xref: /openbmc/linux/drivers/md/dm.c (revision dde1e1ec4c08c3b7a4cee6cdad53948680d9fe39)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct mapped_device *md;
67 	struct dm_table *map;
68 	struct bio *bio;
69 	struct dm_io *io;
70 	sector_t sector;
71 	unsigned sector_count;
72 };
73 
74 /*
75  * One of these is allocated per clone bio.
76  */
77 #define DM_TIO_MAGIC 7282014
78 struct dm_target_io {
79 	unsigned magic;
80 	struct dm_io *io;
81 	struct dm_target *ti;
82 	unsigned target_bio_nr;
83 	unsigned *len_ptr;
84 	bool inside_dm_io;
85 	struct bio clone;
86 };
87 
88 /*
89  * One of these is allocated per original bio.
90  * It contains the first clone used for that original.
91  */
92 #define DM_IO_MAGIC 5191977
93 struct dm_io {
94 	unsigned magic;
95 	struct mapped_device *md;
96 	blk_status_t status;
97 	atomic_t io_count;
98 	struct bio *orig_bio;
99 	unsigned long start_time;
100 	spinlock_t endio_lock;
101 	struct dm_stats_aux stats_aux;
102 	/* last member of dm_target_io is 'struct bio' */
103 	struct dm_target_io tio;
104 };
105 
106 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 {
108 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
109 	if (!tio->inside_dm_io)
110 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
111 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 }
113 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 
115 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 {
117 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
118 	if (io->magic == DM_IO_MAGIC)
119 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
120 	BUG_ON(io->magic != DM_TIO_MAGIC);
121 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 }
123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 
125 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 {
127 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 }
129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 
131 #define MINOR_ALLOCED ((void *)-1)
132 
133 /*
134  * Bits for the md->flags field.
135  */
136 #define DMF_BLOCK_IO_FOR_SUSPEND 0
137 #define DMF_SUSPENDED 1
138 #define DMF_FROZEN 2
139 #define DMF_FREEING 3
140 #define DMF_DELETING 4
141 #define DMF_NOFLUSH_SUSPENDING 5
142 #define DMF_DEFERRED_REMOVE 6
143 #define DMF_SUSPENDED_INTERNALLY 7
144 
145 #define DM_NUMA_NODE NUMA_NO_NODE
146 static int dm_numa_node = DM_NUMA_NODE;
147 
148 /*
149  * For mempools pre-allocation at the table loading time.
150  */
151 struct dm_md_mempools {
152 	struct bio_set *bs;
153 	struct bio_set *io_bs;
154 };
155 
156 struct table_device {
157 	struct list_head list;
158 	refcount_t count;
159 	struct dm_dev dm_dev;
160 };
161 
162 static struct kmem_cache *_rq_tio_cache;
163 static struct kmem_cache *_rq_cache;
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r = -ENOMEM;
227 
228 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
229 	if (!_rq_tio_cache)
230 		return r;
231 
232 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
233 				      __alignof__(struct request), 0, NULL);
234 	if (!_rq_cache)
235 		goto out_free_rq_tio_cache;
236 
237 	r = dm_uevent_init();
238 	if (r)
239 		goto out_free_rq_cache;
240 
241 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
242 	if (!deferred_remove_workqueue) {
243 		r = -ENOMEM;
244 		goto out_uevent_exit;
245 	}
246 
247 	_major = major;
248 	r = register_blkdev(_major, _name);
249 	if (r < 0)
250 		goto out_free_workqueue;
251 
252 	if (!_major)
253 		_major = r;
254 
255 	return 0;
256 
257 out_free_workqueue:
258 	destroy_workqueue(deferred_remove_workqueue);
259 out_uevent_exit:
260 	dm_uevent_exit();
261 out_free_rq_cache:
262 	kmem_cache_destroy(_rq_cache);
263 out_free_rq_tio_cache:
264 	kmem_cache_destroy(_rq_tio_cache);
265 
266 	return r;
267 }
268 
269 static void local_exit(void)
270 {
271 	flush_scheduled_work();
272 	destroy_workqueue(deferred_remove_workqueue);
273 
274 	kmem_cache_destroy(_rq_cache);
275 	kmem_cache_destroy(_rq_tio_cache);
276 	unregister_blkdev(_major, _name);
277 	dm_uevent_exit();
278 
279 	_major = 0;
280 
281 	DMINFO("cleaned up");
282 }
283 
284 static int (*_inits[])(void) __initdata = {
285 	local_init,
286 	dm_target_init,
287 	dm_linear_init,
288 	dm_stripe_init,
289 	dm_io_init,
290 	dm_kcopyd_init,
291 	dm_interface_init,
292 	dm_statistics_init,
293 };
294 
295 static void (*_exits[])(void) = {
296 	local_exit,
297 	dm_target_exit,
298 	dm_linear_exit,
299 	dm_stripe_exit,
300 	dm_io_exit,
301 	dm_kcopyd_exit,
302 	dm_interface_exit,
303 	dm_statistics_exit,
304 };
305 
306 static int __init dm_init(void)
307 {
308 	const int count = ARRAY_SIZE(_inits);
309 
310 	int r, i;
311 
312 	for (i = 0; i < count; i++) {
313 		r = _inits[i]();
314 		if (r)
315 			goto bad;
316 	}
317 
318 	return 0;
319 
320       bad:
321 	while (i--)
322 		_exits[i]();
323 
324 	return r;
325 }
326 
327 static void __exit dm_exit(void)
328 {
329 	int i = ARRAY_SIZE(_exits);
330 
331 	while (i--)
332 		_exits[i]();
333 
334 	/*
335 	 * Should be empty by this point.
336 	 */
337 	idr_destroy(&_minor_idr);
338 }
339 
340 /*
341  * Block device functions
342  */
343 int dm_deleting_md(struct mapped_device *md)
344 {
345 	return test_bit(DMF_DELETING, &md->flags);
346 }
347 
348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 {
350 	struct mapped_device *md;
351 
352 	spin_lock(&_minor_lock);
353 
354 	md = bdev->bd_disk->private_data;
355 	if (!md)
356 		goto out;
357 
358 	if (test_bit(DMF_FREEING, &md->flags) ||
359 	    dm_deleting_md(md)) {
360 		md = NULL;
361 		goto out;
362 	}
363 
364 	dm_get(md);
365 	atomic_inc(&md->open_count);
366 out:
367 	spin_unlock(&_minor_lock);
368 
369 	return md ? 0 : -ENXIO;
370 }
371 
372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 {
374 	struct mapped_device *md;
375 
376 	spin_lock(&_minor_lock);
377 
378 	md = disk->private_data;
379 	if (WARN_ON(!md))
380 		goto out;
381 
382 	if (atomic_dec_and_test(&md->open_count) &&
383 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 
386 	dm_put(md);
387 out:
388 	spin_unlock(&_minor_lock);
389 }
390 
391 int dm_open_count(struct mapped_device *md)
392 {
393 	return atomic_read(&md->open_count);
394 }
395 
396 /*
397  * Guarantees nothing is using the device before it's deleted.
398  */
399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 {
401 	int r = 0;
402 
403 	spin_lock(&_minor_lock);
404 
405 	if (dm_open_count(md)) {
406 		r = -EBUSY;
407 		if (mark_deferred)
408 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
410 		r = -EEXIST;
411 	else
412 		set_bit(DMF_DELETING, &md->flags);
413 
414 	spin_unlock(&_minor_lock);
415 
416 	return r;
417 }
418 
419 int dm_cancel_deferred_remove(struct mapped_device *md)
420 {
421 	int r = 0;
422 
423 	spin_lock(&_minor_lock);
424 
425 	if (test_bit(DMF_DELETING, &md->flags))
426 		r = -EBUSY;
427 	else
428 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 
430 	spin_unlock(&_minor_lock);
431 
432 	return r;
433 }
434 
435 static void do_deferred_remove(struct work_struct *w)
436 {
437 	dm_deferred_remove();
438 }
439 
440 sector_t dm_get_size(struct mapped_device *md)
441 {
442 	return get_capacity(md->disk);
443 }
444 
445 struct request_queue *dm_get_md_queue(struct mapped_device *md)
446 {
447 	return md->queue;
448 }
449 
450 struct dm_stats *dm_get_stats(struct mapped_device *md)
451 {
452 	return &md->stats;
453 }
454 
455 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 
459 	return dm_get_geometry(md, geo);
460 }
461 
462 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
463 				  struct block_device **bdev,
464 				  fmode_t *mode)
465 {
466 	struct dm_target *tgt;
467 	struct dm_table *map;
468 	int srcu_idx, r;
469 
470 retry:
471 	r = -ENOTTY;
472 	map = dm_get_live_table(md, &srcu_idx);
473 	if (!map || !dm_table_get_size(map))
474 		goto out;
475 
476 	/* We only support devices that have a single target */
477 	if (dm_table_get_num_targets(map) != 1)
478 		goto out;
479 
480 	tgt = dm_table_get_target(map, 0);
481 	if (!tgt->type->prepare_ioctl)
482 		goto out;
483 
484 	if (dm_suspended_md(md)) {
485 		r = -EAGAIN;
486 		goto out;
487 	}
488 
489 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
490 	if (r < 0)
491 		goto out;
492 
493 	bdgrab(*bdev);
494 	dm_put_live_table(md, srcu_idx);
495 	return r;
496 
497 out:
498 	dm_put_live_table(md, srcu_idx);
499 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
500 		msleep(10);
501 		goto retry;
502 	}
503 	return r;
504 }
505 
506 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
507 			unsigned int cmd, unsigned long arg)
508 {
509 	struct mapped_device *md = bdev->bd_disk->private_data;
510 	int r;
511 
512 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
513 	if (r < 0)
514 		return r;
515 
516 	if (r > 0) {
517 		/*
518 		 * Target determined this ioctl is being issued against a
519 		 * subset of the parent bdev; require extra privileges.
520 		 */
521 		if (!capable(CAP_SYS_RAWIO)) {
522 			DMWARN_LIMIT(
523 	"%s: sending ioctl %x to DM device without required privilege.",
524 				current->comm, cmd);
525 			r = -ENOIOCTLCMD;
526 			goto out;
527 		}
528 	}
529 
530 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
531 out:
532 	bdput(bdev);
533 	return r;
534 }
535 
536 static struct dm_io *alloc_io(struct mapped_device *md)
537 {
538 	struct dm_io *io;
539 	struct dm_target_io *tio;
540 	struct bio *clone;
541 
542 	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
543 	if (!clone)
544 		return NULL;
545 
546 	tio = container_of(clone, struct dm_target_io, clone);
547 	tio->inside_dm_io = true;
548 	tio->io = NULL;
549 
550 	io = container_of(tio, struct dm_io, tio);
551 	io->magic = DM_IO_MAGIC;
552 
553 	return io;
554 }
555 
556 static void free_io(struct mapped_device *md, struct dm_io *io)
557 {
558 	bio_put(&io->tio.clone);
559 }
560 
561 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
562 				      unsigned target_bio_nr, gfp_t gfp_mask)
563 {
564 	struct dm_target_io *tio;
565 
566 	if (!ci->io->tio.io) {
567 		/* the dm_target_io embedded in ci->io is available */
568 		tio = &ci->io->tio;
569 	} else {
570 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->md->bs);
571 		if (!clone)
572 			return NULL;
573 
574 		tio = container_of(clone, struct dm_target_io, clone);
575 		tio->inside_dm_io = false;
576 	}
577 
578 	tio->magic = DM_TIO_MAGIC;
579 	tio->io = ci->io;
580 	tio->ti = ti;
581 	tio->target_bio_nr = target_bio_nr;
582 
583 	return tio;
584 }
585 
586 static void free_tio(struct dm_target_io *tio)
587 {
588 	if (tio->inside_dm_io)
589 		return;
590 	bio_put(&tio->clone);
591 }
592 
593 int md_in_flight(struct mapped_device *md)
594 {
595 	return atomic_read(&md->pending[READ]) +
596 	       atomic_read(&md->pending[WRITE]);
597 }
598 
599 static void start_io_acct(struct dm_io *io)
600 {
601 	struct mapped_device *md = io->md;
602 	struct bio *bio = io->orig_bio;
603 	int cpu;
604 	int rw = bio_data_dir(bio);
605 
606 	io->start_time = jiffies;
607 
608 	cpu = part_stat_lock();
609 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
610 	part_stat_unlock();
611 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
612 		atomic_inc_return(&md->pending[rw]));
613 
614 	if (unlikely(dm_stats_used(&md->stats)))
615 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
616 				    bio->bi_iter.bi_sector, bio_sectors(bio),
617 				    false, 0, &io->stats_aux);
618 }
619 
620 static void end_io_acct(struct dm_io *io)
621 {
622 	struct mapped_device *md = io->md;
623 	struct bio *bio = io->orig_bio;
624 	unsigned long duration = jiffies - io->start_time;
625 	int pending;
626 	int rw = bio_data_dir(bio);
627 
628 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
629 
630 	if (unlikely(dm_stats_used(&md->stats)))
631 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
632 				    bio->bi_iter.bi_sector, bio_sectors(bio),
633 				    true, duration, &io->stats_aux);
634 
635 	/*
636 	 * After this is decremented the bio must not be touched if it is
637 	 * a flush.
638 	 */
639 	pending = atomic_dec_return(&md->pending[rw]);
640 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
641 	pending += atomic_read(&md->pending[rw^0x1]);
642 
643 	/* nudge anyone waiting on suspend queue */
644 	if (!pending)
645 		wake_up(&md->wait);
646 }
647 
648 /*
649  * Add the bio to the list of deferred io.
650  */
651 static void queue_io(struct mapped_device *md, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&md->deferred_lock, flags);
656 	bio_list_add(&md->deferred, bio);
657 	spin_unlock_irqrestore(&md->deferred_lock, flags);
658 	queue_work(md->wq, &md->work);
659 }
660 
661 /*
662  * Everyone (including functions in this file), should use this
663  * function to access the md->map field, and make sure they call
664  * dm_put_live_table() when finished.
665  */
666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
667 {
668 	*srcu_idx = srcu_read_lock(&md->io_barrier);
669 
670 	return srcu_dereference(md->map, &md->io_barrier);
671 }
672 
673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
674 {
675 	srcu_read_unlock(&md->io_barrier, srcu_idx);
676 }
677 
678 void dm_sync_table(struct mapped_device *md)
679 {
680 	synchronize_srcu(&md->io_barrier);
681 	synchronize_rcu_expedited();
682 }
683 
684 /*
685  * A fast alternative to dm_get_live_table/dm_put_live_table.
686  * The caller must not block between these two functions.
687  */
688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
689 {
690 	rcu_read_lock();
691 	return rcu_dereference(md->map);
692 }
693 
694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
695 {
696 	rcu_read_unlock();
697 }
698 
699 /*
700  * Open a table device so we can use it as a map destination.
701  */
702 static int open_table_device(struct table_device *td, dev_t dev,
703 			     struct mapped_device *md)
704 {
705 	static char *_claim_ptr = "I belong to device-mapper";
706 	struct block_device *bdev;
707 
708 	int r;
709 
710 	BUG_ON(td->dm_dev.bdev);
711 
712 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
713 	if (IS_ERR(bdev))
714 		return PTR_ERR(bdev);
715 
716 	r = bd_link_disk_holder(bdev, dm_disk(md));
717 	if (r) {
718 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
719 		return r;
720 	}
721 
722 	td->dm_dev.bdev = bdev;
723 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
724 	return 0;
725 }
726 
727 /*
728  * Close a table device that we've been using.
729  */
730 static void close_table_device(struct table_device *td, struct mapped_device *md)
731 {
732 	if (!td->dm_dev.bdev)
733 		return;
734 
735 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
736 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
737 	put_dax(td->dm_dev.dax_dev);
738 	td->dm_dev.bdev = NULL;
739 	td->dm_dev.dax_dev = NULL;
740 }
741 
742 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
743 					      fmode_t mode) {
744 	struct table_device *td;
745 
746 	list_for_each_entry(td, l, list)
747 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
748 			return td;
749 
750 	return NULL;
751 }
752 
753 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
754 			struct dm_dev **result) {
755 	int r;
756 	struct table_device *td;
757 
758 	mutex_lock(&md->table_devices_lock);
759 	td = find_table_device(&md->table_devices, dev, mode);
760 	if (!td) {
761 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
762 		if (!td) {
763 			mutex_unlock(&md->table_devices_lock);
764 			return -ENOMEM;
765 		}
766 
767 		td->dm_dev.mode = mode;
768 		td->dm_dev.bdev = NULL;
769 
770 		if ((r = open_table_device(td, dev, md))) {
771 			mutex_unlock(&md->table_devices_lock);
772 			kfree(td);
773 			return r;
774 		}
775 
776 		format_dev_t(td->dm_dev.name, dev);
777 
778 		refcount_set(&td->count, 1);
779 		list_add(&td->list, &md->table_devices);
780 	} else {
781 		refcount_inc(&td->count);
782 	}
783 	mutex_unlock(&md->table_devices_lock);
784 
785 	*result = &td->dm_dev;
786 	return 0;
787 }
788 EXPORT_SYMBOL_GPL(dm_get_table_device);
789 
790 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
791 {
792 	struct table_device *td = container_of(d, struct table_device, dm_dev);
793 
794 	mutex_lock(&md->table_devices_lock);
795 	if (refcount_dec_and_test(&td->count)) {
796 		close_table_device(td, md);
797 		list_del(&td->list);
798 		kfree(td);
799 	}
800 	mutex_unlock(&md->table_devices_lock);
801 }
802 EXPORT_SYMBOL(dm_put_table_device);
803 
804 static void free_table_devices(struct list_head *devices)
805 {
806 	struct list_head *tmp, *next;
807 
808 	list_for_each_safe(tmp, next, devices) {
809 		struct table_device *td = list_entry(tmp, struct table_device, list);
810 
811 		DMWARN("dm_destroy: %s still exists with %d references",
812 		       td->dm_dev.name, refcount_read(&td->count));
813 		kfree(td);
814 	}
815 }
816 
817 /*
818  * Get the geometry associated with a dm device
819  */
820 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
821 {
822 	*geo = md->geometry;
823 
824 	return 0;
825 }
826 
827 /*
828  * Set the geometry of a device.
829  */
830 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
831 {
832 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
833 
834 	if (geo->start > sz) {
835 		DMWARN("Start sector is beyond the geometry limits.");
836 		return -EINVAL;
837 	}
838 
839 	md->geometry = *geo;
840 
841 	return 0;
842 }
843 
844 static int __noflush_suspending(struct mapped_device *md)
845 {
846 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
847 }
848 
849 /*
850  * Decrements the number of outstanding ios that a bio has been
851  * cloned into, completing the original io if necc.
852  */
853 static void dec_pending(struct dm_io *io, blk_status_t error)
854 {
855 	unsigned long flags;
856 	blk_status_t io_error;
857 	struct bio *bio;
858 	struct mapped_device *md = io->md;
859 
860 	/* Push-back supersedes any I/O errors */
861 	if (unlikely(error)) {
862 		spin_lock_irqsave(&io->endio_lock, flags);
863 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
864 			io->status = error;
865 		spin_unlock_irqrestore(&io->endio_lock, flags);
866 	}
867 
868 	if (atomic_dec_and_test(&io->io_count)) {
869 		if (io->status == BLK_STS_DM_REQUEUE) {
870 			/*
871 			 * Target requested pushing back the I/O.
872 			 */
873 			spin_lock_irqsave(&md->deferred_lock, flags);
874 			if (__noflush_suspending(md))
875 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
876 				bio_list_add_head(&md->deferred, io->orig_bio);
877 			else
878 				/* noflush suspend was interrupted. */
879 				io->status = BLK_STS_IOERR;
880 			spin_unlock_irqrestore(&md->deferred_lock, flags);
881 		}
882 
883 		io_error = io->status;
884 		bio = io->orig_bio;
885 		end_io_acct(io);
886 		free_io(md, io);
887 
888 		if (io_error == BLK_STS_DM_REQUEUE)
889 			return;
890 
891 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
892 			/*
893 			 * Preflush done for flush with data, reissue
894 			 * without REQ_PREFLUSH.
895 			 */
896 			bio->bi_opf &= ~REQ_PREFLUSH;
897 			queue_io(md, bio);
898 		} else {
899 			/* done with normal IO or empty flush */
900 			bio->bi_status = io_error;
901 			bio_endio(bio);
902 		}
903 	}
904 }
905 
906 void disable_write_same(struct mapped_device *md)
907 {
908 	struct queue_limits *limits = dm_get_queue_limits(md);
909 
910 	/* device doesn't really support WRITE SAME, disable it */
911 	limits->max_write_same_sectors = 0;
912 }
913 
914 void disable_write_zeroes(struct mapped_device *md)
915 {
916 	struct queue_limits *limits = dm_get_queue_limits(md);
917 
918 	/* device doesn't really support WRITE ZEROES, disable it */
919 	limits->max_write_zeroes_sectors = 0;
920 }
921 
922 static void clone_endio(struct bio *bio)
923 {
924 	blk_status_t error = bio->bi_status;
925 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
926 	struct dm_io *io = tio->io;
927 	struct mapped_device *md = tio->io->md;
928 	dm_endio_fn endio = tio->ti->type->end_io;
929 
930 	if (unlikely(error == BLK_STS_TARGET)) {
931 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
932 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
933 			disable_write_same(md);
934 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
935 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
936 			disable_write_zeroes(md);
937 	}
938 
939 	if (endio) {
940 		int r = endio(tio->ti, bio, &error);
941 		switch (r) {
942 		case DM_ENDIO_REQUEUE:
943 			error = BLK_STS_DM_REQUEUE;
944 			/*FALLTHRU*/
945 		case DM_ENDIO_DONE:
946 			break;
947 		case DM_ENDIO_INCOMPLETE:
948 			/* The target will handle the io */
949 			return;
950 		default:
951 			DMWARN("unimplemented target endio return value: %d", r);
952 			BUG();
953 		}
954 	}
955 
956 	free_tio(tio);
957 	dec_pending(io, error);
958 }
959 
960 /*
961  * Return maximum size of I/O possible at the supplied sector up to the current
962  * target boundary.
963  */
964 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
965 {
966 	sector_t target_offset = dm_target_offset(ti, sector);
967 
968 	return ti->len - target_offset;
969 }
970 
971 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
972 {
973 	sector_t len = max_io_len_target_boundary(sector, ti);
974 	sector_t offset, max_len;
975 
976 	/*
977 	 * Does the target need to split even further?
978 	 */
979 	if (ti->max_io_len) {
980 		offset = dm_target_offset(ti, sector);
981 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
982 			max_len = sector_div(offset, ti->max_io_len);
983 		else
984 			max_len = offset & (ti->max_io_len - 1);
985 		max_len = ti->max_io_len - max_len;
986 
987 		if (len > max_len)
988 			len = max_len;
989 	}
990 
991 	return len;
992 }
993 
994 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
995 {
996 	if (len > UINT_MAX) {
997 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
998 		      (unsigned long long)len, UINT_MAX);
999 		ti->error = "Maximum size of target IO is too large";
1000 		return -EINVAL;
1001 	}
1002 
1003 	ti->max_io_len = (uint32_t) len;
1004 
1005 	return 0;
1006 }
1007 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1008 
1009 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1010 		sector_t sector, int *srcu_idx)
1011 {
1012 	struct dm_table *map;
1013 	struct dm_target *ti;
1014 
1015 	map = dm_get_live_table(md, srcu_idx);
1016 	if (!map)
1017 		return NULL;
1018 
1019 	ti = dm_table_find_target(map, sector);
1020 	if (!dm_target_is_valid(ti))
1021 		return NULL;
1022 
1023 	return ti;
1024 }
1025 
1026 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1027 		long nr_pages, void **kaddr, pfn_t *pfn)
1028 {
1029 	struct mapped_device *md = dax_get_private(dax_dev);
1030 	sector_t sector = pgoff * PAGE_SECTORS;
1031 	struct dm_target *ti;
1032 	long len, ret = -EIO;
1033 	int srcu_idx;
1034 
1035 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1036 
1037 	if (!ti)
1038 		goto out;
1039 	if (!ti->type->direct_access)
1040 		goto out;
1041 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1042 	if (len < 1)
1043 		goto out;
1044 	nr_pages = min(len, nr_pages);
1045 	if (ti->type->direct_access)
1046 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1047 
1048  out:
1049 	dm_put_live_table(md, srcu_idx);
1050 
1051 	return ret;
1052 }
1053 
1054 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1055 		void *addr, size_t bytes, struct iov_iter *i)
1056 {
1057 	struct mapped_device *md = dax_get_private(dax_dev);
1058 	sector_t sector = pgoff * PAGE_SECTORS;
1059 	struct dm_target *ti;
1060 	long ret = 0;
1061 	int srcu_idx;
1062 
1063 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1064 
1065 	if (!ti)
1066 		goto out;
1067 	if (!ti->type->dax_copy_from_iter) {
1068 		ret = copy_from_iter(addr, bytes, i);
1069 		goto out;
1070 	}
1071 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1072  out:
1073 	dm_put_live_table(md, srcu_idx);
1074 
1075 	return ret;
1076 }
1077 
1078 /*
1079  * A target may call dm_accept_partial_bio only from the map routine.  It is
1080  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1081  *
1082  * dm_accept_partial_bio informs the dm that the target only wants to process
1083  * additional n_sectors sectors of the bio and the rest of the data should be
1084  * sent in a next bio.
1085  *
1086  * A diagram that explains the arithmetics:
1087  * +--------------------+---------------+-------+
1088  * |         1          |       2       |   3   |
1089  * +--------------------+---------------+-------+
1090  *
1091  * <-------------- *tio->len_ptr --------------->
1092  *                      <------- bi_size ------->
1093  *                      <-- n_sectors -->
1094  *
1095  * Region 1 was already iterated over with bio_advance or similar function.
1096  *	(it may be empty if the target doesn't use bio_advance)
1097  * Region 2 is the remaining bio size that the target wants to process.
1098  *	(it may be empty if region 1 is non-empty, although there is no reason
1099  *	 to make it empty)
1100  * The target requires that region 3 is to be sent in the next bio.
1101  *
1102  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1103  * the partially processed part (the sum of regions 1+2) must be the same for all
1104  * copies of the bio.
1105  */
1106 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1107 {
1108 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1109 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1110 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1111 	BUG_ON(bi_size > *tio->len_ptr);
1112 	BUG_ON(n_sectors > bi_size);
1113 	*tio->len_ptr -= bi_size - n_sectors;
1114 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1115 }
1116 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1117 
1118 /*
1119  * The zone descriptors obtained with a zone report indicate
1120  * zone positions within the target device. The zone descriptors
1121  * must be remapped to match their position within the dm device.
1122  * A target may call dm_remap_zone_report after completion of a
1123  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1124  * from the target device mapping to the dm device.
1125  */
1126 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1127 {
1128 #ifdef CONFIG_BLK_DEV_ZONED
1129 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1130 	struct bio *report_bio = tio->io->orig_bio;
1131 	struct blk_zone_report_hdr *hdr = NULL;
1132 	struct blk_zone *zone;
1133 	unsigned int nr_rep = 0;
1134 	unsigned int ofst;
1135 	struct bio_vec bvec;
1136 	struct bvec_iter iter;
1137 	void *addr;
1138 
1139 	if (bio->bi_status)
1140 		return;
1141 
1142 	/*
1143 	 * Remap the start sector of the reported zones. For sequential zones,
1144 	 * also remap the write pointer position.
1145 	 */
1146 	bio_for_each_segment(bvec, report_bio, iter) {
1147 		addr = kmap_atomic(bvec.bv_page);
1148 
1149 		/* Remember the report header in the first page */
1150 		if (!hdr) {
1151 			hdr = addr;
1152 			ofst = sizeof(struct blk_zone_report_hdr);
1153 		} else
1154 			ofst = 0;
1155 
1156 		/* Set zones start sector */
1157 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1158 			zone = addr + ofst;
1159 			if (zone->start >= start + ti->len) {
1160 				hdr->nr_zones = 0;
1161 				break;
1162 			}
1163 			zone->start = zone->start + ti->begin - start;
1164 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1165 				if (zone->cond == BLK_ZONE_COND_FULL)
1166 					zone->wp = zone->start + zone->len;
1167 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1168 					zone->wp = zone->start;
1169 				else
1170 					zone->wp = zone->wp + ti->begin - start;
1171 			}
1172 			ofst += sizeof(struct blk_zone);
1173 			hdr->nr_zones--;
1174 			nr_rep++;
1175 		}
1176 
1177 		if (addr != hdr)
1178 			kunmap_atomic(addr);
1179 
1180 		if (!hdr->nr_zones)
1181 			break;
1182 	}
1183 
1184 	if (hdr) {
1185 		hdr->nr_zones = nr_rep;
1186 		kunmap_atomic(hdr);
1187 	}
1188 
1189 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1190 
1191 #else /* !CONFIG_BLK_DEV_ZONED */
1192 	bio->bi_status = BLK_STS_NOTSUPP;
1193 #endif
1194 }
1195 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1196 
1197 static void __map_bio(struct dm_target_io *tio)
1198 {
1199 	int r;
1200 	sector_t sector;
1201 	struct bio *clone = &tio->clone;
1202 	struct dm_io *io = tio->io;
1203 	struct dm_target *ti = tio->ti;
1204 
1205 	clone->bi_end_io = clone_endio;
1206 
1207 	/*
1208 	 * Map the clone.  If r == 0 we don't need to do
1209 	 * anything, the target has assumed ownership of
1210 	 * this io.
1211 	 */
1212 	atomic_inc(&io->io_count);
1213 	sector = clone->bi_iter.bi_sector;
1214 
1215 	r = ti->type->map(ti, clone);
1216 	switch (r) {
1217 	case DM_MAPIO_SUBMITTED:
1218 		break;
1219 	case DM_MAPIO_REMAPPED:
1220 		/* the bio has been remapped so dispatch it */
1221 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1222 				      bio_dev(io->orig_bio), sector);
1223 		generic_make_request(clone);
1224 		break;
1225 	case DM_MAPIO_KILL:
1226 		free_tio(tio);
1227 		dec_pending(io, BLK_STS_IOERR);
1228 		break;
1229 	case DM_MAPIO_REQUEUE:
1230 		free_tio(tio);
1231 		dec_pending(io, BLK_STS_DM_REQUEUE);
1232 		break;
1233 	default:
1234 		DMWARN("unimplemented target map return value: %d", r);
1235 		BUG();
1236 	}
1237 }
1238 
1239 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1240 {
1241 	bio->bi_iter.bi_sector = sector;
1242 	bio->bi_iter.bi_size = to_bytes(len);
1243 }
1244 
1245 /*
1246  * Creates a bio that consists of range of complete bvecs.
1247  */
1248 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1249 		     sector_t sector, unsigned len)
1250 {
1251 	struct bio *clone = &tio->clone;
1252 
1253 	__bio_clone_fast(clone, bio);
1254 
1255 	if (unlikely(bio_integrity(bio) != NULL)) {
1256 		int r;
1257 
1258 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1259 			     !dm_target_passes_integrity(tio->ti->type))) {
1260 			DMWARN("%s: the target %s doesn't support integrity data.",
1261 				dm_device_name(tio->io->md),
1262 				tio->ti->type->name);
1263 			return -EIO;
1264 		}
1265 
1266 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1267 		if (r < 0)
1268 			return r;
1269 	}
1270 
1271 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1272 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1273 	clone->bi_iter.bi_size = to_bytes(len);
1274 
1275 	if (unlikely(bio_integrity(bio) != NULL))
1276 		bio_integrity_trim(clone);
1277 
1278 	return 0;
1279 }
1280 
1281 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1282 				struct dm_target *ti, unsigned num_bios)
1283 {
1284 	struct dm_target_io *tio;
1285 	int try;
1286 
1287 	if (!num_bios)
1288 		return;
1289 
1290 	if (num_bios == 1) {
1291 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1292 		bio_list_add(blist, &tio->clone);
1293 		return;
1294 	}
1295 
1296 	for (try = 0; try < 2; try++) {
1297 		int bio_nr;
1298 		struct bio *bio;
1299 
1300 		if (try)
1301 			mutex_lock(&ci->md->table_devices_lock);
1302 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1303 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1304 			if (!tio)
1305 				break;
1306 
1307 			bio_list_add(blist, &tio->clone);
1308 		}
1309 		if (try)
1310 			mutex_unlock(&ci->md->table_devices_lock);
1311 		if (bio_nr == num_bios)
1312 			return;
1313 
1314 		while ((bio = bio_list_pop(blist))) {
1315 			tio = container_of(bio, struct dm_target_io, clone);
1316 			free_tio(tio);
1317 		}
1318 	}
1319 }
1320 
1321 static void __clone_and_map_simple_bio(struct clone_info *ci,
1322 				       struct dm_target_io *tio, unsigned *len)
1323 {
1324 	struct bio *clone = &tio->clone;
1325 
1326 	tio->len_ptr = len;
1327 
1328 	__bio_clone_fast(clone, ci->bio);
1329 	if (len)
1330 		bio_setup_sector(clone, ci->sector, *len);
1331 
1332 	__map_bio(tio);
1333 }
1334 
1335 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1336 				  unsigned num_bios, unsigned *len)
1337 {
1338 	struct bio_list blist = BIO_EMPTY_LIST;
1339 	struct bio *bio;
1340 	struct dm_target_io *tio;
1341 
1342 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1343 
1344 	while ((bio = bio_list_pop(&blist))) {
1345 		tio = container_of(bio, struct dm_target_io, clone);
1346 		__clone_and_map_simple_bio(ci, tio, len);
1347 	}
1348 }
1349 
1350 static int __send_empty_flush(struct clone_info *ci)
1351 {
1352 	unsigned target_nr = 0;
1353 	struct dm_target *ti;
1354 
1355 	BUG_ON(bio_has_data(ci->bio));
1356 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1357 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1358 
1359 	return 0;
1360 }
1361 
1362 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1363 				    sector_t sector, unsigned *len)
1364 {
1365 	struct bio *bio = ci->bio;
1366 	struct dm_target_io *tio;
1367 	int r;
1368 
1369 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1370 	tio->len_ptr = len;
1371 	r = clone_bio(tio, bio, sector, *len);
1372 	if (r < 0) {
1373 		free_tio(tio);
1374 		return r;
1375 	}
1376 	__map_bio(tio);
1377 
1378 	return 0;
1379 }
1380 
1381 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1382 
1383 static unsigned get_num_discard_bios(struct dm_target *ti)
1384 {
1385 	return ti->num_discard_bios;
1386 }
1387 
1388 static unsigned get_num_write_same_bios(struct dm_target *ti)
1389 {
1390 	return ti->num_write_same_bios;
1391 }
1392 
1393 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1394 {
1395 	return ti->num_write_zeroes_bios;
1396 }
1397 
1398 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1399 
1400 static bool is_split_required_for_discard(struct dm_target *ti)
1401 {
1402 	return ti->split_discard_bios;
1403 }
1404 
1405 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1406 				       get_num_bios_fn get_num_bios,
1407 				       is_split_required_fn is_split_required)
1408 {
1409 	unsigned len;
1410 	unsigned num_bios;
1411 
1412 	/*
1413 	 * Even though the device advertised support for this type of
1414 	 * request, that does not mean every target supports it, and
1415 	 * reconfiguration might also have changed that since the
1416 	 * check was performed.
1417 	 */
1418 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1419 	if (!num_bios)
1420 		return -EOPNOTSUPP;
1421 
1422 	if (is_split_required && !is_split_required(ti))
1423 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1424 	else
1425 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1426 
1427 	__send_duplicate_bios(ci, ti, num_bios, &len);
1428 
1429 	ci->sector += len;
1430 	ci->sector_count -= len;
1431 
1432 	return 0;
1433 }
1434 
1435 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1436 {
1437 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1438 					   is_split_required_for_discard);
1439 }
1440 
1441 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1442 {
1443 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1444 }
1445 
1446 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1447 {
1448 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1449 }
1450 
1451 /*
1452  * Select the correct strategy for processing a non-flush bio.
1453  */
1454 static int __split_and_process_non_flush(struct clone_info *ci)
1455 {
1456 	struct bio *bio = ci->bio;
1457 	struct dm_target *ti;
1458 	unsigned len;
1459 	int r;
1460 
1461 	ti = dm_table_find_target(ci->map, ci->sector);
1462 	if (!dm_target_is_valid(ti))
1463 		return -EIO;
1464 
1465 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1466 		return __send_discard(ci, ti);
1467 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1468 		return __send_write_same(ci, ti);
1469 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1470 		return __send_write_zeroes(ci, ti);
1471 
1472 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1473 		len = ci->sector_count;
1474 	else
1475 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1476 			    ci->sector_count);
1477 
1478 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1479 	if (r < 0)
1480 		return r;
1481 
1482 	ci->sector += len;
1483 	ci->sector_count -= len;
1484 
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Entry point to split a bio into clones and submit them to the targets.
1490  */
1491 static void __split_and_process_bio(struct mapped_device *md,
1492 				    struct dm_table *map, struct bio *bio)
1493 {
1494 	struct clone_info ci;
1495 	int error = 0;
1496 
1497 	if (unlikely(!map)) {
1498 		bio_io_error(bio);
1499 		return;
1500 	}
1501 
1502 	ci.map = map;
1503 	ci.md = md;
1504 	ci.io = alloc_io(md);
1505 	ci.io->status = 0;
1506 	atomic_set(&ci.io->io_count, 1);
1507 	ci.io->orig_bio = bio;
1508 	ci.io->md = md;
1509 	spin_lock_init(&ci.io->endio_lock);
1510 	ci.sector = bio->bi_iter.bi_sector;
1511 
1512 	start_io_acct(ci.io);
1513 
1514 	if (bio->bi_opf & REQ_PREFLUSH) {
1515 		ci.bio = &ci.md->flush_bio;
1516 		ci.sector_count = 0;
1517 		error = __send_empty_flush(&ci);
1518 		/* dec_pending submits any data associated with flush */
1519 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1520 		ci.bio = bio;
1521 		ci.sector_count = 0;
1522 		error = __split_and_process_non_flush(&ci);
1523 	} else {
1524 		ci.bio = bio;
1525 		ci.sector_count = bio_sectors(bio);
1526 		while (ci.sector_count && !error) {
1527 			error = __split_and_process_non_flush(&ci);
1528 			if (current->bio_list && ci.sector_count && !error) {
1529 				/*
1530 				 * Remainder must be passed to generic_make_request()
1531 				 * so that it gets handled *after* bios already submitted
1532 				 * have been completely processed.
1533 				 * We take a clone of the original to store in
1534 				 * ci.io->orig_bio to be used by end_io_acct() and
1535 				 * for dec_pending to use for completion handling.
1536 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1537 				 * the usage of io->orig_bio in dm_remap_zone_report()
1538 				 * won't be affected by this reassignment.
1539 				 */
1540 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1541 								 md->queue->bio_split);
1542 				ci.io->orig_bio = b;
1543 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1544 				bio_chain(b, bio);
1545 				generic_make_request(bio);
1546 				break;
1547 			}
1548 		}
1549 	}
1550 
1551 	/* drop the extra reference count */
1552 	dec_pending(ci.io, errno_to_blk_status(error));
1553 }
1554 
1555 /*
1556  * The request function that remaps the bio to one target and
1557  * splits off any remainder.
1558  */
1559 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1560 {
1561 	int rw = bio_data_dir(bio);
1562 	struct mapped_device *md = q->queuedata;
1563 	int srcu_idx;
1564 	struct dm_table *map;
1565 
1566 	map = dm_get_live_table(md, &srcu_idx);
1567 
1568 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1569 
1570 	/* if we're suspended, we have to queue this io for later */
1571 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1572 		dm_put_live_table(md, srcu_idx);
1573 
1574 		if (!(bio->bi_opf & REQ_RAHEAD))
1575 			queue_io(md, bio);
1576 		else
1577 			bio_io_error(bio);
1578 		return BLK_QC_T_NONE;
1579 	}
1580 
1581 	__split_and_process_bio(md, map, bio);
1582 	dm_put_live_table(md, srcu_idx);
1583 	return BLK_QC_T_NONE;
1584 }
1585 
1586 static int dm_any_congested(void *congested_data, int bdi_bits)
1587 {
1588 	int r = bdi_bits;
1589 	struct mapped_device *md = congested_data;
1590 	struct dm_table *map;
1591 
1592 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1593 		if (dm_request_based(md)) {
1594 			/*
1595 			 * With request-based DM we only need to check the
1596 			 * top-level queue for congestion.
1597 			 */
1598 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1599 		} else {
1600 			map = dm_get_live_table_fast(md);
1601 			if (map)
1602 				r = dm_table_any_congested(map, bdi_bits);
1603 			dm_put_live_table_fast(md);
1604 		}
1605 	}
1606 
1607 	return r;
1608 }
1609 
1610 /*-----------------------------------------------------------------
1611  * An IDR is used to keep track of allocated minor numbers.
1612  *---------------------------------------------------------------*/
1613 static void free_minor(int minor)
1614 {
1615 	spin_lock(&_minor_lock);
1616 	idr_remove(&_minor_idr, minor);
1617 	spin_unlock(&_minor_lock);
1618 }
1619 
1620 /*
1621  * See if the device with a specific minor # is free.
1622  */
1623 static int specific_minor(int minor)
1624 {
1625 	int r;
1626 
1627 	if (minor >= (1 << MINORBITS))
1628 		return -EINVAL;
1629 
1630 	idr_preload(GFP_KERNEL);
1631 	spin_lock(&_minor_lock);
1632 
1633 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1634 
1635 	spin_unlock(&_minor_lock);
1636 	idr_preload_end();
1637 	if (r < 0)
1638 		return r == -ENOSPC ? -EBUSY : r;
1639 	return 0;
1640 }
1641 
1642 static int next_free_minor(int *minor)
1643 {
1644 	int r;
1645 
1646 	idr_preload(GFP_KERNEL);
1647 	spin_lock(&_minor_lock);
1648 
1649 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1650 
1651 	spin_unlock(&_minor_lock);
1652 	idr_preload_end();
1653 	if (r < 0)
1654 		return r;
1655 	*minor = r;
1656 	return 0;
1657 }
1658 
1659 static const struct block_device_operations dm_blk_dops;
1660 static const struct dax_operations dm_dax_ops;
1661 
1662 static void dm_wq_work(struct work_struct *work);
1663 
1664 void dm_init_md_queue(struct mapped_device *md)
1665 {
1666 	/*
1667 	 * Initialize data that will only be used by a non-blk-mq DM queue
1668 	 * - must do so here (in alloc_dev callchain) before queue is used
1669 	 */
1670 	md->queue->queuedata = md;
1671 	md->queue->backing_dev_info->congested_data = md;
1672 }
1673 
1674 void dm_init_normal_md_queue(struct mapped_device *md)
1675 {
1676 	md->use_blk_mq = false;
1677 	dm_init_md_queue(md);
1678 
1679 	/*
1680 	 * Initialize aspects of queue that aren't relevant for blk-mq
1681 	 */
1682 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1683 }
1684 
1685 static void cleanup_mapped_device(struct mapped_device *md)
1686 {
1687 	if (md->wq)
1688 		destroy_workqueue(md->wq);
1689 	if (md->kworker_task)
1690 		kthread_stop(md->kworker_task);
1691 	if (md->bs)
1692 		bioset_free(md->bs);
1693 	if (md->io_bs)
1694 		bioset_free(md->io_bs);
1695 
1696 	if (md->dax_dev) {
1697 		kill_dax(md->dax_dev);
1698 		put_dax(md->dax_dev);
1699 		md->dax_dev = NULL;
1700 	}
1701 
1702 	if (md->disk) {
1703 		spin_lock(&_minor_lock);
1704 		md->disk->private_data = NULL;
1705 		spin_unlock(&_minor_lock);
1706 		del_gendisk(md->disk);
1707 		put_disk(md->disk);
1708 	}
1709 
1710 	if (md->queue)
1711 		blk_cleanup_queue(md->queue);
1712 
1713 	cleanup_srcu_struct(&md->io_barrier);
1714 
1715 	if (md->bdev) {
1716 		bdput(md->bdev);
1717 		md->bdev = NULL;
1718 	}
1719 
1720 	dm_mq_cleanup_mapped_device(md);
1721 }
1722 
1723 /*
1724  * Allocate and initialise a blank device with a given minor.
1725  */
1726 static struct mapped_device *alloc_dev(int minor)
1727 {
1728 	int r, numa_node_id = dm_get_numa_node();
1729 	struct dax_device *dax_dev;
1730 	struct mapped_device *md;
1731 	void *old_md;
1732 
1733 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1734 	if (!md) {
1735 		DMWARN("unable to allocate device, out of memory.");
1736 		return NULL;
1737 	}
1738 
1739 	if (!try_module_get(THIS_MODULE))
1740 		goto bad_module_get;
1741 
1742 	/* get a minor number for the dev */
1743 	if (minor == DM_ANY_MINOR)
1744 		r = next_free_minor(&minor);
1745 	else
1746 		r = specific_minor(minor);
1747 	if (r < 0)
1748 		goto bad_minor;
1749 
1750 	r = init_srcu_struct(&md->io_barrier);
1751 	if (r < 0)
1752 		goto bad_io_barrier;
1753 
1754 	md->numa_node_id = numa_node_id;
1755 	md->use_blk_mq = dm_use_blk_mq_default();
1756 	md->init_tio_pdu = false;
1757 	md->type = DM_TYPE_NONE;
1758 	mutex_init(&md->suspend_lock);
1759 	mutex_init(&md->type_lock);
1760 	mutex_init(&md->table_devices_lock);
1761 	spin_lock_init(&md->deferred_lock);
1762 	atomic_set(&md->holders, 1);
1763 	atomic_set(&md->open_count, 0);
1764 	atomic_set(&md->event_nr, 0);
1765 	atomic_set(&md->uevent_seq, 0);
1766 	INIT_LIST_HEAD(&md->uevent_list);
1767 	INIT_LIST_HEAD(&md->table_devices);
1768 	spin_lock_init(&md->uevent_lock);
1769 
1770 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1771 	if (!md->queue)
1772 		goto bad;
1773 
1774 	dm_init_md_queue(md);
1775 
1776 	md->disk = alloc_disk_node(1, numa_node_id);
1777 	if (!md->disk)
1778 		goto bad;
1779 
1780 	atomic_set(&md->pending[0], 0);
1781 	atomic_set(&md->pending[1], 0);
1782 	init_waitqueue_head(&md->wait);
1783 	INIT_WORK(&md->work, dm_wq_work);
1784 	init_waitqueue_head(&md->eventq);
1785 	init_completion(&md->kobj_holder.completion);
1786 	md->kworker_task = NULL;
1787 
1788 	md->disk->major = _major;
1789 	md->disk->first_minor = minor;
1790 	md->disk->fops = &dm_blk_dops;
1791 	md->disk->queue = md->queue;
1792 	md->disk->private_data = md;
1793 	sprintf(md->disk->disk_name, "dm-%d", minor);
1794 
1795 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1796 	if (!dax_dev)
1797 		goto bad;
1798 	md->dax_dev = dax_dev;
1799 
1800 	add_disk(md->disk);
1801 	format_dev_t(md->name, MKDEV(_major, minor));
1802 
1803 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1804 	if (!md->wq)
1805 		goto bad;
1806 
1807 	md->bdev = bdget_disk(md->disk, 0);
1808 	if (!md->bdev)
1809 		goto bad;
1810 
1811 	bio_init(&md->flush_bio, NULL, 0);
1812 	bio_set_dev(&md->flush_bio, md->bdev);
1813 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1814 
1815 	dm_stats_init(&md->stats);
1816 
1817 	/* Populate the mapping, nobody knows we exist yet */
1818 	spin_lock(&_minor_lock);
1819 	old_md = idr_replace(&_minor_idr, md, minor);
1820 	spin_unlock(&_minor_lock);
1821 
1822 	BUG_ON(old_md != MINOR_ALLOCED);
1823 
1824 	return md;
1825 
1826 bad:
1827 	cleanup_mapped_device(md);
1828 bad_io_barrier:
1829 	free_minor(minor);
1830 bad_minor:
1831 	module_put(THIS_MODULE);
1832 bad_module_get:
1833 	kvfree(md);
1834 	return NULL;
1835 }
1836 
1837 static void unlock_fs(struct mapped_device *md);
1838 
1839 static void free_dev(struct mapped_device *md)
1840 {
1841 	int minor = MINOR(disk_devt(md->disk));
1842 
1843 	unlock_fs(md);
1844 
1845 	cleanup_mapped_device(md);
1846 
1847 	free_table_devices(&md->table_devices);
1848 	dm_stats_cleanup(&md->stats);
1849 	free_minor(minor);
1850 
1851 	module_put(THIS_MODULE);
1852 	kvfree(md);
1853 }
1854 
1855 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1856 {
1857 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1858 
1859 	if (dm_table_bio_based(t)) {
1860 		/*
1861 		 * The md may already have mempools that need changing.
1862 		 * If so, reload bioset because front_pad may have changed
1863 		 * because a different table was loaded.
1864 		 */
1865 		if (md->bs) {
1866 			bioset_free(md->bs);
1867 			md->bs = NULL;
1868 		}
1869 		if (md->io_bs) {
1870 			bioset_free(md->io_bs);
1871 			md->io_bs = NULL;
1872 		}
1873 
1874 	} else if (md->bs) {
1875 		/*
1876 		 * There's no need to reload with request-based dm
1877 		 * because the size of front_pad doesn't change.
1878 		 * Note for future: If you are to reload bioset,
1879 		 * prep-ed requests in the queue may refer
1880 		 * to bio from the old bioset, so you must walk
1881 		 * through the queue to unprep.
1882 		 */
1883 		goto out;
1884 	}
1885 
1886 	BUG_ON(!p || md->bs || md->io_bs);
1887 
1888 	md->bs = p->bs;
1889 	p->bs = NULL;
1890 	md->io_bs = p->io_bs;
1891 	p->io_bs = NULL;
1892 out:
1893 	/* mempool bind completed, no longer need any mempools in the table */
1894 	dm_table_free_md_mempools(t);
1895 }
1896 
1897 /*
1898  * Bind a table to the device.
1899  */
1900 static void event_callback(void *context)
1901 {
1902 	unsigned long flags;
1903 	LIST_HEAD(uevents);
1904 	struct mapped_device *md = (struct mapped_device *) context;
1905 
1906 	spin_lock_irqsave(&md->uevent_lock, flags);
1907 	list_splice_init(&md->uevent_list, &uevents);
1908 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1909 
1910 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1911 
1912 	atomic_inc(&md->event_nr);
1913 	wake_up(&md->eventq);
1914 	dm_issue_global_event();
1915 }
1916 
1917 /*
1918  * Protected by md->suspend_lock obtained by dm_swap_table().
1919  */
1920 static void __set_size(struct mapped_device *md, sector_t size)
1921 {
1922 	lockdep_assert_held(&md->suspend_lock);
1923 
1924 	set_capacity(md->disk, size);
1925 
1926 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1927 }
1928 
1929 /*
1930  * Returns old map, which caller must destroy.
1931  */
1932 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1933 			       struct queue_limits *limits)
1934 {
1935 	struct dm_table *old_map;
1936 	struct request_queue *q = md->queue;
1937 	sector_t size;
1938 
1939 	lockdep_assert_held(&md->suspend_lock);
1940 
1941 	size = dm_table_get_size(t);
1942 
1943 	/*
1944 	 * Wipe any geometry if the size of the table changed.
1945 	 */
1946 	if (size != dm_get_size(md))
1947 		memset(&md->geometry, 0, sizeof(md->geometry));
1948 
1949 	__set_size(md, size);
1950 
1951 	dm_table_event_callback(t, event_callback, md);
1952 
1953 	/*
1954 	 * The queue hasn't been stopped yet, if the old table type wasn't
1955 	 * for request-based during suspension.  So stop it to prevent
1956 	 * I/O mapping before resume.
1957 	 * This must be done before setting the queue restrictions,
1958 	 * because request-based dm may be run just after the setting.
1959 	 */
1960 	if (dm_table_request_based(t)) {
1961 		dm_stop_queue(q);
1962 		/*
1963 		 * Leverage the fact that request-based DM targets are
1964 		 * immutable singletons and establish md->immutable_target
1965 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1966 		 */
1967 		md->immutable_target = dm_table_get_immutable_target(t);
1968 	}
1969 
1970 	__bind_mempools(md, t);
1971 
1972 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1973 	rcu_assign_pointer(md->map, (void *)t);
1974 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1975 
1976 	dm_table_set_restrictions(t, q, limits);
1977 	if (old_map)
1978 		dm_sync_table(md);
1979 
1980 	return old_map;
1981 }
1982 
1983 /*
1984  * Returns unbound table for the caller to free.
1985  */
1986 static struct dm_table *__unbind(struct mapped_device *md)
1987 {
1988 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1989 
1990 	if (!map)
1991 		return NULL;
1992 
1993 	dm_table_event_callback(map, NULL, NULL);
1994 	RCU_INIT_POINTER(md->map, NULL);
1995 	dm_sync_table(md);
1996 
1997 	return map;
1998 }
1999 
2000 /*
2001  * Constructor for a new device.
2002  */
2003 int dm_create(int minor, struct mapped_device **result)
2004 {
2005 	struct mapped_device *md;
2006 
2007 	md = alloc_dev(minor);
2008 	if (!md)
2009 		return -ENXIO;
2010 
2011 	dm_sysfs_init(md);
2012 
2013 	*result = md;
2014 	return 0;
2015 }
2016 
2017 /*
2018  * Functions to manage md->type.
2019  * All are required to hold md->type_lock.
2020  */
2021 void dm_lock_md_type(struct mapped_device *md)
2022 {
2023 	mutex_lock(&md->type_lock);
2024 }
2025 
2026 void dm_unlock_md_type(struct mapped_device *md)
2027 {
2028 	mutex_unlock(&md->type_lock);
2029 }
2030 
2031 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2032 {
2033 	BUG_ON(!mutex_is_locked(&md->type_lock));
2034 	md->type = type;
2035 }
2036 
2037 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2038 {
2039 	return md->type;
2040 }
2041 
2042 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2043 {
2044 	return md->immutable_target_type;
2045 }
2046 
2047 /*
2048  * The queue_limits are only valid as long as you have a reference
2049  * count on 'md'.
2050  */
2051 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2052 {
2053 	BUG_ON(!atomic_read(&md->holders));
2054 	return &md->queue->limits;
2055 }
2056 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2057 
2058 /*
2059  * Setup the DM device's queue based on md's type
2060  */
2061 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2062 {
2063 	int r;
2064 	enum dm_queue_mode type = dm_get_md_type(md);
2065 
2066 	switch (type) {
2067 	case DM_TYPE_REQUEST_BASED:
2068 		r = dm_old_init_request_queue(md, t);
2069 		if (r) {
2070 			DMERR("Cannot initialize queue for request-based mapped device");
2071 			return r;
2072 		}
2073 		break;
2074 	case DM_TYPE_MQ_REQUEST_BASED:
2075 		r = dm_mq_init_request_queue(md, t);
2076 		if (r) {
2077 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2078 			return r;
2079 		}
2080 		break;
2081 	case DM_TYPE_BIO_BASED:
2082 	case DM_TYPE_DAX_BIO_BASED:
2083 		dm_init_normal_md_queue(md);
2084 		blk_queue_make_request(md->queue, dm_make_request);
2085 		break;
2086 	case DM_TYPE_NONE:
2087 		WARN_ON_ONCE(true);
2088 		break;
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 struct mapped_device *dm_get_md(dev_t dev)
2095 {
2096 	struct mapped_device *md;
2097 	unsigned minor = MINOR(dev);
2098 
2099 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2100 		return NULL;
2101 
2102 	spin_lock(&_minor_lock);
2103 
2104 	md = idr_find(&_minor_idr, minor);
2105 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2106 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2107 		md = NULL;
2108 		goto out;
2109 	}
2110 	dm_get(md);
2111 out:
2112 	spin_unlock(&_minor_lock);
2113 
2114 	return md;
2115 }
2116 EXPORT_SYMBOL_GPL(dm_get_md);
2117 
2118 void *dm_get_mdptr(struct mapped_device *md)
2119 {
2120 	return md->interface_ptr;
2121 }
2122 
2123 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2124 {
2125 	md->interface_ptr = ptr;
2126 }
2127 
2128 void dm_get(struct mapped_device *md)
2129 {
2130 	atomic_inc(&md->holders);
2131 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2132 }
2133 
2134 int dm_hold(struct mapped_device *md)
2135 {
2136 	spin_lock(&_minor_lock);
2137 	if (test_bit(DMF_FREEING, &md->flags)) {
2138 		spin_unlock(&_minor_lock);
2139 		return -EBUSY;
2140 	}
2141 	dm_get(md);
2142 	spin_unlock(&_minor_lock);
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(dm_hold);
2146 
2147 const char *dm_device_name(struct mapped_device *md)
2148 {
2149 	return md->name;
2150 }
2151 EXPORT_SYMBOL_GPL(dm_device_name);
2152 
2153 static void __dm_destroy(struct mapped_device *md, bool wait)
2154 {
2155 	struct request_queue *q = dm_get_md_queue(md);
2156 	struct dm_table *map;
2157 	int srcu_idx;
2158 
2159 	might_sleep();
2160 
2161 	spin_lock(&_minor_lock);
2162 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2163 	set_bit(DMF_FREEING, &md->flags);
2164 	spin_unlock(&_minor_lock);
2165 
2166 	blk_set_queue_dying(q);
2167 
2168 	if (dm_request_based(md) && md->kworker_task)
2169 		kthread_flush_worker(&md->kworker);
2170 
2171 	/*
2172 	 * Take suspend_lock so that presuspend and postsuspend methods
2173 	 * do not race with internal suspend.
2174 	 */
2175 	mutex_lock(&md->suspend_lock);
2176 	map = dm_get_live_table(md, &srcu_idx);
2177 	if (!dm_suspended_md(md)) {
2178 		dm_table_presuspend_targets(map);
2179 		dm_table_postsuspend_targets(map);
2180 	}
2181 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2182 	dm_put_live_table(md, srcu_idx);
2183 	mutex_unlock(&md->suspend_lock);
2184 
2185 	/*
2186 	 * Rare, but there may be I/O requests still going to complete,
2187 	 * for example.  Wait for all references to disappear.
2188 	 * No one should increment the reference count of the mapped_device,
2189 	 * after the mapped_device state becomes DMF_FREEING.
2190 	 */
2191 	if (wait)
2192 		while (atomic_read(&md->holders))
2193 			msleep(1);
2194 	else if (atomic_read(&md->holders))
2195 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2196 		       dm_device_name(md), atomic_read(&md->holders));
2197 
2198 	dm_sysfs_exit(md);
2199 	dm_table_destroy(__unbind(md));
2200 	free_dev(md);
2201 }
2202 
2203 void dm_destroy(struct mapped_device *md)
2204 {
2205 	__dm_destroy(md, true);
2206 }
2207 
2208 void dm_destroy_immediate(struct mapped_device *md)
2209 {
2210 	__dm_destroy(md, false);
2211 }
2212 
2213 void dm_put(struct mapped_device *md)
2214 {
2215 	atomic_dec(&md->holders);
2216 }
2217 EXPORT_SYMBOL_GPL(dm_put);
2218 
2219 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2220 {
2221 	int r = 0;
2222 	DEFINE_WAIT(wait);
2223 
2224 	while (1) {
2225 		prepare_to_wait(&md->wait, &wait, task_state);
2226 
2227 		if (!md_in_flight(md))
2228 			break;
2229 
2230 		if (signal_pending_state(task_state, current)) {
2231 			r = -EINTR;
2232 			break;
2233 		}
2234 
2235 		io_schedule();
2236 	}
2237 	finish_wait(&md->wait, &wait);
2238 
2239 	return r;
2240 }
2241 
2242 /*
2243  * Process the deferred bios
2244  */
2245 static void dm_wq_work(struct work_struct *work)
2246 {
2247 	struct mapped_device *md = container_of(work, struct mapped_device,
2248 						work);
2249 	struct bio *c;
2250 	int srcu_idx;
2251 	struct dm_table *map;
2252 
2253 	map = dm_get_live_table(md, &srcu_idx);
2254 
2255 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2256 		spin_lock_irq(&md->deferred_lock);
2257 		c = bio_list_pop(&md->deferred);
2258 		spin_unlock_irq(&md->deferred_lock);
2259 
2260 		if (!c)
2261 			break;
2262 
2263 		if (dm_request_based(md))
2264 			generic_make_request(c);
2265 		else
2266 			__split_and_process_bio(md, map, c);
2267 	}
2268 
2269 	dm_put_live_table(md, srcu_idx);
2270 }
2271 
2272 static void dm_queue_flush(struct mapped_device *md)
2273 {
2274 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2275 	smp_mb__after_atomic();
2276 	queue_work(md->wq, &md->work);
2277 }
2278 
2279 /*
2280  * Swap in a new table, returning the old one for the caller to destroy.
2281  */
2282 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2283 {
2284 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2285 	struct queue_limits limits;
2286 	int r;
2287 
2288 	mutex_lock(&md->suspend_lock);
2289 
2290 	/* device must be suspended */
2291 	if (!dm_suspended_md(md))
2292 		goto out;
2293 
2294 	/*
2295 	 * If the new table has no data devices, retain the existing limits.
2296 	 * This helps multipath with queue_if_no_path if all paths disappear,
2297 	 * then new I/O is queued based on these limits, and then some paths
2298 	 * reappear.
2299 	 */
2300 	if (dm_table_has_no_data_devices(table)) {
2301 		live_map = dm_get_live_table_fast(md);
2302 		if (live_map)
2303 			limits = md->queue->limits;
2304 		dm_put_live_table_fast(md);
2305 	}
2306 
2307 	if (!live_map) {
2308 		r = dm_calculate_queue_limits(table, &limits);
2309 		if (r) {
2310 			map = ERR_PTR(r);
2311 			goto out;
2312 		}
2313 	}
2314 
2315 	map = __bind(md, table, &limits);
2316 	dm_issue_global_event();
2317 
2318 out:
2319 	mutex_unlock(&md->suspend_lock);
2320 	return map;
2321 }
2322 
2323 /*
2324  * Functions to lock and unlock any filesystem running on the
2325  * device.
2326  */
2327 static int lock_fs(struct mapped_device *md)
2328 {
2329 	int r;
2330 
2331 	WARN_ON(md->frozen_sb);
2332 
2333 	md->frozen_sb = freeze_bdev(md->bdev);
2334 	if (IS_ERR(md->frozen_sb)) {
2335 		r = PTR_ERR(md->frozen_sb);
2336 		md->frozen_sb = NULL;
2337 		return r;
2338 	}
2339 
2340 	set_bit(DMF_FROZEN, &md->flags);
2341 
2342 	return 0;
2343 }
2344 
2345 static void unlock_fs(struct mapped_device *md)
2346 {
2347 	if (!test_bit(DMF_FROZEN, &md->flags))
2348 		return;
2349 
2350 	thaw_bdev(md->bdev, md->frozen_sb);
2351 	md->frozen_sb = NULL;
2352 	clear_bit(DMF_FROZEN, &md->flags);
2353 }
2354 
2355 /*
2356  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2357  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2358  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2359  *
2360  * If __dm_suspend returns 0, the device is completely quiescent
2361  * now. There is no request-processing activity. All new requests
2362  * are being added to md->deferred list.
2363  */
2364 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2365 			unsigned suspend_flags, long task_state,
2366 			int dmf_suspended_flag)
2367 {
2368 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2369 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2370 	int r;
2371 
2372 	lockdep_assert_held(&md->suspend_lock);
2373 
2374 	/*
2375 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2376 	 * This flag is cleared before dm_suspend returns.
2377 	 */
2378 	if (noflush)
2379 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2380 	else
2381 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2382 
2383 	/*
2384 	 * This gets reverted if there's an error later and the targets
2385 	 * provide the .presuspend_undo hook.
2386 	 */
2387 	dm_table_presuspend_targets(map);
2388 
2389 	/*
2390 	 * Flush I/O to the device.
2391 	 * Any I/O submitted after lock_fs() may not be flushed.
2392 	 * noflush takes precedence over do_lockfs.
2393 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2394 	 */
2395 	if (!noflush && do_lockfs) {
2396 		r = lock_fs(md);
2397 		if (r) {
2398 			dm_table_presuspend_undo_targets(map);
2399 			return r;
2400 		}
2401 	}
2402 
2403 	/*
2404 	 * Here we must make sure that no processes are submitting requests
2405 	 * to target drivers i.e. no one may be executing
2406 	 * __split_and_process_bio. This is called from dm_request and
2407 	 * dm_wq_work.
2408 	 *
2409 	 * To get all processes out of __split_and_process_bio in dm_request,
2410 	 * we take the write lock. To prevent any process from reentering
2411 	 * __split_and_process_bio from dm_request and quiesce the thread
2412 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2413 	 * flush_workqueue(md->wq).
2414 	 */
2415 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2416 	if (map)
2417 		synchronize_srcu(&md->io_barrier);
2418 
2419 	/*
2420 	 * Stop md->queue before flushing md->wq in case request-based
2421 	 * dm defers requests to md->wq from md->queue.
2422 	 */
2423 	if (dm_request_based(md)) {
2424 		dm_stop_queue(md->queue);
2425 		if (md->kworker_task)
2426 			kthread_flush_worker(&md->kworker);
2427 	}
2428 
2429 	flush_workqueue(md->wq);
2430 
2431 	/*
2432 	 * At this point no more requests are entering target request routines.
2433 	 * We call dm_wait_for_completion to wait for all existing requests
2434 	 * to finish.
2435 	 */
2436 	r = dm_wait_for_completion(md, task_state);
2437 	if (!r)
2438 		set_bit(dmf_suspended_flag, &md->flags);
2439 
2440 	if (noflush)
2441 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2442 	if (map)
2443 		synchronize_srcu(&md->io_barrier);
2444 
2445 	/* were we interrupted ? */
2446 	if (r < 0) {
2447 		dm_queue_flush(md);
2448 
2449 		if (dm_request_based(md))
2450 			dm_start_queue(md->queue);
2451 
2452 		unlock_fs(md);
2453 		dm_table_presuspend_undo_targets(map);
2454 		/* pushback list is already flushed, so skip flush */
2455 	}
2456 
2457 	return r;
2458 }
2459 
2460 /*
2461  * We need to be able to change a mapping table under a mounted
2462  * filesystem.  For example we might want to move some data in
2463  * the background.  Before the table can be swapped with
2464  * dm_bind_table, dm_suspend must be called to flush any in
2465  * flight bios and ensure that any further io gets deferred.
2466  */
2467 /*
2468  * Suspend mechanism in request-based dm.
2469  *
2470  * 1. Flush all I/Os by lock_fs() if needed.
2471  * 2. Stop dispatching any I/O by stopping the request_queue.
2472  * 3. Wait for all in-flight I/Os to be completed or requeued.
2473  *
2474  * To abort suspend, start the request_queue.
2475  */
2476 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2477 {
2478 	struct dm_table *map = NULL;
2479 	int r = 0;
2480 
2481 retry:
2482 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2483 
2484 	if (dm_suspended_md(md)) {
2485 		r = -EINVAL;
2486 		goto out_unlock;
2487 	}
2488 
2489 	if (dm_suspended_internally_md(md)) {
2490 		/* already internally suspended, wait for internal resume */
2491 		mutex_unlock(&md->suspend_lock);
2492 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2493 		if (r)
2494 			return r;
2495 		goto retry;
2496 	}
2497 
2498 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2499 
2500 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2501 	if (r)
2502 		goto out_unlock;
2503 
2504 	dm_table_postsuspend_targets(map);
2505 
2506 out_unlock:
2507 	mutex_unlock(&md->suspend_lock);
2508 	return r;
2509 }
2510 
2511 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2512 {
2513 	if (map) {
2514 		int r = dm_table_resume_targets(map);
2515 		if (r)
2516 			return r;
2517 	}
2518 
2519 	dm_queue_flush(md);
2520 
2521 	/*
2522 	 * Flushing deferred I/Os must be done after targets are resumed
2523 	 * so that mapping of targets can work correctly.
2524 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2525 	 */
2526 	if (dm_request_based(md))
2527 		dm_start_queue(md->queue);
2528 
2529 	unlock_fs(md);
2530 
2531 	return 0;
2532 }
2533 
2534 int dm_resume(struct mapped_device *md)
2535 {
2536 	int r;
2537 	struct dm_table *map = NULL;
2538 
2539 retry:
2540 	r = -EINVAL;
2541 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2542 
2543 	if (!dm_suspended_md(md))
2544 		goto out;
2545 
2546 	if (dm_suspended_internally_md(md)) {
2547 		/* already internally suspended, wait for internal resume */
2548 		mutex_unlock(&md->suspend_lock);
2549 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2550 		if (r)
2551 			return r;
2552 		goto retry;
2553 	}
2554 
2555 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2556 	if (!map || !dm_table_get_size(map))
2557 		goto out;
2558 
2559 	r = __dm_resume(md, map);
2560 	if (r)
2561 		goto out;
2562 
2563 	clear_bit(DMF_SUSPENDED, &md->flags);
2564 out:
2565 	mutex_unlock(&md->suspend_lock);
2566 
2567 	return r;
2568 }
2569 
2570 /*
2571  * Internal suspend/resume works like userspace-driven suspend. It waits
2572  * until all bios finish and prevents issuing new bios to the target drivers.
2573  * It may be used only from the kernel.
2574  */
2575 
2576 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2577 {
2578 	struct dm_table *map = NULL;
2579 
2580 	lockdep_assert_held(&md->suspend_lock);
2581 
2582 	if (md->internal_suspend_count++)
2583 		return; /* nested internal suspend */
2584 
2585 	if (dm_suspended_md(md)) {
2586 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2587 		return; /* nest suspend */
2588 	}
2589 
2590 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2591 
2592 	/*
2593 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2594 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2595 	 * would require changing .presuspend to return an error -- avoid this
2596 	 * until there is a need for more elaborate variants of internal suspend.
2597 	 */
2598 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2599 			    DMF_SUSPENDED_INTERNALLY);
2600 
2601 	dm_table_postsuspend_targets(map);
2602 }
2603 
2604 static void __dm_internal_resume(struct mapped_device *md)
2605 {
2606 	BUG_ON(!md->internal_suspend_count);
2607 
2608 	if (--md->internal_suspend_count)
2609 		return; /* resume from nested internal suspend */
2610 
2611 	if (dm_suspended_md(md))
2612 		goto done; /* resume from nested suspend */
2613 
2614 	/*
2615 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2616 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2617 	 */
2618 	(void) __dm_resume(md, NULL);
2619 
2620 done:
2621 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2622 	smp_mb__after_atomic();
2623 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2624 }
2625 
2626 void dm_internal_suspend_noflush(struct mapped_device *md)
2627 {
2628 	mutex_lock(&md->suspend_lock);
2629 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2630 	mutex_unlock(&md->suspend_lock);
2631 }
2632 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2633 
2634 void dm_internal_resume(struct mapped_device *md)
2635 {
2636 	mutex_lock(&md->suspend_lock);
2637 	__dm_internal_resume(md);
2638 	mutex_unlock(&md->suspend_lock);
2639 }
2640 EXPORT_SYMBOL_GPL(dm_internal_resume);
2641 
2642 /*
2643  * Fast variants of internal suspend/resume hold md->suspend_lock,
2644  * which prevents interaction with userspace-driven suspend.
2645  */
2646 
2647 void dm_internal_suspend_fast(struct mapped_device *md)
2648 {
2649 	mutex_lock(&md->suspend_lock);
2650 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2651 		return;
2652 
2653 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2654 	synchronize_srcu(&md->io_barrier);
2655 	flush_workqueue(md->wq);
2656 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2657 }
2658 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2659 
2660 void dm_internal_resume_fast(struct mapped_device *md)
2661 {
2662 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2663 		goto done;
2664 
2665 	dm_queue_flush(md);
2666 
2667 done:
2668 	mutex_unlock(&md->suspend_lock);
2669 }
2670 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2671 
2672 /*-----------------------------------------------------------------
2673  * Event notification.
2674  *---------------------------------------------------------------*/
2675 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2676 		       unsigned cookie)
2677 {
2678 	char udev_cookie[DM_COOKIE_LENGTH];
2679 	char *envp[] = { udev_cookie, NULL };
2680 
2681 	if (!cookie)
2682 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2683 	else {
2684 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2685 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2686 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2687 					  action, envp);
2688 	}
2689 }
2690 
2691 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2692 {
2693 	return atomic_add_return(1, &md->uevent_seq);
2694 }
2695 
2696 uint32_t dm_get_event_nr(struct mapped_device *md)
2697 {
2698 	return atomic_read(&md->event_nr);
2699 }
2700 
2701 int dm_wait_event(struct mapped_device *md, int event_nr)
2702 {
2703 	return wait_event_interruptible(md->eventq,
2704 			(event_nr != atomic_read(&md->event_nr)));
2705 }
2706 
2707 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2708 {
2709 	unsigned long flags;
2710 
2711 	spin_lock_irqsave(&md->uevent_lock, flags);
2712 	list_add(elist, &md->uevent_list);
2713 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2714 }
2715 
2716 /*
2717  * The gendisk is only valid as long as you have a reference
2718  * count on 'md'.
2719  */
2720 struct gendisk *dm_disk(struct mapped_device *md)
2721 {
2722 	return md->disk;
2723 }
2724 EXPORT_SYMBOL_GPL(dm_disk);
2725 
2726 struct kobject *dm_kobject(struct mapped_device *md)
2727 {
2728 	return &md->kobj_holder.kobj;
2729 }
2730 
2731 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2732 {
2733 	struct mapped_device *md;
2734 
2735 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2736 
2737 	spin_lock(&_minor_lock);
2738 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2739 		md = NULL;
2740 		goto out;
2741 	}
2742 	dm_get(md);
2743 out:
2744 	spin_unlock(&_minor_lock);
2745 
2746 	return md;
2747 }
2748 
2749 int dm_suspended_md(struct mapped_device *md)
2750 {
2751 	return test_bit(DMF_SUSPENDED, &md->flags);
2752 }
2753 
2754 int dm_suspended_internally_md(struct mapped_device *md)
2755 {
2756 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2757 }
2758 
2759 int dm_test_deferred_remove_flag(struct mapped_device *md)
2760 {
2761 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2762 }
2763 
2764 int dm_suspended(struct dm_target *ti)
2765 {
2766 	return dm_suspended_md(dm_table_get_md(ti->table));
2767 }
2768 EXPORT_SYMBOL_GPL(dm_suspended);
2769 
2770 int dm_noflush_suspending(struct dm_target *ti)
2771 {
2772 	return __noflush_suspending(dm_table_get_md(ti->table));
2773 }
2774 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2775 
2776 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2777 					    unsigned integrity, unsigned per_io_data_size,
2778 					    unsigned min_pool_size)
2779 {
2780 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2781 	unsigned int pool_size = 0;
2782 	unsigned int front_pad, io_front_pad;
2783 
2784 	if (!pools)
2785 		return NULL;
2786 
2787 	switch (type) {
2788 	case DM_TYPE_BIO_BASED:
2789 	case DM_TYPE_DAX_BIO_BASED:
2790 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2791 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2792 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2793 		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2794 		if (!pools->io_bs)
2795 			goto out;
2796 		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2797 			goto out;
2798 		break;
2799 	case DM_TYPE_REQUEST_BASED:
2800 	case DM_TYPE_MQ_REQUEST_BASED:
2801 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2802 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2803 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2804 		break;
2805 	default:
2806 		BUG();
2807 	}
2808 
2809 	pools->bs = bioset_create(pool_size, front_pad, 0);
2810 	if (!pools->bs)
2811 		goto out;
2812 
2813 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2814 		goto out;
2815 
2816 	return pools;
2817 
2818 out:
2819 	dm_free_md_mempools(pools);
2820 
2821 	return NULL;
2822 }
2823 
2824 void dm_free_md_mempools(struct dm_md_mempools *pools)
2825 {
2826 	if (!pools)
2827 		return;
2828 
2829 	if (pools->bs)
2830 		bioset_free(pools->bs);
2831 	if (pools->io_bs)
2832 		bioset_free(pools->io_bs);
2833 
2834 	kfree(pools);
2835 }
2836 
2837 struct dm_pr {
2838 	u64	old_key;
2839 	u64	new_key;
2840 	u32	flags;
2841 	bool	fail_early;
2842 };
2843 
2844 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2845 		      void *data)
2846 {
2847 	struct mapped_device *md = bdev->bd_disk->private_data;
2848 	struct dm_table *table;
2849 	struct dm_target *ti;
2850 	int ret = -ENOTTY, srcu_idx;
2851 
2852 	table = dm_get_live_table(md, &srcu_idx);
2853 	if (!table || !dm_table_get_size(table))
2854 		goto out;
2855 
2856 	/* We only support devices that have a single target */
2857 	if (dm_table_get_num_targets(table) != 1)
2858 		goto out;
2859 	ti = dm_table_get_target(table, 0);
2860 
2861 	ret = -EINVAL;
2862 	if (!ti->type->iterate_devices)
2863 		goto out;
2864 
2865 	ret = ti->type->iterate_devices(ti, fn, data);
2866 out:
2867 	dm_put_live_table(md, srcu_idx);
2868 	return ret;
2869 }
2870 
2871 /*
2872  * For register / unregister we need to manually call out to every path.
2873  */
2874 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2875 			    sector_t start, sector_t len, void *data)
2876 {
2877 	struct dm_pr *pr = data;
2878 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2879 
2880 	if (!ops || !ops->pr_register)
2881 		return -EOPNOTSUPP;
2882 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2883 }
2884 
2885 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2886 			  u32 flags)
2887 {
2888 	struct dm_pr pr = {
2889 		.old_key	= old_key,
2890 		.new_key	= new_key,
2891 		.flags		= flags,
2892 		.fail_early	= true,
2893 	};
2894 	int ret;
2895 
2896 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2897 	if (ret && new_key) {
2898 		/* unregister all paths if we failed to register any path */
2899 		pr.old_key = new_key;
2900 		pr.new_key = 0;
2901 		pr.flags = 0;
2902 		pr.fail_early = false;
2903 		dm_call_pr(bdev, __dm_pr_register, &pr);
2904 	}
2905 
2906 	return ret;
2907 }
2908 
2909 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2910 			 u32 flags)
2911 {
2912 	struct mapped_device *md = bdev->bd_disk->private_data;
2913 	const struct pr_ops *ops;
2914 	fmode_t mode;
2915 	int r;
2916 
2917 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2918 	if (r < 0)
2919 		return r;
2920 
2921 	ops = bdev->bd_disk->fops->pr_ops;
2922 	if (ops && ops->pr_reserve)
2923 		r = ops->pr_reserve(bdev, key, type, flags);
2924 	else
2925 		r = -EOPNOTSUPP;
2926 
2927 	bdput(bdev);
2928 	return r;
2929 }
2930 
2931 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2932 {
2933 	struct mapped_device *md = bdev->bd_disk->private_data;
2934 	const struct pr_ops *ops;
2935 	fmode_t mode;
2936 	int r;
2937 
2938 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2939 	if (r < 0)
2940 		return r;
2941 
2942 	ops = bdev->bd_disk->fops->pr_ops;
2943 	if (ops && ops->pr_release)
2944 		r = ops->pr_release(bdev, key, type);
2945 	else
2946 		r = -EOPNOTSUPP;
2947 
2948 	bdput(bdev);
2949 	return r;
2950 }
2951 
2952 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2953 			 enum pr_type type, bool abort)
2954 {
2955 	struct mapped_device *md = bdev->bd_disk->private_data;
2956 	const struct pr_ops *ops;
2957 	fmode_t mode;
2958 	int r;
2959 
2960 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2961 	if (r < 0)
2962 		return r;
2963 
2964 	ops = bdev->bd_disk->fops->pr_ops;
2965 	if (ops && ops->pr_preempt)
2966 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2967 	else
2968 		r = -EOPNOTSUPP;
2969 
2970 	bdput(bdev);
2971 	return r;
2972 }
2973 
2974 static int dm_pr_clear(struct block_device *bdev, u64 key)
2975 {
2976 	struct mapped_device *md = bdev->bd_disk->private_data;
2977 	const struct pr_ops *ops;
2978 	fmode_t mode;
2979 	int r;
2980 
2981 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2982 	if (r < 0)
2983 		return r;
2984 
2985 	ops = bdev->bd_disk->fops->pr_ops;
2986 	if (ops && ops->pr_clear)
2987 		r = ops->pr_clear(bdev, key);
2988 	else
2989 		r = -EOPNOTSUPP;
2990 
2991 	bdput(bdev);
2992 	return r;
2993 }
2994 
2995 static const struct pr_ops dm_pr_ops = {
2996 	.pr_register	= dm_pr_register,
2997 	.pr_reserve	= dm_pr_reserve,
2998 	.pr_release	= dm_pr_release,
2999 	.pr_preempt	= dm_pr_preempt,
3000 	.pr_clear	= dm_pr_clear,
3001 };
3002 
3003 static const struct block_device_operations dm_blk_dops = {
3004 	.open = dm_blk_open,
3005 	.release = dm_blk_close,
3006 	.ioctl = dm_blk_ioctl,
3007 	.getgeo = dm_blk_getgeo,
3008 	.pr_ops = &dm_pr_ops,
3009 	.owner = THIS_MODULE
3010 };
3011 
3012 static const struct dax_operations dm_dax_ops = {
3013 	.direct_access = dm_dax_direct_access,
3014 	.copy_from_iter = dm_dax_copy_from_iter,
3015 };
3016 
3017 /*
3018  * module hooks
3019  */
3020 module_init(dm_init);
3021 module_exit(dm_exit);
3022 
3023 module_param(major, uint, 0);
3024 MODULE_PARM_DESC(major, "The major number of the device mapper");
3025 
3026 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3027 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3028 
3029 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3030 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3031 
3032 MODULE_DESCRIPTION(DM_NAME " driver");
3033 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3034 MODULE_LICENSE("GPL");
3035