1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pr.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 static struct workqueue_struct *deferred_remove_workqueue; 58 59 /* 60 * One of these is allocated per bio. 61 */ 62 struct dm_io { 63 struct mapped_device *md; 64 int error; 65 atomic_t io_count; 66 struct bio *bio; 67 unsigned long start_time; 68 spinlock_t endio_lock; 69 struct dm_stats_aux stats_aux; 70 }; 71 72 #define MINOR_ALLOCED ((void *)-1) 73 74 /* 75 * Bits for the md->flags field. 76 */ 77 #define DMF_BLOCK_IO_FOR_SUSPEND 0 78 #define DMF_SUSPENDED 1 79 #define DMF_FROZEN 2 80 #define DMF_FREEING 3 81 #define DMF_DELETING 4 82 #define DMF_NOFLUSH_SUSPENDING 5 83 #define DMF_DEFERRED_REMOVE 6 84 #define DMF_SUSPENDED_INTERNALLY 7 85 86 #define DM_NUMA_NODE NUMA_NO_NODE 87 static int dm_numa_node = DM_NUMA_NODE; 88 89 /* 90 * For mempools pre-allocation at the table loading time. 91 */ 92 struct dm_md_mempools { 93 mempool_t *io_pool; 94 mempool_t *rq_pool; 95 struct bio_set *bs; 96 }; 97 98 struct table_device { 99 struct list_head list; 100 atomic_t count; 101 struct dm_dev dm_dev; 102 }; 103 104 static struct kmem_cache *_io_cache; 105 static struct kmem_cache *_rq_tio_cache; 106 static struct kmem_cache *_rq_cache; 107 108 /* 109 * Bio-based DM's mempools' reserved IOs set by the user. 110 */ 111 #define RESERVED_BIO_BASED_IOS 16 112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 113 114 static int __dm_get_module_param_int(int *module_param, int min, int max) 115 { 116 int param = ACCESS_ONCE(*module_param); 117 int modified_param = 0; 118 bool modified = true; 119 120 if (param < min) 121 modified_param = min; 122 else if (param > max) 123 modified_param = max; 124 else 125 modified = false; 126 127 if (modified) { 128 (void)cmpxchg(module_param, param, modified_param); 129 param = modified_param; 130 } 131 132 return param; 133 } 134 135 unsigned __dm_get_module_param(unsigned *module_param, 136 unsigned def, unsigned max) 137 { 138 unsigned param = ACCESS_ONCE(*module_param); 139 unsigned modified_param = 0; 140 141 if (!param) 142 modified_param = def; 143 else if (param > max) 144 modified_param = max; 145 146 if (modified_param) { 147 (void)cmpxchg(module_param, param, modified_param); 148 param = modified_param; 149 } 150 151 return param; 152 } 153 154 unsigned dm_get_reserved_bio_based_ios(void) 155 { 156 return __dm_get_module_param(&reserved_bio_based_ios, 157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 158 } 159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 160 161 static unsigned dm_get_numa_node(void) 162 { 163 return __dm_get_module_param_int(&dm_numa_node, 164 DM_NUMA_NODE, num_online_nodes() - 1); 165 } 166 167 static int __init local_init(void) 168 { 169 int r = -ENOMEM; 170 171 /* allocate a slab for the dm_ios */ 172 _io_cache = KMEM_CACHE(dm_io, 0); 173 if (!_io_cache) 174 return r; 175 176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 177 if (!_rq_tio_cache) 178 goto out_free_io_cache; 179 180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 181 __alignof__(struct request), 0, NULL); 182 if (!_rq_cache) 183 goto out_free_rq_tio_cache; 184 185 r = dm_uevent_init(); 186 if (r) 187 goto out_free_rq_cache; 188 189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 190 if (!deferred_remove_workqueue) { 191 r = -ENOMEM; 192 goto out_uevent_exit; 193 } 194 195 _major = major; 196 r = register_blkdev(_major, _name); 197 if (r < 0) 198 goto out_free_workqueue; 199 200 if (!_major) 201 _major = r; 202 203 return 0; 204 205 out_free_workqueue: 206 destroy_workqueue(deferred_remove_workqueue); 207 out_uevent_exit: 208 dm_uevent_exit(); 209 out_free_rq_cache: 210 kmem_cache_destroy(_rq_cache); 211 out_free_rq_tio_cache: 212 kmem_cache_destroy(_rq_tio_cache); 213 out_free_io_cache: 214 kmem_cache_destroy(_io_cache); 215 216 return r; 217 } 218 219 static void local_exit(void) 220 { 221 flush_scheduled_work(); 222 destroy_workqueue(deferred_remove_workqueue); 223 224 kmem_cache_destroy(_rq_cache); 225 kmem_cache_destroy(_rq_tio_cache); 226 kmem_cache_destroy(_io_cache); 227 unregister_blkdev(_major, _name); 228 dm_uevent_exit(); 229 230 _major = 0; 231 232 DMINFO("cleaned up"); 233 } 234 235 static int (*_inits[])(void) __initdata = { 236 local_init, 237 dm_target_init, 238 dm_linear_init, 239 dm_stripe_init, 240 dm_io_init, 241 dm_kcopyd_init, 242 dm_interface_init, 243 dm_statistics_init, 244 }; 245 246 static void (*_exits[])(void) = { 247 local_exit, 248 dm_target_exit, 249 dm_linear_exit, 250 dm_stripe_exit, 251 dm_io_exit, 252 dm_kcopyd_exit, 253 dm_interface_exit, 254 dm_statistics_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 285 /* 286 * Should be empty by this point. 287 */ 288 idr_destroy(&_minor_idr); 289 } 290 291 /* 292 * Block device functions 293 */ 294 int dm_deleting_md(struct mapped_device *md) 295 { 296 return test_bit(DMF_DELETING, &md->flags); 297 } 298 299 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 300 { 301 struct mapped_device *md; 302 303 spin_lock(&_minor_lock); 304 305 md = bdev->bd_disk->private_data; 306 if (!md) 307 goto out; 308 309 if (test_bit(DMF_FREEING, &md->flags) || 310 dm_deleting_md(md)) { 311 md = NULL; 312 goto out; 313 } 314 315 dm_get(md); 316 atomic_inc(&md->open_count); 317 out: 318 spin_unlock(&_minor_lock); 319 320 return md ? 0 : -ENXIO; 321 } 322 323 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 324 { 325 struct mapped_device *md; 326 327 spin_lock(&_minor_lock); 328 329 md = disk->private_data; 330 if (WARN_ON(!md)) 331 goto out; 332 333 if (atomic_dec_and_test(&md->open_count) && 334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 335 queue_work(deferred_remove_workqueue, &deferred_remove_work); 336 337 dm_put(md); 338 out: 339 spin_unlock(&_minor_lock); 340 } 341 342 int dm_open_count(struct mapped_device *md) 343 { 344 return atomic_read(&md->open_count); 345 } 346 347 /* 348 * Guarantees nothing is using the device before it's deleted. 349 */ 350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 351 { 352 int r = 0; 353 354 spin_lock(&_minor_lock); 355 356 if (dm_open_count(md)) { 357 r = -EBUSY; 358 if (mark_deferred) 359 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 361 r = -EEXIST; 362 else 363 set_bit(DMF_DELETING, &md->flags); 364 365 spin_unlock(&_minor_lock); 366 367 return r; 368 } 369 370 int dm_cancel_deferred_remove(struct mapped_device *md) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (test_bit(DMF_DELETING, &md->flags)) 377 r = -EBUSY; 378 else 379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 381 spin_unlock(&_minor_lock); 382 383 return r; 384 } 385 386 static void do_deferred_remove(struct work_struct *w) 387 { 388 dm_deferred_remove(); 389 } 390 391 sector_t dm_get_size(struct mapped_device *md) 392 { 393 return get_capacity(md->disk); 394 } 395 396 struct request_queue *dm_get_md_queue(struct mapped_device *md) 397 { 398 return md->queue; 399 } 400 401 struct dm_stats *dm_get_stats(struct mapped_device *md) 402 { 403 return &md->stats; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 414 struct block_device **bdev, 415 fmode_t *mode) 416 { 417 struct dm_target *tgt; 418 struct dm_table *map; 419 int srcu_idx, r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, &srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 goto out; 426 427 /* We only support devices that have a single target */ 428 if (dm_table_get_num_targets(map) != 1) 429 goto out; 430 431 tgt = dm_table_get_target(map, 0); 432 if (!tgt->type->prepare_ioctl) 433 goto out; 434 435 if (dm_suspended_md(md)) { 436 r = -EAGAIN; 437 goto out; 438 } 439 440 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 441 if (r < 0) 442 goto out; 443 444 bdgrab(*bdev); 445 dm_put_live_table(md, srcu_idx); 446 return r; 447 448 out: 449 dm_put_live_table(md, srcu_idx); 450 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 451 msleep(10); 452 goto retry; 453 } 454 return r; 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r; 462 463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 464 if (r < 0) 465 return r; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against 470 * a logical partition of the parent bdev; so extra 471 * validation is needed. 472 */ 473 r = scsi_verify_blk_ioctl(NULL, cmd); 474 if (r) 475 goto out; 476 } 477 478 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 479 out: 480 bdput(bdev); 481 return r; 482 } 483 484 static struct dm_io *alloc_io(struct mapped_device *md) 485 { 486 return mempool_alloc(md->io_pool, GFP_NOIO); 487 } 488 489 static void free_io(struct mapped_device *md, struct dm_io *io) 490 { 491 mempool_free(io, md->io_pool); 492 } 493 494 static void free_tio(struct dm_target_io *tio) 495 { 496 bio_put(&tio->clone); 497 } 498 499 int md_in_flight(struct mapped_device *md) 500 { 501 return atomic_read(&md->pending[READ]) + 502 atomic_read(&md->pending[WRITE]); 503 } 504 505 static void start_io_acct(struct dm_io *io) 506 { 507 struct mapped_device *md = io->md; 508 struct bio *bio = io->bio; 509 int cpu; 510 int rw = bio_data_dir(bio); 511 512 io->start_time = jiffies; 513 514 cpu = part_stat_lock(); 515 part_round_stats(cpu, &dm_disk(md)->part0); 516 part_stat_unlock(); 517 atomic_set(&dm_disk(md)->part0.in_flight[rw], 518 atomic_inc_return(&md->pending[rw])); 519 520 if (unlikely(dm_stats_used(&md->stats))) 521 dm_stats_account_io(&md->stats, bio_data_dir(bio), 522 bio->bi_iter.bi_sector, bio_sectors(bio), 523 false, 0, &io->stats_aux); 524 } 525 526 static void end_io_acct(struct dm_io *io) 527 { 528 struct mapped_device *md = io->md; 529 struct bio *bio = io->bio; 530 unsigned long duration = jiffies - io->start_time; 531 int pending; 532 int rw = bio_data_dir(bio); 533 534 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 535 536 if (unlikely(dm_stats_used(&md->stats))) 537 dm_stats_account_io(&md->stats, bio_data_dir(bio), 538 bio->bi_iter.bi_sector, bio_sectors(bio), 539 true, duration, &io->stats_aux); 540 541 /* 542 * After this is decremented the bio must not be touched if it is 543 * a flush. 544 */ 545 pending = atomic_dec_return(&md->pending[rw]); 546 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 547 pending += atomic_read(&md->pending[rw^0x1]); 548 549 /* nudge anyone waiting on suspend queue */ 550 if (!pending) 551 wake_up(&md->wait); 552 } 553 554 /* 555 * Add the bio to the list of deferred io. 556 */ 557 static void queue_io(struct mapped_device *md, struct bio *bio) 558 { 559 unsigned long flags; 560 561 spin_lock_irqsave(&md->deferred_lock, flags); 562 bio_list_add(&md->deferred, bio); 563 spin_unlock_irqrestore(&md->deferred_lock, flags); 564 queue_work(md->wq, &md->work); 565 } 566 567 /* 568 * Everyone (including functions in this file), should use this 569 * function to access the md->map field, and make sure they call 570 * dm_put_live_table() when finished. 571 */ 572 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 573 { 574 *srcu_idx = srcu_read_lock(&md->io_barrier); 575 576 return srcu_dereference(md->map, &md->io_barrier); 577 } 578 579 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 580 { 581 srcu_read_unlock(&md->io_barrier, srcu_idx); 582 } 583 584 void dm_sync_table(struct mapped_device *md) 585 { 586 synchronize_srcu(&md->io_barrier); 587 synchronize_rcu_expedited(); 588 } 589 590 /* 591 * A fast alternative to dm_get_live_table/dm_put_live_table. 592 * The caller must not block between these two functions. 593 */ 594 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 595 { 596 rcu_read_lock(); 597 return rcu_dereference(md->map); 598 } 599 600 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 601 { 602 rcu_read_unlock(); 603 } 604 605 /* 606 * Open a table device so we can use it as a map destination. 607 */ 608 static int open_table_device(struct table_device *td, dev_t dev, 609 struct mapped_device *md) 610 { 611 static char *_claim_ptr = "I belong to device-mapper"; 612 struct block_device *bdev; 613 614 int r; 615 616 BUG_ON(td->dm_dev.bdev); 617 618 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 619 if (IS_ERR(bdev)) 620 return PTR_ERR(bdev); 621 622 r = bd_link_disk_holder(bdev, dm_disk(md)); 623 if (r) { 624 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 625 return r; 626 } 627 628 td->dm_dev.bdev = bdev; 629 return 0; 630 } 631 632 /* 633 * Close a table device that we've been using. 634 */ 635 static void close_table_device(struct table_device *td, struct mapped_device *md) 636 { 637 if (!td->dm_dev.bdev) 638 return; 639 640 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 641 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 642 td->dm_dev.bdev = NULL; 643 } 644 645 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 646 fmode_t mode) { 647 struct table_device *td; 648 649 list_for_each_entry(td, l, list) 650 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 651 return td; 652 653 return NULL; 654 } 655 656 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 657 struct dm_dev **result) { 658 int r; 659 struct table_device *td; 660 661 mutex_lock(&md->table_devices_lock); 662 td = find_table_device(&md->table_devices, dev, mode); 663 if (!td) { 664 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 665 if (!td) { 666 mutex_unlock(&md->table_devices_lock); 667 return -ENOMEM; 668 } 669 670 td->dm_dev.mode = mode; 671 td->dm_dev.bdev = NULL; 672 673 if ((r = open_table_device(td, dev, md))) { 674 mutex_unlock(&md->table_devices_lock); 675 kfree(td); 676 return r; 677 } 678 679 format_dev_t(td->dm_dev.name, dev); 680 681 atomic_set(&td->count, 0); 682 list_add(&td->list, &md->table_devices); 683 } 684 atomic_inc(&td->count); 685 mutex_unlock(&md->table_devices_lock); 686 687 *result = &td->dm_dev; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(dm_get_table_device); 691 692 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 693 { 694 struct table_device *td = container_of(d, struct table_device, dm_dev); 695 696 mutex_lock(&md->table_devices_lock); 697 if (atomic_dec_and_test(&td->count)) { 698 close_table_device(td, md); 699 list_del(&td->list); 700 kfree(td); 701 } 702 mutex_unlock(&md->table_devices_lock); 703 } 704 EXPORT_SYMBOL(dm_put_table_device); 705 706 static void free_table_devices(struct list_head *devices) 707 { 708 struct list_head *tmp, *next; 709 710 list_for_each_safe(tmp, next, devices) { 711 struct table_device *td = list_entry(tmp, struct table_device, list); 712 713 DMWARN("dm_destroy: %s still exists with %d references", 714 td->dm_dev.name, atomic_read(&td->count)); 715 kfree(td); 716 } 717 } 718 719 /* 720 * Get the geometry associated with a dm device 721 */ 722 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 723 { 724 *geo = md->geometry; 725 726 return 0; 727 } 728 729 /* 730 * Set the geometry of a device. 731 */ 732 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 733 { 734 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 735 736 if (geo->start > sz) { 737 DMWARN("Start sector is beyond the geometry limits."); 738 return -EINVAL; 739 } 740 741 md->geometry = *geo; 742 743 return 0; 744 } 745 746 /*----------------------------------------------------------------- 747 * CRUD START: 748 * A more elegant soln is in the works that uses the queue 749 * merge fn, unfortunately there are a couple of changes to 750 * the block layer that I want to make for this. So in the 751 * interests of getting something for people to use I give 752 * you this clearly demarcated crap. 753 *---------------------------------------------------------------*/ 754 755 static int __noflush_suspending(struct mapped_device *md) 756 { 757 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 758 } 759 760 /* 761 * Decrements the number of outstanding ios that a bio has been 762 * cloned into, completing the original io if necc. 763 */ 764 static void dec_pending(struct dm_io *io, int error) 765 { 766 unsigned long flags; 767 int io_error; 768 struct bio *bio; 769 struct mapped_device *md = io->md; 770 771 /* Push-back supersedes any I/O errors */ 772 if (unlikely(error)) { 773 spin_lock_irqsave(&io->endio_lock, flags); 774 if (!(io->error > 0 && __noflush_suspending(md))) 775 io->error = error; 776 spin_unlock_irqrestore(&io->endio_lock, flags); 777 } 778 779 if (atomic_dec_and_test(&io->io_count)) { 780 if (io->error == DM_ENDIO_REQUEUE) { 781 /* 782 * Target requested pushing back the I/O. 783 */ 784 spin_lock_irqsave(&md->deferred_lock, flags); 785 if (__noflush_suspending(md)) 786 bio_list_add_head(&md->deferred, io->bio); 787 else 788 /* noflush suspend was interrupted. */ 789 io->error = -EIO; 790 spin_unlock_irqrestore(&md->deferred_lock, flags); 791 } 792 793 io_error = io->error; 794 bio = io->bio; 795 end_io_acct(io); 796 free_io(md, io); 797 798 if (io_error == DM_ENDIO_REQUEUE) 799 return; 800 801 if ((bio->bi_rw & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 802 /* 803 * Preflush done for flush with data, reissue 804 * without REQ_PREFLUSH. 805 */ 806 bio->bi_rw &= ~REQ_PREFLUSH; 807 queue_io(md, bio); 808 } else { 809 /* done with normal IO or empty flush */ 810 trace_block_bio_complete(md->queue, bio, io_error); 811 bio->bi_error = io_error; 812 bio_endio(bio); 813 } 814 } 815 } 816 817 void disable_write_same(struct mapped_device *md) 818 { 819 struct queue_limits *limits = dm_get_queue_limits(md); 820 821 /* device doesn't really support WRITE SAME, disable it */ 822 limits->max_write_same_sectors = 0; 823 } 824 825 static void clone_endio(struct bio *bio) 826 { 827 int error = bio->bi_error; 828 int r = error; 829 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 830 struct dm_io *io = tio->io; 831 struct mapped_device *md = tio->io->md; 832 dm_endio_fn endio = tio->ti->type->end_io; 833 834 if (endio) { 835 r = endio(tio->ti, bio, error); 836 if (r < 0 || r == DM_ENDIO_REQUEUE) 837 /* 838 * error and requeue request are handled 839 * in dec_pending(). 840 */ 841 error = r; 842 else if (r == DM_ENDIO_INCOMPLETE) 843 /* The target will handle the io */ 844 return; 845 else if (r) { 846 DMWARN("unimplemented target endio return value: %d", r); 847 BUG(); 848 } 849 } 850 851 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) && 852 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 853 disable_write_same(md); 854 855 free_tio(tio); 856 dec_pending(io, error); 857 } 858 859 /* 860 * Return maximum size of I/O possible at the supplied sector up to the current 861 * target boundary. 862 */ 863 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 864 { 865 sector_t target_offset = dm_target_offset(ti, sector); 866 867 return ti->len - target_offset; 868 } 869 870 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 871 { 872 sector_t len = max_io_len_target_boundary(sector, ti); 873 sector_t offset, max_len; 874 875 /* 876 * Does the target need to split even further? 877 */ 878 if (ti->max_io_len) { 879 offset = dm_target_offset(ti, sector); 880 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 881 max_len = sector_div(offset, ti->max_io_len); 882 else 883 max_len = offset & (ti->max_io_len - 1); 884 max_len = ti->max_io_len - max_len; 885 886 if (len > max_len) 887 len = max_len; 888 } 889 890 return len; 891 } 892 893 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 894 { 895 if (len > UINT_MAX) { 896 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 897 (unsigned long long)len, UINT_MAX); 898 ti->error = "Maximum size of target IO is too large"; 899 return -EINVAL; 900 } 901 902 ti->max_io_len = (uint32_t) len; 903 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 907 908 /* 909 * A target may call dm_accept_partial_bio only from the map routine. It is 910 * allowed for all bio types except REQ_PREFLUSH. 911 * 912 * dm_accept_partial_bio informs the dm that the target only wants to process 913 * additional n_sectors sectors of the bio and the rest of the data should be 914 * sent in a next bio. 915 * 916 * A diagram that explains the arithmetics: 917 * +--------------------+---------------+-------+ 918 * | 1 | 2 | 3 | 919 * +--------------------+---------------+-------+ 920 * 921 * <-------------- *tio->len_ptr ---------------> 922 * <------- bi_size -------> 923 * <-- n_sectors --> 924 * 925 * Region 1 was already iterated over with bio_advance or similar function. 926 * (it may be empty if the target doesn't use bio_advance) 927 * Region 2 is the remaining bio size that the target wants to process. 928 * (it may be empty if region 1 is non-empty, although there is no reason 929 * to make it empty) 930 * The target requires that region 3 is to be sent in the next bio. 931 * 932 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 933 * the partially processed part (the sum of regions 1+2) must be the same for all 934 * copies of the bio. 935 */ 936 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 937 { 938 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 939 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 940 BUG_ON(bio->bi_rw & REQ_PREFLUSH); 941 BUG_ON(bi_size > *tio->len_ptr); 942 BUG_ON(n_sectors > bi_size); 943 *tio->len_ptr -= bi_size - n_sectors; 944 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 945 } 946 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 947 948 static void __map_bio(struct dm_target_io *tio) 949 { 950 int r; 951 sector_t sector; 952 struct bio *clone = &tio->clone; 953 struct dm_target *ti = tio->ti; 954 955 clone->bi_end_io = clone_endio; 956 957 /* 958 * Map the clone. If r == 0 we don't need to do 959 * anything, the target has assumed ownership of 960 * this io. 961 */ 962 atomic_inc(&tio->io->io_count); 963 sector = clone->bi_iter.bi_sector; 964 r = ti->type->map(ti, clone); 965 if (r == DM_MAPIO_REMAPPED) { 966 /* the bio has been remapped so dispatch it */ 967 968 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 969 tio->io->bio->bi_bdev->bd_dev, sector); 970 971 generic_make_request(clone); 972 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 973 /* error the io and bail out, or requeue it if needed */ 974 dec_pending(tio->io, r); 975 free_tio(tio); 976 } else if (r != DM_MAPIO_SUBMITTED) { 977 DMWARN("unimplemented target map return value: %d", r); 978 BUG(); 979 } 980 } 981 982 struct clone_info { 983 struct mapped_device *md; 984 struct dm_table *map; 985 struct bio *bio; 986 struct dm_io *io; 987 sector_t sector; 988 unsigned sector_count; 989 }; 990 991 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 992 { 993 bio->bi_iter.bi_sector = sector; 994 bio->bi_iter.bi_size = to_bytes(len); 995 } 996 997 /* 998 * Creates a bio that consists of range of complete bvecs. 999 */ 1000 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1001 sector_t sector, unsigned len) 1002 { 1003 struct bio *clone = &tio->clone; 1004 1005 __bio_clone_fast(clone, bio); 1006 1007 if (bio_integrity(bio)) { 1008 int r = bio_integrity_clone(clone, bio, GFP_NOIO); 1009 if (r < 0) 1010 return r; 1011 } 1012 1013 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1014 clone->bi_iter.bi_size = to_bytes(len); 1015 1016 if (bio_integrity(bio)) 1017 bio_integrity_trim(clone, 0, len); 1018 1019 return 0; 1020 } 1021 1022 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1023 struct dm_target *ti, 1024 unsigned target_bio_nr) 1025 { 1026 struct dm_target_io *tio; 1027 struct bio *clone; 1028 1029 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1030 tio = container_of(clone, struct dm_target_io, clone); 1031 1032 tio->io = ci->io; 1033 tio->ti = ti; 1034 tio->target_bio_nr = target_bio_nr; 1035 1036 return tio; 1037 } 1038 1039 static void __clone_and_map_simple_bio(struct clone_info *ci, 1040 struct dm_target *ti, 1041 unsigned target_bio_nr, unsigned *len) 1042 { 1043 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1044 struct bio *clone = &tio->clone; 1045 1046 tio->len_ptr = len; 1047 1048 __bio_clone_fast(clone, ci->bio); 1049 if (len) 1050 bio_setup_sector(clone, ci->sector, *len); 1051 1052 __map_bio(tio); 1053 } 1054 1055 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1056 unsigned num_bios, unsigned *len) 1057 { 1058 unsigned target_bio_nr; 1059 1060 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1061 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1062 } 1063 1064 static int __send_empty_flush(struct clone_info *ci) 1065 { 1066 unsigned target_nr = 0; 1067 struct dm_target *ti; 1068 1069 BUG_ON(bio_has_data(ci->bio)); 1070 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1071 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1072 1073 return 0; 1074 } 1075 1076 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1077 sector_t sector, unsigned *len) 1078 { 1079 struct bio *bio = ci->bio; 1080 struct dm_target_io *tio; 1081 unsigned target_bio_nr; 1082 unsigned num_target_bios = 1; 1083 int r = 0; 1084 1085 /* 1086 * Does the target want to receive duplicate copies of the bio? 1087 */ 1088 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1089 num_target_bios = ti->num_write_bios(ti, bio); 1090 1091 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1092 tio = alloc_tio(ci, ti, target_bio_nr); 1093 tio->len_ptr = len; 1094 r = clone_bio(tio, bio, sector, *len); 1095 if (r < 0) { 1096 free_tio(tio); 1097 break; 1098 } 1099 __map_bio(tio); 1100 } 1101 1102 return r; 1103 } 1104 1105 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1106 1107 static unsigned get_num_discard_bios(struct dm_target *ti) 1108 { 1109 return ti->num_discard_bios; 1110 } 1111 1112 static unsigned get_num_write_same_bios(struct dm_target *ti) 1113 { 1114 return ti->num_write_same_bios; 1115 } 1116 1117 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1118 1119 static bool is_split_required_for_discard(struct dm_target *ti) 1120 { 1121 return ti->split_discard_bios; 1122 } 1123 1124 static int __send_changing_extent_only(struct clone_info *ci, 1125 get_num_bios_fn get_num_bios, 1126 is_split_required_fn is_split_required) 1127 { 1128 struct dm_target *ti; 1129 unsigned len; 1130 unsigned num_bios; 1131 1132 do { 1133 ti = dm_table_find_target(ci->map, ci->sector); 1134 if (!dm_target_is_valid(ti)) 1135 return -EIO; 1136 1137 /* 1138 * Even though the device advertised support for this type of 1139 * request, that does not mean every target supports it, and 1140 * reconfiguration might also have changed that since the 1141 * check was performed. 1142 */ 1143 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1144 if (!num_bios) 1145 return -EOPNOTSUPP; 1146 1147 if (is_split_required && !is_split_required(ti)) 1148 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1149 else 1150 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1151 1152 __send_duplicate_bios(ci, ti, num_bios, &len); 1153 1154 ci->sector += len; 1155 } while (ci->sector_count -= len); 1156 1157 return 0; 1158 } 1159 1160 static int __send_discard(struct clone_info *ci) 1161 { 1162 return __send_changing_extent_only(ci, get_num_discard_bios, 1163 is_split_required_for_discard); 1164 } 1165 1166 static int __send_write_same(struct clone_info *ci) 1167 { 1168 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1169 } 1170 1171 /* 1172 * Select the correct strategy for processing a non-flush bio. 1173 */ 1174 static int __split_and_process_non_flush(struct clone_info *ci) 1175 { 1176 struct bio *bio = ci->bio; 1177 struct dm_target *ti; 1178 unsigned len; 1179 int r; 1180 1181 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1182 return __send_discard(ci); 1183 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1184 return __send_write_same(ci); 1185 1186 ti = dm_table_find_target(ci->map, ci->sector); 1187 if (!dm_target_is_valid(ti)) 1188 return -EIO; 1189 1190 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1191 1192 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1193 if (r < 0) 1194 return r; 1195 1196 ci->sector += len; 1197 ci->sector_count -= len; 1198 1199 return 0; 1200 } 1201 1202 /* 1203 * Entry point to split a bio into clones and submit them to the targets. 1204 */ 1205 static void __split_and_process_bio(struct mapped_device *md, 1206 struct dm_table *map, struct bio *bio) 1207 { 1208 struct clone_info ci; 1209 int error = 0; 1210 1211 if (unlikely(!map)) { 1212 bio_io_error(bio); 1213 return; 1214 } 1215 1216 ci.map = map; 1217 ci.md = md; 1218 ci.io = alloc_io(md); 1219 ci.io->error = 0; 1220 atomic_set(&ci.io->io_count, 1); 1221 ci.io->bio = bio; 1222 ci.io->md = md; 1223 spin_lock_init(&ci.io->endio_lock); 1224 ci.sector = bio->bi_iter.bi_sector; 1225 1226 start_io_acct(ci.io); 1227 1228 if (bio->bi_rw & REQ_PREFLUSH) { 1229 ci.bio = &ci.md->flush_bio; 1230 ci.sector_count = 0; 1231 error = __send_empty_flush(&ci); 1232 /* dec_pending submits any data associated with flush */ 1233 } else { 1234 ci.bio = bio; 1235 ci.sector_count = bio_sectors(bio); 1236 while (ci.sector_count && !error) 1237 error = __split_and_process_non_flush(&ci); 1238 } 1239 1240 /* drop the extra reference count */ 1241 dec_pending(ci.io, error); 1242 } 1243 /*----------------------------------------------------------------- 1244 * CRUD END 1245 *---------------------------------------------------------------*/ 1246 1247 /* 1248 * The request function that just remaps the bio built up by 1249 * dm_merge_bvec. 1250 */ 1251 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1252 { 1253 int rw = bio_data_dir(bio); 1254 struct mapped_device *md = q->queuedata; 1255 int srcu_idx; 1256 struct dm_table *map; 1257 1258 map = dm_get_live_table(md, &srcu_idx); 1259 1260 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1261 1262 /* if we're suspended, we have to queue this io for later */ 1263 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1264 dm_put_live_table(md, srcu_idx); 1265 1266 if (bio_rw(bio) != READA) 1267 queue_io(md, bio); 1268 else 1269 bio_io_error(bio); 1270 return BLK_QC_T_NONE; 1271 } 1272 1273 __split_and_process_bio(md, map, bio); 1274 dm_put_live_table(md, srcu_idx); 1275 return BLK_QC_T_NONE; 1276 } 1277 1278 static int dm_any_congested(void *congested_data, int bdi_bits) 1279 { 1280 int r = bdi_bits; 1281 struct mapped_device *md = congested_data; 1282 struct dm_table *map; 1283 1284 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1285 if (dm_request_based(md)) { 1286 /* 1287 * With request-based DM we only need to check the 1288 * top-level queue for congestion. 1289 */ 1290 r = md->queue->backing_dev_info.wb.state & bdi_bits; 1291 } else { 1292 map = dm_get_live_table_fast(md); 1293 if (map) 1294 r = dm_table_any_congested(map, bdi_bits); 1295 dm_put_live_table_fast(md); 1296 } 1297 } 1298 1299 return r; 1300 } 1301 1302 /*----------------------------------------------------------------- 1303 * An IDR is used to keep track of allocated minor numbers. 1304 *---------------------------------------------------------------*/ 1305 static void free_minor(int minor) 1306 { 1307 spin_lock(&_minor_lock); 1308 idr_remove(&_minor_idr, minor); 1309 spin_unlock(&_minor_lock); 1310 } 1311 1312 /* 1313 * See if the device with a specific minor # is free. 1314 */ 1315 static int specific_minor(int minor) 1316 { 1317 int r; 1318 1319 if (minor >= (1 << MINORBITS)) 1320 return -EINVAL; 1321 1322 idr_preload(GFP_KERNEL); 1323 spin_lock(&_minor_lock); 1324 1325 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1326 1327 spin_unlock(&_minor_lock); 1328 idr_preload_end(); 1329 if (r < 0) 1330 return r == -ENOSPC ? -EBUSY : r; 1331 return 0; 1332 } 1333 1334 static int next_free_minor(int *minor) 1335 { 1336 int r; 1337 1338 idr_preload(GFP_KERNEL); 1339 spin_lock(&_minor_lock); 1340 1341 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1342 1343 spin_unlock(&_minor_lock); 1344 idr_preload_end(); 1345 if (r < 0) 1346 return r; 1347 *minor = r; 1348 return 0; 1349 } 1350 1351 static const struct block_device_operations dm_blk_dops; 1352 1353 static void dm_wq_work(struct work_struct *work); 1354 1355 void dm_init_md_queue(struct mapped_device *md) 1356 { 1357 /* 1358 * Request-based dm devices cannot be stacked on top of bio-based dm 1359 * devices. The type of this dm device may not have been decided yet. 1360 * The type is decided at the first table loading time. 1361 * To prevent problematic device stacking, clear the queue flag 1362 * for request stacking support until then. 1363 * 1364 * This queue is new, so no concurrency on the queue_flags. 1365 */ 1366 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1367 1368 /* 1369 * Initialize data that will only be used by a non-blk-mq DM queue 1370 * - must do so here (in alloc_dev callchain) before queue is used 1371 */ 1372 md->queue->queuedata = md; 1373 md->queue->backing_dev_info.congested_data = md; 1374 } 1375 1376 void dm_init_normal_md_queue(struct mapped_device *md) 1377 { 1378 md->use_blk_mq = false; 1379 dm_init_md_queue(md); 1380 1381 /* 1382 * Initialize aspects of queue that aren't relevant for blk-mq 1383 */ 1384 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1385 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1386 } 1387 1388 static void cleanup_mapped_device(struct mapped_device *md) 1389 { 1390 if (md->wq) 1391 destroy_workqueue(md->wq); 1392 if (md->kworker_task) 1393 kthread_stop(md->kworker_task); 1394 mempool_destroy(md->io_pool); 1395 mempool_destroy(md->rq_pool); 1396 if (md->bs) 1397 bioset_free(md->bs); 1398 1399 cleanup_srcu_struct(&md->io_barrier); 1400 1401 if (md->disk) { 1402 spin_lock(&_minor_lock); 1403 md->disk->private_data = NULL; 1404 spin_unlock(&_minor_lock); 1405 del_gendisk(md->disk); 1406 put_disk(md->disk); 1407 } 1408 1409 if (md->queue) 1410 blk_cleanup_queue(md->queue); 1411 1412 if (md->bdev) { 1413 bdput(md->bdev); 1414 md->bdev = NULL; 1415 } 1416 1417 dm_mq_cleanup_mapped_device(md); 1418 } 1419 1420 /* 1421 * Allocate and initialise a blank device with a given minor. 1422 */ 1423 static struct mapped_device *alloc_dev(int minor) 1424 { 1425 int r, numa_node_id = dm_get_numa_node(); 1426 struct mapped_device *md; 1427 void *old_md; 1428 1429 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1430 if (!md) { 1431 DMWARN("unable to allocate device, out of memory."); 1432 return NULL; 1433 } 1434 1435 if (!try_module_get(THIS_MODULE)) 1436 goto bad_module_get; 1437 1438 /* get a minor number for the dev */ 1439 if (minor == DM_ANY_MINOR) 1440 r = next_free_minor(&minor); 1441 else 1442 r = specific_minor(minor); 1443 if (r < 0) 1444 goto bad_minor; 1445 1446 r = init_srcu_struct(&md->io_barrier); 1447 if (r < 0) 1448 goto bad_io_barrier; 1449 1450 md->numa_node_id = numa_node_id; 1451 md->use_blk_mq = dm_use_blk_mq_default(); 1452 md->init_tio_pdu = false; 1453 md->type = DM_TYPE_NONE; 1454 mutex_init(&md->suspend_lock); 1455 mutex_init(&md->type_lock); 1456 mutex_init(&md->table_devices_lock); 1457 spin_lock_init(&md->deferred_lock); 1458 atomic_set(&md->holders, 1); 1459 atomic_set(&md->open_count, 0); 1460 atomic_set(&md->event_nr, 0); 1461 atomic_set(&md->uevent_seq, 0); 1462 INIT_LIST_HEAD(&md->uevent_list); 1463 INIT_LIST_HEAD(&md->table_devices); 1464 spin_lock_init(&md->uevent_lock); 1465 1466 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1467 if (!md->queue) 1468 goto bad; 1469 1470 dm_init_md_queue(md); 1471 1472 md->disk = alloc_disk_node(1, numa_node_id); 1473 if (!md->disk) 1474 goto bad; 1475 1476 atomic_set(&md->pending[0], 0); 1477 atomic_set(&md->pending[1], 0); 1478 init_waitqueue_head(&md->wait); 1479 INIT_WORK(&md->work, dm_wq_work); 1480 init_waitqueue_head(&md->eventq); 1481 init_completion(&md->kobj_holder.completion); 1482 md->kworker_task = NULL; 1483 1484 md->disk->major = _major; 1485 md->disk->first_minor = minor; 1486 md->disk->fops = &dm_blk_dops; 1487 md->disk->queue = md->queue; 1488 md->disk->private_data = md; 1489 sprintf(md->disk->disk_name, "dm-%d", minor); 1490 add_disk(md->disk); 1491 format_dev_t(md->name, MKDEV(_major, minor)); 1492 1493 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1494 if (!md->wq) 1495 goto bad; 1496 1497 md->bdev = bdget_disk(md->disk, 0); 1498 if (!md->bdev) 1499 goto bad; 1500 1501 bio_init(&md->flush_bio); 1502 md->flush_bio.bi_bdev = md->bdev; 1503 bio_set_op_attrs(&md->flush_bio, REQ_OP_WRITE, WRITE_FLUSH); 1504 1505 dm_stats_init(&md->stats); 1506 1507 /* Populate the mapping, nobody knows we exist yet */ 1508 spin_lock(&_minor_lock); 1509 old_md = idr_replace(&_minor_idr, md, minor); 1510 spin_unlock(&_minor_lock); 1511 1512 BUG_ON(old_md != MINOR_ALLOCED); 1513 1514 return md; 1515 1516 bad: 1517 cleanup_mapped_device(md); 1518 bad_io_barrier: 1519 free_minor(minor); 1520 bad_minor: 1521 module_put(THIS_MODULE); 1522 bad_module_get: 1523 kfree(md); 1524 return NULL; 1525 } 1526 1527 static void unlock_fs(struct mapped_device *md); 1528 1529 static void free_dev(struct mapped_device *md) 1530 { 1531 int minor = MINOR(disk_devt(md->disk)); 1532 1533 unlock_fs(md); 1534 1535 cleanup_mapped_device(md); 1536 1537 free_table_devices(&md->table_devices); 1538 dm_stats_cleanup(&md->stats); 1539 free_minor(minor); 1540 1541 module_put(THIS_MODULE); 1542 kfree(md); 1543 } 1544 1545 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1546 { 1547 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1548 1549 if (md->bs) { 1550 /* The md already has necessary mempools. */ 1551 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1552 /* 1553 * Reload bioset because front_pad may have changed 1554 * because a different table was loaded. 1555 */ 1556 bioset_free(md->bs); 1557 md->bs = p->bs; 1558 p->bs = NULL; 1559 } 1560 /* 1561 * There's no need to reload with request-based dm 1562 * because the size of front_pad doesn't change. 1563 * Note for future: If you are to reload bioset, 1564 * prep-ed requests in the queue may refer 1565 * to bio from the old bioset, so you must walk 1566 * through the queue to unprep. 1567 */ 1568 goto out; 1569 } 1570 1571 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 1572 1573 md->io_pool = p->io_pool; 1574 p->io_pool = NULL; 1575 md->rq_pool = p->rq_pool; 1576 p->rq_pool = NULL; 1577 md->bs = p->bs; 1578 p->bs = NULL; 1579 1580 out: 1581 /* mempool bind completed, no longer need any mempools in the table */ 1582 dm_table_free_md_mempools(t); 1583 } 1584 1585 /* 1586 * Bind a table to the device. 1587 */ 1588 static void event_callback(void *context) 1589 { 1590 unsigned long flags; 1591 LIST_HEAD(uevents); 1592 struct mapped_device *md = (struct mapped_device *) context; 1593 1594 spin_lock_irqsave(&md->uevent_lock, flags); 1595 list_splice_init(&md->uevent_list, &uevents); 1596 spin_unlock_irqrestore(&md->uevent_lock, flags); 1597 1598 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1599 1600 atomic_inc(&md->event_nr); 1601 wake_up(&md->eventq); 1602 } 1603 1604 /* 1605 * Protected by md->suspend_lock obtained by dm_swap_table(). 1606 */ 1607 static void __set_size(struct mapped_device *md, sector_t size) 1608 { 1609 set_capacity(md->disk, size); 1610 1611 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1612 } 1613 1614 /* 1615 * Returns old map, which caller must destroy. 1616 */ 1617 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1618 struct queue_limits *limits) 1619 { 1620 struct dm_table *old_map; 1621 struct request_queue *q = md->queue; 1622 sector_t size; 1623 1624 size = dm_table_get_size(t); 1625 1626 /* 1627 * Wipe any geometry if the size of the table changed. 1628 */ 1629 if (size != dm_get_size(md)) 1630 memset(&md->geometry, 0, sizeof(md->geometry)); 1631 1632 __set_size(md, size); 1633 1634 dm_table_event_callback(t, event_callback, md); 1635 1636 /* 1637 * The queue hasn't been stopped yet, if the old table type wasn't 1638 * for request-based during suspension. So stop it to prevent 1639 * I/O mapping before resume. 1640 * This must be done before setting the queue restrictions, 1641 * because request-based dm may be run just after the setting. 1642 */ 1643 if (dm_table_request_based(t)) { 1644 dm_stop_queue(q); 1645 /* 1646 * Leverage the fact that request-based DM targets are 1647 * immutable singletons and establish md->immutable_target 1648 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1649 */ 1650 md->immutable_target = dm_table_get_immutable_target(t); 1651 } 1652 1653 __bind_mempools(md, t); 1654 1655 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1656 rcu_assign_pointer(md->map, (void *)t); 1657 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1658 1659 dm_table_set_restrictions(t, q, limits); 1660 if (old_map) 1661 dm_sync_table(md); 1662 1663 return old_map; 1664 } 1665 1666 /* 1667 * Returns unbound table for the caller to free. 1668 */ 1669 static struct dm_table *__unbind(struct mapped_device *md) 1670 { 1671 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1672 1673 if (!map) 1674 return NULL; 1675 1676 dm_table_event_callback(map, NULL, NULL); 1677 RCU_INIT_POINTER(md->map, NULL); 1678 dm_sync_table(md); 1679 1680 return map; 1681 } 1682 1683 /* 1684 * Constructor for a new device. 1685 */ 1686 int dm_create(int minor, struct mapped_device **result) 1687 { 1688 struct mapped_device *md; 1689 1690 md = alloc_dev(minor); 1691 if (!md) 1692 return -ENXIO; 1693 1694 dm_sysfs_init(md); 1695 1696 *result = md; 1697 return 0; 1698 } 1699 1700 /* 1701 * Functions to manage md->type. 1702 * All are required to hold md->type_lock. 1703 */ 1704 void dm_lock_md_type(struct mapped_device *md) 1705 { 1706 mutex_lock(&md->type_lock); 1707 } 1708 1709 void dm_unlock_md_type(struct mapped_device *md) 1710 { 1711 mutex_unlock(&md->type_lock); 1712 } 1713 1714 void dm_set_md_type(struct mapped_device *md, unsigned type) 1715 { 1716 BUG_ON(!mutex_is_locked(&md->type_lock)); 1717 md->type = type; 1718 } 1719 1720 unsigned dm_get_md_type(struct mapped_device *md) 1721 { 1722 return md->type; 1723 } 1724 1725 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1726 { 1727 return md->immutable_target_type; 1728 } 1729 1730 /* 1731 * The queue_limits are only valid as long as you have a reference 1732 * count on 'md'. 1733 */ 1734 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1735 { 1736 BUG_ON(!atomic_read(&md->holders)); 1737 return &md->queue->limits; 1738 } 1739 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1740 1741 /* 1742 * Setup the DM device's queue based on md's type 1743 */ 1744 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1745 { 1746 int r; 1747 1748 switch (dm_get_md_type(md)) { 1749 case DM_TYPE_REQUEST_BASED: 1750 r = dm_old_init_request_queue(md); 1751 if (r) { 1752 DMERR("Cannot initialize queue for request-based mapped device"); 1753 return r; 1754 } 1755 break; 1756 case DM_TYPE_MQ_REQUEST_BASED: 1757 r = dm_mq_init_request_queue(md, t); 1758 if (r) { 1759 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1760 return r; 1761 } 1762 break; 1763 case DM_TYPE_BIO_BASED: 1764 dm_init_normal_md_queue(md); 1765 blk_queue_make_request(md->queue, dm_make_request); 1766 /* 1767 * DM handles splitting bios as needed. Free the bio_split bioset 1768 * since it won't be used (saves 1 process per bio-based DM device). 1769 */ 1770 bioset_free(md->queue->bio_split); 1771 md->queue->bio_split = NULL; 1772 break; 1773 } 1774 1775 return 0; 1776 } 1777 1778 struct mapped_device *dm_get_md(dev_t dev) 1779 { 1780 struct mapped_device *md; 1781 unsigned minor = MINOR(dev); 1782 1783 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1784 return NULL; 1785 1786 spin_lock(&_minor_lock); 1787 1788 md = idr_find(&_minor_idr, minor); 1789 if (md) { 1790 if ((md == MINOR_ALLOCED || 1791 (MINOR(disk_devt(dm_disk(md))) != minor) || 1792 dm_deleting_md(md) || 1793 test_bit(DMF_FREEING, &md->flags))) { 1794 md = NULL; 1795 goto out; 1796 } 1797 dm_get(md); 1798 } 1799 1800 out: 1801 spin_unlock(&_minor_lock); 1802 1803 return md; 1804 } 1805 EXPORT_SYMBOL_GPL(dm_get_md); 1806 1807 void *dm_get_mdptr(struct mapped_device *md) 1808 { 1809 return md->interface_ptr; 1810 } 1811 1812 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1813 { 1814 md->interface_ptr = ptr; 1815 } 1816 1817 void dm_get(struct mapped_device *md) 1818 { 1819 atomic_inc(&md->holders); 1820 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1821 } 1822 1823 int dm_hold(struct mapped_device *md) 1824 { 1825 spin_lock(&_minor_lock); 1826 if (test_bit(DMF_FREEING, &md->flags)) { 1827 spin_unlock(&_minor_lock); 1828 return -EBUSY; 1829 } 1830 dm_get(md); 1831 spin_unlock(&_minor_lock); 1832 return 0; 1833 } 1834 EXPORT_SYMBOL_GPL(dm_hold); 1835 1836 const char *dm_device_name(struct mapped_device *md) 1837 { 1838 return md->name; 1839 } 1840 EXPORT_SYMBOL_GPL(dm_device_name); 1841 1842 static void __dm_destroy(struct mapped_device *md, bool wait) 1843 { 1844 struct dm_table *map; 1845 int srcu_idx; 1846 1847 might_sleep(); 1848 1849 spin_lock(&_minor_lock); 1850 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1851 set_bit(DMF_FREEING, &md->flags); 1852 spin_unlock(&_minor_lock); 1853 1854 if (dm_request_based(md) && md->kworker_task) 1855 flush_kthread_worker(&md->kworker); 1856 1857 /* 1858 * Take suspend_lock so that presuspend and postsuspend methods 1859 * do not race with internal suspend. 1860 */ 1861 mutex_lock(&md->suspend_lock); 1862 map = dm_get_live_table(md, &srcu_idx); 1863 if (!dm_suspended_md(md)) { 1864 dm_table_presuspend_targets(map); 1865 dm_table_postsuspend_targets(map); 1866 } 1867 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1868 dm_put_live_table(md, srcu_idx); 1869 mutex_unlock(&md->suspend_lock); 1870 1871 /* 1872 * Rare, but there may be I/O requests still going to complete, 1873 * for example. Wait for all references to disappear. 1874 * No one should increment the reference count of the mapped_device, 1875 * after the mapped_device state becomes DMF_FREEING. 1876 */ 1877 if (wait) 1878 while (atomic_read(&md->holders)) 1879 msleep(1); 1880 else if (atomic_read(&md->holders)) 1881 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 1882 dm_device_name(md), atomic_read(&md->holders)); 1883 1884 dm_sysfs_exit(md); 1885 dm_table_destroy(__unbind(md)); 1886 free_dev(md); 1887 } 1888 1889 void dm_destroy(struct mapped_device *md) 1890 { 1891 __dm_destroy(md, true); 1892 } 1893 1894 void dm_destroy_immediate(struct mapped_device *md) 1895 { 1896 __dm_destroy(md, false); 1897 } 1898 1899 void dm_put(struct mapped_device *md) 1900 { 1901 atomic_dec(&md->holders); 1902 } 1903 EXPORT_SYMBOL_GPL(dm_put); 1904 1905 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 1906 { 1907 int r = 0; 1908 DECLARE_WAITQUEUE(wait, current); 1909 1910 add_wait_queue(&md->wait, &wait); 1911 1912 while (1) { 1913 set_current_state(interruptible); 1914 1915 if (!md_in_flight(md)) 1916 break; 1917 1918 if (interruptible == TASK_INTERRUPTIBLE && 1919 signal_pending(current)) { 1920 r = -EINTR; 1921 break; 1922 } 1923 1924 io_schedule(); 1925 } 1926 set_current_state(TASK_RUNNING); 1927 1928 remove_wait_queue(&md->wait, &wait); 1929 1930 return r; 1931 } 1932 1933 /* 1934 * Process the deferred bios 1935 */ 1936 static void dm_wq_work(struct work_struct *work) 1937 { 1938 struct mapped_device *md = container_of(work, struct mapped_device, 1939 work); 1940 struct bio *c; 1941 int srcu_idx; 1942 struct dm_table *map; 1943 1944 map = dm_get_live_table(md, &srcu_idx); 1945 1946 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1947 spin_lock_irq(&md->deferred_lock); 1948 c = bio_list_pop(&md->deferred); 1949 spin_unlock_irq(&md->deferred_lock); 1950 1951 if (!c) 1952 break; 1953 1954 if (dm_request_based(md)) 1955 generic_make_request(c); 1956 else 1957 __split_and_process_bio(md, map, c); 1958 } 1959 1960 dm_put_live_table(md, srcu_idx); 1961 } 1962 1963 static void dm_queue_flush(struct mapped_device *md) 1964 { 1965 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 1966 smp_mb__after_atomic(); 1967 queue_work(md->wq, &md->work); 1968 } 1969 1970 /* 1971 * Swap in a new table, returning the old one for the caller to destroy. 1972 */ 1973 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 1974 { 1975 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 1976 struct queue_limits limits; 1977 int r; 1978 1979 mutex_lock(&md->suspend_lock); 1980 1981 /* device must be suspended */ 1982 if (!dm_suspended_md(md)) 1983 goto out; 1984 1985 /* 1986 * If the new table has no data devices, retain the existing limits. 1987 * This helps multipath with queue_if_no_path if all paths disappear, 1988 * then new I/O is queued based on these limits, and then some paths 1989 * reappear. 1990 */ 1991 if (dm_table_has_no_data_devices(table)) { 1992 live_map = dm_get_live_table_fast(md); 1993 if (live_map) 1994 limits = md->queue->limits; 1995 dm_put_live_table_fast(md); 1996 } 1997 1998 if (!live_map) { 1999 r = dm_calculate_queue_limits(table, &limits); 2000 if (r) { 2001 map = ERR_PTR(r); 2002 goto out; 2003 } 2004 } 2005 2006 map = __bind(md, table, &limits); 2007 2008 out: 2009 mutex_unlock(&md->suspend_lock); 2010 return map; 2011 } 2012 2013 /* 2014 * Functions to lock and unlock any filesystem running on the 2015 * device. 2016 */ 2017 static int lock_fs(struct mapped_device *md) 2018 { 2019 int r; 2020 2021 WARN_ON(md->frozen_sb); 2022 2023 md->frozen_sb = freeze_bdev(md->bdev); 2024 if (IS_ERR(md->frozen_sb)) { 2025 r = PTR_ERR(md->frozen_sb); 2026 md->frozen_sb = NULL; 2027 return r; 2028 } 2029 2030 set_bit(DMF_FROZEN, &md->flags); 2031 2032 return 0; 2033 } 2034 2035 static void unlock_fs(struct mapped_device *md) 2036 { 2037 if (!test_bit(DMF_FROZEN, &md->flags)) 2038 return; 2039 2040 thaw_bdev(md->bdev, md->frozen_sb); 2041 md->frozen_sb = NULL; 2042 clear_bit(DMF_FROZEN, &md->flags); 2043 } 2044 2045 /* 2046 * If __dm_suspend returns 0, the device is completely quiescent 2047 * now. There is no request-processing activity. All new requests 2048 * are being added to md->deferred list. 2049 * 2050 * Caller must hold md->suspend_lock 2051 */ 2052 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2053 unsigned suspend_flags, int interruptible) 2054 { 2055 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2056 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2057 int r; 2058 2059 /* 2060 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2061 * This flag is cleared before dm_suspend returns. 2062 */ 2063 if (noflush) 2064 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2065 2066 /* 2067 * This gets reverted if there's an error later and the targets 2068 * provide the .presuspend_undo hook. 2069 */ 2070 dm_table_presuspend_targets(map); 2071 2072 /* 2073 * Flush I/O to the device. 2074 * Any I/O submitted after lock_fs() may not be flushed. 2075 * noflush takes precedence over do_lockfs. 2076 * (lock_fs() flushes I/Os and waits for them to complete.) 2077 */ 2078 if (!noflush && do_lockfs) { 2079 r = lock_fs(md); 2080 if (r) { 2081 dm_table_presuspend_undo_targets(map); 2082 return r; 2083 } 2084 } 2085 2086 /* 2087 * Here we must make sure that no processes are submitting requests 2088 * to target drivers i.e. no one may be executing 2089 * __split_and_process_bio. This is called from dm_request and 2090 * dm_wq_work. 2091 * 2092 * To get all processes out of __split_and_process_bio in dm_request, 2093 * we take the write lock. To prevent any process from reentering 2094 * __split_and_process_bio from dm_request and quiesce the thread 2095 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2096 * flush_workqueue(md->wq). 2097 */ 2098 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2099 if (map) 2100 synchronize_srcu(&md->io_barrier); 2101 2102 /* 2103 * Stop md->queue before flushing md->wq in case request-based 2104 * dm defers requests to md->wq from md->queue. 2105 */ 2106 if (dm_request_based(md)) { 2107 dm_stop_queue(md->queue); 2108 if (md->kworker_task) 2109 flush_kthread_worker(&md->kworker); 2110 } 2111 2112 flush_workqueue(md->wq); 2113 2114 /* 2115 * At this point no more requests are entering target request routines. 2116 * We call dm_wait_for_completion to wait for all existing requests 2117 * to finish. 2118 */ 2119 r = dm_wait_for_completion(md, interruptible); 2120 2121 if (noflush) 2122 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2123 if (map) 2124 synchronize_srcu(&md->io_barrier); 2125 2126 /* were we interrupted ? */ 2127 if (r < 0) { 2128 dm_queue_flush(md); 2129 2130 if (dm_request_based(md)) 2131 dm_start_queue(md->queue); 2132 2133 unlock_fs(md); 2134 dm_table_presuspend_undo_targets(map); 2135 /* pushback list is already flushed, so skip flush */ 2136 } 2137 2138 return r; 2139 } 2140 2141 /* 2142 * We need to be able to change a mapping table under a mounted 2143 * filesystem. For example we might want to move some data in 2144 * the background. Before the table can be swapped with 2145 * dm_bind_table, dm_suspend must be called to flush any in 2146 * flight bios and ensure that any further io gets deferred. 2147 */ 2148 /* 2149 * Suspend mechanism in request-based dm. 2150 * 2151 * 1. Flush all I/Os by lock_fs() if needed. 2152 * 2. Stop dispatching any I/O by stopping the request_queue. 2153 * 3. Wait for all in-flight I/Os to be completed or requeued. 2154 * 2155 * To abort suspend, start the request_queue. 2156 */ 2157 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2158 { 2159 struct dm_table *map = NULL; 2160 int r = 0; 2161 2162 retry: 2163 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2164 2165 if (dm_suspended_md(md)) { 2166 r = -EINVAL; 2167 goto out_unlock; 2168 } 2169 2170 if (dm_suspended_internally_md(md)) { 2171 /* already internally suspended, wait for internal resume */ 2172 mutex_unlock(&md->suspend_lock); 2173 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2174 if (r) 2175 return r; 2176 goto retry; 2177 } 2178 2179 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2180 2181 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 2182 if (r) 2183 goto out_unlock; 2184 2185 set_bit(DMF_SUSPENDED, &md->flags); 2186 2187 dm_table_postsuspend_targets(map); 2188 2189 out_unlock: 2190 mutex_unlock(&md->suspend_lock); 2191 return r; 2192 } 2193 2194 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2195 { 2196 if (map) { 2197 int r = dm_table_resume_targets(map); 2198 if (r) 2199 return r; 2200 } 2201 2202 dm_queue_flush(md); 2203 2204 /* 2205 * Flushing deferred I/Os must be done after targets are resumed 2206 * so that mapping of targets can work correctly. 2207 * Request-based dm is queueing the deferred I/Os in its request_queue. 2208 */ 2209 if (dm_request_based(md)) 2210 dm_start_queue(md->queue); 2211 2212 unlock_fs(md); 2213 2214 return 0; 2215 } 2216 2217 int dm_resume(struct mapped_device *md) 2218 { 2219 int r = -EINVAL; 2220 struct dm_table *map = NULL; 2221 2222 retry: 2223 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2224 2225 if (!dm_suspended_md(md)) 2226 goto out; 2227 2228 if (dm_suspended_internally_md(md)) { 2229 /* already internally suspended, wait for internal resume */ 2230 mutex_unlock(&md->suspend_lock); 2231 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2232 if (r) 2233 return r; 2234 goto retry; 2235 } 2236 2237 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2238 if (!map || !dm_table_get_size(map)) 2239 goto out; 2240 2241 r = __dm_resume(md, map); 2242 if (r) 2243 goto out; 2244 2245 clear_bit(DMF_SUSPENDED, &md->flags); 2246 2247 r = 0; 2248 out: 2249 mutex_unlock(&md->suspend_lock); 2250 2251 return r; 2252 } 2253 2254 /* 2255 * Internal suspend/resume works like userspace-driven suspend. It waits 2256 * until all bios finish and prevents issuing new bios to the target drivers. 2257 * It may be used only from the kernel. 2258 */ 2259 2260 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2261 { 2262 struct dm_table *map = NULL; 2263 2264 if (md->internal_suspend_count++) 2265 return; /* nested internal suspend */ 2266 2267 if (dm_suspended_md(md)) { 2268 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2269 return; /* nest suspend */ 2270 } 2271 2272 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2273 2274 /* 2275 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2276 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2277 * would require changing .presuspend to return an error -- avoid this 2278 * until there is a need for more elaborate variants of internal suspend. 2279 */ 2280 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 2281 2282 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2283 2284 dm_table_postsuspend_targets(map); 2285 } 2286 2287 static void __dm_internal_resume(struct mapped_device *md) 2288 { 2289 BUG_ON(!md->internal_suspend_count); 2290 2291 if (--md->internal_suspend_count) 2292 return; /* resume from nested internal suspend */ 2293 2294 if (dm_suspended_md(md)) 2295 goto done; /* resume from nested suspend */ 2296 2297 /* 2298 * NOTE: existing callers don't need to call dm_table_resume_targets 2299 * (which may fail -- so best to avoid it for now by passing NULL map) 2300 */ 2301 (void) __dm_resume(md, NULL); 2302 2303 done: 2304 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2305 smp_mb__after_atomic(); 2306 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2307 } 2308 2309 void dm_internal_suspend_noflush(struct mapped_device *md) 2310 { 2311 mutex_lock(&md->suspend_lock); 2312 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2313 mutex_unlock(&md->suspend_lock); 2314 } 2315 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2316 2317 void dm_internal_resume(struct mapped_device *md) 2318 { 2319 mutex_lock(&md->suspend_lock); 2320 __dm_internal_resume(md); 2321 mutex_unlock(&md->suspend_lock); 2322 } 2323 EXPORT_SYMBOL_GPL(dm_internal_resume); 2324 2325 /* 2326 * Fast variants of internal suspend/resume hold md->suspend_lock, 2327 * which prevents interaction with userspace-driven suspend. 2328 */ 2329 2330 void dm_internal_suspend_fast(struct mapped_device *md) 2331 { 2332 mutex_lock(&md->suspend_lock); 2333 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2334 return; 2335 2336 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2337 synchronize_srcu(&md->io_barrier); 2338 flush_workqueue(md->wq); 2339 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2340 } 2341 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2342 2343 void dm_internal_resume_fast(struct mapped_device *md) 2344 { 2345 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2346 goto done; 2347 2348 dm_queue_flush(md); 2349 2350 done: 2351 mutex_unlock(&md->suspend_lock); 2352 } 2353 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2354 2355 /*----------------------------------------------------------------- 2356 * Event notification. 2357 *---------------------------------------------------------------*/ 2358 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2359 unsigned cookie) 2360 { 2361 char udev_cookie[DM_COOKIE_LENGTH]; 2362 char *envp[] = { udev_cookie, NULL }; 2363 2364 if (!cookie) 2365 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2366 else { 2367 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2368 DM_COOKIE_ENV_VAR_NAME, cookie); 2369 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2370 action, envp); 2371 } 2372 } 2373 2374 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2375 { 2376 return atomic_add_return(1, &md->uevent_seq); 2377 } 2378 2379 uint32_t dm_get_event_nr(struct mapped_device *md) 2380 { 2381 return atomic_read(&md->event_nr); 2382 } 2383 2384 int dm_wait_event(struct mapped_device *md, int event_nr) 2385 { 2386 return wait_event_interruptible(md->eventq, 2387 (event_nr != atomic_read(&md->event_nr))); 2388 } 2389 2390 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2391 { 2392 unsigned long flags; 2393 2394 spin_lock_irqsave(&md->uevent_lock, flags); 2395 list_add(elist, &md->uevent_list); 2396 spin_unlock_irqrestore(&md->uevent_lock, flags); 2397 } 2398 2399 /* 2400 * The gendisk is only valid as long as you have a reference 2401 * count on 'md'. 2402 */ 2403 struct gendisk *dm_disk(struct mapped_device *md) 2404 { 2405 return md->disk; 2406 } 2407 EXPORT_SYMBOL_GPL(dm_disk); 2408 2409 struct kobject *dm_kobject(struct mapped_device *md) 2410 { 2411 return &md->kobj_holder.kobj; 2412 } 2413 2414 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2415 { 2416 struct mapped_device *md; 2417 2418 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2419 2420 if (test_bit(DMF_FREEING, &md->flags) || 2421 dm_deleting_md(md)) 2422 return NULL; 2423 2424 dm_get(md); 2425 return md; 2426 } 2427 2428 int dm_suspended_md(struct mapped_device *md) 2429 { 2430 return test_bit(DMF_SUSPENDED, &md->flags); 2431 } 2432 2433 int dm_suspended_internally_md(struct mapped_device *md) 2434 { 2435 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2436 } 2437 2438 int dm_test_deferred_remove_flag(struct mapped_device *md) 2439 { 2440 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2441 } 2442 2443 int dm_suspended(struct dm_target *ti) 2444 { 2445 return dm_suspended_md(dm_table_get_md(ti->table)); 2446 } 2447 EXPORT_SYMBOL_GPL(dm_suspended); 2448 2449 int dm_noflush_suspending(struct dm_target *ti) 2450 { 2451 return __noflush_suspending(dm_table_get_md(ti->table)); 2452 } 2453 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2454 2455 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 2456 unsigned integrity, unsigned per_io_data_size) 2457 { 2458 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2459 struct kmem_cache *cachep = NULL; 2460 unsigned int pool_size = 0; 2461 unsigned int front_pad; 2462 2463 if (!pools) 2464 return NULL; 2465 2466 switch (type) { 2467 case DM_TYPE_BIO_BASED: 2468 cachep = _io_cache; 2469 pool_size = dm_get_reserved_bio_based_ios(); 2470 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2471 break; 2472 case DM_TYPE_REQUEST_BASED: 2473 cachep = _rq_tio_cache; 2474 pool_size = dm_get_reserved_rq_based_ios(); 2475 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 2476 if (!pools->rq_pool) 2477 goto out; 2478 /* fall through to setup remaining rq-based pools */ 2479 case DM_TYPE_MQ_REQUEST_BASED: 2480 if (!pool_size) 2481 pool_size = dm_get_reserved_rq_based_ios(); 2482 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2483 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2484 break; 2485 default: 2486 BUG(); 2487 } 2488 2489 if (cachep) { 2490 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2491 if (!pools->io_pool) 2492 goto out; 2493 } 2494 2495 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2496 if (!pools->bs) 2497 goto out; 2498 2499 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2500 goto out; 2501 2502 return pools; 2503 2504 out: 2505 dm_free_md_mempools(pools); 2506 2507 return NULL; 2508 } 2509 2510 void dm_free_md_mempools(struct dm_md_mempools *pools) 2511 { 2512 if (!pools) 2513 return; 2514 2515 mempool_destroy(pools->io_pool); 2516 mempool_destroy(pools->rq_pool); 2517 2518 if (pools->bs) 2519 bioset_free(pools->bs); 2520 2521 kfree(pools); 2522 } 2523 2524 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2525 u32 flags) 2526 { 2527 struct mapped_device *md = bdev->bd_disk->private_data; 2528 const struct pr_ops *ops; 2529 fmode_t mode; 2530 int r; 2531 2532 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2533 if (r < 0) 2534 return r; 2535 2536 ops = bdev->bd_disk->fops->pr_ops; 2537 if (ops && ops->pr_register) 2538 r = ops->pr_register(bdev, old_key, new_key, flags); 2539 else 2540 r = -EOPNOTSUPP; 2541 2542 bdput(bdev); 2543 return r; 2544 } 2545 2546 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2547 u32 flags) 2548 { 2549 struct mapped_device *md = bdev->bd_disk->private_data; 2550 const struct pr_ops *ops; 2551 fmode_t mode; 2552 int r; 2553 2554 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2555 if (r < 0) 2556 return r; 2557 2558 ops = bdev->bd_disk->fops->pr_ops; 2559 if (ops && ops->pr_reserve) 2560 r = ops->pr_reserve(bdev, key, type, flags); 2561 else 2562 r = -EOPNOTSUPP; 2563 2564 bdput(bdev); 2565 return r; 2566 } 2567 2568 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2569 { 2570 struct mapped_device *md = bdev->bd_disk->private_data; 2571 const struct pr_ops *ops; 2572 fmode_t mode; 2573 int r; 2574 2575 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2576 if (r < 0) 2577 return r; 2578 2579 ops = bdev->bd_disk->fops->pr_ops; 2580 if (ops && ops->pr_release) 2581 r = ops->pr_release(bdev, key, type); 2582 else 2583 r = -EOPNOTSUPP; 2584 2585 bdput(bdev); 2586 return r; 2587 } 2588 2589 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2590 enum pr_type type, bool abort) 2591 { 2592 struct mapped_device *md = bdev->bd_disk->private_data; 2593 const struct pr_ops *ops; 2594 fmode_t mode; 2595 int r; 2596 2597 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2598 if (r < 0) 2599 return r; 2600 2601 ops = bdev->bd_disk->fops->pr_ops; 2602 if (ops && ops->pr_preempt) 2603 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2604 else 2605 r = -EOPNOTSUPP; 2606 2607 bdput(bdev); 2608 return r; 2609 } 2610 2611 static int dm_pr_clear(struct block_device *bdev, u64 key) 2612 { 2613 struct mapped_device *md = bdev->bd_disk->private_data; 2614 const struct pr_ops *ops; 2615 fmode_t mode; 2616 int r; 2617 2618 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2619 if (r < 0) 2620 return r; 2621 2622 ops = bdev->bd_disk->fops->pr_ops; 2623 if (ops && ops->pr_clear) 2624 r = ops->pr_clear(bdev, key); 2625 else 2626 r = -EOPNOTSUPP; 2627 2628 bdput(bdev); 2629 return r; 2630 } 2631 2632 static const struct pr_ops dm_pr_ops = { 2633 .pr_register = dm_pr_register, 2634 .pr_reserve = dm_pr_reserve, 2635 .pr_release = dm_pr_release, 2636 .pr_preempt = dm_pr_preempt, 2637 .pr_clear = dm_pr_clear, 2638 }; 2639 2640 static const struct block_device_operations dm_blk_dops = { 2641 .open = dm_blk_open, 2642 .release = dm_blk_close, 2643 .ioctl = dm_blk_ioctl, 2644 .getgeo = dm_blk_getgeo, 2645 .pr_ops = &dm_pr_ops, 2646 .owner = THIS_MODULE 2647 }; 2648 2649 /* 2650 * module hooks 2651 */ 2652 module_init(dm_init); 2653 module_exit(dm_exit); 2654 2655 module_param(major, uint, 0); 2656 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2657 2658 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2659 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2660 2661 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2662 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2663 2664 MODULE_DESCRIPTION(DM_NAME " driver"); 2665 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2666 MODULE_LICENSE("GPL"); 2667