1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 462 struct blk_zone *zones, unsigned int *nr_zones, 463 gfp_t gfp_mask) 464 { 465 #ifdef CONFIG_BLK_DEV_ZONED 466 struct mapped_device *md = disk->private_data; 467 struct dm_target *tgt; 468 struct dm_table *map; 469 int srcu_idx, ret; 470 471 if (dm_suspended_md(md)) 472 return -EAGAIN; 473 474 map = dm_get_live_table(md, &srcu_idx); 475 if (!map) 476 return -EIO; 477 478 tgt = dm_table_find_target(map, sector); 479 if (!dm_target_is_valid(tgt)) { 480 ret = -EIO; 481 goto out; 482 } 483 484 /* 485 * If we are executing this, we already know that the block device 486 * is a zoned device and so each target should have support for that 487 * type of drive. A missing report_zones method means that the target 488 * driver has a problem. 489 */ 490 if (WARN_ON(!tgt->type->report_zones)) { 491 ret = -EIO; 492 goto out; 493 } 494 495 /* 496 * blkdev_report_zones() will loop and call this again to cover all the 497 * zones of the target, eventually moving on to the next target. 498 * So there is no need to loop here trying to fill the entire array 499 * of zones. 500 */ 501 ret = tgt->type->report_zones(tgt, sector, zones, 502 nr_zones, gfp_mask); 503 504 out: 505 dm_put_live_table(md, srcu_idx); 506 return ret; 507 #else 508 return -ENOTSUPP; 509 #endif 510 } 511 512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 513 struct block_device **bdev) 514 __acquires(md->io_barrier) 515 { 516 struct dm_target *tgt; 517 struct dm_table *map; 518 int r; 519 520 retry: 521 r = -ENOTTY; 522 map = dm_get_live_table(md, srcu_idx); 523 if (!map || !dm_table_get_size(map)) 524 return r; 525 526 /* We only support devices that have a single target */ 527 if (dm_table_get_num_targets(map) != 1) 528 return r; 529 530 tgt = dm_table_get_target(map, 0); 531 if (!tgt->type->prepare_ioctl) 532 return r; 533 534 if (dm_suspended_md(md)) 535 return -EAGAIN; 536 537 r = tgt->type->prepare_ioctl(tgt, bdev); 538 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 539 dm_put_live_table(md, *srcu_idx); 540 msleep(10); 541 goto retry; 542 } 543 544 return r; 545 } 546 547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 548 __releases(md->io_barrier) 549 { 550 dm_put_live_table(md, srcu_idx); 551 } 552 553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 554 unsigned int cmd, unsigned long arg) 555 { 556 struct mapped_device *md = bdev->bd_disk->private_data; 557 int r, srcu_idx; 558 559 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 560 if (r < 0) 561 goto out; 562 563 if (r > 0) { 564 /* 565 * Target determined this ioctl is being issued against a 566 * subset of the parent bdev; require extra privileges. 567 */ 568 if (!capable(CAP_SYS_RAWIO)) { 569 DMWARN_LIMIT( 570 "%s: sending ioctl %x to DM device without required privilege.", 571 current->comm, cmd); 572 r = -ENOIOCTLCMD; 573 goto out; 574 } 575 } 576 577 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 578 out: 579 dm_unprepare_ioctl(md, srcu_idx); 580 return r; 581 } 582 583 static void start_io_acct(struct dm_io *io); 584 585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 586 { 587 struct dm_io *io; 588 struct dm_target_io *tio; 589 struct bio *clone; 590 591 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 592 if (!clone) 593 return NULL; 594 595 tio = container_of(clone, struct dm_target_io, clone); 596 tio->inside_dm_io = true; 597 tio->io = NULL; 598 599 io = container_of(tio, struct dm_io, tio); 600 io->magic = DM_IO_MAGIC; 601 io->status = 0; 602 atomic_set(&io->io_count, 1); 603 io->orig_bio = bio; 604 io->md = md; 605 spin_lock_init(&io->endio_lock); 606 607 start_io_acct(io); 608 609 return io; 610 } 611 612 static void free_io(struct mapped_device *md, struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned target_bio_nr, gfp_t gfp_mask) 619 { 620 struct dm_target_io *tio; 621 622 if (!ci->io->tio.io) { 623 /* the dm_target_io embedded in ci->io is available */ 624 tio = &ci->io->tio; 625 } else { 626 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 627 if (!clone) 628 return NULL; 629 630 tio = container_of(clone, struct dm_target_io, clone); 631 tio->inside_dm_io = false; 632 } 633 634 tio->magic = DM_TIO_MAGIC; 635 tio->io = ci->io; 636 tio->ti = ti; 637 tio->target_bio_nr = target_bio_nr; 638 639 return tio; 640 } 641 642 static void free_tio(struct dm_target_io *tio) 643 { 644 if (tio->inside_dm_io) 645 return; 646 bio_put(&tio->clone); 647 } 648 649 int md_in_flight(struct mapped_device *md) 650 { 651 return atomic_read(&md->pending[READ]) + 652 atomic_read(&md->pending[WRITE]); 653 } 654 655 static void start_io_acct(struct dm_io *io) 656 { 657 struct mapped_device *md = io->md; 658 struct bio *bio = io->orig_bio; 659 int rw = bio_data_dir(bio); 660 661 io->start_time = jiffies; 662 663 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 664 &dm_disk(md)->part0); 665 666 atomic_set(&dm_disk(md)->part0.in_flight[rw], 667 atomic_inc_return(&md->pending[rw])); 668 669 if (unlikely(dm_stats_used(&md->stats))) 670 dm_stats_account_io(&md->stats, bio_data_dir(bio), 671 bio->bi_iter.bi_sector, bio_sectors(bio), 672 false, 0, &io->stats_aux); 673 } 674 675 static void end_io_acct(struct dm_io *io) 676 { 677 struct mapped_device *md = io->md; 678 struct bio *bio = io->orig_bio; 679 unsigned long duration = jiffies - io->start_time; 680 int pending; 681 int rw = bio_data_dir(bio); 682 683 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 684 io->start_time); 685 686 if (unlikely(dm_stats_used(&md->stats))) 687 dm_stats_account_io(&md->stats, bio_data_dir(bio), 688 bio->bi_iter.bi_sector, bio_sectors(bio), 689 true, duration, &io->stats_aux); 690 691 /* 692 * After this is decremented the bio must not be touched if it is 693 * a flush. 694 */ 695 pending = atomic_dec_return(&md->pending[rw]); 696 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 697 pending += atomic_read(&md->pending[rw^0x1]); 698 699 /* nudge anyone waiting on suspend queue */ 700 if (!pending) 701 wake_up(&md->wait); 702 } 703 704 /* 705 * Add the bio to the list of deferred io. 706 */ 707 static void queue_io(struct mapped_device *md, struct bio *bio) 708 { 709 unsigned long flags; 710 711 spin_lock_irqsave(&md->deferred_lock, flags); 712 bio_list_add(&md->deferred, bio); 713 spin_unlock_irqrestore(&md->deferred_lock, flags); 714 queue_work(md->wq, &md->work); 715 } 716 717 /* 718 * Everyone (including functions in this file), should use this 719 * function to access the md->map field, and make sure they call 720 * dm_put_live_table() when finished. 721 */ 722 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 723 { 724 *srcu_idx = srcu_read_lock(&md->io_barrier); 725 726 return srcu_dereference(md->map, &md->io_barrier); 727 } 728 729 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 730 { 731 srcu_read_unlock(&md->io_barrier, srcu_idx); 732 } 733 734 void dm_sync_table(struct mapped_device *md) 735 { 736 synchronize_srcu(&md->io_barrier); 737 synchronize_rcu_expedited(); 738 } 739 740 /* 741 * A fast alternative to dm_get_live_table/dm_put_live_table. 742 * The caller must not block between these two functions. 743 */ 744 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 745 { 746 rcu_read_lock(); 747 return rcu_dereference(md->map); 748 } 749 750 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 751 { 752 rcu_read_unlock(); 753 } 754 755 static char *_dm_claim_ptr = "I belong to device-mapper"; 756 757 /* 758 * Open a table device so we can use it as a map destination. 759 */ 760 static int open_table_device(struct table_device *td, dev_t dev, 761 struct mapped_device *md) 762 { 763 struct block_device *bdev; 764 765 int r; 766 767 BUG_ON(td->dm_dev.bdev); 768 769 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 770 if (IS_ERR(bdev)) 771 return PTR_ERR(bdev); 772 773 r = bd_link_disk_holder(bdev, dm_disk(md)); 774 if (r) { 775 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 776 return r; 777 } 778 779 td->dm_dev.bdev = bdev; 780 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 781 return 0; 782 } 783 784 /* 785 * Close a table device that we've been using. 786 */ 787 static void close_table_device(struct table_device *td, struct mapped_device *md) 788 { 789 if (!td->dm_dev.bdev) 790 return; 791 792 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 793 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 794 put_dax(td->dm_dev.dax_dev); 795 td->dm_dev.bdev = NULL; 796 td->dm_dev.dax_dev = NULL; 797 } 798 799 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 800 fmode_t mode) { 801 struct table_device *td; 802 803 list_for_each_entry(td, l, list) 804 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 805 return td; 806 807 return NULL; 808 } 809 810 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 811 struct dm_dev **result) { 812 int r; 813 struct table_device *td; 814 815 mutex_lock(&md->table_devices_lock); 816 td = find_table_device(&md->table_devices, dev, mode); 817 if (!td) { 818 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 819 if (!td) { 820 mutex_unlock(&md->table_devices_lock); 821 return -ENOMEM; 822 } 823 824 td->dm_dev.mode = mode; 825 td->dm_dev.bdev = NULL; 826 827 if ((r = open_table_device(td, dev, md))) { 828 mutex_unlock(&md->table_devices_lock); 829 kfree(td); 830 return r; 831 } 832 833 format_dev_t(td->dm_dev.name, dev); 834 835 refcount_set(&td->count, 1); 836 list_add(&td->list, &md->table_devices); 837 } else { 838 refcount_inc(&td->count); 839 } 840 mutex_unlock(&md->table_devices_lock); 841 842 *result = &td->dm_dev; 843 return 0; 844 } 845 EXPORT_SYMBOL_GPL(dm_get_table_device); 846 847 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 848 { 849 struct table_device *td = container_of(d, struct table_device, dm_dev); 850 851 mutex_lock(&md->table_devices_lock); 852 if (refcount_dec_and_test(&td->count)) { 853 close_table_device(td, md); 854 list_del(&td->list); 855 kfree(td); 856 } 857 mutex_unlock(&md->table_devices_lock); 858 } 859 EXPORT_SYMBOL(dm_put_table_device); 860 861 static void free_table_devices(struct list_head *devices) 862 { 863 struct list_head *tmp, *next; 864 865 list_for_each_safe(tmp, next, devices) { 866 struct table_device *td = list_entry(tmp, struct table_device, list); 867 868 DMWARN("dm_destroy: %s still exists with %d references", 869 td->dm_dev.name, refcount_read(&td->count)); 870 kfree(td); 871 } 872 } 873 874 /* 875 * Get the geometry associated with a dm device 876 */ 877 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 878 { 879 *geo = md->geometry; 880 881 return 0; 882 } 883 884 /* 885 * Set the geometry of a device. 886 */ 887 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 888 { 889 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 890 891 if (geo->start > sz) { 892 DMWARN("Start sector is beyond the geometry limits."); 893 return -EINVAL; 894 } 895 896 md->geometry = *geo; 897 898 return 0; 899 } 900 901 static int __noflush_suspending(struct mapped_device *md) 902 { 903 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 904 } 905 906 /* 907 * Decrements the number of outstanding ios that a bio has been 908 * cloned into, completing the original io if necc. 909 */ 910 static void dec_pending(struct dm_io *io, blk_status_t error) 911 { 912 unsigned long flags; 913 blk_status_t io_error; 914 struct bio *bio; 915 struct mapped_device *md = io->md; 916 917 /* Push-back supersedes any I/O errors */ 918 if (unlikely(error)) { 919 spin_lock_irqsave(&io->endio_lock, flags); 920 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 921 io->status = error; 922 spin_unlock_irqrestore(&io->endio_lock, flags); 923 } 924 925 if (atomic_dec_and_test(&io->io_count)) { 926 if (io->status == BLK_STS_DM_REQUEUE) { 927 /* 928 * Target requested pushing back the I/O. 929 */ 930 spin_lock_irqsave(&md->deferred_lock, flags); 931 if (__noflush_suspending(md)) 932 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 933 bio_list_add_head(&md->deferred, io->orig_bio); 934 else 935 /* noflush suspend was interrupted. */ 936 io->status = BLK_STS_IOERR; 937 spin_unlock_irqrestore(&md->deferred_lock, flags); 938 } 939 940 io_error = io->status; 941 bio = io->orig_bio; 942 end_io_acct(io); 943 free_io(md, io); 944 945 if (io_error == BLK_STS_DM_REQUEUE) 946 return; 947 948 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 949 /* 950 * Preflush done for flush with data, reissue 951 * without REQ_PREFLUSH. 952 */ 953 bio->bi_opf &= ~REQ_PREFLUSH; 954 queue_io(md, bio); 955 } else { 956 /* done with normal IO or empty flush */ 957 if (io_error) 958 bio->bi_status = io_error; 959 bio_endio(bio); 960 } 961 } 962 } 963 964 void disable_write_same(struct mapped_device *md) 965 { 966 struct queue_limits *limits = dm_get_queue_limits(md); 967 968 /* device doesn't really support WRITE SAME, disable it */ 969 limits->max_write_same_sectors = 0; 970 } 971 972 void disable_write_zeroes(struct mapped_device *md) 973 { 974 struct queue_limits *limits = dm_get_queue_limits(md); 975 976 /* device doesn't really support WRITE ZEROES, disable it */ 977 limits->max_write_zeroes_sectors = 0; 978 } 979 980 static void clone_endio(struct bio *bio) 981 { 982 blk_status_t error = bio->bi_status; 983 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 984 struct dm_io *io = tio->io; 985 struct mapped_device *md = tio->io->md; 986 dm_endio_fn endio = tio->ti->type->end_io; 987 988 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 989 if (bio_op(bio) == REQ_OP_WRITE_SAME && 990 !bio->bi_disk->queue->limits.max_write_same_sectors) 991 disable_write_same(md); 992 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 993 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 994 disable_write_zeroes(md); 995 } 996 997 if (endio) { 998 int r = endio(tio->ti, bio, &error); 999 switch (r) { 1000 case DM_ENDIO_REQUEUE: 1001 error = BLK_STS_DM_REQUEUE; 1002 /*FALLTHRU*/ 1003 case DM_ENDIO_DONE: 1004 break; 1005 case DM_ENDIO_INCOMPLETE: 1006 /* The target will handle the io */ 1007 return; 1008 default: 1009 DMWARN("unimplemented target endio return value: %d", r); 1010 BUG(); 1011 } 1012 } 1013 1014 free_tio(tio); 1015 dec_pending(io, error); 1016 } 1017 1018 /* 1019 * Return maximum size of I/O possible at the supplied sector up to the current 1020 * target boundary. 1021 */ 1022 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1023 { 1024 sector_t target_offset = dm_target_offset(ti, sector); 1025 1026 return ti->len - target_offset; 1027 } 1028 1029 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1030 { 1031 sector_t len = max_io_len_target_boundary(sector, ti); 1032 sector_t offset, max_len; 1033 1034 /* 1035 * Does the target need to split even further? 1036 */ 1037 if (ti->max_io_len) { 1038 offset = dm_target_offset(ti, sector); 1039 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1040 max_len = sector_div(offset, ti->max_io_len); 1041 else 1042 max_len = offset & (ti->max_io_len - 1); 1043 max_len = ti->max_io_len - max_len; 1044 1045 if (len > max_len) 1046 len = max_len; 1047 } 1048 1049 return len; 1050 } 1051 1052 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1053 { 1054 if (len > UINT_MAX) { 1055 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1056 (unsigned long long)len, UINT_MAX); 1057 ti->error = "Maximum size of target IO is too large"; 1058 return -EINVAL; 1059 } 1060 1061 /* 1062 * BIO based queue uses its own splitting. When multipage bvecs 1063 * is switched on, size of the incoming bio may be too big to 1064 * be handled in some targets, such as crypt. 1065 * 1066 * When these targets are ready for the big bio, we can remove 1067 * the limit. 1068 */ 1069 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1070 1071 return 0; 1072 } 1073 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1074 1075 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1076 sector_t sector, int *srcu_idx) 1077 __acquires(md->io_barrier) 1078 { 1079 struct dm_table *map; 1080 struct dm_target *ti; 1081 1082 map = dm_get_live_table(md, srcu_idx); 1083 if (!map) 1084 return NULL; 1085 1086 ti = dm_table_find_target(map, sector); 1087 if (!dm_target_is_valid(ti)) 1088 return NULL; 1089 1090 return ti; 1091 } 1092 1093 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1094 long nr_pages, void **kaddr, pfn_t *pfn) 1095 { 1096 struct mapped_device *md = dax_get_private(dax_dev); 1097 sector_t sector = pgoff * PAGE_SECTORS; 1098 struct dm_target *ti; 1099 long len, ret = -EIO; 1100 int srcu_idx; 1101 1102 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1103 1104 if (!ti) 1105 goto out; 1106 if (!ti->type->direct_access) 1107 goto out; 1108 len = max_io_len(sector, ti) / PAGE_SECTORS; 1109 if (len < 1) 1110 goto out; 1111 nr_pages = min(len, nr_pages); 1112 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1113 1114 out: 1115 dm_put_live_table(md, srcu_idx); 1116 1117 return ret; 1118 } 1119 1120 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1121 void *addr, size_t bytes, struct iov_iter *i) 1122 { 1123 struct mapped_device *md = dax_get_private(dax_dev); 1124 sector_t sector = pgoff * PAGE_SECTORS; 1125 struct dm_target *ti; 1126 long ret = 0; 1127 int srcu_idx; 1128 1129 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1130 1131 if (!ti) 1132 goto out; 1133 if (!ti->type->dax_copy_from_iter) { 1134 ret = copy_from_iter(addr, bytes, i); 1135 goto out; 1136 } 1137 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1138 out: 1139 dm_put_live_table(md, srcu_idx); 1140 1141 return ret; 1142 } 1143 1144 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1145 void *addr, size_t bytes, struct iov_iter *i) 1146 { 1147 struct mapped_device *md = dax_get_private(dax_dev); 1148 sector_t sector = pgoff * PAGE_SECTORS; 1149 struct dm_target *ti; 1150 long ret = 0; 1151 int srcu_idx; 1152 1153 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1154 1155 if (!ti) 1156 goto out; 1157 if (!ti->type->dax_copy_to_iter) { 1158 ret = copy_to_iter(addr, bytes, i); 1159 goto out; 1160 } 1161 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1162 out: 1163 dm_put_live_table(md, srcu_idx); 1164 1165 return ret; 1166 } 1167 1168 /* 1169 * A target may call dm_accept_partial_bio only from the map routine. It is 1170 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1171 * 1172 * dm_accept_partial_bio informs the dm that the target only wants to process 1173 * additional n_sectors sectors of the bio and the rest of the data should be 1174 * sent in a next bio. 1175 * 1176 * A diagram that explains the arithmetics: 1177 * +--------------------+---------------+-------+ 1178 * | 1 | 2 | 3 | 1179 * +--------------------+---------------+-------+ 1180 * 1181 * <-------------- *tio->len_ptr ---------------> 1182 * <------- bi_size -------> 1183 * <-- n_sectors --> 1184 * 1185 * Region 1 was already iterated over with bio_advance or similar function. 1186 * (it may be empty if the target doesn't use bio_advance) 1187 * Region 2 is the remaining bio size that the target wants to process. 1188 * (it may be empty if region 1 is non-empty, although there is no reason 1189 * to make it empty) 1190 * The target requires that region 3 is to be sent in the next bio. 1191 * 1192 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1193 * the partially processed part (the sum of regions 1+2) must be the same for all 1194 * copies of the bio. 1195 */ 1196 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1197 { 1198 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1199 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1200 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1201 BUG_ON(bi_size > *tio->len_ptr); 1202 BUG_ON(n_sectors > bi_size); 1203 *tio->len_ptr -= bi_size - n_sectors; 1204 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1205 } 1206 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1207 1208 /* 1209 * The zone descriptors obtained with a zone report indicate 1210 * zone positions within the underlying device of the target. The zone 1211 * descriptors must be remapped to match their position within the dm device. 1212 * The caller target should obtain the zones information using 1213 * blkdev_report_zones() to ensure that remapping for partition offset is 1214 * already handled. 1215 */ 1216 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1217 struct blk_zone *zones, unsigned int *nr_zones) 1218 { 1219 #ifdef CONFIG_BLK_DEV_ZONED 1220 struct blk_zone *zone; 1221 unsigned int nrz = *nr_zones; 1222 int i; 1223 1224 /* 1225 * Remap the start sector and write pointer position of the zones in 1226 * the array. Since we may have obtained from the target underlying 1227 * device more zones that the target size, also adjust the number 1228 * of zones. 1229 */ 1230 for (i = 0; i < nrz; i++) { 1231 zone = zones + i; 1232 if (zone->start >= start + ti->len) { 1233 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1234 break; 1235 } 1236 1237 zone->start = zone->start + ti->begin - start; 1238 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1239 continue; 1240 1241 if (zone->cond == BLK_ZONE_COND_FULL) 1242 zone->wp = zone->start + zone->len; 1243 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1244 zone->wp = zone->start; 1245 else 1246 zone->wp = zone->wp + ti->begin - start; 1247 } 1248 1249 *nr_zones = i; 1250 #else /* !CONFIG_BLK_DEV_ZONED */ 1251 *nr_zones = 0; 1252 #endif 1253 } 1254 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1255 1256 static blk_qc_t __map_bio(struct dm_target_io *tio) 1257 { 1258 int r; 1259 sector_t sector; 1260 struct bio *clone = &tio->clone; 1261 struct dm_io *io = tio->io; 1262 struct mapped_device *md = io->md; 1263 struct dm_target *ti = tio->ti; 1264 blk_qc_t ret = BLK_QC_T_NONE; 1265 1266 clone->bi_end_io = clone_endio; 1267 1268 /* 1269 * Map the clone. If r == 0 we don't need to do 1270 * anything, the target has assumed ownership of 1271 * this io. 1272 */ 1273 atomic_inc(&io->io_count); 1274 sector = clone->bi_iter.bi_sector; 1275 1276 r = ti->type->map(ti, clone); 1277 switch (r) { 1278 case DM_MAPIO_SUBMITTED: 1279 break; 1280 case DM_MAPIO_REMAPPED: 1281 /* the bio has been remapped so dispatch it */ 1282 trace_block_bio_remap(clone->bi_disk->queue, clone, 1283 bio_dev(io->orig_bio), sector); 1284 if (md->type == DM_TYPE_NVME_BIO_BASED) 1285 ret = direct_make_request(clone); 1286 else 1287 ret = generic_make_request(clone); 1288 break; 1289 case DM_MAPIO_KILL: 1290 free_tio(tio); 1291 dec_pending(io, BLK_STS_IOERR); 1292 break; 1293 case DM_MAPIO_REQUEUE: 1294 free_tio(tio); 1295 dec_pending(io, BLK_STS_DM_REQUEUE); 1296 break; 1297 default: 1298 DMWARN("unimplemented target map return value: %d", r); 1299 BUG(); 1300 } 1301 1302 return ret; 1303 } 1304 1305 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1306 { 1307 bio->bi_iter.bi_sector = sector; 1308 bio->bi_iter.bi_size = to_bytes(len); 1309 } 1310 1311 /* 1312 * Creates a bio that consists of range of complete bvecs. 1313 */ 1314 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1315 sector_t sector, unsigned len) 1316 { 1317 struct bio *clone = &tio->clone; 1318 1319 __bio_clone_fast(clone, bio); 1320 1321 if (unlikely(bio_integrity(bio) != NULL)) { 1322 int r; 1323 1324 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1325 !dm_target_passes_integrity(tio->ti->type))) { 1326 DMWARN("%s: the target %s doesn't support integrity data.", 1327 dm_device_name(tio->io->md), 1328 tio->ti->type->name); 1329 return -EIO; 1330 } 1331 1332 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1333 if (r < 0) 1334 return r; 1335 } 1336 1337 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1338 clone->bi_iter.bi_size = to_bytes(len); 1339 1340 if (unlikely(bio_integrity(bio) != NULL)) 1341 bio_integrity_trim(clone); 1342 1343 return 0; 1344 } 1345 1346 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1347 struct dm_target *ti, unsigned num_bios) 1348 { 1349 struct dm_target_io *tio; 1350 int try; 1351 1352 if (!num_bios) 1353 return; 1354 1355 if (num_bios == 1) { 1356 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1357 bio_list_add(blist, &tio->clone); 1358 return; 1359 } 1360 1361 for (try = 0; try < 2; try++) { 1362 int bio_nr; 1363 struct bio *bio; 1364 1365 if (try) 1366 mutex_lock(&ci->io->md->table_devices_lock); 1367 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1368 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1369 if (!tio) 1370 break; 1371 1372 bio_list_add(blist, &tio->clone); 1373 } 1374 if (try) 1375 mutex_unlock(&ci->io->md->table_devices_lock); 1376 if (bio_nr == num_bios) 1377 return; 1378 1379 while ((bio = bio_list_pop(blist))) { 1380 tio = container_of(bio, struct dm_target_io, clone); 1381 free_tio(tio); 1382 } 1383 } 1384 } 1385 1386 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1387 struct dm_target_io *tio, unsigned *len) 1388 { 1389 struct bio *clone = &tio->clone; 1390 1391 tio->len_ptr = len; 1392 1393 __bio_clone_fast(clone, ci->bio); 1394 if (len) 1395 bio_setup_sector(clone, ci->sector, *len); 1396 1397 return __map_bio(tio); 1398 } 1399 1400 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1401 unsigned num_bios, unsigned *len) 1402 { 1403 struct bio_list blist = BIO_EMPTY_LIST; 1404 struct bio *bio; 1405 struct dm_target_io *tio; 1406 1407 alloc_multiple_bios(&blist, ci, ti, num_bios); 1408 1409 while ((bio = bio_list_pop(&blist))) { 1410 tio = container_of(bio, struct dm_target_io, clone); 1411 (void) __clone_and_map_simple_bio(ci, tio, len); 1412 } 1413 } 1414 1415 static int __send_empty_flush(struct clone_info *ci) 1416 { 1417 unsigned target_nr = 0; 1418 struct dm_target *ti; 1419 1420 BUG_ON(bio_has_data(ci->bio)); 1421 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1422 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1423 1424 return 0; 1425 } 1426 1427 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1428 sector_t sector, unsigned *len) 1429 { 1430 struct bio *bio = ci->bio; 1431 struct dm_target_io *tio; 1432 int r; 1433 1434 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1435 tio->len_ptr = len; 1436 r = clone_bio(tio, bio, sector, *len); 1437 if (r < 0) { 1438 free_tio(tio); 1439 return r; 1440 } 1441 (void) __map_bio(tio); 1442 1443 return 0; 1444 } 1445 1446 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1447 1448 static unsigned get_num_discard_bios(struct dm_target *ti) 1449 { 1450 return ti->num_discard_bios; 1451 } 1452 1453 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1454 { 1455 return ti->num_secure_erase_bios; 1456 } 1457 1458 static unsigned get_num_write_same_bios(struct dm_target *ti) 1459 { 1460 return ti->num_write_same_bios; 1461 } 1462 1463 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1464 { 1465 return ti->num_write_zeroes_bios; 1466 } 1467 1468 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1469 1470 static bool is_split_required_for_discard(struct dm_target *ti) 1471 { 1472 return ti->split_discard_bios; 1473 } 1474 1475 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1476 get_num_bios_fn get_num_bios, 1477 is_split_required_fn is_split_required) 1478 { 1479 unsigned len; 1480 unsigned num_bios; 1481 1482 /* 1483 * Even though the device advertised support for this type of 1484 * request, that does not mean every target supports it, and 1485 * reconfiguration might also have changed that since the 1486 * check was performed. 1487 */ 1488 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1489 if (!num_bios) 1490 return -EOPNOTSUPP; 1491 1492 if (is_split_required && !is_split_required(ti)) 1493 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1494 else 1495 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1496 1497 __send_duplicate_bios(ci, ti, num_bios, &len); 1498 1499 ci->sector += len; 1500 ci->sector_count -= len; 1501 1502 return 0; 1503 } 1504 1505 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1506 { 1507 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1508 is_split_required_for_discard); 1509 } 1510 1511 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1512 { 1513 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL); 1514 } 1515 1516 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1517 { 1518 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1519 } 1520 1521 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1522 { 1523 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1524 } 1525 1526 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1527 int *result) 1528 { 1529 struct bio *bio = ci->bio; 1530 1531 if (bio_op(bio) == REQ_OP_DISCARD) 1532 *result = __send_discard(ci, ti); 1533 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1534 *result = __send_secure_erase(ci, ti); 1535 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1536 *result = __send_write_same(ci, ti); 1537 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1538 *result = __send_write_zeroes(ci, ti); 1539 else 1540 return false; 1541 1542 return true; 1543 } 1544 1545 /* 1546 * Select the correct strategy for processing a non-flush bio. 1547 */ 1548 static int __split_and_process_non_flush(struct clone_info *ci) 1549 { 1550 struct dm_target *ti; 1551 unsigned len; 1552 int r; 1553 1554 ti = dm_table_find_target(ci->map, ci->sector); 1555 if (!dm_target_is_valid(ti)) 1556 return -EIO; 1557 1558 if (unlikely(__process_abnormal_io(ci, ti, &r))) 1559 return r; 1560 1561 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1562 1563 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1564 if (r < 0) 1565 return r; 1566 1567 ci->sector += len; 1568 ci->sector_count -= len; 1569 1570 return 0; 1571 } 1572 1573 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1574 struct dm_table *map, struct bio *bio) 1575 { 1576 ci->map = map; 1577 ci->io = alloc_io(md, bio); 1578 ci->sector = bio->bi_iter.bi_sector; 1579 } 1580 1581 /* 1582 * Entry point to split a bio into clones and submit them to the targets. 1583 */ 1584 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1585 struct dm_table *map, struct bio *bio) 1586 { 1587 struct clone_info ci; 1588 blk_qc_t ret = BLK_QC_T_NONE; 1589 int error = 0; 1590 1591 if (unlikely(!map)) { 1592 bio_io_error(bio); 1593 return ret; 1594 } 1595 1596 init_clone_info(&ci, md, map, bio); 1597 1598 if (bio->bi_opf & REQ_PREFLUSH) { 1599 ci.bio = &ci.io->md->flush_bio; 1600 ci.sector_count = 0; 1601 error = __send_empty_flush(&ci); 1602 /* dec_pending submits any data associated with flush */ 1603 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1604 ci.bio = bio; 1605 ci.sector_count = 0; 1606 error = __split_and_process_non_flush(&ci); 1607 } else { 1608 ci.bio = bio; 1609 ci.sector_count = bio_sectors(bio); 1610 while (ci.sector_count && !error) { 1611 error = __split_and_process_non_flush(&ci); 1612 if (current->bio_list && ci.sector_count && !error) { 1613 /* 1614 * Remainder must be passed to generic_make_request() 1615 * so that it gets handled *after* bios already submitted 1616 * have been completely processed. 1617 * We take a clone of the original to store in 1618 * ci.io->orig_bio to be used by end_io_acct() and 1619 * for dec_pending to use for completion handling. 1620 */ 1621 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1622 GFP_NOIO, &md->queue->bio_split); 1623 ci.io->orig_bio = b; 1624 bio_chain(b, bio); 1625 ret = generic_make_request(bio); 1626 break; 1627 } 1628 } 1629 } 1630 1631 /* drop the extra reference count */ 1632 dec_pending(ci.io, errno_to_blk_status(error)); 1633 return ret; 1634 } 1635 1636 /* 1637 * Optimized variant of __split_and_process_bio that leverages the 1638 * fact that targets that use it do _not_ have a need to split bios. 1639 */ 1640 static blk_qc_t __process_bio(struct mapped_device *md, 1641 struct dm_table *map, struct bio *bio) 1642 { 1643 struct clone_info ci; 1644 blk_qc_t ret = BLK_QC_T_NONE; 1645 int error = 0; 1646 1647 if (unlikely(!map)) { 1648 bio_io_error(bio); 1649 return ret; 1650 } 1651 1652 init_clone_info(&ci, md, map, bio); 1653 1654 if (bio->bi_opf & REQ_PREFLUSH) { 1655 ci.bio = &ci.io->md->flush_bio; 1656 ci.sector_count = 0; 1657 error = __send_empty_flush(&ci); 1658 /* dec_pending submits any data associated with flush */ 1659 } else { 1660 struct dm_target *ti = md->immutable_target; 1661 struct dm_target_io *tio; 1662 1663 /* 1664 * Defend against IO still getting in during teardown 1665 * - as was seen for a time with nvme-fcloop 1666 */ 1667 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1668 error = -EIO; 1669 goto out; 1670 } 1671 1672 ci.bio = bio; 1673 ci.sector_count = bio_sectors(bio); 1674 if (unlikely(__process_abnormal_io(&ci, ti, &error))) 1675 goto out; 1676 1677 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1678 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1679 } 1680 out: 1681 /* drop the extra reference count */ 1682 dec_pending(ci.io, errno_to_blk_status(error)); 1683 return ret; 1684 } 1685 1686 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1687 1688 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1689 process_bio_fn process_bio) 1690 { 1691 struct mapped_device *md = q->queuedata; 1692 blk_qc_t ret = BLK_QC_T_NONE; 1693 int srcu_idx; 1694 struct dm_table *map; 1695 1696 map = dm_get_live_table(md, &srcu_idx); 1697 1698 /* if we're suspended, we have to queue this io for later */ 1699 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1700 dm_put_live_table(md, srcu_idx); 1701 1702 if (!(bio->bi_opf & REQ_RAHEAD)) 1703 queue_io(md, bio); 1704 else 1705 bio_io_error(bio); 1706 return ret; 1707 } 1708 1709 ret = process_bio(md, map, bio); 1710 1711 dm_put_live_table(md, srcu_idx); 1712 return ret; 1713 } 1714 1715 /* 1716 * The request function that remaps the bio to one target and 1717 * splits off any remainder. 1718 */ 1719 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1720 { 1721 return __dm_make_request(q, bio, __split_and_process_bio); 1722 } 1723 1724 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1725 { 1726 return __dm_make_request(q, bio, __process_bio); 1727 } 1728 1729 static int dm_any_congested(void *congested_data, int bdi_bits) 1730 { 1731 int r = bdi_bits; 1732 struct mapped_device *md = congested_data; 1733 struct dm_table *map; 1734 1735 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1736 if (dm_request_based(md)) { 1737 /* 1738 * With request-based DM we only need to check the 1739 * top-level queue for congestion. 1740 */ 1741 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1742 } else { 1743 map = dm_get_live_table_fast(md); 1744 if (map) 1745 r = dm_table_any_congested(map, bdi_bits); 1746 dm_put_live_table_fast(md); 1747 } 1748 } 1749 1750 return r; 1751 } 1752 1753 /*----------------------------------------------------------------- 1754 * An IDR is used to keep track of allocated minor numbers. 1755 *---------------------------------------------------------------*/ 1756 static void free_minor(int minor) 1757 { 1758 spin_lock(&_minor_lock); 1759 idr_remove(&_minor_idr, minor); 1760 spin_unlock(&_minor_lock); 1761 } 1762 1763 /* 1764 * See if the device with a specific minor # is free. 1765 */ 1766 static int specific_minor(int minor) 1767 { 1768 int r; 1769 1770 if (minor >= (1 << MINORBITS)) 1771 return -EINVAL; 1772 1773 idr_preload(GFP_KERNEL); 1774 spin_lock(&_minor_lock); 1775 1776 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1777 1778 spin_unlock(&_minor_lock); 1779 idr_preload_end(); 1780 if (r < 0) 1781 return r == -ENOSPC ? -EBUSY : r; 1782 return 0; 1783 } 1784 1785 static int next_free_minor(int *minor) 1786 { 1787 int r; 1788 1789 idr_preload(GFP_KERNEL); 1790 spin_lock(&_minor_lock); 1791 1792 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1793 1794 spin_unlock(&_minor_lock); 1795 idr_preload_end(); 1796 if (r < 0) 1797 return r; 1798 *minor = r; 1799 return 0; 1800 } 1801 1802 static const struct block_device_operations dm_blk_dops; 1803 static const struct dax_operations dm_dax_ops; 1804 1805 static void dm_wq_work(struct work_struct *work); 1806 1807 static void dm_init_normal_md_queue(struct mapped_device *md) 1808 { 1809 md->use_blk_mq = false; 1810 1811 /* 1812 * Initialize aspects of queue that aren't relevant for blk-mq 1813 */ 1814 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1815 } 1816 1817 static void cleanup_mapped_device(struct mapped_device *md) 1818 { 1819 if (md->wq) 1820 destroy_workqueue(md->wq); 1821 if (md->kworker_task) 1822 kthread_stop(md->kworker_task); 1823 bioset_exit(&md->bs); 1824 bioset_exit(&md->io_bs); 1825 1826 if (md->dax_dev) { 1827 kill_dax(md->dax_dev); 1828 put_dax(md->dax_dev); 1829 md->dax_dev = NULL; 1830 } 1831 1832 if (md->disk) { 1833 spin_lock(&_minor_lock); 1834 md->disk->private_data = NULL; 1835 spin_unlock(&_minor_lock); 1836 del_gendisk(md->disk); 1837 put_disk(md->disk); 1838 } 1839 1840 if (md->queue) 1841 blk_cleanup_queue(md->queue); 1842 1843 cleanup_srcu_struct(&md->io_barrier); 1844 1845 if (md->bdev) { 1846 bdput(md->bdev); 1847 md->bdev = NULL; 1848 } 1849 1850 mutex_destroy(&md->suspend_lock); 1851 mutex_destroy(&md->type_lock); 1852 mutex_destroy(&md->table_devices_lock); 1853 1854 dm_mq_cleanup_mapped_device(md); 1855 } 1856 1857 /* 1858 * Allocate and initialise a blank device with a given minor. 1859 */ 1860 static struct mapped_device *alloc_dev(int minor) 1861 { 1862 int r, numa_node_id = dm_get_numa_node(); 1863 struct dax_device *dax_dev = NULL; 1864 struct mapped_device *md; 1865 void *old_md; 1866 1867 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1868 if (!md) { 1869 DMWARN("unable to allocate device, out of memory."); 1870 return NULL; 1871 } 1872 1873 if (!try_module_get(THIS_MODULE)) 1874 goto bad_module_get; 1875 1876 /* get a minor number for the dev */ 1877 if (minor == DM_ANY_MINOR) 1878 r = next_free_minor(&minor); 1879 else 1880 r = specific_minor(minor); 1881 if (r < 0) 1882 goto bad_minor; 1883 1884 r = init_srcu_struct(&md->io_barrier); 1885 if (r < 0) 1886 goto bad_io_barrier; 1887 1888 md->numa_node_id = numa_node_id; 1889 md->use_blk_mq = dm_use_blk_mq_default(); 1890 md->init_tio_pdu = false; 1891 md->type = DM_TYPE_NONE; 1892 mutex_init(&md->suspend_lock); 1893 mutex_init(&md->type_lock); 1894 mutex_init(&md->table_devices_lock); 1895 spin_lock_init(&md->deferred_lock); 1896 atomic_set(&md->holders, 1); 1897 atomic_set(&md->open_count, 0); 1898 atomic_set(&md->event_nr, 0); 1899 atomic_set(&md->uevent_seq, 0); 1900 INIT_LIST_HEAD(&md->uevent_list); 1901 INIT_LIST_HEAD(&md->table_devices); 1902 spin_lock_init(&md->uevent_lock); 1903 1904 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL); 1905 if (!md->queue) 1906 goto bad; 1907 md->queue->queuedata = md; 1908 md->queue->backing_dev_info->congested_data = md; 1909 1910 md->disk = alloc_disk_node(1, md->numa_node_id); 1911 if (!md->disk) 1912 goto bad; 1913 1914 atomic_set(&md->pending[0], 0); 1915 atomic_set(&md->pending[1], 0); 1916 init_waitqueue_head(&md->wait); 1917 INIT_WORK(&md->work, dm_wq_work); 1918 init_waitqueue_head(&md->eventq); 1919 init_completion(&md->kobj_holder.completion); 1920 md->kworker_task = NULL; 1921 1922 md->disk->major = _major; 1923 md->disk->first_minor = minor; 1924 md->disk->fops = &dm_blk_dops; 1925 md->disk->queue = md->queue; 1926 md->disk->private_data = md; 1927 sprintf(md->disk->disk_name, "dm-%d", minor); 1928 1929 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1930 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1931 if (!dax_dev) 1932 goto bad; 1933 } 1934 md->dax_dev = dax_dev; 1935 1936 add_disk_no_queue_reg(md->disk); 1937 format_dev_t(md->name, MKDEV(_major, minor)); 1938 1939 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1940 if (!md->wq) 1941 goto bad; 1942 1943 md->bdev = bdget_disk(md->disk, 0); 1944 if (!md->bdev) 1945 goto bad; 1946 1947 bio_init(&md->flush_bio, NULL, 0); 1948 bio_set_dev(&md->flush_bio, md->bdev); 1949 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1950 1951 dm_stats_init(&md->stats); 1952 1953 /* Populate the mapping, nobody knows we exist yet */ 1954 spin_lock(&_minor_lock); 1955 old_md = idr_replace(&_minor_idr, md, minor); 1956 spin_unlock(&_minor_lock); 1957 1958 BUG_ON(old_md != MINOR_ALLOCED); 1959 1960 return md; 1961 1962 bad: 1963 cleanup_mapped_device(md); 1964 bad_io_barrier: 1965 free_minor(minor); 1966 bad_minor: 1967 module_put(THIS_MODULE); 1968 bad_module_get: 1969 kvfree(md); 1970 return NULL; 1971 } 1972 1973 static void unlock_fs(struct mapped_device *md); 1974 1975 static void free_dev(struct mapped_device *md) 1976 { 1977 int minor = MINOR(disk_devt(md->disk)); 1978 1979 unlock_fs(md); 1980 1981 cleanup_mapped_device(md); 1982 1983 free_table_devices(&md->table_devices); 1984 dm_stats_cleanup(&md->stats); 1985 free_minor(minor); 1986 1987 module_put(THIS_MODULE); 1988 kvfree(md); 1989 } 1990 1991 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1992 { 1993 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1994 int ret = 0; 1995 1996 if (dm_table_bio_based(t)) { 1997 /* 1998 * The md may already have mempools that need changing. 1999 * If so, reload bioset because front_pad may have changed 2000 * because a different table was loaded. 2001 */ 2002 bioset_exit(&md->bs); 2003 bioset_exit(&md->io_bs); 2004 2005 } else if (bioset_initialized(&md->bs)) { 2006 /* 2007 * There's no need to reload with request-based dm 2008 * because the size of front_pad doesn't change. 2009 * Note for future: If you are to reload bioset, 2010 * prep-ed requests in the queue may refer 2011 * to bio from the old bioset, so you must walk 2012 * through the queue to unprep. 2013 */ 2014 goto out; 2015 } 2016 2017 BUG_ON(!p || 2018 bioset_initialized(&md->bs) || 2019 bioset_initialized(&md->io_bs)); 2020 2021 ret = bioset_init_from_src(&md->bs, &p->bs); 2022 if (ret) 2023 goto out; 2024 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2025 if (ret) 2026 bioset_exit(&md->bs); 2027 out: 2028 /* mempool bind completed, no longer need any mempools in the table */ 2029 dm_table_free_md_mempools(t); 2030 return ret; 2031 } 2032 2033 /* 2034 * Bind a table to the device. 2035 */ 2036 static void event_callback(void *context) 2037 { 2038 unsigned long flags; 2039 LIST_HEAD(uevents); 2040 struct mapped_device *md = (struct mapped_device *) context; 2041 2042 spin_lock_irqsave(&md->uevent_lock, flags); 2043 list_splice_init(&md->uevent_list, &uevents); 2044 spin_unlock_irqrestore(&md->uevent_lock, flags); 2045 2046 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2047 2048 atomic_inc(&md->event_nr); 2049 wake_up(&md->eventq); 2050 dm_issue_global_event(); 2051 } 2052 2053 /* 2054 * Protected by md->suspend_lock obtained by dm_swap_table(). 2055 */ 2056 static void __set_size(struct mapped_device *md, sector_t size) 2057 { 2058 lockdep_assert_held(&md->suspend_lock); 2059 2060 set_capacity(md->disk, size); 2061 2062 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2063 } 2064 2065 /* 2066 * Returns old map, which caller must destroy. 2067 */ 2068 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2069 struct queue_limits *limits) 2070 { 2071 struct dm_table *old_map; 2072 struct request_queue *q = md->queue; 2073 bool request_based = dm_table_request_based(t); 2074 sector_t size; 2075 int ret; 2076 2077 lockdep_assert_held(&md->suspend_lock); 2078 2079 size = dm_table_get_size(t); 2080 2081 /* 2082 * Wipe any geometry if the size of the table changed. 2083 */ 2084 if (size != dm_get_size(md)) 2085 memset(&md->geometry, 0, sizeof(md->geometry)); 2086 2087 __set_size(md, size); 2088 2089 dm_table_event_callback(t, event_callback, md); 2090 2091 /* 2092 * The queue hasn't been stopped yet, if the old table type wasn't 2093 * for request-based during suspension. So stop it to prevent 2094 * I/O mapping before resume. 2095 * This must be done before setting the queue restrictions, 2096 * because request-based dm may be run just after the setting. 2097 */ 2098 if (request_based) 2099 dm_stop_queue(q); 2100 2101 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2102 /* 2103 * Leverage the fact that request-based DM targets and 2104 * NVMe bio based targets are immutable singletons 2105 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2106 * and __process_bio. 2107 */ 2108 md->immutable_target = dm_table_get_immutable_target(t); 2109 } 2110 2111 ret = __bind_mempools(md, t); 2112 if (ret) { 2113 old_map = ERR_PTR(ret); 2114 goto out; 2115 } 2116 2117 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2118 rcu_assign_pointer(md->map, (void *)t); 2119 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2120 2121 dm_table_set_restrictions(t, q, limits); 2122 if (old_map) 2123 dm_sync_table(md); 2124 2125 out: 2126 return old_map; 2127 } 2128 2129 /* 2130 * Returns unbound table for the caller to free. 2131 */ 2132 static struct dm_table *__unbind(struct mapped_device *md) 2133 { 2134 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2135 2136 if (!map) 2137 return NULL; 2138 2139 dm_table_event_callback(map, NULL, NULL); 2140 RCU_INIT_POINTER(md->map, NULL); 2141 dm_sync_table(md); 2142 2143 return map; 2144 } 2145 2146 /* 2147 * Constructor for a new device. 2148 */ 2149 int dm_create(int minor, struct mapped_device **result) 2150 { 2151 int r; 2152 struct mapped_device *md; 2153 2154 md = alloc_dev(minor); 2155 if (!md) 2156 return -ENXIO; 2157 2158 r = dm_sysfs_init(md); 2159 if (r) { 2160 free_dev(md); 2161 return r; 2162 } 2163 2164 *result = md; 2165 return 0; 2166 } 2167 2168 /* 2169 * Functions to manage md->type. 2170 * All are required to hold md->type_lock. 2171 */ 2172 void dm_lock_md_type(struct mapped_device *md) 2173 { 2174 mutex_lock(&md->type_lock); 2175 } 2176 2177 void dm_unlock_md_type(struct mapped_device *md) 2178 { 2179 mutex_unlock(&md->type_lock); 2180 } 2181 2182 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2183 { 2184 BUG_ON(!mutex_is_locked(&md->type_lock)); 2185 md->type = type; 2186 } 2187 2188 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2189 { 2190 return md->type; 2191 } 2192 2193 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2194 { 2195 return md->immutable_target_type; 2196 } 2197 2198 /* 2199 * The queue_limits are only valid as long as you have a reference 2200 * count on 'md'. 2201 */ 2202 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2203 { 2204 BUG_ON(!atomic_read(&md->holders)); 2205 return &md->queue->limits; 2206 } 2207 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2208 2209 /* 2210 * Setup the DM device's queue based on md's type 2211 */ 2212 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2213 { 2214 int r; 2215 struct queue_limits limits; 2216 enum dm_queue_mode type = dm_get_md_type(md); 2217 2218 switch (type) { 2219 case DM_TYPE_REQUEST_BASED: 2220 dm_init_normal_md_queue(md); 2221 r = dm_old_init_request_queue(md, t); 2222 if (r) { 2223 DMERR("Cannot initialize queue for request-based mapped device"); 2224 return r; 2225 } 2226 break; 2227 case DM_TYPE_MQ_REQUEST_BASED: 2228 r = dm_mq_init_request_queue(md, t); 2229 if (r) { 2230 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2231 return r; 2232 } 2233 break; 2234 case DM_TYPE_BIO_BASED: 2235 case DM_TYPE_DAX_BIO_BASED: 2236 dm_init_normal_md_queue(md); 2237 blk_queue_make_request(md->queue, dm_make_request); 2238 break; 2239 case DM_TYPE_NVME_BIO_BASED: 2240 dm_init_normal_md_queue(md); 2241 blk_queue_make_request(md->queue, dm_make_request_nvme); 2242 break; 2243 case DM_TYPE_NONE: 2244 WARN_ON_ONCE(true); 2245 break; 2246 } 2247 2248 r = dm_calculate_queue_limits(t, &limits); 2249 if (r) { 2250 DMERR("Cannot calculate initial queue limits"); 2251 return r; 2252 } 2253 dm_table_set_restrictions(t, md->queue, &limits); 2254 blk_register_queue(md->disk); 2255 2256 return 0; 2257 } 2258 2259 struct mapped_device *dm_get_md(dev_t dev) 2260 { 2261 struct mapped_device *md; 2262 unsigned minor = MINOR(dev); 2263 2264 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2265 return NULL; 2266 2267 spin_lock(&_minor_lock); 2268 2269 md = idr_find(&_minor_idr, minor); 2270 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2271 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2272 md = NULL; 2273 goto out; 2274 } 2275 dm_get(md); 2276 out: 2277 spin_unlock(&_minor_lock); 2278 2279 return md; 2280 } 2281 EXPORT_SYMBOL_GPL(dm_get_md); 2282 2283 void *dm_get_mdptr(struct mapped_device *md) 2284 { 2285 return md->interface_ptr; 2286 } 2287 2288 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2289 { 2290 md->interface_ptr = ptr; 2291 } 2292 2293 void dm_get(struct mapped_device *md) 2294 { 2295 atomic_inc(&md->holders); 2296 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2297 } 2298 2299 int dm_hold(struct mapped_device *md) 2300 { 2301 spin_lock(&_minor_lock); 2302 if (test_bit(DMF_FREEING, &md->flags)) { 2303 spin_unlock(&_minor_lock); 2304 return -EBUSY; 2305 } 2306 dm_get(md); 2307 spin_unlock(&_minor_lock); 2308 return 0; 2309 } 2310 EXPORT_SYMBOL_GPL(dm_hold); 2311 2312 const char *dm_device_name(struct mapped_device *md) 2313 { 2314 return md->name; 2315 } 2316 EXPORT_SYMBOL_GPL(dm_device_name); 2317 2318 static void __dm_destroy(struct mapped_device *md, bool wait) 2319 { 2320 struct dm_table *map; 2321 int srcu_idx; 2322 2323 might_sleep(); 2324 2325 spin_lock(&_minor_lock); 2326 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2327 set_bit(DMF_FREEING, &md->flags); 2328 spin_unlock(&_minor_lock); 2329 2330 blk_set_queue_dying(md->queue); 2331 2332 if (dm_request_based(md) && md->kworker_task) 2333 kthread_flush_worker(&md->kworker); 2334 2335 /* 2336 * Take suspend_lock so that presuspend and postsuspend methods 2337 * do not race with internal suspend. 2338 */ 2339 mutex_lock(&md->suspend_lock); 2340 map = dm_get_live_table(md, &srcu_idx); 2341 if (!dm_suspended_md(md)) { 2342 dm_table_presuspend_targets(map); 2343 dm_table_postsuspend_targets(map); 2344 } 2345 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2346 dm_put_live_table(md, srcu_idx); 2347 mutex_unlock(&md->suspend_lock); 2348 2349 /* 2350 * Rare, but there may be I/O requests still going to complete, 2351 * for example. Wait for all references to disappear. 2352 * No one should increment the reference count of the mapped_device, 2353 * after the mapped_device state becomes DMF_FREEING. 2354 */ 2355 if (wait) 2356 while (atomic_read(&md->holders)) 2357 msleep(1); 2358 else if (atomic_read(&md->holders)) 2359 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2360 dm_device_name(md), atomic_read(&md->holders)); 2361 2362 dm_sysfs_exit(md); 2363 dm_table_destroy(__unbind(md)); 2364 free_dev(md); 2365 } 2366 2367 void dm_destroy(struct mapped_device *md) 2368 { 2369 __dm_destroy(md, true); 2370 } 2371 2372 void dm_destroy_immediate(struct mapped_device *md) 2373 { 2374 __dm_destroy(md, false); 2375 } 2376 2377 void dm_put(struct mapped_device *md) 2378 { 2379 atomic_dec(&md->holders); 2380 } 2381 EXPORT_SYMBOL_GPL(dm_put); 2382 2383 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2384 { 2385 int r = 0; 2386 DEFINE_WAIT(wait); 2387 2388 while (1) { 2389 prepare_to_wait(&md->wait, &wait, task_state); 2390 2391 if (!md_in_flight(md)) 2392 break; 2393 2394 if (signal_pending_state(task_state, current)) { 2395 r = -EINTR; 2396 break; 2397 } 2398 2399 io_schedule(); 2400 } 2401 finish_wait(&md->wait, &wait); 2402 2403 return r; 2404 } 2405 2406 /* 2407 * Process the deferred bios 2408 */ 2409 static void dm_wq_work(struct work_struct *work) 2410 { 2411 struct mapped_device *md = container_of(work, struct mapped_device, 2412 work); 2413 struct bio *c; 2414 int srcu_idx; 2415 struct dm_table *map; 2416 2417 map = dm_get_live_table(md, &srcu_idx); 2418 2419 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2420 spin_lock_irq(&md->deferred_lock); 2421 c = bio_list_pop(&md->deferred); 2422 spin_unlock_irq(&md->deferred_lock); 2423 2424 if (!c) 2425 break; 2426 2427 if (dm_request_based(md)) 2428 generic_make_request(c); 2429 else 2430 __split_and_process_bio(md, map, c); 2431 } 2432 2433 dm_put_live_table(md, srcu_idx); 2434 } 2435 2436 static void dm_queue_flush(struct mapped_device *md) 2437 { 2438 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2439 smp_mb__after_atomic(); 2440 queue_work(md->wq, &md->work); 2441 } 2442 2443 /* 2444 * Swap in a new table, returning the old one for the caller to destroy. 2445 */ 2446 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2447 { 2448 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2449 struct queue_limits limits; 2450 int r; 2451 2452 mutex_lock(&md->suspend_lock); 2453 2454 /* device must be suspended */ 2455 if (!dm_suspended_md(md)) 2456 goto out; 2457 2458 /* 2459 * If the new table has no data devices, retain the existing limits. 2460 * This helps multipath with queue_if_no_path if all paths disappear, 2461 * then new I/O is queued based on these limits, and then some paths 2462 * reappear. 2463 */ 2464 if (dm_table_has_no_data_devices(table)) { 2465 live_map = dm_get_live_table_fast(md); 2466 if (live_map) 2467 limits = md->queue->limits; 2468 dm_put_live_table_fast(md); 2469 } 2470 2471 if (!live_map) { 2472 r = dm_calculate_queue_limits(table, &limits); 2473 if (r) { 2474 map = ERR_PTR(r); 2475 goto out; 2476 } 2477 } 2478 2479 map = __bind(md, table, &limits); 2480 dm_issue_global_event(); 2481 2482 out: 2483 mutex_unlock(&md->suspend_lock); 2484 return map; 2485 } 2486 2487 /* 2488 * Functions to lock and unlock any filesystem running on the 2489 * device. 2490 */ 2491 static int lock_fs(struct mapped_device *md) 2492 { 2493 int r; 2494 2495 WARN_ON(md->frozen_sb); 2496 2497 md->frozen_sb = freeze_bdev(md->bdev); 2498 if (IS_ERR(md->frozen_sb)) { 2499 r = PTR_ERR(md->frozen_sb); 2500 md->frozen_sb = NULL; 2501 return r; 2502 } 2503 2504 set_bit(DMF_FROZEN, &md->flags); 2505 2506 return 0; 2507 } 2508 2509 static void unlock_fs(struct mapped_device *md) 2510 { 2511 if (!test_bit(DMF_FROZEN, &md->flags)) 2512 return; 2513 2514 thaw_bdev(md->bdev, md->frozen_sb); 2515 md->frozen_sb = NULL; 2516 clear_bit(DMF_FROZEN, &md->flags); 2517 } 2518 2519 /* 2520 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2521 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2522 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2523 * 2524 * If __dm_suspend returns 0, the device is completely quiescent 2525 * now. There is no request-processing activity. All new requests 2526 * are being added to md->deferred list. 2527 */ 2528 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2529 unsigned suspend_flags, long task_state, 2530 int dmf_suspended_flag) 2531 { 2532 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2533 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2534 int r; 2535 2536 lockdep_assert_held(&md->suspend_lock); 2537 2538 /* 2539 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2540 * This flag is cleared before dm_suspend returns. 2541 */ 2542 if (noflush) 2543 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2544 else 2545 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2546 2547 /* 2548 * This gets reverted if there's an error later and the targets 2549 * provide the .presuspend_undo hook. 2550 */ 2551 dm_table_presuspend_targets(map); 2552 2553 /* 2554 * Flush I/O to the device. 2555 * Any I/O submitted after lock_fs() may not be flushed. 2556 * noflush takes precedence over do_lockfs. 2557 * (lock_fs() flushes I/Os and waits for them to complete.) 2558 */ 2559 if (!noflush && do_lockfs) { 2560 r = lock_fs(md); 2561 if (r) { 2562 dm_table_presuspend_undo_targets(map); 2563 return r; 2564 } 2565 } 2566 2567 /* 2568 * Here we must make sure that no processes are submitting requests 2569 * to target drivers i.e. no one may be executing 2570 * __split_and_process_bio. This is called from dm_request and 2571 * dm_wq_work. 2572 * 2573 * To get all processes out of __split_and_process_bio in dm_request, 2574 * we take the write lock. To prevent any process from reentering 2575 * __split_and_process_bio from dm_request and quiesce the thread 2576 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2577 * flush_workqueue(md->wq). 2578 */ 2579 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2580 if (map) 2581 synchronize_srcu(&md->io_barrier); 2582 2583 /* 2584 * Stop md->queue before flushing md->wq in case request-based 2585 * dm defers requests to md->wq from md->queue. 2586 */ 2587 if (dm_request_based(md)) { 2588 dm_stop_queue(md->queue); 2589 if (md->kworker_task) 2590 kthread_flush_worker(&md->kworker); 2591 } 2592 2593 flush_workqueue(md->wq); 2594 2595 /* 2596 * At this point no more requests are entering target request routines. 2597 * We call dm_wait_for_completion to wait for all existing requests 2598 * to finish. 2599 */ 2600 r = dm_wait_for_completion(md, task_state); 2601 if (!r) 2602 set_bit(dmf_suspended_flag, &md->flags); 2603 2604 if (noflush) 2605 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2606 if (map) 2607 synchronize_srcu(&md->io_barrier); 2608 2609 /* were we interrupted ? */ 2610 if (r < 0) { 2611 dm_queue_flush(md); 2612 2613 if (dm_request_based(md)) 2614 dm_start_queue(md->queue); 2615 2616 unlock_fs(md); 2617 dm_table_presuspend_undo_targets(map); 2618 /* pushback list is already flushed, so skip flush */ 2619 } 2620 2621 return r; 2622 } 2623 2624 /* 2625 * We need to be able to change a mapping table under a mounted 2626 * filesystem. For example we might want to move some data in 2627 * the background. Before the table can be swapped with 2628 * dm_bind_table, dm_suspend must be called to flush any in 2629 * flight bios and ensure that any further io gets deferred. 2630 */ 2631 /* 2632 * Suspend mechanism in request-based dm. 2633 * 2634 * 1. Flush all I/Os by lock_fs() if needed. 2635 * 2. Stop dispatching any I/O by stopping the request_queue. 2636 * 3. Wait for all in-flight I/Os to be completed or requeued. 2637 * 2638 * To abort suspend, start the request_queue. 2639 */ 2640 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2641 { 2642 struct dm_table *map = NULL; 2643 int r = 0; 2644 2645 retry: 2646 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2647 2648 if (dm_suspended_md(md)) { 2649 r = -EINVAL; 2650 goto out_unlock; 2651 } 2652 2653 if (dm_suspended_internally_md(md)) { 2654 /* already internally suspended, wait for internal resume */ 2655 mutex_unlock(&md->suspend_lock); 2656 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2657 if (r) 2658 return r; 2659 goto retry; 2660 } 2661 2662 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2663 2664 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2665 if (r) 2666 goto out_unlock; 2667 2668 dm_table_postsuspend_targets(map); 2669 2670 out_unlock: 2671 mutex_unlock(&md->suspend_lock); 2672 return r; 2673 } 2674 2675 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2676 { 2677 if (map) { 2678 int r = dm_table_resume_targets(map); 2679 if (r) 2680 return r; 2681 } 2682 2683 dm_queue_flush(md); 2684 2685 /* 2686 * Flushing deferred I/Os must be done after targets are resumed 2687 * so that mapping of targets can work correctly. 2688 * Request-based dm is queueing the deferred I/Os in its request_queue. 2689 */ 2690 if (dm_request_based(md)) 2691 dm_start_queue(md->queue); 2692 2693 unlock_fs(md); 2694 2695 return 0; 2696 } 2697 2698 int dm_resume(struct mapped_device *md) 2699 { 2700 int r; 2701 struct dm_table *map = NULL; 2702 2703 retry: 2704 r = -EINVAL; 2705 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2706 2707 if (!dm_suspended_md(md)) 2708 goto out; 2709 2710 if (dm_suspended_internally_md(md)) { 2711 /* already internally suspended, wait for internal resume */ 2712 mutex_unlock(&md->suspend_lock); 2713 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2714 if (r) 2715 return r; 2716 goto retry; 2717 } 2718 2719 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2720 if (!map || !dm_table_get_size(map)) 2721 goto out; 2722 2723 r = __dm_resume(md, map); 2724 if (r) 2725 goto out; 2726 2727 clear_bit(DMF_SUSPENDED, &md->flags); 2728 out: 2729 mutex_unlock(&md->suspend_lock); 2730 2731 return r; 2732 } 2733 2734 /* 2735 * Internal suspend/resume works like userspace-driven suspend. It waits 2736 * until all bios finish and prevents issuing new bios to the target drivers. 2737 * It may be used only from the kernel. 2738 */ 2739 2740 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2741 { 2742 struct dm_table *map = NULL; 2743 2744 lockdep_assert_held(&md->suspend_lock); 2745 2746 if (md->internal_suspend_count++) 2747 return; /* nested internal suspend */ 2748 2749 if (dm_suspended_md(md)) { 2750 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2751 return; /* nest suspend */ 2752 } 2753 2754 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2755 2756 /* 2757 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2758 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2759 * would require changing .presuspend to return an error -- avoid this 2760 * until there is a need for more elaborate variants of internal suspend. 2761 */ 2762 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2763 DMF_SUSPENDED_INTERNALLY); 2764 2765 dm_table_postsuspend_targets(map); 2766 } 2767 2768 static void __dm_internal_resume(struct mapped_device *md) 2769 { 2770 BUG_ON(!md->internal_suspend_count); 2771 2772 if (--md->internal_suspend_count) 2773 return; /* resume from nested internal suspend */ 2774 2775 if (dm_suspended_md(md)) 2776 goto done; /* resume from nested suspend */ 2777 2778 /* 2779 * NOTE: existing callers don't need to call dm_table_resume_targets 2780 * (which may fail -- so best to avoid it for now by passing NULL map) 2781 */ 2782 (void) __dm_resume(md, NULL); 2783 2784 done: 2785 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2786 smp_mb__after_atomic(); 2787 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2788 } 2789 2790 void dm_internal_suspend_noflush(struct mapped_device *md) 2791 { 2792 mutex_lock(&md->suspend_lock); 2793 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2794 mutex_unlock(&md->suspend_lock); 2795 } 2796 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2797 2798 void dm_internal_resume(struct mapped_device *md) 2799 { 2800 mutex_lock(&md->suspend_lock); 2801 __dm_internal_resume(md); 2802 mutex_unlock(&md->suspend_lock); 2803 } 2804 EXPORT_SYMBOL_GPL(dm_internal_resume); 2805 2806 /* 2807 * Fast variants of internal suspend/resume hold md->suspend_lock, 2808 * which prevents interaction with userspace-driven suspend. 2809 */ 2810 2811 void dm_internal_suspend_fast(struct mapped_device *md) 2812 { 2813 mutex_lock(&md->suspend_lock); 2814 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2815 return; 2816 2817 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2818 synchronize_srcu(&md->io_barrier); 2819 flush_workqueue(md->wq); 2820 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2821 } 2822 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2823 2824 void dm_internal_resume_fast(struct mapped_device *md) 2825 { 2826 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2827 goto done; 2828 2829 dm_queue_flush(md); 2830 2831 done: 2832 mutex_unlock(&md->suspend_lock); 2833 } 2834 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2835 2836 /*----------------------------------------------------------------- 2837 * Event notification. 2838 *---------------------------------------------------------------*/ 2839 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2840 unsigned cookie) 2841 { 2842 char udev_cookie[DM_COOKIE_LENGTH]; 2843 char *envp[] = { udev_cookie, NULL }; 2844 2845 if (!cookie) 2846 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2847 else { 2848 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2849 DM_COOKIE_ENV_VAR_NAME, cookie); 2850 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2851 action, envp); 2852 } 2853 } 2854 2855 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2856 { 2857 return atomic_add_return(1, &md->uevent_seq); 2858 } 2859 2860 uint32_t dm_get_event_nr(struct mapped_device *md) 2861 { 2862 return atomic_read(&md->event_nr); 2863 } 2864 2865 int dm_wait_event(struct mapped_device *md, int event_nr) 2866 { 2867 return wait_event_interruptible(md->eventq, 2868 (event_nr != atomic_read(&md->event_nr))); 2869 } 2870 2871 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2872 { 2873 unsigned long flags; 2874 2875 spin_lock_irqsave(&md->uevent_lock, flags); 2876 list_add(elist, &md->uevent_list); 2877 spin_unlock_irqrestore(&md->uevent_lock, flags); 2878 } 2879 2880 /* 2881 * The gendisk is only valid as long as you have a reference 2882 * count on 'md'. 2883 */ 2884 struct gendisk *dm_disk(struct mapped_device *md) 2885 { 2886 return md->disk; 2887 } 2888 EXPORT_SYMBOL_GPL(dm_disk); 2889 2890 struct kobject *dm_kobject(struct mapped_device *md) 2891 { 2892 return &md->kobj_holder.kobj; 2893 } 2894 2895 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2896 { 2897 struct mapped_device *md; 2898 2899 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2900 2901 spin_lock(&_minor_lock); 2902 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2903 md = NULL; 2904 goto out; 2905 } 2906 dm_get(md); 2907 out: 2908 spin_unlock(&_minor_lock); 2909 2910 return md; 2911 } 2912 2913 int dm_suspended_md(struct mapped_device *md) 2914 { 2915 return test_bit(DMF_SUSPENDED, &md->flags); 2916 } 2917 2918 int dm_suspended_internally_md(struct mapped_device *md) 2919 { 2920 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2921 } 2922 2923 int dm_test_deferred_remove_flag(struct mapped_device *md) 2924 { 2925 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2926 } 2927 2928 int dm_suspended(struct dm_target *ti) 2929 { 2930 return dm_suspended_md(dm_table_get_md(ti->table)); 2931 } 2932 EXPORT_SYMBOL_GPL(dm_suspended); 2933 2934 int dm_noflush_suspending(struct dm_target *ti) 2935 { 2936 return __noflush_suspending(dm_table_get_md(ti->table)); 2937 } 2938 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2939 2940 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2941 unsigned integrity, unsigned per_io_data_size, 2942 unsigned min_pool_size) 2943 { 2944 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2945 unsigned int pool_size = 0; 2946 unsigned int front_pad, io_front_pad; 2947 int ret; 2948 2949 if (!pools) 2950 return NULL; 2951 2952 switch (type) { 2953 case DM_TYPE_BIO_BASED: 2954 case DM_TYPE_DAX_BIO_BASED: 2955 case DM_TYPE_NVME_BIO_BASED: 2956 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2957 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2958 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2959 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2960 if (ret) 2961 goto out; 2962 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2963 goto out; 2964 break; 2965 case DM_TYPE_REQUEST_BASED: 2966 case DM_TYPE_MQ_REQUEST_BASED: 2967 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2968 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2969 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2970 break; 2971 default: 2972 BUG(); 2973 } 2974 2975 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2976 if (ret) 2977 goto out; 2978 2979 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2980 goto out; 2981 2982 return pools; 2983 2984 out: 2985 dm_free_md_mempools(pools); 2986 2987 return NULL; 2988 } 2989 2990 void dm_free_md_mempools(struct dm_md_mempools *pools) 2991 { 2992 if (!pools) 2993 return; 2994 2995 bioset_exit(&pools->bs); 2996 bioset_exit(&pools->io_bs); 2997 2998 kfree(pools); 2999 } 3000 3001 struct dm_pr { 3002 u64 old_key; 3003 u64 new_key; 3004 u32 flags; 3005 bool fail_early; 3006 }; 3007 3008 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3009 void *data) 3010 { 3011 struct mapped_device *md = bdev->bd_disk->private_data; 3012 struct dm_table *table; 3013 struct dm_target *ti; 3014 int ret = -ENOTTY, srcu_idx; 3015 3016 table = dm_get_live_table(md, &srcu_idx); 3017 if (!table || !dm_table_get_size(table)) 3018 goto out; 3019 3020 /* We only support devices that have a single target */ 3021 if (dm_table_get_num_targets(table) != 1) 3022 goto out; 3023 ti = dm_table_get_target(table, 0); 3024 3025 ret = -EINVAL; 3026 if (!ti->type->iterate_devices) 3027 goto out; 3028 3029 ret = ti->type->iterate_devices(ti, fn, data); 3030 out: 3031 dm_put_live_table(md, srcu_idx); 3032 return ret; 3033 } 3034 3035 /* 3036 * For register / unregister we need to manually call out to every path. 3037 */ 3038 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3039 sector_t start, sector_t len, void *data) 3040 { 3041 struct dm_pr *pr = data; 3042 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3043 3044 if (!ops || !ops->pr_register) 3045 return -EOPNOTSUPP; 3046 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3047 } 3048 3049 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3050 u32 flags) 3051 { 3052 struct dm_pr pr = { 3053 .old_key = old_key, 3054 .new_key = new_key, 3055 .flags = flags, 3056 .fail_early = true, 3057 }; 3058 int ret; 3059 3060 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3061 if (ret && new_key) { 3062 /* unregister all paths if we failed to register any path */ 3063 pr.old_key = new_key; 3064 pr.new_key = 0; 3065 pr.flags = 0; 3066 pr.fail_early = false; 3067 dm_call_pr(bdev, __dm_pr_register, &pr); 3068 } 3069 3070 return ret; 3071 } 3072 3073 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3074 u32 flags) 3075 { 3076 struct mapped_device *md = bdev->bd_disk->private_data; 3077 const struct pr_ops *ops; 3078 int r, srcu_idx; 3079 3080 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3081 if (r < 0) 3082 goto out; 3083 3084 ops = bdev->bd_disk->fops->pr_ops; 3085 if (ops && ops->pr_reserve) 3086 r = ops->pr_reserve(bdev, key, type, flags); 3087 else 3088 r = -EOPNOTSUPP; 3089 out: 3090 dm_unprepare_ioctl(md, srcu_idx); 3091 return r; 3092 } 3093 3094 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3095 { 3096 struct mapped_device *md = bdev->bd_disk->private_data; 3097 const struct pr_ops *ops; 3098 int r, srcu_idx; 3099 3100 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3101 if (r < 0) 3102 goto out; 3103 3104 ops = bdev->bd_disk->fops->pr_ops; 3105 if (ops && ops->pr_release) 3106 r = ops->pr_release(bdev, key, type); 3107 else 3108 r = -EOPNOTSUPP; 3109 out: 3110 dm_unprepare_ioctl(md, srcu_idx); 3111 return r; 3112 } 3113 3114 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3115 enum pr_type type, bool abort) 3116 { 3117 struct mapped_device *md = bdev->bd_disk->private_data; 3118 const struct pr_ops *ops; 3119 int r, srcu_idx; 3120 3121 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3122 if (r < 0) 3123 goto out; 3124 3125 ops = bdev->bd_disk->fops->pr_ops; 3126 if (ops && ops->pr_preempt) 3127 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3128 else 3129 r = -EOPNOTSUPP; 3130 out: 3131 dm_unprepare_ioctl(md, srcu_idx); 3132 return r; 3133 } 3134 3135 static int dm_pr_clear(struct block_device *bdev, u64 key) 3136 { 3137 struct mapped_device *md = bdev->bd_disk->private_data; 3138 const struct pr_ops *ops; 3139 int r, srcu_idx; 3140 3141 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3142 if (r < 0) 3143 goto out; 3144 3145 ops = bdev->bd_disk->fops->pr_ops; 3146 if (ops && ops->pr_clear) 3147 r = ops->pr_clear(bdev, key); 3148 else 3149 r = -EOPNOTSUPP; 3150 out: 3151 dm_unprepare_ioctl(md, srcu_idx); 3152 return r; 3153 } 3154 3155 static const struct pr_ops dm_pr_ops = { 3156 .pr_register = dm_pr_register, 3157 .pr_reserve = dm_pr_reserve, 3158 .pr_release = dm_pr_release, 3159 .pr_preempt = dm_pr_preempt, 3160 .pr_clear = dm_pr_clear, 3161 }; 3162 3163 static const struct block_device_operations dm_blk_dops = { 3164 .open = dm_blk_open, 3165 .release = dm_blk_close, 3166 .ioctl = dm_blk_ioctl, 3167 .getgeo = dm_blk_getgeo, 3168 .report_zones = dm_blk_report_zones, 3169 .pr_ops = &dm_pr_ops, 3170 .owner = THIS_MODULE 3171 }; 3172 3173 static const struct dax_operations dm_dax_ops = { 3174 .direct_access = dm_dax_direct_access, 3175 .copy_from_iter = dm_dax_copy_from_iter, 3176 .copy_to_iter = dm_dax_copy_to_iter, 3177 }; 3178 3179 /* 3180 * module hooks 3181 */ 3182 module_init(dm_init); 3183 module_exit(dm_exit); 3184 3185 module_param(major, uint, 0); 3186 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3187 3188 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3189 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3190 3191 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3192 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3193 3194 MODULE_DESCRIPTION(DM_NAME " driver"); 3195 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3196 MODULE_LICENSE("GPL"); 3197