xref: /openbmc/linux/drivers/md/dm.c (revision e27363472f9bc96db831ceb2c31cf8b9a7c5b6f3)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!clone_to_tio(bio)->inside_dm_io)
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless is_duplicate_bio.
542 	 */
543 	if (!clone || likely(!clone_to_tio(clone)->is_duplicate_bio)) {
544 		if (WARN_ON_ONCE(io->was_accounted))
545 			return;
546 		io->was_accounted = 1;
547 	} else if (xchg(&io->was_accounted, 1) == 1)
548 		return;
549 
550 	__dm_start_io_acct(io, bio);
551 }
552 
553 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
554 {
555 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
556 }
557 
558 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
559 {
560 	struct dm_io *io;
561 	struct dm_target_io *tio;
562 	struct bio *clone;
563 
564 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
565 
566 	tio = clone_to_tio(clone);
567 	tio->inside_dm_io = true;
568 	tio->io = NULL;
569 
570 	io = container_of(tio, struct dm_io, tio);
571 	io->magic = DM_IO_MAGIC;
572 	io->status = 0;
573 	atomic_set(&io->io_count, 1);
574 	this_cpu_inc(*md->pending_io);
575 	io->orig_bio = NULL;
576 	io->md = md;
577 	io->map_task = current;
578 	spin_lock_init(&io->endio_lock);
579 
580 	io->start_time = jiffies;
581 	io->start_io_acct = false;
582 	io->was_accounted = 0;
583 
584 	dm_stats_record_start(&md->stats, &io->stats_aux);
585 
586 	return io;
587 }
588 
589 static void free_io(struct dm_io *io)
590 {
591 	bio_put(&io->tio.clone);
592 }
593 
594 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
595 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
596 {
597 	struct dm_target_io *tio;
598 	struct bio *clone;
599 
600 	if (!ci->io->tio.io) {
601 		/* the dm_target_io embedded in ci->io is available */
602 		tio = &ci->io->tio;
603 		/* alloc_io() already initialized embedded clone */
604 		clone = &tio->clone;
605 	} else {
606 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
607 					gfp_mask, &ci->io->md->bs);
608 		if (!clone)
609 			return NULL;
610 
611 		/* REQ_DM_POLL_LIST shouldn't be inherited */
612 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
613 
614 		tio = clone_to_tio(clone);
615 		tio->inside_dm_io = false;
616 	}
617 
618 	tio->magic = DM_TIO_MAGIC;
619 	tio->io = ci->io;
620 	tio->ti = ti;
621 	tio->target_bio_nr = target_bio_nr;
622 	tio->is_duplicate_bio = false;
623 	tio->len_ptr = len;
624 	tio->old_sector = 0;
625 
626 	if (len) {
627 		clone->bi_iter.bi_size = to_bytes(*len);
628 		if (bio_integrity(clone))
629 			bio_integrity_trim(clone);
630 	}
631 
632 	return clone;
633 }
634 
635 static void free_tio(struct bio *clone)
636 {
637 	if (clone_to_tio(clone)->inside_dm_io)
638 		return;
639 	bio_put(clone);
640 }
641 
642 /*
643  * Add the bio to the list of deferred io.
644  */
645 static void queue_io(struct mapped_device *md, struct bio *bio)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&md->deferred_lock, flags);
650 	bio_list_add(&md->deferred, bio);
651 	spin_unlock_irqrestore(&md->deferred_lock, flags);
652 	queue_work(md->wq, &md->work);
653 }
654 
655 /*
656  * Everyone (including functions in this file), should use this
657  * function to access the md->map field, and make sure they call
658  * dm_put_live_table() when finished.
659  */
660 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
661 {
662 	*srcu_idx = srcu_read_lock(&md->io_barrier);
663 
664 	return srcu_dereference(md->map, &md->io_barrier);
665 }
666 
667 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
668 {
669 	srcu_read_unlock(&md->io_barrier, srcu_idx);
670 }
671 
672 void dm_sync_table(struct mapped_device *md)
673 {
674 	synchronize_srcu(&md->io_barrier);
675 	synchronize_rcu_expedited();
676 }
677 
678 /*
679  * A fast alternative to dm_get_live_table/dm_put_live_table.
680  * The caller must not block between these two functions.
681  */
682 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
683 {
684 	rcu_read_lock();
685 	return rcu_dereference(md->map);
686 }
687 
688 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
689 {
690 	rcu_read_unlock();
691 }
692 
693 static char *_dm_claim_ptr = "I belong to device-mapper";
694 
695 /*
696  * Open a table device so we can use it as a map destination.
697  */
698 static int open_table_device(struct table_device *td, dev_t dev,
699 			     struct mapped_device *md)
700 {
701 	struct block_device *bdev;
702 	u64 part_off;
703 	int r;
704 
705 	BUG_ON(td->dm_dev.bdev);
706 
707 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
708 	if (IS_ERR(bdev))
709 		return PTR_ERR(bdev);
710 
711 	r = bd_link_disk_holder(bdev, dm_disk(md));
712 	if (r) {
713 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
714 		return r;
715 	}
716 
717 	td->dm_dev.bdev = bdev;
718 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
719 	return 0;
720 }
721 
722 /*
723  * Close a table device that we've been using.
724  */
725 static void close_table_device(struct table_device *td, struct mapped_device *md)
726 {
727 	if (!td->dm_dev.bdev)
728 		return;
729 
730 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
731 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
732 	put_dax(td->dm_dev.dax_dev);
733 	td->dm_dev.bdev = NULL;
734 	td->dm_dev.dax_dev = NULL;
735 }
736 
737 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
738 					      fmode_t mode)
739 {
740 	struct table_device *td;
741 
742 	list_for_each_entry(td, l, list)
743 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
744 			return td;
745 
746 	return NULL;
747 }
748 
749 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
750 			struct dm_dev **result)
751 {
752 	int r;
753 	struct table_device *td;
754 
755 	mutex_lock(&md->table_devices_lock);
756 	td = find_table_device(&md->table_devices, dev, mode);
757 	if (!td) {
758 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
759 		if (!td) {
760 			mutex_unlock(&md->table_devices_lock);
761 			return -ENOMEM;
762 		}
763 
764 		td->dm_dev.mode = mode;
765 		td->dm_dev.bdev = NULL;
766 
767 		if ((r = open_table_device(td, dev, md))) {
768 			mutex_unlock(&md->table_devices_lock);
769 			kfree(td);
770 			return r;
771 		}
772 
773 		format_dev_t(td->dm_dev.name, dev);
774 
775 		refcount_set(&td->count, 1);
776 		list_add(&td->list, &md->table_devices);
777 	} else {
778 		refcount_inc(&td->count);
779 	}
780 	mutex_unlock(&md->table_devices_lock);
781 
782 	*result = &td->dm_dev;
783 	return 0;
784 }
785 
786 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
787 {
788 	struct table_device *td = container_of(d, struct table_device, dm_dev);
789 
790 	mutex_lock(&md->table_devices_lock);
791 	if (refcount_dec_and_test(&td->count)) {
792 		close_table_device(td, md);
793 		list_del(&td->list);
794 		kfree(td);
795 	}
796 	mutex_unlock(&md->table_devices_lock);
797 }
798 
799 static void free_table_devices(struct list_head *devices)
800 {
801 	struct list_head *tmp, *next;
802 
803 	list_for_each_safe(tmp, next, devices) {
804 		struct table_device *td = list_entry(tmp, struct table_device, list);
805 
806 		DMWARN("dm_destroy: %s still exists with %d references",
807 		       td->dm_dev.name, refcount_read(&td->count));
808 		kfree(td);
809 	}
810 }
811 
812 /*
813  * Get the geometry associated with a dm device
814  */
815 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
816 {
817 	*geo = md->geometry;
818 
819 	return 0;
820 }
821 
822 /*
823  * Set the geometry of a device.
824  */
825 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
826 {
827 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
828 
829 	if (geo->start > sz) {
830 		DMWARN("Start sector is beyond the geometry limits.");
831 		return -EINVAL;
832 	}
833 
834 	md->geometry = *geo;
835 
836 	return 0;
837 }
838 
839 static int __noflush_suspending(struct mapped_device *md)
840 {
841 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
842 }
843 
844 static void dm_io_complete(struct dm_io *io)
845 {
846 	blk_status_t io_error;
847 	struct mapped_device *md = io->md;
848 	struct bio *bio = io->orig_bio;
849 
850 	if (io->status == BLK_STS_DM_REQUEUE) {
851 		unsigned long flags;
852 		/*
853 		 * Target requested pushing back the I/O.
854 		 */
855 		spin_lock_irqsave(&md->deferred_lock, flags);
856 		if (__noflush_suspending(md) &&
857 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
858 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
859 			bio_list_add_head(&md->deferred, bio);
860 		} else {
861 			/*
862 			 * noflush suspend was interrupted or this is
863 			 * a write to a zoned target.
864 			 */
865 			io->status = BLK_STS_IOERR;
866 		}
867 		spin_unlock_irqrestore(&md->deferred_lock, flags);
868 	}
869 
870 	io_error = io->status;
871 	if (io->was_accounted)
872 		dm_end_io_acct(io, bio);
873 	else if (!io_error) {
874 		/*
875 		 * Must handle target that DM_MAPIO_SUBMITTED only to
876 		 * then bio_endio() rather than dm_submit_bio_remap()
877 		 */
878 		__dm_start_io_acct(io, bio);
879 		dm_end_io_acct(io, bio);
880 	}
881 	free_io(io);
882 	smp_wmb();
883 	this_cpu_dec(*md->pending_io);
884 
885 	/* nudge anyone waiting on suspend queue */
886 	if (unlikely(wq_has_sleeper(&md->wait)))
887 		wake_up(&md->wait);
888 
889 	if (io_error == BLK_STS_DM_REQUEUE) {
890 		/*
891 		 * Upper layer won't help us poll split bio, io->orig_bio
892 		 * may only reflect a subset of the pre-split original,
893 		 * so clear REQ_POLLED in case of requeue
894 		 */
895 		bio->bi_opf &= ~REQ_POLLED;
896 		return;
897 	}
898 
899 	if (bio_is_flush_with_data(bio)) {
900 		/*
901 		 * Preflush done for flush with data, reissue
902 		 * without REQ_PREFLUSH.
903 		 */
904 		bio->bi_opf &= ~REQ_PREFLUSH;
905 		queue_io(md, bio);
906 	} else {
907 		/* done with normal IO or empty flush */
908 		if (io_error)
909 			bio->bi_status = io_error;
910 		bio_endio(bio);
911 	}
912 }
913 
914 /*
915  * Decrements the number of outstanding ios that a bio has been
916  * cloned into, completing the original io if necc.
917  */
918 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
919 {
920 	/* Push-back supersedes any I/O errors */
921 	if (unlikely(error)) {
922 		unsigned long flags;
923 		spin_lock_irqsave(&io->endio_lock, flags);
924 		if (!(io->status == BLK_STS_DM_REQUEUE &&
925 		      __noflush_suspending(io->md)))
926 			io->status = error;
927 		spin_unlock_irqrestore(&io->endio_lock, flags);
928 	}
929 
930 	if (atomic_dec_and_test(&io->io_count))
931 		dm_io_complete(io);
932 }
933 
934 void disable_discard(struct mapped_device *md)
935 {
936 	struct queue_limits *limits = dm_get_queue_limits(md);
937 
938 	/* device doesn't really support DISCARD, disable it */
939 	limits->max_discard_sectors = 0;
940 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
941 }
942 
943 void disable_write_same(struct mapped_device *md)
944 {
945 	struct queue_limits *limits = dm_get_queue_limits(md);
946 
947 	/* device doesn't really support WRITE SAME, disable it */
948 	limits->max_write_same_sectors = 0;
949 }
950 
951 void disable_write_zeroes(struct mapped_device *md)
952 {
953 	struct queue_limits *limits = dm_get_queue_limits(md);
954 
955 	/* device doesn't really support WRITE ZEROES, disable it */
956 	limits->max_write_zeroes_sectors = 0;
957 }
958 
959 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
960 {
961 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
962 }
963 
964 static void clone_endio(struct bio *bio)
965 {
966 	blk_status_t error = bio->bi_status;
967 	struct dm_target_io *tio = clone_to_tio(bio);
968 	struct dm_io *io = tio->io;
969 	struct mapped_device *md = tio->io->md;
970 	dm_endio_fn endio = tio->ti->type->end_io;
971 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
972 
973 	if (unlikely(error == BLK_STS_TARGET)) {
974 		if (bio_op(bio) == REQ_OP_DISCARD &&
975 		    !q->limits.max_discard_sectors)
976 			disable_discard(md);
977 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
978 			 !q->limits.max_write_same_sectors)
979 			disable_write_same(md);
980 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
981 			 !q->limits.max_write_zeroes_sectors)
982 			disable_write_zeroes(md);
983 	}
984 
985 	if (blk_queue_is_zoned(q))
986 		dm_zone_endio(io, bio);
987 
988 	if (endio) {
989 		int r = endio(tio->ti, bio, &error);
990 		switch (r) {
991 		case DM_ENDIO_REQUEUE:
992 			/*
993 			 * Requeuing writes to a sequential zone of a zoned
994 			 * target will break the sequential write pattern:
995 			 * fail such IO.
996 			 */
997 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
998 				error = BLK_STS_IOERR;
999 			else
1000 				error = BLK_STS_DM_REQUEUE;
1001 			fallthrough;
1002 		case DM_ENDIO_DONE:
1003 			break;
1004 		case DM_ENDIO_INCOMPLETE:
1005 			/* The target will handle the io */
1006 			return;
1007 		default:
1008 			DMWARN("unimplemented target endio return value: %d", r);
1009 			BUG();
1010 		}
1011 	}
1012 
1013 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1014 		struct mapped_device *md = io->md;
1015 		up(&md->swap_bios_semaphore);
1016 	}
1017 
1018 	free_tio(bio);
1019 	dm_io_dec_pending(io, error);
1020 }
1021 
1022 /*
1023  * Return maximum size of I/O possible at the supplied sector up to the current
1024  * target boundary.
1025  */
1026 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1027 						  sector_t target_offset)
1028 {
1029 	return ti->len - target_offset;
1030 }
1031 
1032 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1033 {
1034 	sector_t target_offset = dm_target_offset(ti, sector);
1035 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1036 	sector_t max_len;
1037 
1038 	/*
1039 	 * Does the target need to split IO even further?
1040 	 * - varied (per target) IO splitting is a tenet of DM; this
1041 	 *   explains why stacked chunk_sectors based splitting via
1042 	 *   blk_max_size_offset() isn't possible here. So pass in
1043 	 *   ti->max_io_len to override stacked chunk_sectors.
1044 	 */
1045 	if (ti->max_io_len) {
1046 		max_len = blk_max_size_offset(ti->table->md->queue,
1047 					      target_offset, ti->max_io_len);
1048 		if (len > max_len)
1049 			len = max_len;
1050 	}
1051 
1052 	return len;
1053 }
1054 
1055 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1056 {
1057 	if (len > UINT_MAX) {
1058 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1059 		      (unsigned long long)len, UINT_MAX);
1060 		ti->error = "Maximum size of target IO is too large";
1061 		return -EINVAL;
1062 	}
1063 
1064 	ti->max_io_len = (uint32_t) len;
1065 
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1069 
1070 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1071 						sector_t sector, int *srcu_idx)
1072 	__acquires(md->io_barrier)
1073 {
1074 	struct dm_table *map;
1075 	struct dm_target *ti;
1076 
1077 	map = dm_get_live_table(md, srcu_idx);
1078 	if (!map)
1079 		return NULL;
1080 
1081 	ti = dm_table_find_target(map, sector);
1082 	if (!ti)
1083 		return NULL;
1084 
1085 	return ti;
1086 }
1087 
1088 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1089 				 long nr_pages, void **kaddr, pfn_t *pfn)
1090 {
1091 	struct mapped_device *md = dax_get_private(dax_dev);
1092 	sector_t sector = pgoff * PAGE_SECTORS;
1093 	struct dm_target *ti;
1094 	long len, ret = -EIO;
1095 	int srcu_idx;
1096 
1097 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1098 
1099 	if (!ti)
1100 		goto out;
1101 	if (!ti->type->direct_access)
1102 		goto out;
1103 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1104 	if (len < 1)
1105 		goto out;
1106 	nr_pages = min(len, nr_pages);
1107 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1108 
1109  out:
1110 	dm_put_live_table(md, srcu_idx);
1111 
1112 	return ret;
1113 }
1114 
1115 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1116 				  size_t nr_pages)
1117 {
1118 	struct mapped_device *md = dax_get_private(dax_dev);
1119 	sector_t sector = pgoff * PAGE_SECTORS;
1120 	struct dm_target *ti;
1121 	int ret = -EIO;
1122 	int srcu_idx;
1123 
1124 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1125 
1126 	if (!ti)
1127 		goto out;
1128 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1129 		/*
1130 		 * ->zero_page_range() is mandatory dax operation. If we are
1131 		 *  here, something is wrong.
1132 		 */
1133 		goto out;
1134 	}
1135 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1136  out:
1137 	dm_put_live_table(md, srcu_idx);
1138 
1139 	return ret;
1140 }
1141 
1142 /*
1143  * A target may call dm_accept_partial_bio only from the map routine.  It is
1144  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1145  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1146  * __send_duplicate_bios().
1147  *
1148  * dm_accept_partial_bio informs the dm that the target only wants to process
1149  * additional n_sectors sectors of the bio and the rest of the data should be
1150  * sent in a next bio.
1151  *
1152  * A diagram that explains the arithmetics:
1153  * +--------------------+---------------+-------+
1154  * |         1          |       2       |   3   |
1155  * +--------------------+---------------+-------+
1156  *
1157  * <-------------- *tio->len_ptr --------------->
1158  *                      <------- bi_size ------->
1159  *                      <-- n_sectors -->
1160  *
1161  * Region 1 was already iterated over with bio_advance or similar function.
1162  *	(it may be empty if the target doesn't use bio_advance)
1163  * Region 2 is the remaining bio size that the target wants to process.
1164  *	(it may be empty if region 1 is non-empty, although there is no reason
1165  *	 to make it empty)
1166  * The target requires that region 3 is to be sent in the next bio.
1167  *
1168  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1169  * the partially processed part (the sum of regions 1+2) must be the same for all
1170  * copies of the bio.
1171  */
1172 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1173 {
1174 	struct dm_target_io *tio = clone_to_tio(bio);
1175 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1176 
1177 	BUG_ON(tio->is_duplicate_bio);
1178 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1179 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1180 	BUG_ON(bi_size > *tio->len_ptr);
1181 	BUG_ON(n_sectors > bi_size);
1182 
1183 	*tio->len_ptr -= bi_size - n_sectors;
1184 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1185 }
1186 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1187 
1188 static inline void __dm_submit_bio_remap(struct bio *clone,
1189 					 dev_t dev, sector_t old_sector)
1190 {
1191 	trace_block_bio_remap(clone, dev, old_sector);
1192 	submit_bio_noacct(clone);
1193 }
1194 
1195 /*
1196  * @clone: clone bio that DM core passed to target's .map function
1197  * @tgt_clone: clone of @clone bio that target needs submitted
1198  *
1199  * Targets should use this interface to submit bios they take
1200  * ownership of when returning DM_MAPIO_SUBMITTED.
1201  *
1202  * Target should also enable ti->accounts_remapped_io
1203  */
1204 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1205 {
1206 	struct dm_target_io *tio = clone_to_tio(clone);
1207 	struct dm_io *io = tio->io;
1208 
1209 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1210 
1211 	/* establish bio that will get submitted */
1212 	if (!tgt_clone)
1213 		tgt_clone = clone;
1214 
1215 	/*
1216 	 * Account io->origin_bio to DM dev on behalf of target
1217 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1218 	 */
1219 	if (io->map_task == current) {
1220 		/* Still in target's map function */
1221 		io->start_io_acct = true;
1222 	} else {
1223 		/*
1224 		 * Called by another thread, managed by DM target,
1225 		 * wait for dm_split_and_process_bio() to store
1226 		 * io->orig_bio
1227 		 */
1228 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1229 			msleep(1);
1230 		dm_start_io_acct(io, clone);
1231 	}
1232 
1233 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1234 			      tio->old_sector);
1235 }
1236 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1237 
1238 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1239 {
1240 	mutex_lock(&md->swap_bios_lock);
1241 	while (latch < md->swap_bios) {
1242 		cond_resched();
1243 		down(&md->swap_bios_semaphore);
1244 		md->swap_bios--;
1245 	}
1246 	while (latch > md->swap_bios) {
1247 		cond_resched();
1248 		up(&md->swap_bios_semaphore);
1249 		md->swap_bios++;
1250 	}
1251 	mutex_unlock(&md->swap_bios_lock);
1252 }
1253 
1254 static void __map_bio(struct bio *clone)
1255 {
1256 	struct dm_target_io *tio = clone_to_tio(clone);
1257 	int r;
1258 	struct dm_io *io = tio->io;
1259 	struct dm_target *ti = tio->ti;
1260 
1261 	clone->bi_end_io = clone_endio;
1262 
1263 	/*
1264 	 * Map the clone.
1265 	 */
1266 	dm_io_inc_pending(io);
1267 	tio->old_sector = clone->bi_iter.bi_sector;
1268 
1269 	if (unlikely(swap_bios_limit(ti, clone))) {
1270 		struct mapped_device *md = io->md;
1271 		int latch = get_swap_bios();
1272 		if (unlikely(latch != md->swap_bios))
1273 			__set_swap_bios_limit(md, latch);
1274 		down(&md->swap_bios_semaphore);
1275 	}
1276 
1277 	/*
1278 	 * Check if the IO needs a special mapping due to zone append emulation
1279 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1280 	 * map operation.
1281 	 */
1282 	if (dm_emulate_zone_append(io->md))
1283 		r = dm_zone_map_bio(tio);
1284 	else
1285 		r = ti->type->map(ti, clone);
1286 
1287 	switch (r) {
1288 	case DM_MAPIO_SUBMITTED:
1289 		/* target has assumed ownership of this io */
1290 		if (!ti->accounts_remapped_io)
1291 			io->start_io_acct = true;
1292 		break;
1293 	case DM_MAPIO_REMAPPED:
1294 		/*
1295 		 * the bio has been remapped so dispatch it, but defer
1296 		 * dm_start_io_acct() until after possible bio_split().
1297 		 */
1298 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1299 				      tio->old_sector);
1300 		io->start_io_acct = true;
1301 		break;
1302 	case DM_MAPIO_KILL:
1303 	case DM_MAPIO_REQUEUE:
1304 		if (unlikely(swap_bios_limit(ti, clone)))
1305 			up(&io->md->swap_bios_semaphore);
1306 		free_tio(clone);
1307 		if (r == DM_MAPIO_KILL)
1308 			dm_io_dec_pending(io, BLK_STS_IOERR);
1309 		else
1310 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1311 		break;
1312 	default:
1313 		DMWARN("unimplemented target map return value: %d", r);
1314 		BUG();
1315 	}
1316 }
1317 
1318 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1319 				struct dm_target *ti, unsigned num_bios,
1320 				unsigned *len)
1321 {
1322 	struct bio *bio;
1323 	int try;
1324 
1325 	for (try = 0; try < 2; try++) {
1326 		int bio_nr;
1327 
1328 		if (try)
1329 			mutex_lock(&ci->io->md->table_devices_lock);
1330 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1331 			bio = alloc_tio(ci, ti, bio_nr, len,
1332 					try ? GFP_NOIO : GFP_NOWAIT);
1333 			if (!bio)
1334 				break;
1335 
1336 			bio_list_add(blist, bio);
1337 		}
1338 		if (try)
1339 			mutex_unlock(&ci->io->md->table_devices_lock);
1340 		if (bio_nr == num_bios)
1341 			return;
1342 
1343 		while ((bio = bio_list_pop(blist)))
1344 			free_tio(bio);
1345 	}
1346 }
1347 
1348 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1349 				  unsigned num_bios, unsigned *len)
1350 {
1351 	struct bio_list blist = BIO_EMPTY_LIST;
1352 	struct bio *clone;
1353 
1354 	switch (num_bios) {
1355 	case 0:
1356 		break;
1357 	case 1:
1358 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1359 		clone_to_tio(clone)->is_duplicate_bio = true;
1360 		__map_bio(clone);
1361 		break;
1362 	default:
1363 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1364 		while ((clone = bio_list_pop(&blist))) {
1365 			clone_to_tio(clone)->is_duplicate_bio = true;
1366 			__map_bio(clone);
1367 		}
1368 		break;
1369 	}
1370 }
1371 
1372 static int __send_empty_flush(struct clone_info *ci)
1373 {
1374 	unsigned target_nr = 0;
1375 	struct dm_target *ti;
1376 	struct bio flush_bio;
1377 
1378 	/*
1379 	 * Use an on-stack bio for this, it's safe since we don't
1380 	 * need to reference it after submit. It's just used as
1381 	 * the basis for the clone(s).
1382 	 */
1383 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1384 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1385 
1386 	ci->bio = &flush_bio;
1387 	ci->sector_count = 0;
1388 
1389 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1390 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1391 
1392 	bio_uninit(ci->bio);
1393 	return 0;
1394 }
1395 
1396 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1397 					unsigned num_bios)
1398 {
1399 	unsigned len;
1400 
1401 	len = min_t(sector_t, ci->sector_count,
1402 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1403 
1404 	/*
1405 	 * dm_accept_partial_bio cannot be used with duplicate bios,
1406 	 * so update clone_info cursor before __send_duplicate_bios().
1407 	 */
1408 	ci->sector += len;
1409 	ci->sector_count -= len;
1410 
1411 	__send_duplicate_bios(ci, ti, num_bios, &len);
1412 }
1413 
1414 static bool is_abnormal_io(struct bio *bio)
1415 {
1416 	bool r = false;
1417 
1418 	switch (bio_op(bio)) {
1419 	case REQ_OP_DISCARD:
1420 	case REQ_OP_SECURE_ERASE:
1421 	case REQ_OP_WRITE_SAME:
1422 	case REQ_OP_WRITE_ZEROES:
1423 		r = true;
1424 		break;
1425 	}
1426 
1427 	return r;
1428 }
1429 
1430 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1431 				  int *result)
1432 {
1433 	unsigned num_bios = 0;
1434 
1435 	switch (bio_op(ci->bio)) {
1436 	case REQ_OP_DISCARD:
1437 		num_bios = ti->num_discard_bios;
1438 		break;
1439 	case REQ_OP_SECURE_ERASE:
1440 		num_bios = ti->num_secure_erase_bios;
1441 		break;
1442 	case REQ_OP_WRITE_SAME:
1443 		num_bios = ti->num_write_same_bios;
1444 		break;
1445 	case REQ_OP_WRITE_ZEROES:
1446 		num_bios = ti->num_write_zeroes_bios;
1447 		break;
1448 	default:
1449 		return false;
1450 	}
1451 
1452 	/*
1453 	 * Even though the device advertised support for this type of
1454 	 * request, that does not mean every target supports it, and
1455 	 * reconfiguration might also have changed that since the
1456 	 * check was performed.
1457 	 */
1458 	if (!num_bios)
1459 		*result = -EOPNOTSUPP;
1460 	else {
1461 		__send_changing_extent_only(ci, ti, num_bios);
1462 		*result = 0;
1463 	}
1464 	return true;
1465 }
1466 
1467 /*
1468  * Reuse ->bi_private as hlist head for storing all dm_io instances
1469  * associated with this bio, and this bio's bi_private needs to be
1470  * stored in dm_io->data before the reuse.
1471  *
1472  * bio->bi_private is owned by fs or upper layer, so block layer won't
1473  * touch it after splitting. Meantime it won't be changed by anyone after
1474  * bio is submitted. So this reuse is safe.
1475  */
1476 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1477 {
1478 	return (struct hlist_head *)&bio->bi_private;
1479 }
1480 
1481 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1482 {
1483 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1484 
1485 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1486 		bio->bi_opf |= REQ_DM_POLL_LIST;
1487 		/*
1488 		 * Save .bi_private into dm_io, so that we can reuse
1489 		 * .bi_private as hlist head for storing dm_io list
1490 		 */
1491 		io->data = bio->bi_private;
1492 
1493 		INIT_HLIST_HEAD(head);
1494 
1495 		/* tell block layer to poll for completion */
1496 		bio->bi_cookie = ~BLK_QC_T_NONE;
1497 	} else {
1498 		/*
1499 		 * bio recursed due to split, reuse original poll list,
1500 		 * and save bio->bi_private too.
1501 		 */
1502 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1503 	}
1504 
1505 	hlist_add_head(&io->node, head);
1506 }
1507 
1508 /*
1509  * Select the correct strategy for processing a non-flush bio.
1510  */
1511 static int __split_and_process_bio(struct clone_info *ci)
1512 {
1513 	struct bio *clone;
1514 	struct dm_target *ti;
1515 	unsigned len;
1516 	int r;
1517 
1518 	ti = dm_table_find_target(ci->map, ci->sector);
1519 	if (!ti)
1520 		return -EIO;
1521 
1522 	if (__process_abnormal_io(ci, ti, &r))
1523 		return r;
1524 
1525 	/*
1526 	 * Only support bio polling for normal IO, and the target io is
1527 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1528 	 */
1529 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1530 
1531 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1532 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1533 	__map_bio(clone);
1534 
1535 	ci->sector += len;
1536 	ci->sector_count -= len;
1537 
1538 	return 0;
1539 }
1540 
1541 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1542 			    struct dm_table *map, struct bio *bio)
1543 {
1544 	ci->map = map;
1545 	ci->io = alloc_io(md, bio);
1546 	ci->bio = bio;
1547 	ci->submit_as_polled = false;
1548 	ci->sector = bio->bi_iter.bi_sector;
1549 	ci->sector_count = bio_sectors(bio);
1550 
1551 	/* Shouldn't happen but sector_count was being set to 0 so... */
1552 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1553 		ci->sector_count = 0;
1554 }
1555 
1556 /*
1557  * Entry point to split a bio into clones and submit them to the targets.
1558  */
1559 static void dm_split_and_process_bio(struct mapped_device *md,
1560 				     struct dm_table *map, struct bio *bio)
1561 {
1562 	struct clone_info ci;
1563 	struct bio *orig_bio = NULL;
1564 	int error = 0;
1565 
1566 	init_clone_info(&ci, md, map, bio);
1567 
1568 	if (bio->bi_opf & REQ_PREFLUSH) {
1569 		error = __send_empty_flush(&ci);
1570 		/* dm_io_complete submits any data associated with flush */
1571 		goto out;
1572 	}
1573 
1574 	error = __split_and_process_bio(&ci);
1575 	ci.io->map_task = NULL;
1576 	if (error || !ci.sector_count)
1577 		goto out;
1578 
1579 	/*
1580 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1581 	 * *after* bios already submitted have been completely processed.
1582 	 * We take a clone of the original to store in ci.io->orig_bio to be
1583 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1584 	 * completion handling.
1585 	 */
1586 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1587 			     GFP_NOIO, &md->queue->bio_split);
1588 	bio_chain(orig_bio, bio);
1589 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1590 	submit_bio_noacct(bio);
1591 out:
1592 	if (!orig_bio)
1593 		orig_bio = bio;
1594 	smp_store_release(&ci.io->orig_bio, orig_bio);
1595 	if (ci.io->start_io_acct)
1596 		dm_start_io_acct(ci.io, NULL);
1597 
1598 	/*
1599 	 * Drop the extra reference count for non-POLLED bio, and hold one
1600 	 * reference for POLLED bio, which will be released in dm_poll_bio
1601 	 *
1602 	 * Add every dm_io instance into the hlist_head which is stored in
1603 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1604 	 */
1605 	if (error || !ci.submit_as_polled)
1606 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1607 	else
1608 		dm_queue_poll_io(bio, ci.io);
1609 }
1610 
1611 static void dm_submit_bio(struct bio *bio)
1612 {
1613 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1614 	int srcu_idx;
1615 	struct dm_table *map;
1616 
1617 	map = dm_get_live_table(md, &srcu_idx);
1618 
1619 	/* If suspended, or map not yet available, queue this IO for later */
1620 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1621 	    unlikely(!map)) {
1622 		if (bio->bi_opf & REQ_NOWAIT)
1623 			bio_wouldblock_error(bio);
1624 		else if (bio->bi_opf & REQ_RAHEAD)
1625 			bio_io_error(bio);
1626 		else
1627 			queue_io(md, bio);
1628 		goto out;
1629 	}
1630 
1631 	/*
1632 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1633 	 * otherwise associated queue_limits won't be imposed.
1634 	 */
1635 	if (is_abnormal_io(bio))
1636 		blk_queue_split(&bio);
1637 
1638 	dm_split_and_process_bio(md, map, bio);
1639 out:
1640 	dm_put_live_table(md, srcu_idx);
1641 }
1642 
1643 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1644 			  unsigned int flags)
1645 {
1646 	WARN_ON_ONCE(!io->tio.inside_dm_io);
1647 
1648 	/* don't poll if the mapped io is done */
1649 	if (atomic_read(&io->io_count) > 1)
1650 		bio_poll(&io->tio.clone, iob, flags);
1651 
1652 	/* bio_poll holds the last reference */
1653 	return atomic_read(&io->io_count) == 1;
1654 }
1655 
1656 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1657 		       unsigned int flags)
1658 {
1659 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1660 	struct hlist_head tmp = HLIST_HEAD_INIT;
1661 	struct hlist_node *next;
1662 	struct dm_io *io;
1663 
1664 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1665 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1666 		return 0;
1667 
1668 	WARN_ON_ONCE(hlist_empty(head));
1669 
1670 	hlist_move_list(head, &tmp);
1671 
1672 	/*
1673 	 * Restore .bi_private before possibly completing dm_io.
1674 	 *
1675 	 * bio_poll() is only possible once @bio has been completely
1676 	 * submitted via submit_bio_noacct()'s depth-first submission.
1677 	 * So there is no dm_queue_poll_io() race associated with
1678 	 * clearing REQ_DM_POLL_LIST here.
1679 	 */
1680 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1681 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1682 
1683 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1684 		if (dm_poll_dm_io(io, iob, flags)) {
1685 			hlist_del_init(&io->node);
1686 			/*
1687 			 * clone_endio() has already occurred, so passing
1688 			 * error as 0 here doesn't override io->status
1689 			 */
1690 			dm_io_dec_pending(io, 0);
1691 		}
1692 	}
1693 
1694 	/* Not done? */
1695 	if (!hlist_empty(&tmp)) {
1696 		bio->bi_opf |= REQ_DM_POLL_LIST;
1697 		/* Reset bio->bi_private to dm_io list head */
1698 		hlist_move_list(&tmp, head);
1699 		return 0;
1700 	}
1701 	return 1;
1702 }
1703 
1704 /*-----------------------------------------------------------------
1705  * An IDR is used to keep track of allocated minor numbers.
1706  *---------------------------------------------------------------*/
1707 static void free_minor(int minor)
1708 {
1709 	spin_lock(&_minor_lock);
1710 	idr_remove(&_minor_idr, minor);
1711 	spin_unlock(&_minor_lock);
1712 }
1713 
1714 /*
1715  * See if the device with a specific minor # is free.
1716  */
1717 static int specific_minor(int minor)
1718 {
1719 	int r;
1720 
1721 	if (minor >= (1 << MINORBITS))
1722 		return -EINVAL;
1723 
1724 	idr_preload(GFP_KERNEL);
1725 	spin_lock(&_minor_lock);
1726 
1727 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1728 
1729 	spin_unlock(&_minor_lock);
1730 	idr_preload_end();
1731 	if (r < 0)
1732 		return r == -ENOSPC ? -EBUSY : r;
1733 	return 0;
1734 }
1735 
1736 static int next_free_minor(int *minor)
1737 {
1738 	int r;
1739 
1740 	idr_preload(GFP_KERNEL);
1741 	spin_lock(&_minor_lock);
1742 
1743 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1744 
1745 	spin_unlock(&_minor_lock);
1746 	idr_preload_end();
1747 	if (r < 0)
1748 		return r;
1749 	*minor = r;
1750 	return 0;
1751 }
1752 
1753 static const struct block_device_operations dm_blk_dops;
1754 static const struct block_device_operations dm_rq_blk_dops;
1755 static const struct dax_operations dm_dax_ops;
1756 
1757 static void dm_wq_work(struct work_struct *work);
1758 
1759 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1760 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1761 {
1762 	dm_destroy_crypto_profile(q->crypto_profile);
1763 }
1764 
1765 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1766 
1767 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1768 {
1769 }
1770 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1771 
1772 static void cleanup_mapped_device(struct mapped_device *md)
1773 {
1774 	if (md->wq)
1775 		destroy_workqueue(md->wq);
1776 	bioset_exit(&md->bs);
1777 	bioset_exit(&md->io_bs);
1778 
1779 	if (md->dax_dev) {
1780 		dax_remove_host(md->disk);
1781 		kill_dax(md->dax_dev);
1782 		put_dax(md->dax_dev);
1783 		md->dax_dev = NULL;
1784 	}
1785 
1786 	dm_cleanup_zoned_dev(md);
1787 	if (md->disk) {
1788 		spin_lock(&_minor_lock);
1789 		md->disk->private_data = NULL;
1790 		spin_unlock(&_minor_lock);
1791 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1792 			dm_sysfs_exit(md);
1793 			del_gendisk(md->disk);
1794 		}
1795 		dm_queue_destroy_crypto_profile(md->queue);
1796 		blk_cleanup_disk(md->disk);
1797 	}
1798 
1799 	if (md->pending_io) {
1800 		free_percpu(md->pending_io);
1801 		md->pending_io = NULL;
1802 	}
1803 
1804 	cleanup_srcu_struct(&md->io_barrier);
1805 
1806 	mutex_destroy(&md->suspend_lock);
1807 	mutex_destroy(&md->type_lock);
1808 	mutex_destroy(&md->table_devices_lock);
1809 	mutex_destroy(&md->swap_bios_lock);
1810 
1811 	dm_mq_cleanup_mapped_device(md);
1812 }
1813 
1814 /*
1815  * Allocate and initialise a blank device with a given minor.
1816  */
1817 static struct mapped_device *alloc_dev(int minor)
1818 {
1819 	int r, numa_node_id = dm_get_numa_node();
1820 	struct mapped_device *md;
1821 	void *old_md;
1822 
1823 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1824 	if (!md) {
1825 		DMWARN("unable to allocate device, out of memory.");
1826 		return NULL;
1827 	}
1828 
1829 	if (!try_module_get(THIS_MODULE))
1830 		goto bad_module_get;
1831 
1832 	/* get a minor number for the dev */
1833 	if (minor == DM_ANY_MINOR)
1834 		r = next_free_minor(&minor);
1835 	else
1836 		r = specific_minor(minor);
1837 	if (r < 0)
1838 		goto bad_minor;
1839 
1840 	r = init_srcu_struct(&md->io_barrier);
1841 	if (r < 0)
1842 		goto bad_io_barrier;
1843 
1844 	md->numa_node_id = numa_node_id;
1845 	md->init_tio_pdu = false;
1846 	md->type = DM_TYPE_NONE;
1847 	mutex_init(&md->suspend_lock);
1848 	mutex_init(&md->type_lock);
1849 	mutex_init(&md->table_devices_lock);
1850 	spin_lock_init(&md->deferred_lock);
1851 	atomic_set(&md->holders, 1);
1852 	atomic_set(&md->open_count, 0);
1853 	atomic_set(&md->event_nr, 0);
1854 	atomic_set(&md->uevent_seq, 0);
1855 	INIT_LIST_HEAD(&md->uevent_list);
1856 	INIT_LIST_HEAD(&md->table_devices);
1857 	spin_lock_init(&md->uevent_lock);
1858 
1859 	/*
1860 	 * default to bio-based until DM table is loaded and md->type
1861 	 * established. If request-based table is loaded: blk-mq will
1862 	 * override accordingly.
1863 	 */
1864 	md->disk = blk_alloc_disk(md->numa_node_id);
1865 	if (!md->disk)
1866 		goto bad;
1867 	md->queue = md->disk->queue;
1868 
1869 	init_waitqueue_head(&md->wait);
1870 	INIT_WORK(&md->work, dm_wq_work);
1871 	init_waitqueue_head(&md->eventq);
1872 	init_completion(&md->kobj_holder.completion);
1873 
1874 	md->swap_bios = get_swap_bios();
1875 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1876 	mutex_init(&md->swap_bios_lock);
1877 
1878 	md->disk->major = _major;
1879 	md->disk->first_minor = minor;
1880 	md->disk->minors = 1;
1881 	md->disk->flags |= GENHD_FL_NO_PART;
1882 	md->disk->fops = &dm_blk_dops;
1883 	md->disk->queue = md->queue;
1884 	md->disk->private_data = md;
1885 	sprintf(md->disk->disk_name, "dm-%d", minor);
1886 
1887 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1888 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1889 		if (IS_ERR(md->dax_dev)) {
1890 			md->dax_dev = NULL;
1891 			goto bad;
1892 		}
1893 		set_dax_nocache(md->dax_dev);
1894 		set_dax_nomc(md->dax_dev);
1895 		if (dax_add_host(md->dax_dev, md->disk))
1896 			goto bad;
1897 	}
1898 
1899 	format_dev_t(md->name, MKDEV(_major, minor));
1900 
1901 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1902 	if (!md->wq)
1903 		goto bad;
1904 
1905 	md->pending_io = alloc_percpu(unsigned long);
1906 	if (!md->pending_io)
1907 		goto bad;
1908 
1909 	dm_stats_init(&md->stats);
1910 
1911 	/* Populate the mapping, nobody knows we exist yet */
1912 	spin_lock(&_minor_lock);
1913 	old_md = idr_replace(&_minor_idr, md, minor);
1914 	spin_unlock(&_minor_lock);
1915 
1916 	BUG_ON(old_md != MINOR_ALLOCED);
1917 
1918 	return md;
1919 
1920 bad:
1921 	cleanup_mapped_device(md);
1922 bad_io_barrier:
1923 	free_minor(minor);
1924 bad_minor:
1925 	module_put(THIS_MODULE);
1926 bad_module_get:
1927 	kvfree(md);
1928 	return NULL;
1929 }
1930 
1931 static void unlock_fs(struct mapped_device *md);
1932 
1933 static void free_dev(struct mapped_device *md)
1934 {
1935 	int minor = MINOR(disk_devt(md->disk));
1936 
1937 	unlock_fs(md);
1938 
1939 	cleanup_mapped_device(md);
1940 
1941 	free_table_devices(&md->table_devices);
1942 	dm_stats_cleanup(&md->stats);
1943 	free_minor(minor);
1944 
1945 	module_put(THIS_MODULE);
1946 	kvfree(md);
1947 }
1948 
1949 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1950 {
1951 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1952 	int ret = 0;
1953 
1954 	if (dm_table_bio_based(t)) {
1955 		/*
1956 		 * The md may already have mempools that need changing.
1957 		 * If so, reload bioset because front_pad may have changed
1958 		 * because a different table was loaded.
1959 		 */
1960 		bioset_exit(&md->bs);
1961 		bioset_exit(&md->io_bs);
1962 
1963 	} else if (bioset_initialized(&md->bs)) {
1964 		/*
1965 		 * There's no need to reload with request-based dm
1966 		 * because the size of front_pad doesn't change.
1967 		 * Note for future: If you are to reload bioset,
1968 		 * prep-ed requests in the queue may refer
1969 		 * to bio from the old bioset, so you must walk
1970 		 * through the queue to unprep.
1971 		 */
1972 		goto out;
1973 	}
1974 
1975 	BUG_ON(!p ||
1976 	       bioset_initialized(&md->bs) ||
1977 	       bioset_initialized(&md->io_bs));
1978 
1979 	ret = bioset_init_from_src(&md->bs, &p->bs);
1980 	if (ret)
1981 		goto out;
1982 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1983 	if (ret)
1984 		bioset_exit(&md->bs);
1985 out:
1986 	/* mempool bind completed, no longer need any mempools in the table */
1987 	dm_table_free_md_mempools(t);
1988 	return ret;
1989 }
1990 
1991 /*
1992  * Bind a table to the device.
1993  */
1994 static void event_callback(void *context)
1995 {
1996 	unsigned long flags;
1997 	LIST_HEAD(uevents);
1998 	struct mapped_device *md = (struct mapped_device *) context;
1999 
2000 	spin_lock_irqsave(&md->uevent_lock, flags);
2001 	list_splice_init(&md->uevent_list, &uevents);
2002 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2003 
2004 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2005 
2006 	atomic_inc(&md->event_nr);
2007 	wake_up(&md->eventq);
2008 	dm_issue_global_event();
2009 }
2010 
2011 /*
2012  * Returns old map, which caller must destroy.
2013  */
2014 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2015 			       struct queue_limits *limits)
2016 {
2017 	struct dm_table *old_map;
2018 	sector_t size;
2019 	int ret;
2020 
2021 	lockdep_assert_held(&md->suspend_lock);
2022 
2023 	size = dm_table_get_size(t);
2024 
2025 	/*
2026 	 * Wipe any geometry if the size of the table changed.
2027 	 */
2028 	if (size != dm_get_size(md))
2029 		memset(&md->geometry, 0, sizeof(md->geometry));
2030 
2031 	if (!get_capacity(md->disk))
2032 		set_capacity(md->disk, size);
2033 	else
2034 		set_capacity_and_notify(md->disk, size);
2035 
2036 	dm_table_event_callback(t, event_callback, md);
2037 
2038 	if (dm_table_request_based(t)) {
2039 		/*
2040 		 * Leverage the fact that request-based DM targets are
2041 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2042 		 */
2043 		md->immutable_target = dm_table_get_immutable_target(t);
2044 	}
2045 
2046 	ret = __bind_mempools(md, t);
2047 	if (ret) {
2048 		old_map = ERR_PTR(ret);
2049 		goto out;
2050 	}
2051 
2052 	ret = dm_table_set_restrictions(t, md->queue, limits);
2053 	if (ret) {
2054 		old_map = ERR_PTR(ret);
2055 		goto out;
2056 	}
2057 
2058 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2059 	rcu_assign_pointer(md->map, (void *)t);
2060 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2061 
2062 	if (old_map)
2063 		dm_sync_table(md);
2064 out:
2065 	return old_map;
2066 }
2067 
2068 /*
2069  * Returns unbound table for the caller to free.
2070  */
2071 static struct dm_table *__unbind(struct mapped_device *md)
2072 {
2073 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2074 
2075 	if (!map)
2076 		return NULL;
2077 
2078 	dm_table_event_callback(map, NULL, NULL);
2079 	RCU_INIT_POINTER(md->map, NULL);
2080 	dm_sync_table(md);
2081 
2082 	return map;
2083 }
2084 
2085 /*
2086  * Constructor for a new device.
2087  */
2088 int dm_create(int minor, struct mapped_device **result)
2089 {
2090 	struct mapped_device *md;
2091 
2092 	md = alloc_dev(minor);
2093 	if (!md)
2094 		return -ENXIO;
2095 
2096 	dm_ima_reset_data(md);
2097 
2098 	*result = md;
2099 	return 0;
2100 }
2101 
2102 /*
2103  * Functions to manage md->type.
2104  * All are required to hold md->type_lock.
2105  */
2106 void dm_lock_md_type(struct mapped_device *md)
2107 {
2108 	mutex_lock(&md->type_lock);
2109 }
2110 
2111 void dm_unlock_md_type(struct mapped_device *md)
2112 {
2113 	mutex_unlock(&md->type_lock);
2114 }
2115 
2116 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2117 {
2118 	BUG_ON(!mutex_is_locked(&md->type_lock));
2119 	md->type = type;
2120 }
2121 
2122 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2123 {
2124 	return md->type;
2125 }
2126 
2127 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2128 {
2129 	return md->immutable_target_type;
2130 }
2131 
2132 /*
2133  * The queue_limits are only valid as long as you have a reference
2134  * count on 'md'.
2135  */
2136 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2137 {
2138 	BUG_ON(!atomic_read(&md->holders));
2139 	return &md->queue->limits;
2140 }
2141 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2142 
2143 /*
2144  * Setup the DM device's queue based on md's type
2145  */
2146 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2147 {
2148 	enum dm_queue_mode type = dm_table_get_type(t);
2149 	struct queue_limits limits;
2150 	int r;
2151 
2152 	switch (type) {
2153 	case DM_TYPE_REQUEST_BASED:
2154 		md->disk->fops = &dm_rq_blk_dops;
2155 		r = dm_mq_init_request_queue(md, t);
2156 		if (r) {
2157 			DMERR("Cannot initialize queue for request-based dm mapped device");
2158 			return r;
2159 		}
2160 		break;
2161 	case DM_TYPE_BIO_BASED:
2162 	case DM_TYPE_DAX_BIO_BASED:
2163 		break;
2164 	case DM_TYPE_NONE:
2165 		WARN_ON_ONCE(true);
2166 		break;
2167 	}
2168 
2169 	r = dm_calculate_queue_limits(t, &limits);
2170 	if (r) {
2171 		DMERR("Cannot calculate initial queue limits");
2172 		return r;
2173 	}
2174 	r = dm_table_set_restrictions(t, md->queue, &limits);
2175 	if (r)
2176 		return r;
2177 
2178 	r = add_disk(md->disk);
2179 	if (r)
2180 		return r;
2181 
2182 	r = dm_sysfs_init(md);
2183 	if (r) {
2184 		del_gendisk(md->disk);
2185 		return r;
2186 	}
2187 	md->type = type;
2188 	return 0;
2189 }
2190 
2191 struct mapped_device *dm_get_md(dev_t dev)
2192 {
2193 	struct mapped_device *md;
2194 	unsigned minor = MINOR(dev);
2195 
2196 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2197 		return NULL;
2198 
2199 	spin_lock(&_minor_lock);
2200 
2201 	md = idr_find(&_minor_idr, minor);
2202 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2203 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2204 		md = NULL;
2205 		goto out;
2206 	}
2207 	dm_get(md);
2208 out:
2209 	spin_unlock(&_minor_lock);
2210 
2211 	return md;
2212 }
2213 EXPORT_SYMBOL_GPL(dm_get_md);
2214 
2215 void *dm_get_mdptr(struct mapped_device *md)
2216 {
2217 	return md->interface_ptr;
2218 }
2219 
2220 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2221 {
2222 	md->interface_ptr = ptr;
2223 }
2224 
2225 void dm_get(struct mapped_device *md)
2226 {
2227 	atomic_inc(&md->holders);
2228 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2229 }
2230 
2231 int dm_hold(struct mapped_device *md)
2232 {
2233 	spin_lock(&_minor_lock);
2234 	if (test_bit(DMF_FREEING, &md->flags)) {
2235 		spin_unlock(&_minor_lock);
2236 		return -EBUSY;
2237 	}
2238 	dm_get(md);
2239 	spin_unlock(&_minor_lock);
2240 	return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(dm_hold);
2243 
2244 const char *dm_device_name(struct mapped_device *md)
2245 {
2246 	return md->name;
2247 }
2248 EXPORT_SYMBOL_GPL(dm_device_name);
2249 
2250 static void __dm_destroy(struct mapped_device *md, bool wait)
2251 {
2252 	struct dm_table *map;
2253 	int srcu_idx;
2254 
2255 	might_sleep();
2256 
2257 	spin_lock(&_minor_lock);
2258 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2259 	set_bit(DMF_FREEING, &md->flags);
2260 	spin_unlock(&_minor_lock);
2261 
2262 	blk_set_queue_dying(md->queue);
2263 
2264 	/*
2265 	 * Take suspend_lock so that presuspend and postsuspend methods
2266 	 * do not race with internal suspend.
2267 	 */
2268 	mutex_lock(&md->suspend_lock);
2269 	map = dm_get_live_table(md, &srcu_idx);
2270 	if (!dm_suspended_md(md)) {
2271 		dm_table_presuspend_targets(map);
2272 		set_bit(DMF_SUSPENDED, &md->flags);
2273 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2274 		dm_table_postsuspend_targets(map);
2275 	}
2276 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2277 	dm_put_live_table(md, srcu_idx);
2278 	mutex_unlock(&md->suspend_lock);
2279 
2280 	/*
2281 	 * Rare, but there may be I/O requests still going to complete,
2282 	 * for example.  Wait for all references to disappear.
2283 	 * No one should increment the reference count of the mapped_device,
2284 	 * after the mapped_device state becomes DMF_FREEING.
2285 	 */
2286 	if (wait)
2287 		while (atomic_read(&md->holders))
2288 			msleep(1);
2289 	else if (atomic_read(&md->holders))
2290 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2291 		       dm_device_name(md), atomic_read(&md->holders));
2292 
2293 	dm_table_destroy(__unbind(md));
2294 	free_dev(md);
2295 }
2296 
2297 void dm_destroy(struct mapped_device *md)
2298 {
2299 	__dm_destroy(md, true);
2300 }
2301 
2302 void dm_destroy_immediate(struct mapped_device *md)
2303 {
2304 	__dm_destroy(md, false);
2305 }
2306 
2307 void dm_put(struct mapped_device *md)
2308 {
2309 	atomic_dec(&md->holders);
2310 }
2311 EXPORT_SYMBOL_GPL(dm_put);
2312 
2313 static bool dm_in_flight_bios(struct mapped_device *md)
2314 {
2315 	int cpu;
2316 	unsigned long sum = 0;
2317 
2318 	for_each_possible_cpu(cpu)
2319 		sum += *per_cpu_ptr(md->pending_io, cpu);
2320 
2321 	return sum != 0;
2322 }
2323 
2324 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2325 {
2326 	int r = 0;
2327 	DEFINE_WAIT(wait);
2328 
2329 	while (true) {
2330 		prepare_to_wait(&md->wait, &wait, task_state);
2331 
2332 		if (!dm_in_flight_bios(md))
2333 			break;
2334 
2335 		if (signal_pending_state(task_state, current)) {
2336 			r = -EINTR;
2337 			break;
2338 		}
2339 
2340 		io_schedule();
2341 	}
2342 	finish_wait(&md->wait, &wait);
2343 
2344 	smp_rmb();
2345 
2346 	return r;
2347 }
2348 
2349 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2350 {
2351 	int r = 0;
2352 
2353 	if (!queue_is_mq(md->queue))
2354 		return dm_wait_for_bios_completion(md, task_state);
2355 
2356 	while (true) {
2357 		if (!blk_mq_queue_inflight(md->queue))
2358 			break;
2359 
2360 		if (signal_pending_state(task_state, current)) {
2361 			r = -EINTR;
2362 			break;
2363 		}
2364 
2365 		msleep(5);
2366 	}
2367 
2368 	return r;
2369 }
2370 
2371 /*
2372  * Process the deferred bios
2373  */
2374 static void dm_wq_work(struct work_struct *work)
2375 {
2376 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2377 	struct bio *bio;
2378 
2379 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2380 		spin_lock_irq(&md->deferred_lock);
2381 		bio = bio_list_pop(&md->deferred);
2382 		spin_unlock_irq(&md->deferred_lock);
2383 
2384 		if (!bio)
2385 			break;
2386 
2387 		submit_bio_noacct(bio);
2388 	}
2389 }
2390 
2391 static void dm_queue_flush(struct mapped_device *md)
2392 {
2393 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2394 	smp_mb__after_atomic();
2395 	queue_work(md->wq, &md->work);
2396 }
2397 
2398 /*
2399  * Swap in a new table, returning the old one for the caller to destroy.
2400  */
2401 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2402 {
2403 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2404 	struct queue_limits limits;
2405 	int r;
2406 
2407 	mutex_lock(&md->suspend_lock);
2408 
2409 	/* device must be suspended */
2410 	if (!dm_suspended_md(md))
2411 		goto out;
2412 
2413 	/*
2414 	 * If the new table has no data devices, retain the existing limits.
2415 	 * This helps multipath with queue_if_no_path if all paths disappear,
2416 	 * then new I/O is queued based on these limits, and then some paths
2417 	 * reappear.
2418 	 */
2419 	if (dm_table_has_no_data_devices(table)) {
2420 		live_map = dm_get_live_table_fast(md);
2421 		if (live_map)
2422 			limits = md->queue->limits;
2423 		dm_put_live_table_fast(md);
2424 	}
2425 
2426 	if (!live_map) {
2427 		r = dm_calculate_queue_limits(table, &limits);
2428 		if (r) {
2429 			map = ERR_PTR(r);
2430 			goto out;
2431 		}
2432 	}
2433 
2434 	map = __bind(md, table, &limits);
2435 	dm_issue_global_event();
2436 
2437 out:
2438 	mutex_unlock(&md->suspend_lock);
2439 	return map;
2440 }
2441 
2442 /*
2443  * Functions to lock and unlock any filesystem running on the
2444  * device.
2445  */
2446 static int lock_fs(struct mapped_device *md)
2447 {
2448 	int r;
2449 
2450 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2451 
2452 	r = freeze_bdev(md->disk->part0);
2453 	if (!r)
2454 		set_bit(DMF_FROZEN, &md->flags);
2455 	return r;
2456 }
2457 
2458 static void unlock_fs(struct mapped_device *md)
2459 {
2460 	if (!test_bit(DMF_FROZEN, &md->flags))
2461 		return;
2462 	thaw_bdev(md->disk->part0);
2463 	clear_bit(DMF_FROZEN, &md->flags);
2464 }
2465 
2466 /*
2467  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2468  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2469  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2470  *
2471  * If __dm_suspend returns 0, the device is completely quiescent
2472  * now. There is no request-processing activity. All new requests
2473  * are being added to md->deferred list.
2474  */
2475 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2476 			unsigned suspend_flags, unsigned int task_state,
2477 			int dmf_suspended_flag)
2478 {
2479 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2480 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2481 	int r;
2482 
2483 	lockdep_assert_held(&md->suspend_lock);
2484 
2485 	/*
2486 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2487 	 * This flag is cleared before dm_suspend returns.
2488 	 */
2489 	if (noflush)
2490 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2491 	else
2492 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2493 
2494 	/*
2495 	 * This gets reverted if there's an error later and the targets
2496 	 * provide the .presuspend_undo hook.
2497 	 */
2498 	dm_table_presuspend_targets(map);
2499 
2500 	/*
2501 	 * Flush I/O to the device.
2502 	 * Any I/O submitted after lock_fs() may not be flushed.
2503 	 * noflush takes precedence over do_lockfs.
2504 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2505 	 */
2506 	if (!noflush && do_lockfs) {
2507 		r = lock_fs(md);
2508 		if (r) {
2509 			dm_table_presuspend_undo_targets(map);
2510 			return r;
2511 		}
2512 	}
2513 
2514 	/*
2515 	 * Here we must make sure that no processes are submitting requests
2516 	 * to target drivers i.e. no one may be executing
2517 	 * dm_split_and_process_bio from dm_submit_bio.
2518 	 *
2519 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2520 	 * we take the write lock. To prevent any process from reentering
2521 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2522 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2523 	 * flush_workqueue(md->wq).
2524 	 */
2525 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2526 	if (map)
2527 		synchronize_srcu(&md->io_barrier);
2528 
2529 	/*
2530 	 * Stop md->queue before flushing md->wq in case request-based
2531 	 * dm defers requests to md->wq from md->queue.
2532 	 */
2533 	if (dm_request_based(md))
2534 		dm_stop_queue(md->queue);
2535 
2536 	flush_workqueue(md->wq);
2537 
2538 	/*
2539 	 * At this point no more requests are entering target request routines.
2540 	 * We call dm_wait_for_completion to wait for all existing requests
2541 	 * to finish.
2542 	 */
2543 	r = dm_wait_for_completion(md, task_state);
2544 	if (!r)
2545 		set_bit(dmf_suspended_flag, &md->flags);
2546 
2547 	if (noflush)
2548 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2549 	if (map)
2550 		synchronize_srcu(&md->io_barrier);
2551 
2552 	/* were we interrupted ? */
2553 	if (r < 0) {
2554 		dm_queue_flush(md);
2555 
2556 		if (dm_request_based(md))
2557 			dm_start_queue(md->queue);
2558 
2559 		unlock_fs(md);
2560 		dm_table_presuspend_undo_targets(map);
2561 		/* pushback list is already flushed, so skip flush */
2562 	}
2563 
2564 	return r;
2565 }
2566 
2567 /*
2568  * We need to be able to change a mapping table under a mounted
2569  * filesystem.  For example we might want to move some data in
2570  * the background.  Before the table can be swapped with
2571  * dm_bind_table, dm_suspend must be called to flush any in
2572  * flight bios and ensure that any further io gets deferred.
2573  */
2574 /*
2575  * Suspend mechanism in request-based dm.
2576  *
2577  * 1. Flush all I/Os by lock_fs() if needed.
2578  * 2. Stop dispatching any I/O by stopping the request_queue.
2579  * 3. Wait for all in-flight I/Os to be completed or requeued.
2580  *
2581  * To abort suspend, start the request_queue.
2582  */
2583 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2584 {
2585 	struct dm_table *map = NULL;
2586 	int r = 0;
2587 
2588 retry:
2589 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2590 
2591 	if (dm_suspended_md(md)) {
2592 		r = -EINVAL;
2593 		goto out_unlock;
2594 	}
2595 
2596 	if (dm_suspended_internally_md(md)) {
2597 		/* already internally suspended, wait for internal resume */
2598 		mutex_unlock(&md->suspend_lock);
2599 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2600 		if (r)
2601 			return r;
2602 		goto retry;
2603 	}
2604 
2605 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2606 
2607 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2608 	if (r)
2609 		goto out_unlock;
2610 
2611 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2612 	dm_table_postsuspend_targets(map);
2613 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2614 
2615 out_unlock:
2616 	mutex_unlock(&md->suspend_lock);
2617 	return r;
2618 }
2619 
2620 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2621 {
2622 	if (map) {
2623 		int r = dm_table_resume_targets(map);
2624 		if (r)
2625 			return r;
2626 	}
2627 
2628 	dm_queue_flush(md);
2629 
2630 	/*
2631 	 * Flushing deferred I/Os must be done after targets are resumed
2632 	 * so that mapping of targets can work correctly.
2633 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2634 	 */
2635 	if (dm_request_based(md))
2636 		dm_start_queue(md->queue);
2637 
2638 	unlock_fs(md);
2639 
2640 	return 0;
2641 }
2642 
2643 int dm_resume(struct mapped_device *md)
2644 {
2645 	int r;
2646 	struct dm_table *map = NULL;
2647 
2648 retry:
2649 	r = -EINVAL;
2650 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2651 
2652 	if (!dm_suspended_md(md))
2653 		goto out;
2654 
2655 	if (dm_suspended_internally_md(md)) {
2656 		/* already internally suspended, wait for internal resume */
2657 		mutex_unlock(&md->suspend_lock);
2658 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2659 		if (r)
2660 			return r;
2661 		goto retry;
2662 	}
2663 
2664 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2665 	if (!map || !dm_table_get_size(map))
2666 		goto out;
2667 
2668 	r = __dm_resume(md, map);
2669 	if (r)
2670 		goto out;
2671 
2672 	clear_bit(DMF_SUSPENDED, &md->flags);
2673 out:
2674 	mutex_unlock(&md->suspend_lock);
2675 
2676 	return r;
2677 }
2678 
2679 /*
2680  * Internal suspend/resume works like userspace-driven suspend. It waits
2681  * until all bios finish and prevents issuing new bios to the target drivers.
2682  * It may be used only from the kernel.
2683  */
2684 
2685 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2686 {
2687 	struct dm_table *map = NULL;
2688 
2689 	lockdep_assert_held(&md->suspend_lock);
2690 
2691 	if (md->internal_suspend_count++)
2692 		return; /* nested internal suspend */
2693 
2694 	if (dm_suspended_md(md)) {
2695 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2696 		return; /* nest suspend */
2697 	}
2698 
2699 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2700 
2701 	/*
2702 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2703 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2704 	 * would require changing .presuspend to return an error -- avoid this
2705 	 * until there is a need for more elaborate variants of internal suspend.
2706 	 */
2707 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2708 			    DMF_SUSPENDED_INTERNALLY);
2709 
2710 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2711 	dm_table_postsuspend_targets(map);
2712 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2713 }
2714 
2715 static void __dm_internal_resume(struct mapped_device *md)
2716 {
2717 	BUG_ON(!md->internal_suspend_count);
2718 
2719 	if (--md->internal_suspend_count)
2720 		return; /* resume from nested internal suspend */
2721 
2722 	if (dm_suspended_md(md))
2723 		goto done; /* resume from nested suspend */
2724 
2725 	/*
2726 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2727 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2728 	 */
2729 	(void) __dm_resume(md, NULL);
2730 
2731 done:
2732 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2733 	smp_mb__after_atomic();
2734 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2735 }
2736 
2737 void dm_internal_suspend_noflush(struct mapped_device *md)
2738 {
2739 	mutex_lock(&md->suspend_lock);
2740 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2741 	mutex_unlock(&md->suspend_lock);
2742 }
2743 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2744 
2745 void dm_internal_resume(struct mapped_device *md)
2746 {
2747 	mutex_lock(&md->suspend_lock);
2748 	__dm_internal_resume(md);
2749 	mutex_unlock(&md->suspend_lock);
2750 }
2751 EXPORT_SYMBOL_GPL(dm_internal_resume);
2752 
2753 /*
2754  * Fast variants of internal suspend/resume hold md->suspend_lock,
2755  * which prevents interaction with userspace-driven suspend.
2756  */
2757 
2758 void dm_internal_suspend_fast(struct mapped_device *md)
2759 {
2760 	mutex_lock(&md->suspend_lock);
2761 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2762 		return;
2763 
2764 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2765 	synchronize_srcu(&md->io_barrier);
2766 	flush_workqueue(md->wq);
2767 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2768 }
2769 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2770 
2771 void dm_internal_resume_fast(struct mapped_device *md)
2772 {
2773 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2774 		goto done;
2775 
2776 	dm_queue_flush(md);
2777 
2778 done:
2779 	mutex_unlock(&md->suspend_lock);
2780 }
2781 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2782 
2783 /*-----------------------------------------------------------------
2784  * Event notification.
2785  *---------------------------------------------------------------*/
2786 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2787 		       unsigned cookie)
2788 {
2789 	int r;
2790 	unsigned noio_flag;
2791 	char udev_cookie[DM_COOKIE_LENGTH];
2792 	char *envp[] = { udev_cookie, NULL };
2793 
2794 	noio_flag = memalloc_noio_save();
2795 
2796 	if (!cookie)
2797 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2798 	else {
2799 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2800 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2801 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2802 				       action, envp);
2803 	}
2804 
2805 	memalloc_noio_restore(noio_flag);
2806 
2807 	return r;
2808 }
2809 
2810 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2811 {
2812 	return atomic_add_return(1, &md->uevent_seq);
2813 }
2814 
2815 uint32_t dm_get_event_nr(struct mapped_device *md)
2816 {
2817 	return atomic_read(&md->event_nr);
2818 }
2819 
2820 int dm_wait_event(struct mapped_device *md, int event_nr)
2821 {
2822 	return wait_event_interruptible(md->eventq,
2823 			(event_nr != atomic_read(&md->event_nr)));
2824 }
2825 
2826 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2827 {
2828 	unsigned long flags;
2829 
2830 	spin_lock_irqsave(&md->uevent_lock, flags);
2831 	list_add(elist, &md->uevent_list);
2832 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2833 }
2834 
2835 /*
2836  * The gendisk is only valid as long as you have a reference
2837  * count on 'md'.
2838  */
2839 struct gendisk *dm_disk(struct mapped_device *md)
2840 {
2841 	return md->disk;
2842 }
2843 EXPORT_SYMBOL_GPL(dm_disk);
2844 
2845 struct kobject *dm_kobject(struct mapped_device *md)
2846 {
2847 	return &md->kobj_holder.kobj;
2848 }
2849 
2850 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2851 {
2852 	struct mapped_device *md;
2853 
2854 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2855 
2856 	spin_lock(&_minor_lock);
2857 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2858 		md = NULL;
2859 		goto out;
2860 	}
2861 	dm_get(md);
2862 out:
2863 	spin_unlock(&_minor_lock);
2864 
2865 	return md;
2866 }
2867 
2868 int dm_suspended_md(struct mapped_device *md)
2869 {
2870 	return test_bit(DMF_SUSPENDED, &md->flags);
2871 }
2872 
2873 static int dm_post_suspending_md(struct mapped_device *md)
2874 {
2875 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2876 }
2877 
2878 int dm_suspended_internally_md(struct mapped_device *md)
2879 {
2880 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2881 }
2882 
2883 int dm_test_deferred_remove_flag(struct mapped_device *md)
2884 {
2885 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2886 }
2887 
2888 int dm_suspended(struct dm_target *ti)
2889 {
2890 	return dm_suspended_md(ti->table->md);
2891 }
2892 EXPORT_SYMBOL_GPL(dm_suspended);
2893 
2894 int dm_post_suspending(struct dm_target *ti)
2895 {
2896 	return dm_post_suspending_md(ti->table->md);
2897 }
2898 EXPORT_SYMBOL_GPL(dm_post_suspending);
2899 
2900 int dm_noflush_suspending(struct dm_target *ti)
2901 {
2902 	return __noflush_suspending(ti->table->md);
2903 }
2904 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2905 
2906 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2907 					    unsigned integrity, unsigned per_io_data_size,
2908 					    unsigned min_pool_size)
2909 {
2910 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2911 	unsigned int pool_size = 0;
2912 	unsigned int front_pad, io_front_pad;
2913 	int ret;
2914 
2915 	if (!pools)
2916 		return NULL;
2917 
2918 	switch (type) {
2919 	case DM_TYPE_BIO_BASED:
2920 	case DM_TYPE_DAX_BIO_BASED:
2921 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2922 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2923 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2924 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2925 		if (ret)
2926 			goto out;
2927 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2928 			goto out;
2929 		break;
2930 	case DM_TYPE_REQUEST_BASED:
2931 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2932 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2933 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2934 		break;
2935 	default:
2936 		BUG();
2937 	}
2938 
2939 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2940 	if (ret)
2941 		goto out;
2942 
2943 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2944 		goto out;
2945 
2946 	return pools;
2947 
2948 out:
2949 	dm_free_md_mempools(pools);
2950 
2951 	return NULL;
2952 }
2953 
2954 void dm_free_md_mempools(struct dm_md_mempools *pools)
2955 {
2956 	if (!pools)
2957 		return;
2958 
2959 	bioset_exit(&pools->bs);
2960 	bioset_exit(&pools->io_bs);
2961 
2962 	kfree(pools);
2963 }
2964 
2965 struct dm_pr {
2966 	u64	old_key;
2967 	u64	new_key;
2968 	u32	flags;
2969 	bool	fail_early;
2970 };
2971 
2972 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2973 		      void *data)
2974 {
2975 	struct mapped_device *md = bdev->bd_disk->private_data;
2976 	struct dm_table *table;
2977 	struct dm_target *ti;
2978 	int ret = -ENOTTY, srcu_idx;
2979 
2980 	table = dm_get_live_table(md, &srcu_idx);
2981 	if (!table || !dm_table_get_size(table))
2982 		goto out;
2983 
2984 	/* We only support devices that have a single target */
2985 	if (dm_table_get_num_targets(table) != 1)
2986 		goto out;
2987 	ti = dm_table_get_target(table, 0);
2988 
2989 	ret = -EINVAL;
2990 	if (!ti->type->iterate_devices)
2991 		goto out;
2992 
2993 	ret = ti->type->iterate_devices(ti, fn, data);
2994 out:
2995 	dm_put_live_table(md, srcu_idx);
2996 	return ret;
2997 }
2998 
2999 /*
3000  * For register / unregister we need to manually call out to every path.
3001  */
3002 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3003 			    sector_t start, sector_t len, void *data)
3004 {
3005 	struct dm_pr *pr = data;
3006 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3007 
3008 	if (!ops || !ops->pr_register)
3009 		return -EOPNOTSUPP;
3010 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3011 }
3012 
3013 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3014 			  u32 flags)
3015 {
3016 	struct dm_pr pr = {
3017 		.old_key	= old_key,
3018 		.new_key	= new_key,
3019 		.flags		= flags,
3020 		.fail_early	= true,
3021 	};
3022 	int ret;
3023 
3024 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3025 	if (ret && new_key) {
3026 		/* unregister all paths if we failed to register any path */
3027 		pr.old_key = new_key;
3028 		pr.new_key = 0;
3029 		pr.flags = 0;
3030 		pr.fail_early = false;
3031 		dm_call_pr(bdev, __dm_pr_register, &pr);
3032 	}
3033 
3034 	return ret;
3035 }
3036 
3037 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3038 			 u32 flags)
3039 {
3040 	struct mapped_device *md = bdev->bd_disk->private_data;
3041 	const struct pr_ops *ops;
3042 	int r, srcu_idx;
3043 
3044 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3045 	if (r < 0)
3046 		goto out;
3047 
3048 	ops = bdev->bd_disk->fops->pr_ops;
3049 	if (ops && ops->pr_reserve)
3050 		r = ops->pr_reserve(bdev, key, type, flags);
3051 	else
3052 		r = -EOPNOTSUPP;
3053 out:
3054 	dm_unprepare_ioctl(md, srcu_idx);
3055 	return r;
3056 }
3057 
3058 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3059 {
3060 	struct mapped_device *md = bdev->bd_disk->private_data;
3061 	const struct pr_ops *ops;
3062 	int r, srcu_idx;
3063 
3064 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3065 	if (r < 0)
3066 		goto out;
3067 
3068 	ops = bdev->bd_disk->fops->pr_ops;
3069 	if (ops && ops->pr_release)
3070 		r = ops->pr_release(bdev, key, type);
3071 	else
3072 		r = -EOPNOTSUPP;
3073 out:
3074 	dm_unprepare_ioctl(md, srcu_idx);
3075 	return r;
3076 }
3077 
3078 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3079 			 enum pr_type type, bool abort)
3080 {
3081 	struct mapped_device *md = bdev->bd_disk->private_data;
3082 	const struct pr_ops *ops;
3083 	int r, srcu_idx;
3084 
3085 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3086 	if (r < 0)
3087 		goto out;
3088 
3089 	ops = bdev->bd_disk->fops->pr_ops;
3090 	if (ops && ops->pr_preempt)
3091 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3092 	else
3093 		r = -EOPNOTSUPP;
3094 out:
3095 	dm_unprepare_ioctl(md, srcu_idx);
3096 	return r;
3097 }
3098 
3099 static int dm_pr_clear(struct block_device *bdev, u64 key)
3100 {
3101 	struct mapped_device *md = bdev->bd_disk->private_data;
3102 	const struct pr_ops *ops;
3103 	int r, srcu_idx;
3104 
3105 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3106 	if (r < 0)
3107 		goto out;
3108 
3109 	ops = bdev->bd_disk->fops->pr_ops;
3110 	if (ops && ops->pr_clear)
3111 		r = ops->pr_clear(bdev, key);
3112 	else
3113 		r = -EOPNOTSUPP;
3114 out:
3115 	dm_unprepare_ioctl(md, srcu_idx);
3116 	return r;
3117 }
3118 
3119 static const struct pr_ops dm_pr_ops = {
3120 	.pr_register	= dm_pr_register,
3121 	.pr_reserve	= dm_pr_reserve,
3122 	.pr_release	= dm_pr_release,
3123 	.pr_preempt	= dm_pr_preempt,
3124 	.pr_clear	= dm_pr_clear,
3125 };
3126 
3127 static const struct block_device_operations dm_blk_dops = {
3128 	.submit_bio = dm_submit_bio,
3129 	.poll_bio = dm_poll_bio,
3130 	.open = dm_blk_open,
3131 	.release = dm_blk_close,
3132 	.ioctl = dm_blk_ioctl,
3133 	.getgeo = dm_blk_getgeo,
3134 	.report_zones = dm_blk_report_zones,
3135 	.pr_ops = &dm_pr_ops,
3136 	.owner = THIS_MODULE
3137 };
3138 
3139 static const struct block_device_operations dm_rq_blk_dops = {
3140 	.open = dm_blk_open,
3141 	.release = dm_blk_close,
3142 	.ioctl = dm_blk_ioctl,
3143 	.getgeo = dm_blk_getgeo,
3144 	.pr_ops = &dm_pr_ops,
3145 	.owner = THIS_MODULE
3146 };
3147 
3148 static const struct dax_operations dm_dax_ops = {
3149 	.direct_access = dm_dax_direct_access,
3150 	.zero_page_range = dm_dax_zero_page_range,
3151 };
3152 
3153 /*
3154  * module hooks
3155  */
3156 module_init(dm_init);
3157 module_exit(dm_exit);
3158 
3159 module_param(major, uint, 0);
3160 MODULE_PARM_DESC(major, "The major number of the device mapper");
3161 
3162 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3163 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3164 
3165 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3166 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3167 
3168 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3169 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3170 
3171 MODULE_DESCRIPTION(DM_NAME " driver");
3172 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3173 MODULE_LICENSE("GPL");
3174