1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static bool bio_is_flush_with_data(struct bio *bio) 489 { 490 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 491 } 492 493 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio, 494 unsigned long start_time, struct dm_stats_aux *stats_aux) 495 { 496 bool is_flush_with_data; 497 unsigned int bi_size; 498 499 /* If REQ_PREFLUSH set save any payload but do not account it */ 500 is_flush_with_data = bio_is_flush_with_data(bio); 501 if (is_flush_with_data) { 502 bi_size = bio->bi_iter.bi_size; 503 bio->bi_iter.bi_size = 0; 504 } 505 506 if (!end) 507 bio_start_io_acct_time(bio, start_time); 508 else 509 bio_end_io_acct(bio, start_time); 510 511 if (unlikely(dm_stats_used(&md->stats))) 512 dm_stats_account_io(&md->stats, bio_data_dir(bio), 513 bio->bi_iter.bi_sector, bio_sectors(bio), 514 end, start_time, stats_aux); 515 516 /* Restore bio's payload so it does get accounted upon requeue */ 517 if (is_flush_with_data) 518 bio->bi_iter.bi_size = bi_size; 519 } 520 521 static void dm_start_io_acct(struct dm_io *io) 522 { 523 dm_io_acct(false, io->md, io->orig_bio, io->start_time, &io->stats_aux); 524 } 525 526 static void dm_end_io_acct(struct dm_io *io) 527 { 528 dm_io_acct(true, io->md, io->orig_bio, io->start_time, &io->stats_aux); 529 } 530 531 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 532 { 533 struct dm_io *io; 534 struct dm_target_io *tio; 535 struct bio *clone; 536 537 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 538 539 tio = clone_to_tio(clone); 540 tio->inside_dm_io = true; 541 tio->io = NULL; 542 543 io = container_of(tio, struct dm_io, tio); 544 io->magic = DM_IO_MAGIC; 545 io->status = 0; 546 atomic_set(&io->io_count, 1); 547 this_cpu_inc(*md->pending_io); 548 io->orig_bio = bio; 549 io->md = md; 550 spin_lock_init(&io->endio_lock); 551 552 io->start_time = jiffies; 553 554 dm_stats_record_start(&md->stats, &io->stats_aux); 555 556 return io; 557 } 558 559 static void free_io(struct dm_io *io) 560 { 561 bio_put(&io->tio.clone); 562 } 563 564 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 565 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 566 { 567 struct dm_target_io *tio; 568 struct bio *clone; 569 570 if (!ci->io->tio.io) { 571 /* the dm_target_io embedded in ci->io is available */ 572 tio = &ci->io->tio; 573 /* alloc_io() already initialized embedded clone */ 574 clone = &tio->clone; 575 } else { 576 clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 577 gfp_mask, &ci->io->md->bs); 578 if (!clone) 579 return NULL; 580 581 tio = clone_to_tio(clone); 582 tio->inside_dm_io = false; 583 } 584 585 tio->magic = DM_TIO_MAGIC; 586 tio->io = ci->io; 587 tio->ti = ti; 588 tio->target_bio_nr = target_bio_nr; 589 tio->is_duplicate_bio = false; 590 tio->len_ptr = len; 591 tio->old_sector = 0; 592 593 if (len) { 594 clone->bi_iter.bi_size = to_bytes(*len); 595 if (bio_integrity(clone)) 596 bio_integrity_trim(clone); 597 } 598 599 return clone; 600 } 601 602 static void free_tio(struct bio *clone) 603 { 604 if (clone_to_tio(clone)->inside_dm_io) 605 return; 606 bio_put(clone); 607 } 608 609 /* 610 * Add the bio to the list of deferred io. 611 */ 612 static void queue_io(struct mapped_device *md, struct bio *bio) 613 { 614 unsigned long flags; 615 616 spin_lock_irqsave(&md->deferred_lock, flags); 617 bio_list_add(&md->deferred, bio); 618 spin_unlock_irqrestore(&md->deferred_lock, flags); 619 queue_work(md->wq, &md->work); 620 } 621 622 /* 623 * Everyone (including functions in this file), should use this 624 * function to access the md->map field, and make sure they call 625 * dm_put_live_table() when finished. 626 */ 627 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 628 { 629 *srcu_idx = srcu_read_lock(&md->io_barrier); 630 631 return srcu_dereference(md->map, &md->io_barrier); 632 } 633 634 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 635 { 636 srcu_read_unlock(&md->io_barrier, srcu_idx); 637 } 638 639 void dm_sync_table(struct mapped_device *md) 640 { 641 synchronize_srcu(&md->io_barrier); 642 synchronize_rcu_expedited(); 643 } 644 645 /* 646 * A fast alternative to dm_get_live_table/dm_put_live_table. 647 * The caller must not block between these two functions. 648 */ 649 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 650 { 651 rcu_read_lock(); 652 return rcu_dereference(md->map); 653 } 654 655 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 656 { 657 rcu_read_unlock(); 658 } 659 660 static char *_dm_claim_ptr = "I belong to device-mapper"; 661 662 /* 663 * Open a table device so we can use it as a map destination. 664 */ 665 static int open_table_device(struct table_device *td, dev_t dev, 666 struct mapped_device *md) 667 { 668 struct block_device *bdev; 669 u64 part_off; 670 int r; 671 672 BUG_ON(td->dm_dev.bdev); 673 674 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 675 if (IS_ERR(bdev)) 676 return PTR_ERR(bdev); 677 678 r = bd_link_disk_holder(bdev, dm_disk(md)); 679 if (r) { 680 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 681 return r; 682 } 683 684 td->dm_dev.bdev = bdev; 685 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 686 return 0; 687 } 688 689 /* 690 * Close a table device that we've been using. 691 */ 692 static void close_table_device(struct table_device *td, struct mapped_device *md) 693 { 694 if (!td->dm_dev.bdev) 695 return; 696 697 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 698 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 699 put_dax(td->dm_dev.dax_dev); 700 td->dm_dev.bdev = NULL; 701 td->dm_dev.dax_dev = NULL; 702 } 703 704 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 705 fmode_t mode) 706 { 707 struct table_device *td; 708 709 list_for_each_entry(td, l, list) 710 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 711 return td; 712 713 return NULL; 714 } 715 716 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 717 struct dm_dev **result) 718 { 719 int r; 720 struct table_device *td; 721 722 mutex_lock(&md->table_devices_lock); 723 td = find_table_device(&md->table_devices, dev, mode); 724 if (!td) { 725 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 726 if (!td) { 727 mutex_unlock(&md->table_devices_lock); 728 return -ENOMEM; 729 } 730 731 td->dm_dev.mode = mode; 732 td->dm_dev.bdev = NULL; 733 734 if ((r = open_table_device(td, dev, md))) { 735 mutex_unlock(&md->table_devices_lock); 736 kfree(td); 737 return r; 738 } 739 740 format_dev_t(td->dm_dev.name, dev); 741 742 refcount_set(&td->count, 1); 743 list_add(&td->list, &md->table_devices); 744 } else { 745 refcount_inc(&td->count); 746 } 747 mutex_unlock(&md->table_devices_lock); 748 749 *result = &td->dm_dev; 750 return 0; 751 } 752 753 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 754 { 755 struct table_device *td = container_of(d, struct table_device, dm_dev); 756 757 mutex_lock(&md->table_devices_lock); 758 if (refcount_dec_and_test(&td->count)) { 759 close_table_device(td, md); 760 list_del(&td->list); 761 kfree(td); 762 } 763 mutex_unlock(&md->table_devices_lock); 764 } 765 766 static void free_table_devices(struct list_head *devices) 767 { 768 struct list_head *tmp, *next; 769 770 list_for_each_safe(tmp, next, devices) { 771 struct table_device *td = list_entry(tmp, struct table_device, list); 772 773 DMWARN("dm_destroy: %s still exists with %d references", 774 td->dm_dev.name, refcount_read(&td->count)); 775 kfree(td); 776 } 777 } 778 779 /* 780 * Get the geometry associated with a dm device 781 */ 782 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 783 { 784 *geo = md->geometry; 785 786 return 0; 787 } 788 789 /* 790 * Set the geometry of a device. 791 */ 792 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 793 { 794 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 795 796 if (geo->start > sz) { 797 DMWARN("Start sector is beyond the geometry limits."); 798 return -EINVAL; 799 } 800 801 md->geometry = *geo; 802 803 return 0; 804 } 805 806 static int __noflush_suspending(struct mapped_device *md) 807 { 808 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 809 } 810 811 /* 812 * Decrements the number of outstanding ios that a bio has been 813 * cloned into, completing the original io if necc. 814 */ 815 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 816 { 817 unsigned long flags; 818 blk_status_t io_error; 819 struct bio *bio; 820 struct mapped_device *md = io->md; 821 822 /* Push-back supersedes any I/O errors */ 823 if (unlikely(error)) { 824 spin_lock_irqsave(&io->endio_lock, flags); 825 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 826 io->status = error; 827 spin_unlock_irqrestore(&io->endio_lock, flags); 828 } 829 830 if (atomic_dec_and_test(&io->io_count)) { 831 bio = io->orig_bio; 832 if (io->status == BLK_STS_DM_REQUEUE) { 833 /* 834 * Target requested pushing back the I/O. 835 */ 836 spin_lock_irqsave(&md->deferred_lock, flags); 837 if (__noflush_suspending(md) && 838 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 839 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 840 bio_list_add_head(&md->deferred, bio); 841 } else { 842 /* 843 * noflush suspend was interrupted or this is 844 * a write to a zoned target. 845 */ 846 io->status = BLK_STS_IOERR; 847 } 848 spin_unlock_irqrestore(&md->deferred_lock, flags); 849 } 850 851 io_error = io->status; 852 dm_end_io_acct(io); 853 free_io(io); 854 smp_wmb(); 855 this_cpu_dec(*md->pending_io); 856 857 /* nudge anyone waiting on suspend queue */ 858 if (unlikely(wq_has_sleeper(&md->wait))) 859 wake_up(&md->wait); 860 861 if (io_error == BLK_STS_DM_REQUEUE) 862 return; 863 864 if (bio_is_flush_with_data(bio)) { 865 /* 866 * Preflush done for flush with data, reissue 867 * without REQ_PREFLUSH. 868 */ 869 bio->bi_opf &= ~REQ_PREFLUSH; 870 queue_io(md, bio); 871 } else { 872 /* done with normal IO or empty flush */ 873 if (io_error) 874 bio->bi_status = io_error; 875 bio_endio(bio); 876 } 877 } 878 } 879 880 void disable_discard(struct mapped_device *md) 881 { 882 struct queue_limits *limits = dm_get_queue_limits(md); 883 884 /* device doesn't really support DISCARD, disable it */ 885 limits->max_discard_sectors = 0; 886 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 887 } 888 889 void disable_write_same(struct mapped_device *md) 890 { 891 struct queue_limits *limits = dm_get_queue_limits(md); 892 893 /* device doesn't really support WRITE SAME, disable it */ 894 limits->max_write_same_sectors = 0; 895 } 896 897 void disable_write_zeroes(struct mapped_device *md) 898 { 899 struct queue_limits *limits = dm_get_queue_limits(md); 900 901 /* device doesn't really support WRITE ZEROES, disable it */ 902 limits->max_write_zeroes_sectors = 0; 903 } 904 905 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 906 { 907 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 908 } 909 910 static void clone_endio(struct bio *bio) 911 { 912 blk_status_t error = bio->bi_status; 913 struct dm_target_io *tio = clone_to_tio(bio); 914 struct dm_io *io = tio->io; 915 struct mapped_device *md = tio->io->md; 916 dm_endio_fn endio = tio->ti->type->end_io; 917 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 918 919 if (unlikely(error == BLK_STS_TARGET)) { 920 if (bio_op(bio) == REQ_OP_DISCARD && 921 !q->limits.max_discard_sectors) 922 disable_discard(md); 923 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 924 !q->limits.max_write_same_sectors) 925 disable_write_same(md); 926 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 927 !q->limits.max_write_zeroes_sectors) 928 disable_write_zeroes(md); 929 } 930 931 if (blk_queue_is_zoned(q)) 932 dm_zone_endio(io, bio); 933 934 if (endio) { 935 int r = endio(tio->ti, bio, &error); 936 switch (r) { 937 case DM_ENDIO_REQUEUE: 938 /* 939 * Requeuing writes to a sequential zone of a zoned 940 * target will break the sequential write pattern: 941 * fail such IO. 942 */ 943 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 944 error = BLK_STS_IOERR; 945 else 946 error = BLK_STS_DM_REQUEUE; 947 fallthrough; 948 case DM_ENDIO_DONE: 949 break; 950 case DM_ENDIO_INCOMPLETE: 951 /* The target will handle the io */ 952 return; 953 default: 954 DMWARN("unimplemented target endio return value: %d", r); 955 BUG(); 956 } 957 } 958 959 if (unlikely(swap_bios_limit(tio->ti, bio))) { 960 struct mapped_device *md = io->md; 961 up(&md->swap_bios_semaphore); 962 } 963 964 free_tio(bio); 965 dm_io_dec_pending(io, error); 966 } 967 968 /* 969 * Return maximum size of I/O possible at the supplied sector up to the current 970 * target boundary. 971 */ 972 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 973 sector_t target_offset) 974 { 975 return ti->len - target_offset; 976 } 977 978 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 979 { 980 sector_t target_offset = dm_target_offset(ti, sector); 981 sector_t len = max_io_len_target_boundary(ti, target_offset); 982 sector_t max_len; 983 984 /* 985 * Does the target need to split IO even further? 986 * - varied (per target) IO splitting is a tenet of DM; this 987 * explains why stacked chunk_sectors based splitting via 988 * blk_max_size_offset() isn't possible here. So pass in 989 * ti->max_io_len to override stacked chunk_sectors. 990 */ 991 if (ti->max_io_len) { 992 max_len = blk_max_size_offset(ti->table->md->queue, 993 target_offset, ti->max_io_len); 994 if (len > max_len) 995 len = max_len; 996 } 997 998 return len; 999 } 1000 1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1002 { 1003 if (len > UINT_MAX) { 1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1005 (unsigned long long)len, UINT_MAX); 1006 ti->error = "Maximum size of target IO is too large"; 1007 return -EINVAL; 1008 } 1009 1010 ti->max_io_len = (uint32_t) len; 1011 1012 return 0; 1013 } 1014 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1015 1016 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1017 sector_t sector, int *srcu_idx) 1018 __acquires(md->io_barrier) 1019 { 1020 struct dm_table *map; 1021 struct dm_target *ti; 1022 1023 map = dm_get_live_table(md, srcu_idx); 1024 if (!map) 1025 return NULL; 1026 1027 ti = dm_table_find_target(map, sector); 1028 if (!ti) 1029 return NULL; 1030 1031 return ti; 1032 } 1033 1034 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1035 long nr_pages, void **kaddr, pfn_t *pfn) 1036 { 1037 struct mapped_device *md = dax_get_private(dax_dev); 1038 sector_t sector = pgoff * PAGE_SECTORS; 1039 struct dm_target *ti; 1040 long len, ret = -EIO; 1041 int srcu_idx; 1042 1043 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1044 1045 if (!ti) 1046 goto out; 1047 if (!ti->type->direct_access) 1048 goto out; 1049 len = max_io_len(ti, sector) / PAGE_SECTORS; 1050 if (len < 1) 1051 goto out; 1052 nr_pages = min(len, nr_pages); 1053 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1054 1055 out: 1056 dm_put_live_table(md, srcu_idx); 1057 1058 return ret; 1059 } 1060 1061 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1062 size_t nr_pages) 1063 { 1064 struct mapped_device *md = dax_get_private(dax_dev); 1065 sector_t sector = pgoff * PAGE_SECTORS; 1066 struct dm_target *ti; 1067 int ret = -EIO; 1068 int srcu_idx; 1069 1070 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1071 1072 if (!ti) 1073 goto out; 1074 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1075 /* 1076 * ->zero_page_range() is mandatory dax operation. If we are 1077 * here, something is wrong. 1078 */ 1079 goto out; 1080 } 1081 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1082 out: 1083 dm_put_live_table(md, srcu_idx); 1084 1085 return ret; 1086 } 1087 1088 /* 1089 * A target may call dm_accept_partial_bio only from the map routine. It is 1090 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1091 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1092 * __send_duplicate_bios(). 1093 * 1094 * dm_accept_partial_bio informs the dm that the target only wants to process 1095 * additional n_sectors sectors of the bio and the rest of the data should be 1096 * sent in a next bio. 1097 * 1098 * A diagram that explains the arithmetics: 1099 * +--------------------+---------------+-------+ 1100 * | 1 | 2 | 3 | 1101 * +--------------------+---------------+-------+ 1102 * 1103 * <-------------- *tio->len_ptr ---------------> 1104 * <------- bi_size -------> 1105 * <-- n_sectors --> 1106 * 1107 * Region 1 was already iterated over with bio_advance or similar function. 1108 * (it may be empty if the target doesn't use bio_advance) 1109 * Region 2 is the remaining bio size that the target wants to process. 1110 * (it may be empty if region 1 is non-empty, although there is no reason 1111 * to make it empty) 1112 * The target requires that region 3 is to be sent in the next bio. 1113 * 1114 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1115 * the partially processed part (the sum of regions 1+2) must be the same for all 1116 * copies of the bio. 1117 */ 1118 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1119 { 1120 struct dm_target_io *tio = clone_to_tio(bio); 1121 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1122 1123 BUG_ON(tio->is_duplicate_bio); 1124 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1125 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1126 BUG_ON(bi_size > *tio->len_ptr); 1127 BUG_ON(n_sectors > bi_size); 1128 1129 *tio->len_ptr -= bi_size - n_sectors; 1130 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1131 } 1132 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1133 1134 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1135 { 1136 mutex_lock(&md->swap_bios_lock); 1137 while (latch < md->swap_bios) { 1138 cond_resched(); 1139 down(&md->swap_bios_semaphore); 1140 md->swap_bios--; 1141 } 1142 while (latch > md->swap_bios) { 1143 cond_resched(); 1144 up(&md->swap_bios_semaphore); 1145 md->swap_bios++; 1146 } 1147 mutex_unlock(&md->swap_bios_lock); 1148 } 1149 1150 static void __map_bio(struct bio *clone) 1151 { 1152 struct dm_target_io *tio = clone_to_tio(clone); 1153 int r; 1154 struct dm_io *io = tio->io; 1155 struct dm_target *ti = tio->ti; 1156 1157 clone->bi_end_io = clone_endio; 1158 1159 /* 1160 * Map the clone. If r == 0 we don't need to do 1161 * anything, the target has assumed ownership of 1162 * this io. 1163 */ 1164 dm_io_inc_pending(io); 1165 tio->old_sector = clone->bi_iter.bi_sector; 1166 1167 if (unlikely(swap_bios_limit(ti, clone))) { 1168 struct mapped_device *md = io->md; 1169 int latch = get_swap_bios(); 1170 if (unlikely(latch != md->swap_bios)) 1171 __set_swap_bios_limit(md, latch); 1172 down(&md->swap_bios_semaphore); 1173 } 1174 1175 /* 1176 * Check if the IO needs a special mapping due to zone append emulation 1177 * on zoned target. In this case, dm_zone_map_bio() calls the target 1178 * map operation. 1179 */ 1180 if (dm_emulate_zone_append(io->md)) 1181 r = dm_zone_map_bio(tio); 1182 else 1183 r = ti->type->map(ti, clone); 1184 1185 switch (r) { 1186 case DM_MAPIO_SUBMITTED: 1187 break; 1188 case DM_MAPIO_REMAPPED: 1189 /* the bio has been remapped so dispatch it */ 1190 trace_block_bio_remap(clone, bio_dev(io->orig_bio), 1191 tio->old_sector); 1192 submit_bio_noacct(clone); 1193 break; 1194 case DM_MAPIO_KILL: 1195 case DM_MAPIO_REQUEUE: 1196 if (unlikely(swap_bios_limit(ti, clone))) 1197 up(&io->md->swap_bios_semaphore); 1198 free_tio(clone); 1199 if (r == DM_MAPIO_KILL) 1200 dm_io_dec_pending(io, BLK_STS_IOERR); 1201 else 1202 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1203 break; 1204 default: 1205 DMWARN("unimplemented target map return value: %d", r); 1206 BUG(); 1207 } 1208 } 1209 1210 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1211 struct dm_target *ti, unsigned num_bios, 1212 unsigned *len) 1213 { 1214 struct bio *bio; 1215 int try; 1216 1217 for (try = 0; try < 2; try++) { 1218 int bio_nr; 1219 1220 if (try) 1221 mutex_lock(&ci->io->md->table_devices_lock); 1222 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1223 bio = alloc_tio(ci, ti, bio_nr, len, 1224 try ? GFP_NOIO : GFP_NOWAIT); 1225 if (!bio) 1226 break; 1227 1228 bio_list_add(blist, bio); 1229 } 1230 if (try) 1231 mutex_unlock(&ci->io->md->table_devices_lock); 1232 if (bio_nr == num_bios) 1233 return; 1234 1235 while ((bio = bio_list_pop(blist))) 1236 free_tio(bio); 1237 } 1238 } 1239 1240 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1241 unsigned num_bios, unsigned *len) 1242 { 1243 struct bio_list blist = BIO_EMPTY_LIST; 1244 struct bio *clone; 1245 1246 switch (num_bios) { 1247 case 0: 1248 break; 1249 case 1: 1250 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1251 clone_to_tio(clone)->is_duplicate_bio = true; 1252 __map_bio(clone); 1253 break; 1254 default: 1255 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1256 while ((clone = bio_list_pop(&blist))) { 1257 clone_to_tio(clone)->is_duplicate_bio = true; 1258 __map_bio(clone); 1259 } 1260 break; 1261 } 1262 } 1263 1264 static int __send_empty_flush(struct clone_info *ci) 1265 { 1266 unsigned target_nr = 0; 1267 struct dm_target *ti; 1268 struct bio flush_bio; 1269 1270 /* 1271 * Use an on-stack bio for this, it's safe since we don't 1272 * need to reference it after submit. It's just used as 1273 * the basis for the clone(s). 1274 */ 1275 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1276 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1277 1278 ci->bio = &flush_bio; 1279 ci->sector_count = 0; 1280 1281 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1282 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1283 1284 bio_uninit(ci->bio); 1285 return 0; 1286 } 1287 1288 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1289 unsigned num_bios) 1290 { 1291 unsigned len; 1292 1293 len = min_t(sector_t, ci->sector_count, 1294 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1295 1296 /* 1297 * dm_accept_partial_bio cannot be used with duplicate bios, 1298 * so update clone_info cursor before __send_duplicate_bios(). 1299 */ 1300 ci->sector += len; 1301 ci->sector_count -= len; 1302 1303 __send_duplicate_bios(ci, ti, num_bios, &len); 1304 } 1305 1306 static bool is_abnormal_io(struct bio *bio) 1307 { 1308 bool r = false; 1309 1310 switch (bio_op(bio)) { 1311 case REQ_OP_DISCARD: 1312 case REQ_OP_SECURE_ERASE: 1313 case REQ_OP_WRITE_SAME: 1314 case REQ_OP_WRITE_ZEROES: 1315 r = true; 1316 break; 1317 } 1318 1319 return r; 1320 } 1321 1322 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1323 int *result) 1324 { 1325 unsigned num_bios = 0; 1326 1327 switch (bio_op(ci->bio)) { 1328 case REQ_OP_DISCARD: 1329 num_bios = ti->num_discard_bios; 1330 break; 1331 case REQ_OP_SECURE_ERASE: 1332 num_bios = ti->num_secure_erase_bios; 1333 break; 1334 case REQ_OP_WRITE_SAME: 1335 num_bios = ti->num_write_same_bios; 1336 break; 1337 case REQ_OP_WRITE_ZEROES: 1338 num_bios = ti->num_write_zeroes_bios; 1339 break; 1340 default: 1341 return false; 1342 } 1343 1344 /* 1345 * Even though the device advertised support for this type of 1346 * request, that does not mean every target supports it, and 1347 * reconfiguration might also have changed that since the 1348 * check was performed. 1349 */ 1350 if (!num_bios) 1351 *result = -EOPNOTSUPP; 1352 else { 1353 __send_changing_extent_only(ci, ti, num_bios); 1354 *result = 0; 1355 } 1356 return true; 1357 } 1358 1359 /* 1360 * Select the correct strategy for processing a non-flush bio. 1361 */ 1362 static int __split_and_process_bio(struct clone_info *ci) 1363 { 1364 struct bio *clone; 1365 struct dm_target *ti; 1366 unsigned len; 1367 int r; 1368 1369 ti = dm_table_find_target(ci->map, ci->sector); 1370 if (!ti) 1371 return -EIO; 1372 1373 if (__process_abnormal_io(ci, ti, &r)) 1374 return r; 1375 1376 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1377 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1378 __map_bio(clone); 1379 1380 ci->sector += len; 1381 ci->sector_count -= len; 1382 1383 return 0; 1384 } 1385 1386 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1387 struct dm_table *map, struct bio *bio) 1388 { 1389 ci->map = map; 1390 ci->io = alloc_io(md, bio); 1391 ci->bio = bio; 1392 ci->sector = bio->bi_iter.bi_sector; 1393 ci->sector_count = bio_sectors(bio); 1394 1395 /* Shouldn't happen but sector_count was being set to 0 so... */ 1396 if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1397 ci->sector_count = 0; 1398 } 1399 1400 /* 1401 * Entry point to split a bio into clones and submit them to the targets. 1402 */ 1403 static void dm_split_and_process_bio(struct mapped_device *md, 1404 struct dm_table *map, struct bio *bio) 1405 { 1406 struct clone_info ci; 1407 struct bio *b; 1408 int error = 0; 1409 1410 init_clone_info(&ci, md, map, bio); 1411 1412 if (bio->bi_opf & REQ_PREFLUSH) { 1413 error = __send_empty_flush(&ci); 1414 /* dm_io_dec_pending submits any data associated with flush */ 1415 goto out; 1416 } 1417 1418 error = __split_and_process_bio(&ci); 1419 if (error || !ci.sector_count) 1420 goto out; 1421 1422 /* 1423 * Remainder must be passed to submit_bio_noacct() so it gets handled 1424 * *after* bios already submitted have been completely processed. 1425 * We take a clone of the original to store in ci.io->orig_bio to be 1426 * used by dm_end_io_acct() and for dm_io_dec_pending() to use for 1427 * completion handling. 1428 */ 1429 b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1430 GFP_NOIO, &md->queue->bio_split); 1431 ci.io->orig_bio = b; 1432 1433 bio_chain(b, bio); 1434 trace_block_split(b, bio->bi_iter.bi_sector); 1435 submit_bio_noacct(bio); 1436 out: 1437 dm_start_io_acct(ci.io); 1438 /* drop the extra reference count */ 1439 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1440 } 1441 1442 static void dm_submit_bio(struct bio *bio) 1443 { 1444 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1445 int srcu_idx; 1446 struct dm_table *map; 1447 1448 map = dm_get_live_table(md, &srcu_idx); 1449 if (unlikely(!map)) { 1450 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1451 dm_device_name(md)); 1452 bio_io_error(bio); 1453 goto out; 1454 } 1455 1456 /* If suspended, queue this IO for later */ 1457 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1458 if (bio->bi_opf & REQ_NOWAIT) 1459 bio_wouldblock_error(bio); 1460 else if (bio->bi_opf & REQ_RAHEAD) 1461 bio_io_error(bio); 1462 else 1463 queue_io(md, bio); 1464 goto out; 1465 } 1466 1467 /* 1468 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1469 * otherwise associated queue_limits won't be imposed. 1470 */ 1471 if (is_abnormal_io(bio)) 1472 blk_queue_split(&bio); 1473 1474 dm_split_and_process_bio(md, map, bio); 1475 out: 1476 dm_put_live_table(md, srcu_idx); 1477 } 1478 1479 /*----------------------------------------------------------------- 1480 * An IDR is used to keep track of allocated minor numbers. 1481 *---------------------------------------------------------------*/ 1482 static void free_minor(int minor) 1483 { 1484 spin_lock(&_minor_lock); 1485 idr_remove(&_minor_idr, minor); 1486 spin_unlock(&_minor_lock); 1487 } 1488 1489 /* 1490 * See if the device with a specific minor # is free. 1491 */ 1492 static int specific_minor(int minor) 1493 { 1494 int r; 1495 1496 if (minor >= (1 << MINORBITS)) 1497 return -EINVAL; 1498 1499 idr_preload(GFP_KERNEL); 1500 spin_lock(&_minor_lock); 1501 1502 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1503 1504 spin_unlock(&_minor_lock); 1505 idr_preload_end(); 1506 if (r < 0) 1507 return r == -ENOSPC ? -EBUSY : r; 1508 return 0; 1509 } 1510 1511 static int next_free_minor(int *minor) 1512 { 1513 int r; 1514 1515 idr_preload(GFP_KERNEL); 1516 spin_lock(&_minor_lock); 1517 1518 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1519 1520 spin_unlock(&_minor_lock); 1521 idr_preload_end(); 1522 if (r < 0) 1523 return r; 1524 *minor = r; 1525 return 0; 1526 } 1527 1528 static const struct block_device_operations dm_blk_dops; 1529 static const struct block_device_operations dm_rq_blk_dops; 1530 static const struct dax_operations dm_dax_ops; 1531 1532 static void dm_wq_work(struct work_struct *work); 1533 1534 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1535 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1536 { 1537 dm_destroy_crypto_profile(q->crypto_profile); 1538 } 1539 1540 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1541 1542 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1543 { 1544 } 1545 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1546 1547 static void cleanup_mapped_device(struct mapped_device *md) 1548 { 1549 if (md->wq) 1550 destroy_workqueue(md->wq); 1551 bioset_exit(&md->bs); 1552 bioset_exit(&md->io_bs); 1553 1554 if (md->dax_dev) { 1555 dax_remove_host(md->disk); 1556 kill_dax(md->dax_dev); 1557 put_dax(md->dax_dev); 1558 md->dax_dev = NULL; 1559 } 1560 1561 if (md->disk) { 1562 spin_lock(&_minor_lock); 1563 md->disk->private_data = NULL; 1564 spin_unlock(&_minor_lock); 1565 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1566 dm_sysfs_exit(md); 1567 del_gendisk(md->disk); 1568 } 1569 dm_queue_destroy_crypto_profile(md->queue); 1570 blk_cleanup_disk(md->disk); 1571 } 1572 1573 if (md->pending_io) { 1574 free_percpu(md->pending_io); 1575 md->pending_io = NULL; 1576 } 1577 1578 cleanup_srcu_struct(&md->io_barrier); 1579 1580 mutex_destroy(&md->suspend_lock); 1581 mutex_destroy(&md->type_lock); 1582 mutex_destroy(&md->table_devices_lock); 1583 mutex_destroy(&md->swap_bios_lock); 1584 1585 dm_mq_cleanup_mapped_device(md); 1586 dm_cleanup_zoned_dev(md); 1587 } 1588 1589 /* 1590 * Allocate and initialise a blank device with a given minor. 1591 */ 1592 static struct mapped_device *alloc_dev(int minor) 1593 { 1594 int r, numa_node_id = dm_get_numa_node(); 1595 struct mapped_device *md; 1596 void *old_md; 1597 1598 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1599 if (!md) { 1600 DMWARN("unable to allocate device, out of memory."); 1601 return NULL; 1602 } 1603 1604 if (!try_module_get(THIS_MODULE)) 1605 goto bad_module_get; 1606 1607 /* get a minor number for the dev */ 1608 if (minor == DM_ANY_MINOR) 1609 r = next_free_minor(&minor); 1610 else 1611 r = specific_minor(minor); 1612 if (r < 0) 1613 goto bad_minor; 1614 1615 r = init_srcu_struct(&md->io_barrier); 1616 if (r < 0) 1617 goto bad_io_barrier; 1618 1619 md->numa_node_id = numa_node_id; 1620 md->init_tio_pdu = false; 1621 md->type = DM_TYPE_NONE; 1622 mutex_init(&md->suspend_lock); 1623 mutex_init(&md->type_lock); 1624 mutex_init(&md->table_devices_lock); 1625 spin_lock_init(&md->deferred_lock); 1626 atomic_set(&md->holders, 1); 1627 atomic_set(&md->open_count, 0); 1628 atomic_set(&md->event_nr, 0); 1629 atomic_set(&md->uevent_seq, 0); 1630 INIT_LIST_HEAD(&md->uevent_list); 1631 INIT_LIST_HEAD(&md->table_devices); 1632 spin_lock_init(&md->uevent_lock); 1633 1634 /* 1635 * default to bio-based until DM table is loaded and md->type 1636 * established. If request-based table is loaded: blk-mq will 1637 * override accordingly. 1638 */ 1639 md->disk = blk_alloc_disk(md->numa_node_id); 1640 if (!md->disk) 1641 goto bad; 1642 md->queue = md->disk->queue; 1643 1644 init_waitqueue_head(&md->wait); 1645 INIT_WORK(&md->work, dm_wq_work); 1646 init_waitqueue_head(&md->eventq); 1647 init_completion(&md->kobj_holder.completion); 1648 1649 md->swap_bios = get_swap_bios(); 1650 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1651 mutex_init(&md->swap_bios_lock); 1652 1653 md->disk->major = _major; 1654 md->disk->first_minor = minor; 1655 md->disk->minors = 1; 1656 md->disk->flags |= GENHD_FL_NO_PART; 1657 md->disk->fops = &dm_blk_dops; 1658 md->disk->queue = md->queue; 1659 md->disk->private_data = md; 1660 sprintf(md->disk->disk_name, "dm-%d", minor); 1661 1662 if (IS_ENABLED(CONFIG_FS_DAX)) { 1663 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1664 if (IS_ERR(md->dax_dev)) { 1665 md->dax_dev = NULL; 1666 goto bad; 1667 } 1668 set_dax_nocache(md->dax_dev); 1669 set_dax_nomc(md->dax_dev); 1670 if (dax_add_host(md->dax_dev, md->disk)) 1671 goto bad; 1672 } 1673 1674 format_dev_t(md->name, MKDEV(_major, minor)); 1675 1676 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1677 if (!md->wq) 1678 goto bad; 1679 1680 md->pending_io = alloc_percpu(unsigned long); 1681 if (!md->pending_io) 1682 goto bad; 1683 1684 dm_stats_init(&md->stats); 1685 1686 /* Populate the mapping, nobody knows we exist yet */ 1687 spin_lock(&_minor_lock); 1688 old_md = idr_replace(&_minor_idr, md, minor); 1689 spin_unlock(&_minor_lock); 1690 1691 BUG_ON(old_md != MINOR_ALLOCED); 1692 1693 return md; 1694 1695 bad: 1696 cleanup_mapped_device(md); 1697 bad_io_barrier: 1698 free_minor(minor); 1699 bad_minor: 1700 module_put(THIS_MODULE); 1701 bad_module_get: 1702 kvfree(md); 1703 return NULL; 1704 } 1705 1706 static void unlock_fs(struct mapped_device *md); 1707 1708 static void free_dev(struct mapped_device *md) 1709 { 1710 int minor = MINOR(disk_devt(md->disk)); 1711 1712 unlock_fs(md); 1713 1714 cleanup_mapped_device(md); 1715 1716 free_table_devices(&md->table_devices); 1717 dm_stats_cleanup(&md->stats); 1718 free_minor(minor); 1719 1720 module_put(THIS_MODULE); 1721 kvfree(md); 1722 } 1723 1724 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1725 { 1726 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1727 int ret = 0; 1728 1729 if (dm_table_bio_based(t)) { 1730 /* 1731 * The md may already have mempools that need changing. 1732 * If so, reload bioset because front_pad may have changed 1733 * because a different table was loaded. 1734 */ 1735 bioset_exit(&md->bs); 1736 bioset_exit(&md->io_bs); 1737 1738 } else if (bioset_initialized(&md->bs)) { 1739 /* 1740 * There's no need to reload with request-based dm 1741 * because the size of front_pad doesn't change. 1742 * Note for future: If you are to reload bioset, 1743 * prep-ed requests in the queue may refer 1744 * to bio from the old bioset, so you must walk 1745 * through the queue to unprep. 1746 */ 1747 goto out; 1748 } 1749 1750 BUG_ON(!p || 1751 bioset_initialized(&md->bs) || 1752 bioset_initialized(&md->io_bs)); 1753 1754 ret = bioset_init_from_src(&md->bs, &p->bs); 1755 if (ret) 1756 goto out; 1757 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1758 if (ret) 1759 bioset_exit(&md->bs); 1760 out: 1761 /* mempool bind completed, no longer need any mempools in the table */ 1762 dm_table_free_md_mempools(t); 1763 return ret; 1764 } 1765 1766 /* 1767 * Bind a table to the device. 1768 */ 1769 static void event_callback(void *context) 1770 { 1771 unsigned long flags; 1772 LIST_HEAD(uevents); 1773 struct mapped_device *md = (struct mapped_device *) context; 1774 1775 spin_lock_irqsave(&md->uevent_lock, flags); 1776 list_splice_init(&md->uevent_list, &uevents); 1777 spin_unlock_irqrestore(&md->uevent_lock, flags); 1778 1779 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1780 1781 atomic_inc(&md->event_nr); 1782 wake_up(&md->eventq); 1783 dm_issue_global_event(); 1784 } 1785 1786 /* 1787 * Returns old map, which caller must destroy. 1788 */ 1789 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1790 struct queue_limits *limits) 1791 { 1792 struct dm_table *old_map; 1793 struct request_queue *q = md->queue; 1794 bool request_based = dm_table_request_based(t); 1795 sector_t size; 1796 int ret; 1797 1798 lockdep_assert_held(&md->suspend_lock); 1799 1800 size = dm_table_get_size(t); 1801 1802 /* 1803 * Wipe any geometry if the size of the table changed. 1804 */ 1805 if (size != dm_get_size(md)) 1806 memset(&md->geometry, 0, sizeof(md->geometry)); 1807 1808 if (!get_capacity(md->disk)) 1809 set_capacity(md->disk, size); 1810 else 1811 set_capacity_and_notify(md->disk, size); 1812 1813 dm_table_event_callback(t, event_callback, md); 1814 1815 if (request_based) { 1816 /* 1817 * Leverage the fact that request-based DM targets are 1818 * immutable singletons - used to optimize dm_mq_queue_rq. 1819 */ 1820 md->immutable_target = dm_table_get_immutable_target(t); 1821 } 1822 1823 ret = __bind_mempools(md, t); 1824 if (ret) { 1825 old_map = ERR_PTR(ret); 1826 goto out; 1827 } 1828 1829 ret = dm_table_set_restrictions(t, q, limits); 1830 if (ret) { 1831 old_map = ERR_PTR(ret); 1832 goto out; 1833 } 1834 1835 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1836 rcu_assign_pointer(md->map, (void *)t); 1837 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1838 1839 if (old_map) 1840 dm_sync_table(md); 1841 1842 out: 1843 return old_map; 1844 } 1845 1846 /* 1847 * Returns unbound table for the caller to free. 1848 */ 1849 static struct dm_table *__unbind(struct mapped_device *md) 1850 { 1851 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1852 1853 if (!map) 1854 return NULL; 1855 1856 dm_table_event_callback(map, NULL, NULL); 1857 RCU_INIT_POINTER(md->map, NULL); 1858 dm_sync_table(md); 1859 1860 return map; 1861 } 1862 1863 /* 1864 * Constructor for a new device. 1865 */ 1866 int dm_create(int minor, struct mapped_device **result) 1867 { 1868 struct mapped_device *md; 1869 1870 md = alloc_dev(minor); 1871 if (!md) 1872 return -ENXIO; 1873 1874 dm_ima_reset_data(md); 1875 1876 *result = md; 1877 return 0; 1878 } 1879 1880 /* 1881 * Functions to manage md->type. 1882 * All are required to hold md->type_lock. 1883 */ 1884 void dm_lock_md_type(struct mapped_device *md) 1885 { 1886 mutex_lock(&md->type_lock); 1887 } 1888 1889 void dm_unlock_md_type(struct mapped_device *md) 1890 { 1891 mutex_unlock(&md->type_lock); 1892 } 1893 1894 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1895 { 1896 BUG_ON(!mutex_is_locked(&md->type_lock)); 1897 md->type = type; 1898 } 1899 1900 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1901 { 1902 return md->type; 1903 } 1904 1905 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1906 { 1907 return md->immutable_target_type; 1908 } 1909 1910 /* 1911 * The queue_limits are only valid as long as you have a reference 1912 * count on 'md'. 1913 */ 1914 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1915 { 1916 BUG_ON(!atomic_read(&md->holders)); 1917 return &md->queue->limits; 1918 } 1919 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1920 1921 /* 1922 * Setup the DM device's queue based on md's type 1923 */ 1924 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1925 { 1926 enum dm_queue_mode type = dm_table_get_type(t); 1927 struct queue_limits limits; 1928 int r; 1929 1930 switch (type) { 1931 case DM_TYPE_REQUEST_BASED: 1932 md->disk->fops = &dm_rq_blk_dops; 1933 r = dm_mq_init_request_queue(md, t); 1934 if (r) { 1935 DMERR("Cannot initialize queue for request-based dm mapped device"); 1936 return r; 1937 } 1938 break; 1939 case DM_TYPE_BIO_BASED: 1940 case DM_TYPE_DAX_BIO_BASED: 1941 break; 1942 case DM_TYPE_NONE: 1943 WARN_ON_ONCE(true); 1944 break; 1945 } 1946 1947 r = dm_calculate_queue_limits(t, &limits); 1948 if (r) { 1949 DMERR("Cannot calculate initial queue limits"); 1950 return r; 1951 } 1952 r = dm_table_set_restrictions(t, md->queue, &limits); 1953 if (r) 1954 return r; 1955 1956 r = add_disk(md->disk); 1957 if (r) 1958 return r; 1959 1960 r = dm_sysfs_init(md); 1961 if (r) { 1962 del_gendisk(md->disk); 1963 return r; 1964 } 1965 md->type = type; 1966 return 0; 1967 } 1968 1969 struct mapped_device *dm_get_md(dev_t dev) 1970 { 1971 struct mapped_device *md; 1972 unsigned minor = MINOR(dev); 1973 1974 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1975 return NULL; 1976 1977 spin_lock(&_minor_lock); 1978 1979 md = idr_find(&_minor_idr, minor); 1980 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 1981 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 1982 md = NULL; 1983 goto out; 1984 } 1985 dm_get(md); 1986 out: 1987 spin_unlock(&_minor_lock); 1988 1989 return md; 1990 } 1991 EXPORT_SYMBOL_GPL(dm_get_md); 1992 1993 void *dm_get_mdptr(struct mapped_device *md) 1994 { 1995 return md->interface_ptr; 1996 } 1997 1998 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1999 { 2000 md->interface_ptr = ptr; 2001 } 2002 2003 void dm_get(struct mapped_device *md) 2004 { 2005 atomic_inc(&md->holders); 2006 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2007 } 2008 2009 int dm_hold(struct mapped_device *md) 2010 { 2011 spin_lock(&_minor_lock); 2012 if (test_bit(DMF_FREEING, &md->flags)) { 2013 spin_unlock(&_minor_lock); 2014 return -EBUSY; 2015 } 2016 dm_get(md); 2017 spin_unlock(&_minor_lock); 2018 return 0; 2019 } 2020 EXPORT_SYMBOL_GPL(dm_hold); 2021 2022 const char *dm_device_name(struct mapped_device *md) 2023 { 2024 return md->name; 2025 } 2026 EXPORT_SYMBOL_GPL(dm_device_name); 2027 2028 static void __dm_destroy(struct mapped_device *md, bool wait) 2029 { 2030 struct dm_table *map; 2031 int srcu_idx; 2032 2033 might_sleep(); 2034 2035 spin_lock(&_minor_lock); 2036 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2037 set_bit(DMF_FREEING, &md->flags); 2038 spin_unlock(&_minor_lock); 2039 2040 blk_set_queue_dying(md->queue); 2041 2042 /* 2043 * Take suspend_lock so that presuspend and postsuspend methods 2044 * do not race with internal suspend. 2045 */ 2046 mutex_lock(&md->suspend_lock); 2047 map = dm_get_live_table(md, &srcu_idx); 2048 if (!dm_suspended_md(md)) { 2049 dm_table_presuspend_targets(map); 2050 set_bit(DMF_SUSPENDED, &md->flags); 2051 set_bit(DMF_POST_SUSPENDING, &md->flags); 2052 dm_table_postsuspend_targets(map); 2053 } 2054 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2055 dm_put_live_table(md, srcu_idx); 2056 mutex_unlock(&md->suspend_lock); 2057 2058 /* 2059 * Rare, but there may be I/O requests still going to complete, 2060 * for example. Wait for all references to disappear. 2061 * No one should increment the reference count of the mapped_device, 2062 * after the mapped_device state becomes DMF_FREEING. 2063 */ 2064 if (wait) 2065 while (atomic_read(&md->holders)) 2066 msleep(1); 2067 else if (atomic_read(&md->holders)) 2068 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2069 dm_device_name(md), atomic_read(&md->holders)); 2070 2071 dm_table_destroy(__unbind(md)); 2072 free_dev(md); 2073 } 2074 2075 void dm_destroy(struct mapped_device *md) 2076 { 2077 __dm_destroy(md, true); 2078 } 2079 2080 void dm_destroy_immediate(struct mapped_device *md) 2081 { 2082 __dm_destroy(md, false); 2083 } 2084 2085 void dm_put(struct mapped_device *md) 2086 { 2087 atomic_dec(&md->holders); 2088 } 2089 EXPORT_SYMBOL_GPL(dm_put); 2090 2091 static bool dm_in_flight_bios(struct mapped_device *md) 2092 { 2093 int cpu; 2094 unsigned long sum = 0; 2095 2096 for_each_possible_cpu(cpu) 2097 sum += *per_cpu_ptr(md->pending_io, cpu); 2098 2099 return sum != 0; 2100 } 2101 2102 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2103 { 2104 int r = 0; 2105 DEFINE_WAIT(wait); 2106 2107 while (true) { 2108 prepare_to_wait(&md->wait, &wait, task_state); 2109 2110 if (!dm_in_flight_bios(md)) 2111 break; 2112 2113 if (signal_pending_state(task_state, current)) { 2114 r = -EINTR; 2115 break; 2116 } 2117 2118 io_schedule(); 2119 } 2120 finish_wait(&md->wait, &wait); 2121 2122 smp_rmb(); 2123 2124 return r; 2125 } 2126 2127 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2128 { 2129 int r = 0; 2130 2131 if (!queue_is_mq(md->queue)) 2132 return dm_wait_for_bios_completion(md, task_state); 2133 2134 while (true) { 2135 if (!blk_mq_queue_inflight(md->queue)) 2136 break; 2137 2138 if (signal_pending_state(task_state, current)) { 2139 r = -EINTR; 2140 break; 2141 } 2142 2143 msleep(5); 2144 } 2145 2146 return r; 2147 } 2148 2149 /* 2150 * Process the deferred bios 2151 */ 2152 static void dm_wq_work(struct work_struct *work) 2153 { 2154 struct mapped_device *md = container_of(work, struct mapped_device, work); 2155 struct bio *bio; 2156 2157 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2158 spin_lock_irq(&md->deferred_lock); 2159 bio = bio_list_pop(&md->deferred); 2160 spin_unlock_irq(&md->deferred_lock); 2161 2162 if (!bio) 2163 break; 2164 2165 submit_bio_noacct(bio); 2166 } 2167 } 2168 2169 static void dm_queue_flush(struct mapped_device *md) 2170 { 2171 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2172 smp_mb__after_atomic(); 2173 queue_work(md->wq, &md->work); 2174 } 2175 2176 /* 2177 * Swap in a new table, returning the old one for the caller to destroy. 2178 */ 2179 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2180 { 2181 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2182 struct queue_limits limits; 2183 int r; 2184 2185 mutex_lock(&md->suspend_lock); 2186 2187 /* device must be suspended */ 2188 if (!dm_suspended_md(md)) 2189 goto out; 2190 2191 /* 2192 * If the new table has no data devices, retain the existing limits. 2193 * This helps multipath with queue_if_no_path if all paths disappear, 2194 * then new I/O is queued based on these limits, and then some paths 2195 * reappear. 2196 */ 2197 if (dm_table_has_no_data_devices(table)) { 2198 live_map = dm_get_live_table_fast(md); 2199 if (live_map) 2200 limits = md->queue->limits; 2201 dm_put_live_table_fast(md); 2202 } 2203 2204 if (!live_map) { 2205 r = dm_calculate_queue_limits(table, &limits); 2206 if (r) { 2207 map = ERR_PTR(r); 2208 goto out; 2209 } 2210 } 2211 2212 map = __bind(md, table, &limits); 2213 dm_issue_global_event(); 2214 2215 out: 2216 mutex_unlock(&md->suspend_lock); 2217 return map; 2218 } 2219 2220 /* 2221 * Functions to lock and unlock any filesystem running on the 2222 * device. 2223 */ 2224 static int lock_fs(struct mapped_device *md) 2225 { 2226 int r; 2227 2228 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2229 2230 r = freeze_bdev(md->disk->part0); 2231 if (!r) 2232 set_bit(DMF_FROZEN, &md->flags); 2233 return r; 2234 } 2235 2236 static void unlock_fs(struct mapped_device *md) 2237 { 2238 if (!test_bit(DMF_FROZEN, &md->flags)) 2239 return; 2240 thaw_bdev(md->disk->part0); 2241 clear_bit(DMF_FROZEN, &md->flags); 2242 } 2243 2244 /* 2245 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2246 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2247 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2248 * 2249 * If __dm_suspend returns 0, the device is completely quiescent 2250 * now. There is no request-processing activity. All new requests 2251 * are being added to md->deferred list. 2252 */ 2253 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2254 unsigned suspend_flags, unsigned int task_state, 2255 int dmf_suspended_flag) 2256 { 2257 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2258 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2259 int r; 2260 2261 lockdep_assert_held(&md->suspend_lock); 2262 2263 /* 2264 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2265 * This flag is cleared before dm_suspend returns. 2266 */ 2267 if (noflush) 2268 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2269 else 2270 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2271 2272 /* 2273 * This gets reverted if there's an error later and the targets 2274 * provide the .presuspend_undo hook. 2275 */ 2276 dm_table_presuspend_targets(map); 2277 2278 /* 2279 * Flush I/O to the device. 2280 * Any I/O submitted after lock_fs() may not be flushed. 2281 * noflush takes precedence over do_lockfs. 2282 * (lock_fs() flushes I/Os and waits for them to complete.) 2283 */ 2284 if (!noflush && do_lockfs) { 2285 r = lock_fs(md); 2286 if (r) { 2287 dm_table_presuspend_undo_targets(map); 2288 return r; 2289 } 2290 } 2291 2292 /* 2293 * Here we must make sure that no processes are submitting requests 2294 * to target drivers i.e. no one may be executing 2295 * dm_split_and_process_bio from dm_submit_bio. 2296 * 2297 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2298 * we take the write lock. To prevent any process from reentering 2299 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2300 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2301 * flush_workqueue(md->wq). 2302 */ 2303 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2304 if (map) 2305 synchronize_srcu(&md->io_barrier); 2306 2307 /* 2308 * Stop md->queue before flushing md->wq in case request-based 2309 * dm defers requests to md->wq from md->queue. 2310 */ 2311 if (dm_request_based(md)) 2312 dm_stop_queue(md->queue); 2313 2314 flush_workqueue(md->wq); 2315 2316 /* 2317 * At this point no more requests are entering target request routines. 2318 * We call dm_wait_for_completion to wait for all existing requests 2319 * to finish. 2320 */ 2321 r = dm_wait_for_completion(md, task_state); 2322 if (!r) 2323 set_bit(dmf_suspended_flag, &md->flags); 2324 2325 if (noflush) 2326 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2327 if (map) 2328 synchronize_srcu(&md->io_barrier); 2329 2330 /* were we interrupted ? */ 2331 if (r < 0) { 2332 dm_queue_flush(md); 2333 2334 if (dm_request_based(md)) 2335 dm_start_queue(md->queue); 2336 2337 unlock_fs(md); 2338 dm_table_presuspend_undo_targets(map); 2339 /* pushback list is already flushed, so skip flush */ 2340 } 2341 2342 return r; 2343 } 2344 2345 /* 2346 * We need to be able to change a mapping table under a mounted 2347 * filesystem. For example we might want to move some data in 2348 * the background. Before the table can be swapped with 2349 * dm_bind_table, dm_suspend must be called to flush any in 2350 * flight bios and ensure that any further io gets deferred. 2351 */ 2352 /* 2353 * Suspend mechanism in request-based dm. 2354 * 2355 * 1. Flush all I/Os by lock_fs() if needed. 2356 * 2. Stop dispatching any I/O by stopping the request_queue. 2357 * 3. Wait for all in-flight I/Os to be completed or requeued. 2358 * 2359 * To abort suspend, start the request_queue. 2360 */ 2361 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2362 { 2363 struct dm_table *map = NULL; 2364 int r = 0; 2365 2366 retry: 2367 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2368 2369 if (dm_suspended_md(md)) { 2370 r = -EINVAL; 2371 goto out_unlock; 2372 } 2373 2374 if (dm_suspended_internally_md(md)) { 2375 /* already internally suspended, wait for internal resume */ 2376 mutex_unlock(&md->suspend_lock); 2377 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2378 if (r) 2379 return r; 2380 goto retry; 2381 } 2382 2383 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2384 2385 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2386 if (r) 2387 goto out_unlock; 2388 2389 set_bit(DMF_POST_SUSPENDING, &md->flags); 2390 dm_table_postsuspend_targets(map); 2391 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2392 2393 out_unlock: 2394 mutex_unlock(&md->suspend_lock); 2395 return r; 2396 } 2397 2398 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2399 { 2400 if (map) { 2401 int r = dm_table_resume_targets(map); 2402 if (r) 2403 return r; 2404 } 2405 2406 dm_queue_flush(md); 2407 2408 /* 2409 * Flushing deferred I/Os must be done after targets are resumed 2410 * so that mapping of targets can work correctly. 2411 * Request-based dm is queueing the deferred I/Os in its request_queue. 2412 */ 2413 if (dm_request_based(md)) 2414 dm_start_queue(md->queue); 2415 2416 unlock_fs(md); 2417 2418 return 0; 2419 } 2420 2421 int dm_resume(struct mapped_device *md) 2422 { 2423 int r; 2424 struct dm_table *map = NULL; 2425 2426 retry: 2427 r = -EINVAL; 2428 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2429 2430 if (!dm_suspended_md(md)) 2431 goto out; 2432 2433 if (dm_suspended_internally_md(md)) { 2434 /* already internally suspended, wait for internal resume */ 2435 mutex_unlock(&md->suspend_lock); 2436 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2437 if (r) 2438 return r; 2439 goto retry; 2440 } 2441 2442 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2443 if (!map || !dm_table_get_size(map)) 2444 goto out; 2445 2446 r = __dm_resume(md, map); 2447 if (r) 2448 goto out; 2449 2450 clear_bit(DMF_SUSPENDED, &md->flags); 2451 out: 2452 mutex_unlock(&md->suspend_lock); 2453 2454 return r; 2455 } 2456 2457 /* 2458 * Internal suspend/resume works like userspace-driven suspend. It waits 2459 * until all bios finish and prevents issuing new bios to the target drivers. 2460 * It may be used only from the kernel. 2461 */ 2462 2463 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2464 { 2465 struct dm_table *map = NULL; 2466 2467 lockdep_assert_held(&md->suspend_lock); 2468 2469 if (md->internal_suspend_count++) 2470 return; /* nested internal suspend */ 2471 2472 if (dm_suspended_md(md)) { 2473 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2474 return; /* nest suspend */ 2475 } 2476 2477 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2478 2479 /* 2480 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2481 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2482 * would require changing .presuspend to return an error -- avoid this 2483 * until there is a need for more elaborate variants of internal suspend. 2484 */ 2485 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2486 DMF_SUSPENDED_INTERNALLY); 2487 2488 set_bit(DMF_POST_SUSPENDING, &md->flags); 2489 dm_table_postsuspend_targets(map); 2490 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2491 } 2492 2493 static void __dm_internal_resume(struct mapped_device *md) 2494 { 2495 BUG_ON(!md->internal_suspend_count); 2496 2497 if (--md->internal_suspend_count) 2498 return; /* resume from nested internal suspend */ 2499 2500 if (dm_suspended_md(md)) 2501 goto done; /* resume from nested suspend */ 2502 2503 /* 2504 * NOTE: existing callers don't need to call dm_table_resume_targets 2505 * (which may fail -- so best to avoid it for now by passing NULL map) 2506 */ 2507 (void) __dm_resume(md, NULL); 2508 2509 done: 2510 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2511 smp_mb__after_atomic(); 2512 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2513 } 2514 2515 void dm_internal_suspend_noflush(struct mapped_device *md) 2516 { 2517 mutex_lock(&md->suspend_lock); 2518 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2519 mutex_unlock(&md->suspend_lock); 2520 } 2521 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2522 2523 void dm_internal_resume(struct mapped_device *md) 2524 { 2525 mutex_lock(&md->suspend_lock); 2526 __dm_internal_resume(md); 2527 mutex_unlock(&md->suspend_lock); 2528 } 2529 EXPORT_SYMBOL_GPL(dm_internal_resume); 2530 2531 /* 2532 * Fast variants of internal suspend/resume hold md->suspend_lock, 2533 * which prevents interaction with userspace-driven suspend. 2534 */ 2535 2536 void dm_internal_suspend_fast(struct mapped_device *md) 2537 { 2538 mutex_lock(&md->suspend_lock); 2539 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2540 return; 2541 2542 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2543 synchronize_srcu(&md->io_barrier); 2544 flush_workqueue(md->wq); 2545 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2546 } 2547 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2548 2549 void dm_internal_resume_fast(struct mapped_device *md) 2550 { 2551 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2552 goto done; 2553 2554 dm_queue_flush(md); 2555 2556 done: 2557 mutex_unlock(&md->suspend_lock); 2558 } 2559 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2560 2561 /*----------------------------------------------------------------- 2562 * Event notification. 2563 *---------------------------------------------------------------*/ 2564 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2565 unsigned cookie) 2566 { 2567 int r; 2568 unsigned noio_flag; 2569 char udev_cookie[DM_COOKIE_LENGTH]; 2570 char *envp[] = { udev_cookie, NULL }; 2571 2572 noio_flag = memalloc_noio_save(); 2573 2574 if (!cookie) 2575 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2576 else { 2577 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2578 DM_COOKIE_ENV_VAR_NAME, cookie); 2579 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2580 action, envp); 2581 } 2582 2583 memalloc_noio_restore(noio_flag); 2584 2585 return r; 2586 } 2587 2588 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2589 { 2590 return atomic_add_return(1, &md->uevent_seq); 2591 } 2592 2593 uint32_t dm_get_event_nr(struct mapped_device *md) 2594 { 2595 return atomic_read(&md->event_nr); 2596 } 2597 2598 int dm_wait_event(struct mapped_device *md, int event_nr) 2599 { 2600 return wait_event_interruptible(md->eventq, 2601 (event_nr != atomic_read(&md->event_nr))); 2602 } 2603 2604 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2605 { 2606 unsigned long flags; 2607 2608 spin_lock_irqsave(&md->uevent_lock, flags); 2609 list_add(elist, &md->uevent_list); 2610 spin_unlock_irqrestore(&md->uevent_lock, flags); 2611 } 2612 2613 /* 2614 * The gendisk is only valid as long as you have a reference 2615 * count on 'md'. 2616 */ 2617 struct gendisk *dm_disk(struct mapped_device *md) 2618 { 2619 return md->disk; 2620 } 2621 EXPORT_SYMBOL_GPL(dm_disk); 2622 2623 struct kobject *dm_kobject(struct mapped_device *md) 2624 { 2625 return &md->kobj_holder.kobj; 2626 } 2627 2628 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2629 { 2630 struct mapped_device *md; 2631 2632 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2633 2634 spin_lock(&_minor_lock); 2635 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2636 md = NULL; 2637 goto out; 2638 } 2639 dm_get(md); 2640 out: 2641 spin_unlock(&_minor_lock); 2642 2643 return md; 2644 } 2645 2646 int dm_suspended_md(struct mapped_device *md) 2647 { 2648 return test_bit(DMF_SUSPENDED, &md->flags); 2649 } 2650 2651 static int dm_post_suspending_md(struct mapped_device *md) 2652 { 2653 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2654 } 2655 2656 int dm_suspended_internally_md(struct mapped_device *md) 2657 { 2658 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2659 } 2660 2661 int dm_test_deferred_remove_flag(struct mapped_device *md) 2662 { 2663 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2664 } 2665 2666 int dm_suspended(struct dm_target *ti) 2667 { 2668 return dm_suspended_md(ti->table->md); 2669 } 2670 EXPORT_SYMBOL_GPL(dm_suspended); 2671 2672 int dm_post_suspending(struct dm_target *ti) 2673 { 2674 return dm_post_suspending_md(ti->table->md); 2675 } 2676 EXPORT_SYMBOL_GPL(dm_post_suspending); 2677 2678 int dm_noflush_suspending(struct dm_target *ti) 2679 { 2680 return __noflush_suspending(ti->table->md); 2681 } 2682 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2683 2684 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2685 unsigned integrity, unsigned per_io_data_size, 2686 unsigned min_pool_size) 2687 { 2688 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2689 unsigned int pool_size = 0; 2690 unsigned int front_pad, io_front_pad; 2691 int ret; 2692 2693 if (!pools) 2694 return NULL; 2695 2696 switch (type) { 2697 case DM_TYPE_BIO_BASED: 2698 case DM_TYPE_DAX_BIO_BASED: 2699 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2700 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2701 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2702 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2703 if (ret) 2704 goto out; 2705 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2706 goto out; 2707 break; 2708 case DM_TYPE_REQUEST_BASED: 2709 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2710 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2711 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2712 break; 2713 default: 2714 BUG(); 2715 } 2716 2717 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2718 if (ret) 2719 goto out; 2720 2721 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2722 goto out; 2723 2724 return pools; 2725 2726 out: 2727 dm_free_md_mempools(pools); 2728 2729 return NULL; 2730 } 2731 2732 void dm_free_md_mempools(struct dm_md_mempools *pools) 2733 { 2734 if (!pools) 2735 return; 2736 2737 bioset_exit(&pools->bs); 2738 bioset_exit(&pools->io_bs); 2739 2740 kfree(pools); 2741 } 2742 2743 struct dm_pr { 2744 u64 old_key; 2745 u64 new_key; 2746 u32 flags; 2747 bool fail_early; 2748 }; 2749 2750 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2751 void *data) 2752 { 2753 struct mapped_device *md = bdev->bd_disk->private_data; 2754 struct dm_table *table; 2755 struct dm_target *ti; 2756 int ret = -ENOTTY, srcu_idx; 2757 2758 table = dm_get_live_table(md, &srcu_idx); 2759 if (!table || !dm_table_get_size(table)) 2760 goto out; 2761 2762 /* We only support devices that have a single target */ 2763 if (dm_table_get_num_targets(table) != 1) 2764 goto out; 2765 ti = dm_table_get_target(table, 0); 2766 2767 ret = -EINVAL; 2768 if (!ti->type->iterate_devices) 2769 goto out; 2770 2771 ret = ti->type->iterate_devices(ti, fn, data); 2772 out: 2773 dm_put_live_table(md, srcu_idx); 2774 return ret; 2775 } 2776 2777 /* 2778 * For register / unregister we need to manually call out to every path. 2779 */ 2780 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2781 sector_t start, sector_t len, void *data) 2782 { 2783 struct dm_pr *pr = data; 2784 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2785 2786 if (!ops || !ops->pr_register) 2787 return -EOPNOTSUPP; 2788 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2789 } 2790 2791 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2792 u32 flags) 2793 { 2794 struct dm_pr pr = { 2795 .old_key = old_key, 2796 .new_key = new_key, 2797 .flags = flags, 2798 .fail_early = true, 2799 }; 2800 int ret; 2801 2802 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2803 if (ret && new_key) { 2804 /* unregister all paths if we failed to register any path */ 2805 pr.old_key = new_key; 2806 pr.new_key = 0; 2807 pr.flags = 0; 2808 pr.fail_early = false; 2809 dm_call_pr(bdev, __dm_pr_register, &pr); 2810 } 2811 2812 return ret; 2813 } 2814 2815 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2816 u32 flags) 2817 { 2818 struct mapped_device *md = bdev->bd_disk->private_data; 2819 const struct pr_ops *ops; 2820 int r, srcu_idx; 2821 2822 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2823 if (r < 0) 2824 goto out; 2825 2826 ops = bdev->bd_disk->fops->pr_ops; 2827 if (ops && ops->pr_reserve) 2828 r = ops->pr_reserve(bdev, key, type, flags); 2829 else 2830 r = -EOPNOTSUPP; 2831 out: 2832 dm_unprepare_ioctl(md, srcu_idx); 2833 return r; 2834 } 2835 2836 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2837 { 2838 struct mapped_device *md = bdev->bd_disk->private_data; 2839 const struct pr_ops *ops; 2840 int r, srcu_idx; 2841 2842 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2843 if (r < 0) 2844 goto out; 2845 2846 ops = bdev->bd_disk->fops->pr_ops; 2847 if (ops && ops->pr_release) 2848 r = ops->pr_release(bdev, key, type); 2849 else 2850 r = -EOPNOTSUPP; 2851 out: 2852 dm_unprepare_ioctl(md, srcu_idx); 2853 return r; 2854 } 2855 2856 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2857 enum pr_type type, bool abort) 2858 { 2859 struct mapped_device *md = bdev->bd_disk->private_data; 2860 const struct pr_ops *ops; 2861 int r, srcu_idx; 2862 2863 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2864 if (r < 0) 2865 goto out; 2866 2867 ops = bdev->bd_disk->fops->pr_ops; 2868 if (ops && ops->pr_preempt) 2869 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2870 else 2871 r = -EOPNOTSUPP; 2872 out: 2873 dm_unprepare_ioctl(md, srcu_idx); 2874 return r; 2875 } 2876 2877 static int dm_pr_clear(struct block_device *bdev, u64 key) 2878 { 2879 struct mapped_device *md = bdev->bd_disk->private_data; 2880 const struct pr_ops *ops; 2881 int r, srcu_idx; 2882 2883 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2884 if (r < 0) 2885 goto out; 2886 2887 ops = bdev->bd_disk->fops->pr_ops; 2888 if (ops && ops->pr_clear) 2889 r = ops->pr_clear(bdev, key); 2890 else 2891 r = -EOPNOTSUPP; 2892 out: 2893 dm_unprepare_ioctl(md, srcu_idx); 2894 return r; 2895 } 2896 2897 static const struct pr_ops dm_pr_ops = { 2898 .pr_register = dm_pr_register, 2899 .pr_reserve = dm_pr_reserve, 2900 .pr_release = dm_pr_release, 2901 .pr_preempt = dm_pr_preempt, 2902 .pr_clear = dm_pr_clear, 2903 }; 2904 2905 static const struct block_device_operations dm_blk_dops = { 2906 .submit_bio = dm_submit_bio, 2907 .open = dm_blk_open, 2908 .release = dm_blk_close, 2909 .ioctl = dm_blk_ioctl, 2910 .getgeo = dm_blk_getgeo, 2911 .report_zones = dm_blk_report_zones, 2912 .pr_ops = &dm_pr_ops, 2913 .owner = THIS_MODULE 2914 }; 2915 2916 static const struct block_device_operations dm_rq_blk_dops = { 2917 .open = dm_blk_open, 2918 .release = dm_blk_close, 2919 .ioctl = dm_blk_ioctl, 2920 .getgeo = dm_blk_getgeo, 2921 .pr_ops = &dm_pr_ops, 2922 .owner = THIS_MODULE 2923 }; 2924 2925 static const struct dax_operations dm_dax_ops = { 2926 .direct_access = dm_dax_direct_access, 2927 .zero_page_range = dm_dax_zero_page_range, 2928 }; 2929 2930 /* 2931 * module hooks 2932 */ 2933 module_init(dm_init); 2934 module_exit(dm_exit); 2935 2936 module_param(major, uint, 0); 2937 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2938 2939 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2940 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2941 2942 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2943 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2944 2945 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2946 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2947 2948 MODULE_DESCRIPTION(DM_NAME " driver"); 2949 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2950 MODULE_LICENSE("GPL"); 2951