xref: /openbmc/linux/drivers/md/dm.c (revision e83068a5faafb8ca65d3b58bd1e1e3959ce1ddce)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pr.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 static struct workqueue_struct *deferred_remove_workqueue;
58 
59 /*
60  * One of these is allocated per bio.
61  */
62 struct dm_io {
63 	struct mapped_device *md;
64 	int error;
65 	atomic_t io_count;
66 	struct bio *bio;
67 	unsigned long start_time;
68 	spinlock_t endio_lock;
69 	struct dm_stats_aux stats_aux;
70 };
71 
72 #define MINOR_ALLOCED ((void *)-1)
73 
74 /*
75  * Bits for the md->flags field.
76  */
77 #define DMF_BLOCK_IO_FOR_SUSPEND 0
78 #define DMF_SUSPENDED 1
79 #define DMF_FROZEN 2
80 #define DMF_FREEING 3
81 #define DMF_DELETING 4
82 #define DMF_NOFLUSH_SUSPENDING 5
83 #define DMF_DEFERRED_REMOVE 6
84 #define DMF_SUSPENDED_INTERNALLY 7
85 
86 #define DM_NUMA_NODE NUMA_NO_NODE
87 static int dm_numa_node = DM_NUMA_NODE;
88 
89 /*
90  * For mempools pre-allocation at the table loading time.
91  */
92 struct dm_md_mempools {
93 	mempool_t *io_pool;
94 	mempool_t *rq_pool;
95 	struct bio_set *bs;
96 };
97 
98 struct table_device {
99 	struct list_head list;
100 	atomic_t count;
101 	struct dm_dev dm_dev;
102 };
103 
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107 
108 /*
109  * Bio-based DM's mempools' reserved IOs set by the user.
110  */
111 #define RESERVED_BIO_BASED_IOS		16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113 
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 	int param = ACCESS_ONCE(*module_param);
117 	int modified_param = 0;
118 	bool modified = true;
119 
120 	if (param < min)
121 		modified_param = min;
122 	else if (param > max)
123 		modified_param = max;
124 	else
125 		modified = false;
126 
127 	if (modified) {
128 		(void)cmpxchg(module_param, param, modified_param);
129 		param = modified_param;
130 	}
131 
132 	return param;
133 }
134 
135 unsigned __dm_get_module_param(unsigned *module_param,
136 			       unsigned def, unsigned max)
137 {
138 	unsigned param = ACCESS_ONCE(*module_param);
139 	unsigned modified_param = 0;
140 
141 	if (!param)
142 		modified_param = def;
143 	else if (param > max)
144 		modified_param = max;
145 
146 	if (modified_param) {
147 		(void)cmpxchg(module_param, param, modified_param);
148 		param = modified_param;
149 	}
150 
151 	return param;
152 }
153 
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 	return __dm_get_module_param(&reserved_bio_based_ios,
157 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160 
161 static unsigned dm_get_numa_node(void)
162 {
163 	return __dm_get_module_param_int(&dm_numa_node,
164 					 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166 
167 static int __init local_init(void)
168 {
169 	int r = -ENOMEM;
170 
171 	/* allocate a slab for the dm_ios */
172 	_io_cache = KMEM_CACHE(dm_io, 0);
173 	if (!_io_cache)
174 		return r;
175 
176 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 	if (!_rq_tio_cache)
178 		goto out_free_io_cache;
179 
180 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 				      __alignof__(struct request), 0, NULL);
182 	if (!_rq_cache)
183 		goto out_free_rq_tio_cache;
184 
185 	r = dm_uevent_init();
186 	if (r)
187 		goto out_free_rq_cache;
188 
189 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 	if (!deferred_remove_workqueue) {
191 		r = -ENOMEM;
192 		goto out_uevent_exit;
193 	}
194 
195 	_major = major;
196 	r = register_blkdev(_major, _name);
197 	if (r < 0)
198 		goto out_free_workqueue;
199 
200 	if (!_major)
201 		_major = r;
202 
203 	return 0;
204 
205 out_free_workqueue:
206 	destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 	dm_uevent_exit();
209 out_free_rq_cache:
210 	kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 	kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 	kmem_cache_destroy(_io_cache);
215 
216 	return r;
217 }
218 
219 static void local_exit(void)
220 {
221 	flush_scheduled_work();
222 	destroy_workqueue(deferred_remove_workqueue);
223 
224 	kmem_cache_destroy(_rq_cache);
225 	kmem_cache_destroy(_rq_tio_cache);
226 	kmem_cache_destroy(_io_cache);
227 	unregister_blkdev(_major, _name);
228 	dm_uevent_exit();
229 
230 	_major = 0;
231 
232 	DMINFO("cleaned up");
233 }
234 
235 static int (*_inits[])(void) __initdata = {
236 	local_init,
237 	dm_target_init,
238 	dm_linear_init,
239 	dm_stripe_init,
240 	dm_io_init,
241 	dm_kcopyd_init,
242 	dm_interface_init,
243 	dm_statistics_init,
244 };
245 
246 static void (*_exits[])(void) = {
247 	local_exit,
248 	dm_target_exit,
249 	dm_linear_exit,
250 	dm_stripe_exit,
251 	dm_io_exit,
252 	dm_kcopyd_exit,
253 	dm_interface_exit,
254 	dm_statistics_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 
285 	/*
286 	 * Should be empty by this point.
287 	 */
288 	idr_destroy(&_minor_idr);
289 }
290 
291 /*
292  * Block device functions
293  */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 	return test_bit(DMF_DELETING, &md->flags);
297 }
298 
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 	struct mapped_device *md;
302 
303 	spin_lock(&_minor_lock);
304 
305 	md = bdev->bd_disk->private_data;
306 	if (!md)
307 		goto out;
308 
309 	if (test_bit(DMF_FREEING, &md->flags) ||
310 	    dm_deleting_md(md)) {
311 		md = NULL;
312 		goto out;
313 	}
314 
315 	dm_get(md);
316 	atomic_inc(&md->open_count);
317 out:
318 	spin_unlock(&_minor_lock);
319 
320 	return md ? 0 : -ENXIO;
321 }
322 
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 	struct mapped_device *md;
326 
327 	spin_lock(&_minor_lock);
328 
329 	md = disk->private_data;
330 	if (WARN_ON(!md))
331 		goto out;
332 
333 	if (atomic_dec_and_test(&md->open_count) &&
334 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
336 
337 	dm_put(md);
338 out:
339 	spin_unlock(&_minor_lock);
340 }
341 
342 int dm_open_count(struct mapped_device *md)
343 {
344 	return atomic_read(&md->open_count);
345 }
346 
347 /*
348  * Guarantees nothing is using the device before it's deleted.
349  */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 	int r = 0;
353 
354 	spin_lock(&_minor_lock);
355 
356 	if (dm_open_count(md)) {
357 		r = -EBUSY;
358 		if (mark_deferred)
359 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 		r = -EEXIST;
362 	else
363 		set_bit(DMF_DELETING, &md->flags);
364 
365 	spin_unlock(&_minor_lock);
366 
367 	return r;
368 }
369 
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (test_bit(DMF_DELETING, &md->flags))
377 		r = -EBUSY;
378 	else
379 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 
381 	spin_unlock(&_minor_lock);
382 
383 	return r;
384 }
385 
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 	dm_deferred_remove();
389 }
390 
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 	return get_capacity(md->disk);
394 }
395 
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 	return md->queue;
399 }
400 
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 	return &md->stats;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 				  struct block_device **bdev,
415 				  fmode_t *mode)
416 {
417 	struct dm_target *tgt;
418 	struct dm_table *map;
419 	int srcu_idx, r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, &srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		goto out;
426 
427 	/* We only support devices that have a single target */
428 	if (dm_table_get_num_targets(map) != 1)
429 		goto out;
430 
431 	tgt = dm_table_get_target(map, 0);
432 	if (!tgt->type->prepare_ioctl)
433 		goto out;
434 
435 	if (dm_suspended_md(md)) {
436 		r = -EAGAIN;
437 		goto out;
438 	}
439 
440 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 	if (r < 0)
442 		goto out;
443 
444 	bdgrab(*bdev);
445 	dm_put_live_table(md, srcu_idx);
446 	return r;
447 
448 out:
449 	dm_put_live_table(md, srcu_idx);
450 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 		msleep(10);
452 		goto retry;
453 	}
454 	return r;
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r;
462 
463 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 	if (r < 0)
465 		return r;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against
470 		 * a logical partition of the parent bdev; so extra
471 		 * validation is needed.
472 		 */
473 		r = scsi_verify_blk_ioctl(NULL, cmd);
474 		if (r)
475 			goto out;
476 	}
477 
478 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
479 out:
480 	bdput(bdev);
481 	return r;
482 }
483 
484 static struct dm_io *alloc_io(struct mapped_device *md)
485 {
486 	return mempool_alloc(md->io_pool, GFP_NOIO);
487 }
488 
489 static void free_io(struct mapped_device *md, struct dm_io *io)
490 {
491 	mempool_free(io, md->io_pool);
492 }
493 
494 static void free_tio(struct dm_target_io *tio)
495 {
496 	bio_put(&tio->clone);
497 }
498 
499 int md_in_flight(struct mapped_device *md)
500 {
501 	return atomic_read(&md->pending[READ]) +
502 	       atomic_read(&md->pending[WRITE]);
503 }
504 
505 static void start_io_acct(struct dm_io *io)
506 {
507 	struct mapped_device *md = io->md;
508 	struct bio *bio = io->bio;
509 	int cpu;
510 	int rw = bio_data_dir(bio);
511 
512 	io->start_time = jiffies;
513 
514 	cpu = part_stat_lock();
515 	part_round_stats(cpu, &dm_disk(md)->part0);
516 	part_stat_unlock();
517 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
518 		atomic_inc_return(&md->pending[rw]));
519 
520 	if (unlikely(dm_stats_used(&md->stats)))
521 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
522 				    bio->bi_iter.bi_sector, bio_sectors(bio),
523 				    false, 0, &io->stats_aux);
524 }
525 
526 static void end_io_acct(struct dm_io *io)
527 {
528 	struct mapped_device *md = io->md;
529 	struct bio *bio = io->bio;
530 	unsigned long duration = jiffies - io->start_time;
531 	int pending;
532 	int rw = bio_data_dir(bio);
533 
534 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
535 
536 	if (unlikely(dm_stats_used(&md->stats)))
537 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
538 				    bio->bi_iter.bi_sector, bio_sectors(bio),
539 				    true, duration, &io->stats_aux);
540 
541 	/*
542 	 * After this is decremented the bio must not be touched if it is
543 	 * a flush.
544 	 */
545 	pending = atomic_dec_return(&md->pending[rw]);
546 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
547 	pending += atomic_read(&md->pending[rw^0x1]);
548 
549 	/* nudge anyone waiting on suspend queue */
550 	if (!pending)
551 		wake_up(&md->wait);
552 }
553 
554 /*
555  * Add the bio to the list of deferred io.
556  */
557 static void queue_io(struct mapped_device *md, struct bio *bio)
558 {
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&md->deferred_lock, flags);
562 	bio_list_add(&md->deferred, bio);
563 	spin_unlock_irqrestore(&md->deferred_lock, flags);
564 	queue_work(md->wq, &md->work);
565 }
566 
567 /*
568  * Everyone (including functions in this file), should use this
569  * function to access the md->map field, and make sure they call
570  * dm_put_live_table() when finished.
571  */
572 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
573 {
574 	*srcu_idx = srcu_read_lock(&md->io_barrier);
575 
576 	return srcu_dereference(md->map, &md->io_barrier);
577 }
578 
579 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
580 {
581 	srcu_read_unlock(&md->io_barrier, srcu_idx);
582 }
583 
584 void dm_sync_table(struct mapped_device *md)
585 {
586 	synchronize_srcu(&md->io_barrier);
587 	synchronize_rcu_expedited();
588 }
589 
590 /*
591  * A fast alternative to dm_get_live_table/dm_put_live_table.
592  * The caller must not block between these two functions.
593  */
594 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
595 {
596 	rcu_read_lock();
597 	return rcu_dereference(md->map);
598 }
599 
600 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
601 {
602 	rcu_read_unlock();
603 }
604 
605 /*
606  * Open a table device so we can use it as a map destination.
607  */
608 static int open_table_device(struct table_device *td, dev_t dev,
609 			     struct mapped_device *md)
610 {
611 	static char *_claim_ptr = "I belong to device-mapper";
612 	struct block_device *bdev;
613 
614 	int r;
615 
616 	BUG_ON(td->dm_dev.bdev);
617 
618 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
619 	if (IS_ERR(bdev))
620 		return PTR_ERR(bdev);
621 
622 	r = bd_link_disk_holder(bdev, dm_disk(md));
623 	if (r) {
624 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
625 		return r;
626 	}
627 
628 	td->dm_dev.bdev = bdev;
629 	return 0;
630 }
631 
632 /*
633  * Close a table device that we've been using.
634  */
635 static void close_table_device(struct table_device *td, struct mapped_device *md)
636 {
637 	if (!td->dm_dev.bdev)
638 		return;
639 
640 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
641 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
642 	td->dm_dev.bdev = NULL;
643 }
644 
645 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
646 					      fmode_t mode) {
647 	struct table_device *td;
648 
649 	list_for_each_entry(td, l, list)
650 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
651 			return td;
652 
653 	return NULL;
654 }
655 
656 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
657 			struct dm_dev **result) {
658 	int r;
659 	struct table_device *td;
660 
661 	mutex_lock(&md->table_devices_lock);
662 	td = find_table_device(&md->table_devices, dev, mode);
663 	if (!td) {
664 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
665 		if (!td) {
666 			mutex_unlock(&md->table_devices_lock);
667 			return -ENOMEM;
668 		}
669 
670 		td->dm_dev.mode = mode;
671 		td->dm_dev.bdev = NULL;
672 
673 		if ((r = open_table_device(td, dev, md))) {
674 			mutex_unlock(&md->table_devices_lock);
675 			kfree(td);
676 			return r;
677 		}
678 
679 		format_dev_t(td->dm_dev.name, dev);
680 
681 		atomic_set(&td->count, 0);
682 		list_add(&td->list, &md->table_devices);
683 	}
684 	atomic_inc(&td->count);
685 	mutex_unlock(&md->table_devices_lock);
686 
687 	*result = &td->dm_dev;
688 	return 0;
689 }
690 EXPORT_SYMBOL_GPL(dm_get_table_device);
691 
692 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
693 {
694 	struct table_device *td = container_of(d, struct table_device, dm_dev);
695 
696 	mutex_lock(&md->table_devices_lock);
697 	if (atomic_dec_and_test(&td->count)) {
698 		close_table_device(td, md);
699 		list_del(&td->list);
700 		kfree(td);
701 	}
702 	mutex_unlock(&md->table_devices_lock);
703 }
704 EXPORT_SYMBOL(dm_put_table_device);
705 
706 static void free_table_devices(struct list_head *devices)
707 {
708 	struct list_head *tmp, *next;
709 
710 	list_for_each_safe(tmp, next, devices) {
711 		struct table_device *td = list_entry(tmp, struct table_device, list);
712 
713 		DMWARN("dm_destroy: %s still exists with %d references",
714 		       td->dm_dev.name, atomic_read(&td->count));
715 		kfree(td);
716 	}
717 }
718 
719 /*
720  * Get the geometry associated with a dm device
721  */
722 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
723 {
724 	*geo = md->geometry;
725 
726 	return 0;
727 }
728 
729 /*
730  * Set the geometry of a device.
731  */
732 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
733 {
734 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
735 
736 	if (geo->start > sz) {
737 		DMWARN("Start sector is beyond the geometry limits.");
738 		return -EINVAL;
739 	}
740 
741 	md->geometry = *geo;
742 
743 	return 0;
744 }
745 
746 /*-----------------------------------------------------------------
747  * CRUD START:
748  *   A more elegant soln is in the works that uses the queue
749  *   merge fn, unfortunately there are a couple of changes to
750  *   the block layer that I want to make for this.  So in the
751  *   interests of getting something for people to use I give
752  *   you this clearly demarcated crap.
753  *---------------------------------------------------------------*/
754 
755 static int __noflush_suspending(struct mapped_device *md)
756 {
757 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
758 }
759 
760 /*
761  * Decrements the number of outstanding ios that a bio has been
762  * cloned into, completing the original io if necc.
763  */
764 static void dec_pending(struct dm_io *io, int error)
765 {
766 	unsigned long flags;
767 	int io_error;
768 	struct bio *bio;
769 	struct mapped_device *md = io->md;
770 
771 	/* Push-back supersedes any I/O errors */
772 	if (unlikely(error)) {
773 		spin_lock_irqsave(&io->endio_lock, flags);
774 		if (!(io->error > 0 && __noflush_suspending(md)))
775 			io->error = error;
776 		spin_unlock_irqrestore(&io->endio_lock, flags);
777 	}
778 
779 	if (atomic_dec_and_test(&io->io_count)) {
780 		if (io->error == DM_ENDIO_REQUEUE) {
781 			/*
782 			 * Target requested pushing back the I/O.
783 			 */
784 			spin_lock_irqsave(&md->deferred_lock, flags);
785 			if (__noflush_suspending(md))
786 				bio_list_add_head(&md->deferred, io->bio);
787 			else
788 				/* noflush suspend was interrupted. */
789 				io->error = -EIO;
790 			spin_unlock_irqrestore(&md->deferred_lock, flags);
791 		}
792 
793 		io_error = io->error;
794 		bio = io->bio;
795 		end_io_acct(io);
796 		free_io(md, io);
797 
798 		if (io_error == DM_ENDIO_REQUEUE)
799 			return;
800 
801 		if ((bio->bi_rw & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
802 			/*
803 			 * Preflush done for flush with data, reissue
804 			 * without REQ_PREFLUSH.
805 			 */
806 			bio->bi_rw &= ~REQ_PREFLUSH;
807 			queue_io(md, bio);
808 		} else {
809 			/* done with normal IO or empty flush */
810 			trace_block_bio_complete(md->queue, bio, io_error);
811 			bio->bi_error = io_error;
812 			bio_endio(bio);
813 		}
814 	}
815 }
816 
817 void disable_write_same(struct mapped_device *md)
818 {
819 	struct queue_limits *limits = dm_get_queue_limits(md);
820 
821 	/* device doesn't really support WRITE SAME, disable it */
822 	limits->max_write_same_sectors = 0;
823 }
824 
825 static void clone_endio(struct bio *bio)
826 {
827 	int error = bio->bi_error;
828 	int r = error;
829 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
830 	struct dm_io *io = tio->io;
831 	struct mapped_device *md = tio->io->md;
832 	dm_endio_fn endio = tio->ti->type->end_io;
833 
834 	if (endio) {
835 		r = endio(tio->ti, bio, error);
836 		if (r < 0 || r == DM_ENDIO_REQUEUE)
837 			/*
838 			 * error and requeue request are handled
839 			 * in dec_pending().
840 			 */
841 			error = r;
842 		else if (r == DM_ENDIO_INCOMPLETE)
843 			/* The target will handle the io */
844 			return;
845 		else if (r) {
846 			DMWARN("unimplemented target endio return value: %d", r);
847 			BUG();
848 		}
849 	}
850 
851 	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
852 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
853 		disable_write_same(md);
854 
855 	free_tio(tio);
856 	dec_pending(io, error);
857 }
858 
859 /*
860  * Return maximum size of I/O possible at the supplied sector up to the current
861  * target boundary.
862  */
863 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
864 {
865 	sector_t target_offset = dm_target_offset(ti, sector);
866 
867 	return ti->len - target_offset;
868 }
869 
870 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
871 {
872 	sector_t len = max_io_len_target_boundary(sector, ti);
873 	sector_t offset, max_len;
874 
875 	/*
876 	 * Does the target need to split even further?
877 	 */
878 	if (ti->max_io_len) {
879 		offset = dm_target_offset(ti, sector);
880 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
881 			max_len = sector_div(offset, ti->max_io_len);
882 		else
883 			max_len = offset & (ti->max_io_len - 1);
884 		max_len = ti->max_io_len - max_len;
885 
886 		if (len > max_len)
887 			len = max_len;
888 	}
889 
890 	return len;
891 }
892 
893 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
894 {
895 	if (len > UINT_MAX) {
896 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
897 		      (unsigned long long)len, UINT_MAX);
898 		ti->error = "Maximum size of target IO is too large";
899 		return -EINVAL;
900 	}
901 
902 	ti->max_io_len = (uint32_t) len;
903 
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
907 
908 /*
909  * A target may call dm_accept_partial_bio only from the map routine.  It is
910  * allowed for all bio types except REQ_PREFLUSH.
911  *
912  * dm_accept_partial_bio informs the dm that the target only wants to process
913  * additional n_sectors sectors of the bio and the rest of the data should be
914  * sent in a next bio.
915  *
916  * A diagram that explains the arithmetics:
917  * +--------------------+---------------+-------+
918  * |         1          |       2       |   3   |
919  * +--------------------+---------------+-------+
920  *
921  * <-------------- *tio->len_ptr --------------->
922  *                      <------- bi_size ------->
923  *                      <-- n_sectors -->
924  *
925  * Region 1 was already iterated over with bio_advance or similar function.
926  *	(it may be empty if the target doesn't use bio_advance)
927  * Region 2 is the remaining bio size that the target wants to process.
928  *	(it may be empty if region 1 is non-empty, although there is no reason
929  *	 to make it empty)
930  * The target requires that region 3 is to be sent in the next bio.
931  *
932  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
933  * the partially processed part (the sum of regions 1+2) must be the same for all
934  * copies of the bio.
935  */
936 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
937 {
938 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
939 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
940 	BUG_ON(bio->bi_rw & REQ_PREFLUSH);
941 	BUG_ON(bi_size > *tio->len_ptr);
942 	BUG_ON(n_sectors > bi_size);
943 	*tio->len_ptr -= bi_size - n_sectors;
944 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
945 }
946 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
947 
948 static void __map_bio(struct dm_target_io *tio)
949 {
950 	int r;
951 	sector_t sector;
952 	struct bio *clone = &tio->clone;
953 	struct dm_target *ti = tio->ti;
954 
955 	clone->bi_end_io = clone_endio;
956 
957 	/*
958 	 * Map the clone.  If r == 0 we don't need to do
959 	 * anything, the target has assumed ownership of
960 	 * this io.
961 	 */
962 	atomic_inc(&tio->io->io_count);
963 	sector = clone->bi_iter.bi_sector;
964 	r = ti->type->map(ti, clone);
965 	if (r == DM_MAPIO_REMAPPED) {
966 		/* the bio has been remapped so dispatch it */
967 
968 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
969 				      tio->io->bio->bi_bdev->bd_dev, sector);
970 
971 		generic_make_request(clone);
972 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
973 		/* error the io and bail out, or requeue it if needed */
974 		dec_pending(tio->io, r);
975 		free_tio(tio);
976 	} else if (r != DM_MAPIO_SUBMITTED) {
977 		DMWARN("unimplemented target map return value: %d", r);
978 		BUG();
979 	}
980 }
981 
982 struct clone_info {
983 	struct mapped_device *md;
984 	struct dm_table *map;
985 	struct bio *bio;
986 	struct dm_io *io;
987 	sector_t sector;
988 	unsigned sector_count;
989 };
990 
991 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
992 {
993 	bio->bi_iter.bi_sector = sector;
994 	bio->bi_iter.bi_size = to_bytes(len);
995 }
996 
997 /*
998  * Creates a bio that consists of range of complete bvecs.
999  */
1000 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1001 		     sector_t sector, unsigned len)
1002 {
1003 	struct bio *clone = &tio->clone;
1004 
1005 	__bio_clone_fast(clone, bio);
1006 
1007 	if (bio_integrity(bio)) {
1008 		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1009 		if (r < 0)
1010 			return r;
1011 	}
1012 
1013 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1014 	clone->bi_iter.bi_size = to_bytes(len);
1015 
1016 	if (bio_integrity(bio))
1017 		bio_integrity_trim(clone, 0, len);
1018 
1019 	return 0;
1020 }
1021 
1022 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1023 				      struct dm_target *ti,
1024 				      unsigned target_bio_nr)
1025 {
1026 	struct dm_target_io *tio;
1027 	struct bio *clone;
1028 
1029 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1030 	tio = container_of(clone, struct dm_target_io, clone);
1031 
1032 	tio->io = ci->io;
1033 	tio->ti = ti;
1034 	tio->target_bio_nr = target_bio_nr;
1035 
1036 	return tio;
1037 }
1038 
1039 static void __clone_and_map_simple_bio(struct clone_info *ci,
1040 				       struct dm_target *ti,
1041 				       unsigned target_bio_nr, unsigned *len)
1042 {
1043 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1044 	struct bio *clone = &tio->clone;
1045 
1046 	tio->len_ptr = len;
1047 
1048 	__bio_clone_fast(clone, ci->bio);
1049 	if (len)
1050 		bio_setup_sector(clone, ci->sector, *len);
1051 
1052 	__map_bio(tio);
1053 }
1054 
1055 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1056 				  unsigned num_bios, unsigned *len)
1057 {
1058 	unsigned target_bio_nr;
1059 
1060 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1061 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1062 }
1063 
1064 static int __send_empty_flush(struct clone_info *ci)
1065 {
1066 	unsigned target_nr = 0;
1067 	struct dm_target *ti;
1068 
1069 	BUG_ON(bio_has_data(ci->bio));
1070 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1071 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1072 
1073 	return 0;
1074 }
1075 
1076 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1077 				     sector_t sector, unsigned *len)
1078 {
1079 	struct bio *bio = ci->bio;
1080 	struct dm_target_io *tio;
1081 	unsigned target_bio_nr;
1082 	unsigned num_target_bios = 1;
1083 	int r = 0;
1084 
1085 	/*
1086 	 * Does the target want to receive duplicate copies of the bio?
1087 	 */
1088 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1089 		num_target_bios = ti->num_write_bios(ti, bio);
1090 
1091 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1092 		tio = alloc_tio(ci, ti, target_bio_nr);
1093 		tio->len_ptr = len;
1094 		r = clone_bio(tio, bio, sector, *len);
1095 		if (r < 0) {
1096 			free_tio(tio);
1097 			break;
1098 		}
1099 		__map_bio(tio);
1100 	}
1101 
1102 	return r;
1103 }
1104 
1105 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1106 
1107 static unsigned get_num_discard_bios(struct dm_target *ti)
1108 {
1109 	return ti->num_discard_bios;
1110 }
1111 
1112 static unsigned get_num_write_same_bios(struct dm_target *ti)
1113 {
1114 	return ti->num_write_same_bios;
1115 }
1116 
1117 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1118 
1119 static bool is_split_required_for_discard(struct dm_target *ti)
1120 {
1121 	return ti->split_discard_bios;
1122 }
1123 
1124 static int __send_changing_extent_only(struct clone_info *ci,
1125 				       get_num_bios_fn get_num_bios,
1126 				       is_split_required_fn is_split_required)
1127 {
1128 	struct dm_target *ti;
1129 	unsigned len;
1130 	unsigned num_bios;
1131 
1132 	do {
1133 		ti = dm_table_find_target(ci->map, ci->sector);
1134 		if (!dm_target_is_valid(ti))
1135 			return -EIO;
1136 
1137 		/*
1138 		 * Even though the device advertised support for this type of
1139 		 * request, that does not mean every target supports it, and
1140 		 * reconfiguration might also have changed that since the
1141 		 * check was performed.
1142 		 */
1143 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1144 		if (!num_bios)
1145 			return -EOPNOTSUPP;
1146 
1147 		if (is_split_required && !is_split_required(ti))
1148 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1149 		else
1150 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1151 
1152 		__send_duplicate_bios(ci, ti, num_bios, &len);
1153 
1154 		ci->sector += len;
1155 	} while (ci->sector_count -= len);
1156 
1157 	return 0;
1158 }
1159 
1160 static int __send_discard(struct clone_info *ci)
1161 {
1162 	return __send_changing_extent_only(ci, get_num_discard_bios,
1163 					   is_split_required_for_discard);
1164 }
1165 
1166 static int __send_write_same(struct clone_info *ci)
1167 {
1168 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1169 }
1170 
1171 /*
1172  * Select the correct strategy for processing a non-flush bio.
1173  */
1174 static int __split_and_process_non_flush(struct clone_info *ci)
1175 {
1176 	struct bio *bio = ci->bio;
1177 	struct dm_target *ti;
1178 	unsigned len;
1179 	int r;
1180 
1181 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1182 		return __send_discard(ci);
1183 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1184 		return __send_write_same(ci);
1185 
1186 	ti = dm_table_find_target(ci->map, ci->sector);
1187 	if (!dm_target_is_valid(ti))
1188 		return -EIO;
1189 
1190 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1191 
1192 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1193 	if (r < 0)
1194 		return r;
1195 
1196 	ci->sector += len;
1197 	ci->sector_count -= len;
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Entry point to split a bio into clones and submit them to the targets.
1204  */
1205 static void __split_and_process_bio(struct mapped_device *md,
1206 				    struct dm_table *map, struct bio *bio)
1207 {
1208 	struct clone_info ci;
1209 	int error = 0;
1210 
1211 	if (unlikely(!map)) {
1212 		bio_io_error(bio);
1213 		return;
1214 	}
1215 
1216 	ci.map = map;
1217 	ci.md = md;
1218 	ci.io = alloc_io(md);
1219 	ci.io->error = 0;
1220 	atomic_set(&ci.io->io_count, 1);
1221 	ci.io->bio = bio;
1222 	ci.io->md = md;
1223 	spin_lock_init(&ci.io->endio_lock);
1224 	ci.sector = bio->bi_iter.bi_sector;
1225 
1226 	start_io_acct(ci.io);
1227 
1228 	if (bio->bi_rw & REQ_PREFLUSH) {
1229 		ci.bio = &ci.md->flush_bio;
1230 		ci.sector_count = 0;
1231 		error = __send_empty_flush(&ci);
1232 		/* dec_pending submits any data associated with flush */
1233 	} else {
1234 		ci.bio = bio;
1235 		ci.sector_count = bio_sectors(bio);
1236 		while (ci.sector_count && !error)
1237 			error = __split_and_process_non_flush(&ci);
1238 	}
1239 
1240 	/* drop the extra reference count */
1241 	dec_pending(ci.io, error);
1242 }
1243 /*-----------------------------------------------------------------
1244  * CRUD END
1245  *---------------------------------------------------------------*/
1246 
1247 /*
1248  * The request function that just remaps the bio built up by
1249  * dm_merge_bvec.
1250  */
1251 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1252 {
1253 	int rw = bio_data_dir(bio);
1254 	struct mapped_device *md = q->queuedata;
1255 	int srcu_idx;
1256 	struct dm_table *map;
1257 
1258 	map = dm_get_live_table(md, &srcu_idx);
1259 
1260 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1261 
1262 	/* if we're suspended, we have to queue this io for later */
1263 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1264 		dm_put_live_table(md, srcu_idx);
1265 
1266 		if (bio_rw(bio) != READA)
1267 			queue_io(md, bio);
1268 		else
1269 			bio_io_error(bio);
1270 		return BLK_QC_T_NONE;
1271 	}
1272 
1273 	__split_and_process_bio(md, map, bio);
1274 	dm_put_live_table(md, srcu_idx);
1275 	return BLK_QC_T_NONE;
1276 }
1277 
1278 static int dm_any_congested(void *congested_data, int bdi_bits)
1279 {
1280 	int r = bdi_bits;
1281 	struct mapped_device *md = congested_data;
1282 	struct dm_table *map;
1283 
1284 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1285 		if (dm_request_based(md)) {
1286 			/*
1287 			 * With request-based DM we only need to check the
1288 			 * top-level queue for congestion.
1289 			 */
1290 			r = md->queue->backing_dev_info.wb.state & bdi_bits;
1291 		} else {
1292 			map = dm_get_live_table_fast(md);
1293 			if (map)
1294 				r = dm_table_any_congested(map, bdi_bits);
1295 			dm_put_live_table_fast(md);
1296 		}
1297 	}
1298 
1299 	return r;
1300 }
1301 
1302 /*-----------------------------------------------------------------
1303  * An IDR is used to keep track of allocated minor numbers.
1304  *---------------------------------------------------------------*/
1305 static void free_minor(int minor)
1306 {
1307 	spin_lock(&_minor_lock);
1308 	idr_remove(&_minor_idr, minor);
1309 	spin_unlock(&_minor_lock);
1310 }
1311 
1312 /*
1313  * See if the device with a specific minor # is free.
1314  */
1315 static int specific_minor(int minor)
1316 {
1317 	int r;
1318 
1319 	if (minor >= (1 << MINORBITS))
1320 		return -EINVAL;
1321 
1322 	idr_preload(GFP_KERNEL);
1323 	spin_lock(&_minor_lock);
1324 
1325 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1326 
1327 	spin_unlock(&_minor_lock);
1328 	idr_preload_end();
1329 	if (r < 0)
1330 		return r == -ENOSPC ? -EBUSY : r;
1331 	return 0;
1332 }
1333 
1334 static int next_free_minor(int *minor)
1335 {
1336 	int r;
1337 
1338 	idr_preload(GFP_KERNEL);
1339 	spin_lock(&_minor_lock);
1340 
1341 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1342 
1343 	spin_unlock(&_minor_lock);
1344 	idr_preload_end();
1345 	if (r < 0)
1346 		return r;
1347 	*minor = r;
1348 	return 0;
1349 }
1350 
1351 static const struct block_device_operations dm_blk_dops;
1352 
1353 static void dm_wq_work(struct work_struct *work);
1354 
1355 void dm_init_md_queue(struct mapped_device *md)
1356 {
1357 	/*
1358 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1359 	 * devices.  The type of this dm device may not have been decided yet.
1360 	 * The type is decided at the first table loading time.
1361 	 * To prevent problematic device stacking, clear the queue flag
1362 	 * for request stacking support until then.
1363 	 *
1364 	 * This queue is new, so no concurrency on the queue_flags.
1365 	 */
1366 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1367 
1368 	/*
1369 	 * Initialize data that will only be used by a non-blk-mq DM queue
1370 	 * - must do so here (in alloc_dev callchain) before queue is used
1371 	 */
1372 	md->queue->queuedata = md;
1373 	md->queue->backing_dev_info.congested_data = md;
1374 }
1375 
1376 void dm_init_normal_md_queue(struct mapped_device *md)
1377 {
1378 	md->use_blk_mq = false;
1379 	dm_init_md_queue(md);
1380 
1381 	/*
1382 	 * Initialize aspects of queue that aren't relevant for blk-mq
1383 	 */
1384 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1385 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1386 }
1387 
1388 static void cleanup_mapped_device(struct mapped_device *md)
1389 {
1390 	if (md->wq)
1391 		destroy_workqueue(md->wq);
1392 	if (md->kworker_task)
1393 		kthread_stop(md->kworker_task);
1394 	mempool_destroy(md->io_pool);
1395 	mempool_destroy(md->rq_pool);
1396 	if (md->bs)
1397 		bioset_free(md->bs);
1398 
1399 	cleanup_srcu_struct(&md->io_barrier);
1400 
1401 	if (md->disk) {
1402 		spin_lock(&_minor_lock);
1403 		md->disk->private_data = NULL;
1404 		spin_unlock(&_minor_lock);
1405 		del_gendisk(md->disk);
1406 		put_disk(md->disk);
1407 	}
1408 
1409 	if (md->queue)
1410 		blk_cleanup_queue(md->queue);
1411 
1412 	if (md->bdev) {
1413 		bdput(md->bdev);
1414 		md->bdev = NULL;
1415 	}
1416 
1417 	dm_mq_cleanup_mapped_device(md);
1418 }
1419 
1420 /*
1421  * Allocate and initialise a blank device with a given minor.
1422  */
1423 static struct mapped_device *alloc_dev(int minor)
1424 {
1425 	int r, numa_node_id = dm_get_numa_node();
1426 	struct mapped_device *md;
1427 	void *old_md;
1428 
1429 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1430 	if (!md) {
1431 		DMWARN("unable to allocate device, out of memory.");
1432 		return NULL;
1433 	}
1434 
1435 	if (!try_module_get(THIS_MODULE))
1436 		goto bad_module_get;
1437 
1438 	/* get a minor number for the dev */
1439 	if (minor == DM_ANY_MINOR)
1440 		r = next_free_minor(&minor);
1441 	else
1442 		r = specific_minor(minor);
1443 	if (r < 0)
1444 		goto bad_minor;
1445 
1446 	r = init_srcu_struct(&md->io_barrier);
1447 	if (r < 0)
1448 		goto bad_io_barrier;
1449 
1450 	md->numa_node_id = numa_node_id;
1451 	md->use_blk_mq = dm_use_blk_mq_default();
1452 	md->init_tio_pdu = false;
1453 	md->type = DM_TYPE_NONE;
1454 	mutex_init(&md->suspend_lock);
1455 	mutex_init(&md->type_lock);
1456 	mutex_init(&md->table_devices_lock);
1457 	spin_lock_init(&md->deferred_lock);
1458 	atomic_set(&md->holders, 1);
1459 	atomic_set(&md->open_count, 0);
1460 	atomic_set(&md->event_nr, 0);
1461 	atomic_set(&md->uevent_seq, 0);
1462 	INIT_LIST_HEAD(&md->uevent_list);
1463 	INIT_LIST_HEAD(&md->table_devices);
1464 	spin_lock_init(&md->uevent_lock);
1465 
1466 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1467 	if (!md->queue)
1468 		goto bad;
1469 
1470 	dm_init_md_queue(md);
1471 
1472 	md->disk = alloc_disk_node(1, numa_node_id);
1473 	if (!md->disk)
1474 		goto bad;
1475 
1476 	atomic_set(&md->pending[0], 0);
1477 	atomic_set(&md->pending[1], 0);
1478 	init_waitqueue_head(&md->wait);
1479 	INIT_WORK(&md->work, dm_wq_work);
1480 	init_waitqueue_head(&md->eventq);
1481 	init_completion(&md->kobj_holder.completion);
1482 	md->kworker_task = NULL;
1483 
1484 	md->disk->major = _major;
1485 	md->disk->first_minor = minor;
1486 	md->disk->fops = &dm_blk_dops;
1487 	md->disk->queue = md->queue;
1488 	md->disk->private_data = md;
1489 	sprintf(md->disk->disk_name, "dm-%d", minor);
1490 	add_disk(md->disk);
1491 	format_dev_t(md->name, MKDEV(_major, minor));
1492 
1493 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1494 	if (!md->wq)
1495 		goto bad;
1496 
1497 	md->bdev = bdget_disk(md->disk, 0);
1498 	if (!md->bdev)
1499 		goto bad;
1500 
1501 	bio_init(&md->flush_bio);
1502 	md->flush_bio.bi_bdev = md->bdev;
1503 	bio_set_op_attrs(&md->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1504 
1505 	dm_stats_init(&md->stats);
1506 
1507 	/* Populate the mapping, nobody knows we exist yet */
1508 	spin_lock(&_minor_lock);
1509 	old_md = idr_replace(&_minor_idr, md, minor);
1510 	spin_unlock(&_minor_lock);
1511 
1512 	BUG_ON(old_md != MINOR_ALLOCED);
1513 
1514 	return md;
1515 
1516 bad:
1517 	cleanup_mapped_device(md);
1518 bad_io_barrier:
1519 	free_minor(minor);
1520 bad_minor:
1521 	module_put(THIS_MODULE);
1522 bad_module_get:
1523 	kfree(md);
1524 	return NULL;
1525 }
1526 
1527 static void unlock_fs(struct mapped_device *md);
1528 
1529 static void free_dev(struct mapped_device *md)
1530 {
1531 	int minor = MINOR(disk_devt(md->disk));
1532 
1533 	unlock_fs(md);
1534 
1535 	cleanup_mapped_device(md);
1536 
1537 	free_table_devices(&md->table_devices);
1538 	dm_stats_cleanup(&md->stats);
1539 	free_minor(minor);
1540 
1541 	module_put(THIS_MODULE);
1542 	kfree(md);
1543 }
1544 
1545 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1546 {
1547 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1548 
1549 	if (md->bs) {
1550 		/* The md already has necessary mempools. */
1551 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1552 			/*
1553 			 * Reload bioset because front_pad may have changed
1554 			 * because a different table was loaded.
1555 			 */
1556 			bioset_free(md->bs);
1557 			md->bs = p->bs;
1558 			p->bs = NULL;
1559 		}
1560 		/*
1561 		 * There's no need to reload with request-based dm
1562 		 * because the size of front_pad doesn't change.
1563 		 * Note for future: If you are to reload bioset,
1564 		 * prep-ed requests in the queue may refer
1565 		 * to bio from the old bioset, so you must walk
1566 		 * through the queue to unprep.
1567 		 */
1568 		goto out;
1569 	}
1570 
1571 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1572 
1573 	md->io_pool = p->io_pool;
1574 	p->io_pool = NULL;
1575 	md->rq_pool = p->rq_pool;
1576 	p->rq_pool = NULL;
1577 	md->bs = p->bs;
1578 	p->bs = NULL;
1579 
1580 out:
1581 	/* mempool bind completed, no longer need any mempools in the table */
1582 	dm_table_free_md_mempools(t);
1583 }
1584 
1585 /*
1586  * Bind a table to the device.
1587  */
1588 static void event_callback(void *context)
1589 {
1590 	unsigned long flags;
1591 	LIST_HEAD(uevents);
1592 	struct mapped_device *md = (struct mapped_device *) context;
1593 
1594 	spin_lock_irqsave(&md->uevent_lock, flags);
1595 	list_splice_init(&md->uevent_list, &uevents);
1596 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1597 
1598 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1599 
1600 	atomic_inc(&md->event_nr);
1601 	wake_up(&md->eventq);
1602 }
1603 
1604 /*
1605  * Protected by md->suspend_lock obtained by dm_swap_table().
1606  */
1607 static void __set_size(struct mapped_device *md, sector_t size)
1608 {
1609 	set_capacity(md->disk, size);
1610 
1611 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1612 }
1613 
1614 /*
1615  * Returns old map, which caller must destroy.
1616  */
1617 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1618 			       struct queue_limits *limits)
1619 {
1620 	struct dm_table *old_map;
1621 	struct request_queue *q = md->queue;
1622 	sector_t size;
1623 
1624 	size = dm_table_get_size(t);
1625 
1626 	/*
1627 	 * Wipe any geometry if the size of the table changed.
1628 	 */
1629 	if (size != dm_get_size(md))
1630 		memset(&md->geometry, 0, sizeof(md->geometry));
1631 
1632 	__set_size(md, size);
1633 
1634 	dm_table_event_callback(t, event_callback, md);
1635 
1636 	/*
1637 	 * The queue hasn't been stopped yet, if the old table type wasn't
1638 	 * for request-based during suspension.  So stop it to prevent
1639 	 * I/O mapping before resume.
1640 	 * This must be done before setting the queue restrictions,
1641 	 * because request-based dm may be run just after the setting.
1642 	 */
1643 	if (dm_table_request_based(t)) {
1644 		dm_stop_queue(q);
1645 		/*
1646 		 * Leverage the fact that request-based DM targets are
1647 		 * immutable singletons and establish md->immutable_target
1648 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1649 		 */
1650 		md->immutable_target = dm_table_get_immutable_target(t);
1651 	}
1652 
1653 	__bind_mempools(md, t);
1654 
1655 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1656 	rcu_assign_pointer(md->map, (void *)t);
1657 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1658 
1659 	dm_table_set_restrictions(t, q, limits);
1660 	if (old_map)
1661 		dm_sync_table(md);
1662 
1663 	return old_map;
1664 }
1665 
1666 /*
1667  * Returns unbound table for the caller to free.
1668  */
1669 static struct dm_table *__unbind(struct mapped_device *md)
1670 {
1671 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1672 
1673 	if (!map)
1674 		return NULL;
1675 
1676 	dm_table_event_callback(map, NULL, NULL);
1677 	RCU_INIT_POINTER(md->map, NULL);
1678 	dm_sync_table(md);
1679 
1680 	return map;
1681 }
1682 
1683 /*
1684  * Constructor for a new device.
1685  */
1686 int dm_create(int minor, struct mapped_device **result)
1687 {
1688 	struct mapped_device *md;
1689 
1690 	md = alloc_dev(minor);
1691 	if (!md)
1692 		return -ENXIO;
1693 
1694 	dm_sysfs_init(md);
1695 
1696 	*result = md;
1697 	return 0;
1698 }
1699 
1700 /*
1701  * Functions to manage md->type.
1702  * All are required to hold md->type_lock.
1703  */
1704 void dm_lock_md_type(struct mapped_device *md)
1705 {
1706 	mutex_lock(&md->type_lock);
1707 }
1708 
1709 void dm_unlock_md_type(struct mapped_device *md)
1710 {
1711 	mutex_unlock(&md->type_lock);
1712 }
1713 
1714 void dm_set_md_type(struct mapped_device *md, unsigned type)
1715 {
1716 	BUG_ON(!mutex_is_locked(&md->type_lock));
1717 	md->type = type;
1718 }
1719 
1720 unsigned dm_get_md_type(struct mapped_device *md)
1721 {
1722 	return md->type;
1723 }
1724 
1725 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1726 {
1727 	return md->immutable_target_type;
1728 }
1729 
1730 /*
1731  * The queue_limits are only valid as long as you have a reference
1732  * count on 'md'.
1733  */
1734 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1735 {
1736 	BUG_ON(!atomic_read(&md->holders));
1737 	return &md->queue->limits;
1738 }
1739 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1740 
1741 /*
1742  * Setup the DM device's queue based on md's type
1743  */
1744 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1745 {
1746 	int r;
1747 
1748 	switch (dm_get_md_type(md)) {
1749 	case DM_TYPE_REQUEST_BASED:
1750 		r = dm_old_init_request_queue(md);
1751 		if (r) {
1752 			DMERR("Cannot initialize queue for request-based mapped device");
1753 			return r;
1754 		}
1755 		break;
1756 	case DM_TYPE_MQ_REQUEST_BASED:
1757 		r = dm_mq_init_request_queue(md, t);
1758 		if (r) {
1759 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1760 			return r;
1761 		}
1762 		break;
1763 	case DM_TYPE_BIO_BASED:
1764 		dm_init_normal_md_queue(md);
1765 		blk_queue_make_request(md->queue, dm_make_request);
1766 		/*
1767 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1768 		 * since it won't be used (saves 1 process per bio-based DM device).
1769 		 */
1770 		bioset_free(md->queue->bio_split);
1771 		md->queue->bio_split = NULL;
1772 		break;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 struct mapped_device *dm_get_md(dev_t dev)
1779 {
1780 	struct mapped_device *md;
1781 	unsigned minor = MINOR(dev);
1782 
1783 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1784 		return NULL;
1785 
1786 	spin_lock(&_minor_lock);
1787 
1788 	md = idr_find(&_minor_idr, minor);
1789 	if (md) {
1790 		if ((md == MINOR_ALLOCED ||
1791 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1792 		     dm_deleting_md(md) ||
1793 		     test_bit(DMF_FREEING, &md->flags))) {
1794 			md = NULL;
1795 			goto out;
1796 		}
1797 		dm_get(md);
1798 	}
1799 
1800 out:
1801 	spin_unlock(&_minor_lock);
1802 
1803 	return md;
1804 }
1805 EXPORT_SYMBOL_GPL(dm_get_md);
1806 
1807 void *dm_get_mdptr(struct mapped_device *md)
1808 {
1809 	return md->interface_ptr;
1810 }
1811 
1812 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1813 {
1814 	md->interface_ptr = ptr;
1815 }
1816 
1817 void dm_get(struct mapped_device *md)
1818 {
1819 	atomic_inc(&md->holders);
1820 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1821 }
1822 
1823 int dm_hold(struct mapped_device *md)
1824 {
1825 	spin_lock(&_minor_lock);
1826 	if (test_bit(DMF_FREEING, &md->flags)) {
1827 		spin_unlock(&_minor_lock);
1828 		return -EBUSY;
1829 	}
1830 	dm_get(md);
1831 	spin_unlock(&_minor_lock);
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL_GPL(dm_hold);
1835 
1836 const char *dm_device_name(struct mapped_device *md)
1837 {
1838 	return md->name;
1839 }
1840 EXPORT_SYMBOL_GPL(dm_device_name);
1841 
1842 static void __dm_destroy(struct mapped_device *md, bool wait)
1843 {
1844 	struct dm_table *map;
1845 	int srcu_idx;
1846 
1847 	might_sleep();
1848 
1849 	spin_lock(&_minor_lock);
1850 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1851 	set_bit(DMF_FREEING, &md->flags);
1852 	spin_unlock(&_minor_lock);
1853 
1854 	if (dm_request_based(md) && md->kworker_task)
1855 		flush_kthread_worker(&md->kworker);
1856 
1857 	/*
1858 	 * Take suspend_lock so that presuspend and postsuspend methods
1859 	 * do not race with internal suspend.
1860 	 */
1861 	mutex_lock(&md->suspend_lock);
1862 	map = dm_get_live_table(md, &srcu_idx);
1863 	if (!dm_suspended_md(md)) {
1864 		dm_table_presuspend_targets(map);
1865 		dm_table_postsuspend_targets(map);
1866 	}
1867 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1868 	dm_put_live_table(md, srcu_idx);
1869 	mutex_unlock(&md->suspend_lock);
1870 
1871 	/*
1872 	 * Rare, but there may be I/O requests still going to complete,
1873 	 * for example.  Wait for all references to disappear.
1874 	 * No one should increment the reference count of the mapped_device,
1875 	 * after the mapped_device state becomes DMF_FREEING.
1876 	 */
1877 	if (wait)
1878 		while (atomic_read(&md->holders))
1879 			msleep(1);
1880 	else if (atomic_read(&md->holders))
1881 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1882 		       dm_device_name(md), atomic_read(&md->holders));
1883 
1884 	dm_sysfs_exit(md);
1885 	dm_table_destroy(__unbind(md));
1886 	free_dev(md);
1887 }
1888 
1889 void dm_destroy(struct mapped_device *md)
1890 {
1891 	__dm_destroy(md, true);
1892 }
1893 
1894 void dm_destroy_immediate(struct mapped_device *md)
1895 {
1896 	__dm_destroy(md, false);
1897 }
1898 
1899 void dm_put(struct mapped_device *md)
1900 {
1901 	atomic_dec(&md->holders);
1902 }
1903 EXPORT_SYMBOL_GPL(dm_put);
1904 
1905 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1906 {
1907 	int r = 0;
1908 	DECLARE_WAITQUEUE(wait, current);
1909 
1910 	add_wait_queue(&md->wait, &wait);
1911 
1912 	while (1) {
1913 		set_current_state(interruptible);
1914 
1915 		if (!md_in_flight(md))
1916 			break;
1917 
1918 		if (interruptible == TASK_INTERRUPTIBLE &&
1919 		    signal_pending(current)) {
1920 			r = -EINTR;
1921 			break;
1922 		}
1923 
1924 		io_schedule();
1925 	}
1926 	set_current_state(TASK_RUNNING);
1927 
1928 	remove_wait_queue(&md->wait, &wait);
1929 
1930 	return r;
1931 }
1932 
1933 /*
1934  * Process the deferred bios
1935  */
1936 static void dm_wq_work(struct work_struct *work)
1937 {
1938 	struct mapped_device *md = container_of(work, struct mapped_device,
1939 						work);
1940 	struct bio *c;
1941 	int srcu_idx;
1942 	struct dm_table *map;
1943 
1944 	map = dm_get_live_table(md, &srcu_idx);
1945 
1946 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1947 		spin_lock_irq(&md->deferred_lock);
1948 		c = bio_list_pop(&md->deferred);
1949 		spin_unlock_irq(&md->deferred_lock);
1950 
1951 		if (!c)
1952 			break;
1953 
1954 		if (dm_request_based(md))
1955 			generic_make_request(c);
1956 		else
1957 			__split_and_process_bio(md, map, c);
1958 	}
1959 
1960 	dm_put_live_table(md, srcu_idx);
1961 }
1962 
1963 static void dm_queue_flush(struct mapped_device *md)
1964 {
1965 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1966 	smp_mb__after_atomic();
1967 	queue_work(md->wq, &md->work);
1968 }
1969 
1970 /*
1971  * Swap in a new table, returning the old one for the caller to destroy.
1972  */
1973 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
1974 {
1975 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
1976 	struct queue_limits limits;
1977 	int r;
1978 
1979 	mutex_lock(&md->suspend_lock);
1980 
1981 	/* device must be suspended */
1982 	if (!dm_suspended_md(md))
1983 		goto out;
1984 
1985 	/*
1986 	 * If the new table has no data devices, retain the existing limits.
1987 	 * This helps multipath with queue_if_no_path if all paths disappear,
1988 	 * then new I/O is queued based on these limits, and then some paths
1989 	 * reappear.
1990 	 */
1991 	if (dm_table_has_no_data_devices(table)) {
1992 		live_map = dm_get_live_table_fast(md);
1993 		if (live_map)
1994 			limits = md->queue->limits;
1995 		dm_put_live_table_fast(md);
1996 	}
1997 
1998 	if (!live_map) {
1999 		r = dm_calculate_queue_limits(table, &limits);
2000 		if (r) {
2001 			map = ERR_PTR(r);
2002 			goto out;
2003 		}
2004 	}
2005 
2006 	map = __bind(md, table, &limits);
2007 
2008 out:
2009 	mutex_unlock(&md->suspend_lock);
2010 	return map;
2011 }
2012 
2013 /*
2014  * Functions to lock and unlock any filesystem running on the
2015  * device.
2016  */
2017 static int lock_fs(struct mapped_device *md)
2018 {
2019 	int r;
2020 
2021 	WARN_ON(md->frozen_sb);
2022 
2023 	md->frozen_sb = freeze_bdev(md->bdev);
2024 	if (IS_ERR(md->frozen_sb)) {
2025 		r = PTR_ERR(md->frozen_sb);
2026 		md->frozen_sb = NULL;
2027 		return r;
2028 	}
2029 
2030 	set_bit(DMF_FROZEN, &md->flags);
2031 
2032 	return 0;
2033 }
2034 
2035 static void unlock_fs(struct mapped_device *md)
2036 {
2037 	if (!test_bit(DMF_FROZEN, &md->flags))
2038 		return;
2039 
2040 	thaw_bdev(md->bdev, md->frozen_sb);
2041 	md->frozen_sb = NULL;
2042 	clear_bit(DMF_FROZEN, &md->flags);
2043 }
2044 
2045 /*
2046  * If __dm_suspend returns 0, the device is completely quiescent
2047  * now. There is no request-processing activity. All new requests
2048  * are being added to md->deferred list.
2049  *
2050  * Caller must hold md->suspend_lock
2051  */
2052 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2053 			unsigned suspend_flags, int interruptible)
2054 {
2055 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2056 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2057 	int r;
2058 
2059 	/*
2060 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2061 	 * This flag is cleared before dm_suspend returns.
2062 	 */
2063 	if (noflush)
2064 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2065 
2066 	/*
2067 	 * This gets reverted if there's an error later and the targets
2068 	 * provide the .presuspend_undo hook.
2069 	 */
2070 	dm_table_presuspend_targets(map);
2071 
2072 	/*
2073 	 * Flush I/O to the device.
2074 	 * Any I/O submitted after lock_fs() may not be flushed.
2075 	 * noflush takes precedence over do_lockfs.
2076 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2077 	 */
2078 	if (!noflush && do_lockfs) {
2079 		r = lock_fs(md);
2080 		if (r) {
2081 			dm_table_presuspend_undo_targets(map);
2082 			return r;
2083 		}
2084 	}
2085 
2086 	/*
2087 	 * Here we must make sure that no processes are submitting requests
2088 	 * to target drivers i.e. no one may be executing
2089 	 * __split_and_process_bio. This is called from dm_request and
2090 	 * dm_wq_work.
2091 	 *
2092 	 * To get all processes out of __split_and_process_bio in dm_request,
2093 	 * we take the write lock. To prevent any process from reentering
2094 	 * __split_and_process_bio from dm_request and quiesce the thread
2095 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2096 	 * flush_workqueue(md->wq).
2097 	 */
2098 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2099 	if (map)
2100 		synchronize_srcu(&md->io_barrier);
2101 
2102 	/*
2103 	 * Stop md->queue before flushing md->wq in case request-based
2104 	 * dm defers requests to md->wq from md->queue.
2105 	 */
2106 	if (dm_request_based(md)) {
2107 		dm_stop_queue(md->queue);
2108 		if (md->kworker_task)
2109 			flush_kthread_worker(&md->kworker);
2110 	}
2111 
2112 	flush_workqueue(md->wq);
2113 
2114 	/*
2115 	 * At this point no more requests are entering target request routines.
2116 	 * We call dm_wait_for_completion to wait for all existing requests
2117 	 * to finish.
2118 	 */
2119 	r = dm_wait_for_completion(md, interruptible);
2120 
2121 	if (noflush)
2122 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2123 	if (map)
2124 		synchronize_srcu(&md->io_barrier);
2125 
2126 	/* were we interrupted ? */
2127 	if (r < 0) {
2128 		dm_queue_flush(md);
2129 
2130 		if (dm_request_based(md))
2131 			dm_start_queue(md->queue);
2132 
2133 		unlock_fs(md);
2134 		dm_table_presuspend_undo_targets(map);
2135 		/* pushback list is already flushed, so skip flush */
2136 	}
2137 
2138 	return r;
2139 }
2140 
2141 /*
2142  * We need to be able to change a mapping table under a mounted
2143  * filesystem.  For example we might want to move some data in
2144  * the background.  Before the table can be swapped with
2145  * dm_bind_table, dm_suspend must be called to flush any in
2146  * flight bios and ensure that any further io gets deferred.
2147  */
2148 /*
2149  * Suspend mechanism in request-based dm.
2150  *
2151  * 1. Flush all I/Os by lock_fs() if needed.
2152  * 2. Stop dispatching any I/O by stopping the request_queue.
2153  * 3. Wait for all in-flight I/Os to be completed or requeued.
2154  *
2155  * To abort suspend, start the request_queue.
2156  */
2157 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2158 {
2159 	struct dm_table *map = NULL;
2160 	int r = 0;
2161 
2162 retry:
2163 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2164 
2165 	if (dm_suspended_md(md)) {
2166 		r = -EINVAL;
2167 		goto out_unlock;
2168 	}
2169 
2170 	if (dm_suspended_internally_md(md)) {
2171 		/* already internally suspended, wait for internal resume */
2172 		mutex_unlock(&md->suspend_lock);
2173 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2174 		if (r)
2175 			return r;
2176 		goto retry;
2177 	}
2178 
2179 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2180 
2181 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2182 	if (r)
2183 		goto out_unlock;
2184 
2185 	set_bit(DMF_SUSPENDED, &md->flags);
2186 
2187 	dm_table_postsuspend_targets(map);
2188 
2189 out_unlock:
2190 	mutex_unlock(&md->suspend_lock);
2191 	return r;
2192 }
2193 
2194 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2195 {
2196 	if (map) {
2197 		int r = dm_table_resume_targets(map);
2198 		if (r)
2199 			return r;
2200 	}
2201 
2202 	dm_queue_flush(md);
2203 
2204 	/*
2205 	 * Flushing deferred I/Os must be done after targets are resumed
2206 	 * so that mapping of targets can work correctly.
2207 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2208 	 */
2209 	if (dm_request_based(md))
2210 		dm_start_queue(md->queue);
2211 
2212 	unlock_fs(md);
2213 
2214 	return 0;
2215 }
2216 
2217 int dm_resume(struct mapped_device *md)
2218 {
2219 	int r = -EINVAL;
2220 	struct dm_table *map = NULL;
2221 
2222 retry:
2223 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2224 
2225 	if (!dm_suspended_md(md))
2226 		goto out;
2227 
2228 	if (dm_suspended_internally_md(md)) {
2229 		/* already internally suspended, wait for internal resume */
2230 		mutex_unlock(&md->suspend_lock);
2231 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2232 		if (r)
2233 			return r;
2234 		goto retry;
2235 	}
2236 
2237 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2238 	if (!map || !dm_table_get_size(map))
2239 		goto out;
2240 
2241 	r = __dm_resume(md, map);
2242 	if (r)
2243 		goto out;
2244 
2245 	clear_bit(DMF_SUSPENDED, &md->flags);
2246 
2247 	r = 0;
2248 out:
2249 	mutex_unlock(&md->suspend_lock);
2250 
2251 	return r;
2252 }
2253 
2254 /*
2255  * Internal suspend/resume works like userspace-driven suspend. It waits
2256  * until all bios finish and prevents issuing new bios to the target drivers.
2257  * It may be used only from the kernel.
2258  */
2259 
2260 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2261 {
2262 	struct dm_table *map = NULL;
2263 
2264 	if (md->internal_suspend_count++)
2265 		return; /* nested internal suspend */
2266 
2267 	if (dm_suspended_md(md)) {
2268 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2269 		return; /* nest suspend */
2270 	}
2271 
2272 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2273 
2274 	/*
2275 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2276 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2277 	 * would require changing .presuspend to return an error -- avoid this
2278 	 * until there is a need for more elaborate variants of internal suspend.
2279 	 */
2280 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
2281 
2282 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2283 
2284 	dm_table_postsuspend_targets(map);
2285 }
2286 
2287 static void __dm_internal_resume(struct mapped_device *md)
2288 {
2289 	BUG_ON(!md->internal_suspend_count);
2290 
2291 	if (--md->internal_suspend_count)
2292 		return; /* resume from nested internal suspend */
2293 
2294 	if (dm_suspended_md(md))
2295 		goto done; /* resume from nested suspend */
2296 
2297 	/*
2298 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2299 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2300 	 */
2301 	(void) __dm_resume(md, NULL);
2302 
2303 done:
2304 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2305 	smp_mb__after_atomic();
2306 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2307 }
2308 
2309 void dm_internal_suspend_noflush(struct mapped_device *md)
2310 {
2311 	mutex_lock(&md->suspend_lock);
2312 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2313 	mutex_unlock(&md->suspend_lock);
2314 }
2315 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2316 
2317 void dm_internal_resume(struct mapped_device *md)
2318 {
2319 	mutex_lock(&md->suspend_lock);
2320 	__dm_internal_resume(md);
2321 	mutex_unlock(&md->suspend_lock);
2322 }
2323 EXPORT_SYMBOL_GPL(dm_internal_resume);
2324 
2325 /*
2326  * Fast variants of internal suspend/resume hold md->suspend_lock,
2327  * which prevents interaction with userspace-driven suspend.
2328  */
2329 
2330 void dm_internal_suspend_fast(struct mapped_device *md)
2331 {
2332 	mutex_lock(&md->suspend_lock);
2333 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2334 		return;
2335 
2336 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2337 	synchronize_srcu(&md->io_barrier);
2338 	flush_workqueue(md->wq);
2339 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2340 }
2341 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2342 
2343 void dm_internal_resume_fast(struct mapped_device *md)
2344 {
2345 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2346 		goto done;
2347 
2348 	dm_queue_flush(md);
2349 
2350 done:
2351 	mutex_unlock(&md->suspend_lock);
2352 }
2353 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2354 
2355 /*-----------------------------------------------------------------
2356  * Event notification.
2357  *---------------------------------------------------------------*/
2358 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2359 		       unsigned cookie)
2360 {
2361 	char udev_cookie[DM_COOKIE_LENGTH];
2362 	char *envp[] = { udev_cookie, NULL };
2363 
2364 	if (!cookie)
2365 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2366 	else {
2367 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2368 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2369 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2370 					  action, envp);
2371 	}
2372 }
2373 
2374 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2375 {
2376 	return atomic_add_return(1, &md->uevent_seq);
2377 }
2378 
2379 uint32_t dm_get_event_nr(struct mapped_device *md)
2380 {
2381 	return atomic_read(&md->event_nr);
2382 }
2383 
2384 int dm_wait_event(struct mapped_device *md, int event_nr)
2385 {
2386 	return wait_event_interruptible(md->eventq,
2387 			(event_nr != atomic_read(&md->event_nr)));
2388 }
2389 
2390 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2391 {
2392 	unsigned long flags;
2393 
2394 	spin_lock_irqsave(&md->uevent_lock, flags);
2395 	list_add(elist, &md->uevent_list);
2396 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2397 }
2398 
2399 /*
2400  * The gendisk is only valid as long as you have a reference
2401  * count on 'md'.
2402  */
2403 struct gendisk *dm_disk(struct mapped_device *md)
2404 {
2405 	return md->disk;
2406 }
2407 EXPORT_SYMBOL_GPL(dm_disk);
2408 
2409 struct kobject *dm_kobject(struct mapped_device *md)
2410 {
2411 	return &md->kobj_holder.kobj;
2412 }
2413 
2414 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2415 {
2416 	struct mapped_device *md;
2417 
2418 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2419 
2420 	if (test_bit(DMF_FREEING, &md->flags) ||
2421 	    dm_deleting_md(md))
2422 		return NULL;
2423 
2424 	dm_get(md);
2425 	return md;
2426 }
2427 
2428 int dm_suspended_md(struct mapped_device *md)
2429 {
2430 	return test_bit(DMF_SUSPENDED, &md->flags);
2431 }
2432 
2433 int dm_suspended_internally_md(struct mapped_device *md)
2434 {
2435 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2436 }
2437 
2438 int dm_test_deferred_remove_flag(struct mapped_device *md)
2439 {
2440 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2441 }
2442 
2443 int dm_suspended(struct dm_target *ti)
2444 {
2445 	return dm_suspended_md(dm_table_get_md(ti->table));
2446 }
2447 EXPORT_SYMBOL_GPL(dm_suspended);
2448 
2449 int dm_noflush_suspending(struct dm_target *ti)
2450 {
2451 	return __noflush_suspending(dm_table_get_md(ti->table));
2452 }
2453 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2454 
2455 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2456 					    unsigned integrity, unsigned per_io_data_size)
2457 {
2458 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2459 	struct kmem_cache *cachep = NULL;
2460 	unsigned int pool_size = 0;
2461 	unsigned int front_pad;
2462 
2463 	if (!pools)
2464 		return NULL;
2465 
2466 	switch (type) {
2467 	case DM_TYPE_BIO_BASED:
2468 		cachep = _io_cache;
2469 		pool_size = dm_get_reserved_bio_based_ios();
2470 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2471 		break;
2472 	case DM_TYPE_REQUEST_BASED:
2473 		cachep = _rq_tio_cache;
2474 		pool_size = dm_get_reserved_rq_based_ios();
2475 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2476 		if (!pools->rq_pool)
2477 			goto out;
2478 		/* fall through to setup remaining rq-based pools */
2479 	case DM_TYPE_MQ_REQUEST_BASED:
2480 		if (!pool_size)
2481 			pool_size = dm_get_reserved_rq_based_ios();
2482 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2483 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2484 		break;
2485 	default:
2486 		BUG();
2487 	}
2488 
2489 	if (cachep) {
2490 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2491 		if (!pools->io_pool)
2492 			goto out;
2493 	}
2494 
2495 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2496 	if (!pools->bs)
2497 		goto out;
2498 
2499 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2500 		goto out;
2501 
2502 	return pools;
2503 
2504 out:
2505 	dm_free_md_mempools(pools);
2506 
2507 	return NULL;
2508 }
2509 
2510 void dm_free_md_mempools(struct dm_md_mempools *pools)
2511 {
2512 	if (!pools)
2513 		return;
2514 
2515 	mempool_destroy(pools->io_pool);
2516 	mempool_destroy(pools->rq_pool);
2517 
2518 	if (pools->bs)
2519 		bioset_free(pools->bs);
2520 
2521 	kfree(pools);
2522 }
2523 
2524 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2525 			  u32 flags)
2526 {
2527 	struct mapped_device *md = bdev->bd_disk->private_data;
2528 	const struct pr_ops *ops;
2529 	fmode_t mode;
2530 	int r;
2531 
2532 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2533 	if (r < 0)
2534 		return r;
2535 
2536 	ops = bdev->bd_disk->fops->pr_ops;
2537 	if (ops && ops->pr_register)
2538 		r = ops->pr_register(bdev, old_key, new_key, flags);
2539 	else
2540 		r = -EOPNOTSUPP;
2541 
2542 	bdput(bdev);
2543 	return r;
2544 }
2545 
2546 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2547 			 u32 flags)
2548 {
2549 	struct mapped_device *md = bdev->bd_disk->private_data;
2550 	const struct pr_ops *ops;
2551 	fmode_t mode;
2552 	int r;
2553 
2554 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2555 	if (r < 0)
2556 		return r;
2557 
2558 	ops = bdev->bd_disk->fops->pr_ops;
2559 	if (ops && ops->pr_reserve)
2560 		r = ops->pr_reserve(bdev, key, type, flags);
2561 	else
2562 		r = -EOPNOTSUPP;
2563 
2564 	bdput(bdev);
2565 	return r;
2566 }
2567 
2568 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2569 {
2570 	struct mapped_device *md = bdev->bd_disk->private_data;
2571 	const struct pr_ops *ops;
2572 	fmode_t mode;
2573 	int r;
2574 
2575 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2576 	if (r < 0)
2577 		return r;
2578 
2579 	ops = bdev->bd_disk->fops->pr_ops;
2580 	if (ops && ops->pr_release)
2581 		r = ops->pr_release(bdev, key, type);
2582 	else
2583 		r = -EOPNOTSUPP;
2584 
2585 	bdput(bdev);
2586 	return r;
2587 }
2588 
2589 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2590 			 enum pr_type type, bool abort)
2591 {
2592 	struct mapped_device *md = bdev->bd_disk->private_data;
2593 	const struct pr_ops *ops;
2594 	fmode_t mode;
2595 	int r;
2596 
2597 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2598 	if (r < 0)
2599 		return r;
2600 
2601 	ops = bdev->bd_disk->fops->pr_ops;
2602 	if (ops && ops->pr_preempt)
2603 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2604 	else
2605 		r = -EOPNOTSUPP;
2606 
2607 	bdput(bdev);
2608 	return r;
2609 }
2610 
2611 static int dm_pr_clear(struct block_device *bdev, u64 key)
2612 {
2613 	struct mapped_device *md = bdev->bd_disk->private_data;
2614 	const struct pr_ops *ops;
2615 	fmode_t mode;
2616 	int r;
2617 
2618 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2619 	if (r < 0)
2620 		return r;
2621 
2622 	ops = bdev->bd_disk->fops->pr_ops;
2623 	if (ops && ops->pr_clear)
2624 		r = ops->pr_clear(bdev, key);
2625 	else
2626 		r = -EOPNOTSUPP;
2627 
2628 	bdput(bdev);
2629 	return r;
2630 }
2631 
2632 static const struct pr_ops dm_pr_ops = {
2633 	.pr_register	= dm_pr_register,
2634 	.pr_reserve	= dm_pr_reserve,
2635 	.pr_release	= dm_pr_release,
2636 	.pr_preempt	= dm_pr_preempt,
2637 	.pr_clear	= dm_pr_clear,
2638 };
2639 
2640 static const struct block_device_operations dm_blk_dops = {
2641 	.open = dm_blk_open,
2642 	.release = dm_blk_close,
2643 	.ioctl = dm_blk_ioctl,
2644 	.getgeo = dm_blk_getgeo,
2645 	.pr_ops = &dm_pr_ops,
2646 	.owner = THIS_MODULE
2647 };
2648 
2649 /*
2650  * module hooks
2651  */
2652 module_init(dm_init);
2653 module_exit(dm_exit);
2654 
2655 module_param(major, uint, 0);
2656 MODULE_PARM_DESC(major, "The major number of the device mapper");
2657 
2658 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2659 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2660 
2661 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2662 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2663 
2664 MODULE_DESCRIPTION(DM_NAME " driver");
2665 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2666 MODULE_LICENSE("GPL");
2667