to_bytes(len); 1538 } 1539 1540 /* 1541 * Creates a bio that consists of range of complete bvecs. 1542 */ 1543 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1544 sector_t sector, unsigned len) 1545 { 1546 struct bio *clone = &tio->clone; 1547 1548 __bio_clone_fast(clone, bio); 1549 1550 if (bio_integrity(bio)) 1551 bio_integrity_clone(clone, bio, GFP_NOIO); 1552 1553 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1554 clone->bi_iter.bi_size = to_bytes(len); 1555 1556 if (bio_integrity(bio)) 1557 bio_integrity_trim(clone, 0, len); 1558 } 1559 1560 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1561 struct dm_target *ti, 1562 unsigned target_bio_nr) 1563 { 1564 struct dm_target_io *tio; 1565 struct bio *clone; 1566 1567 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1568 tio = container_of(clone, struct dm_target_io, clone); 1569 1570 tio->io = ci->io; 1571 tio->ti = ti; 1572 tio->target_bio_nr = target_bio_nr; 1573 1574 return tio; 1575 } 1576 1577 static void __clone_and_map_simple_bio(struct clone_info *ci, 1578 struct dm_target *ti, 1579 unsigned target_bio_nr, unsigned *len) 1580 { 1581 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1582 struct bio *clone = &tio->clone; 1583 1584 tio->len_ptr = len; 1585 1586 __bio_clone_fast(clone, ci->bio); 1587 if (len) 1588 bio_setup_sector(clone, ci->sector, *len); 1589 1590 __map_bio(tio); 1591 } 1592 1593 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1594 unsigned num_bios, unsigned *len) 1595 { 1596 unsigned target_bio_nr; 1597 1598 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1599 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1600 } 1601 1602 static int __send_empty_flush(struct clone_info *ci) 1603 { 1604 unsigned target_nr = 0; 1605 struct dm_target *ti; 1606 1607 BUG_ON(bio_has_data(ci->bio)); 1608 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1609 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1610 1611 return 0; 1612 } 1613 1614 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1615 sector_t sector, unsigned *len) 1616 { 1617 struct bio *bio = ci->bio; 1618 struct dm_target_io *tio; 1619 unsigned target_bio_nr; 1620 unsigned num_target_bios = 1; 1621 1622 /* 1623 * Does the target want to receive duplicate copies of the bio? 1624 */ 1625 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1626 num_target_bios = ti->num_write_bios(ti, bio); 1627 1628 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1629 tio = alloc_tio(ci, ti, target_bio_nr); 1630 tio->len_ptr = len; 1631 clone_bio(tio, bio, sector, *len); 1632 __map_bio(tio); 1633 } 1634 } 1635 1636 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1637 1638 static unsigned get_num_discard_bios(struct dm_target *ti) 1639 { 1640 return ti->num_discard_bios; 1641 } 1642 1643 static unsigned get_num_write_same_bios(struct dm_target *ti) 1644 { 1645 return ti->num_write_same_bios; 1646 } 1647 1648 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1649 1650 static bool is_split_required_for_discard(struct dm_target *ti) 1651 { 1652 return ti->split_discard_bios; 1653 } 1654 1655 static int __send_changing_extent_only(struct clone_info *ci, 1656 get_num_bios_fn get_num_bios, 1657 is_split_required_fn is_split_required) 1658 { 1659 struct dm_target *ti; 1660 unsigned len; 1661 unsigned num_bios; 1662 1663 do { 1664 ti = dm_table_find_target(ci->map, ci->sector); 1665 if (!dm_target_is_valid(ti)) 1666 return -EIO; 1667 1668 /* 1669 * Even though the device advertised support for this type of 1670 * request, that does not mean every target supports it, and 1671 * reconfiguration might also have changed that since the 1672 * check was performed. 1673 */ 1674 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1675 if (!num_bios) 1676 return -EOPNOTSUPP; 1677 1678 if (is_split_required && !is_split_required(ti)) 1679 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1680 else 1681 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1682 1683 __send_duplicate_bios(ci, ti, num_bios, &len); 1684 1685 ci->sector += len; 1686 } while (ci->sector_count -= len); 1687 1688 return 0; 1689 } 1690 1691 static int __send_discard(struct clone_info *ci) 1692 { 1693 return __send_changing_extent_only(ci, get_num_discard_bios, 1694 is_split_required_for_discard); 1695 } 1696 1697 static int __send_write_same(struct clone_info *ci) 1698 { 1699 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1700 } 1701 1702 /* 1703 * Select the correct strategy for processing a non-flush bio. 1704 */ 1705 static int __split_and_process_non_flush(struct clone_info *ci) 1706 { 1707 struct bio *bio = ci->bio; 1708 struct dm_target *ti; 1709 unsigned len; 1710 1711 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1712 return __send_discard(ci); 1713 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1714 return __send_write_same(ci); 1715 1716 ti = dm_table_find_target(ci->map, ci->sector); 1717 if (!dm_target_is_valid(ti)) 1718 return -EIO; 1719 1720 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1721 1722 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1723 1724 ci->sector += len; 1725 ci->sector_count -= len; 1726 1727 return 0; 1728 } 1729 1730 /* 1731 * Entry point to split a bio into clones and submit them to the targets. 1732 */ 1733 static void __split_and_process_bio(struct mapped_device *md, 1734 struct dm_table *map, struct bio *bio) 1735 { 1736 struct clone_info ci; 1737 int error = 0; 1738 1739 if (unlikely(!map)) { 1740 bio_io_error(bio); 1741 return; 1742 } 1743 1744 ci.map = map; 1745 ci.md = md; 1746 ci.io = alloc_io(md); 1747 ci.io->error = 0; 1748 atomic_set(&ci.io->io_count, 1); 1749 ci.io->bio = bio; 1750 ci.io->md = md; 1751 spin_lock_init(&ci.io->endio_lock); 1752 ci.sector = bio->bi_iter.bi_sector; 1753 1754 start_io_acct(ci.io); 1755 1756 if (bio->bi_rw & REQ_FLUSH) { 1757 ci.bio = &ci.md->flush_bio; 1758 ci.sector_count = 0; 1759 error = __send_empty_flush(&ci); 1760 /* dec_pending submits any data associated with flush */ 1761 } else { 1762 ci.bio = bio; 1763 ci.sector_count = bio_sectors(bio); 1764 while (ci.sector_count && !error) 1765 error = __split_and_process_non_flush(&ci); 1766 } 1767 1768 /* drop the extra reference count */ 1769 dec_pending(ci.io, error); 1770 } 1771 /*----------------------------------------------------------------- 1772 * CRUD END 1773 *---------------------------------------------------------------*/ 1774 1775 /* 1776 * The request function that just remaps the bio built up by 1777 * dm_merge_bvec. 1778 */ 1779 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1780 { 1781 int rw = bio_data_dir(bio); 1782 struct mapped_device *md = q->queuedata; 1783 int srcu_idx; 1784 struct dm_table *map; 1785 1786 map = dm_get_live_table(md, &srcu_idx); 1787 1788 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1789 1790 /* if we're suspended, we have to queue this io for later */ 1791 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1792 dm_put_live_table(md, srcu_idx); 1793 1794 if (bio_rw(bio) != READA) 1795 queue_io(md, bio); 1796 else 1797 bio_io_error(bio); 1798 return BLK_QC_T_NONE; 1799 } 1800 1801 __split_and_process_bio(md, map, bio); 1802 dm_put_live_table(md, srcu_idx); 1803 return BLK_QC_T_NONE; 1804 } 1805 1806 int dm_request_based(struct mapped_device *md) 1807 { 1808 return blk_queue_stackable(md->queue); 1809 } 1810 1811 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1812 { 1813 int r; 1814 1815 if (blk_queue_io_stat(clone->q)) 1816 clone->cmd_flags |= REQ_IO_STAT; 1817 1818 clone->start_time = jiffies; 1819 r = blk_insert_cloned_request(clone->q, clone); 1820 if (r) 1821 /* must complete clone in terms of original request */ 1822 dm_complete_request(rq, r); 1823 } 1824 1825 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1826 void *data) 1827 { 1828 struct dm_rq_target_io *tio = data; 1829 struct dm_rq_clone_bio_info *info = 1830 container_of(bio, struct dm_rq_clone_bio_info, clone); 1831 1832 info->orig = bio_orig; 1833 info->tio = tio; 1834 bio->bi_end_io = end_clone_bio; 1835 1836 return 0; 1837 } 1838 1839 static int setup_clone(struct request *clone, struct request *rq, 1840 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1841 { 1842 int r; 1843 1844 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1845 dm_rq_bio_constructor, tio); 1846 if (r) 1847 return r; 1848 1849 clone->cmd = rq->cmd; 1850 clone->cmd_len = rq->cmd_len; 1851 clone->sense = rq->sense; 1852 clone->end_io = end_clone_request; 1853 clone->end_io_data = tio; 1854 1855 tio->clone = clone; 1856 1857 return 0; 1858 } 1859 1860 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md, 1861 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1862 { 1863 /* 1864 * Create clone for use with .request_fn request_queue 1865 */ 1866 struct request *clone; 1867 1868 clone = alloc_old_clone_request(md, gfp_mask); 1869 if (!clone) 1870 return NULL; 1871 1872 blk_rq_init(NULL, clone); 1873 if (setup_clone(clone, rq, tio, gfp_mask)) { 1874 /* -ENOMEM */ 1875 free_old_clone_request(md, clone); 1876 return NULL; 1877 } 1878 1879 return clone; 1880 } 1881 1882 static void map_tio_request(struct kthread_work *work); 1883 1884 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1885 struct mapped_device *md) 1886 { 1887 tio->md = md; 1888 tio->ti = NULL; 1889 tio->clone = NULL; 1890 tio->orig = rq; 1891 tio->error = 0; 1892 memset(&tio->info, 0, sizeof(tio->info)); 1893 if (md->kworker_task) 1894 init_kthread_work(&tio->work, map_tio_request); 1895 } 1896 1897 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq, 1898 struct mapped_device *md, 1899 gfp_t gfp_mask) 1900 { 1901 struct dm_rq_target_io *tio; 1902 int srcu_idx; 1903 struct dm_table *table; 1904 1905 tio = alloc_old_rq_tio(md, gfp_mask); 1906 if (!tio) 1907 return NULL; 1908 1909 init_tio(tio, rq, md); 1910 1911 table = dm_get_live_table(md, &srcu_idx); 1912 /* 1913 * Must clone a request if this .request_fn DM device 1914 * is stacked on .request_fn device(s). 1915 */ 1916 if (!dm_table_mq_request_based(table)) { 1917 if (!clone_old_rq(rq, md, tio, gfp_mask)) { 1918 dm_put_live_table(md, srcu_idx); 1919 free_old_rq_tio(tio); 1920 return NULL; 1921 } 1922 } 1923 dm_put_live_table(md, srcu_idx); 1924 1925 return tio; 1926 } 1927 1928 /* 1929 * Called with the queue lock held. 1930 */ 1931 static int dm_old_prep_fn(struct request_queue *q, struct request *rq) 1932 { 1933 struct mapped_device *md = q->queuedata; 1934 struct dm_rq_target_io *tio; 1935 1936 if (unlikely(rq->special)) { 1937 DMWARN("Already has something in rq->special."); 1938 return BLKPREP_KILL; 1939 } 1940 1941 tio = dm_old_prep_tio(rq, md, GFP_ATOMIC); 1942 if (!tio) 1943 return BLKPREP_DEFER; 1944 1945 rq->special = tio; 1946 rq->cmd_flags |= REQ_DONTPREP; 1947 1948 return BLKPREP_OK; 1949 } 1950 1951 /* 1952 * Returns: 1953 * 0 : the request has been processed 1954 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1955 * < 0 : the request was completed due to failure 1956 */ 1957 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1958 struct mapped_device *md) 1959 { 1960 int r; 1961 struct dm_target *ti = tio->ti; 1962 struct request *clone = NULL; 1963 1964 if (tio->clone) { 1965 clone = tio->clone; 1966 r = ti->type->map_rq(ti, clone, &tio->info); 1967 } else { 1968 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1969 if (r < 0) { 1970 /* The target wants to complete the I/O */ 1971 dm_kill_unmapped_request(rq, r); 1972 return r; 1973 } 1974 if (r != DM_MAPIO_REMAPPED) 1975 return r; 1976 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1977 /* -ENOMEM */ 1978 ti->type->release_clone_rq(clone); 1979 return DM_MAPIO_REQUEUE; 1980 } 1981 } 1982 1983 switch (r) { 1984 case DM_MAPIO_SUBMITTED: 1985 /* The target has taken the I/O to submit by itself later */ 1986 break; 1987 case DM_MAPIO_REMAPPED: 1988 /* The target has remapped the I/O so dispatch it */ 1989 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1990 blk_rq_pos(rq)); 1991 dm_dispatch_clone_request(clone, rq); 1992 break; 1993 case DM_MAPIO_REQUEUE: 1994 /* The target wants to requeue the I/O */ 1995 dm_requeue_original_request(md, tio->orig); 1996 break; 1997 default: 1998 if (r > 0) { 1999 DMWARN("unimplemented target map return value: %d", r); 2000 BUG(); 2001 } 2002 2003 /* The target wants to complete the I/O */ 2004 dm_kill_unmapped_request(rq, r); 2005 return r; 2006 } 2007 2008 return 0; 2009 } 2010 2011 static void map_tio_request(struct kthread_work *work) 2012 { 2013 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2014 struct request *rq = tio->orig; 2015 struct mapped_device *md = tio->md; 2016 2017 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2018 dm_requeue_original_request(md, rq); 2019 } 2020 2021 static void dm_start_request(struct mapped_device *md, struct request *orig) 2022 { 2023 if (!orig->q->mq_ops) 2024 blk_start_request(orig); 2025 else 2026 blk_mq_start_request(orig); 2027 atomic_inc(&md->pending[rq_data_dir(orig)]); 2028 2029 if (md->seq_rq_merge_deadline_usecs) { 2030 md->last_rq_pos = rq_end_sector(orig); 2031 md->last_rq_rw = rq_data_dir(orig); 2032 md->last_rq_start_time = ktime_get(); 2033 } 2034 2035 if (unlikely(dm_stats_used(&md->stats))) { 2036 struct dm_rq_target_io *tio = tio_from_request(orig); 2037 tio->duration_jiffies = jiffies; 2038 tio->n_sectors = blk_rq_sectors(orig); 2039 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 2040 tio->n_sectors, false, 0, &tio->stats_aux); 2041 } 2042 2043 /* 2044 * Hold the md reference here for the in-flight I/O. 2045 * We can't rely on the reference count by device opener, 2046 * because the device may be closed during the request completion 2047 * when all bios are completed. 2048 * See the comment in rq_completed() too. 2049 */ 2050 dm_get(md); 2051 } 2052 2053 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2054 2055 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2056 { 2057 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2058 } 2059 2060 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2061 const char *buf, size_t count) 2062 { 2063 unsigned deadline; 2064 2065 if (!dm_request_based(md) || md->use_blk_mq) 2066 return count; 2067 2068 if (kstrtouint(buf, 10, &deadline)) 2069 return -EINVAL; 2070 2071 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2072 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2073 2074 md->seq_rq_merge_deadline_usecs = deadline; 2075 2076 return count; 2077 } 2078 2079 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2080 { 2081 ktime_t kt_deadline; 2082 2083 if (!md->seq_rq_merge_deadline_usecs) 2084 return false; 2085 2086 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2087 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2088 2089 return !ktime_after(ktime_get(), kt_deadline); 2090 } 2091 2092 /* 2093 * q->request_fn for request-based dm. 2094 * Called with the queue lock held. 2095 */ 2096 static void dm_request_fn(struct request_queue *q) 2097 { 2098 struct mapped_device *md = q->queuedata; 2099 struct dm_target *ti = md->immutable_target; 2100 struct request *rq; 2101 struct dm_rq_target_io *tio; 2102 sector_t pos = 0; 2103 2104 if (unlikely(!ti)) { 2105 int srcu_idx; 2106 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2107 2108 ti = dm_table_find_target(map, pos); 2109 dm_put_live_table(md, srcu_idx); 2110 } 2111 2112 /* 2113 * For suspend, check blk_queue_stopped() and increment 2114 * ->pending within a single queue_lock not to increment the 2115 * number of in-flight I/Os after the queue is stopped in 2116 * dm_suspend(). 2117 */ 2118 while (!blk_queue_stopped(q)) { 2119 rq = blk_peek_request(q); 2120 if (!rq) 2121 return; 2122 2123 /* always use block 0 to find the target for flushes for now */ 2124 pos = 0; 2125 if (!(rq->cmd_flags & REQ_FLUSH)) 2126 pos = blk_rq_pos(rq); 2127 2128 if ((dm_request_peeked_before_merge_deadline(md) && 2129 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2130 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) || 2131 (ti->type->busy && ti->type->busy(ti))) { 2132 blk_delay_queue(q, HZ / 100); 2133 return; 2134 } 2135 2136 dm_start_request(md, rq); 2137 2138 tio = tio_from_request(rq); 2139 /* Establish tio->ti before queuing work (map_tio_request) */ 2140 tio->ti = ti; 2141 queue_kthread_work(&md->kworker, &tio->work); 2142 BUG_ON(!irqs_disabled()); 2143 } 2144 } 2145 2146 static int dm_any_congested(void *congested_data, int bdi_bits) 2147 { 2148 int r = bdi_bits; 2149 struct mapped_device *md = congested_data; 2150 struct dm_table *map; 2151 2152 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2153 if (dm_request_based(md)) { 2154 /* 2155 * With request-based DM we only need to check the 2156 * top-level queue for congestion. 2157 */ 2158 r = md->queue->backing_dev_info.wb.state & bdi_bits; 2159 } else { 2160 map = dm_get_live_table_fast(md); 2161 if (map) 2162 r = dm_table_any_congested(map, bdi_bits); 2163 dm_put_live_table_fast(md); 2164 } 2165 } 2166 2167 return r; 2168 } 2169 2170 /*----------------------------------------------------------------- 2171 * An IDR is used to keep track of allocated minor numbers. 2172 *---------------------------------------------------------------*/ 2173 static void free_minor(int minor) 2174 { 2175 spin_lock(&_minor_lock); 2176 idr_remove(&_minor_idr, minor); 2177 spin_unlock(&_minor_lock); 2178 } 2179 2180 /* 2181 * See if the device with a specific minor # is free. 2182 */ 2183 static int specific_minor(int minor) 2184 { 2185 int r; 2186 2187 if (minor >= (1 << MINORBITS)) 2188 return -EINVAL; 2189 2190 idr_preload(GFP_KERNEL); 2191 spin_lock(&_minor_lock); 2192 2193 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2194 2195 spin_unlock(&_minor_lock); 2196 idr_preload_end(); 2197 if (r < 0) 2198 return r == -ENOSPC ? -EBUSY : r; 2199 return 0; 2200 } 2201 2202 static int next_free_minor(int *minor) 2203 { 2204 int r; 2205 2206 idr_preload(GFP_KERNEL); 2207 spin_lock(&_minor_lock); 2208 2209 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2210 2211 spin_unlock(&_minor_lock); 2212 idr_preload_end(); 2213 if (r < 0) 2214 return r; 2215 *minor = r; 2216 return 0; 2217 } 2218 2219 static const struct block_device_operations dm_blk_dops; 2220 2221 static void dm_wq_work(struct work_struct *work); 2222 2223 static void dm_init_md_queue(struct mapped_device *md) 2224 { 2225 /* 2226 * Request-based dm devices cannot be stacked on top of bio-based dm 2227 * devices. The type of this dm device may not have been decided yet. 2228 * The type is decided at the first table loading time. 2229 * To prevent problematic device stacking, clear the queue flag 2230 * for request stacking support until then. 2231 * 2232 * This queue is new, so no concurrency on the queue_flags. 2233 */ 2234 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2235 2236 /* 2237 * Initialize data that will only be used by a non-blk-mq DM queue 2238 * - must do so here (in alloc_dev callchain) before queue is used 2239 */ 2240 md->queue->queuedata = md; 2241 md->queue->backing_dev_info.congested_data = md; 2242 } 2243 2244 static void dm_init_normal_md_queue(struct mapped_device *md) 2245 { 2246 md->use_blk_mq = false; 2247 dm_init_md_queue(md); 2248 2249 /* 2250 * Initialize aspects of queue that aren't relevant for blk-mq 2251 */ 2252 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2253 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2254 } 2255 2256 static void cleanup_mapped_device(struct mapped_device *md) 2257 { 2258 if (md->wq) 2259 destroy_workqueue(md->wq); 2260 if (md->kworker_task) 2261 kthread_stop(md->kworker_task); 2262 mempool_destroy(md->io_pool); 2263 mempool_destroy(md->rq_pool); 2264 if (md->bs) 2265 bioset_free(md->bs); 2266 2267 cleanup_srcu_struct(&md->io_barrier); 2268 2269 if (md->disk) { 2270 spin_lock(&_minor_lock); 2271 md->disk->private_data = NULL; 2272 spin_unlock(&_minor_lock); 2273 del_gendisk(md->disk); 2274 put_disk(md->disk); 2275 } 2276 2277 if (md->queue) 2278 blk_cleanup_queue(md->queue); 2279 2280 if (md->bdev) { 2281 bdput(md->bdev); 2282 md->bdev = NULL; 2283 } 2284 } 2285 2286 /* 2287 * Allocate and initialise a blank device with a given minor. 2288 */ 2289 static struct mapped_device *alloc_dev(int minor) 2290 { 2291 int r; 2292 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2293 void *old_md; 2294 2295 if (!md) { 2296 DMWARN("unable to allocate device, out of memory."); 2297 return NULL; 2298 } 2299 2300 if (!try_module_get(THIS_MODULE)) 2301 goto bad_module_get; 2302 2303 /* get a minor number for the dev */ 2304 if (minor == DM_ANY_MINOR) 2305 r = next_free_minor(&minor); 2306 else 2307 r = specific_minor(minor); 2308 if (r < 0) 2309 goto bad_minor; 2310 2311 r = init_srcu_struct(&md->io_barrier); 2312 if (r < 0) 2313 goto bad_io_barrier; 2314 2315 md->use_blk_mq = use_blk_mq; 2316 md->type = DM_TYPE_NONE; 2317 mutex_init(&md->suspend_lock); 2318 mutex_init(&md->type_lock); 2319 mutex_init(&md->table_devices_lock); 2320 spin_lock_init(&md->deferred_lock); 2321 atomic_set(&md->holders, 1); 2322 atomic_set(&md->open_count, 0); 2323 atomic_set(&md->event_nr, 0); 2324 atomic_set(&md->uevent_seq, 0); 2325 INIT_LIST_HEAD(&md->uevent_list); 2326 INIT_LIST_HEAD(&md->table_devices); 2327 spin_lock_init(&md->uevent_lock); 2328 2329 md->queue = blk_alloc_queue(GFP_KERNEL); 2330 if (!md->queue) 2331 goto bad; 2332 2333 dm_init_md_queue(md); 2334 2335 md->disk = alloc_disk(1); 2336 if (!md->disk) 2337 goto bad; 2338 2339 atomic_set(&md->pending[0], 0); 2340 atomic_set(&md->pending[1], 0); 2341 init_waitqueue_head(&md->wait); 2342 INIT_WORK(&md->work, dm_wq_work); 2343 init_waitqueue_head(&md->eventq); 2344 init_completion(&md->kobj_holder.completion); 2345 md->kworker_task = NULL; 2346 2347 md->disk->major = _major; 2348 md->disk->first_minor = minor; 2349 md->disk->fops = &dm_blk_dops; 2350 md->disk->queue = md->queue; 2351 md->disk->private_data = md; 2352 sprintf(md->disk->disk_name, "dm-%d", minor); 2353 add_disk(md->disk); 2354 format_dev_t(md->name, MKDEV(_major, minor)); 2355 2356 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2357 if (!md->wq) 2358 goto bad; 2359 2360 md->bdev = bdget_disk(md->disk, 0); 2361 if (!md->bdev) 2362 goto bad; 2363 2364 bio_init(&md->flush_bio); 2365 md->flush_bio.bi_bdev = md->bdev; 2366 md->flush_bio.bi_rw = WRITE_FLUSH; 2367 2368 dm_stats_init(&md->stats); 2369 2370 /* Populate the mapping, nobody knows we exist yet */ 2371 spin_lock(&_minor_lock); 2372 old_md = idr_replace(&_minor_idr, md, minor); 2373 spin_unlock(&_minor_lock); 2374 2375 BUG_ON(old_md != MINOR_ALLOCED); 2376 2377 return md; 2378 2379 bad: 2380 cleanup_mapped_device(md); 2381 bad_io_barrier: 2382 free_minor(minor); 2383 bad_minor: 2384 module_put(THIS_MODULE); 2385 bad_module_get: 2386 kfree(md); 2387 return NULL; 2388 } 2389 2390 static void unlock_fs(struct mapped_device *md); 2391 2392 static void free_dev(struct mapped_device *md) 2393 { 2394 int minor = MINOR(disk_devt(md->disk)); 2395 2396 unlock_fs(md); 2397 2398 cleanup_mapped_device(md); 2399 if (md->tag_set) { 2400 blk_mq_free_tag_set(md->tag_set); 2401 kfree(md->tag_set); 2402 } 2403 2404 free_table_devices(&md->table_devices); 2405 dm_stats_cleanup(&md->stats); 2406 free_minor(minor); 2407 2408 module_put(THIS_MODULE); 2409 kfree(md); 2410 } 2411 2412 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2413 { 2414 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2415 2416 if (md->bs) { 2417 /* The md already has necessary mempools. */ 2418 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2419 /* 2420 * Reload bioset because front_pad may have changed 2421 * because a different table was loaded. 2422 */ 2423 bioset_free(md->bs); 2424 md->bs = p->bs; 2425 p->bs = NULL; 2426 } 2427 /* 2428 * There's no need to reload with request-based dm 2429 * because the size of front_pad doesn't change. 2430 * Note for future: If you are to reload bioset, 2431 * prep-ed requests in the queue may refer 2432 * to bio from the old bioset, so you must walk 2433 * through the queue to unprep. 2434 */ 2435 goto out; 2436 } 2437 2438 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2439 2440 md->io_pool = p->io_pool; 2441 p->io_pool = NULL; 2442 md->rq_pool = p->rq_pool; 2443 p->rq_pool = NULL; 2444 md->bs = p->bs; 2445 p->bs = NULL; 2446 2447 out: 2448 /* mempool bind completed, no longer need any mempools in the table */ 2449 dm_table_free_md_mempools(t); 2450 } 2451 2452 /* 2453 * Bind a table to the device. 2454 */ 2455 static void event_callback(void *context) 2456 { 2457 unsigned long flags; 2458 LIST_HEAD(uevents); 2459 struct mapped_device *md = (struct mapped_device *) context; 2460 2461 spin_lock_irqsave(&md->uevent_lock, flags); 2462 list_splice_init(&md->uevent_list, &uevents); 2463 spin_unlock_irqrestore(&md->uevent_lock, flags); 2464 2465 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2466 2467 atomic_inc(&md->event_nr); 2468 wake_up(&md->eventq); 2469 } 2470 2471 /* 2472 * Protected by md->suspend_lock obtained by dm_swap_table(). 2473 */ 2474 static void __set_size(struct mapped_device *md, sector_t size) 2475 { 2476 set_capacity(md->disk, size); 2477 2478 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2479 } 2480 2481 /* 2482 * Returns old map, which caller must destroy. 2483 */ 2484 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2485 struct queue_limits *limits) 2486 { 2487 struct dm_table *old_map; 2488 struct request_queue *q = md->queue; 2489 sector_t size; 2490 2491 size = dm_table_get_size(t); 2492 2493 /* 2494 * Wipe any geometry if the size of the table changed. 2495 */ 2496 if (size != dm_get_size(md)) 2497 memset(&md->geometry, 0, sizeof(md->geometry)); 2498 2499 __set_size(md, size); 2500 2501 dm_table_event_callback(t, event_callback, md); 2502 2503 /* 2504 * The queue hasn't been stopped yet, if the old table type wasn't 2505 * for request-based during suspension. So stop it to prevent 2506 * I/O mapping before resume. 2507 * This must be done before setting the queue restrictions, 2508 * because request-based dm may be run just after the setting. 2509 */ 2510 if (dm_table_request_based(t)) { 2511 dm_stop_queue(q); 2512 /* 2513 * Leverage the fact that request-based DM targets are 2514 * immutable singletons and establish md->immutable_target 2515 * - used to optimize both dm_request_fn and dm_mq_queue_rq 2516 */ 2517 md->immutable_target = dm_table_get_immutable_target(t); 2518 } 2519 2520 __bind_mempools(md, t); 2521 2522 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2523 rcu_assign_pointer(md->map, t); 2524 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2525 2526 dm_table_set_restrictions(t, q, limits); 2527 if (old_map) 2528 dm_sync_table(md); 2529 2530 return old_map; 2531 } 2532 2533 /* 2534 * Returns unbound table for the caller to free. 2535 */ 2536 static struct dm_table *__unbind(struct mapped_device *md) 2537 { 2538 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2539 2540 if (!map) 2541 return NULL; 2542 2543 dm_table_event_callback(map, NULL, NULL); 2544 RCU_INIT_POINTER(md->map, NULL); 2545 dm_sync_table(md); 2546 2547 return map; 2548 } 2549 2550 /* 2551 * Constructor for a new device. 2552 */ 2553 int dm_create(int minor, struct mapped_device **result) 2554 { 2555 struct mapped_device *md; 2556 2557 md = alloc_dev(minor); 2558 if (!md) 2559 return -ENXIO; 2560 2561 dm_sysfs_init(md); 2562 2563 *result = md; 2564 return 0; 2565 } 2566 2567 /* 2568 * Functions to manage md->type. 2569 * All are required to hold md->type_lock. 2570 */ 2571 void dm_lock_md_type(struct mapped_device *md) 2572 { 2573 mutex_lock(&md->type_lock); 2574 } 2575 2576 void dm_unlock_md_type(struct mapped_device *md) 2577 { 2578 mutex_unlock(&md->type_lock); 2579 } 2580 2581 void dm_set_md_type(struct mapped_device *md, unsigned type) 2582 { 2583 BUG_ON(!mutex_is_locked(&md->type_lock)); 2584 md->type = type; 2585 } 2586 2587 unsigned dm_get_md_type(struct mapped_device *md) 2588 { 2589 return md->type; 2590 } 2591 2592 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2593 { 2594 return md->immutable_target_type; 2595 } 2596 2597 /* 2598 * The queue_limits are only valid as long as you have a reference 2599 * count on 'md'. 2600 */ 2601 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2602 { 2603 BUG_ON(!atomic_read(&md->holders)); 2604 return &md->queue->limits; 2605 } 2606 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2607 2608 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md) 2609 { 2610 /* Initialize the request-based DM worker thread */ 2611 init_kthread_worker(&md->kworker); 2612 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2613 "kdmwork-%s", dm_device_name(md)); 2614 } 2615 2616 /* 2617 * Fully initialize a .request_fn request-based queue. 2618 */ 2619 static int dm_old_init_request_queue(struct mapped_device *md) 2620 { 2621 struct request_queue *q = NULL; 2622 2623 /* Fully initialize the queue */ 2624 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2625 if (!q) 2626 return -EINVAL; 2627 2628 /* disable dm_request_fn's merge heuristic by default */ 2629 md->seq_rq_merge_deadline_usecs = 0; 2630 2631 md->queue = q; 2632 dm_init_normal_md_queue(md); 2633 blk_queue_softirq_done(md->queue, dm_softirq_done); 2634 blk_queue_prep_rq(md->queue, dm_old_prep_fn); 2635 2636 dm_old_init_rq_based_worker_thread(md); 2637 2638 elv_register_queue(md->queue); 2639 2640 return 0; 2641 } 2642 2643 static int dm_mq_init_request(void *data, struct request *rq, 2644 unsigned int hctx_idx, unsigned int request_idx, 2645 unsigned int numa_node) 2646 { 2647 struct mapped_device *md = data; 2648 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2649 2650 /* 2651 * Must initialize md member of tio, otherwise it won't 2652 * be available in dm_mq_queue_rq. 2653 */ 2654 tio->md = md; 2655 2656 return 0; 2657 } 2658 2659 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2660 const struct blk_mq_queue_data *bd) 2661 { 2662 struct request *rq = bd->rq; 2663 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2664 struct mapped_device *md = tio->md; 2665 struct dm_target *ti = md->immutable_target; 2666 2667 if (unlikely(!ti)) { 2668 int srcu_idx; 2669 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2670 2671 ti = dm_table_find_target(map, 0); 2672 dm_put_live_table(md, srcu_idx); 2673 } 2674 2675 if (ti->type->busy && ti->type->busy(ti)) 2676 return BLK_MQ_RQ_QUEUE_BUSY; 2677 2678 dm_start_request(md, rq); 2679 2680 /* Init tio using md established in .init_request */ 2681 init_tio(tio, rq, md); 2682 2683 /* 2684 * Establish tio->ti before queuing work (map_tio_request) 2685 * or making direct call to map_request(). 2686 */ 2687 tio->ti = ti; 2688 2689 /* Direct call is fine since .queue_rq allows allocations */ 2690 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2691 /* Undo dm_start_request() before requeuing */ 2692 rq_end_stats(md, rq); 2693 rq_completed(md, rq_data_dir(rq), false); 2694 return BLK_MQ_RQ_QUEUE_BUSY; 2695 } 2696 2697 return BLK_MQ_RQ_QUEUE_OK; 2698 } 2699 2700 static struct blk_mq_ops dm_mq_ops = { 2701 .queue_rq = dm_mq_queue_rq, 2702 .map_queue = blk_mq_map_queue, 2703 .complete = dm_softirq_done, 2704 .init_request = dm_mq_init_request, 2705 }; 2706 2707 static int dm_mq_init_request_queue(struct mapped_device *md) 2708 { 2709 struct request_queue *q; 2710 int err; 2711 2712 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 2713 DMERR("request-based dm-mq may only be stacked on blk-mq device(s)"); 2714 return -EINVAL; 2715 } 2716 2717 md->tag_set = kzalloc(sizeof(struct blk_mq_tag_set), GFP_KERNEL); 2718 if (!md->tag_set) 2719 return -ENOMEM; 2720 2721 md->tag_set->ops = &dm_mq_ops; 2722 md->tag_set->queue_depth = dm_get_blk_mq_queue_depth(); 2723 md->tag_set->numa_node = NUMA_NO_NODE; 2724 md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2725 md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues(); 2726 md->tag_set->driver_data = md; 2727 2728 md->tag_set->cmd_size = sizeof(struct dm_rq_target_io); 2729 2730 err = blk_mq_alloc_tag_set(md->tag_set); 2731 if (err) 2732 goto out_kfree_tag_set; 2733 2734 q = blk_mq_init_allocated_queue(md->tag_set, md->queue); 2735 if (IS_ERR(q)) { 2736 err = PTR_ERR(q); 2737 goto out_tag_set; 2738 } 2739 md->queue = q; 2740 dm_init_md_queue(md); 2741 2742 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2743 blk_mq_register_disk(md->disk); 2744 2745 return 0; 2746 2747 out_tag_set: 2748 blk_mq_free_tag_set(md->tag_set); 2749 out_kfree_tag_set: 2750 kfree(md->tag_set); 2751 2752 return err; 2753 } 2754 2755 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2756 { 2757 if (type == DM_TYPE_BIO_BASED) 2758 return type; 2759 2760 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2761 } 2762 2763 /* 2764 * Setup the DM device's queue based on md's type 2765 */ 2766 int dm_setup_md_queue(struct mapped_device *md) 2767 { 2768 int r; 2769 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2770 2771 switch (md_type) { 2772 case DM_TYPE_REQUEST_BASED: 2773 r = dm_old_init_request_queue(md); 2774 if (r) { 2775 DMERR("Cannot initialize queue for request-based mapped device"); 2776 return r; 2777 } 2778 break; 2779 case DM_TYPE_MQ_REQUEST_BASED: 2780 r = dm_mq_init_request_queue(md); 2781 if (r) { 2782 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2783 return r; 2784 } 2785 break; 2786 case DM_TYPE_BIO_BASED: 2787 dm_init_normal_md_queue(md); 2788 blk_queue_make_request(md->queue, dm_make_request); 2789 /* 2790 * DM handles splitting bios as needed. Free the bio_split bioset 2791 * since it won't be used (saves 1 process per bio-based DM device). 2792 */ 2793 bioset_free(md->queue->bio_split); 2794 md->queue->bio_split = NULL; 2795 break; 2796 } 2797 2798 return 0; 2799 } 2800 2801 struct mapped_device *dm_get_md(dev_t dev) 2802 { 2803 struct mapped_device *md; 2804 unsigned minor = MINOR(dev); 2805 2806 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2807 return NULL; 2808 2809 spin_lock(&_minor_lock); 2810 2811 md = idr_find(&_minor_idr, minor); 2812 if (md) { 2813 if ((md == MINOR_ALLOCED || 2814 (MINOR(disk_devt(dm_disk(md))) != minor) || 2815 dm_deleting_md(md) || 2816 test_bit(DMF_FREEING, &md->flags))) { 2817 md = NULL; 2818 goto out; 2819 } 2820 dm_get(md); 2821 } 2822 2823 out: 2824 spin_unlock(&_minor_lock); 2825 2826 return md; 2827 } 2828 EXPORT_SYMBOL_GPL(dm_get_md); 2829 2830 void *dm_get_mdptr(struct mapped_device *md) 2831 { 2832 return md->interface_ptr; 2833 } 2834 2835 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2836 { 2837 md->interface_ptr = ptr; 2838 } 2839 2840 void dm_get(struct mapped_device *md) 2841 { 2842 atomic_inc(&md->holders); 2843 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2844 } 2845 2846 int dm_hold(struct mapped_device *md) 2847 { 2848 spin_lock(&_minor_lock); 2849 if (test_bit(DMF_FREEING, &md->flags)) { 2850 spin_unlock(&_minor_lock); 2851 return -EBUSY; 2852 } 2853 dm_get(md); 2854 spin_unlock(&_minor_lock); 2855 return 0; 2856 } 2857 EXPORT_SYMBOL_GPL(dm_hold); 2858 2859 const char *dm_device_name(struct mapped_device *md) 2860 { 2861 return md->name; 2862 } 2863 EXPORT_SYMBOL_GPL(dm_device_name); 2864 2865 static void __dm_destroy(struct mapped_device *md, bool wait) 2866 { 2867 struct dm_table *map; 2868 int srcu_idx; 2869 2870 might_sleep(); 2871 2872 spin_lock(&_minor_lock); 2873 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2874 set_bit(DMF_FREEING, &md->flags); 2875 spin_unlock(&_minor_lock); 2876 2877 if (dm_request_based(md) && md->kworker_task) 2878 flush_kthread_worker(&md->kworker); 2879 2880 /* 2881 * Take suspend_lock so that presuspend and postsuspend methods 2882 * do not race with internal suspend. 2883 */ 2884 mutex_lock(&md->suspend_lock); 2885 map = dm_get_live_table(md, &srcu_idx); 2886 if (!dm_suspended_md(md)) { 2887 dm_table_presuspend_targets(map); 2888 dm_table_postsuspend_targets(map); 2889 } 2890 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2891 dm_put_live_table(md, srcu_idx); 2892 mutex_unlock(&md->suspend_lock); 2893 2894 /* 2895 * Rare, but there may be I/O requests still going to complete, 2896 * for example. Wait for all references to disappear. 2897 * No one should increment the reference count of the mapped_device, 2898 * after the mapped_device state becomes DMF_FREEING. 2899 */ 2900 if (wait) 2901 while (atomic_read(&md->holders)) 2902 msleep(1); 2903 else if (atomic_read(&md->holders)) 2904 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2905 dm_device_name(md), atomic_read(&md->holders)); 2906 2907 dm_sysfs_exit(md); 2908 dm_table_destroy(__unbind(md)); 2909 free_dev(md); 2910 } 2911 2912 void dm_destroy(struct mapped_device *md) 2913 { 2914 __dm_destroy(md, true); 2915 } 2916 2917 void dm_destroy_immediate(struct mapped_device *md) 2918 { 2919 __dm_destroy(md, false); 2920 } 2921 2922 void dm_put(struct mapped_device *md) 2923 { 2924 atomic_dec(&md->holders); 2925 } 2926 EXPORT_SYMBOL_GPL(dm_put); 2927 2928 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2929 { 2930 int r = 0; 2931 DECLARE_WAITQUEUE(wait, current); 2932 2933 add_wait_queue(&md->wait, &wait); 2934 2935 while (1) { 2936 set_current_state(interruptible); 2937 2938 if (!md_in_flight(md)) 2939 break; 2940 2941 if (interruptible == TASK_INTERRUPTIBLE && 2942 signal_pending(current)) { 2943 r = -EINTR; 2944 break; 2945 } 2946 2947 io_schedule(); 2948 } 2949 set_current_state(TASK_RUNNING); 2950 2951 remove_wait_queue(&md->wait, &wait); 2952 2953 return r; 2954 } 2955 2956 /* 2957 * Process the deferred bios 2958 */ 2959 static void dm_wq_work(struct work_struct *work) 2960 { 2961 struct mapped_device *md = container_of(work, struct mapped_device, 2962 work); 2963 struct bio *c; 2964 int srcu_idx; 2965 struct dm_table *map; 2966 2967 map = dm_get_live_table(md, &srcu_idx); 2968 2969 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2970 spin_lock_irq(&md->deferred_lock); 2971 c = bio_list_pop(&md->deferred); 2972 spin_unlock_irq(&md->deferred_lock); 2973 2974 if (!c) 2975 break; 2976 2977 if (dm_request_based(md)) 2978 generic_make_request(c); 2979 else 2980 __split_and_process_bio(md, map, c); 2981 } 2982 2983 dm_put_live_table(md, srcu_idx); 2984 } 2985 2986 static void dm_queue_flush(struct mapped_device *md) 2987 { 2988 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2989 smp_mb__after_atomic(); 2990 queue_work(md->wq, &md->work); 2991 } 2992 2993 /* 2994 * Swap in a new table, returning the old one for the caller to destroy. 2995 */ 2996 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2997 { 2998 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2999 struct queue_limits limits; 3000 int r; 3001 3002 mutex_lock(&md->suspend_lock); 3003 3004 /* device must be suspended */ 3005 if (!dm_suspended_md(md)) 3006 goto out; 3007 3008 /* 3009 * If the new table has no data devices, retain the existing limits. 3010 * This helps multipath with queue_if_no_path if all paths disappear, 3011 * then new I/O is queued based on these limits, and then some paths 3012 * reappear. 3013 */ 3014 if (dm_table_has_no_data_devices(table)) { 3015 live_map = dm_get_live_table_fast(md); 3016 if (live_map) 3017 limits = md->queue->limits; 3018 dm_put_live_table_fast(md); 3019 } 3020 3021 if (!live_map) { 3022 r = dm_calculate_queue_limits(table, &limits); 3023 if (r) { 3024 map = ERR_PTR(r); 3025 goto out; 3026 } 3027 } 3028 3029 map = __bind(md, table, &limits); 3030 3031 out: 3032 mutex_unlock(&md->suspend_lock); 3033 return map; 3034 } 3035 3036 /* 3037 * Functions to lock and unlock any filesystem running on the 3038 * device. 3039 */ 3040 static int lock_fs(struct mapped_device *md) 3041 { 3042 int r; 3043 3044 WARN_ON(md->frozen_sb); 3045 3046 md->frozen_sb = freeze_bdev(md->bdev); 3047 if (IS_ERR(md->frozen_sb)) { 3048 r = PTR_ERR(md->frozen_sb); 3049 md->frozen_sb = NULL; 3050 return r; 3051 } 3052 3053 set_bit(DMF_FROZEN, &md->flags); 3054 3055 return 0; 3056 } 3057 3058 static void unlock_fs(struct mapped_device *md) 3059 { 3060 if (!test_bit(DMF_FROZEN, &md->flags)) 3061 return; 3062 3063 thaw_bdev(md->bdev, md->frozen_sb); 3064 md->frozen_sb = NULL; 3065 clear_bit(DMF_FROZEN, &md->flags); 3066 } 3067 3068 /* 3069 * If __dm_suspend returns 0, the device is completely quiescent 3070 * now. There is no request-processing activity. All new requests 3071 * are being added to md->deferred list. 3072 * 3073 * Caller must hold md->suspend_lock 3074 */ 3075 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3076 unsigned suspend_flags, int interruptible) 3077 { 3078 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3079 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3080 int r; 3081 3082 /* 3083 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3084 * This flag is cleared before dm_suspend returns. 3085 */ 3086 if (noflush) 3087 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3088 3089 /* 3090 * This gets reverted if there's an error later and the targets 3091 * provide the .presuspend_undo hook. 3092 */ 3093 dm_table_presuspend_targets(map); 3094 3095 /* 3096 * Flush I/O to the device. 3097 * Any I/O submitted after lock_fs() may not be flushed. 3098 * noflush takes precedence over do_lockfs. 3099 * (lock_fs() flushes I/Os and waits for them to complete.) 3100 */ 3101 if (!noflush && do_lockfs) { 3102 r = lock_fs(md); 3103 if (r) { 3104 dm_table_presuspend_undo_targets(map); 3105 return r; 3106 } 3107 } 3108 3109 /* 3110 * Here we must make sure that no processes are submitting requests 3111 * to target drivers i.e. no one may be executing 3112 * __split_and_process_bio. This is called from dm_request and 3113 * dm_wq_work. 3114 * 3115 * To get all processes out of __split_and_process_bio in dm_request, 3116 * we take the write lock. To prevent any process from reentering 3117 * __split_and_process_bio from dm_request and quiesce the thread 3118 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3119 * flush_workqueue(md->wq). 3120 */ 3121 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3122 if (map) 3123 synchronize_srcu(&md->io_barrier); 3124 3125 /* 3126 * Stop md->queue before flushing md->wq in case request-based 3127 * dm defers requests to md->wq from md->queue. 3128 */ 3129 if (dm_request_based(md)) { 3130 dm_stop_queue(md->queue); 3131 if (md->kworker_task) 3132 flush_kthread_worker(&md->kworker); 3133 } 3134 3135 flush_workqueue(md->wq); 3136 3137 /* 3138 * At this point no more requests are entering target request routines. 3139 * We call dm_wait_for_completion to wait for all existing requests 3140 * to finish. 3141 */ 3142 r = dm_wait_for_completion(md, interruptible); 3143 3144 if (noflush) 3145 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3146 if (map) 3147 synchronize_srcu(&md->io_barrier); 3148 3149 /* were we interrupted ? */ 3150 if (r < 0) { 3151 dm_queue_flush(md); 3152 3153 if (dm_request_based(md)) 3154 dm_start_queue(md->queue); 3155 3156 unlock_fs(md); 3157 dm_table_presuspend_undo_targets(map); 3158 /* pushback list is already flushed, so skip flush */ 3159 } 3160 3161 return r; 3162 } 3163 3164 /* 3165 * We need to be able to change a mapping table under a mounted 3166 * filesystem. For example we might want to move some data in 3167 * the background. Before the table can be swapped with 3168 * dm_bind_table, dm_suspend must be called to flush any in 3169 * flight bios and ensure that any further io gets deferred. 3170 */ 3171 /* 3172 * Suspend mechanism in request-based dm. 3173 * 3174 * 1. Flush all I/Os by lock_fs() if needed. 3175 * 2. Stop dispatching any I/O by stopping the request_queue. 3176 * 3. Wait for all in-flight I/Os to be completed or requeued. 3177 * 3178 * To abort suspend, start the request_queue. 3179 */ 3180 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3181 { 3182 struct dm_table *map = NULL; 3183 int r = 0; 3184 3185 retry: 3186 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3187 3188 if (dm_suspended_md(md)) { 3189 r = -EINVAL; 3190 goto out_unlock; 3191 } 3192 3193 if (dm_suspended_internally_md(md)) { 3194 /* already internally suspended, wait for internal resume */ 3195 mutex_unlock(&md->suspend_lock); 3196 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3197 if (r) 3198 return r; 3199 goto retry; 3200 } 3201 3202 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3203 3204 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3205 if (r) 3206 goto out_unlock; 3207 3208 set_bit(DMF_SUSPENDED, &md->flags); 3209 3210 dm_table_postsuspend_targets(map); 3211 3212 out_unlock: 3213 mutex_unlock(&md->suspend_lock); 3214 return r; 3215 } 3216 3217 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3218 { 3219 if (map) { 3220 int r = dm_table_resume_targets(map); 3221 if (r) 3222 return r; 3223 } 3224 3225 dm_queue_flush(md); 3226 3227 /* 3228 * Flushing deferred I/Os must be done after targets are resumed 3229 * so that mapping of targets can work correctly. 3230 * Request-based dm is queueing the deferred I/Os in its request_queue. 3231 */ 3232 if (dm_request_based(md)) 3233 dm_start_queue(md->queue); 3234 3235 unlock_fs(md); 3236 3237 return 0; 3238 } 3239 3240 int dm_resume(struct mapped_device *md) 3241 { 3242 int r = -EINVAL; 3243 struct dm_table *map = NULL; 3244 3245 retry: 3246 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3247 3248 if (!dm_suspended_md(md)) 3249 goto out; 3250 3251 if (dm_suspended_internally_md(md)) { 3252 /* already internally suspended, wait for internal resume */ 3253 mutex_unlock(&md->suspend_lock); 3254 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3255 if (r) 3256 return r; 3257 goto retry; 3258 } 3259 3260 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3261 if (!map || !dm_table_get_size(map)) 3262 goto out; 3263 3264 r = __dm_resume(md, map); 3265 if (r) 3266 goto out; 3267 3268 clear_bit(DMF_SUSPENDED, &md->flags); 3269 3270 r = 0; 3271 out: 3272 mutex_unlock(&md->suspend_lock); 3273 3274 return r; 3275 } 3276 3277 /* 3278 * Internal suspend/resume works like userspace-driven suspend. It waits 3279 * until all bios finish and prevents issuing new bios to the target drivers. 3280 * It may be used only from the kernel. 3281 */ 3282 3283 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3284 { 3285 struct dm_table *map = NULL; 3286 3287 if (md->internal_suspend_count++) 3288 return; /* nested internal suspend */ 3289 3290 if (dm_suspended_md(md)) { 3291 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3292 return; /* nest suspend */ 3293 } 3294 3295 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3296 3297 /* 3298 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3299 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3300 * would require changing .presuspend to return an error -- avoid this 3301 * until there is a need for more elaborate variants of internal suspend. 3302 */ 3303 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3304 3305 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3306 3307 dm_table_postsuspend_targets(map); 3308 } 3309 3310 static void __dm_internal_resume(struct mapped_device *md) 3311 { 3312 BUG_ON(!md->internal_suspend_count); 3313 3314 if (--md->internal_suspend_count) 3315 return; /* resume from nested internal suspend */ 3316 3317 if (dm_suspended_md(md)) 3318 goto done; /* resume from nested suspend */ 3319 3320 /* 3321 * NOTE: existing callers don't need to call dm_table_resume_targets 3322 * (which may fail -- so best to avoid it for now by passing NULL map) 3323 */ 3324 (void) __dm_resume(md, NULL); 3325 3326 done: 3327 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3328 smp_mb__after_atomic(); 3329 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3330 } 3331 3332 void dm_internal_suspend_noflush(struct mapped_device *md) 3333 { 3334 mutex_lock(&md->suspend_lock); 3335 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3336 mutex_unlock(&md->suspend_lock); 3337 } 3338 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3339 3340 void dm_internal_resume(struct mapped_device *md) 3341 { 3342 mutex_lock(&md->suspend_lock); 3343 __dm_internal_resume(md); 3344 mutex_unlock(&md->suspend_lock); 3345 } 3346 EXPORT_SYMBOL_GPL(dm_internal_resume); 3347 3348 /* 3349 * Fast variants of internal suspend/resume hold md->suspend_lock, 3350 * which prevents interaction with userspace-driven suspend. 3351 */ 3352 3353 void dm_internal_suspend_fast(struct mapped_device *md) 3354 { 3355 mutex_lock(&md->suspend_lock); 3356 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3357 return; 3358 3359 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3360 synchronize_srcu(&md->io_barrier); 3361 flush_workqueue(md->wq); 3362 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3363 } 3364 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3365 3366 void dm_internal_resume_fast(struct mapped_device *md) 3367 { 3368 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3369 goto done; 3370 3371 dm_queue_flush(md); 3372 3373 done: 3374 mutex_unlock(&md->suspend_lock); 3375 } 3376 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3377 3378 /*----------------------------------------------------------------- 3379 * Event notification. 3380 *---------------------------------------------------------------*/ 3381 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3382 unsigned cookie) 3383 { 3384 char udev_cookie[DM_COOKIE_LENGTH]; 3385 char *envp[] = { udev_cookie, NULL }; 3386 3387 if (!cookie) 3388 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3389 else { 3390 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3391 DM_COOKIE_ENV_VAR_NAME, cookie); 3392 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3393 action, envp); 3394 } 3395 } 3396 3397 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3398 { 3399 return atomic_add_return(1, &md->uevent_seq); 3400 } 3401 3402 uint32_t dm_get_event_nr(struct mapped_device *md) 3403 { 3404 return atomic_read(&md->event_nr); 3405 } 3406 3407 int dm_wait_event(struct mapped_device *md, int event_nr) 3408 { 3409 return wait_event_interruptible(md->eventq, 3410 (event_nr != atomic_read(&md->event_nr))); 3411 } 3412 3413 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3414 { 3415 unsigned long flags; 3416 3417 spin_lock_irqsave(&md->uevent_lock, flags); 3418 list_add(elist, &md->uevent_list); 3419 spin_unlock_irqrestore(&md->uevent_lock, flags); 3420 } 3421 3422 /* 3423 * The gendisk is only valid as long as you have a reference 3424 * count on 'md'. 3425 */ 3426 struct gendisk *dm_disk(struct mapped_device *md) 3427 { 3428 return md->disk; 3429 } 3430 EXPORT_SYMBOL_GPL(dm_disk); 3431 3432 struct kobject *dm_kobject(struct mapped_device *md) 3433 { 3434 return &md->kobj_holder.kobj; 3435 } 3436 3437 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3438 { 3439 struct mapped_device *md; 3440 3441 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3442 3443 if (test_bit(DMF_FREEING, &md->flags) || 3444 dm_deleting_md(md)) 3445 return NULL; 3446 3447 dm_get(md); 3448 return md; 3449 } 3450 3451 int dm_suspended_md(struct mapped_device *md) 3452 { 3453 return test_bit(DMF_SUSPENDED, &md->flags); 3454 } 3455 3456 int dm_suspended_internally_md(struct mapped_device *md) 3457 { 3458 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3459 } 3460 3461 int dm_test_deferred_remove_flag(struct mapped_device *md) 3462 { 3463 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3464 } 3465 3466 int dm_suspended(struct dm_target *ti) 3467 { 3468 return dm_suspended_md(dm_table_get_md(ti->table)); 3469 } 3470 EXPORT_SYMBOL_GPL(dm_suspended); 3471 3472 int dm_noflush_suspending(struct dm_target *ti) 3473 { 3474 return __noflush_suspending(dm_table_get_md(ti->table)); 3475 } 3476 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3477 3478 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3479 unsigned integrity, unsigned per_bio_data_size) 3480 { 3481 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3482 struct kmem_cache *cachep = NULL; 3483 unsigned int pool_size = 0; 3484 unsigned int front_pad; 3485 3486 if (!pools) 3487 return NULL; 3488 3489 type = filter_md_type(type, md); 3490 3491 switch (type) { 3492 case DM_TYPE_BIO_BASED: 3493 cachep = _io_cache; 3494 pool_size = dm_get_reserved_bio_based_ios(); 3495 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3496 break; 3497 case DM_TYPE_REQUEST_BASED: 3498 cachep = _rq_tio_cache; 3499 pool_size = dm_get_reserved_rq_based_ios(); 3500 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3501 if (!pools->rq_pool) 3502 goto out; 3503 /* fall through to setup remaining rq-based pools */ 3504 case DM_TYPE_MQ_REQUEST_BASED: 3505 if (!pool_size) 3506 pool_size = dm_get_reserved_rq_based_ios(); 3507 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3508 /* per_bio_data_size is not used. See __bind_mempools(). */ 3509 WARN_ON(per_bio_data_size != 0); 3510 break; 3511 default: 3512 BUG(); 3513 } 3514 3515 if (cachep) { 3516 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3517 if (!pools->io_pool) 3518 goto out; 3519 } 3520 3521 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3522 if (!pools->bs) 3523 goto out; 3524 3525 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3526 goto out; 3527 3528 return pools; 3529 3530 out: 3531 dm_free_md_mempools(pools); 3532 3533 return NULL; 3534 } 3535 3536 void dm_free_md_mempools(struct dm_md_mempools *pools) 3537 { 3538 if (!pools) 3539 return; 3540 3541 mempool_destroy(pools->io_pool); 3542 mempool_destroy(pools->rq_pool); 3543 3544 if (pools->bs) 3545 bioset_free(pools->bs); 3546 3547 kfree(pools); 3548 } 3549 3550 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3551 u32 flags) 3552 { 3553 struct mapped_device *md = bdev->bd_disk->private_data; 3554 const struct pr_ops *ops; 3555 fmode_t mode; 3556 int r; 3557 3558 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3559 if (r < 0) 3560 return r; 3561 3562 ops = bdev->bd_disk->fops->pr_ops; 3563 if (ops && ops->pr_register) 3564 r = ops->pr_register(bdev, old_key, new_key, flags); 3565 else 3566 r = -EOPNOTSUPP; 3567 3568 bdput(bdev); 3569 return r; 3570 } 3571 3572 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3573 u32 flags) 3574 { 3575 struct mapped_device *md = bdev->bd_disk->private_data; 3576 const struct pr_ops *ops; 3577 fmode_t mode; 3578 int r; 3579 3580 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3581 if (r < 0) 3582 return r; 3583 3584 ops = bdev->bd_disk->fops->pr_ops; 3585 if (ops && ops->pr_reserve) 3586 r = ops->pr_reserve(bdev, key, type, flags); 3587 else 3588 r = -EOPNOTSUPP; 3589 3590 bdput(bdev); 3591 return r; 3592 } 3593 3594 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3595 { 3596 struct mapped_device *md = bdev->bd_disk->private_data; 3597 const struct pr_ops *ops; 3598 fmode_t mode; 3599 int r; 3600 3601 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3602 if (r < 0) 3603 return r; 3604 3605 ops = bdev->bd_disk->fops->pr_ops; 3606 if (ops && ops->pr_release) 3607 r = ops->pr_release(bdev, key, type); 3608 else 3609 r = -EOPNOTSUPP; 3610 3611 bdput(bdev); 3612 return r; 3613 } 3614 3615 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3616 enum pr_type type, bool abort) 3617 { 3618 struct mapped_device *md = bdev->bd_disk->private_data; 3619 const struct pr_ops *ops; 3620 fmode_t mode; 3621 int r; 3622 3623 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3624 if (r < 0) 3625 return r; 3626 3627 ops = bdev->bd_disk->fops->pr_ops; 3628 if (ops && ops->pr_preempt) 3629 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3630 else 3631 r = -EOPNOTSUPP; 3632 3633 bdput(bdev); 3634 return r; 3635 } 3636 3637 static int dm_pr_clear(struct block_device *bdev, u64 key) 3638 { 3639 struct mapped_device *md = bdev->bd_disk->private_data; 3640 const struct pr_ops *ops; 3641 fmode_t mode; 3642 int r; 3643 3644 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3645 if (r < 0) 3646 return r; 3647 3648 ops = bdev->bd_disk->fops->pr_ops; 3649 if (ops && ops->pr_clear) 3650 r = ops->pr_clear(bdev, key); 3651 else 3652 r = -EOPNOTSUPP; 3653 3654 bdput(bdev); 3655 return r; 3656 } 3657 3658 static const struct pr_ops dm_pr_ops = { 3659 .pr_register = dm_pr_register, 3660 .pr_reserve = dm_pr_reserve, 3661 .pr_release = dm_pr_release, 3662 .pr_preempt = dm_pr_preempt, 3663 .pr_clear = dm_pr_clear, 3664 }; 3665 3666 static const struct block_device_operations dm_blk_dops = { 3667 .open = dm_blk_open, 3668 .release = dm_blk_close, 3669 .ioctl = dm_blk_ioctl, 3670 .getgeo = dm_blk_getgeo, 3671 .pr_ops = &dm_pr_ops, 3672 .owner = THIS_MODULE 3673 }; 3674 3675 /* 3676 * module hooks 3677 */ 3678 module_init(dm_init); 3679 module_exit(dm_exit); 3680 3681 module_param(major, uint, 0); 3682 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3683 3684 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3685 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3686 3687 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3688 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3689 3690 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3691 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3692 3693 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR); 3694 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices"); 3695 3696 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR); 3697 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices"); 3698 3699 MODULE_DESCRIPTION(DM_NAME " driver"); 3700 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3701 MODULE_LICENSE("GPL"); 3702