xref: /openbmc/linux/drivers/md/dm.c (revision eca7ee6dc01b21c669bce8c39d3d368509fb65e8)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 #define MINOR_ALLOCED ((void *)-1)
110 
111 /*
112  * Bits for the md->flags field.
113  */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122 
123 /*
124  * A dummy definition to make RCU happy.
125  * struct dm_table should never be dereferenced in this file.
126  */
127 struct dm_table {
128 	int undefined__;
129 };
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
134 struct mapped_device {
135 	struct srcu_struct io_barrier;
136 	struct mutex suspend_lock;
137 	atomic_t holders;
138 	atomic_t open_count;
139 
140 	/*
141 	 * The current mapping.
142 	 * Use dm_get_live_table{_fast} or take suspend_lock for
143 	 * dereference.
144 	 */
145 	struct dm_table __rcu *map;
146 
147 	struct list_head table_devices;
148 	struct mutex table_devices_lock;
149 
150 	unsigned long flags;
151 
152 	struct request_queue *queue;
153 	unsigned type;
154 	/* Protect queue and type against concurrent access. */
155 	struct mutex type_lock;
156 
157 	struct dm_target *immutable_target;
158 	struct target_type *immutable_target_type;
159 
160 	struct gendisk *disk;
161 	char name[16];
162 
163 	void *interface_ptr;
164 
165 	/*
166 	 * A list of ios that arrived while we were suspended.
167 	 */
168 	atomic_t pending[2];
169 	wait_queue_head_t wait;
170 	struct work_struct work;
171 	struct bio_list deferred;
172 	spinlock_t deferred_lock;
173 
174 	/*
175 	 * Processing queue (flush)
176 	 */
177 	struct workqueue_struct *wq;
178 
179 	/*
180 	 * io objects are allocated from here.
181 	 */
182 	mempool_t *io_pool;
183 	mempool_t *rq_pool;
184 
185 	struct bio_set *bs;
186 
187 	/*
188 	 * Event handling.
189 	 */
190 	atomic_t event_nr;
191 	wait_queue_head_t eventq;
192 	atomic_t uevent_seq;
193 	struct list_head uevent_list;
194 	spinlock_t uevent_lock; /* Protect access to uevent_list */
195 
196 	/*
197 	 * freeze/thaw support require holding onto a super block
198 	 */
199 	struct super_block *frozen_sb;
200 	struct block_device *bdev;
201 
202 	/* forced geometry settings */
203 	struct hd_geometry geometry;
204 
205 	/* kobject and completion */
206 	struct dm_kobject_holder kobj_holder;
207 
208 	/* zero-length flush that will be cloned and submitted to targets */
209 	struct bio flush_bio;
210 
211 	/* the number of internal suspends */
212 	unsigned internal_suspend_count;
213 
214 	struct dm_stats stats;
215 
216 	struct kthread_worker kworker;
217 	struct task_struct *kworker_task;
218 
219 	/* for request-based merge heuristic in dm_request_fn() */
220 	unsigned seq_rq_merge_deadline_usecs;
221 	int last_rq_rw;
222 	sector_t last_rq_pos;
223 	ktime_t last_rq_start_time;
224 
225 	/* for blk-mq request-based DM support */
226 	struct blk_mq_tag_set *tag_set;
227 	bool use_blk_mq;
228 };
229 
230 #ifdef CONFIG_DM_MQ_DEFAULT
231 static bool use_blk_mq = true;
232 #else
233 static bool use_blk_mq = false;
234 #endif
235 
236 #define DM_MQ_NR_HW_QUEUES 1
237 #define DM_MQ_QUEUE_DEPTH 2048
238 
239 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
240 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
241 
242 bool dm_use_blk_mq(struct mapped_device *md)
243 {
244 	return md->use_blk_mq;
245 }
246 
247 /*
248  * For mempools pre-allocation at the table loading time.
249  */
250 struct dm_md_mempools {
251 	mempool_t *io_pool;
252 	mempool_t *rq_pool;
253 	struct bio_set *bs;
254 };
255 
256 struct table_device {
257 	struct list_head list;
258 	atomic_t count;
259 	struct dm_dev dm_dev;
260 };
261 
262 #define RESERVED_BIO_BASED_IOS		16
263 #define RESERVED_REQUEST_BASED_IOS	256
264 #define RESERVED_MAX_IOS		1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268 
269 /*
270  * Bio-based DM's mempools' reserved IOs set by the user.
271  */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 
274 /*
275  * Request-based DM's mempools' reserved IOs set by the user.
276  */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278 
279 static unsigned __dm_get_module_param(unsigned *module_param,
280 				      unsigned def, unsigned max)
281 {
282 	unsigned param = ACCESS_ONCE(*module_param);
283 	unsigned modified_param = 0;
284 
285 	if (!param)
286 		modified_param = def;
287 	else if (param > max)
288 		modified_param = max;
289 
290 	if (modified_param) {
291 		(void)cmpxchg(module_param, param, modified_param);
292 		param = modified_param;
293 	}
294 
295 	return param;
296 }
297 
298 unsigned dm_get_reserved_bio_based_ios(void)
299 {
300 	return __dm_get_module_param(&reserved_bio_based_ios,
301 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
302 }
303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
304 
305 unsigned dm_get_reserved_rq_based_ios(void)
306 {
307 	return __dm_get_module_param(&reserved_rq_based_ios,
308 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
309 }
310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
311 
312 static unsigned dm_get_blk_mq_nr_hw_queues(void)
313 {
314 	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
315 }
316 
317 static unsigned dm_get_blk_mq_queue_depth(void)
318 {
319 	return __dm_get_module_param(&dm_mq_queue_depth,
320 				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
321 }
322 
323 static int __init local_init(void)
324 {
325 	int r = -ENOMEM;
326 
327 	/* allocate a slab for the dm_ios */
328 	_io_cache = KMEM_CACHE(dm_io, 0);
329 	if (!_io_cache)
330 		return r;
331 
332 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
333 	if (!_rq_tio_cache)
334 		goto out_free_io_cache;
335 
336 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
337 				      __alignof__(struct request), 0, NULL);
338 	if (!_rq_cache)
339 		goto out_free_rq_tio_cache;
340 
341 	r = dm_uevent_init();
342 	if (r)
343 		goto out_free_rq_cache;
344 
345 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
346 	if (!deferred_remove_workqueue) {
347 		r = -ENOMEM;
348 		goto out_uevent_exit;
349 	}
350 
351 	_major = major;
352 	r = register_blkdev(_major, _name);
353 	if (r < 0)
354 		goto out_free_workqueue;
355 
356 	if (!_major)
357 		_major = r;
358 
359 	return 0;
360 
361 out_free_workqueue:
362 	destroy_workqueue(deferred_remove_workqueue);
363 out_uevent_exit:
364 	dm_uevent_exit();
365 out_free_rq_cache:
366 	kmem_cache_destroy(_rq_cache);
367 out_free_rq_tio_cache:
368 	kmem_cache_destroy(_rq_tio_cache);
369 out_free_io_cache:
370 	kmem_cache_destroy(_io_cache);
371 
372 	return r;
373 }
374 
375 static void local_exit(void)
376 {
377 	flush_scheduled_work();
378 	destroy_workqueue(deferred_remove_workqueue);
379 
380 	kmem_cache_destroy(_rq_cache);
381 	kmem_cache_destroy(_rq_tio_cache);
382 	kmem_cache_destroy(_io_cache);
383 	unregister_blkdev(_major, _name);
384 	dm_uevent_exit();
385 
386 	_major = 0;
387 
388 	DMINFO("cleaned up");
389 }
390 
391 static int (*_inits[])(void) __initdata = {
392 	local_init,
393 	dm_target_init,
394 	dm_linear_init,
395 	dm_stripe_init,
396 	dm_io_init,
397 	dm_kcopyd_init,
398 	dm_interface_init,
399 	dm_statistics_init,
400 };
401 
402 static void (*_exits[])(void) = {
403 	local_exit,
404 	dm_target_exit,
405 	dm_linear_exit,
406 	dm_stripe_exit,
407 	dm_io_exit,
408 	dm_kcopyd_exit,
409 	dm_interface_exit,
410 	dm_statistics_exit,
411 };
412 
413 static int __init dm_init(void)
414 {
415 	const int count = ARRAY_SIZE(_inits);
416 
417 	int r, i;
418 
419 	for (i = 0; i < count; i++) {
420 		r = _inits[i]();
421 		if (r)
422 			goto bad;
423 	}
424 
425 	return 0;
426 
427       bad:
428 	while (i--)
429 		_exits[i]();
430 
431 	return r;
432 }
433 
434 static void __exit dm_exit(void)
435 {
436 	int i = ARRAY_SIZE(_exits);
437 
438 	while (i--)
439 		_exits[i]();
440 
441 	/*
442 	 * Should be empty by this point.
443 	 */
444 	idr_destroy(&_minor_idr);
445 }
446 
447 /*
448  * Block device functions
449  */
450 int dm_deleting_md(struct mapped_device *md)
451 {
452 	return test_bit(DMF_DELETING, &md->flags);
453 }
454 
455 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
456 {
457 	struct mapped_device *md;
458 
459 	spin_lock(&_minor_lock);
460 
461 	md = bdev->bd_disk->private_data;
462 	if (!md)
463 		goto out;
464 
465 	if (test_bit(DMF_FREEING, &md->flags) ||
466 	    dm_deleting_md(md)) {
467 		md = NULL;
468 		goto out;
469 	}
470 
471 	dm_get(md);
472 	atomic_inc(&md->open_count);
473 out:
474 	spin_unlock(&_minor_lock);
475 
476 	return md ? 0 : -ENXIO;
477 }
478 
479 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
480 {
481 	struct mapped_device *md;
482 
483 	spin_lock(&_minor_lock);
484 
485 	md = disk->private_data;
486 	if (WARN_ON(!md))
487 		goto out;
488 
489 	if (atomic_dec_and_test(&md->open_count) &&
490 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
491 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
492 
493 	dm_put(md);
494 out:
495 	spin_unlock(&_minor_lock);
496 }
497 
498 int dm_open_count(struct mapped_device *md)
499 {
500 	return atomic_read(&md->open_count);
501 }
502 
503 /*
504  * Guarantees nothing is using the device before it's deleted.
505  */
506 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
507 {
508 	int r = 0;
509 
510 	spin_lock(&_minor_lock);
511 
512 	if (dm_open_count(md)) {
513 		r = -EBUSY;
514 		if (mark_deferred)
515 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
516 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
517 		r = -EEXIST;
518 	else
519 		set_bit(DMF_DELETING, &md->flags);
520 
521 	spin_unlock(&_minor_lock);
522 
523 	return r;
524 }
525 
526 int dm_cancel_deferred_remove(struct mapped_device *md)
527 {
528 	int r = 0;
529 
530 	spin_lock(&_minor_lock);
531 
532 	if (test_bit(DMF_DELETING, &md->flags))
533 		r = -EBUSY;
534 	else
535 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
536 
537 	spin_unlock(&_minor_lock);
538 
539 	return r;
540 }
541 
542 static void do_deferred_remove(struct work_struct *w)
543 {
544 	dm_deferred_remove();
545 }
546 
547 sector_t dm_get_size(struct mapped_device *md)
548 {
549 	return get_capacity(md->disk);
550 }
551 
552 struct request_queue *dm_get_md_queue(struct mapped_device *md)
553 {
554 	return md->queue;
555 }
556 
557 struct dm_stats *dm_get_stats(struct mapped_device *md)
558 {
559 	return &md->stats;
560 }
561 
562 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
563 {
564 	struct mapped_device *md = bdev->bd_disk->private_data;
565 
566 	return dm_get_geometry(md, geo);
567 }
568 
569 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
570 				  struct block_device **bdev,
571 				  fmode_t *mode)
572 {
573 	struct dm_target *tgt;
574 	struct dm_table *map;
575 	int srcu_idx, r;
576 
577 retry:
578 	r = -ENOTTY;
579 	map = dm_get_live_table(md, &srcu_idx);
580 	if (!map || !dm_table_get_size(map))
581 		goto out;
582 
583 	/* We only support devices that have a single target */
584 	if (dm_table_get_num_targets(map) != 1)
585 		goto out;
586 
587 	tgt = dm_table_get_target(map, 0);
588 	if (!tgt->type->prepare_ioctl)
589 		goto out;
590 
591 	if (dm_suspended_md(md)) {
592 		r = -EAGAIN;
593 		goto out;
594 	}
595 
596 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
597 	if (r < 0)
598 		goto out;
599 
600 	bdgrab(*bdev);
601 	dm_put_live_table(md, srcu_idx);
602 	return r;
603 
604 out:
605 	dm_put_live_table(md, srcu_idx);
606 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
607 		msleep(10);
608 		goto retry;
609 	}
610 	return r;
611 }
612 
613 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
614 			unsigned int cmd, unsigned long arg)
615 {
616 	struct mapped_device *md = bdev->bd_disk->private_data;
617 	int r;
618 
619 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
620 	if (r < 0)
621 		return r;
622 
623 	if (r > 0) {
624 		/*
625 		 * Target determined this ioctl is being issued against
626 		 * a logical partition of the parent bdev; so extra
627 		 * validation is needed.
628 		 */
629 		r = scsi_verify_blk_ioctl(NULL, cmd);
630 		if (r)
631 			goto out;
632 	}
633 
634 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
635 out:
636 	bdput(bdev);
637 	return r;
638 }
639 
640 static struct dm_io *alloc_io(struct mapped_device *md)
641 {
642 	return mempool_alloc(md->io_pool, GFP_NOIO);
643 }
644 
645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 	mempool_free(io, md->io_pool);
648 }
649 
650 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
651 {
652 	bio_put(&tio->clone);
653 }
654 
655 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
656 						gfp_t gfp_mask)
657 {
658 	return mempool_alloc(md->io_pool, gfp_mask);
659 }
660 
661 static void free_old_rq_tio(struct dm_rq_target_io *tio)
662 {
663 	mempool_free(tio, tio->md->io_pool);
664 }
665 
666 static struct request *alloc_old_clone_request(struct mapped_device *md,
667 					       gfp_t gfp_mask)
668 {
669 	return mempool_alloc(md->rq_pool, gfp_mask);
670 }
671 
672 static void free_old_clone_request(struct mapped_device *md, struct request *rq)
673 {
674 	mempool_free(rq, md->rq_pool);
675 }
676 
677 static int md_in_flight(struct mapped_device *md)
678 {
679 	return atomic_read(&md->pending[READ]) +
680 	       atomic_read(&md->pending[WRITE]);
681 }
682 
683 static void start_io_acct(struct dm_io *io)
684 {
685 	struct mapped_device *md = io->md;
686 	struct bio *bio = io->bio;
687 	int cpu;
688 	int rw = bio_data_dir(bio);
689 
690 	io->start_time = jiffies;
691 
692 	cpu = part_stat_lock();
693 	part_round_stats(cpu, &dm_disk(md)->part0);
694 	part_stat_unlock();
695 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
696 		atomic_inc_return(&md->pending[rw]));
697 
698 	if (unlikely(dm_stats_used(&md->stats)))
699 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
700 				    bio_sectors(bio), false, 0, &io->stats_aux);
701 }
702 
703 static void end_io_acct(struct dm_io *io)
704 {
705 	struct mapped_device *md = io->md;
706 	struct bio *bio = io->bio;
707 	unsigned long duration = jiffies - io->start_time;
708 	int pending;
709 	int rw = bio_data_dir(bio);
710 
711 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
712 
713 	if (unlikely(dm_stats_used(&md->stats)))
714 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
715 				    bio_sectors(bio), true, duration, &io->stats_aux);
716 
717 	/*
718 	 * After this is decremented the bio must not be touched if it is
719 	 * a flush.
720 	 */
721 	pending = atomic_dec_return(&md->pending[rw]);
722 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
723 	pending += atomic_read(&md->pending[rw^0x1]);
724 
725 	/* nudge anyone waiting on suspend queue */
726 	if (!pending)
727 		wake_up(&md->wait);
728 }
729 
730 /*
731  * Add the bio to the list of deferred io.
732  */
733 static void queue_io(struct mapped_device *md, struct bio *bio)
734 {
735 	unsigned long flags;
736 
737 	spin_lock_irqsave(&md->deferred_lock, flags);
738 	bio_list_add(&md->deferred, bio);
739 	spin_unlock_irqrestore(&md->deferred_lock, flags);
740 	queue_work(md->wq, &md->work);
741 }
742 
743 /*
744  * Everyone (including functions in this file), should use this
745  * function to access the md->map field, and make sure they call
746  * dm_put_live_table() when finished.
747  */
748 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
749 {
750 	*srcu_idx = srcu_read_lock(&md->io_barrier);
751 
752 	return srcu_dereference(md->map, &md->io_barrier);
753 }
754 
755 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
756 {
757 	srcu_read_unlock(&md->io_barrier, srcu_idx);
758 }
759 
760 void dm_sync_table(struct mapped_device *md)
761 {
762 	synchronize_srcu(&md->io_barrier);
763 	synchronize_rcu_expedited();
764 }
765 
766 /*
767  * A fast alternative to dm_get_live_table/dm_put_live_table.
768  * The caller must not block between these two functions.
769  */
770 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
771 {
772 	rcu_read_lock();
773 	return rcu_dereference(md->map);
774 }
775 
776 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
777 {
778 	rcu_read_unlock();
779 }
780 
781 /*
782  * Open a table device so we can use it as a map destination.
783  */
784 static int open_table_device(struct table_device *td, dev_t dev,
785 			     struct mapped_device *md)
786 {
787 	static char *_claim_ptr = "I belong to device-mapper";
788 	struct block_device *bdev;
789 
790 	int r;
791 
792 	BUG_ON(td->dm_dev.bdev);
793 
794 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
795 	if (IS_ERR(bdev))
796 		return PTR_ERR(bdev);
797 
798 	r = bd_link_disk_holder(bdev, dm_disk(md));
799 	if (r) {
800 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
801 		return r;
802 	}
803 
804 	td->dm_dev.bdev = bdev;
805 	return 0;
806 }
807 
808 /*
809  * Close a table device that we've been using.
810  */
811 static void close_table_device(struct table_device *td, struct mapped_device *md)
812 {
813 	if (!td->dm_dev.bdev)
814 		return;
815 
816 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
817 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
818 	td->dm_dev.bdev = NULL;
819 }
820 
821 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
822 					      fmode_t mode) {
823 	struct table_device *td;
824 
825 	list_for_each_entry(td, l, list)
826 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
827 			return td;
828 
829 	return NULL;
830 }
831 
832 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
833 			struct dm_dev **result) {
834 	int r;
835 	struct table_device *td;
836 
837 	mutex_lock(&md->table_devices_lock);
838 	td = find_table_device(&md->table_devices, dev, mode);
839 	if (!td) {
840 		td = kmalloc(sizeof(*td), GFP_KERNEL);
841 		if (!td) {
842 			mutex_unlock(&md->table_devices_lock);
843 			return -ENOMEM;
844 		}
845 
846 		td->dm_dev.mode = mode;
847 		td->dm_dev.bdev = NULL;
848 
849 		if ((r = open_table_device(td, dev, md))) {
850 			mutex_unlock(&md->table_devices_lock);
851 			kfree(td);
852 			return r;
853 		}
854 
855 		format_dev_t(td->dm_dev.name, dev);
856 
857 		atomic_set(&td->count, 0);
858 		list_add(&td->list, &md->table_devices);
859 	}
860 	atomic_inc(&td->count);
861 	mutex_unlock(&md->table_devices_lock);
862 
863 	*result = &td->dm_dev;
864 	return 0;
865 }
866 EXPORT_SYMBOL_GPL(dm_get_table_device);
867 
868 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
869 {
870 	struct table_device *td = container_of(d, struct table_device, dm_dev);
871 
872 	mutex_lock(&md->table_devices_lock);
873 	if (atomic_dec_and_test(&td->count)) {
874 		close_table_device(td, md);
875 		list_del(&td->list);
876 		kfree(td);
877 	}
878 	mutex_unlock(&md->table_devices_lock);
879 }
880 EXPORT_SYMBOL(dm_put_table_device);
881 
882 static void free_table_devices(struct list_head *devices)
883 {
884 	struct list_head *tmp, *next;
885 
886 	list_for_each_safe(tmp, next, devices) {
887 		struct table_device *td = list_entry(tmp, struct table_device, list);
888 
889 		DMWARN("dm_destroy: %s still exists with %d references",
890 		       td->dm_dev.name, atomic_read(&td->count));
891 		kfree(td);
892 	}
893 }
894 
895 /*
896  * Get the geometry associated with a dm device
897  */
898 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 	*geo = md->geometry;
901 
902 	return 0;
903 }
904 
905 /*
906  * Set the geometry of a device.
907  */
908 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
909 {
910 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
911 
912 	if (geo->start > sz) {
913 		DMWARN("Start sector is beyond the geometry limits.");
914 		return -EINVAL;
915 	}
916 
917 	md->geometry = *geo;
918 
919 	return 0;
920 }
921 
922 /*-----------------------------------------------------------------
923  * CRUD START:
924  *   A more elegant soln is in the works that uses the queue
925  *   merge fn, unfortunately there are a couple of changes to
926  *   the block layer that I want to make for this.  So in the
927  *   interests of getting something for people to use I give
928  *   you this clearly demarcated crap.
929  *---------------------------------------------------------------*/
930 
931 static int __noflush_suspending(struct mapped_device *md)
932 {
933 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
934 }
935 
936 /*
937  * Decrements the number of outstanding ios that a bio has been
938  * cloned into, completing the original io if necc.
939  */
940 static void dec_pending(struct dm_io *io, int error)
941 {
942 	unsigned long flags;
943 	int io_error;
944 	struct bio *bio;
945 	struct mapped_device *md = io->md;
946 
947 	/* Push-back supersedes any I/O errors */
948 	if (unlikely(error)) {
949 		spin_lock_irqsave(&io->endio_lock, flags);
950 		if (!(io->error > 0 && __noflush_suspending(md)))
951 			io->error = error;
952 		spin_unlock_irqrestore(&io->endio_lock, flags);
953 	}
954 
955 	if (atomic_dec_and_test(&io->io_count)) {
956 		if (io->error == DM_ENDIO_REQUEUE) {
957 			/*
958 			 * Target requested pushing back the I/O.
959 			 */
960 			spin_lock_irqsave(&md->deferred_lock, flags);
961 			if (__noflush_suspending(md))
962 				bio_list_add_head(&md->deferred, io->bio);
963 			else
964 				/* noflush suspend was interrupted. */
965 				io->error = -EIO;
966 			spin_unlock_irqrestore(&md->deferred_lock, flags);
967 		}
968 
969 		io_error = io->error;
970 		bio = io->bio;
971 		end_io_acct(io);
972 		free_io(md, io);
973 
974 		if (io_error == DM_ENDIO_REQUEUE)
975 			return;
976 
977 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
978 			/*
979 			 * Preflush done for flush with data, reissue
980 			 * without REQ_FLUSH.
981 			 */
982 			bio->bi_rw &= ~REQ_FLUSH;
983 			queue_io(md, bio);
984 		} else {
985 			/* done with normal IO or empty flush */
986 			trace_block_bio_complete(md->queue, bio, io_error);
987 			bio->bi_error = io_error;
988 			bio_endio(bio);
989 		}
990 	}
991 }
992 
993 static void disable_write_same(struct mapped_device *md)
994 {
995 	struct queue_limits *limits = dm_get_queue_limits(md);
996 
997 	/* device doesn't really support WRITE SAME, disable it */
998 	limits->max_write_same_sectors = 0;
999 }
1000 
1001 static void clone_endio(struct bio *bio)
1002 {
1003 	int error = bio->bi_error;
1004 	int r = error;
1005 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1006 	struct dm_io *io = tio->io;
1007 	struct mapped_device *md = tio->io->md;
1008 	dm_endio_fn endio = tio->ti->type->end_io;
1009 
1010 	if (endio) {
1011 		r = endio(tio->ti, bio, error);
1012 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1013 			/*
1014 			 * error and requeue request are handled
1015 			 * in dec_pending().
1016 			 */
1017 			error = r;
1018 		else if (r == DM_ENDIO_INCOMPLETE)
1019 			/* The target will handle the io */
1020 			return;
1021 		else if (r) {
1022 			DMWARN("unimplemented target endio return value: %d", r);
1023 			BUG();
1024 		}
1025 	}
1026 
1027 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1028 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1029 		disable_write_same(md);
1030 
1031 	free_tio(md, tio);
1032 	dec_pending(io, error);
1033 }
1034 
1035 /*
1036  * Partial completion handling for request-based dm
1037  */
1038 static void end_clone_bio(struct bio *clone)
1039 {
1040 	struct dm_rq_clone_bio_info *info =
1041 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1042 	struct dm_rq_target_io *tio = info->tio;
1043 	struct bio *bio = info->orig;
1044 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1045 	int error = clone->bi_error;
1046 
1047 	bio_put(clone);
1048 
1049 	if (tio->error)
1050 		/*
1051 		 * An error has already been detected on the request.
1052 		 * Once error occurred, just let clone->end_io() handle
1053 		 * the remainder.
1054 		 */
1055 		return;
1056 	else if (error) {
1057 		/*
1058 		 * Don't notice the error to the upper layer yet.
1059 		 * The error handling decision is made by the target driver,
1060 		 * when the request is completed.
1061 		 */
1062 		tio->error = error;
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * I/O for the bio successfully completed.
1068 	 * Notice the data completion to the upper layer.
1069 	 */
1070 
1071 	/*
1072 	 * bios are processed from the head of the list.
1073 	 * So the completing bio should always be rq->bio.
1074 	 * If it's not, something wrong is happening.
1075 	 */
1076 	if (tio->orig->bio != bio)
1077 		DMERR("bio completion is going in the middle of the request");
1078 
1079 	/*
1080 	 * Update the original request.
1081 	 * Do not use blk_end_request() here, because it may complete
1082 	 * the original request before the clone, and break the ordering.
1083 	 */
1084 	blk_update_request(tio->orig, 0, nr_bytes);
1085 }
1086 
1087 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1088 {
1089 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1090 }
1091 
1092 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1093 {
1094 	if (unlikely(dm_stats_used(&md->stats))) {
1095 		struct dm_rq_target_io *tio = tio_from_request(orig);
1096 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1097 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1098 				    tio->n_sectors, true, tio->duration_jiffies,
1099 				    &tio->stats_aux);
1100 	}
1101 }
1102 
1103 /*
1104  * Don't touch any member of the md after calling this function because
1105  * the md may be freed in dm_put() at the end of this function.
1106  * Or do dm_get() before calling this function and dm_put() later.
1107  */
1108 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1109 {
1110 	atomic_dec(&md->pending[rw]);
1111 
1112 	/* nudge anyone waiting on suspend queue */
1113 	if (!md_in_flight(md))
1114 		wake_up(&md->wait);
1115 
1116 	/*
1117 	 * Run this off this callpath, as drivers could invoke end_io while
1118 	 * inside their request_fn (and holding the queue lock). Calling
1119 	 * back into ->request_fn() could deadlock attempting to grab the
1120 	 * queue lock again.
1121 	 */
1122 	if (!md->queue->mq_ops && run_queue)
1123 		blk_run_queue_async(md->queue);
1124 
1125 	/*
1126 	 * dm_put() must be at the end of this function. See the comment above
1127 	 */
1128 	dm_put(md);
1129 }
1130 
1131 static void free_rq_clone(struct request *clone)
1132 {
1133 	struct dm_rq_target_io *tio = clone->end_io_data;
1134 	struct mapped_device *md = tio->md;
1135 
1136 	blk_rq_unprep_clone(clone);
1137 
1138 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1139 		/* stacked on blk-mq queue(s) */
1140 		tio->ti->type->release_clone_rq(clone);
1141 	else if (!md->queue->mq_ops)
1142 		/* request_fn queue stacked on request_fn queue(s) */
1143 		free_old_clone_request(md, clone);
1144 
1145 	if (!md->queue->mq_ops)
1146 		free_old_rq_tio(tio);
1147 }
1148 
1149 /*
1150  * Complete the clone and the original request.
1151  * Must be called without clone's queue lock held,
1152  * see end_clone_request() for more details.
1153  */
1154 static void dm_end_request(struct request *clone, int error)
1155 {
1156 	int rw = rq_data_dir(clone);
1157 	struct dm_rq_target_io *tio = clone->end_io_data;
1158 	struct mapped_device *md = tio->md;
1159 	struct request *rq = tio->orig;
1160 
1161 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1162 		rq->errors = clone->errors;
1163 		rq->resid_len = clone->resid_len;
1164 
1165 		if (rq->sense)
1166 			/*
1167 			 * We are using the sense buffer of the original
1168 			 * request.
1169 			 * So setting the length of the sense data is enough.
1170 			 */
1171 			rq->sense_len = clone->sense_len;
1172 	}
1173 
1174 	free_rq_clone(clone);
1175 	rq_end_stats(md, rq);
1176 	if (!rq->q->mq_ops)
1177 		blk_end_request_all(rq, error);
1178 	else
1179 		blk_mq_end_request(rq, error);
1180 	rq_completed(md, rw, true);
1181 }
1182 
1183 static void dm_unprep_request(struct request *rq)
1184 {
1185 	struct dm_rq_target_io *tio = tio_from_request(rq);
1186 	struct request *clone = tio->clone;
1187 
1188 	if (!rq->q->mq_ops) {
1189 		rq->special = NULL;
1190 		rq->cmd_flags &= ~REQ_DONTPREP;
1191 	}
1192 
1193 	if (clone)
1194 		free_rq_clone(clone);
1195 	else if (!tio->md->queue->mq_ops)
1196 		free_old_rq_tio(tio);
1197 }
1198 
1199 /*
1200  * Requeue the original request of a clone.
1201  */
1202 static void dm_old_requeue_request(struct request *rq)
1203 {
1204 	struct request_queue *q = rq->q;
1205 	unsigned long flags;
1206 
1207 	spin_lock_irqsave(q->queue_lock, flags);
1208 	blk_requeue_request(q, rq);
1209 	blk_run_queue_async(q);
1210 	spin_unlock_irqrestore(q->queue_lock, flags);
1211 }
1212 
1213 static void dm_mq_requeue_request(struct request *rq)
1214 {
1215 	struct request_queue *q = rq->q;
1216 	unsigned long flags;
1217 
1218 	blk_mq_requeue_request(rq);
1219 	spin_lock_irqsave(q->queue_lock, flags);
1220 	if (!blk_queue_stopped(q))
1221 		blk_mq_kick_requeue_list(q);
1222 	spin_unlock_irqrestore(q->queue_lock, flags);
1223 }
1224 
1225 static void dm_requeue_original_request(struct mapped_device *md,
1226 					struct request *rq)
1227 {
1228 	int rw = rq_data_dir(rq);
1229 
1230 	dm_unprep_request(rq);
1231 
1232 	rq_end_stats(md, rq);
1233 	if (!rq->q->mq_ops)
1234 		dm_old_requeue_request(rq);
1235 	else
1236 		dm_mq_requeue_request(rq);
1237 
1238 	rq_completed(md, rw, false);
1239 }
1240 
1241 static void dm_old_stop_queue(struct request_queue *q)
1242 {
1243 	unsigned long flags;
1244 
1245 	spin_lock_irqsave(q->queue_lock, flags);
1246 	if (blk_queue_stopped(q)) {
1247 		spin_unlock_irqrestore(q->queue_lock, flags);
1248 		return;
1249 	}
1250 
1251 	blk_stop_queue(q);
1252 	spin_unlock_irqrestore(q->queue_lock, flags);
1253 }
1254 
1255 static void dm_stop_queue(struct request_queue *q)
1256 {
1257 	if (!q->mq_ops)
1258 		dm_old_stop_queue(q);
1259 	else
1260 		blk_mq_stop_hw_queues(q);
1261 }
1262 
1263 static void dm_old_start_queue(struct request_queue *q)
1264 {
1265 	unsigned long flags;
1266 
1267 	spin_lock_irqsave(q->queue_lock, flags);
1268 	if (blk_queue_stopped(q))
1269 		blk_start_queue(q);
1270 	spin_unlock_irqrestore(q->queue_lock, flags);
1271 }
1272 
1273 static void dm_start_queue(struct request_queue *q)
1274 {
1275 	if (!q->mq_ops)
1276 		dm_old_start_queue(q);
1277 	else {
1278 		blk_mq_start_stopped_hw_queues(q, true);
1279 		blk_mq_kick_requeue_list(q);
1280 	}
1281 }
1282 
1283 static void dm_done(struct request *clone, int error, bool mapped)
1284 {
1285 	int r = error;
1286 	struct dm_rq_target_io *tio = clone->end_io_data;
1287 	dm_request_endio_fn rq_end_io = NULL;
1288 
1289 	if (tio->ti) {
1290 		rq_end_io = tio->ti->type->rq_end_io;
1291 
1292 		if (mapped && rq_end_io)
1293 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1294 	}
1295 
1296 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1297 		     !clone->q->limits.max_write_same_sectors))
1298 		disable_write_same(tio->md);
1299 
1300 	if (r <= 0)
1301 		/* The target wants to complete the I/O */
1302 		dm_end_request(clone, r);
1303 	else if (r == DM_ENDIO_INCOMPLETE)
1304 		/* The target will handle the I/O */
1305 		return;
1306 	else if (r == DM_ENDIO_REQUEUE)
1307 		/* The target wants to requeue the I/O */
1308 		dm_requeue_original_request(tio->md, tio->orig);
1309 	else {
1310 		DMWARN("unimplemented target endio return value: %d", r);
1311 		BUG();
1312 	}
1313 }
1314 
1315 /*
1316  * Request completion handler for request-based dm
1317  */
1318 static void dm_softirq_done(struct request *rq)
1319 {
1320 	bool mapped = true;
1321 	struct dm_rq_target_io *tio = tio_from_request(rq);
1322 	struct request *clone = tio->clone;
1323 	int rw;
1324 
1325 	if (!clone) {
1326 		rq_end_stats(tio->md, rq);
1327 		rw = rq_data_dir(rq);
1328 		if (!rq->q->mq_ops) {
1329 			blk_end_request_all(rq, tio->error);
1330 			rq_completed(tio->md, rw, false);
1331 			free_old_rq_tio(tio);
1332 		} else {
1333 			blk_mq_end_request(rq, tio->error);
1334 			rq_completed(tio->md, rw, false);
1335 		}
1336 		return;
1337 	}
1338 
1339 	if (rq->cmd_flags & REQ_FAILED)
1340 		mapped = false;
1341 
1342 	dm_done(clone, tio->error, mapped);
1343 }
1344 
1345 /*
1346  * Complete the clone and the original request with the error status
1347  * through softirq context.
1348  */
1349 static void dm_complete_request(struct request *rq, int error)
1350 {
1351 	struct dm_rq_target_io *tio = tio_from_request(rq);
1352 
1353 	tio->error = error;
1354 	if (!rq->q->mq_ops)
1355 		blk_complete_request(rq);
1356 	else
1357 		blk_mq_complete_request(rq, error);
1358 }
1359 
1360 /*
1361  * Complete the not-mapped clone and the original request with the error status
1362  * through softirq context.
1363  * Target's rq_end_io() function isn't called.
1364  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1365  */
1366 static void dm_kill_unmapped_request(struct request *rq, int error)
1367 {
1368 	rq->cmd_flags |= REQ_FAILED;
1369 	dm_complete_request(rq, error);
1370 }
1371 
1372 /*
1373  * Called with the clone's queue lock held (in the case of .request_fn)
1374  */
1375 static void end_clone_request(struct request *clone, int error)
1376 {
1377 	struct dm_rq_target_io *tio = clone->end_io_data;
1378 
1379 	if (!clone->q->mq_ops) {
1380 		/*
1381 		 * For just cleaning up the information of the queue in which
1382 		 * the clone was dispatched.
1383 		 * The clone is *NOT* freed actually here because it is alloced
1384 		 * from dm own mempool (REQ_ALLOCED isn't set).
1385 		 */
1386 		__blk_put_request(clone->q, clone);
1387 	}
1388 
1389 	/*
1390 	 * Actual request completion is done in a softirq context which doesn't
1391 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1392 	 *     - another request may be submitted by the upper level driver
1393 	 *       of the stacking during the completion
1394 	 *     - the submission which requires queue lock may be done
1395 	 *       against this clone's queue
1396 	 */
1397 	dm_complete_request(tio->orig, error);
1398 }
1399 
1400 /*
1401  * Return maximum size of I/O possible at the supplied sector up to the current
1402  * target boundary.
1403  */
1404 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1405 {
1406 	sector_t target_offset = dm_target_offset(ti, sector);
1407 
1408 	return ti->len - target_offset;
1409 }
1410 
1411 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1412 {
1413 	sector_t len = max_io_len_target_boundary(sector, ti);
1414 	sector_t offset, max_len;
1415 
1416 	/*
1417 	 * Does the target need to split even further?
1418 	 */
1419 	if (ti->max_io_len) {
1420 		offset = dm_target_offset(ti, sector);
1421 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1422 			max_len = sector_div(offset, ti->max_io_len);
1423 		else
1424 			max_len = offset & (ti->max_io_len - 1);
1425 		max_len = ti->max_io_len - max_len;
1426 
1427 		if (len > max_len)
1428 			len = max_len;
1429 	}
1430 
1431 	return len;
1432 }
1433 
1434 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1435 {
1436 	if (len > UINT_MAX) {
1437 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1438 		      (unsigned long long)len, UINT_MAX);
1439 		ti->error = "Maximum size of target IO is too large";
1440 		return -EINVAL;
1441 	}
1442 
1443 	ti->max_io_len = (uint32_t) len;
1444 
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1448 
1449 /*
1450  * A target may call dm_accept_partial_bio only from the map routine.  It is
1451  * allowed for all bio types except REQ_FLUSH.
1452  *
1453  * dm_accept_partial_bio informs the dm that the target only wants to process
1454  * additional n_sectors sectors of the bio and the rest of the data should be
1455  * sent in a next bio.
1456  *
1457  * A diagram that explains the arithmetics:
1458  * +--------------------+---------------+-------+
1459  * |         1          |       2       |   3   |
1460  * +--------------------+---------------+-------+
1461  *
1462  * <-------------- *tio->len_ptr --------------->
1463  *                      <------- bi_size ------->
1464  *                      <-- n_sectors -->
1465  *
1466  * Region 1 was already iterated over with bio_advance or similar function.
1467  *	(it may be empty if the target doesn't use bio_advance)
1468  * Region 2 is the remaining bio size that the target wants to process.
1469  *	(it may be empty if region 1 is non-empty, although there is no reason
1470  *	 to make it empty)
1471  * The target requires that region 3 is to be sent in the next bio.
1472  *
1473  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1474  * the partially processed part (the sum of regions 1+2) must be the same for all
1475  * copies of the bio.
1476  */
1477 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1478 {
1479 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1480 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1481 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1482 	BUG_ON(bi_size > *tio->len_ptr);
1483 	BUG_ON(n_sectors > bi_size);
1484 	*tio->len_ptr -= bi_size - n_sectors;
1485 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1486 }
1487 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1488 
1489 static void __map_bio(struct dm_target_io *tio)
1490 {
1491 	int r;
1492 	sector_t sector;
1493 	struct mapped_device *md;
1494 	struct bio *clone = &tio->clone;
1495 	struct dm_target *ti = tio->ti;
1496 
1497 	clone->bi_end_io = clone_endio;
1498 
1499 	/*
1500 	 * Map the clone.  If r == 0 we don't need to do
1501 	 * anything, the target has assumed ownership of
1502 	 * this io.
1503 	 */
1504 	atomic_inc(&tio->io->io_count);
1505 	sector = clone->bi_iter.bi_sector;
1506 	r = ti->type->map(ti, clone);
1507 	if (r == DM_MAPIO_REMAPPED) {
1508 		/* the bio has been remapped so dispatch it */
1509 
1510 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1511 				      tio->io->bio->bi_bdev->bd_dev, sector);
1512 
1513 		generic_make_request(clone);
1514 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1515 		/* error the io and bail out, or requeue it if needed */
1516 		md = tio->io->md;
1517 		dec_pending(tio->io, r);
1518 		free_tio(md, tio);
1519 	} else if (r != DM_MAPIO_SUBMITTED) {
1520 		DMWARN("unimplemented target map return value: %d", r);
1521 		BUG();
1522 	}
1523 }
1524 
1525 struct clone_info {
1526 	struct mapped_device *md;
1527 	struct dm_table *map;
1528 	struct bio *bio;
1529 	struct dm_io *io;
1530 	sector_t sector;
1531 	unsigned sector_count;
1532 };
1533 
1534 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1535 {
1536 	bio->bi_iter.bi_sector = sector;
1537 	bio->bi_iter.bi_size = to_bytes(len);
1538 }
1539 
1540 /*
1541  * Creates a bio that consists of range of complete bvecs.
1542  */
1543 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1544 		      sector_t sector, unsigned len)
1545 {
1546 	struct bio *clone = &tio->clone;
1547 
1548 	__bio_clone_fast(clone, bio);
1549 
1550 	if (bio_integrity(bio))
1551 		bio_integrity_clone(clone, bio, GFP_NOIO);
1552 
1553 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1554 	clone->bi_iter.bi_size = to_bytes(len);
1555 
1556 	if (bio_integrity(bio))
1557 		bio_integrity_trim(clone, 0, len);
1558 }
1559 
1560 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1561 				      struct dm_target *ti,
1562 				      unsigned target_bio_nr)
1563 {
1564 	struct dm_target_io *tio;
1565 	struct bio *clone;
1566 
1567 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1568 	tio = container_of(clone, struct dm_target_io, clone);
1569 
1570 	tio->io = ci->io;
1571 	tio->ti = ti;
1572 	tio->target_bio_nr = target_bio_nr;
1573 
1574 	return tio;
1575 }
1576 
1577 static void __clone_and_map_simple_bio(struct clone_info *ci,
1578 				       struct dm_target *ti,
1579 				       unsigned target_bio_nr, unsigned *len)
1580 {
1581 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1582 	struct bio *clone = &tio->clone;
1583 
1584 	tio->len_ptr = len;
1585 
1586 	__bio_clone_fast(clone, ci->bio);
1587 	if (len)
1588 		bio_setup_sector(clone, ci->sector, *len);
1589 
1590 	__map_bio(tio);
1591 }
1592 
1593 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1594 				  unsigned num_bios, unsigned *len)
1595 {
1596 	unsigned target_bio_nr;
1597 
1598 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1599 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1600 }
1601 
1602 static int __send_empty_flush(struct clone_info *ci)
1603 {
1604 	unsigned target_nr = 0;
1605 	struct dm_target *ti;
1606 
1607 	BUG_ON(bio_has_data(ci->bio));
1608 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1609 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1610 
1611 	return 0;
1612 }
1613 
1614 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1615 				     sector_t sector, unsigned *len)
1616 {
1617 	struct bio *bio = ci->bio;
1618 	struct dm_target_io *tio;
1619 	unsigned target_bio_nr;
1620 	unsigned num_target_bios = 1;
1621 
1622 	/*
1623 	 * Does the target want to receive duplicate copies of the bio?
1624 	 */
1625 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1626 		num_target_bios = ti->num_write_bios(ti, bio);
1627 
1628 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1629 		tio = alloc_tio(ci, ti, target_bio_nr);
1630 		tio->len_ptr = len;
1631 		clone_bio(tio, bio, sector, *len);
1632 		__map_bio(tio);
1633 	}
1634 }
1635 
1636 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1637 
1638 static unsigned get_num_discard_bios(struct dm_target *ti)
1639 {
1640 	return ti->num_discard_bios;
1641 }
1642 
1643 static unsigned get_num_write_same_bios(struct dm_target *ti)
1644 {
1645 	return ti->num_write_same_bios;
1646 }
1647 
1648 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1649 
1650 static bool is_split_required_for_discard(struct dm_target *ti)
1651 {
1652 	return ti->split_discard_bios;
1653 }
1654 
1655 static int __send_changing_extent_only(struct clone_info *ci,
1656 				       get_num_bios_fn get_num_bios,
1657 				       is_split_required_fn is_split_required)
1658 {
1659 	struct dm_target *ti;
1660 	unsigned len;
1661 	unsigned num_bios;
1662 
1663 	do {
1664 		ti = dm_table_find_target(ci->map, ci->sector);
1665 		if (!dm_target_is_valid(ti))
1666 			return -EIO;
1667 
1668 		/*
1669 		 * Even though the device advertised support for this type of
1670 		 * request, that does not mean every target supports it, and
1671 		 * reconfiguration might also have changed that since the
1672 		 * check was performed.
1673 		 */
1674 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1675 		if (!num_bios)
1676 			return -EOPNOTSUPP;
1677 
1678 		if (is_split_required && !is_split_required(ti))
1679 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1680 		else
1681 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1682 
1683 		__send_duplicate_bios(ci, ti, num_bios, &len);
1684 
1685 		ci->sector += len;
1686 	} while (ci->sector_count -= len);
1687 
1688 	return 0;
1689 }
1690 
1691 static int __send_discard(struct clone_info *ci)
1692 {
1693 	return __send_changing_extent_only(ci, get_num_discard_bios,
1694 					   is_split_required_for_discard);
1695 }
1696 
1697 static int __send_write_same(struct clone_info *ci)
1698 {
1699 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1700 }
1701 
1702 /*
1703  * Select the correct strategy for processing a non-flush bio.
1704  */
1705 static int __split_and_process_non_flush(struct clone_info *ci)
1706 {
1707 	struct bio *bio = ci->bio;
1708 	struct dm_target *ti;
1709 	unsigned len;
1710 
1711 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1712 		return __send_discard(ci);
1713 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1714 		return __send_write_same(ci);
1715 
1716 	ti = dm_table_find_target(ci->map, ci->sector);
1717 	if (!dm_target_is_valid(ti))
1718 		return -EIO;
1719 
1720 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1721 
1722 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1723 
1724 	ci->sector += len;
1725 	ci->sector_count -= len;
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Entry point to split a bio into clones and submit them to the targets.
1732  */
1733 static void __split_and_process_bio(struct mapped_device *md,
1734 				    struct dm_table *map, struct bio *bio)
1735 {
1736 	struct clone_info ci;
1737 	int error = 0;
1738 
1739 	if (unlikely(!map)) {
1740 		bio_io_error(bio);
1741 		return;
1742 	}
1743 
1744 	ci.map = map;
1745 	ci.md = md;
1746 	ci.io = alloc_io(md);
1747 	ci.io->error = 0;
1748 	atomic_set(&ci.io->io_count, 1);
1749 	ci.io->bio = bio;
1750 	ci.io->md = md;
1751 	spin_lock_init(&ci.io->endio_lock);
1752 	ci.sector = bio->bi_iter.bi_sector;
1753 
1754 	start_io_acct(ci.io);
1755 
1756 	if (bio->bi_rw & REQ_FLUSH) {
1757 		ci.bio = &ci.md->flush_bio;
1758 		ci.sector_count = 0;
1759 		error = __send_empty_flush(&ci);
1760 		/* dec_pending submits any data associated with flush */
1761 	} else {
1762 		ci.bio = bio;
1763 		ci.sector_count = bio_sectors(bio);
1764 		while (ci.sector_count && !error)
1765 			error = __split_and_process_non_flush(&ci);
1766 	}
1767 
1768 	/* drop the extra reference count */
1769 	dec_pending(ci.io, error);
1770 }
1771 /*-----------------------------------------------------------------
1772  * CRUD END
1773  *---------------------------------------------------------------*/
1774 
1775 /*
1776  * The request function that just remaps the bio built up by
1777  * dm_merge_bvec.
1778  */
1779 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1780 {
1781 	int rw = bio_data_dir(bio);
1782 	struct mapped_device *md = q->queuedata;
1783 	int srcu_idx;
1784 	struct dm_table *map;
1785 
1786 	map = dm_get_live_table(md, &srcu_idx);
1787 
1788 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1789 
1790 	/* if we're suspended, we have to queue this io for later */
1791 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1792 		dm_put_live_table(md, srcu_idx);
1793 
1794 		if (bio_rw(bio) != READA)
1795 			queue_io(md, bio);
1796 		else
1797 			bio_io_error(bio);
1798 		return BLK_QC_T_NONE;
1799 	}
1800 
1801 	__split_and_process_bio(md, map, bio);
1802 	dm_put_live_table(md, srcu_idx);
1803 	return BLK_QC_T_NONE;
1804 }
1805 
1806 int dm_request_based(struct mapped_device *md)
1807 {
1808 	return blk_queue_stackable(md->queue);
1809 }
1810 
1811 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1812 {
1813 	int r;
1814 
1815 	if (blk_queue_io_stat(clone->q))
1816 		clone->cmd_flags |= REQ_IO_STAT;
1817 
1818 	clone->start_time = jiffies;
1819 	r = blk_insert_cloned_request(clone->q, clone);
1820 	if (r)
1821 		/* must complete clone in terms of original request */
1822 		dm_complete_request(rq, r);
1823 }
1824 
1825 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1826 				 void *data)
1827 {
1828 	struct dm_rq_target_io *tio = data;
1829 	struct dm_rq_clone_bio_info *info =
1830 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1831 
1832 	info->orig = bio_orig;
1833 	info->tio = tio;
1834 	bio->bi_end_io = end_clone_bio;
1835 
1836 	return 0;
1837 }
1838 
1839 static int setup_clone(struct request *clone, struct request *rq,
1840 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1841 {
1842 	int r;
1843 
1844 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1845 			      dm_rq_bio_constructor, tio);
1846 	if (r)
1847 		return r;
1848 
1849 	clone->cmd = rq->cmd;
1850 	clone->cmd_len = rq->cmd_len;
1851 	clone->sense = rq->sense;
1852 	clone->end_io = end_clone_request;
1853 	clone->end_io_data = tio;
1854 
1855 	tio->clone = clone;
1856 
1857 	return 0;
1858 }
1859 
1860 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1861 				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1862 {
1863 	/*
1864 	 * Create clone for use with .request_fn request_queue
1865 	 */
1866 	struct request *clone;
1867 
1868 	clone = alloc_old_clone_request(md, gfp_mask);
1869 	if (!clone)
1870 		return NULL;
1871 
1872 	blk_rq_init(NULL, clone);
1873 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1874 		/* -ENOMEM */
1875 		free_old_clone_request(md, clone);
1876 		return NULL;
1877 	}
1878 
1879 	return clone;
1880 }
1881 
1882 static void map_tio_request(struct kthread_work *work);
1883 
1884 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1885 		     struct mapped_device *md)
1886 {
1887 	tio->md = md;
1888 	tio->ti = NULL;
1889 	tio->clone = NULL;
1890 	tio->orig = rq;
1891 	tio->error = 0;
1892 	memset(&tio->info, 0, sizeof(tio->info));
1893 	if (md->kworker_task)
1894 		init_kthread_work(&tio->work, map_tio_request);
1895 }
1896 
1897 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1898 					       struct mapped_device *md,
1899 					       gfp_t gfp_mask)
1900 {
1901 	struct dm_rq_target_io *tio;
1902 	int srcu_idx;
1903 	struct dm_table *table;
1904 
1905 	tio = alloc_old_rq_tio(md, gfp_mask);
1906 	if (!tio)
1907 		return NULL;
1908 
1909 	init_tio(tio, rq, md);
1910 
1911 	table = dm_get_live_table(md, &srcu_idx);
1912 	/*
1913 	 * Must clone a request if this .request_fn DM device
1914 	 * is stacked on .request_fn device(s).
1915 	 */
1916 	if (!dm_table_mq_request_based(table)) {
1917 		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1918 			dm_put_live_table(md, srcu_idx);
1919 			free_old_rq_tio(tio);
1920 			return NULL;
1921 		}
1922 	}
1923 	dm_put_live_table(md, srcu_idx);
1924 
1925 	return tio;
1926 }
1927 
1928 /*
1929  * Called with the queue lock held.
1930  */
1931 static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1932 {
1933 	struct mapped_device *md = q->queuedata;
1934 	struct dm_rq_target_io *tio;
1935 
1936 	if (unlikely(rq->special)) {
1937 		DMWARN("Already has something in rq->special.");
1938 		return BLKPREP_KILL;
1939 	}
1940 
1941 	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1942 	if (!tio)
1943 		return BLKPREP_DEFER;
1944 
1945 	rq->special = tio;
1946 	rq->cmd_flags |= REQ_DONTPREP;
1947 
1948 	return BLKPREP_OK;
1949 }
1950 
1951 /*
1952  * Returns:
1953  * 0                : the request has been processed
1954  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1955  * < 0              : the request was completed due to failure
1956  */
1957 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1958 		       struct mapped_device *md)
1959 {
1960 	int r;
1961 	struct dm_target *ti = tio->ti;
1962 	struct request *clone = NULL;
1963 
1964 	if (tio->clone) {
1965 		clone = tio->clone;
1966 		r = ti->type->map_rq(ti, clone, &tio->info);
1967 	} else {
1968 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1969 		if (r < 0) {
1970 			/* The target wants to complete the I/O */
1971 			dm_kill_unmapped_request(rq, r);
1972 			return r;
1973 		}
1974 		if (r != DM_MAPIO_REMAPPED)
1975 			return r;
1976 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1977 			/* -ENOMEM */
1978 			ti->type->release_clone_rq(clone);
1979 			return DM_MAPIO_REQUEUE;
1980 		}
1981 	}
1982 
1983 	switch (r) {
1984 	case DM_MAPIO_SUBMITTED:
1985 		/* The target has taken the I/O to submit by itself later */
1986 		break;
1987 	case DM_MAPIO_REMAPPED:
1988 		/* The target has remapped the I/O so dispatch it */
1989 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1990 				     blk_rq_pos(rq));
1991 		dm_dispatch_clone_request(clone, rq);
1992 		break;
1993 	case DM_MAPIO_REQUEUE:
1994 		/* The target wants to requeue the I/O */
1995 		dm_requeue_original_request(md, tio->orig);
1996 		break;
1997 	default:
1998 		if (r > 0) {
1999 			DMWARN("unimplemented target map return value: %d", r);
2000 			BUG();
2001 		}
2002 
2003 		/* The target wants to complete the I/O */
2004 		dm_kill_unmapped_request(rq, r);
2005 		return r;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void map_tio_request(struct kthread_work *work)
2012 {
2013 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2014 	struct request *rq = tio->orig;
2015 	struct mapped_device *md = tio->md;
2016 
2017 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2018 		dm_requeue_original_request(md, rq);
2019 }
2020 
2021 static void dm_start_request(struct mapped_device *md, struct request *orig)
2022 {
2023 	if (!orig->q->mq_ops)
2024 		blk_start_request(orig);
2025 	else
2026 		blk_mq_start_request(orig);
2027 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2028 
2029 	if (md->seq_rq_merge_deadline_usecs) {
2030 		md->last_rq_pos = rq_end_sector(orig);
2031 		md->last_rq_rw = rq_data_dir(orig);
2032 		md->last_rq_start_time = ktime_get();
2033 	}
2034 
2035 	if (unlikely(dm_stats_used(&md->stats))) {
2036 		struct dm_rq_target_io *tio = tio_from_request(orig);
2037 		tio->duration_jiffies = jiffies;
2038 		tio->n_sectors = blk_rq_sectors(orig);
2039 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2040 				    tio->n_sectors, false, 0, &tio->stats_aux);
2041 	}
2042 
2043 	/*
2044 	 * Hold the md reference here for the in-flight I/O.
2045 	 * We can't rely on the reference count by device opener,
2046 	 * because the device may be closed during the request completion
2047 	 * when all bios are completed.
2048 	 * See the comment in rq_completed() too.
2049 	 */
2050 	dm_get(md);
2051 }
2052 
2053 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2054 
2055 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2056 {
2057 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2058 }
2059 
2060 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2061 						     const char *buf, size_t count)
2062 {
2063 	unsigned deadline;
2064 
2065 	if (!dm_request_based(md) || md->use_blk_mq)
2066 		return count;
2067 
2068 	if (kstrtouint(buf, 10, &deadline))
2069 		return -EINVAL;
2070 
2071 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2072 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2073 
2074 	md->seq_rq_merge_deadline_usecs = deadline;
2075 
2076 	return count;
2077 }
2078 
2079 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2080 {
2081 	ktime_t kt_deadline;
2082 
2083 	if (!md->seq_rq_merge_deadline_usecs)
2084 		return false;
2085 
2086 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2087 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2088 
2089 	return !ktime_after(ktime_get(), kt_deadline);
2090 }
2091 
2092 /*
2093  * q->request_fn for request-based dm.
2094  * Called with the queue lock held.
2095  */
2096 static void dm_request_fn(struct request_queue *q)
2097 {
2098 	struct mapped_device *md = q->queuedata;
2099 	struct dm_target *ti = md->immutable_target;
2100 	struct request *rq;
2101 	struct dm_rq_target_io *tio;
2102 	sector_t pos = 0;
2103 
2104 	if (unlikely(!ti)) {
2105 		int srcu_idx;
2106 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2107 
2108 		ti = dm_table_find_target(map, pos);
2109 		dm_put_live_table(md, srcu_idx);
2110 	}
2111 
2112 	/*
2113 	 * For suspend, check blk_queue_stopped() and increment
2114 	 * ->pending within a single queue_lock not to increment the
2115 	 * number of in-flight I/Os after the queue is stopped in
2116 	 * dm_suspend().
2117 	 */
2118 	while (!blk_queue_stopped(q)) {
2119 		rq = blk_peek_request(q);
2120 		if (!rq)
2121 			return;
2122 
2123 		/* always use block 0 to find the target for flushes for now */
2124 		pos = 0;
2125 		if (!(rq->cmd_flags & REQ_FLUSH))
2126 			pos = blk_rq_pos(rq);
2127 
2128 		if ((dm_request_peeked_before_merge_deadline(md) &&
2129 		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2130 		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2131 		    (ti->type->busy && ti->type->busy(ti))) {
2132 			blk_delay_queue(q, HZ / 100);
2133 			return;
2134 		}
2135 
2136 		dm_start_request(md, rq);
2137 
2138 		tio = tio_from_request(rq);
2139 		/* Establish tio->ti before queuing work (map_tio_request) */
2140 		tio->ti = ti;
2141 		queue_kthread_work(&md->kworker, &tio->work);
2142 		BUG_ON(!irqs_disabled());
2143 	}
2144 }
2145 
2146 static int dm_any_congested(void *congested_data, int bdi_bits)
2147 {
2148 	int r = bdi_bits;
2149 	struct mapped_device *md = congested_data;
2150 	struct dm_table *map;
2151 
2152 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2153 		if (dm_request_based(md)) {
2154 			/*
2155 			 * With request-based DM we only need to check the
2156 			 * top-level queue for congestion.
2157 			 */
2158 			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2159 		} else {
2160 			map = dm_get_live_table_fast(md);
2161 			if (map)
2162 				r = dm_table_any_congested(map, bdi_bits);
2163 			dm_put_live_table_fast(md);
2164 		}
2165 	}
2166 
2167 	return r;
2168 }
2169 
2170 /*-----------------------------------------------------------------
2171  * An IDR is used to keep track of allocated minor numbers.
2172  *---------------------------------------------------------------*/
2173 static void free_minor(int minor)
2174 {
2175 	spin_lock(&_minor_lock);
2176 	idr_remove(&_minor_idr, minor);
2177 	spin_unlock(&_minor_lock);
2178 }
2179 
2180 /*
2181  * See if the device with a specific minor # is free.
2182  */
2183 static int specific_minor(int minor)
2184 {
2185 	int r;
2186 
2187 	if (minor >= (1 << MINORBITS))
2188 		return -EINVAL;
2189 
2190 	idr_preload(GFP_KERNEL);
2191 	spin_lock(&_minor_lock);
2192 
2193 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2194 
2195 	spin_unlock(&_minor_lock);
2196 	idr_preload_end();
2197 	if (r < 0)
2198 		return r == -ENOSPC ? -EBUSY : r;
2199 	return 0;
2200 }
2201 
2202 static int next_free_minor(int *minor)
2203 {
2204 	int r;
2205 
2206 	idr_preload(GFP_KERNEL);
2207 	spin_lock(&_minor_lock);
2208 
2209 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2210 
2211 	spin_unlock(&_minor_lock);
2212 	idr_preload_end();
2213 	if (r < 0)
2214 		return r;
2215 	*minor = r;
2216 	return 0;
2217 }
2218 
2219 static const struct block_device_operations dm_blk_dops;
2220 
2221 static void dm_wq_work(struct work_struct *work);
2222 
2223 static void dm_init_md_queue(struct mapped_device *md)
2224 {
2225 	/*
2226 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2227 	 * devices.  The type of this dm device may not have been decided yet.
2228 	 * The type is decided at the first table loading time.
2229 	 * To prevent problematic device stacking, clear the queue flag
2230 	 * for request stacking support until then.
2231 	 *
2232 	 * This queue is new, so no concurrency on the queue_flags.
2233 	 */
2234 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2235 
2236 	/*
2237 	 * Initialize data that will only be used by a non-blk-mq DM queue
2238 	 * - must do so here (in alloc_dev callchain) before queue is used
2239 	 */
2240 	md->queue->queuedata = md;
2241 	md->queue->backing_dev_info.congested_data = md;
2242 }
2243 
2244 static void dm_init_normal_md_queue(struct mapped_device *md)
2245 {
2246 	md->use_blk_mq = false;
2247 	dm_init_md_queue(md);
2248 
2249 	/*
2250 	 * Initialize aspects of queue that aren't relevant for blk-mq
2251 	 */
2252 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2253 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2254 }
2255 
2256 static void cleanup_mapped_device(struct mapped_device *md)
2257 {
2258 	if (md->wq)
2259 		destroy_workqueue(md->wq);
2260 	if (md->kworker_task)
2261 		kthread_stop(md->kworker_task);
2262 	mempool_destroy(md->io_pool);
2263 	mempool_destroy(md->rq_pool);
2264 	if (md->bs)
2265 		bioset_free(md->bs);
2266 
2267 	cleanup_srcu_struct(&md->io_barrier);
2268 
2269 	if (md->disk) {
2270 		spin_lock(&_minor_lock);
2271 		md->disk->private_data = NULL;
2272 		spin_unlock(&_minor_lock);
2273 		del_gendisk(md->disk);
2274 		put_disk(md->disk);
2275 	}
2276 
2277 	if (md->queue)
2278 		blk_cleanup_queue(md->queue);
2279 
2280 	if (md->bdev) {
2281 		bdput(md->bdev);
2282 		md->bdev = NULL;
2283 	}
2284 }
2285 
2286 /*
2287  * Allocate and initialise a blank device with a given minor.
2288  */
2289 static struct mapped_device *alloc_dev(int minor)
2290 {
2291 	int r;
2292 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2293 	void *old_md;
2294 
2295 	if (!md) {
2296 		DMWARN("unable to allocate device, out of memory.");
2297 		return NULL;
2298 	}
2299 
2300 	if (!try_module_get(THIS_MODULE))
2301 		goto bad_module_get;
2302 
2303 	/* get a minor number for the dev */
2304 	if (minor == DM_ANY_MINOR)
2305 		r = next_free_minor(&minor);
2306 	else
2307 		r = specific_minor(minor);
2308 	if (r < 0)
2309 		goto bad_minor;
2310 
2311 	r = init_srcu_struct(&md->io_barrier);
2312 	if (r < 0)
2313 		goto bad_io_barrier;
2314 
2315 	md->use_blk_mq = use_blk_mq;
2316 	md->type = DM_TYPE_NONE;
2317 	mutex_init(&md->suspend_lock);
2318 	mutex_init(&md->type_lock);
2319 	mutex_init(&md->table_devices_lock);
2320 	spin_lock_init(&md->deferred_lock);
2321 	atomic_set(&md->holders, 1);
2322 	atomic_set(&md->open_count, 0);
2323 	atomic_set(&md->event_nr, 0);
2324 	atomic_set(&md->uevent_seq, 0);
2325 	INIT_LIST_HEAD(&md->uevent_list);
2326 	INIT_LIST_HEAD(&md->table_devices);
2327 	spin_lock_init(&md->uevent_lock);
2328 
2329 	md->queue = blk_alloc_queue(GFP_KERNEL);
2330 	if (!md->queue)
2331 		goto bad;
2332 
2333 	dm_init_md_queue(md);
2334 
2335 	md->disk = alloc_disk(1);
2336 	if (!md->disk)
2337 		goto bad;
2338 
2339 	atomic_set(&md->pending[0], 0);
2340 	atomic_set(&md->pending[1], 0);
2341 	init_waitqueue_head(&md->wait);
2342 	INIT_WORK(&md->work, dm_wq_work);
2343 	init_waitqueue_head(&md->eventq);
2344 	init_completion(&md->kobj_holder.completion);
2345 	md->kworker_task = NULL;
2346 
2347 	md->disk->major = _major;
2348 	md->disk->first_minor = minor;
2349 	md->disk->fops = &dm_blk_dops;
2350 	md->disk->queue = md->queue;
2351 	md->disk->private_data = md;
2352 	sprintf(md->disk->disk_name, "dm-%d", minor);
2353 	add_disk(md->disk);
2354 	format_dev_t(md->name, MKDEV(_major, minor));
2355 
2356 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2357 	if (!md->wq)
2358 		goto bad;
2359 
2360 	md->bdev = bdget_disk(md->disk, 0);
2361 	if (!md->bdev)
2362 		goto bad;
2363 
2364 	bio_init(&md->flush_bio);
2365 	md->flush_bio.bi_bdev = md->bdev;
2366 	md->flush_bio.bi_rw = WRITE_FLUSH;
2367 
2368 	dm_stats_init(&md->stats);
2369 
2370 	/* Populate the mapping, nobody knows we exist yet */
2371 	spin_lock(&_minor_lock);
2372 	old_md = idr_replace(&_minor_idr, md, minor);
2373 	spin_unlock(&_minor_lock);
2374 
2375 	BUG_ON(old_md != MINOR_ALLOCED);
2376 
2377 	return md;
2378 
2379 bad:
2380 	cleanup_mapped_device(md);
2381 bad_io_barrier:
2382 	free_minor(minor);
2383 bad_minor:
2384 	module_put(THIS_MODULE);
2385 bad_module_get:
2386 	kfree(md);
2387 	return NULL;
2388 }
2389 
2390 static void unlock_fs(struct mapped_device *md);
2391 
2392 static void free_dev(struct mapped_device *md)
2393 {
2394 	int minor = MINOR(disk_devt(md->disk));
2395 
2396 	unlock_fs(md);
2397 
2398 	cleanup_mapped_device(md);
2399 	if (md->tag_set) {
2400 		blk_mq_free_tag_set(md->tag_set);
2401 		kfree(md->tag_set);
2402 	}
2403 
2404 	free_table_devices(&md->table_devices);
2405 	dm_stats_cleanup(&md->stats);
2406 	free_minor(minor);
2407 
2408 	module_put(THIS_MODULE);
2409 	kfree(md);
2410 }
2411 
2412 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2413 {
2414 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2415 
2416 	if (md->bs) {
2417 		/* The md already has necessary mempools. */
2418 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2419 			/*
2420 			 * Reload bioset because front_pad may have changed
2421 			 * because a different table was loaded.
2422 			 */
2423 			bioset_free(md->bs);
2424 			md->bs = p->bs;
2425 			p->bs = NULL;
2426 		}
2427 		/*
2428 		 * There's no need to reload with request-based dm
2429 		 * because the size of front_pad doesn't change.
2430 		 * Note for future: If you are to reload bioset,
2431 		 * prep-ed requests in the queue may refer
2432 		 * to bio from the old bioset, so you must walk
2433 		 * through the queue to unprep.
2434 		 */
2435 		goto out;
2436 	}
2437 
2438 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2439 
2440 	md->io_pool = p->io_pool;
2441 	p->io_pool = NULL;
2442 	md->rq_pool = p->rq_pool;
2443 	p->rq_pool = NULL;
2444 	md->bs = p->bs;
2445 	p->bs = NULL;
2446 
2447 out:
2448 	/* mempool bind completed, no longer need any mempools in the table */
2449 	dm_table_free_md_mempools(t);
2450 }
2451 
2452 /*
2453  * Bind a table to the device.
2454  */
2455 static void event_callback(void *context)
2456 {
2457 	unsigned long flags;
2458 	LIST_HEAD(uevents);
2459 	struct mapped_device *md = (struct mapped_device *) context;
2460 
2461 	spin_lock_irqsave(&md->uevent_lock, flags);
2462 	list_splice_init(&md->uevent_list, &uevents);
2463 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2464 
2465 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2466 
2467 	atomic_inc(&md->event_nr);
2468 	wake_up(&md->eventq);
2469 }
2470 
2471 /*
2472  * Protected by md->suspend_lock obtained by dm_swap_table().
2473  */
2474 static void __set_size(struct mapped_device *md, sector_t size)
2475 {
2476 	set_capacity(md->disk, size);
2477 
2478 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2479 }
2480 
2481 /*
2482  * Returns old map, which caller must destroy.
2483  */
2484 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2485 			       struct queue_limits *limits)
2486 {
2487 	struct dm_table *old_map;
2488 	struct request_queue *q = md->queue;
2489 	sector_t size;
2490 
2491 	size = dm_table_get_size(t);
2492 
2493 	/*
2494 	 * Wipe any geometry if the size of the table changed.
2495 	 */
2496 	if (size != dm_get_size(md))
2497 		memset(&md->geometry, 0, sizeof(md->geometry));
2498 
2499 	__set_size(md, size);
2500 
2501 	dm_table_event_callback(t, event_callback, md);
2502 
2503 	/*
2504 	 * The queue hasn't been stopped yet, if the old table type wasn't
2505 	 * for request-based during suspension.  So stop it to prevent
2506 	 * I/O mapping before resume.
2507 	 * This must be done before setting the queue restrictions,
2508 	 * because request-based dm may be run just after the setting.
2509 	 */
2510 	if (dm_table_request_based(t)) {
2511 		dm_stop_queue(q);
2512 		/*
2513 		 * Leverage the fact that request-based DM targets are
2514 		 * immutable singletons and establish md->immutable_target
2515 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2516 		 */
2517 		md->immutable_target = dm_table_get_immutable_target(t);
2518 	}
2519 
2520 	__bind_mempools(md, t);
2521 
2522 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2523 	rcu_assign_pointer(md->map, t);
2524 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2525 
2526 	dm_table_set_restrictions(t, q, limits);
2527 	if (old_map)
2528 		dm_sync_table(md);
2529 
2530 	return old_map;
2531 }
2532 
2533 /*
2534  * Returns unbound table for the caller to free.
2535  */
2536 static struct dm_table *__unbind(struct mapped_device *md)
2537 {
2538 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2539 
2540 	if (!map)
2541 		return NULL;
2542 
2543 	dm_table_event_callback(map, NULL, NULL);
2544 	RCU_INIT_POINTER(md->map, NULL);
2545 	dm_sync_table(md);
2546 
2547 	return map;
2548 }
2549 
2550 /*
2551  * Constructor for a new device.
2552  */
2553 int dm_create(int minor, struct mapped_device **result)
2554 {
2555 	struct mapped_device *md;
2556 
2557 	md = alloc_dev(minor);
2558 	if (!md)
2559 		return -ENXIO;
2560 
2561 	dm_sysfs_init(md);
2562 
2563 	*result = md;
2564 	return 0;
2565 }
2566 
2567 /*
2568  * Functions to manage md->type.
2569  * All are required to hold md->type_lock.
2570  */
2571 void dm_lock_md_type(struct mapped_device *md)
2572 {
2573 	mutex_lock(&md->type_lock);
2574 }
2575 
2576 void dm_unlock_md_type(struct mapped_device *md)
2577 {
2578 	mutex_unlock(&md->type_lock);
2579 }
2580 
2581 void dm_set_md_type(struct mapped_device *md, unsigned type)
2582 {
2583 	BUG_ON(!mutex_is_locked(&md->type_lock));
2584 	md->type = type;
2585 }
2586 
2587 unsigned dm_get_md_type(struct mapped_device *md)
2588 {
2589 	return md->type;
2590 }
2591 
2592 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2593 {
2594 	return md->immutable_target_type;
2595 }
2596 
2597 /*
2598  * The queue_limits are only valid as long as you have a reference
2599  * count on 'md'.
2600  */
2601 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2602 {
2603 	BUG_ON(!atomic_read(&md->holders));
2604 	return &md->queue->limits;
2605 }
2606 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2607 
2608 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2609 {
2610 	/* Initialize the request-based DM worker thread */
2611 	init_kthread_worker(&md->kworker);
2612 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2613 				       "kdmwork-%s", dm_device_name(md));
2614 }
2615 
2616 /*
2617  * Fully initialize a .request_fn request-based queue.
2618  */
2619 static int dm_old_init_request_queue(struct mapped_device *md)
2620 {
2621 	struct request_queue *q = NULL;
2622 
2623 	/* Fully initialize the queue */
2624 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2625 	if (!q)
2626 		return -EINVAL;
2627 
2628 	/* disable dm_request_fn's merge heuristic by default */
2629 	md->seq_rq_merge_deadline_usecs = 0;
2630 
2631 	md->queue = q;
2632 	dm_init_normal_md_queue(md);
2633 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2634 	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2635 
2636 	dm_old_init_rq_based_worker_thread(md);
2637 
2638 	elv_register_queue(md->queue);
2639 
2640 	return 0;
2641 }
2642 
2643 static int dm_mq_init_request(void *data, struct request *rq,
2644 			      unsigned int hctx_idx, unsigned int request_idx,
2645 			      unsigned int numa_node)
2646 {
2647 	struct mapped_device *md = data;
2648 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2649 
2650 	/*
2651 	 * Must initialize md member of tio, otherwise it won't
2652 	 * be available in dm_mq_queue_rq.
2653 	 */
2654 	tio->md = md;
2655 
2656 	return 0;
2657 }
2658 
2659 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2660 			  const struct blk_mq_queue_data *bd)
2661 {
2662 	struct request *rq = bd->rq;
2663 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2664 	struct mapped_device *md = tio->md;
2665 	struct dm_target *ti = md->immutable_target;
2666 
2667 	if (unlikely(!ti)) {
2668 		int srcu_idx;
2669 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2670 
2671 		ti = dm_table_find_target(map, 0);
2672 		dm_put_live_table(md, srcu_idx);
2673 	}
2674 
2675 	if (ti->type->busy && ti->type->busy(ti))
2676 		return BLK_MQ_RQ_QUEUE_BUSY;
2677 
2678 	dm_start_request(md, rq);
2679 
2680 	/* Init tio using md established in .init_request */
2681 	init_tio(tio, rq, md);
2682 
2683 	/*
2684 	 * Establish tio->ti before queuing work (map_tio_request)
2685 	 * or making direct call to map_request().
2686 	 */
2687 	tio->ti = ti;
2688 
2689 	/* Direct call is fine since .queue_rq allows allocations */
2690 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2691 		/* Undo dm_start_request() before requeuing */
2692 		rq_end_stats(md, rq);
2693 		rq_completed(md, rq_data_dir(rq), false);
2694 		return BLK_MQ_RQ_QUEUE_BUSY;
2695 	}
2696 
2697 	return BLK_MQ_RQ_QUEUE_OK;
2698 }
2699 
2700 static struct blk_mq_ops dm_mq_ops = {
2701 	.queue_rq = dm_mq_queue_rq,
2702 	.map_queue = blk_mq_map_queue,
2703 	.complete = dm_softirq_done,
2704 	.init_request = dm_mq_init_request,
2705 };
2706 
2707 static int dm_mq_init_request_queue(struct mapped_device *md)
2708 {
2709 	struct request_queue *q;
2710 	int err;
2711 
2712 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2713 		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2714 		return -EINVAL;
2715 	}
2716 
2717 	md->tag_set = kzalloc(sizeof(struct blk_mq_tag_set), GFP_KERNEL);
2718 	if (!md->tag_set)
2719 		return -ENOMEM;
2720 
2721 	md->tag_set->ops = &dm_mq_ops;
2722 	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2723 	md->tag_set->numa_node = NUMA_NO_NODE;
2724 	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2725 	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2726 	md->tag_set->driver_data = md;
2727 
2728 	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2729 
2730 	err = blk_mq_alloc_tag_set(md->tag_set);
2731 	if (err)
2732 		goto out_kfree_tag_set;
2733 
2734 	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2735 	if (IS_ERR(q)) {
2736 		err = PTR_ERR(q);
2737 		goto out_tag_set;
2738 	}
2739 	md->queue = q;
2740 	dm_init_md_queue(md);
2741 
2742 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2743 	blk_mq_register_disk(md->disk);
2744 
2745 	return 0;
2746 
2747 out_tag_set:
2748 	blk_mq_free_tag_set(md->tag_set);
2749 out_kfree_tag_set:
2750 	kfree(md->tag_set);
2751 
2752 	return err;
2753 }
2754 
2755 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2756 {
2757 	if (type == DM_TYPE_BIO_BASED)
2758 		return type;
2759 
2760 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2761 }
2762 
2763 /*
2764  * Setup the DM device's queue based on md's type
2765  */
2766 int dm_setup_md_queue(struct mapped_device *md)
2767 {
2768 	int r;
2769 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2770 
2771 	switch (md_type) {
2772 	case DM_TYPE_REQUEST_BASED:
2773 		r = dm_old_init_request_queue(md);
2774 		if (r) {
2775 			DMERR("Cannot initialize queue for request-based mapped device");
2776 			return r;
2777 		}
2778 		break;
2779 	case DM_TYPE_MQ_REQUEST_BASED:
2780 		r = dm_mq_init_request_queue(md);
2781 		if (r) {
2782 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2783 			return r;
2784 		}
2785 		break;
2786 	case DM_TYPE_BIO_BASED:
2787 		dm_init_normal_md_queue(md);
2788 		blk_queue_make_request(md->queue, dm_make_request);
2789 		/*
2790 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2791 		 * since it won't be used (saves 1 process per bio-based DM device).
2792 		 */
2793 		bioset_free(md->queue->bio_split);
2794 		md->queue->bio_split = NULL;
2795 		break;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 struct mapped_device *dm_get_md(dev_t dev)
2802 {
2803 	struct mapped_device *md;
2804 	unsigned minor = MINOR(dev);
2805 
2806 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2807 		return NULL;
2808 
2809 	spin_lock(&_minor_lock);
2810 
2811 	md = idr_find(&_minor_idr, minor);
2812 	if (md) {
2813 		if ((md == MINOR_ALLOCED ||
2814 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2815 		     dm_deleting_md(md) ||
2816 		     test_bit(DMF_FREEING, &md->flags))) {
2817 			md = NULL;
2818 			goto out;
2819 		}
2820 		dm_get(md);
2821 	}
2822 
2823 out:
2824 	spin_unlock(&_minor_lock);
2825 
2826 	return md;
2827 }
2828 EXPORT_SYMBOL_GPL(dm_get_md);
2829 
2830 void *dm_get_mdptr(struct mapped_device *md)
2831 {
2832 	return md->interface_ptr;
2833 }
2834 
2835 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2836 {
2837 	md->interface_ptr = ptr;
2838 }
2839 
2840 void dm_get(struct mapped_device *md)
2841 {
2842 	atomic_inc(&md->holders);
2843 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2844 }
2845 
2846 int dm_hold(struct mapped_device *md)
2847 {
2848 	spin_lock(&_minor_lock);
2849 	if (test_bit(DMF_FREEING, &md->flags)) {
2850 		spin_unlock(&_minor_lock);
2851 		return -EBUSY;
2852 	}
2853 	dm_get(md);
2854 	spin_unlock(&_minor_lock);
2855 	return 0;
2856 }
2857 EXPORT_SYMBOL_GPL(dm_hold);
2858 
2859 const char *dm_device_name(struct mapped_device *md)
2860 {
2861 	return md->name;
2862 }
2863 EXPORT_SYMBOL_GPL(dm_device_name);
2864 
2865 static void __dm_destroy(struct mapped_device *md, bool wait)
2866 {
2867 	struct dm_table *map;
2868 	int srcu_idx;
2869 
2870 	might_sleep();
2871 
2872 	spin_lock(&_minor_lock);
2873 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2874 	set_bit(DMF_FREEING, &md->flags);
2875 	spin_unlock(&_minor_lock);
2876 
2877 	if (dm_request_based(md) && md->kworker_task)
2878 		flush_kthread_worker(&md->kworker);
2879 
2880 	/*
2881 	 * Take suspend_lock so that presuspend and postsuspend methods
2882 	 * do not race with internal suspend.
2883 	 */
2884 	mutex_lock(&md->suspend_lock);
2885 	map = dm_get_live_table(md, &srcu_idx);
2886 	if (!dm_suspended_md(md)) {
2887 		dm_table_presuspend_targets(map);
2888 		dm_table_postsuspend_targets(map);
2889 	}
2890 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2891 	dm_put_live_table(md, srcu_idx);
2892 	mutex_unlock(&md->suspend_lock);
2893 
2894 	/*
2895 	 * Rare, but there may be I/O requests still going to complete,
2896 	 * for example.  Wait for all references to disappear.
2897 	 * No one should increment the reference count of the mapped_device,
2898 	 * after the mapped_device state becomes DMF_FREEING.
2899 	 */
2900 	if (wait)
2901 		while (atomic_read(&md->holders))
2902 			msleep(1);
2903 	else if (atomic_read(&md->holders))
2904 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2905 		       dm_device_name(md), atomic_read(&md->holders));
2906 
2907 	dm_sysfs_exit(md);
2908 	dm_table_destroy(__unbind(md));
2909 	free_dev(md);
2910 }
2911 
2912 void dm_destroy(struct mapped_device *md)
2913 {
2914 	__dm_destroy(md, true);
2915 }
2916 
2917 void dm_destroy_immediate(struct mapped_device *md)
2918 {
2919 	__dm_destroy(md, false);
2920 }
2921 
2922 void dm_put(struct mapped_device *md)
2923 {
2924 	atomic_dec(&md->holders);
2925 }
2926 EXPORT_SYMBOL_GPL(dm_put);
2927 
2928 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2929 {
2930 	int r = 0;
2931 	DECLARE_WAITQUEUE(wait, current);
2932 
2933 	add_wait_queue(&md->wait, &wait);
2934 
2935 	while (1) {
2936 		set_current_state(interruptible);
2937 
2938 		if (!md_in_flight(md))
2939 			break;
2940 
2941 		if (interruptible == TASK_INTERRUPTIBLE &&
2942 		    signal_pending(current)) {
2943 			r = -EINTR;
2944 			break;
2945 		}
2946 
2947 		io_schedule();
2948 	}
2949 	set_current_state(TASK_RUNNING);
2950 
2951 	remove_wait_queue(&md->wait, &wait);
2952 
2953 	return r;
2954 }
2955 
2956 /*
2957  * Process the deferred bios
2958  */
2959 static void dm_wq_work(struct work_struct *work)
2960 {
2961 	struct mapped_device *md = container_of(work, struct mapped_device,
2962 						work);
2963 	struct bio *c;
2964 	int srcu_idx;
2965 	struct dm_table *map;
2966 
2967 	map = dm_get_live_table(md, &srcu_idx);
2968 
2969 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2970 		spin_lock_irq(&md->deferred_lock);
2971 		c = bio_list_pop(&md->deferred);
2972 		spin_unlock_irq(&md->deferred_lock);
2973 
2974 		if (!c)
2975 			break;
2976 
2977 		if (dm_request_based(md))
2978 			generic_make_request(c);
2979 		else
2980 			__split_and_process_bio(md, map, c);
2981 	}
2982 
2983 	dm_put_live_table(md, srcu_idx);
2984 }
2985 
2986 static void dm_queue_flush(struct mapped_device *md)
2987 {
2988 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2989 	smp_mb__after_atomic();
2990 	queue_work(md->wq, &md->work);
2991 }
2992 
2993 /*
2994  * Swap in a new table, returning the old one for the caller to destroy.
2995  */
2996 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2997 {
2998 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2999 	struct queue_limits limits;
3000 	int r;
3001 
3002 	mutex_lock(&md->suspend_lock);
3003 
3004 	/* device must be suspended */
3005 	if (!dm_suspended_md(md))
3006 		goto out;
3007 
3008 	/*
3009 	 * If the new table has no data devices, retain the existing limits.
3010 	 * This helps multipath with queue_if_no_path if all paths disappear,
3011 	 * then new I/O is queued based on these limits, and then some paths
3012 	 * reappear.
3013 	 */
3014 	if (dm_table_has_no_data_devices(table)) {
3015 		live_map = dm_get_live_table_fast(md);
3016 		if (live_map)
3017 			limits = md->queue->limits;
3018 		dm_put_live_table_fast(md);
3019 	}
3020 
3021 	if (!live_map) {
3022 		r = dm_calculate_queue_limits(table, &limits);
3023 		if (r) {
3024 			map = ERR_PTR(r);
3025 			goto out;
3026 		}
3027 	}
3028 
3029 	map = __bind(md, table, &limits);
3030 
3031 out:
3032 	mutex_unlock(&md->suspend_lock);
3033 	return map;
3034 }
3035 
3036 /*
3037  * Functions to lock and unlock any filesystem running on the
3038  * device.
3039  */
3040 static int lock_fs(struct mapped_device *md)
3041 {
3042 	int r;
3043 
3044 	WARN_ON(md->frozen_sb);
3045 
3046 	md->frozen_sb = freeze_bdev(md->bdev);
3047 	if (IS_ERR(md->frozen_sb)) {
3048 		r = PTR_ERR(md->frozen_sb);
3049 		md->frozen_sb = NULL;
3050 		return r;
3051 	}
3052 
3053 	set_bit(DMF_FROZEN, &md->flags);
3054 
3055 	return 0;
3056 }
3057 
3058 static void unlock_fs(struct mapped_device *md)
3059 {
3060 	if (!test_bit(DMF_FROZEN, &md->flags))
3061 		return;
3062 
3063 	thaw_bdev(md->bdev, md->frozen_sb);
3064 	md->frozen_sb = NULL;
3065 	clear_bit(DMF_FROZEN, &md->flags);
3066 }
3067 
3068 /*
3069  * If __dm_suspend returns 0, the device is completely quiescent
3070  * now. There is no request-processing activity. All new requests
3071  * are being added to md->deferred list.
3072  *
3073  * Caller must hold md->suspend_lock
3074  */
3075 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3076 			unsigned suspend_flags, int interruptible)
3077 {
3078 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3079 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3080 	int r;
3081 
3082 	/*
3083 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3084 	 * This flag is cleared before dm_suspend returns.
3085 	 */
3086 	if (noflush)
3087 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3088 
3089 	/*
3090 	 * This gets reverted if there's an error later and the targets
3091 	 * provide the .presuspend_undo hook.
3092 	 */
3093 	dm_table_presuspend_targets(map);
3094 
3095 	/*
3096 	 * Flush I/O to the device.
3097 	 * Any I/O submitted after lock_fs() may not be flushed.
3098 	 * noflush takes precedence over do_lockfs.
3099 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3100 	 */
3101 	if (!noflush && do_lockfs) {
3102 		r = lock_fs(md);
3103 		if (r) {
3104 			dm_table_presuspend_undo_targets(map);
3105 			return r;
3106 		}
3107 	}
3108 
3109 	/*
3110 	 * Here we must make sure that no processes are submitting requests
3111 	 * to target drivers i.e. no one may be executing
3112 	 * __split_and_process_bio. This is called from dm_request and
3113 	 * dm_wq_work.
3114 	 *
3115 	 * To get all processes out of __split_and_process_bio in dm_request,
3116 	 * we take the write lock. To prevent any process from reentering
3117 	 * __split_and_process_bio from dm_request and quiesce the thread
3118 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3119 	 * flush_workqueue(md->wq).
3120 	 */
3121 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3122 	if (map)
3123 		synchronize_srcu(&md->io_barrier);
3124 
3125 	/*
3126 	 * Stop md->queue before flushing md->wq in case request-based
3127 	 * dm defers requests to md->wq from md->queue.
3128 	 */
3129 	if (dm_request_based(md)) {
3130 		dm_stop_queue(md->queue);
3131 		if (md->kworker_task)
3132 			flush_kthread_worker(&md->kworker);
3133 	}
3134 
3135 	flush_workqueue(md->wq);
3136 
3137 	/*
3138 	 * At this point no more requests are entering target request routines.
3139 	 * We call dm_wait_for_completion to wait for all existing requests
3140 	 * to finish.
3141 	 */
3142 	r = dm_wait_for_completion(md, interruptible);
3143 
3144 	if (noflush)
3145 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3146 	if (map)
3147 		synchronize_srcu(&md->io_barrier);
3148 
3149 	/* were we interrupted ? */
3150 	if (r < 0) {
3151 		dm_queue_flush(md);
3152 
3153 		if (dm_request_based(md))
3154 			dm_start_queue(md->queue);
3155 
3156 		unlock_fs(md);
3157 		dm_table_presuspend_undo_targets(map);
3158 		/* pushback list is already flushed, so skip flush */
3159 	}
3160 
3161 	return r;
3162 }
3163 
3164 /*
3165  * We need to be able to change a mapping table under a mounted
3166  * filesystem.  For example we might want to move some data in
3167  * the background.  Before the table can be swapped with
3168  * dm_bind_table, dm_suspend must be called to flush any in
3169  * flight bios and ensure that any further io gets deferred.
3170  */
3171 /*
3172  * Suspend mechanism in request-based dm.
3173  *
3174  * 1. Flush all I/Os by lock_fs() if needed.
3175  * 2. Stop dispatching any I/O by stopping the request_queue.
3176  * 3. Wait for all in-flight I/Os to be completed or requeued.
3177  *
3178  * To abort suspend, start the request_queue.
3179  */
3180 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3181 {
3182 	struct dm_table *map = NULL;
3183 	int r = 0;
3184 
3185 retry:
3186 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3187 
3188 	if (dm_suspended_md(md)) {
3189 		r = -EINVAL;
3190 		goto out_unlock;
3191 	}
3192 
3193 	if (dm_suspended_internally_md(md)) {
3194 		/* already internally suspended, wait for internal resume */
3195 		mutex_unlock(&md->suspend_lock);
3196 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3197 		if (r)
3198 			return r;
3199 		goto retry;
3200 	}
3201 
3202 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3203 
3204 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3205 	if (r)
3206 		goto out_unlock;
3207 
3208 	set_bit(DMF_SUSPENDED, &md->flags);
3209 
3210 	dm_table_postsuspend_targets(map);
3211 
3212 out_unlock:
3213 	mutex_unlock(&md->suspend_lock);
3214 	return r;
3215 }
3216 
3217 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3218 {
3219 	if (map) {
3220 		int r = dm_table_resume_targets(map);
3221 		if (r)
3222 			return r;
3223 	}
3224 
3225 	dm_queue_flush(md);
3226 
3227 	/*
3228 	 * Flushing deferred I/Os must be done after targets are resumed
3229 	 * so that mapping of targets can work correctly.
3230 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3231 	 */
3232 	if (dm_request_based(md))
3233 		dm_start_queue(md->queue);
3234 
3235 	unlock_fs(md);
3236 
3237 	return 0;
3238 }
3239 
3240 int dm_resume(struct mapped_device *md)
3241 {
3242 	int r = -EINVAL;
3243 	struct dm_table *map = NULL;
3244 
3245 retry:
3246 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3247 
3248 	if (!dm_suspended_md(md))
3249 		goto out;
3250 
3251 	if (dm_suspended_internally_md(md)) {
3252 		/* already internally suspended, wait for internal resume */
3253 		mutex_unlock(&md->suspend_lock);
3254 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3255 		if (r)
3256 			return r;
3257 		goto retry;
3258 	}
3259 
3260 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3261 	if (!map || !dm_table_get_size(map))
3262 		goto out;
3263 
3264 	r = __dm_resume(md, map);
3265 	if (r)
3266 		goto out;
3267 
3268 	clear_bit(DMF_SUSPENDED, &md->flags);
3269 
3270 	r = 0;
3271 out:
3272 	mutex_unlock(&md->suspend_lock);
3273 
3274 	return r;
3275 }
3276 
3277 /*
3278  * Internal suspend/resume works like userspace-driven suspend. It waits
3279  * until all bios finish and prevents issuing new bios to the target drivers.
3280  * It may be used only from the kernel.
3281  */
3282 
3283 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3284 {
3285 	struct dm_table *map = NULL;
3286 
3287 	if (md->internal_suspend_count++)
3288 		return; /* nested internal suspend */
3289 
3290 	if (dm_suspended_md(md)) {
3291 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3292 		return; /* nest suspend */
3293 	}
3294 
3295 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3296 
3297 	/*
3298 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3299 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3300 	 * would require changing .presuspend to return an error -- avoid this
3301 	 * until there is a need for more elaborate variants of internal suspend.
3302 	 */
3303 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3304 
3305 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3306 
3307 	dm_table_postsuspend_targets(map);
3308 }
3309 
3310 static void __dm_internal_resume(struct mapped_device *md)
3311 {
3312 	BUG_ON(!md->internal_suspend_count);
3313 
3314 	if (--md->internal_suspend_count)
3315 		return; /* resume from nested internal suspend */
3316 
3317 	if (dm_suspended_md(md))
3318 		goto done; /* resume from nested suspend */
3319 
3320 	/*
3321 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3322 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3323 	 */
3324 	(void) __dm_resume(md, NULL);
3325 
3326 done:
3327 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3328 	smp_mb__after_atomic();
3329 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3330 }
3331 
3332 void dm_internal_suspend_noflush(struct mapped_device *md)
3333 {
3334 	mutex_lock(&md->suspend_lock);
3335 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3336 	mutex_unlock(&md->suspend_lock);
3337 }
3338 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3339 
3340 void dm_internal_resume(struct mapped_device *md)
3341 {
3342 	mutex_lock(&md->suspend_lock);
3343 	__dm_internal_resume(md);
3344 	mutex_unlock(&md->suspend_lock);
3345 }
3346 EXPORT_SYMBOL_GPL(dm_internal_resume);
3347 
3348 /*
3349  * Fast variants of internal suspend/resume hold md->suspend_lock,
3350  * which prevents interaction with userspace-driven suspend.
3351  */
3352 
3353 void dm_internal_suspend_fast(struct mapped_device *md)
3354 {
3355 	mutex_lock(&md->suspend_lock);
3356 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3357 		return;
3358 
3359 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3360 	synchronize_srcu(&md->io_barrier);
3361 	flush_workqueue(md->wq);
3362 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3363 }
3364 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3365 
3366 void dm_internal_resume_fast(struct mapped_device *md)
3367 {
3368 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3369 		goto done;
3370 
3371 	dm_queue_flush(md);
3372 
3373 done:
3374 	mutex_unlock(&md->suspend_lock);
3375 }
3376 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3377 
3378 /*-----------------------------------------------------------------
3379  * Event notification.
3380  *---------------------------------------------------------------*/
3381 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3382 		       unsigned cookie)
3383 {
3384 	char udev_cookie[DM_COOKIE_LENGTH];
3385 	char *envp[] = { udev_cookie, NULL };
3386 
3387 	if (!cookie)
3388 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3389 	else {
3390 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3391 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3392 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3393 					  action, envp);
3394 	}
3395 }
3396 
3397 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3398 {
3399 	return atomic_add_return(1, &md->uevent_seq);
3400 }
3401 
3402 uint32_t dm_get_event_nr(struct mapped_device *md)
3403 {
3404 	return atomic_read(&md->event_nr);
3405 }
3406 
3407 int dm_wait_event(struct mapped_device *md, int event_nr)
3408 {
3409 	return wait_event_interruptible(md->eventq,
3410 			(event_nr != atomic_read(&md->event_nr)));
3411 }
3412 
3413 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3414 {
3415 	unsigned long flags;
3416 
3417 	spin_lock_irqsave(&md->uevent_lock, flags);
3418 	list_add(elist, &md->uevent_list);
3419 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3420 }
3421 
3422 /*
3423  * The gendisk is only valid as long as you have a reference
3424  * count on 'md'.
3425  */
3426 struct gendisk *dm_disk(struct mapped_device *md)
3427 {
3428 	return md->disk;
3429 }
3430 EXPORT_SYMBOL_GPL(dm_disk);
3431 
3432 struct kobject *dm_kobject(struct mapped_device *md)
3433 {
3434 	return &md->kobj_holder.kobj;
3435 }
3436 
3437 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3438 {
3439 	struct mapped_device *md;
3440 
3441 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3442 
3443 	if (test_bit(DMF_FREEING, &md->flags) ||
3444 	    dm_deleting_md(md))
3445 		return NULL;
3446 
3447 	dm_get(md);
3448 	return md;
3449 }
3450 
3451 int dm_suspended_md(struct mapped_device *md)
3452 {
3453 	return test_bit(DMF_SUSPENDED, &md->flags);
3454 }
3455 
3456 int dm_suspended_internally_md(struct mapped_device *md)
3457 {
3458 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3459 }
3460 
3461 int dm_test_deferred_remove_flag(struct mapped_device *md)
3462 {
3463 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3464 }
3465 
3466 int dm_suspended(struct dm_target *ti)
3467 {
3468 	return dm_suspended_md(dm_table_get_md(ti->table));
3469 }
3470 EXPORT_SYMBOL_GPL(dm_suspended);
3471 
3472 int dm_noflush_suspending(struct dm_target *ti)
3473 {
3474 	return __noflush_suspending(dm_table_get_md(ti->table));
3475 }
3476 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3477 
3478 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3479 					    unsigned integrity, unsigned per_bio_data_size)
3480 {
3481 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3482 	struct kmem_cache *cachep = NULL;
3483 	unsigned int pool_size = 0;
3484 	unsigned int front_pad;
3485 
3486 	if (!pools)
3487 		return NULL;
3488 
3489 	type = filter_md_type(type, md);
3490 
3491 	switch (type) {
3492 	case DM_TYPE_BIO_BASED:
3493 		cachep = _io_cache;
3494 		pool_size = dm_get_reserved_bio_based_ios();
3495 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3496 		break;
3497 	case DM_TYPE_REQUEST_BASED:
3498 		cachep = _rq_tio_cache;
3499 		pool_size = dm_get_reserved_rq_based_ios();
3500 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3501 		if (!pools->rq_pool)
3502 			goto out;
3503 		/* fall through to setup remaining rq-based pools */
3504 	case DM_TYPE_MQ_REQUEST_BASED:
3505 		if (!pool_size)
3506 			pool_size = dm_get_reserved_rq_based_ios();
3507 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3508 		/* per_bio_data_size is not used. See __bind_mempools(). */
3509 		WARN_ON(per_bio_data_size != 0);
3510 		break;
3511 	default:
3512 		BUG();
3513 	}
3514 
3515 	if (cachep) {
3516 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3517 		if (!pools->io_pool)
3518 			goto out;
3519 	}
3520 
3521 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3522 	if (!pools->bs)
3523 		goto out;
3524 
3525 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3526 		goto out;
3527 
3528 	return pools;
3529 
3530 out:
3531 	dm_free_md_mempools(pools);
3532 
3533 	return NULL;
3534 }
3535 
3536 void dm_free_md_mempools(struct dm_md_mempools *pools)
3537 {
3538 	if (!pools)
3539 		return;
3540 
3541 	mempool_destroy(pools->io_pool);
3542 	mempool_destroy(pools->rq_pool);
3543 
3544 	if (pools->bs)
3545 		bioset_free(pools->bs);
3546 
3547 	kfree(pools);
3548 }
3549 
3550 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3551 			  u32 flags)
3552 {
3553 	struct mapped_device *md = bdev->bd_disk->private_data;
3554 	const struct pr_ops *ops;
3555 	fmode_t mode;
3556 	int r;
3557 
3558 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3559 	if (r < 0)
3560 		return r;
3561 
3562 	ops = bdev->bd_disk->fops->pr_ops;
3563 	if (ops && ops->pr_register)
3564 		r = ops->pr_register(bdev, old_key, new_key, flags);
3565 	else
3566 		r = -EOPNOTSUPP;
3567 
3568 	bdput(bdev);
3569 	return r;
3570 }
3571 
3572 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3573 			 u32 flags)
3574 {
3575 	struct mapped_device *md = bdev->bd_disk->private_data;
3576 	const struct pr_ops *ops;
3577 	fmode_t mode;
3578 	int r;
3579 
3580 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3581 	if (r < 0)
3582 		return r;
3583 
3584 	ops = bdev->bd_disk->fops->pr_ops;
3585 	if (ops && ops->pr_reserve)
3586 		r = ops->pr_reserve(bdev, key, type, flags);
3587 	else
3588 		r = -EOPNOTSUPP;
3589 
3590 	bdput(bdev);
3591 	return r;
3592 }
3593 
3594 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3595 {
3596 	struct mapped_device *md = bdev->bd_disk->private_data;
3597 	const struct pr_ops *ops;
3598 	fmode_t mode;
3599 	int r;
3600 
3601 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3602 	if (r < 0)
3603 		return r;
3604 
3605 	ops = bdev->bd_disk->fops->pr_ops;
3606 	if (ops && ops->pr_release)
3607 		r = ops->pr_release(bdev, key, type);
3608 	else
3609 		r = -EOPNOTSUPP;
3610 
3611 	bdput(bdev);
3612 	return r;
3613 }
3614 
3615 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3616 			 enum pr_type type, bool abort)
3617 {
3618 	struct mapped_device *md = bdev->bd_disk->private_data;
3619 	const struct pr_ops *ops;
3620 	fmode_t mode;
3621 	int r;
3622 
3623 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3624 	if (r < 0)
3625 		return r;
3626 
3627 	ops = bdev->bd_disk->fops->pr_ops;
3628 	if (ops && ops->pr_preempt)
3629 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3630 	else
3631 		r = -EOPNOTSUPP;
3632 
3633 	bdput(bdev);
3634 	return r;
3635 }
3636 
3637 static int dm_pr_clear(struct block_device *bdev, u64 key)
3638 {
3639 	struct mapped_device *md = bdev->bd_disk->private_data;
3640 	const struct pr_ops *ops;
3641 	fmode_t mode;
3642 	int r;
3643 
3644 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3645 	if (r < 0)
3646 		return r;
3647 
3648 	ops = bdev->bd_disk->fops->pr_ops;
3649 	if (ops && ops->pr_clear)
3650 		r = ops->pr_clear(bdev, key);
3651 	else
3652 		r = -EOPNOTSUPP;
3653 
3654 	bdput(bdev);
3655 	return r;
3656 }
3657 
3658 static const struct pr_ops dm_pr_ops = {
3659 	.pr_register	= dm_pr_register,
3660 	.pr_reserve	= dm_pr_reserve,
3661 	.pr_release	= dm_pr_release,
3662 	.pr_preempt	= dm_pr_preempt,
3663 	.pr_clear	= dm_pr_clear,
3664 };
3665 
3666 static const struct block_device_operations dm_blk_dops = {
3667 	.open = dm_blk_open,
3668 	.release = dm_blk_close,
3669 	.ioctl = dm_blk_ioctl,
3670 	.getgeo = dm_blk_getgeo,
3671 	.pr_ops = &dm_pr_ops,
3672 	.owner = THIS_MODULE
3673 };
3674 
3675 /*
3676  * module hooks
3677  */
3678 module_init(dm_init);
3679 module_exit(dm_exit);
3680 
3681 module_param(major, uint, 0);
3682 MODULE_PARM_DESC(major, "The major number of the device mapper");
3683 
3684 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3685 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3686 
3687 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3688 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3689 
3690 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3691 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3692 
3693 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3694 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3695 
3696 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3697 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3698 
3699 MODULE_DESCRIPTION(DM_NAME " driver");
3700 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3701 MODULE_LICENSE("GPL");
3702