xref: /openbmc/linux/drivers/md/dm.c (revision e7089f65dd51afeda5eb760506b5950d95f9ec29)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/keyslot-manager.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 static const char *_name = DM_NAME;
44 
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47 
48 static DEFINE_IDR(_minor_idr);
49 
50 static DEFINE_SPINLOCK(_minor_lock);
51 
52 static void do_deferred_remove(struct work_struct *w);
53 
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 
56 static struct workqueue_struct *deferred_remove_workqueue;
57 
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 
61 void dm_issue_global_event(void)
62 {
63 	atomic_inc(&dm_global_event_nr);
64 	wake_up(&dm_global_eventq);
65 }
66 
67 /*
68  * One of these is allocated (on-stack) per original bio.
69  */
70 struct clone_info {
71 	struct dm_table *map;
72 	struct bio *bio;
73 	struct dm_io *io;
74 	sector_t sector;
75 	unsigned sector_count;
76 };
77 
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 
82 void *dm_per_bio_data(struct bio *bio, size_t data_size)
83 {
84 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
85 	if (!tio->inside_dm_io)
86 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
87 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
88 }
89 EXPORT_SYMBOL_GPL(dm_per_bio_data);
90 
91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
92 {
93 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
94 	if (io->magic == DM_IO_MAGIC)
95 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
96 	BUG_ON(io->magic != DM_TIO_MAGIC);
97 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
98 }
99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
100 
101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
102 {
103 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
104 }
105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 #define DM_NUMA_NODE NUMA_NO_NODE
110 static int dm_numa_node = DM_NUMA_NODE;
111 
112 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
113 static int swap_bios = DEFAULT_SWAP_BIOS;
114 static int get_swap_bios(void)
115 {
116 	int latch = READ_ONCE(swap_bios);
117 	if (unlikely(latch <= 0))
118 		latch = DEFAULT_SWAP_BIOS;
119 	return latch;
120 }
121 
122 /*
123  * For mempools pre-allocation at the table loading time.
124  */
125 struct dm_md_mempools {
126 	struct bio_set bs;
127 	struct bio_set io_bs;
128 };
129 
130 struct table_device {
131 	struct list_head list;
132 	refcount_t count;
133 	struct dm_dev dm_dev;
134 };
135 
136 /*
137  * Bio-based DM's mempools' reserved IOs set by the user.
138  */
139 #define RESERVED_BIO_BASED_IOS		16
140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
141 
142 static int __dm_get_module_param_int(int *module_param, int min, int max)
143 {
144 	int param = READ_ONCE(*module_param);
145 	int modified_param = 0;
146 	bool modified = true;
147 
148 	if (param < min)
149 		modified_param = min;
150 	else if (param > max)
151 		modified_param = max;
152 	else
153 		modified = false;
154 
155 	if (modified) {
156 		(void)cmpxchg(module_param, param, modified_param);
157 		param = modified_param;
158 	}
159 
160 	return param;
161 }
162 
163 unsigned __dm_get_module_param(unsigned *module_param,
164 			       unsigned def, unsigned max)
165 {
166 	unsigned param = READ_ONCE(*module_param);
167 	unsigned modified_param = 0;
168 
169 	if (!param)
170 		modified_param = def;
171 	else if (param > max)
172 		modified_param = max;
173 
174 	if (modified_param) {
175 		(void)cmpxchg(module_param, param, modified_param);
176 		param = modified_param;
177 	}
178 
179 	return param;
180 }
181 
182 unsigned dm_get_reserved_bio_based_ios(void)
183 {
184 	return __dm_get_module_param(&reserved_bio_based_ios,
185 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
186 }
187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
188 
189 static unsigned dm_get_numa_node(void)
190 {
191 	return __dm_get_module_param_int(&dm_numa_node,
192 					 DM_NUMA_NODE, num_online_nodes() - 1);
193 }
194 
195 static int __init local_init(void)
196 {
197 	int r;
198 
199 	r = dm_uevent_init();
200 	if (r)
201 		return r;
202 
203 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
204 	if (!deferred_remove_workqueue) {
205 		r = -ENOMEM;
206 		goto out_uevent_exit;
207 	}
208 
209 	_major = major;
210 	r = register_blkdev(_major, _name);
211 	if (r < 0)
212 		goto out_free_workqueue;
213 
214 	if (!_major)
215 		_major = r;
216 
217 	return 0;
218 
219 out_free_workqueue:
220 	destroy_workqueue(deferred_remove_workqueue);
221 out_uevent_exit:
222 	dm_uevent_exit();
223 
224 	return r;
225 }
226 
227 static void local_exit(void)
228 {
229 	flush_scheduled_work();
230 	destroy_workqueue(deferred_remove_workqueue);
231 
232 	unregister_blkdev(_major, _name);
233 	dm_uevent_exit();
234 
235 	_major = 0;
236 
237 	DMINFO("cleaned up");
238 }
239 
240 static int (*_inits[])(void) __initdata = {
241 	local_init,
242 	dm_target_init,
243 	dm_linear_init,
244 	dm_stripe_init,
245 	dm_io_init,
246 	dm_kcopyd_init,
247 	dm_interface_init,
248 	dm_statistics_init,
249 };
250 
251 static void (*_exits[])(void) = {
252 	local_exit,
253 	dm_target_exit,
254 	dm_linear_exit,
255 	dm_stripe_exit,
256 	dm_io_exit,
257 	dm_kcopyd_exit,
258 	dm_interface_exit,
259 	dm_statistics_exit,
260 };
261 
262 static int __init dm_init(void)
263 {
264 	const int count = ARRAY_SIZE(_inits);
265 	int r, i;
266 
267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
268 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
269 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
270 #endif
271 
272 	for (i = 0; i < count; i++) {
273 		r = _inits[i]();
274 		if (r)
275 			goto bad;
276 	}
277 
278 	return 0;
279 bad:
280 	while (i--)
281 		_exits[i]();
282 
283 	return r;
284 }
285 
286 static void __exit dm_exit(void)
287 {
288 	int i = ARRAY_SIZE(_exits);
289 
290 	while (i--)
291 		_exits[i]();
292 
293 	/*
294 	 * Should be empty by this point.
295 	 */
296 	idr_destroy(&_minor_idr);
297 }
298 
299 /*
300  * Block device functions
301  */
302 int dm_deleting_md(struct mapped_device *md)
303 {
304 	return test_bit(DMF_DELETING, &md->flags);
305 }
306 
307 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
308 {
309 	struct mapped_device *md;
310 
311 	spin_lock(&_minor_lock);
312 
313 	md = bdev->bd_disk->private_data;
314 	if (!md)
315 		goto out;
316 
317 	if (test_bit(DMF_FREEING, &md->flags) ||
318 	    dm_deleting_md(md)) {
319 		md = NULL;
320 		goto out;
321 	}
322 
323 	dm_get(md);
324 	atomic_inc(&md->open_count);
325 out:
326 	spin_unlock(&_minor_lock);
327 
328 	return md ? 0 : -ENXIO;
329 }
330 
331 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
332 {
333 	struct mapped_device *md;
334 
335 	spin_lock(&_minor_lock);
336 
337 	md = disk->private_data;
338 	if (WARN_ON(!md))
339 		goto out;
340 
341 	if (atomic_dec_and_test(&md->open_count) &&
342 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
343 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
344 
345 	dm_put(md);
346 out:
347 	spin_unlock(&_minor_lock);
348 }
349 
350 int dm_open_count(struct mapped_device *md)
351 {
352 	return atomic_read(&md->open_count);
353 }
354 
355 /*
356  * Guarantees nothing is using the device before it's deleted.
357  */
358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
359 {
360 	int r = 0;
361 
362 	spin_lock(&_minor_lock);
363 
364 	if (dm_open_count(md)) {
365 		r = -EBUSY;
366 		if (mark_deferred)
367 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
368 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
369 		r = -EEXIST;
370 	else
371 		set_bit(DMF_DELETING, &md->flags);
372 
373 	spin_unlock(&_minor_lock);
374 
375 	return r;
376 }
377 
378 int dm_cancel_deferred_remove(struct mapped_device *md)
379 {
380 	int r = 0;
381 
382 	spin_lock(&_minor_lock);
383 
384 	if (test_bit(DMF_DELETING, &md->flags))
385 		r = -EBUSY;
386 	else
387 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
388 
389 	spin_unlock(&_minor_lock);
390 
391 	return r;
392 }
393 
394 static void do_deferred_remove(struct work_struct *w)
395 {
396 	dm_deferred_remove();
397 }
398 
399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
400 {
401 	struct mapped_device *md = bdev->bd_disk->private_data;
402 
403 	return dm_get_geometry(md, geo);
404 }
405 
406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
407 			    struct block_device **bdev)
408 {
409 	struct dm_target *tgt;
410 	struct dm_table *map;
411 	int r;
412 
413 retry:
414 	r = -ENOTTY;
415 	map = dm_get_live_table(md, srcu_idx);
416 	if (!map || !dm_table_get_size(map))
417 		return r;
418 
419 	/* We only support devices that have a single target */
420 	if (dm_table_get_num_targets(map) != 1)
421 		return r;
422 
423 	tgt = dm_table_get_target(map, 0);
424 	if (!tgt->type->prepare_ioctl)
425 		return r;
426 
427 	if (dm_suspended_md(md))
428 		return -EAGAIN;
429 
430 	r = tgt->type->prepare_ioctl(tgt, bdev);
431 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
432 		dm_put_live_table(md, *srcu_idx);
433 		msleep(10);
434 		goto retry;
435 	}
436 
437 	return r;
438 }
439 
440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
441 {
442 	dm_put_live_table(md, srcu_idx);
443 }
444 
445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
446 			unsigned int cmd, unsigned long arg)
447 {
448 	struct mapped_device *md = bdev->bd_disk->private_data;
449 	int r, srcu_idx;
450 
451 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
452 	if (r < 0)
453 		goto out;
454 
455 	if (r > 0) {
456 		/*
457 		 * Target determined this ioctl is being issued against a
458 		 * subset of the parent bdev; require extra privileges.
459 		 */
460 		if (!capable(CAP_SYS_RAWIO)) {
461 			DMDEBUG_LIMIT(
462 	"%s: sending ioctl %x to DM device without required privilege.",
463 				current->comm, cmd);
464 			r = -ENOIOCTLCMD;
465 			goto out;
466 		}
467 	}
468 
469 	if (!bdev->bd_disk->fops->ioctl)
470 		r = -ENOTTY;
471 	else
472 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
473 out:
474 	dm_unprepare_ioctl(md, srcu_idx);
475 	return r;
476 }
477 
478 u64 dm_start_time_ns_from_clone(struct bio *bio)
479 {
480 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
481 	struct dm_io *io = tio->io;
482 
483 	return jiffies_to_nsecs(io->start_time);
484 }
485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
486 
487 static void start_io_acct(struct dm_io *io)
488 {
489 	struct mapped_device *md = io->md;
490 	struct bio *bio = io->orig_bio;
491 
492 	io->start_time = bio_start_io_acct(bio);
493 	if (unlikely(dm_stats_used(&md->stats)))
494 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
495 				    bio->bi_iter.bi_sector, bio_sectors(bio),
496 				    false, 0, &io->stats_aux);
497 }
498 
499 static void end_io_acct(struct mapped_device *md, struct bio *bio,
500 			unsigned long start_time, struct dm_stats_aux *stats_aux)
501 {
502 	unsigned long duration = jiffies - start_time;
503 
504 	bio_end_io_acct(bio, start_time);
505 
506 	if (unlikely(dm_stats_used(&md->stats)))
507 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
508 				    bio->bi_iter.bi_sector, bio_sectors(bio),
509 				    true, duration, stats_aux);
510 
511 	/* nudge anyone waiting on suspend queue */
512 	if (unlikely(wq_has_sleeper(&md->wait)))
513 		wake_up(&md->wait);
514 }
515 
516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
517 {
518 	struct dm_io *io;
519 	struct dm_target_io *tio;
520 	struct bio *clone;
521 
522 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
523 	if (!clone)
524 		return NULL;
525 
526 	tio = container_of(clone, struct dm_target_io, clone);
527 	tio->inside_dm_io = true;
528 	tio->io = NULL;
529 
530 	io = container_of(tio, struct dm_io, tio);
531 	io->magic = DM_IO_MAGIC;
532 	io->status = 0;
533 	atomic_set(&io->io_count, 1);
534 	io->orig_bio = bio;
535 	io->md = md;
536 	spin_lock_init(&io->endio_lock);
537 
538 	start_io_acct(io);
539 
540 	return io;
541 }
542 
543 static void free_io(struct mapped_device *md, struct dm_io *io)
544 {
545 	bio_put(&io->tio.clone);
546 }
547 
548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
549 				      unsigned target_bio_nr, gfp_t gfp_mask)
550 {
551 	struct dm_target_io *tio;
552 
553 	if (!ci->io->tio.io) {
554 		/* the dm_target_io embedded in ci->io is available */
555 		tio = &ci->io->tio;
556 	} else {
557 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
558 		if (!clone)
559 			return NULL;
560 
561 		tio = container_of(clone, struct dm_target_io, clone);
562 		tio->inside_dm_io = false;
563 	}
564 
565 	tio->magic = DM_TIO_MAGIC;
566 	tio->io = ci->io;
567 	tio->ti = ti;
568 	tio->target_bio_nr = target_bio_nr;
569 
570 	return tio;
571 }
572 
573 static void free_tio(struct dm_target_io *tio)
574 {
575 	if (tio->inside_dm_io)
576 		return;
577 	bio_put(&tio->clone);
578 }
579 
580 /*
581  * Add the bio to the list of deferred io.
582  */
583 static void queue_io(struct mapped_device *md, struct bio *bio)
584 {
585 	unsigned long flags;
586 
587 	spin_lock_irqsave(&md->deferred_lock, flags);
588 	bio_list_add(&md->deferred, bio);
589 	spin_unlock_irqrestore(&md->deferred_lock, flags);
590 	queue_work(md->wq, &md->work);
591 }
592 
593 /*
594  * Everyone (including functions in this file), should use this
595  * function to access the md->map field, and make sure they call
596  * dm_put_live_table() when finished.
597  */
598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
599 {
600 	*srcu_idx = srcu_read_lock(&md->io_barrier);
601 
602 	return srcu_dereference(md->map, &md->io_barrier);
603 }
604 
605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
606 {
607 	srcu_read_unlock(&md->io_barrier, srcu_idx);
608 }
609 
610 void dm_sync_table(struct mapped_device *md)
611 {
612 	synchronize_srcu(&md->io_barrier);
613 	synchronize_rcu_expedited();
614 }
615 
616 /*
617  * A fast alternative to dm_get_live_table/dm_put_live_table.
618  * The caller must not block between these two functions.
619  */
620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
621 {
622 	rcu_read_lock();
623 	return rcu_dereference(md->map);
624 }
625 
626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
627 {
628 	rcu_read_unlock();
629 }
630 
631 static char *_dm_claim_ptr = "I belong to device-mapper";
632 
633 /*
634  * Open a table device so we can use it as a map destination.
635  */
636 static int open_table_device(struct table_device *td, dev_t dev,
637 			     struct mapped_device *md)
638 {
639 	struct block_device *bdev;
640 
641 	int r;
642 
643 	BUG_ON(td->dm_dev.bdev);
644 
645 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
646 	if (IS_ERR(bdev))
647 		return PTR_ERR(bdev);
648 
649 	r = bd_link_disk_holder(bdev, dm_disk(md));
650 	if (r) {
651 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
652 		return r;
653 	}
654 
655 	td->dm_dev.bdev = bdev;
656 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev);
657 	return 0;
658 }
659 
660 /*
661  * Close a table device that we've been using.
662  */
663 static void close_table_device(struct table_device *td, struct mapped_device *md)
664 {
665 	if (!td->dm_dev.bdev)
666 		return;
667 
668 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
669 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
670 	put_dax(td->dm_dev.dax_dev);
671 	td->dm_dev.bdev = NULL;
672 	td->dm_dev.dax_dev = NULL;
673 }
674 
675 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
676 					      fmode_t mode)
677 {
678 	struct table_device *td;
679 
680 	list_for_each_entry(td, l, list)
681 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
682 			return td;
683 
684 	return NULL;
685 }
686 
687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
688 			struct dm_dev **result)
689 {
690 	int r;
691 	struct table_device *td;
692 
693 	mutex_lock(&md->table_devices_lock);
694 	td = find_table_device(&md->table_devices, dev, mode);
695 	if (!td) {
696 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
697 		if (!td) {
698 			mutex_unlock(&md->table_devices_lock);
699 			return -ENOMEM;
700 		}
701 
702 		td->dm_dev.mode = mode;
703 		td->dm_dev.bdev = NULL;
704 
705 		if ((r = open_table_device(td, dev, md))) {
706 			mutex_unlock(&md->table_devices_lock);
707 			kfree(td);
708 			return r;
709 		}
710 
711 		format_dev_t(td->dm_dev.name, dev);
712 
713 		refcount_set(&td->count, 1);
714 		list_add(&td->list, &md->table_devices);
715 	} else {
716 		refcount_inc(&td->count);
717 	}
718 	mutex_unlock(&md->table_devices_lock);
719 
720 	*result = &td->dm_dev;
721 	return 0;
722 }
723 
724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
725 {
726 	struct table_device *td = container_of(d, struct table_device, dm_dev);
727 
728 	mutex_lock(&md->table_devices_lock);
729 	if (refcount_dec_and_test(&td->count)) {
730 		close_table_device(td, md);
731 		list_del(&td->list);
732 		kfree(td);
733 	}
734 	mutex_unlock(&md->table_devices_lock);
735 }
736 
737 static void free_table_devices(struct list_head *devices)
738 {
739 	struct list_head *tmp, *next;
740 
741 	list_for_each_safe(tmp, next, devices) {
742 		struct table_device *td = list_entry(tmp, struct table_device, list);
743 
744 		DMWARN("dm_destroy: %s still exists with %d references",
745 		       td->dm_dev.name, refcount_read(&td->count));
746 		kfree(td);
747 	}
748 }
749 
750 /*
751  * Get the geometry associated with a dm device
752  */
753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
754 {
755 	*geo = md->geometry;
756 
757 	return 0;
758 }
759 
760 /*
761  * Set the geometry of a device.
762  */
763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
764 {
765 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
766 
767 	if (geo->start > sz) {
768 		DMWARN("Start sector is beyond the geometry limits.");
769 		return -EINVAL;
770 	}
771 
772 	md->geometry = *geo;
773 
774 	return 0;
775 }
776 
777 static int __noflush_suspending(struct mapped_device *md)
778 {
779 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
780 }
781 
782 /*
783  * Decrements the number of outstanding ios that a bio has been
784  * cloned into, completing the original io if necc.
785  */
786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
787 {
788 	unsigned long flags;
789 	blk_status_t io_error;
790 	struct bio *bio;
791 	struct mapped_device *md = io->md;
792 	unsigned long start_time = 0;
793 	struct dm_stats_aux stats_aux;
794 
795 	/* Push-back supersedes any I/O errors */
796 	if (unlikely(error)) {
797 		spin_lock_irqsave(&io->endio_lock, flags);
798 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
799 			io->status = error;
800 		spin_unlock_irqrestore(&io->endio_lock, flags);
801 	}
802 
803 	if (atomic_dec_and_test(&io->io_count)) {
804 		bio = io->orig_bio;
805 		if (io->status == BLK_STS_DM_REQUEUE) {
806 			/*
807 			 * Target requested pushing back the I/O.
808 			 */
809 			spin_lock_irqsave(&md->deferred_lock, flags);
810 			if (__noflush_suspending(md) &&
811 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
812 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
813 				bio_list_add_head(&md->deferred, bio);
814 			} else {
815 				/*
816 				 * noflush suspend was interrupted or this is
817 				 * a write to a zoned target.
818 				 */
819 				io->status = BLK_STS_IOERR;
820 			}
821 			spin_unlock_irqrestore(&md->deferred_lock, flags);
822 		}
823 
824 		io_error = io->status;
825 		start_time = io->start_time;
826 		stats_aux = io->stats_aux;
827 		free_io(md, io);
828 		end_io_acct(md, bio, start_time, &stats_aux);
829 
830 		if (io_error == BLK_STS_DM_REQUEUE)
831 			return;
832 
833 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
834 			/*
835 			 * Preflush done for flush with data, reissue
836 			 * without REQ_PREFLUSH.
837 			 */
838 			bio->bi_opf &= ~REQ_PREFLUSH;
839 			queue_io(md, bio);
840 		} else {
841 			/* done with normal IO or empty flush */
842 			if (io_error)
843 				bio->bi_status = io_error;
844 			bio_endio(bio);
845 		}
846 	}
847 }
848 
849 void disable_discard(struct mapped_device *md)
850 {
851 	struct queue_limits *limits = dm_get_queue_limits(md);
852 
853 	/* device doesn't really support DISCARD, disable it */
854 	limits->max_discard_sectors = 0;
855 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
856 }
857 
858 void disable_write_same(struct mapped_device *md)
859 {
860 	struct queue_limits *limits = dm_get_queue_limits(md);
861 
862 	/* device doesn't really support WRITE SAME, disable it */
863 	limits->max_write_same_sectors = 0;
864 }
865 
866 void disable_write_zeroes(struct mapped_device *md)
867 {
868 	struct queue_limits *limits = dm_get_queue_limits(md);
869 
870 	/* device doesn't really support WRITE ZEROES, disable it */
871 	limits->max_write_zeroes_sectors = 0;
872 }
873 
874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
875 {
876 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
877 }
878 
879 static void clone_endio(struct bio *bio)
880 {
881 	blk_status_t error = bio->bi_status;
882 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
883 	struct dm_io *io = tio->io;
884 	struct mapped_device *md = tio->io->md;
885 	dm_endio_fn endio = tio->ti->type->end_io;
886 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
887 
888 	if (unlikely(error == BLK_STS_TARGET)) {
889 		if (bio_op(bio) == REQ_OP_DISCARD &&
890 		    !q->limits.max_discard_sectors)
891 			disable_discard(md);
892 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
893 			 !q->limits.max_write_same_sectors)
894 			disable_write_same(md);
895 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
896 			 !q->limits.max_write_zeroes_sectors)
897 			disable_write_zeroes(md);
898 	}
899 
900 	if (blk_queue_is_zoned(q))
901 		dm_zone_endio(io, bio);
902 
903 	if (endio) {
904 		int r = endio(tio->ti, bio, &error);
905 		switch (r) {
906 		case DM_ENDIO_REQUEUE:
907 			/*
908 			 * Requeuing writes to a sequential zone of a zoned
909 			 * target will break the sequential write pattern:
910 			 * fail such IO.
911 			 */
912 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
913 				error = BLK_STS_IOERR;
914 			else
915 				error = BLK_STS_DM_REQUEUE;
916 			fallthrough;
917 		case DM_ENDIO_DONE:
918 			break;
919 		case DM_ENDIO_INCOMPLETE:
920 			/* The target will handle the io */
921 			return;
922 		default:
923 			DMWARN("unimplemented target endio return value: %d", r);
924 			BUG();
925 		}
926 	}
927 
928 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
929 		struct mapped_device *md = io->md;
930 		up(&md->swap_bios_semaphore);
931 	}
932 
933 	free_tio(tio);
934 	dm_io_dec_pending(io, error);
935 }
936 
937 /*
938  * Return maximum size of I/O possible at the supplied sector up to the current
939  * target boundary.
940  */
941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
942 						  sector_t target_offset)
943 {
944 	return ti->len - target_offset;
945 }
946 
947 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
948 {
949 	sector_t target_offset = dm_target_offset(ti, sector);
950 	sector_t len = max_io_len_target_boundary(ti, target_offset);
951 	sector_t max_len;
952 
953 	/*
954 	 * Does the target need to split IO even further?
955 	 * - varied (per target) IO splitting is a tenet of DM; this
956 	 *   explains why stacked chunk_sectors based splitting via
957 	 *   blk_max_size_offset() isn't possible here. So pass in
958 	 *   ti->max_io_len to override stacked chunk_sectors.
959 	 */
960 	if (ti->max_io_len) {
961 		max_len = blk_max_size_offset(ti->table->md->queue,
962 					      target_offset, ti->max_io_len);
963 		if (len > max_len)
964 			len = max_len;
965 	}
966 
967 	return len;
968 }
969 
970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
971 {
972 	if (len > UINT_MAX) {
973 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
974 		      (unsigned long long)len, UINT_MAX);
975 		ti->error = "Maximum size of target IO is too large";
976 		return -EINVAL;
977 	}
978 
979 	ti->max_io_len = (uint32_t) len;
980 
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
984 
985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
986 						sector_t sector, int *srcu_idx)
987 	__acquires(md->io_barrier)
988 {
989 	struct dm_table *map;
990 	struct dm_target *ti;
991 
992 	map = dm_get_live_table(md, srcu_idx);
993 	if (!map)
994 		return NULL;
995 
996 	ti = dm_table_find_target(map, sector);
997 	if (!ti)
998 		return NULL;
999 
1000 	return ti;
1001 }
1002 
1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1004 				 long nr_pages, void **kaddr, pfn_t *pfn)
1005 {
1006 	struct mapped_device *md = dax_get_private(dax_dev);
1007 	sector_t sector = pgoff * PAGE_SECTORS;
1008 	struct dm_target *ti;
1009 	long len, ret = -EIO;
1010 	int srcu_idx;
1011 
1012 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1013 
1014 	if (!ti)
1015 		goto out;
1016 	if (!ti->type->direct_access)
1017 		goto out;
1018 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1019 	if (len < 1)
1020 		goto out;
1021 	nr_pages = min(len, nr_pages);
1022 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1023 
1024  out:
1025 	dm_put_live_table(md, srcu_idx);
1026 
1027 	return ret;
1028 }
1029 
1030 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1031 		int blocksize, sector_t start, sector_t len)
1032 {
1033 	struct mapped_device *md = dax_get_private(dax_dev);
1034 	struct dm_table *map;
1035 	bool ret = false;
1036 	int srcu_idx;
1037 
1038 	map = dm_get_live_table(md, &srcu_idx);
1039 	if (!map)
1040 		goto out;
1041 
1042 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1043 
1044 out:
1045 	dm_put_live_table(md, srcu_idx);
1046 
1047 	return ret;
1048 }
1049 
1050 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1051 				    void *addr, size_t bytes, struct iov_iter *i)
1052 {
1053 	struct mapped_device *md = dax_get_private(dax_dev);
1054 	sector_t sector = pgoff * PAGE_SECTORS;
1055 	struct dm_target *ti;
1056 	long ret = 0;
1057 	int srcu_idx;
1058 
1059 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1060 
1061 	if (!ti)
1062 		goto out;
1063 	if (!ti->type->dax_copy_from_iter) {
1064 		ret = copy_from_iter(addr, bytes, i);
1065 		goto out;
1066 	}
1067 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1068  out:
1069 	dm_put_live_table(md, srcu_idx);
1070 
1071 	return ret;
1072 }
1073 
1074 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1075 		void *addr, size_t bytes, struct iov_iter *i)
1076 {
1077 	struct mapped_device *md = dax_get_private(dax_dev);
1078 	sector_t sector = pgoff * PAGE_SECTORS;
1079 	struct dm_target *ti;
1080 	long ret = 0;
1081 	int srcu_idx;
1082 
1083 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1084 
1085 	if (!ti)
1086 		goto out;
1087 	if (!ti->type->dax_copy_to_iter) {
1088 		ret = copy_to_iter(addr, bytes, i);
1089 		goto out;
1090 	}
1091 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1092  out:
1093 	dm_put_live_table(md, srcu_idx);
1094 
1095 	return ret;
1096 }
1097 
1098 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1099 				  size_t nr_pages)
1100 {
1101 	struct mapped_device *md = dax_get_private(dax_dev);
1102 	sector_t sector = pgoff * PAGE_SECTORS;
1103 	struct dm_target *ti;
1104 	int ret = -EIO;
1105 	int srcu_idx;
1106 
1107 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1108 
1109 	if (!ti)
1110 		goto out;
1111 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1112 		/*
1113 		 * ->zero_page_range() is mandatory dax operation. If we are
1114 		 *  here, something is wrong.
1115 		 */
1116 		goto out;
1117 	}
1118 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1119  out:
1120 	dm_put_live_table(md, srcu_idx);
1121 
1122 	return ret;
1123 }
1124 
1125 /*
1126  * A target may call dm_accept_partial_bio only from the map routine.  It is
1127  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1128  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1129  *
1130  * dm_accept_partial_bio informs the dm that the target only wants to process
1131  * additional n_sectors sectors of the bio and the rest of the data should be
1132  * sent in a next bio.
1133  *
1134  * A diagram that explains the arithmetics:
1135  * +--------------------+---------------+-------+
1136  * |         1          |       2       |   3   |
1137  * +--------------------+---------------+-------+
1138  *
1139  * <-------------- *tio->len_ptr --------------->
1140  *                      <------- bi_size ------->
1141  *                      <-- n_sectors -->
1142  *
1143  * Region 1 was already iterated over with bio_advance or similar function.
1144  *	(it may be empty if the target doesn't use bio_advance)
1145  * Region 2 is the remaining bio size that the target wants to process.
1146  *	(it may be empty if region 1 is non-empty, although there is no reason
1147  *	 to make it empty)
1148  * The target requires that region 3 is to be sent in the next bio.
1149  *
1150  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1151  * the partially processed part (the sum of regions 1+2) must be the same for all
1152  * copies of the bio.
1153  */
1154 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1155 {
1156 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1157 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1158 
1159 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1160 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1161 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1162 	BUG_ON(bi_size > *tio->len_ptr);
1163 	BUG_ON(n_sectors > bi_size);
1164 
1165 	*tio->len_ptr -= bi_size - n_sectors;
1166 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1167 }
1168 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1169 
1170 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1171 {
1172 	mutex_lock(&md->swap_bios_lock);
1173 	while (latch < md->swap_bios) {
1174 		cond_resched();
1175 		down(&md->swap_bios_semaphore);
1176 		md->swap_bios--;
1177 	}
1178 	while (latch > md->swap_bios) {
1179 		cond_resched();
1180 		up(&md->swap_bios_semaphore);
1181 		md->swap_bios++;
1182 	}
1183 	mutex_unlock(&md->swap_bios_lock);
1184 }
1185 
1186 static void __map_bio(struct dm_target_io *tio)
1187 {
1188 	int r;
1189 	sector_t sector;
1190 	struct bio *clone = &tio->clone;
1191 	struct dm_io *io = tio->io;
1192 	struct dm_target *ti = tio->ti;
1193 
1194 	clone->bi_end_io = clone_endio;
1195 
1196 	/*
1197 	 * Map the clone.  If r == 0 we don't need to do
1198 	 * anything, the target has assumed ownership of
1199 	 * this io.
1200 	 */
1201 	dm_io_inc_pending(io);
1202 	sector = clone->bi_iter.bi_sector;
1203 
1204 	if (unlikely(swap_bios_limit(ti, clone))) {
1205 		struct mapped_device *md = io->md;
1206 		int latch = get_swap_bios();
1207 		if (unlikely(latch != md->swap_bios))
1208 			__set_swap_bios_limit(md, latch);
1209 		down(&md->swap_bios_semaphore);
1210 	}
1211 
1212 	/*
1213 	 * Check if the IO needs a special mapping due to zone append emulation
1214 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1215 	 * map operation.
1216 	 */
1217 	if (dm_emulate_zone_append(io->md))
1218 		r = dm_zone_map_bio(tio);
1219 	else
1220 		r = ti->type->map(ti, clone);
1221 
1222 	switch (r) {
1223 	case DM_MAPIO_SUBMITTED:
1224 		break;
1225 	case DM_MAPIO_REMAPPED:
1226 		/* the bio has been remapped so dispatch it */
1227 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1228 		submit_bio_noacct(clone);
1229 		break;
1230 	case DM_MAPIO_KILL:
1231 		if (unlikely(swap_bios_limit(ti, clone))) {
1232 			struct mapped_device *md = io->md;
1233 			up(&md->swap_bios_semaphore);
1234 		}
1235 		free_tio(tio);
1236 		dm_io_dec_pending(io, BLK_STS_IOERR);
1237 		break;
1238 	case DM_MAPIO_REQUEUE:
1239 		if (unlikely(swap_bios_limit(ti, clone))) {
1240 			struct mapped_device *md = io->md;
1241 			up(&md->swap_bios_semaphore);
1242 		}
1243 		free_tio(tio);
1244 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1245 		break;
1246 	default:
1247 		DMWARN("unimplemented target map return value: %d", r);
1248 		BUG();
1249 	}
1250 }
1251 
1252 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1253 {
1254 	bio->bi_iter.bi_sector = sector;
1255 	bio->bi_iter.bi_size = to_bytes(len);
1256 }
1257 
1258 /*
1259  * Creates a bio that consists of range of complete bvecs.
1260  */
1261 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1262 		     sector_t sector, unsigned len)
1263 {
1264 	struct bio *clone = &tio->clone;
1265 	int r;
1266 
1267 	__bio_clone_fast(clone, bio);
1268 
1269 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1270 	if (r < 0)
1271 		return r;
1272 
1273 	if (bio_integrity(bio)) {
1274 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1275 			     !dm_target_passes_integrity(tio->ti->type))) {
1276 			DMWARN("%s: the target %s doesn't support integrity data.",
1277 				dm_device_name(tio->io->md),
1278 				tio->ti->type->name);
1279 			return -EIO;
1280 		}
1281 
1282 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1283 		if (r < 0)
1284 			return r;
1285 	}
1286 
1287 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1288 	clone->bi_iter.bi_size = to_bytes(len);
1289 
1290 	if (bio_integrity(bio))
1291 		bio_integrity_trim(clone);
1292 
1293 	return 0;
1294 }
1295 
1296 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1297 				struct dm_target *ti, unsigned num_bios)
1298 {
1299 	struct dm_target_io *tio;
1300 	int try;
1301 
1302 	if (!num_bios)
1303 		return;
1304 
1305 	if (num_bios == 1) {
1306 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1307 		bio_list_add(blist, &tio->clone);
1308 		return;
1309 	}
1310 
1311 	for (try = 0; try < 2; try++) {
1312 		int bio_nr;
1313 		struct bio *bio;
1314 
1315 		if (try)
1316 			mutex_lock(&ci->io->md->table_devices_lock);
1317 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1318 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1319 			if (!tio)
1320 				break;
1321 
1322 			bio_list_add(blist, &tio->clone);
1323 		}
1324 		if (try)
1325 			mutex_unlock(&ci->io->md->table_devices_lock);
1326 		if (bio_nr == num_bios)
1327 			return;
1328 
1329 		while ((bio = bio_list_pop(blist))) {
1330 			tio = container_of(bio, struct dm_target_io, clone);
1331 			free_tio(tio);
1332 		}
1333 	}
1334 }
1335 
1336 static void __clone_and_map_simple_bio(struct clone_info *ci,
1337 					   struct dm_target_io *tio, unsigned *len)
1338 {
1339 	struct bio *clone = &tio->clone;
1340 
1341 	tio->len_ptr = len;
1342 
1343 	__bio_clone_fast(clone, ci->bio);
1344 	if (len)
1345 		bio_setup_sector(clone, ci->sector, *len);
1346 	__map_bio(tio);
1347 }
1348 
1349 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350 				  unsigned num_bios, unsigned *len)
1351 {
1352 	struct bio_list blist = BIO_EMPTY_LIST;
1353 	struct bio *bio;
1354 	struct dm_target_io *tio;
1355 
1356 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1357 
1358 	while ((bio = bio_list_pop(&blist))) {
1359 		tio = container_of(bio, struct dm_target_io, clone);
1360 		__clone_and_map_simple_bio(ci, tio, len);
1361 	}
1362 }
1363 
1364 static int __send_empty_flush(struct clone_info *ci)
1365 {
1366 	unsigned target_nr = 0;
1367 	struct dm_target *ti;
1368 	struct bio flush_bio;
1369 
1370 	/*
1371 	 * Use an on-stack bio for this, it's safe since we don't
1372 	 * need to reference it after submit. It's just used as
1373 	 * the basis for the clone(s).
1374 	 */
1375 	bio_init(&flush_bio, NULL, 0);
1376 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378 
1379 	ci->bio = &flush_bio;
1380 	ci->sector_count = 0;
1381 
1382 	BUG_ON(bio_has_data(ci->bio));
1383 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385 
1386 	bio_uninit(ci->bio);
1387 	return 0;
1388 }
1389 
1390 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391 				    sector_t sector, unsigned *len)
1392 {
1393 	struct bio *bio = ci->bio;
1394 	struct dm_target_io *tio;
1395 	int r;
1396 
1397 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398 	tio->len_ptr = len;
1399 	r = clone_bio(tio, bio, sector, *len);
1400 	if (r < 0) {
1401 		free_tio(tio);
1402 		return r;
1403 	}
1404 	__map_bio(tio);
1405 
1406 	return 0;
1407 }
1408 
1409 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410 				       unsigned num_bios)
1411 {
1412 	unsigned len;
1413 
1414 	/*
1415 	 * Even though the device advertised support for this type of
1416 	 * request, that does not mean every target supports it, and
1417 	 * reconfiguration might also have changed that since the
1418 	 * check was performed.
1419 	 */
1420 	if (!num_bios)
1421 		return -EOPNOTSUPP;
1422 
1423 	len = min_t(sector_t, ci->sector_count,
1424 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1425 
1426 	__send_duplicate_bios(ci, ti, num_bios, &len);
1427 
1428 	ci->sector += len;
1429 	ci->sector_count -= len;
1430 
1431 	return 0;
1432 }
1433 
1434 static bool is_abnormal_io(struct bio *bio)
1435 {
1436 	bool r = false;
1437 
1438 	switch (bio_op(bio)) {
1439 	case REQ_OP_DISCARD:
1440 	case REQ_OP_SECURE_ERASE:
1441 	case REQ_OP_WRITE_SAME:
1442 	case REQ_OP_WRITE_ZEROES:
1443 		r = true;
1444 		break;
1445 	}
1446 
1447 	return r;
1448 }
1449 
1450 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451 				  int *result)
1452 {
1453 	struct bio *bio = ci->bio;
1454 	unsigned num_bios = 0;
1455 
1456 	switch (bio_op(bio)) {
1457 	case REQ_OP_DISCARD:
1458 		num_bios = ti->num_discard_bios;
1459 		break;
1460 	case REQ_OP_SECURE_ERASE:
1461 		num_bios = ti->num_secure_erase_bios;
1462 		break;
1463 	case REQ_OP_WRITE_SAME:
1464 		num_bios = ti->num_write_same_bios;
1465 		break;
1466 	case REQ_OP_WRITE_ZEROES:
1467 		num_bios = ti->num_write_zeroes_bios;
1468 		break;
1469 	default:
1470 		return false;
1471 	}
1472 
1473 	*result = __send_changing_extent_only(ci, ti, num_bios);
1474 	return true;
1475 }
1476 
1477 /*
1478  * Select the correct strategy for processing a non-flush bio.
1479  */
1480 static int __split_and_process_non_flush(struct clone_info *ci)
1481 {
1482 	struct dm_target *ti;
1483 	unsigned len;
1484 	int r;
1485 
1486 	ti = dm_table_find_target(ci->map, ci->sector);
1487 	if (!ti)
1488 		return -EIO;
1489 
1490 	if (__process_abnormal_io(ci, ti, &r))
1491 		return r;
1492 
1493 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1494 
1495 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496 	if (r < 0)
1497 		return r;
1498 
1499 	ci->sector += len;
1500 	ci->sector_count -= len;
1501 
1502 	return 0;
1503 }
1504 
1505 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506 			    struct dm_table *map, struct bio *bio)
1507 {
1508 	ci->map = map;
1509 	ci->io = alloc_io(md, bio);
1510 	ci->sector = bio->bi_iter.bi_sector;
1511 }
1512 
1513 #define __dm_part_stat_sub(part, field, subnd)	\
1514 	(part_stat_get(part, field) -= (subnd))
1515 
1516 /*
1517  * Entry point to split a bio into clones and submit them to the targets.
1518  */
1519 static void __split_and_process_bio(struct mapped_device *md,
1520 					struct dm_table *map, struct bio *bio)
1521 {
1522 	struct clone_info ci;
1523 	int error = 0;
1524 
1525 	init_clone_info(&ci, md, map, bio);
1526 
1527 	if (bio->bi_opf & REQ_PREFLUSH) {
1528 		error = __send_empty_flush(&ci);
1529 		/* dm_io_dec_pending submits any data associated with flush */
1530 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1531 		ci.bio = bio;
1532 		ci.sector_count = 0;
1533 		error = __split_and_process_non_flush(&ci);
1534 	} else {
1535 		ci.bio = bio;
1536 		ci.sector_count = bio_sectors(bio);
1537 		error = __split_and_process_non_flush(&ci);
1538 		if (ci.sector_count && !error) {
1539 			/*
1540 			 * Remainder must be passed to submit_bio_noacct()
1541 			 * so that it gets handled *after* bios already submitted
1542 			 * have been completely processed.
1543 			 * We take a clone of the original to store in
1544 			 * ci.io->orig_bio to be used by end_io_acct() and
1545 			 * for dec_pending to use for completion handling.
1546 			 */
1547 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1548 						  GFP_NOIO, &md->queue->bio_split);
1549 			ci.io->orig_bio = b;
1550 
1551 			/*
1552 			 * Adjust IO stats for each split, otherwise upon queue
1553 			 * reentry there will be redundant IO accounting.
1554 			 * NOTE: this is a stop-gap fix, a proper fix involves
1555 			 * significant refactoring of DM core's bio splitting
1556 			 * (by eliminating DM's splitting and just using bio_split)
1557 			 */
1558 			part_stat_lock();
1559 			__dm_part_stat_sub(dm_disk(md)->part0,
1560 					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1561 			part_stat_unlock();
1562 
1563 			bio_chain(b, bio);
1564 			trace_block_split(b, bio->bi_iter.bi_sector);
1565 			submit_bio_noacct(bio);
1566 		}
1567 	}
1568 
1569 	/* drop the extra reference count */
1570 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1571 }
1572 
1573 static void dm_submit_bio(struct bio *bio)
1574 {
1575 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1576 	int srcu_idx;
1577 	struct dm_table *map;
1578 
1579 	map = dm_get_live_table(md, &srcu_idx);
1580 	if (unlikely(!map)) {
1581 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1582 			    dm_device_name(md));
1583 		bio_io_error(bio);
1584 		goto out;
1585 	}
1586 
1587 	/* If suspended, queue this IO for later */
1588 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1589 		if (bio->bi_opf & REQ_NOWAIT)
1590 			bio_wouldblock_error(bio);
1591 		else if (bio->bi_opf & REQ_RAHEAD)
1592 			bio_io_error(bio);
1593 		else
1594 			queue_io(md, bio);
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1600 	 * otherwise associated queue_limits won't be imposed.
1601 	 */
1602 	if (is_abnormal_io(bio))
1603 		blk_queue_split(&bio);
1604 
1605 	__split_and_process_bio(md, map, bio);
1606 out:
1607 	dm_put_live_table(md, srcu_idx);
1608 }
1609 
1610 /*-----------------------------------------------------------------
1611  * An IDR is used to keep track of allocated minor numbers.
1612  *---------------------------------------------------------------*/
1613 static void free_minor(int minor)
1614 {
1615 	spin_lock(&_minor_lock);
1616 	idr_remove(&_minor_idr, minor);
1617 	spin_unlock(&_minor_lock);
1618 }
1619 
1620 /*
1621  * See if the device with a specific minor # is free.
1622  */
1623 static int specific_minor(int minor)
1624 {
1625 	int r;
1626 
1627 	if (minor >= (1 << MINORBITS))
1628 		return -EINVAL;
1629 
1630 	idr_preload(GFP_KERNEL);
1631 	spin_lock(&_minor_lock);
1632 
1633 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1634 
1635 	spin_unlock(&_minor_lock);
1636 	idr_preload_end();
1637 	if (r < 0)
1638 		return r == -ENOSPC ? -EBUSY : r;
1639 	return 0;
1640 }
1641 
1642 static int next_free_minor(int *minor)
1643 {
1644 	int r;
1645 
1646 	idr_preload(GFP_KERNEL);
1647 	spin_lock(&_minor_lock);
1648 
1649 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1650 
1651 	spin_unlock(&_minor_lock);
1652 	idr_preload_end();
1653 	if (r < 0)
1654 		return r;
1655 	*minor = r;
1656 	return 0;
1657 }
1658 
1659 static const struct block_device_operations dm_blk_dops;
1660 static const struct block_device_operations dm_rq_blk_dops;
1661 static const struct dax_operations dm_dax_ops;
1662 
1663 static void dm_wq_work(struct work_struct *work);
1664 
1665 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1666 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1667 {
1668 	dm_destroy_keyslot_manager(q->ksm);
1669 }
1670 
1671 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1672 
1673 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1674 {
1675 }
1676 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1677 
1678 static void cleanup_mapped_device(struct mapped_device *md)
1679 {
1680 	if (md->wq)
1681 		destroy_workqueue(md->wq);
1682 	bioset_exit(&md->bs);
1683 	bioset_exit(&md->io_bs);
1684 
1685 	if (md->dax_dev) {
1686 		kill_dax(md->dax_dev);
1687 		put_dax(md->dax_dev);
1688 		md->dax_dev = NULL;
1689 	}
1690 
1691 	if (md->disk) {
1692 		spin_lock(&_minor_lock);
1693 		md->disk->private_data = NULL;
1694 		spin_unlock(&_minor_lock);
1695 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1696 			dm_sysfs_exit(md);
1697 			del_gendisk(md->disk);
1698 		}
1699 		dm_queue_destroy_keyslot_manager(md->queue);
1700 		blk_cleanup_disk(md->disk);
1701 	}
1702 
1703 	cleanup_srcu_struct(&md->io_barrier);
1704 
1705 	mutex_destroy(&md->suspend_lock);
1706 	mutex_destroy(&md->type_lock);
1707 	mutex_destroy(&md->table_devices_lock);
1708 	mutex_destroy(&md->swap_bios_lock);
1709 
1710 	dm_mq_cleanup_mapped_device(md);
1711 	dm_cleanup_zoned_dev(md);
1712 }
1713 
1714 /*
1715  * Allocate and initialise a blank device with a given minor.
1716  */
1717 static struct mapped_device *alloc_dev(int minor)
1718 {
1719 	int r, numa_node_id = dm_get_numa_node();
1720 	struct mapped_device *md;
1721 	void *old_md;
1722 
1723 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1724 	if (!md) {
1725 		DMWARN("unable to allocate device, out of memory.");
1726 		return NULL;
1727 	}
1728 
1729 	if (!try_module_get(THIS_MODULE))
1730 		goto bad_module_get;
1731 
1732 	/* get a minor number for the dev */
1733 	if (minor == DM_ANY_MINOR)
1734 		r = next_free_minor(&minor);
1735 	else
1736 		r = specific_minor(minor);
1737 	if (r < 0)
1738 		goto bad_minor;
1739 
1740 	r = init_srcu_struct(&md->io_barrier);
1741 	if (r < 0)
1742 		goto bad_io_barrier;
1743 
1744 	md->numa_node_id = numa_node_id;
1745 	md->init_tio_pdu = false;
1746 	md->type = DM_TYPE_NONE;
1747 	mutex_init(&md->suspend_lock);
1748 	mutex_init(&md->type_lock);
1749 	mutex_init(&md->table_devices_lock);
1750 	spin_lock_init(&md->deferred_lock);
1751 	atomic_set(&md->holders, 1);
1752 	atomic_set(&md->open_count, 0);
1753 	atomic_set(&md->event_nr, 0);
1754 	atomic_set(&md->uevent_seq, 0);
1755 	INIT_LIST_HEAD(&md->uevent_list);
1756 	INIT_LIST_HEAD(&md->table_devices);
1757 	spin_lock_init(&md->uevent_lock);
1758 
1759 	/*
1760 	 * default to bio-based until DM table is loaded and md->type
1761 	 * established. If request-based table is loaded: blk-mq will
1762 	 * override accordingly.
1763 	 */
1764 	md->disk = blk_alloc_disk(md->numa_node_id);
1765 	if (!md->disk)
1766 		goto bad;
1767 	md->queue = md->disk->queue;
1768 
1769 	init_waitqueue_head(&md->wait);
1770 	INIT_WORK(&md->work, dm_wq_work);
1771 	init_waitqueue_head(&md->eventq);
1772 	init_completion(&md->kobj_holder.completion);
1773 
1774 	md->swap_bios = get_swap_bios();
1775 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1776 	mutex_init(&md->swap_bios_lock);
1777 
1778 	md->disk->major = _major;
1779 	md->disk->first_minor = minor;
1780 	md->disk->minors = 1;
1781 	md->disk->fops = &dm_blk_dops;
1782 	md->disk->queue = md->queue;
1783 	md->disk->private_data = md;
1784 	sprintf(md->disk->disk_name, "dm-%d", minor);
1785 
1786 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1787 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1788 					&dm_dax_ops, 0);
1789 		if (IS_ERR(md->dax_dev))
1790 			goto bad;
1791 	}
1792 
1793 	format_dev_t(md->name, MKDEV(_major, minor));
1794 
1795 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1796 	if (!md->wq)
1797 		goto bad;
1798 
1799 	dm_stats_init(&md->stats);
1800 
1801 	/* Populate the mapping, nobody knows we exist yet */
1802 	spin_lock(&_minor_lock);
1803 	old_md = idr_replace(&_minor_idr, md, minor);
1804 	spin_unlock(&_minor_lock);
1805 
1806 	BUG_ON(old_md != MINOR_ALLOCED);
1807 
1808 	return md;
1809 
1810 bad:
1811 	cleanup_mapped_device(md);
1812 bad_io_barrier:
1813 	free_minor(minor);
1814 bad_minor:
1815 	module_put(THIS_MODULE);
1816 bad_module_get:
1817 	kvfree(md);
1818 	return NULL;
1819 }
1820 
1821 static void unlock_fs(struct mapped_device *md);
1822 
1823 static void free_dev(struct mapped_device *md)
1824 {
1825 	int minor = MINOR(disk_devt(md->disk));
1826 
1827 	unlock_fs(md);
1828 
1829 	cleanup_mapped_device(md);
1830 
1831 	free_table_devices(&md->table_devices);
1832 	dm_stats_cleanup(&md->stats);
1833 	free_minor(minor);
1834 
1835 	module_put(THIS_MODULE);
1836 	kvfree(md);
1837 }
1838 
1839 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1840 {
1841 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1842 	int ret = 0;
1843 
1844 	if (dm_table_bio_based(t)) {
1845 		/*
1846 		 * The md may already have mempools that need changing.
1847 		 * If so, reload bioset because front_pad may have changed
1848 		 * because a different table was loaded.
1849 		 */
1850 		bioset_exit(&md->bs);
1851 		bioset_exit(&md->io_bs);
1852 
1853 	} else if (bioset_initialized(&md->bs)) {
1854 		/*
1855 		 * There's no need to reload with request-based dm
1856 		 * because the size of front_pad doesn't change.
1857 		 * Note for future: If you are to reload bioset,
1858 		 * prep-ed requests in the queue may refer
1859 		 * to bio from the old bioset, so you must walk
1860 		 * through the queue to unprep.
1861 		 */
1862 		goto out;
1863 	}
1864 
1865 	BUG_ON(!p ||
1866 	       bioset_initialized(&md->bs) ||
1867 	       bioset_initialized(&md->io_bs));
1868 
1869 	ret = bioset_init_from_src(&md->bs, &p->bs);
1870 	if (ret)
1871 		goto out;
1872 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1873 	if (ret)
1874 		bioset_exit(&md->bs);
1875 out:
1876 	/* mempool bind completed, no longer need any mempools in the table */
1877 	dm_table_free_md_mempools(t);
1878 	return ret;
1879 }
1880 
1881 /*
1882  * Bind a table to the device.
1883  */
1884 static void event_callback(void *context)
1885 {
1886 	unsigned long flags;
1887 	LIST_HEAD(uevents);
1888 	struct mapped_device *md = (struct mapped_device *) context;
1889 
1890 	spin_lock_irqsave(&md->uevent_lock, flags);
1891 	list_splice_init(&md->uevent_list, &uevents);
1892 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1893 
1894 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1895 
1896 	atomic_inc(&md->event_nr);
1897 	wake_up(&md->eventq);
1898 	dm_issue_global_event();
1899 }
1900 
1901 /*
1902  * Returns old map, which caller must destroy.
1903  */
1904 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1905 			       struct queue_limits *limits)
1906 {
1907 	struct dm_table *old_map;
1908 	struct request_queue *q = md->queue;
1909 	bool request_based = dm_table_request_based(t);
1910 	sector_t size;
1911 	int ret;
1912 
1913 	lockdep_assert_held(&md->suspend_lock);
1914 
1915 	size = dm_table_get_size(t);
1916 
1917 	/*
1918 	 * Wipe any geometry if the size of the table changed.
1919 	 */
1920 	if (size != dm_get_size(md))
1921 		memset(&md->geometry, 0, sizeof(md->geometry));
1922 
1923 	if (!get_capacity(md->disk))
1924 		set_capacity(md->disk, size);
1925 	else
1926 		set_capacity_and_notify(md->disk, size);
1927 
1928 	dm_table_event_callback(t, event_callback, md);
1929 
1930 	/*
1931 	 * The queue hasn't been stopped yet, if the old table type wasn't
1932 	 * for request-based during suspension.  So stop it to prevent
1933 	 * I/O mapping before resume.
1934 	 * This must be done before setting the queue restrictions,
1935 	 * because request-based dm may be run just after the setting.
1936 	 */
1937 	if (request_based)
1938 		dm_stop_queue(q);
1939 
1940 	if (request_based) {
1941 		/*
1942 		 * Leverage the fact that request-based DM targets are
1943 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1944 		 */
1945 		md->immutable_target = dm_table_get_immutable_target(t);
1946 	}
1947 
1948 	ret = __bind_mempools(md, t);
1949 	if (ret) {
1950 		old_map = ERR_PTR(ret);
1951 		goto out;
1952 	}
1953 
1954 	ret = dm_table_set_restrictions(t, q, limits);
1955 	if (ret) {
1956 		old_map = ERR_PTR(ret);
1957 		goto out;
1958 	}
1959 
1960 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1961 	rcu_assign_pointer(md->map, (void *)t);
1962 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1963 
1964 	if (old_map)
1965 		dm_sync_table(md);
1966 
1967 out:
1968 	return old_map;
1969 }
1970 
1971 /*
1972  * Returns unbound table for the caller to free.
1973  */
1974 static struct dm_table *__unbind(struct mapped_device *md)
1975 {
1976 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1977 
1978 	if (!map)
1979 		return NULL;
1980 
1981 	dm_table_event_callback(map, NULL, NULL);
1982 	RCU_INIT_POINTER(md->map, NULL);
1983 	dm_sync_table(md);
1984 
1985 	return map;
1986 }
1987 
1988 /*
1989  * Constructor for a new device.
1990  */
1991 int dm_create(int minor, struct mapped_device **result)
1992 {
1993 	struct mapped_device *md;
1994 
1995 	md = alloc_dev(minor);
1996 	if (!md)
1997 		return -ENXIO;
1998 
1999 	dm_ima_reset_data(md);
2000 
2001 	*result = md;
2002 	return 0;
2003 }
2004 
2005 /*
2006  * Functions to manage md->type.
2007  * All are required to hold md->type_lock.
2008  */
2009 void dm_lock_md_type(struct mapped_device *md)
2010 {
2011 	mutex_lock(&md->type_lock);
2012 }
2013 
2014 void dm_unlock_md_type(struct mapped_device *md)
2015 {
2016 	mutex_unlock(&md->type_lock);
2017 }
2018 
2019 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2020 {
2021 	BUG_ON(!mutex_is_locked(&md->type_lock));
2022 	md->type = type;
2023 }
2024 
2025 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2026 {
2027 	return md->type;
2028 }
2029 
2030 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2031 {
2032 	return md->immutable_target_type;
2033 }
2034 
2035 /*
2036  * The queue_limits are only valid as long as you have a reference
2037  * count on 'md'.
2038  */
2039 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2040 {
2041 	BUG_ON(!atomic_read(&md->holders));
2042 	return &md->queue->limits;
2043 }
2044 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2045 
2046 /*
2047  * Setup the DM device's queue based on md's type
2048  */
2049 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2050 {
2051 	enum dm_queue_mode type = dm_table_get_type(t);
2052 	struct queue_limits limits;
2053 	int r;
2054 
2055 	switch (type) {
2056 	case DM_TYPE_REQUEST_BASED:
2057 		md->disk->fops = &dm_rq_blk_dops;
2058 		r = dm_mq_init_request_queue(md, t);
2059 		if (r) {
2060 			DMERR("Cannot initialize queue for request-based dm mapped device");
2061 			return r;
2062 		}
2063 		break;
2064 	case DM_TYPE_BIO_BASED:
2065 	case DM_TYPE_DAX_BIO_BASED:
2066 		break;
2067 	case DM_TYPE_NONE:
2068 		WARN_ON_ONCE(true);
2069 		break;
2070 	}
2071 
2072 	r = dm_calculate_queue_limits(t, &limits);
2073 	if (r) {
2074 		DMERR("Cannot calculate initial queue limits");
2075 		return r;
2076 	}
2077 	r = dm_table_set_restrictions(t, md->queue, &limits);
2078 	if (r)
2079 		return r;
2080 
2081 	r = add_disk(md->disk);
2082 	if (r)
2083 		return r;
2084 
2085 	r = dm_sysfs_init(md);
2086 	if (r) {
2087 		del_gendisk(md->disk);
2088 		return r;
2089 	}
2090 	md->type = type;
2091 	return 0;
2092 }
2093 
2094 struct mapped_device *dm_get_md(dev_t dev)
2095 {
2096 	struct mapped_device *md;
2097 	unsigned minor = MINOR(dev);
2098 
2099 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2100 		return NULL;
2101 
2102 	spin_lock(&_minor_lock);
2103 
2104 	md = idr_find(&_minor_idr, minor);
2105 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2106 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2107 		md = NULL;
2108 		goto out;
2109 	}
2110 	dm_get(md);
2111 out:
2112 	spin_unlock(&_minor_lock);
2113 
2114 	return md;
2115 }
2116 EXPORT_SYMBOL_GPL(dm_get_md);
2117 
2118 void *dm_get_mdptr(struct mapped_device *md)
2119 {
2120 	return md->interface_ptr;
2121 }
2122 
2123 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2124 {
2125 	md->interface_ptr = ptr;
2126 }
2127 
2128 void dm_get(struct mapped_device *md)
2129 {
2130 	atomic_inc(&md->holders);
2131 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2132 }
2133 
2134 int dm_hold(struct mapped_device *md)
2135 {
2136 	spin_lock(&_minor_lock);
2137 	if (test_bit(DMF_FREEING, &md->flags)) {
2138 		spin_unlock(&_minor_lock);
2139 		return -EBUSY;
2140 	}
2141 	dm_get(md);
2142 	spin_unlock(&_minor_lock);
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(dm_hold);
2146 
2147 const char *dm_device_name(struct mapped_device *md)
2148 {
2149 	return md->name;
2150 }
2151 EXPORT_SYMBOL_GPL(dm_device_name);
2152 
2153 static void __dm_destroy(struct mapped_device *md, bool wait)
2154 {
2155 	struct dm_table *map;
2156 	int srcu_idx;
2157 
2158 	might_sleep();
2159 
2160 	spin_lock(&_minor_lock);
2161 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2162 	set_bit(DMF_FREEING, &md->flags);
2163 	spin_unlock(&_minor_lock);
2164 
2165 	blk_set_queue_dying(md->queue);
2166 
2167 	/*
2168 	 * Take suspend_lock so that presuspend and postsuspend methods
2169 	 * do not race with internal suspend.
2170 	 */
2171 	mutex_lock(&md->suspend_lock);
2172 	map = dm_get_live_table(md, &srcu_idx);
2173 	if (!dm_suspended_md(md)) {
2174 		dm_table_presuspend_targets(map);
2175 		set_bit(DMF_SUSPENDED, &md->flags);
2176 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2177 		dm_table_postsuspend_targets(map);
2178 	}
2179 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2180 	dm_put_live_table(md, srcu_idx);
2181 	mutex_unlock(&md->suspend_lock);
2182 
2183 	/*
2184 	 * Rare, but there may be I/O requests still going to complete,
2185 	 * for example.  Wait for all references to disappear.
2186 	 * No one should increment the reference count of the mapped_device,
2187 	 * after the mapped_device state becomes DMF_FREEING.
2188 	 */
2189 	if (wait)
2190 		while (atomic_read(&md->holders))
2191 			msleep(1);
2192 	else if (atomic_read(&md->holders))
2193 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2194 		       dm_device_name(md), atomic_read(&md->holders));
2195 
2196 	dm_table_destroy(__unbind(md));
2197 	free_dev(md);
2198 }
2199 
2200 void dm_destroy(struct mapped_device *md)
2201 {
2202 	__dm_destroy(md, true);
2203 }
2204 
2205 void dm_destroy_immediate(struct mapped_device *md)
2206 {
2207 	__dm_destroy(md, false);
2208 }
2209 
2210 void dm_put(struct mapped_device *md)
2211 {
2212 	atomic_dec(&md->holders);
2213 }
2214 EXPORT_SYMBOL_GPL(dm_put);
2215 
2216 static bool md_in_flight_bios(struct mapped_device *md)
2217 {
2218 	int cpu;
2219 	struct block_device *part = dm_disk(md)->part0;
2220 	long sum = 0;
2221 
2222 	for_each_possible_cpu(cpu) {
2223 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2224 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2225 	}
2226 
2227 	return sum != 0;
2228 }
2229 
2230 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2231 {
2232 	int r = 0;
2233 	DEFINE_WAIT(wait);
2234 
2235 	while (true) {
2236 		prepare_to_wait(&md->wait, &wait, task_state);
2237 
2238 		if (!md_in_flight_bios(md))
2239 			break;
2240 
2241 		if (signal_pending_state(task_state, current)) {
2242 			r = -EINTR;
2243 			break;
2244 		}
2245 
2246 		io_schedule();
2247 	}
2248 	finish_wait(&md->wait, &wait);
2249 
2250 	return r;
2251 }
2252 
2253 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2254 {
2255 	int r = 0;
2256 
2257 	if (!queue_is_mq(md->queue))
2258 		return dm_wait_for_bios_completion(md, task_state);
2259 
2260 	while (true) {
2261 		if (!blk_mq_queue_inflight(md->queue))
2262 			break;
2263 
2264 		if (signal_pending_state(task_state, current)) {
2265 			r = -EINTR;
2266 			break;
2267 		}
2268 
2269 		msleep(5);
2270 	}
2271 
2272 	return r;
2273 }
2274 
2275 /*
2276  * Process the deferred bios
2277  */
2278 static void dm_wq_work(struct work_struct *work)
2279 {
2280 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2281 	struct bio *bio;
2282 
2283 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2284 		spin_lock_irq(&md->deferred_lock);
2285 		bio = bio_list_pop(&md->deferred);
2286 		spin_unlock_irq(&md->deferred_lock);
2287 
2288 		if (!bio)
2289 			break;
2290 
2291 		submit_bio_noacct(bio);
2292 	}
2293 }
2294 
2295 static void dm_queue_flush(struct mapped_device *md)
2296 {
2297 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2298 	smp_mb__after_atomic();
2299 	queue_work(md->wq, &md->work);
2300 }
2301 
2302 /*
2303  * Swap in a new table, returning the old one for the caller to destroy.
2304  */
2305 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2306 {
2307 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2308 	struct queue_limits limits;
2309 	int r;
2310 
2311 	mutex_lock(&md->suspend_lock);
2312 
2313 	/* device must be suspended */
2314 	if (!dm_suspended_md(md))
2315 		goto out;
2316 
2317 	/*
2318 	 * If the new table has no data devices, retain the existing limits.
2319 	 * This helps multipath with queue_if_no_path if all paths disappear,
2320 	 * then new I/O is queued based on these limits, and then some paths
2321 	 * reappear.
2322 	 */
2323 	if (dm_table_has_no_data_devices(table)) {
2324 		live_map = dm_get_live_table_fast(md);
2325 		if (live_map)
2326 			limits = md->queue->limits;
2327 		dm_put_live_table_fast(md);
2328 	}
2329 
2330 	if (!live_map) {
2331 		r = dm_calculate_queue_limits(table, &limits);
2332 		if (r) {
2333 			map = ERR_PTR(r);
2334 			goto out;
2335 		}
2336 	}
2337 
2338 	map = __bind(md, table, &limits);
2339 	dm_issue_global_event();
2340 
2341 out:
2342 	mutex_unlock(&md->suspend_lock);
2343 	return map;
2344 }
2345 
2346 /*
2347  * Functions to lock and unlock any filesystem running on the
2348  * device.
2349  */
2350 static int lock_fs(struct mapped_device *md)
2351 {
2352 	int r;
2353 
2354 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2355 
2356 	r = freeze_bdev(md->disk->part0);
2357 	if (!r)
2358 		set_bit(DMF_FROZEN, &md->flags);
2359 	return r;
2360 }
2361 
2362 static void unlock_fs(struct mapped_device *md)
2363 {
2364 	if (!test_bit(DMF_FROZEN, &md->flags))
2365 		return;
2366 	thaw_bdev(md->disk->part0);
2367 	clear_bit(DMF_FROZEN, &md->flags);
2368 }
2369 
2370 /*
2371  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2372  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2373  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2374  *
2375  * If __dm_suspend returns 0, the device is completely quiescent
2376  * now. There is no request-processing activity. All new requests
2377  * are being added to md->deferred list.
2378  */
2379 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2380 			unsigned suspend_flags, unsigned int task_state,
2381 			int dmf_suspended_flag)
2382 {
2383 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2384 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2385 	int r;
2386 
2387 	lockdep_assert_held(&md->suspend_lock);
2388 
2389 	/*
2390 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2391 	 * This flag is cleared before dm_suspend returns.
2392 	 */
2393 	if (noflush)
2394 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2395 	else
2396 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2397 
2398 	/*
2399 	 * This gets reverted if there's an error later and the targets
2400 	 * provide the .presuspend_undo hook.
2401 	 */
2402 	dm_table_presuspend_targets(map);
2403 
2404 	/*
2405 	 * Flush I/O to the device.
2406 	 * Any I/O submitted after lock_fs() may not be flushed.
2407 	 * noflush takes precedence over do_lockfs.
2408 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2409 	 */
2410 	if (!noflush && do_lockfs) {
2411 		r = lock_fs(md);
2412 		if (r) {
2413 			dm_table_presuspend_undo_targets(map);
2414 			return r;
2415 		}
2416 	}
2417 
2418 	/*
2419 	 * Here we must make sure that no processes are submitting requests
2420 	 * to target drivers i.e. no one may be executing
2421 	 * __split_and_process_bio from dm_submit_bio.
2422 	 *
2423 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2424 	 * we take the write lock. To prevent any process from reentering
2425 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2426 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2427 	 * flush_workqueue(md->wq).
2428 	 */
2429 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2430 	if (map)
2431 		synchronize_srcu(&md->io_barrier);
2432 
2433 	/*
2434 	 * Stop md->queue before flushing md->wq in case request-based
2435 	 * dm defers requests to md->wq from md->queue.
2436 	 */
2437 	if (dm_request_based(md))
2438 		dm_stop_queue(md->queue);
2439 
2440 	flush_workqueue(md->wq);
2441 
2442 	/*
2443 	 * At this point no more requests are entering target request routines.
2444 	 * We call dm_wait_for_completion to wait for all existing requests
2445 	 * to finish.
2446 	 */
2447 	r = dm_wait_for_completion(md, task_state);
2448 	if (!r)
2449 		set_bit(dmf_suspended_flag, &md->flags);
2450 
2451 	if (noflush)
2452 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2453 	if (map)
2454 		synchronize_srcu(&md->io_barrier);
2455 
2456 	/* were we interrupted ? */
2457 	if (r < 0) {
2458 		dm_queue_flush(md);
2459 
2460 		if (dm_request_based(md))
2461 			dm_start_queue(md->queue);
2462 
2463 		unlock_fs(md);
2464 		dm_table_presuspend_undo_targets(map);
2465 		/* pushback list is already flushed, so skip flush */
2466 	}
2467 
2468 	return r;
2469 }
2470 
2471 /*
2472  * We need to be able to change a mapping table under a mounted
2473  * filesystem.  For example we might want to move some data in
2474  * the background.  Before the table can be swapped with
2475  * dm_bind_table, dm_suspend must be called to flush any in
2476  * flight bios and ensure that any further io gets deferred.
2477  */
2478 /*
2479  * Suspend mechanism in request-based dm.
2480  *
2481  * 1. Flush all I/Os by lock_fs() if needed.
2482  * 2. Stop dispatching any I/O by stopping the request_queue.
2483  * 3. Wait for all in-flight I/Os to be completed or requeued.
2484  *
2485  * To abort suspend, start the request_queue.
2486  */
2487 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2488 {
2489 	struct dm_table *map = NULL;
2490 	int r = 0;
2491 
2492 retry:
2493 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2494 
2495 	if (dm_suspended_md(md)) {
2496 		r = -EINVAL;
2497 		goto out_unlock;
2498 	}
2499 
2500 	if (dm_suspended_internally_md(md)) {
2501 		/* already internally suspended, wait for internal resume */
2502 		mutex_unlock(&md->suspend_lock);
2503 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2504 		if (r)
2505 			return r;
2506 		goto retry;
2507 	}
2508 
2509 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2510 
2511 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2512 	if (r)
2513 		goto out_unlock;
2514 
2515 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2516 	dm_table_postsuspend_targets(map);
2517 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2518 
2519 out_unlock:
2520 	mutex_unlock(&md->suspend_lock);
2521 	return r;
2522 }
2523 
2524 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2525 {
2526 	if (map) {
2527 		int r = dm_table_resume_targets(map);
2528 		if (r)
2529 			return r;
2530 	}
2531 
2532 	dm_queue_flush(md);
2533 
2534 	/*
2535 	 * Flushing deferred I/Os must be done after targets are resumed
2536 	 * so that mapping of targets can work correctly.
2537 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2538 	 */
2539 	if (dm_request_based(md))
2540 		dm_start_queue(md->queue);
2541 
2542 	unlock_fs(md);
2543 
2544 	return 0;
2545 }
2546 
2547 int dm_resume(struct mapped_device *md)
2548 {
2549 	int r;
2550 	struct dm_table *map = NULL;
2551 
2552 retry:
2553 	r = -EINVAL;
2554 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2555 
2556 	if (!dm_suspended_md(md))
2557 		goto out;
2558 
2559 	if (dm_suspended_internally_md(md)) {
2560 		/* already internally suspended, wait for internal resume */
2561 		mutex_unlock(&md->suspend_lock);
2562 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2563 		if (r)
2564 			return r;
2565 		goto retry;
2566 	}
2567 
2568 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2569 	if (!map || !dm_table_get_size(map))
2570 		goto out;
2571 
2572 	r = __dm_resume(md, map);
2573 	if (r)
2574 		goto out;
2575 
2576 	clear_bit(DMF_SUSPENDED, &md->flags);
2577 out:
2578 	mutex_unlock(&md->suspend_lock);
2579 
2580 	return r;
2581 }
2582 
2583 /*
2584  * Internal suspend/resume works like userspace-driven suspend. It waits
2585  * until all bios finish and prevents issuing new bios to the target drivers.
2586  * It may be used only from the kernel.
2587  */
2588 
2589 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2590 {
2591 	struct dm_table *map = NULL;
2592 
2593 	lockdep_assert_held(&md->suspend_lock);
2594 
2595 	if (md->internal_suspend_count++)
2596 		return; /* nested internal suspend */
2597 
2598 	if (dm_suspended_md(md)) {
2599 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2600 		return; /* nest suspend */
2601 	}
2602 
2603 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2604 
2605 	/*
2606 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2607 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2608 	 * would require changing .presuspend to return an error -- avoid this
2609 	 * until there is a need for more elaborate variants of internal suspend.
2610 	 */
2611 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2612 			    DMF_SUSPENDED_INTERNALLY);
2613 
2614 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2615 	dm_table_postsuspend_targets(map);
2616 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2617 }
2618 
2619 static void __dm_internal_resume(struct mapped_device *md)
2620 {
2621 	BUG_ON(!md->internal_suspend_count);
2622 
2623 	if (--md->internal_suspend_count)
2624 		return; /* resume from nested internal suspend */
2625 
2626 	if (dm_suspended_md(md))
2627 		goto done; /* resume from nested suspend */
2628 
2629 	/*
2630 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2631 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2632 	 */
2633 	(void) __dm_resume(md, NULL);
2634 
2635 done:
2636 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2637 	smp_mb__after_atomic();
2638 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2639 }
2640 
2641 void dm_internal_suspend_noflush(struct mapped_device *md)
2642 {
2643 	mutex_lock(&md->suspend_lock);
2644 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2645 	mutex_unlock(&md->suspend_lock);
2646 }
2647 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2648 
2649 void dm_internal_resume(struct mapped_device *md)
2650 {
2651 	mutex_lock(&md->suspend_lock);
2652 	__dm_internal_resume(md);
2653 	mutex_unlock(&md->suspend_lock);
2654 }
2655 EXPORT_SYMBOL_GPL(dm_internal_resume);
2656 
2657 /*
2658  * Fast variants of internal suspend/resume hold md->suspend_lock,
2659  * which prevents interaction with userspace-driven suspend.
2660  */
2661 
2662 void dm_internal_suspend_fast(struct mapped_device *md)
2663 {
2664 	mutex_lock(&md->suspend_lock);
2665 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2666 		return;
2667 
2668 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2669 	synchronize_srcu(&md->io_barrier);
2670 	flush_workqueue(md->wq);
2671 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2672 }
2673 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2674 
2675 void dm_internal_resume_fast(struct mapped_device *md)
2676 {
2677 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2678 		goto done;
2679 
2680 	dm_queue_flush(md);
2681 
2682 done:
2683 	mutex_unlock(&md->suspend_lock);
2684 }
2685 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2686 
2687 /*-----------------------------------------------------------------
2688  * Event notification.
2689  *---------------------------------------------------------------*/
2690 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2691 		       unsigned cookie)
2692 {
2693 	int r;
2694 	unsigned noio_flag;
2695 	char udev_cookie[DM_COOKIE_LENGTH];
2696 	char *envp[] = { udev_cookie, NULL };
2697 
2698 	noio_flag = memalloc_noio_save();
2699 
2700 	if (!cookie)
2701 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2702 	else {
2703 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2704 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2705 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2706 				       action, envp);
2707 	}
2708 
2709 	memalloc_noio_restore(noio_flag);
2710 
2711 	return r;
2712 }
2713 
2714 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2715 {
2716 	return atomic_add_return(1, &md->uevent_seq);
2717 }
2718 
2719 uint32_t dm_get_event_nr(struct mapped_device *md)
2720 {
2721 	return atomic_read(&md->event_nr);
2722 }
2723 
2724 int dm_wait_event(struct mapped_device *md, int event_nr)
2725 {
2726 	return wait_event_interruptible(md->eventq,
2727 			(event_nr != atomic_read(&md->event_nr)));
2728 }
2729 
2730 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2731 {
2732 	unsigned long flags;
2733 
2734 	spin_lock_irqsave(&md->uevent_lock, flags);
2735 	list_add(elist, &md->uevent_list);
2736 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2737 }
2738 
2739 /*
2740  * The gendisk is only valid as long as you have a reference
2741  * count on 'md'.
2742  */
2743 struct gendisk *dm_disk(struct mapped_device *md)
2744 {
2745 	return md->disk;
2746 }
2747 EXPORT_SYMBOL_GPL(dm_disk);
2748 
2749 struct kobject *dm_kobject(struct mapped_device *md)
2750 {
2751 	return &md->kobj_holder.kobj;
2752 }
2753 
2754 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2755 {
2756 	struct mapped_device *md;
2757 
2758 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2759 
2760 	spin_lock(&_minor_lock);
2761 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2762 		md = NULL;
2763 		goto out;
2764 	}
2765 	dm_get(md);
2766 out:
2767 	spin_unlock(&_minor_lock);
2768 
2769 	return md;
2770 }
2771 
2772 int dm_suspended_md(struct mapped_device *md)
2773 {
2774 	return test_bit(DMF_SUSPENDED, &md->flags);
2775 }
2776 
2777 static int dm_post_suspending_md(struct mapped_device *md)
2778 {
2779 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2780 }
2781 
2782 int dm_suspended_internally_md(struct mapped_device *md)
2783 {
2784 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2785 }
2786 
2787 int dm_test_deferred_remove_flag(struct mapped_device *md)
2788 {
2789 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2790 }
2791 
2792 int dm_suspended(struct dm_target *ti)
2793 {
2794 	return dm_suspended_md(ti->table->md);
2795 }
2796 EXPORT_SYMBOL_GPL(dm_suspended);
2797 
2798 int dm_post_suspending(struct dm_target *ti)
2799 {
2800 	return dm_post_suspending_md(ti->table->md);
2801 }
2802 EXPORT_SYMBOL_GPL(dm_post_suspending);
2803 
2804 int dm_noflush_suspending(struct dm_target *ti)
2805 {
2806 	return __noflush_suspending(ti->table->md);
2807 }
2808 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2809 
2810 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2811 					    unsigned integrity, unsigned per_io_data_size,
2812 					    unsigned min_pool_size)
2813 {
2814 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2815 	unsigned int pool_size = 0;
2816 	unsigned int front_pad, io_front_pad;
2817 	int ret;
2818 
2819 	if (!pools)
2820 		return NULL;
2821 
2822 	switch (type) {
2823 	case DM_TYPE_BIO_BASED:
2824 	case DM_TYPE_DAX_BIO_BASED:
2825 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2826 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2827 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2828 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2829 		if (ret)
2830 			goto out;
2831 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2832 			goto out;
2833 		break;
2834 	case DM_TYPE_REQUEST_BASED:
2835 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2836 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2837 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2838 		break;
2839 	default:
2840 		BUG();
2841 	}
2842 
2843 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2844 	if (ret)
2845 		goto out;
2846 
2847 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2848 		goto out;
2849 
2850 	return pools;
2851 
2852 out:
2853 	dm_free_md_mempools(pools);
2854 
2855 	return NULL;
2856 }
2857 
2858 void dm_free_md_mempools(struct dm_md_mempools *pools)
2859 {
2860 	if (!pools)
2861 		return;
2862 
2863 	bioset_exit(&pools->bs);
2864 	bioset_exit(&pools->io_bs);
2865 
2866 	kfree(pools);
2867 }
2868 
2869 struct dm_pr {
2870 	u64	old_key;
2871 	u64	new_key;
2872 	u32	flags;
2873 	bool	fail_early;
2874 };
2875 
2876 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2877 		      void *data)
2878 {
2879 	struct mapped_device *md = bdev->bd_disk->private_data;
2880 	struct dm_table *table;
2881 	struct dm_target *ti;
2882 	int ret = -ENOTTY, srcu_idx;
2883 
2884 	table = dm_get_live_table(md, &srcu_idx);
2885 	if (!table || !dm_table_get_size(table))
2886 		goto out;
2887 
2888 	/* We only support devices that have a single target */
2889 	if (dm_table_get_num_targets(table) != 1)
2890 		goto out;
2891 	ti = dm_table_get_target(table, 0);
2892 
2893 	ret = -EINVAL;
2894 	if (!ti->type->iterate_devices)
2895 		goto out;
2896 
2897 	ret = ti->type->iterate_devices(ti, fn, data);
2898 out:
2899 	dm_put_live_table(md, srcu_idx);
2900 	return ret;
2901 }
2902 
2903 /*
2904  * For register / unregister we need to manually call out to every path.
2905  */
2906 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2907 			    sector_t start, sector_t len, void *data)
2908 {
2909 	struct dm_pr *pr = data;
2910 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2911 
2912 	if (!ops || !ops->pr_register)
2913 		return -EOPNOTSUPP;
2914 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2915 }
2916 
2917 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2918 			  u32 flags)
2919 {
2920 	struct dm_pr pr = {
2921 		.old_key	= old_key,
2922 		.new_key	= new_key,
2923 		.flags		= flags,
2924 		.fail_early	= true,
2925 	};
2926 	int ret;
2927 
2928 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2929 	if (ret && new_key) {
2930 		/* unregister all paths if we failed to register any path */
2931 		pr.old_key = new_key;
2932 		pr.new_key = 0;
2933 		pr.flags = 0;
2934 		pr.fail_early = false;
2935 		dm_call_pr(bdev, __dm_pr_register, &pr);
2936 	}
2937 
2938 	return ret;
2939 }
2940 
2941 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2942 			 u32 flags)
2943 {
2944 	struct mapped_device *md = bdev->bd_disk->private_data;
2945 	const struct pr_ops *ops;
2946 	int r, srcu_idx;
2947 
2948 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2949 	if (r < 0)
2950 		goto out;
2951 
2952 	ops = bdev->bd_disk->fops->pr_ops;
2953 	if (ops && ops->pr_reserve)
2954 		r = ops->pr_reserve(bdev, key, type, flags);
2955 	else
2956 		r = -EOPNOTSUPP;
2957 out:
2958 	dm_unprepare_ioctl(md, srcu_idx);
2959 	return r;
2960 }
2961 
2962 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2963 {
2964 	struct mapped_device *md = bdev->bd_disk->private_data;
2965 	const struct pr_ops *ops;
2966 	int r, srcu_idx;
2967 
2968 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2969 	if (r < 0)
2970 		goto out;
2971 
2972 	ops = bdev->bd_disk->fops->pr_ops;
2973 	if (ops && ops->pr_release)
2974 		r = ops->pr_release(bdev, key, type);
2975 	else
2976 		r = -EOPNOTSUPP;
2977 out:
2978 	dm_unprepare_ioctl(md, srcu_idx);
2979 	return r;
2980 }
2981 
2982 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2983 			 enum pr_type type, bool abort)
2984 {
2985 	struct mapped_device *md = bdev->bd_disk->private_data;
2986 	const struct pr_ops *ops;
2987 	int r, srcu_idx;
2988 
2989 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2990 	if (r < 0)
2991 		goto out;
2992 
2993 	ops = bdev->bd_disk->fops->pr_ops;
2994 	if (ops && ops->pr_preempt)
2995 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2996 	else
2997 		r = -EOPNOTSUPP;
2998 out:
2999 	dm_unprepare_ioctl(md, srcu_idx);
3000 	return r;
3001 }
3002 
3003 static int dm_pr_clear(struct block_device *bdev, u64 key)
3004 {
3005 	struct mapped_device *md = bdev->bd_disk->private_data;
3006 	const struct pr_ops *ops;
3007 	int r, srcu_idx;
3008 
3009 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3010 	if (r < 0)
3011 		goto out;
3012 
3013 	ops = bdev->bd_disk->fops->pr_ops;
3014 	if (ops && ops->pr_clear)
3015 		r = ops->pr_clear(bdev, key);
3016 	else
3017 		r = -EOPNOTSUPP;
3018 out:
3019 	dm_unprepare_ioctl(md, srcu_idx);
3020 	return r;
3021 }
3022 
3023 static const struct pr_ops dm_pr_ops = {
3024 	.pr_register	= dm_pr_register,
3025 	.pr_reserve	= dm_pr_reserve,
3026 	.pr_release	= dm_pr_release,
3027 	.pr_preempt	= dm_pr_preempt,
3028 	.pr_clear	= dm_pr_clear,
3029 };
3030 
3031 static const struct block_device_operations dm_blk_dops = {
3032 	.submit_bio = dm_submit_bio,
3033 	.open = dm_blk_open,
3034 	.release = dm_blk_close,
3035 	.ioctl = dm_blk_ioctl,
3036 	.getgeo = dm_blk_getgeo,
3037 	.report_zones = dm_blk_report_zones,
3038 	.pr_ops = &dm_pr_ops,
3039 	.owner = THIS_MODULE
3040 };
3041 
3042 static const struct block_device_operations dm_rq_blk_dops = {
3043 	.open = dm_blk_open,
3044 	.release = dm_blk_close,
3045 	.ioctl = dm_blk_ioctl,
3046 	.getgeo = dm_blk_getgeo,
3047 	.pr_ops = &dm_pr_ops,
3048 	.owner = THIS_MODULE
3049 };
3050 
3051 static const struct dax_operations dm_dax_ops = {
3052 	.direct_access = dm_dax_direct_access,
3053 	.dax_supported = dm_dax_supported,
3054 	.copy_from_iter = dm_dax_copy_from_iter,
3055 	.copy_to_iter = dm_dax_copy_to_iter,
3056 	.zero_page_range = dm_dax_zero_page_range,
3057 };
3058 
3059 /*
3060  * module hooks
3061  */
3062 module_init(dm_init);
3063 module_exit(dm_exit);
3064 
3065 module_param(major, uint, 0);
3066 MODULE_PARM_DESC(major, "The major number of the device mapper");
3067 
3068 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3069 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3070 
3071 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3072 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3073 
3074 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3075 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3076 
3077 MODULE_DESCRIPTION(DM_NAME " driver");
3078 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3079 MODULE_LICENSE("GPL");
3080