1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct mapped_device *md; 67 struct dm_table *map; 68 struct bio *bio; 69 struct dm_io *io; 70 sector_t sector; 71 unsigned sector_count; 72 }; 73 74 /* 75 * One of these is allocated per clone bio. 76 */ 77 #define DM_TIO_MAGIC 7282014 78 struct dm_target_io { 79 unsigned magic; 80 struct dm_io *io; 81 struct dm_target *ti; 82 unsigned target_bio_nr; 83 unsigned *len_ptr; 84 bool inside_dm_io; 85 struct bio clone; 86 }; 87 88 /* 89 * One of these is allocated per original bio. 90 * It contains the first clone used for that original. 91 */ 92 #define DM_IO_MAGIC 5191977 93 struct dm_io { 94 unsigned magic; 95 struct mapped_device *md; 96 blk_status_t status; 97 atomic_t io_count; 98 struct bio *orig_bio; 99 unsigned long start_time; 100 spinlock_t endio_lock; 101 struct dm_stats_aux stats_aux; 102 /* last member of dm_target_io is 'struct bio' */ 103 struct dm_target_io tio; 104 }; 105 106 void *dm_per_bio_data(struct bio *bio, size_t data_size) 107 { 108 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 109 if (!tio->inside_dm_io) 110 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 111 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 112 } 113 EXPORT_SYMBOL_GPL(dm_per_bio_data); 114 115 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 116 { 117 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 118 if (io->magic == DM_IO_MAGIC) 119 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 120 BUG_ON(io->magic != DM_TIO_MAGIC); 121 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 122 } 123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 124 125 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 126 { 127 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 128 } 129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 130 131 #define MINOR_ALLOCED ((void *)-1) 132 133 /* 134 * Bits for the md->flags field. 135 */ 136 #define DMF_BLOCK_IO_FOR_SUSPEND 0 137 #define DMF_SUSPENDED 1 138 #define DMF_FROZEN 2 139 #define DMF_FREEING 3 140 #define DMF_DELETING 4 141 #define DMF_NOFLUSH_SUSPENDING 5 142 #define DMF_DEFERRED_REMOVE 6 143 #define DMF_SUSPENDED_INTERNALLY 7 144 145 #define DM_NUMA_NODE NUMA_NO_NODE 146 static int dm_numa_node = DM_NUMA_NODE; 147 148 /* 149 * For mempools pre-allocation at the table loading time. 150 */ 151 struct dm_md_mempools { 152 struct bio_set *bs; 153 struct bio_set *io_bs; 154 }; 155 156 struct table_device { 157 struct list_head list; 158 refcount_t count; 159 struct dm_dev dm_dev; 160 }; 161 162 static struct kmem_cache *_rq_tio_cache; 163 static struct kmem_cache *_rq_cache; 164 165 /* 166 * Bio-based DM's mempools' reserved IOs set by the user. 167 */ 168 #define RESERVED_BIO_BASED_IOS 16 169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 170 171 static int __dm_get_module_param_int(int *module_param, int min, int max) 172 { 173 int param = READ_ONCE(*module_param); 174 int modified_param = 0; 175 bool modified = true; 176 177 if (param < min) 178 modified_param = min; 179 else if (param > max) 180 modified_param = max; 181 else 182 modified = false; 183 184 if (modified) { 185 (void)cmpxchg(module_param, param, modified_param); 186 param = modified_param; 187 } 188 189 return param; 190 } 191 192 unsigned __dm_get_module_param(unsigned *module_param, 193 unsigned def, unsigned max) 194 { 195 unsigned param = READ_ONCE(*module_param); 196 unsigned modified_param = 0; 197 198 if (!param) 199 modified_param = def; 200 else if (param > max) 201 modified_param = max; 202 203 if (modified_param) { 204 (void)cmpxchg(module_param, param, modified_param); 205 param = modified_param; 206 } 207 208 return param; 209 } 210 211 unsigned dm_get_reserved_bio_based_ios(void) 212 { 213 return __dm_get_module_param(&reserved_bio_based_ios, 214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 215 } 216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 217 218 static unsigned dm_get_numa_node(void) 219 { 220 return __dm_get_module_param_int(&dm_numa_node, 221 DM_NUMA_NODE, num_online_nodes() - 1); 222 } 223 224 static int __init local_init(void) 225 { 226 int r = -ENOMEM; 227 228 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 229 if (!_rq_tio_cache) 230 return r; 231 232 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 233 __alignof__(struct request), 0, NULL); 234 if (!_rq_cache) 235 goto out_free_rq_tio_cache; 236 237 r = dm_uevent_init(); 238 if (r) 239 goto out_free_rq_cache; 240 241 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 242 if (!deferred_remove_workqueue) { 243 r = -ENOMEM; 244 goto out_uevent_exit; 245 } 246 247 _major = major; 248 r = register_blkdev(_major, _name); 249 if (r < 0) 250 goto out_free_workqueue; 251 252 if (!_major) 253 _major = r; 254 255 return 0; 256 257 out_free_workqueue: 258 destroy_workqueue(deferred_remove_workqueue); 259 out_uevent_exit: 260 dm_uevent_exit(); 261 out_free_rq_cache: 262 kmem_cache_destroy(_rq_cache); 263 out_free_rq_tio_cache: 264 kmem_cache_destroy(_rq_tio_cache); 265 266 return r; 267 } 268 269 static void local_exit(void) 270 { 271 flush_scheduled_work(); 272 destroy_workqueue(deferred_remove_workqueue); 273 274 kmem_cache_destroy(_rq_cache); 275 kmem_cache_destroy(_rq_tio_cache); 276 unregister_blkdev(_major, _name); 277 dm_uevent_exit(); 278 279 _major = 0; 280 281 DMINFO("cleaned up"); 282 } 283 284 static int (*_inits[])(void) __initdata = { 285 local_init, 286 dm_target_init, 287 dm_linear_init, 288 dm_stripe_init, 289 dm_io_init, 290 dm_kcopyd_init, 291 dm_interface_init, 292 dm_statistics_init, 293 }; 294 295 static void (*_exits[])(void) = { 296 local_exit, 297 dm_target_exit, 298 dm_linear_exit, 299 dm_stripe_exit, 300 dm_io_exit, 301 dm_kcopyd_exit, 302 dm_interface_exit, 303 dm_statistics_exit, 304 }; 305 306 static int __init dm_init(void) 307 { 308 const int count = ARRAY_SIZE(_inits); 309 310 int r, i; 311 312 for (i = 0; i < count; i++) { 313 r = _inits[i](); 314 if (r) 315 goto bad; 316 } 317 318 return 0; 319 320 bad: 321 while (i--) 322 _exits[i](); 323 324 return r; 325 } 326 327 static void __exit dm_exit(void) 328 { 329 int i = ARRAY_SIZE(_exits); 330 331 while (i--) 332 _exits[i](); 333 334 /* 335 * Should be empty by this point. 336 */ 337 idr_destroy(&_minor_idr); 338 } 339 340 /* 341 * Block device functions 342 */ 343 int dm_deleting_md(struct mapped_device *md) 344 { 345 return test_bit(DMF_DELETING, &md->flags); 346 } 347 348 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 349 { 350 struct mapped_device *md; 351 352 spin_lock(&_minor_lock); 353 354 md = bdev->bd_disk->private_data; 355 if (!md) 356 goto out; 357 358 if (test_bit(DMF_FREEING, &md->flags) || 359 dm_deleting_md(md)) { 360 md = NULL; 361 goto out; 362 } 363 364 dm_get(md); 365 atomic_inc(&md->open_count); 366 out: 367 spin_unlock(&_minor_lock); 368 369 return md ? 0 : -ENXIO; 370 } 371 372 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 373 { 374 struct mapped_device *md; 375 376 spin_lock(&_minor_lock); 377 378 md = disk->private_data; 379 if (WARN_ON(!md)) 380 goto out; 381 382 if (atomic_dec_and_test(&md->open_count) && 383 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 384 queue_work(deferred_remove_workqueue, &deferred_remove_work); 385 386 dm_put(md); 387 out: 388 spin_unlock(&_minor_lock); 389 } 390 391 int dm_open_count(struct mapped_device *md) 392 { 393 return atomic_read(&md->open_count); 394 } 395 396 /* 397 * Guarantees nothing is using the device before it's deleted. 398 */ 399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 400 { 401 int r = 0; 402 403 spin_lock(&_minor_lock); 404 405 if (dm_open_count(md)) { 406 r = -EBUSY; 407 if (mark_deferred) 408 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 409 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 410 r = -EEXIST; 411 else 412 set_bit(DMF_DELETING, &md->flags); 413 414 spin_unlock(&_minor_lock); 415 416 return r; 417 } 418 419 int dm_cancel_deferred_remove(struct mapped_device *md) 420 { 421 int r = 0; 422 423 spin_lock(&_minor_lock); 424 425 if (test_bit(DMF_DELETING, &md->flags)) 426 r = -EBUSY; 427 else 428 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 429 430 spin_unlock(&_minor_lock); 431 432 return r; 433 } 434 435 static void do_deferred_remove(struct work_struct *w) 436 { 437 dm_deferred_remove(); 438 } 439 440 sector_t dm_get_size(struct mapped_device *md) 441 { 442 return get_capacity(md->disk); 443 } 444 445 struct request_queue *dm_get_md_queue(struct mapped_device *md) 446 { 447 return md->queue; 448 } 449 450 struct dm_stats *dm_get_stats(struct mapped_device *md) 451 { 452 return &md->stats; 453 } 454 455 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 456 { 457 struct mapped_device *md = bdev->bd_disk->private_data; 458 459 return dm_get_geometry(md, geo); 460 } 461 462 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 463 struct block_device **bdev, 464 fmode_t *mode) 465 { 466 struct dm_target *tgt; 467 struct dm_table *map; 468 int srcu_idx, r; 469 470 retry: 471 r = -ENOTTY; 472 map = dm_get_live_table(md, &srcu_idx); 473 if (!map || !dm_table_get_size(map)) 474 goto out; 475 476 /* We only support devices that have a single target */ 477 if (dm_table_get_num_targets(map) != 1) 478 goto out; 479 480 tgt = dm_table_get_target(map, 0); 481 if (!tgt->type->prepare_ioctl) 482 goto out; 483 484 if (dm_suspended_md(md)) { 485 r = -EAGAIN; 486 goto out; 487 } 488 489 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 490 if (r < 0) 491 goto out; 492 493 bdgrab(*bdev); 494 dm_put_live_table(md, srcu_idx); 495 return r; 496 497 out: 498 dm_put_live_table(md, srcu_idx); 499 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 500 msleep(10); 501 goto retry; 502 } 503 return r; 504 } 505 506 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 507 unsigned int cmd, unsigned long arg) 508 { 509 struct mapped_device *md = bdev->bd_disk->private_data; 510 int r; 511 512 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 513 if (r < 0) 514 return r; 515 516 if (r > 0) { 517 /* 518 * Target determined this ioctl is being issued against a 519 * subset of the parent bdev; require extra privileges. 520 */ 521 if (!capable(CAP_SYS_RAWIO)) { 522 DMWARN_LIMIT( 523 "%s: sending ioctl %x to DM device without required privilege.", 524 current->comm, cmd); 525 r = -ENOIOCTLCMD; 526 goto out; 527 } 528 } 529 530 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 531 out: 532 bdput(bdev); 533 return r; 534 } 535 536 static struct dm_io *alloc_io(struct mapped_device *md) 537 { 538 struct dm_io *io; 539 struct dm_target_io *tio; 540 struct bio *clone; 541 542 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs); 543 if (!clone) 544 return NULL; 545 546 tio = container_of(clone, struct dm_target_io, clone); 547 tio->inside_dm_io = true; 548 tio->io = NULL; 549 550 io = container_of(tio, struct dm_io, tio); 551 io->magic = DM_IO_MAGIC; 552 553 return io; 554 } 555 556 static void free_io(struct mapped_device *md, struct dm_io *io) 557 { 558 bio_put(&io->tio.clone); 559 } 560 561 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 562 unsigned target_bio_nr, gfp_t gfp_mask) 563 { 564 struct dm_target_io *tio; 565 566 if (!ci->io->tio.io) { 567 /* the dm_target_io embedded in ci->io is available */ 568 tio = &ci->io->tio; 569 } else { 570 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->md->bs); 571 if (!clone) 572 return NULL; 573 574 tio = container_of(clone, struct dm_target_io, clone); 575 tio->inside_dm_io = false; 576 } 577 578 tio->magic = DM_TIO_MAGIC; 579 tio->io = ci->io; 580 tio->ti = ti; 581 tio->target_bio_nr = target_bio_nr; 582 583 return tio; 584 } 585 586 static void free_tio(struct dm_target_io *tio) 587 { 588 if (tio->inside_dm_io) 589 return; 590 bio_put(&tio->clone); 591 } 592 593 int md_in_flight(struct mapped_device *md) 594 { 595 return atomic_read(&md->pending[READ]) + 596 atomic_read(&md->pending[WRITE]); 597 } 598 599 static void start_io_acct(struct dm_io *io) 600 { 601 struct mapped_device *md = io->md; 602 struct bio *bio = io->orig_bio; 603 int cpu; 604 int rw = bio_data_dir(bio); 605 606 io->start_time = jiffies; 607 608 cpu = part_stat_lock(); 609 part_round_stats(md->queue, cpu, &dm_disk(md)->part0); 610 part_stat_unlock(); 611 atomic_set(&dm_disk(md)->part0.in_flight[rw], 612 atomic_inc_return(&md->pending[rw])); 613 614 if (unlikely(dm_stats_used(&md->stats))) 615 dm_stats_account_io(&md->stats, bio_data_dir(bio), 616 bio->bi_iter.bi_sector, bio_sectors(bio), 617 false, 0, &io->stats_aux); 618 } 619 620 static void end_io_acct(struct dm_io *io) 621 { 622 struct mapped_device *md = io->md; 623 struct bio *bio = io->orig_bio; 624 unsigned long duration = jiffies - io->start_time; 625 int pending; 626 int rw = bio_data_dir(bio); 627 628 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 629 630 if (unlikely(dm_stats_used(&md->stats))) 631 dm_stats_account_io(&md->stats, bio_data_dir(bio), 632 bio->bi_iter.bi_sector, bio_sectors(bio), 633 true, duration, &io->stats_aux); 634 635 /* 636 * After this is decremented the bio must not be touched if it is 637 * a flush. 638 */ 639 pending = atomic_dec_return(&md->pending[rw]); 640 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 641 pending += atomic_read(&md->pending[rw^0x1]); 642 643 /* nudge anyone waiting on suspend queue */ 644 if (!pending) 645 wake_up(&md->wait); 646 } 647 648 /* 649 * Add the bio to the list of deferred io. 650 */ 651 static void queue_io(struct mapped_device *md, struct bio *bio) 652 { 653 unsigned long flags; 654 655 spin_lock_irqsave(&md->deferred_lock, flags); 656 bio_list_add(&md->deferred, bio); 657 spin_unlock_irqrestore(&md->deferred_lock, flags); 658 queue_work(md->wq, &md->work); 659 } 660 661 /* 662 * Everyone (including functions in this file), should use this 663 * function to access the md->map field, and make sure they call 664 * dm_put_live_table() when finished. 665 */ 666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 667 { 668 *srcu_idx = srcu_read_lock(&md->io_barrier); 669 670 return srcu_dereference(md->map, &md->io_barrier); 671 } 672 673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 674 { 675 srcu_read_unlock(&md->io_barrier, srcu_idx); 676 } 677 678 void dm_sync_table(struct mapped_device *md) 679 { 680 synchronize_srcu(&md->io_barrier); 681 synchronize_rcu_expedited(); 682 } 683 684 /* 685 * A fast alternative to dm_get_live_table/dm_put_live_table. 686 * The caller must not block between these two functions. 687 */ 688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 689 { 690 rcu_read_lock(); 691 return rcu_dereference(md->map); 692 } 693 694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 695 { 696 rcu_read_unlock(); 697 } 698 699 /* 700 * Open a table device so we can use it as a map destination. 701 */ 702 static int open_table_device(struct table_device *td, dev_t dev, 703 struct mapped_device *md) 704 { 705 static char *_claim_ptr = "I belong to device-mapper"; 706 struct block_device *bdev; 707 708 int r; 709 710 BUG_ON(td->dm_dev.bdev); 711 712 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 713 if (IS_ERR(bdev)) 714 return PTR_ERR(bdev); 715 716 r = bd_link_disk_holder(bdev, dm_disk(md)); 717 if (r) { 718 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 719 return r; 720 } 721 722 td->dm_dev.bdev = bdev; 723 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 724 return 0; 725 } 726 727 /* 728 * Close a table device that we've been using. 729 */ 730 static void close_table_device(struct table_device *td, struct mapped_device *md) 731 { 732 if (!td->dm_dev.bdev) 733 return; 734 735 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 736 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 737 put_dax(td->dm_dev.dax_dev); 738 td->dm_dev.bdev = NULL; 739 td->dm_dev.dax_dev = NULL; 740 } 741 742 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 743 fmode_t mode) { 744 struct table_device *td; 745 746 list_for_each_entry(td, l, list) 747 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 748 return td; 749 750 return NULL; 751 } 752 753 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 754 struct dm_dev **result) { 755 int r; 756 struct table_device *td; 757 758 mutex_lock(&md->table_devices_lock); 759 td = find_table_device(&md->table_devices, dev, mode); 760 if (!td) { 761 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 762 if (!td) { 763 mutex_unlock(&md->table_devices_lock); 764 return -ENOMEM; 765 } 766 767 td->dm_dev.mode = mode; 768 td->dm_dev.bdev = NULL; 769 770 if ((r = open_table_device(td, dev, md))) { 771 mutex_unlock(&md->table_devices_lock); 772 kfree(td); 773 return r; 774 } 775 776 format_dev_t(td->dm_dev.name, dev); 777 778 refcount_set(&td->count, 1); 779 list_add(&td->list, &md->table_devices); 780 } else { 781 refcount_inc(&td->count); 782 } 783 mutex_unlock(&md->table_devices_lock); 784 785 *result = &td->dm_dev; 786 return 0; 787 } 788 EXPORT_SYMBOL_GPL(dm_get_table_device); 789 790 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 791 { 792 struct table_device *td = container_of(d, struct table_device, dm_dev); 793 794 mutex_lock(&md->table_devices_lock); 795 if (refcount_dec_and_test(&td->count)) { 796 close_table_device(td, md); 797 list_del(&td->list); 798 kfree(td); 799 } 800 mutex_unlock(&md->table_devices_lock); 801 } 802 EXPORT_SYMBOL(dm_put_table_device); 803 804 static void free_table_devices(struct list_head *devices) 805 { 806 struct list_head *tmp, *next; 807 808 list_for_each_safe(tmp, next, devices) { 809 struct table_device *td = list_entry(tmp, struct table_device, list); 810 811 DMWARN("dm_destroy: %s still exists with %d references", 812 td->dm_dev.name, refcount_read(&td->count)); 813 kfree(td); 814 } 815 } 816 817 /* 818 * Get the geometry associated with a dm device 819 */ 820 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 821 { 822 *geo = md->geometry; 823 824 return 0; 825 } 826 827 /* 828 * Set the geometry of a device. 829 */ 830 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 831 { 832 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 833 834 if (geo->start > sz) { 835 DMWARN("Start sector is beyond the geometry limits."); 836 return -EINVAL; 837 } 838 839 md->geometry = *geo; 840 841 return 0; 842 } 843 844 static int __noflush_suspending(struct mapped_device *md) 845 { 846 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 847 } 848 849 /* 850 * Decrements the number of outstanding ios that a bio has been 851 * cloned into, completing the original io if necc. 852 */ 853 static void dec_pending(struct dm_io *io, blk_status_t error) 854 { 855 unsigned long flags; 856 blk_status_t io_error; 857 struct bio *bio; 858 struct mapped_device *md = io->md; 859 860 /* Push-back supersedes any I/O errors */ 861 if (unlikely(error)) { 862 spin_lock_irqsave(&io->endio_lock, flags); 863 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 864 io->status = error; 865 spin_unlock_irqrestore(&io->endio_lock, flags); 866 } 867 868 if (atomic_dec_and_test(&io->io_count)) { 869 if (io->status == BLK_STS_DM_REQUEUE) { 870 /* 871 * Target requested pushing back the I/O. 872 */ 873 spin_lock_irqsave(&md->deferred_lock, flags); 874 if (__noflush_suspending(md)) 875 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 876 bio_list_add_head(&md->deferred, io->orig_bio); 877 else 878 /* noflush suspend was interrupted. */ 879 io->status = BLK_STS_IOERR; 880 spin_unlock_irqrestore(&md->deferred_lock, flags); 881 } 882 883 io_error = io->status; 884 bio = io->orig_bio; 885 end_io_acct(io); 886 free_io(md, io); 887 888 if (io_error == BLK_STS_DM_REQUEUE) 889 return; 890 891 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 892 /* 893 * Preflush done for flush with data, reissue 894 * without REQ_PREFLUSH. 895 */ 896 bio->bi_opf &= ~REQ_PREFLUSH; 897 queue_io(md, bio); 898 } else { 899 /* done with normal IO or empty flush */ 900 bio->bi_status = io_error; 901 bio_endio(bio); 902 } 903 } 904 } 905 906 void disable_write_same(struct mapped_device *md) 907 { 908 struct queue_limits *limits = dm_get_queue_limits(md); 909 910 /* device doesn't really support WRITE SAME, disable it */ 911 limits->max_write_same_sectors = 0; 912 } 913 914 void disable_write_zeroes(struct mapped_device *md) 915 { 916 struct queue_limits *limits = dm_get_queue_limits(md); 917 918 /* device doesn't really support WRITE ZEROES, disable it */ 919 limits->max_write_zeroes_sectors = 0; 920 } 921 922 static void clone_endio(struct bio *bio) 923 { 924 blk_status_t error = bio->bi_status; 925 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 926 struct dm_io *io = tio->io; 927 struct mapped_device *md = tio->io->md; 928 dm_endio_fn endio = tio->ti->type->end_io; 929 930 if (unlikely(error == BLK_STS_TARGET)) { 931 if (bio_op(bio) == REQ_OP_WRITE_SAME && 932 !bio->bi_disk->queue->limits.max_write_same_sectors) 933 disable_write_same(md); 934 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 935 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 936 disable_write_zeroes(md); 937 } 938 939 if (endio) { 940 int r = endio(tio->ti, bio, &error); 941 switch (r) { 942 case DM_ENDIO_REQUEUE: 943 error = BLK_STS_DM_REQUEUE; 944 /*FALLTHRU*/ 945 case DM_ENDIO_DONE: 946 break; 947 case DM_ENDIO_INCOMPLETE: 948 /* The target will handle the io */ 949 return; 950 default: 951 DMWARN("unimplemented target endio return value: %d", r); 952 BUG(); 953 } 954 } 955 956 free_tio(tio); 957 dec_pending(io, error); 958 } 959 960 /* 961 * Return maximum size of I/O possible at the supplied sector up to the current 962 * target boundary. 963 */ 964 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 965 { 966 sector_t target_offset = dm_target_offset(ti, sector); 967 968 return ti->len - target_offset; 969 } 970 971 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 972 { 973 sector_t len = max_io_len_target_boundary(sector, ti); 974 sector_t offset, max_len; 975 976 /* 977 * Does the target need to split even further? 978 */ 979 if (ti->max_io_len) { 980 offset = dm_target_offset(ti, sector); 981 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 982 max_len = sector_div(offset, ti->max_io_len); 983 else 984 max_len = offset & (ti->max_io_len - 1); 985 max_len = ti->max_io_len - max_len; 986 987 if (len > max_len) 988 len = max_len; 989 } 990 991 return len; 992 } 993 994 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 995 { 996 if (len > UINT_MAX) { 997 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 998 (unsigned long long)len, UINT_MAX); 999 ti->error = "Maximum size of target IO is too large"; 1000 return -EINVAL; 1001 } 1002 1003 ti->max_io_len = (uint32_t) len; 1004 1005 return 0; 1006 } 1007 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1008 1009 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1010 sector_t sector, int *srcu_idx) 1011 { 1012 struct dm_table *map; 1013 struct dm_target *ti; 1014 1015 map = dm_get_live_table(md, srcu_idx); 1016 if (!map) 1017 return NULL; 1018 1019 ti = dm_table_find_target(map, sector); 1020 if (!dm_target_is_valid(ti)) 1021 return NULL; 1022 1023 return ti; 1024 } 1025 1026 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1027 long nr_pages, void **kaddr, pfn_t *pfn) 1028 { 1029 struct mapped_device *md = dax_get_private(dax_dev); 1030 sector_t sector = pgoff * PAGE_SECTORS; 1031 struct dm_target *ti; 1032 long len, ret = -EIO; 1033 int srcu_idx; 1034 1035 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1036 1037 if (!ti) 1038 goto out; 1039 if (!ti->type->direct_access) 1040 goto out; 1041 len = max_io_len(sector, ti) / PAGE_SECTORS; 1042 if (len < 1) 1043 goto out; 1044 nr_pages = min(len, nr_pages); 1045 if (ti->type->direct_access) 1046 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1047 1048 out: 1049 dm_put_live_table(md, srcu_idx); 1050 1051 return ret; 1052 } 1053 1054 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1055 void *addr, size_t bytes, struct iov_iter *i) 1056 { 1057 struct mapped_device *md = dax_get_private(dax_dev); 1058 sector_t sector = pgoff * PAGE_SECTORS; 1059 struct dm_target *ti; 1060 long ret = 0; 1061 int srcu_idx; 1062 1063 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1064 1065 if (!ti) 1066 goto out; 1067 if (!ti->type->dax_copy_from_iter) { 1068 ret = copy_from_iter(addr, bytes, i); 1069 goto out; 1070 } 1071 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1072 out: 1073 dm_put_live_table(md, srcu_idx); 1074 1075 return ret; 1076 } 1077 1078 /* 1079 * A target may call dm_accept_partial_bio only from the map routine. It is 1080 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1081 * 1082 * dm_accept_partial_bio informs the dm that the target only wants to process 1083 * additional n_sectors sectors of the bio and the rest of the data should be 1084 * sent in a next bio. 1085 * 1086 * A diagram that explains the arithmetics: 1087 * +--------------------+---------------+-------+ 1088 * | 1 | 2 | 3 | 1089 * +--------------------+---------------+-------+ 1090 * 1091 * <-------------- *tio->len_ptr ---------------> 1092 * <------- bi_size -------> 1093 * <-- n_sectors --> 1094 * 1095 * Region 1 was already iterated over with bio_advance or similar function. 1096 * (it may be empty if the target doesn't use bio_advance) 1097 * Region 2 is the remaining bio size that the target wants to process. 1098 * (it may be empty if region 1 is non-empty, although there is no reason 1099 * to make it empty) 1100 * The target requires that region 3 is to be sent in the next bio. 1101 * 1102 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1103 * the partially processed part (the sum of regions 1+2) must be the same for all 1104 * copies of the bio. 1105 */ 1106 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1107 { 1108 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1109 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1110 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1111 BUG_ON(bi_size > *tio->len_ptr); 1112 BUG_ON(n_sectors > bi_size); 1113 *tio->len_ptr -= bi_size - n_sectors; 1114 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1115 } 1116 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1117 1118 /* 1119 * The zone descriptors obtained with a zone report indicate 1120 * zone positions within the target device. The zone descriptors 1121 * must be remapped to match their position within the dm device. 1122 * A target may call dm_remap_zone_report after completion of a 1123 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1124 * from the target device mapping to the dm device. 1125 */ 1126 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1127 { 1128 #ifdef CONFIG_BLK_DEV_ZONED 1129 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1130 struct bio *report_bio = tio->io->orig_bio; 1131 struct blk_zone_report_hdr *hdr = NULL; 1132 struct blk_zone *zone; 1133 unsigned int nr_rep = 0; 1134 unsigned int ofst; 1135 struct bio_vec bvec; 1136 struct bvec_iter iter; 1137 void *addr; 1138 1139 if (bio->bi_status) 1140 return; 1141 1142 /* 1143 * Remap the start sector of the reported zones. For sequential zones, 1144 * also remap the write pointer position. 1145 */ 1146 bio_for_each_segment(bvec, report_bio, iter) { 1147 addr = kmap_atomic(bvec.bv_page); 1148 1149 /* Remember the report header in the first page */ 1150 if (!hdr) { 1151 hdr = addr; 1152 ofst = sizeof(struct blk_zone_report_hdr); 1153 } else 1154 ofst = 0; 1155 1156 /* Set zones start sector */ 1157 while (hdr->nr_zones && ofst < bvec.bv_len) { 1158 zone = addr + ofst; 1159 if (zone->start >= start + ti->len) { 1160 hdr->nr_zones = 0; 1161 break; 1162 } 1163 zone->start = zone->start + ti->begin - start; 1164 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1165 if (zone->cond == BLK_ZONE_COND_FULL) 1166 zone->wp = zone->start + zone->len; 1167 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1168 zone->wp = zone->start; 1169 else 1170 zone->wp = zone->wp + ti->begin - start; 1171 } 1172 ofst += sizeof(struct blk_zone); 1173 hdr->nr_zones--; 1174 nr_rep++; 1175 } 1176 1177 if (addr != hdr) 1178 kunmap_atomic(addr); 1179 1180 if (!hdr->nr_zones) 1181 break; 1182 } 1183 1184 if (hdr) { 1185 hdr->nr_zones = nr_rep; 1186 kunmap_atomic(hdr); 1187 } 1188 1189 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1190 1191 #else /* !CONFIG_BLK_DEV_ZONED */ 1192 bio->bi_status = BLK_STS_NOTSUPP; 1193 #endif 1194 } 1195 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1196 1197 static void __map_bio(struct dm_target_io *tio) 1198 { 1199 int r; 1200 sector_t sector; 1201 struct bio *clone = &tio->clone; 1202 struct dm_io *io = tio->io; 1203 struct dm_target *ti = tio->ti; 1204 1205 clone->bi_end_io = clone_endio; 1206 1207 /* 1208 * Map the clone. If r == 0 we don't need to do 1209 * anything, the target has assumed ownership of 1210 * this io. 1211 */ 1212 atomic_inc(&io->io_count); 1213 sector = clone->bi_iter.bi_sector; 1214 1215 r = ti->type->map(ti, clone); 1216 switch (r) { 1217 case DM_MAPIO_SUBMITTED: 1218 break; 1219 case DM_MAPIO_REMAPPED: 1220 /* the bio has been remapped so dispatch it */ 1221 trace_block_bio_remap(clone->bi_disk->queue, clone, 1222 bio_dev(io->orig_bio), sector); 1223 generic_make_request(clone); 1224 break; 1225 case DM_MAPIO_KILL: 1226 free_tio(tio); 1227 dec_pending(io, BLK_STS_IOERR); 1228 break; 1229 case DM_MAPIO_REQUEUE: 1230 free_tio(tio); 1231 dec_pending(io, BLK_STS_DM_REQUEUE); 1232 break; 1233 default: 1234 DMWARN("unimplemented target map return value: %d", r); 1235 BUG(); 1236 } 1237 } 1238 1239 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1240 { 1241 bio->bi_iter.bi_sector = sector; 1242 bio->bi_iter.bi_size = to_bytes(len); 1243 } 1244 1245 /* 1246 * Creates a bio that consists of range of complete bvecs. 1247 */ 1248 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1249 sector_t sector, unsigned len) 1250 { 1251 struct bio *clone = &tio->clone; 1252 1253 __bio_clone_fast(clone, bio); 1254 1255 if (unlikely(bio_integrity(bio) != NULL)) { 1256 int r; 1257 1258 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1259 !dm_target_passes_integrity(tio->ti->type))) { 1260 DMWARN("%s: the target %s doesn't support integrity data.", 1261 dm_device_name(tio->io->md), 1262 tio->ti->type->name); 1263 return -EIO; 1264 } 1265 1266 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1267 if (r < 0) 1268 return r; 1269 } 1270 1271 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1272 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1273 clone->bi_iter.bi_size = to_bytes(len); 1274 1275 if (unlikely(bio_integrity(bio) != NULL)) 1276 bio_integrity_trim(clone); 1277 1278 return 0; 1279 } 1280 1281 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1282 struct dm_target *ti, unsigned num_bios) 1283 { 1284 struct dm_target_io *tio; 1285 int try; 1286 1287 if (!num_bios) 1288 return; 1289 1290 if (num_bios == 1) { 1291 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1292 bio_list_add(blist, &tio->clone); 1293 return; 1294 } 1295 1296 for (try = 0; try < 2; try++) { 1297 int bio_nr; 1298 struct bio *bio; 1299 1300 if (try) 1301 mutex_lock(&ci->md->table_devices_lock); 1302 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1303 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1304 if (!tio) 1305 break; 1306 1307 bio_list_add(blist, &tio->clone); 1308 } 1309 if (try) 1310 mutex_unlock(&ci->md->table_devices_lock); 1311 if (bio_nr == num_bios) 1312 return; 1313 1314 while ((bio = bio_list_pop(blist))) { 1315 tio = container_of(bio, struct dm_target_io, clone); 1316 free_tio(tio); 1317 } 1318 } 1319 } 1320 1321 static void __clone_and_map_simple_bio(struct clone_info *ci, 1322 struct dm_target_io *tio, unsigned *len) 1323 { 1324 struct bio *clone = &tio->clone; 1325 1326 tio->len_ptr = len; 1327 1328 __bio_clone_fast(clone, ci->bio); 1329 if (len) 1330 bio_setup_sector(clone, ci->sector, *len); 1331 1332 __map_bio(tio); 1333 } 1334 1335 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1336 unsigned num_bios, unsigned *len) 1337 { 1338 struct bio_list blist = BIO_EMPTY_LIST; 1339 struct bio *bio; 1340 struct dm_target_io *tio; 1341 1342 alloc_multiple_bios(&blist, ci, ti, num_bios); 1343 1344 while ((bio = bio_list_pop(&blist))) { 1345 tio = container_of(bio, struct dm_target_io, clone); 1346 __clone_and_map_simple_bio(ci, tio, len); 1347 } 1348 } 1349 1350 static int __send_empty_flush(struct clone_info *ci) 1351 { 1352 unsigned target_nr = 0; 1353 struct dm_target *ti; 1354 1355 BUG_ON(bio_has_data(ci->bio)); 1356 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1357 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1358 1359 return 0; 1360 } 1361 1362 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1363 sector_t sector, unsigned *len) 1364 { 1365 struct bio *bio = ci->bio; 1366 struct dm_target_io *tio; 1367 int r; 1368 1369 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1370 tio->len_ptr = len; 1371 r = clone_bio(tio, bio, sector, *len); 1372 if (r < 0) { 1373 free_tio(tio); 1374 return r; 1375 } 1376 __map_bio(tio); 1377 1378 return 0; 1379 } 1380 1381 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1382 1383 static unsigned get_num_discard_bios(struct dm_target *ti) 1384 { 1385 return ti->num_discard_bios; 1386 } 1387 1388 static unsigned get_num_write_same_bios(struct dm_target *ti) 1389 { 1390 return ti->num_write_same_bios; 1391 } 1392 1393 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1394 { 1395 return ti->num_write_zeroes_bios; 1396 } 1397 1398 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1399 1400 static bool is_split_required_for_discard(struct dm_target *ti) 1401 { 1402 return ti->split_discard_bios; 1403 } 1404 1405 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1406 get_num_bios_fn get_num_bios, 1407 is_split_required_fn is_split_required) 1408 { 1409 unsigned len; 1410 unsigned num_bios; 1411 1412 /* 1413 * Even though the device advertised support for this type of 1414 * request, that does not mean every target supports it, and 1415 * reconfiguration might also have changed that since the 1416 * check was performed. 1417 */ 1418 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1419 if (!num_bios) 1420 return -EOPNOTSUPP; 1421 1422 if (is_split_required && !is_split_required(ti)) 1423 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1424 else 1425 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1426 1427 __send_duplicate_bios(ci, ti, num_bios, &len); 1428 1429 ci->sector += len; 1430 ci->sector_count -= len; 1431 1432 return 0; 1433 } 1434 1435 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1436 { 1437 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1438 is_split_required_for_discard); 1439 } 1440 1441 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1442 { 1443 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1444 } 1445 1446 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1447 { 1448 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1449 } 1450 1451 /* 1452 * Select the correct strategy for processing a non-flush bio. 1453 */ 1454 static int __split_and_process_non_flush(struct clone_info *ci) 1455 { 1456 struct bio *bio = ci->bio; 1457 struct dm_target *ti; 1458 unsigned len; 1459 int r; 1460 1461 ti = dm_table_find_target(ci->map, ci->sector); 1462 if (!dm_target_is_valid(ti)) 1463 return -EIO; 1464 1465 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1466 return __send_discard(ci, ti); 1467 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1468 return __send_write_same(ci, ti); 1469 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1470 return __send_write_zeroes(ci, ti); 1471 1472 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1473 len = ci->sector_count; 1474 else 1475 len = min_t(sector_t, max_io_len(ci->sector, ti), 1476 ci->sector_count); 1477 1478 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1479 if (r < 0) 1480 return r; 1481 1482 ci->sector += len; 1483 ci->sector_count -= len; 1484 1485 return 0; 1486 } 1487 1488 /* 1489 * Entry point to split a bio into clones and submit them to the targets. 1490 */ 1491 static void __split_and_process_bio(struct mapped_device *md, 1492 struct dm_table *map, struct bio *bio) 1493 { 1494 struct clone_info ci; 1495 int error = 0; 1496 1497 if (unlikely(!map)) { 1498 bio_io_error(bio); 1499 return; 1500 } 1501 1502 ci.map = map; 1503 ci.md = md; 1504 ci.io = alloc_io(md); 1505 ci.io->status = 0; 1506 atomic_set(&ci.io->io_count, 1); 1507 ci.io->orig_bio = bio; 1508 ci.io->md = md; 1509 spin_lock_init(&ci.io->endio_lock); 1510 ci.sector = bio->bi_iter.bi_sector; 1511 1512 start_io_acct(ci.io); 1513 1514 if (bio->bi_opf & REQ_PREFLUSH) { 1515 ci.bio = &ci.md->flush_bio; 1516 ci.sector_count = 0; 1517 error = __send_empty_flush(&ci); 1518 /* dec_pending submits any data associated with flush */ 1519 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1520 ci.bio = bio; 1521 ci.sector_count = 0; 1522 error = __split_and_process_non_flush(&ci); 1523 } else { 1524 ci.bio = bio; 1525 ci.sector_count = bio_sectors(bio); 1526 while (ci.sector_count && !error) { 1527 error = __split_and_process_non_flush(&ci); 1528 if (current->bio_list && ci.sector_count && !error) { 1529 /* 1530 * Remainder must be passed to generic_make_request() 1531 * so that it gets handled *after* bios already submitted 1532 * have been completely processed. 1533 * We take a clone of the original to store in 1534 * ci.io->orig_bio to be used by end_io_acct() and 1535 * for dec_pending to use for completion handling. 1536 * As this path is not used for REQ_OP_ZONE_REPORT, 1537 * the usage of io->orig_bio in dm_remap_zone_report() 1538 * won't be affected by this reassignment. 1539 */ 1540 struct bio *b = bio_clone_bioset(bio, GFP_NOIO, 1541 md->queue->bio_split); 1542 ci.io->orig_bio = b; 1543 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9); 1544 bio_chain(b, bio); 1545 generic_make_request(bio); 1546 break; 1547 } 1548 } 1549 } 1550 1551 /* drop the extra reference count */ 1552 dec_pending(ci.io, errno_to_blk_status(error)); 1553 } 1554 1555 /* 1556 * The request function that remaps the bio to one target and 1557 * splits off any remainder. 1558 */ 1559 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1560 { 1561 int rw = bio_data_dir(bio); 1562 struct mapped_device *md = q->queuedata; 1563 int srcu_idx; 1564 struct dm_table *map; 1565 1566 map = dm_get_live_table(md, &srcu_idx); 1567 1568 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0); 1569 1570 /* if we're suspended, we have to queue this io for later */ 1571 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1572 dm_put_live_table(md, srcu_idx); 1573 1574 if (!(bio->bi_opf & REQ_RAHEAD)) 1575 queue_io(md, bio); 1576 else 1577 bio_io_error(bio); 1578 return BLK_QC_T_NONE; 1579 } 1580 1581 __split_and_process_bio(md, map, bio); 1582 dm_put_live_table(md, srcu_idx); 1583 return BLK_QC_T_NONE; 1584 } 1585 1586 static int dm_any_congested(void *congested_data, int bdi_bits) 1587 { 1588 int r = bdi_bits; 1589 struct mapped_device *md = congested_data; 1590 struct dm_table *map; 1591 1592 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1593 if (dm_request_based(md)) { 1594 /* 1595 * With request-based DM we only need to check the 1596 * top-level queue for congestion. 1597 */ 1598 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1599 } else { 1600 map = dm_get_live_table_fast(md); 1601 if (map) 1602 r = dm_table_any_congested(map, bdi_bits); 1603 dm_put_live_table_fast(md); 1604 } 1605 } 1606 1607 return r; 1608 } 1609 1610 /*----------------------------------------------------------------- 1611 * An IDR is used to keep track of allocated minor numbers. 1612 *---------------------------------------------------------------*/ 1613 static void free_minor(int minor) 1614 { 1615 spin_lock(&_minor_lock); 1616 idr_remove(&_minor_idr, minor); 1617 spin_unlock(&_minor_lock); 1618 } 1619 1620 /* 1621 * See if the device with a specific minor # is free. 1622 */ 1623 static int specific_minor(int minor) 1624 { 1625 int r; 1626 1627 if (minor >= (1 << MINORBITS)) 1628 return -EINVAL; 1629 1630 idr_preload(GFP_KERNEL); 1631 spin_lock(&_minor_lock); 1632 1633 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1634 1635 spin_unlock(&_minor_lock); 1636 idr_preload_end(); 1637 if (r < 0) 1638 return r == -ENOSPC ? -EBUSY : r; 1639 return 0; 1640 } 1641 1642 static int next_free_minor(int *minor) 1643 { 1644 int r; 1645 1646 idr_preload(GFP_KERNEL); 1647 spin_lock(&_minor_lock); 1648 1649 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1650 1651 spin_unlock(&_minor_lock); 1652 idr_preload_end(); 1653 if (r < 0) 1654 return r; 1655 *minor = r; 1656 return 0; 1657 } 1658 1659 static const struct block_device_operations dm_blk_dops; 1660 static const struct dax_operations dm_dax_ops; 1661 1662 static void dm_wq_work(struct work_struct *work); 1663 1664 void dm_init_md_queue(struct mapped_device *md) 1665 { 1666 /* 1667 * Initialize data that will only be used by a non-blk-mq DM queue 1668 * - must do so here (in alloc_dev callchain) before queue is used 1669 */ 1670 md->queue->queuedata = md; 1671 md->queue->backing_dev_info->congested_data = md; 1672 } 1673 1674 void dm_init_normal_md_queue(struct mapped_device *md) 1675 { 1676 md->use_blk_mq = false; 1677 dm_init_md_queue(md); 1678 1679 /* 1680 * Initialize aspects of queue that aren't relevant for blk-mq 1681 */ 1682 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1683 } 1684 1685 static void cleanup_mapped_device(struct mapped_device *md) 1686 { 1687 if (md->wq) 1688 destroy_workqueue(md->wq); 1689 if (md->kworker_task) 1690 kthread_stop(md->kworker_task); 1691 if (md->bs) 1692 bioset_free(md->bs); 1693 if (md->io_bs) 1694 bioset_free(md->io_bs); 1695 1696 if (md->dax_dev) { 1697 kill_dax(md->dax_dev); 1698 put_dax(md->dax_dev); 1699 md->dax_dev = NULL; 1700 } 1701 1702 if (md->disk) { 1703 spin_lock(&_minor_lock); 1704 md->disk->private_data = NULL; 1705 spin_unlock(&_minor_lock); 1706 del_gendisk(md->disk); 1707 put_disk(md->disk); 1708 } 1709 1710 if (md->queue) 1711 blk_cleanup_queue(md->queue); 1712 1713 cleanup_srcu_struct(&md->io_barrier); 1714 1715 if (md->bdev) { 1716 bdput(md->bdev); 1717 md->bdev = NULL; 1718 } 1719 1720 dm_mq_cleanup_mapped_device(md); 1721 } 1722 1723 /* 1724 * Allocate and initialise a blank device with a given minor. 1725 */ 1726 static struct mapped_device *alloc_dev(int minor) 1727 { 1728 int r, numa_node_id = dm_get_numa_node(); 1729 struct dax_device *dax_dev; 1730 struct mapped_device *md; 1731 void *old_md; 1732 1733 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1734 if (!md) { 1735 DMWARN("unable to allocate device, out of memory."); 1736 return NULL; 1737 } 1738 1739 if (!try_module_get(THIS_MODULE)) 1740 goto bad_module_get; 1741 1742 /* get a minor number for the dev */ 1743 if (minor == DM_ANY_MINOR) 1744 r = next_free_minor(&minor); 1745 else 1746 r = specific_minor(minor); 1747 if (r < 0) 1748 goto bad_minor; 1749 1750 r = init_srcu_struct(&md->io_barrier); 1751 if (r < 0) 1752 goto bad_io_barrier; 1753 1754 md->numa_node_id = numa_node_id; 1755 md->use_blk_mq = dm_use_blk_mq_default(); 1756 md->init_tio_pdu = false; 1757 md->type = DM_TYPE_NONE; 1758 mutex_init(&md->suspend_lock); 1759 mutex_init(&md->type_lock); 1760 mutex_init(&md->table_devices_lock); 1761 spin_lock_init(&md->deferred_lock); 1762 atomic_set(&md->holders, 1); 1763 atomic_set(&md->open_count, 0); 1764 atomic_set(&md->event_nr, 0); 1765 atomic_set(&md->uevent_seq, 0); 1766 INIT_LIST_HEAD(&md->uevent_list); 1767 INIT_LIST_HEAD(&md->table_devices); 1768 spin_lock_init(&md->uevent_lock); 1769 1770 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1771 if (!md->queue) 1772 goto bad; 1773 1774 dm_init_md_queue(md); 1775 1776 md->disk = alloc_disk_node(1, numa_node_id); 1777 if (!md->disk) 1778 goto bad; 1779 1780 atomic_set(&md->pending[0], 0); 1781 atomic_set(&md->pending[1], 0); 1782 init_waitqueue_head(&md->wait); 1783 INIT_WORK(&md->work, dm_wq_work); 1784 init_waitqueue_head(&md->eventq); 1785 init_completion(&md->kobj_holder.completion); 1786 md->kworker_task = NULL; 1787 1788 md->disk->major = _major; 1789 md->disk->first_minor = minor; 1790 md->disk->fops = &dm_blk_dops; 1791 md->disk->queue = md->queue; 1792 md->disk->private_data = md; 1793 sprintf(md->disk->disk_name, "dm-%d", minor); 1794 1795 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1796 if (!dax_dev) 1797 goto bad; 1798 md->dax_dev = dax_dev; 1799 1800 add_disk(md->disk); 1801 format_dev_t(md->name, MKDEV(_major, minor)); 1802 1803 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1804 if (!md->wq) 1805 goto bad; 1806 1807 md->bdev = bdget_disk(md->disk, 0); 1808 if (!md->bdev) 1809 goto bad; 1810 1811 bio_init(&md->flush_bio, NULL, 0); 1812 bio_set_dev(&md->flush_bio, md->bdev); 1813 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1814 1815 dm_stats_init(&md->stats); 1816 1817 /* Populate the mapping, nobody knows we exist yet */ 1818 spin_lock(&_minor_lock); 1819 old_md = idr_replace(&_minor_idr, md, minor); 1820 spin_unlock(&_minor_lock); 1821 1822 BUG_ON(old_md != MINOR_ALLOCED); 1823 1824 return md; 1825 1826 bad: 1827 cleanup_mapped_device(md); 1828 bad_io_barrier: 1829 free_minor(minor); 1830 bad_minor: 1831 module_put(THIS_MODULE); 1832 bad_module_get: 1833 kvfree(md); 1834 return NULL; 1835 } 1836 1837 static void unlock_fs(struct mapped_device *md); 1838 1839 static void free_dev(struct mapped_device *md) 1840 { 1841 int minor = MINOR(disk_devt(md->disk)); 1842 1843 unlock_fs(md); 1844 1845 cleanup_mapped_device(md); 1846 1847 free_table_devices(&md->table_devices); 1848 dm_stats_cleanup(&md->stats); 1849 free_minor(minor); 1850 1851 module_put(THIS_MODULE); 1852 kvfree(md); 1853 } 1854 1855 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1856 { 1857 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1858 1859 if (dm_table_bio_based(t)) { 1860 /* 1861 * The md may already have mempools that need changing. 1862 * If so, reload bioset because front_pad may have changed 1863 * because a different table was loaded. 1864 */ 1865 if (md->bs) { 1866 bioset_free(md->bs); 1867 md->bs = NULL; 1868 } 1869 if (md->io_bs) { 1870 bioset_free(md->io_bs); 1871 md->io_bs = NULL; 1872 } 1873 1874 } else if (md->bs) { 1875 /* 1876 * There's no need to reload with request-based dm 1877 * because the size of front_pad doesn't change. 1878 * Note for future: If you are to reload bioset, 1879 * prep-ed requests in the queue may refer 1880 * to bio from the old bioset, so you must walk 1881 * through the queue to unprep. 1882 */ 1883 goto out; 1884 } 1885 1886 BUG_ON(!p || md->bs || md->io_bs); 1887 1888 md->bs = p->bs; 1889 p->bs = NULL; 1890 md->io_bs = p->io_bs; 1891 p->io_bs = NULL; 1892 out: 1893 /* mempool bind completed, no longer need any mempools in the table */ 1894 dm_table_free_md_mempools(t); 1895 } 1896 1897 /* 1898 * Bind a table to the device. 1899 */ 1900 static void event_callback(void *context) 1901 { 1902 unsigned long flags; 1903 LIST_HEAD(uevents); 1904 struct mapped_device *md = (struct mapped_device *) context; 1905 1906 spin_lock_irqsave(&md->uevent_lock, flags); 1907 list_splice_init(&md->uevent_list, &uevents); 1908 spin_unlock_irqrestore(&md->uevent_lock, flags); 1909 1910 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1911 1912 atomic_inc(&md->event_nr); 1913 wake_up(&md->eventq); 1914 dm_issue_global_event(); 1915 } 1916 1917 /* 1918 * Protected by md->suspend_lock obtained by dm_swap_table(). 1919 */ 1920 static void __set_size(struct mapped_device *md, sector_t size) 1921 { 1922 lockdep_assert_held(&md->suspend_lock); 1923 1924 set_capacity(md->disk, size); 1925 1926 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1927 } 1928 1929 /* 1930 * Returns old map, which caller must destroy. 1931 */ 1932 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1933 struct queue_limits *limits) 1934 { 1935 struct dm_table *old_map; 1936 struct request_queue *q = md->queue; 1937 sector_t size; 1938 1939 lockdep_assert_held(&md->suspend_lock); 1940 1941 size = dm_table_get_size(t); 1942 1943 /* 1944 * Wipe any geometry if the size of the table changed. 1945 */ 1946 if (size != dm_get_size(md)) 1947 memset(&md->geometry, 0, sizeof(md->geometry)); 1948 1949 __set_size(md, size); 1950 1951 dm_table_event_callback(t, event_callback, md); 1952 1953 /* 1954 * The queue hasn't been stopped yet, if the old table type wasn't 1955 * for request-based during suspension. So stop it to prevent 1956 * I/O mapping before resume. 1957 * This must be done before setting the queue restrictions, 1958 * because request-based dm may be run just after the setting. 1959 */ 1960 if (dm_table_request_based(t)) { 1961 dm_stop_queue(q); 1962 /* 1963 * Leverage the fact that request-based DM targets are 1964 * immutable singletons and establish md->immutable_target 1965 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1966 */ 1967 md->immutable_target = dm_table_get_immutable_target(t); 1968 } 1969 1970 __bind_mempools(md, t); 1971 1972 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1973 rcu_assign_pointer(md->map, (void *)t); 1974 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1975 1976 dm_table_set_restrictions(t, q, limits); 1977 if (old_map) 1978 dm_sync_table(md); 1979 1980 return old_map; 1981 } 1982 1983 /* 1984 * Returns unbound table for the caller to free. 1985 */ 1986 static struct dm_table *__unbind(struct mapped_device *md) 1987 { 1988 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1989 1990 if (!map) 1991 return NULL; 1992 1993 dm_table_event_callback(map, NULL, NULL); 1994 RCU_INIT_POINTER(md->map, NULL); 1995 dm_sync_table(md); 1996 1997 return map; 1998 } 1999 2000 /* 2001 * Constructor for a new device. 2002 */ 2003 int dm_create(int minor, struct mapped_device **result) 2004 { 2005 struct mapped_device *md; 2006 2007 md = alloc_dev(minor); 2008 if (!md) 2009 return -ENXIO; 2010 2011 dm_sysfs_init(md); 2012 2013 *result = md; 2014 return 0; 2015 } 2016 2017 /* 2018 * Functions to manage md->type. 2019 * All are required to hold md->type_lock. 2020 */ 2021 void dm_lock_md_type(struct mapped_device *md) 2022 { 2023 mutex_lock(&md->type_lock); 2024 } 2025 2026 void dm_unlock_md_type(struct mapped_device *md) 2027 { 2028 mutex_unlock(&md->type_lock); 2029 } 2030 2031 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2032 { 2033 BUG_ON(!mutex_is_locked(&md->type_lock)); 2034 md->type = type; 2035 } 2036 2037 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2038 { 2039 return md->type; 2040 } 2041 2042 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2043 { 2044 return md->immutable_target_type; 2045 } 2046 2047 /* 2048 * The queue_limits are only valid as long as you have a reference 2049 * count on 'md'. 2050 */ 2051 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2052 { 2053 BUG_ON(!atomic_read(&md->holders)); 2054 return &md->queue->limits; 2055 } 2056 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2057 2058 /* 2059 * Setup the DM device's queue based on md's type 2060 */ 2061 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2062 { 2063 int r; 2064 enum dm_queue_mode type = dm_get_md_type(md); 2065 2066 switch (type) { 2067 case DM_TYPE_REQUEST_BASED: 2068 r = dm_old_init_request_queue(md, t); 2069 if (r) { 2070 DMERR("Cannot initialize queue for request-based mapped device"); 2071 return r; 2072 } 2073 break; 2074 case DM_TYPE_MQ_REQUEST_BASED: 2075 r = dm_mq_init_request_queue(md, t); 2076 if (r) { 2077 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2078 return r; 2079 } 2080 break; 2081 case DM_TYPE_BIO_BASED: 2082 case DM_TYPE_DAX_BIO_BASED: 2083 dm_init_normal_md_queue(md); 2084 blk_queue_make_request(md->queue, dm_make_request); 2085 break; 2086 case DM_TYPE_NONE: 2087 WARN_ON_ONCE(true); 2088 break; 2089 } 2090 2091 return 0; 2092 } 2093 2094 struct mapped_device *dm_get_md(dev_t dev) 2095 { 2096 struct mapped_device *md; 2097 unsigned minor = MINOR(dev); 2098 2099 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2100 return NULL; 2101 2102 spin_lock(&_minor_lock); 2103 2104 md = idr_find(&_minor_idr, minor); 2105 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2106 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2107 md = NULL; 2108 goto out; 2109 } 2110 dm_get(md); 2111 out: 2112 spin_unlock(&_minor_lock); 2113 2114 return md; 2115 } 2116 EXPORT_SYMBOL_GPL(dm_get_md); 2117 2118 void *dm_get_mdptr(struct mapped_device *md) 2119 { 2120 return md->interface_ptr; 2121 } 2122 2123 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2124 { 2125 md->interface_ptr = ptr; 2126 } 2127 2128 void dm_get(struct mapped_device *md) 2129 { 2130 atomic_inc(&md->holders); 2131 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2132 } 2133 2134 int dm_hold(struct mapped_device *md) 2135 { 2136 spin_lock(&_minor_lock); 2137 if (test_bit(DMF_FREEING, &md->flags)) { 2138 spin_unlock(&_minor_lock); 2139 return -EBUSY; 2140 } 2141 dm_get(md); 2142 spin_unlock(&_minor_lock); 2143 return 0; 2144 } 2145 EXPORT_SYMBOL_GPL(dm_hold); 2146 2147 const char *dm_device_name(struct mapped_device *md) 2148 { 2149 return md->name; 2150 } 2151 EXPORT_SYMBOL_GPL(dm_device_name); 2152 2153 static void __dm_destroy(struct mapped_device *md, bool wait) 2154 { 2155 struct request_queue *q = dm_get_md_queue(md); 2156 struct dm_table *map; 2157 int srcu_idx; 2158 2159 might_sleep(); 2160 2161 spin_lock(&_minor_lock); 2162 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2163 set_bit(DMF_FREEING, &md->flags); 2164 spin_unlock(&_minor_lock); 2165 2166 blk_set_queue_dying(q); 2167 2168 if (dm_request_based(md) && md->kworker_task) 2169 kthread_flush_worker(&md->kworker); 2170 2171 /* 2172 * Take suspend_lock so that presuspend and postsuspend methods 2173 * do not race with internal suspend. 2174 */ 2175 mutex_lock(&md->suspend_lock); 2176 map = dm_get_live_table(md, &srcu_idx); 2177 if (!dm_suspended_md(md)) { 2178 dm_table_presuspend_targets(map); 2179 dm_table_postsuspend_targets(map); 2180 } 2181 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2182 dm_put_live_table(md, srcu_idx); 2183 mutex_unlock(&md->suspend_lock); 2184 2185 /* 2186 * Rare, but there may be I/O requests still going to complete, 2187 * for example. Wait for all references to disappear. 2188 * No one should increment the reference count of the mapped_device, 2189 * after the mapped_device state becomes DMF_FREEING. 2190 */ 2191 if (wait) 2192 while (atomic_read(&md->holders)) 2193 msleep(1); 2194 else if (atomic_read(&md->holders)) 2195 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2196 dm_device_name(md), atomic_read(&md->holders)); 2197 2198 dm_sysfs_exit(md); 2199 dm_table_destroy(__unbind(md)); 2200 free_dev(md); 2201 } 2202 2203 void dm_destroy(struct mapped_device *md) 2204 { 2205 __dm_destroy(md, true); 2206 } 2207 2208 void dm_destroy_immediate(struct mapped_device *md) 2209 { 2210 __dm_destroy(md, false); 2211 } 2212 2213 void dm_put(struct mapped_device *md) 2214 { 2215 atomic_dec(&md->holders); 2216 } 2217 EXPORT_SYMBOL_GPL(dm_put); 2218 2219 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2220 { 2221 int r = 0; 2222 DEFINE_WAIT(wait); 2223 2224 while (1) { 2225 prepare_to_wait(&md->wait, &wait, task_state); 2226 2227 if (!md_in_flight(md)) 2228 break; 2229 2230 if (signal_pending_state(task_state, current)) { 2231 r = -EINTR; 2232 break; 2233 } 2234 2235 io_schedule(); 2236 } 2237 finish_wait(&md->wait, &wait); 2238 2239 return r; 2240 } 2241 2242 /* 2243 * Process the deferred bios 2244 */ 2245 static void dm_wq_work(struct work_struct *work) 2246 { 2247 struct mapped_device *md = container_of(work, struct mapped_device, 2248 work); 2249 struct bio *c; 2250 int srcu_idx; 2251 struct dm_table *map; 2252 2253 map = dm_get_live_table(md, &srcu_idx); 2254 2255 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2256 spin_lock_irq(&md->deferred_lock); 2257 c = bio_list_pop(&md->deferred); 2258 spin_unlock_irq(&md->deferred_lock); 2259 2260 if (!c) 2261 break; 2262 2263 if (dm_request_based(md)) 2264 generic_make_request(c); 2265 else 2266 __split_and_process_bio(md, map, c); 2267 } 2268 2269 dm_put_live_table(md, srcu_idx); 2270 } 2271 2272 static void dm_queue_flush(struct mapped_device *md) 2273 { 2274 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2275 smp_mb__after_atomic(); 2276 queue_work(md->wq, &md->work); 2277 } 2278 2279 /* 2280 * Swap in a new table, returning the old one for the caller to destroy. 2281 */ 2282 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2283 { 2284 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2285 struct queue_limits limits; 2286 int r; 2287 2288 mutex_lock(&md->suspend_lock); 2289 2290 /* device must be suspended */ 2291 if (!dm_suspended_md(md)) 2292 goto out; 2293 2294 /* 2295 * If the new table has no data devices, retain the existing limits. 2296 * This helps multipath with queue_if_no_path if all paths disappear, 2297 * then new I/O is queued based on these limits, and then some paths 2298 * reappear. 2299 */ 2300 if (dm_table_has_no_data_devices(table)) { 2301 live_map = dm_get_live_table_fast(md); 2302 if (live_map) 2303 limits = md->queue->limits; 2304 dm_put_live_table_fast(md); 2305 } 2306 2307 if (!live_map) { 2308 r = dm_calculate_queue_limits(table, &limits); 2309 if (r) { 2310 map = ERR_PTR(r); 2311 goto out; 2312 } 2313 } 2314 2315 map = __bind(md, table, &limits); 2316 dm_issue_global_event(); 2317 2318 out: 2319 mutex_unlock(&md->suspend_lock); 2320 return map; 2321 } 2322 2323 /* 2324 * Functions to lock and unlock any filesystem running on the 2325 * device. 2326 */ 2327 static int lock_fs(struct mapped_device *md) 2328 { 2329 int r; 2330 2331 WARN_ON(md->frozen_sb); 2332 2333 md->frozen_sb = freeze_bdev(md->bdev); 2334 if (IS_ERR(md->frozen_sb)) { 2335 r = PTR_ERR(md->frozen_sb); 2336 md->frozen_sb = NULL; 2337 return r; 2338 } 2339 2340 set_bit(DMF_FROZEN, &md->flags); 2341 2342 return 0; 2343 } 2344 2345 static void unlock_fs(struct mapped_device *md) 2346 { 2347 if (!test_bit(DMF_FROZEN, &md->flags)) 2348 return; 2349 2350 thaw_bdev(md->bdev, md->frozen_sb); 2351 md->frozen_sb = NULL; 2352 clear_bit(DMF_FROZEN, &md->flags); 2353 } 2354 2355 /* 2356 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2357 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2358 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2359 * 2360 * If __dm_suspend returns 0, the device is completely quiescent 2361 * now. There is no request-processing activity. All new requests 2362 * are being added to md->deferred list. 2363 */ 2364 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2365 unsigned suspend_flags, long task_state, 2366 int dmf_suspended_flag) 2367 { 2368 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2369 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2370 int r; 2371 2372 lockdep_assert_held(&md->suspend_lock); 2373 2374 /* 2375 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2376 * This flag is cleared before dm_suspend returns. 2377 */ 2378 if (noflush) 2379 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2380 else 2381 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2382 2383 /* 2384 * This gets reverted if there's an error later and the targets 2385 * provide the .presuspend_undo hook. 2386 */ 2387 dm_table_presuspend_targets(map); 2388 2389 /* 2390 * Flush I/O to the device. 2391 * Any I/O submitted after lock_fs() may not be flushed. 2392 * noflush takes precedence over do_lockfs. 2393 * (lock_fs() flushes I/Os and waits for them to complete.) 2394 */ 2395 if (!noflush && do_lockfs) { 2396 r = lock_fs(md); 2397 if (r) { 2398 dm_table_presuspend_undo_targets(map); 2399 return r; 2400 } 2401 } 2402 2403 /* 2404 * Here we must make sure that no processes are submitting requests 2405 * to target drivers i.e. no one may be executing 2406 * __split_and_process_bio. This is called from dm_request and 2407 * dm_wq_work. 2408 * 2409 * To get all processes out of __split_and_process_bio in dm_request, 2410 * we take the write lock. To prevent any process from reentering 2411 * __split_and_process_bio from dm_request and quiesce the thread 2412 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2413 * flush_workqueue(md->wq). 2414 */ 2415 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2416 if (map) 2417 synchronize_srcu(&md->io_barrier); 2418 2419 /* 2420 * Stop md->queue before flushing md->wq in case request-based 2421 * dm defers requests to md->wq from md->queue. 2422 */ 2423 if (dm_request_based(md)) { 2424 dm_stop_queue(md->queue); 2425 if (md->kworker_task) 2426 kthread_flush_worker(&md->kworker); 2427 } 2428 2429 flush_workqueue(md->wq); 2430 2431 /* 2432 * At this point no more requests are entering target request routines. 2433 * We call dm_wait_for_completion to wait for all existing requests 2434 * to finish. 2435 */ 2436 r = dm_wait_for_completion(md, task_state); 2437 if (!r) 2438 set_bit(dmf_suspended_flag, &md->flags); 2439 2440 if (noflush) 2441 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2442 if (map) 2443 synchronize_srcu(&md->io_barrier); 2444 2445 /* were we interrupted ? */ 2446 if (r < 0) { 2447 dm_queue_flush(md); 2448 2449 if (dm_request_based(md)) 2450 dm_start_queue(md->queue); 2451 2452 unlock_fs(md); 2453 dm_table_presuspend_undo_targets(map); 2454 /* pushback list is already flushed, so skip flush */ 2455 } 2456 2457 return r; 2458 } 2459 2460 /* 2461 * We need to be able to change a mapping table under a mounted 2462 * filesystem. For example we might want to move some data in 2463 * the background. Before the table can be swapped with 2464 * dm_bind_table, dm_suspend must be called to flush any in 2465 * flight bios and ensure that any further io gets deferred. 2466 */ 2467 /* 2468 * Suspend mechanism in request-based dm. 2469 * 2470 * 1. Flush all I/Os by lock_fs() if needed. 2471 * 2. Stop dispatching any I/O by stopping the request_queue. 2472 * 3. Wait for all in-flight I/Os to be completed or requeued. 2473 * 2474 * To abort suspend, start the request_queue. 2475 */ 2476 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2477 { 2478 struct dm_table *map = NULL; 2479 int r = 0; 2480 2481 retry: 2482 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2483 2484 if (dm_suspended_md(md)) { 2485 r = -EINVAL; 2486 goto out_unlock; 2487 } 2488 2489 if (dm_suspended_internally_md(md)) { 2490 /* already internally suspended, wait for internal resume */ 2491 mutex_unlock(&md->suspend_lock); 2492 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2493 if (r) 2494 return r; 2495 goto retry; 2496 } 2497 2498 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2499 2500 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2501 if (r) 2502 goto out_unlock; 2503 2504 dm_table_postsuspend_targets(map); 2505 2506 out_unlock: 2507 mutex_unlock(&md->suspend_lock); 2508 return r; 2509 } 2510 2511 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2512 { 2513 if (map) { 2514 int r = dm_table_resume_targets(map); 2515 if (r) 2516 return r; 2517 } 2518 2519 dm_queue_flush(md); 2520 2521 /* 2522 * Flushing deferred I/Os must be done after targets are resumed 2523 * so that mapping of targets can work correctly. 2524 * Request-based dm is queueing the deferred I/Os in its request_queue. 2525 */ 2526 if (dm_request_based(md)) 2527 dm_start_queue(md->queue); 2528 2529 unlock_fs(md); 2530 2531 return 0; 2532 } 2533 2534 int dm_resume(struct mapped_device *md) 2535 { 2536 int r; 2537 struct dm_table *map = NULL; 2538 2539 retry: 2540 r = -EINVAL; 2541 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2542 2543 if (!dm_suspended_md(md)) 2544 goto out; 2545 2546 if (dm_suspended_internally_md(md)) { 2547 /* already internally suspended, wait for internal resume */ 2548 mutex_unlock(&md->suspend_lock); 2549 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2550 if (r) 2551 return r; 2552 goto retry; 2553 } 2554 2555 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2556 if (!map || !dm_table_get_size(map)) 2557 goto out; 2558 2559 r = __dm_resume(md, map); 2560 if (r) 2561 goto out; 2562 2563 clear_bit(DMF_SUSPENDED, &md->flags); 2564 out: 2565 mutex_unlock(&md->suspend_lock); 2566 2567 return r; 2568 } 2569 2570 /* 2571 * Internal suspend/resume works like userspace-driven suspend. It waits 2572 * until all bios finish and prevents issuing new bios to the target drivers. 2573 * It may be used only from the kernel. 2574 */ 2575 2576 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2577 { 2578 struct dm_table *map = NULL; 2579 2580 lockdep_assert_held(&md->suspend_lock); 2581 2582 if (md->internal_suspend_count++) 2583 return; /* nested internal suspend */ 2584 2585 if (dm_suspended_md(md)) { 2586 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2587 return; /* nest suspend */ 2588 } 2589 2590 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2591 2592 /* 2593 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2594 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2595 * would require changing .presuspend to return an error -- avoid this 2596 * until there is a need for more elaborate variants of internal suspend. 2597 */ 2598 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2599 DMF_SUSPENDED_INTERNALLY); 2600 2601 dm_table_postsuspend_targets(map); 2602 } 2603 2604 static void __dm_internal_resume(struct mapped_device *md) 2605 { 2606 BUG_ON(!md->internal_suspend_count); 2607 2608 if (--md->internal_suspend_count) 2609 return; /* resume from nested internal suspend */ 2610 2611 if (dm_suspended_md(md)) 2612 goto done; /* resume from nested suspend */ 2613 2614 /* 2615 * NOTE: existing callers don't need to call dm_table_resume_targets 2616 * (which may fail -- so best to avoid it for now by passing NULL map) 2617 */ 2618 (void) __dm_resume(md, NULL); 2619 2620 done: 2621 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2622 smp_mb__after_atomic(); 2623 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2624 } 2625 2626 void dm_internal_suspend_noflush(struct mapped_device *md) 2627 { 2628 mutex_lock(&md->suspend_lock); 2629 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2630 mutex_unlock(&md->suspend_lock); 2631 } 2632 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2633 2634 void dm_internal_resume(struct mapped_device *md) 2635 { 2636 mutex_lock(&md->suspend_lock); 2637 __dm_internal_resume(md); 2638 mutex_unlock(&md->suspend_lock); 2639 } 2640 EXPORT_SYMBOL_GPL(dm_internal_resume); 2641 2642 /* 2643 * Fast variants of internal suspend/resume hold md->suspend_lock, 2644 * which prevents interaction with userspace-driven suspend. 2645 */ 2646 2647 void dm_internal_suspend_fast(struct mapped_device *md) 2648 { 2649 mutex_lock(&md->suspend_lock); 2650 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2651 return; 2652 2653 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2654 synchronize_srcu(&md->io_barrier); 2655 flush_workqueue(md->wq); 2656 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2657 } 2658 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2659 2660 void dm_internal_resume_fast(struct mapped_device *md) 2661 { 2662 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2663 goto done; 2664 2665 dm_queue_flush(md); 2666 2667 done: 2668 mutex_unlock(&md->suspend_lock); 2669 } 2670 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2671 2672 /*----------------------------------------------------------------- 2673 * Event notification. 2674 *---------------------------------------------------------------*/ 2675 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2676 unsigned cookie) 2677 { 2678 char udev_cookie[DM_COOKIE_LENGTH]; 2679 char *envp[] = { udev_cookie, NULL }; 2680 2681 if (!cookie) 2682 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2683 else { 2684 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2685 DM_COOKIE_ENV_VAR_NAME, cookie); 2686 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2687 action, envp); 2688 } 2689 } 2690 2691 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2692 { 2693 return atomic_add_return(1, &md->uevent_seq); 2694 } 2695 2696 uint32_t dm_get_event_nr(struct mapped_device *md) 2697 { 2698 return atomic_read(&md->event_nr); 2699 } 2700 2701 int dm_wait_event(struct mapped_device *md, int event_nr) 2702 { 2703 return wait_event_interruptible(md->eventq, 2704 (event_nr != atomic_read(&md->event_nr))); 2705 } 2706 2707 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2708 { 2709 unsigned long flags; 2710 2711 spin_lock_irqsave(&md->uevent_lock, flags); 2712 list_add(elist, &md->uevent_list); 2713 spin_unlock_irqrestore(&md->uevent_lock, flags); 2714 } 2715 2716 /* 2717 * The gendisk is only valid as long as you have a reference 2718 * count on 'md'. 2719 */ 2720 struct gendisk *dm_disk(struct mapped_device *md) 2721 { 2722 return md->disk; 2723 } 2724 EXPORT_SYMBOL_GPL(dm_disk); 2725 2726 struct kobject *dm_kobject(struct mapped_device *md) 2727 { 2728 return &md->kobj_holder.kobj; 2729 } 2730 2731 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2732 { 2733 struct mapped_device *md; 2734 2735 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2736 2737 spin_lock(&_minor_lock); 2738 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2739 md = NULL; 2740 goto out; 2741 } 2742 dm_get(md); 2743 out: 2744 spin_unlock(&_minor_lock); 2745 2746 return md; 2747 } 2748 2749 int dm_suspended_md(struct mapped_device *md) 2750 { 2751 return test_bit(DMF_SUSPENDED, &md->flags); 2752 } 2753 2754 int dm_suspended_internally_md(struct mapped_device *md) 2755 { 2756 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2757 } 2758 2759 int dm_test_deferred_remove_flag(struct mapped_device *md) 2760 { 2761 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2762 } 2763 2764 int dm_suspended(struct dm_target *ti) 2765 { 2766 return dm_suspended_md(dm_table_get_md(ti->table)); 2767 } 2768 EXPORT_SYMBOL_GPL(dm_suspended); 2769 2770 int dm_noflush_suspending(struct dm_target *ti) 2771 { 2772 return __noflush_suspending(dm_table_get_md(ti->table)); 2773 } 2774 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2775 2776 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2777 unsigned integrity, unsigned per_io_data_size, 2778 unsigned min_pool_size) 2779 { 2780 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2781 unsigned int pool_size = 0; 2782 unsigned int front_pad, io_front_pad; 2783 2784 if (!pools) 2785 return NULL; 2786 2787 switch (type) { 2788 case DM_TYPE_BIO_BASED: 2789 case DM_TYPE_DAX_BIO_BASED: 2790 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2791 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2792 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2793 pools->io_bs = bioset_create(pool_size, io_front_pad, 0); 2794 if (!pools->io_bs) 2795 goto out; 2796 if (integrity && bioset_integrity_create(pools->io_bs, pool_size)) 2797 goto out; 2798 break; 2799 case DM_TYPE_REQUEST_BASED: 2800 case DM_TYPE_MQ_REQUEST_BASED: 2801 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2802 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2803 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2804 break; 2805 default: 2806 BUG(); 2807 } 2808 2809 pools->bs = bioset_create(pool_size, front_pad, 0); 2810 if (!pools->bs) 2811 goto out; 2812 2813 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2814 goto out; 2815 2816 return pools; 2817 2818 out: 2819 dm_free_md_mempools(pools); 2820 2821 return NULL; 2822 } 2823 2824 void dm_free_md_mempools(struct dm_md_mempools *pools) 2825 { 2826 if (!pools) 2827 return; 2828 2829 if (pools->bs) 2830 bioset_free(pools->bs); 2831 if (pools->io_bs) 2832 bioset_free(pools->io_bs); 2833 2834 kfree(pools); 2835 } 2836 2837 struct dm_pr { 2838 u64 old_key; 2839 u64 new_key; 2840 u32 flags; 2841 bool fail_early; 2842 }; 2843 2844 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2845 void *data) 2846 { 2847 struct mapped_device *md = bdev->bd_disk->private_data; 2848 struct dm_table *table; 2849 struct dm_target *ti; 2850 int ret = -ENOTTY, srcu_idx; 2851 2852 table = dm_get_live_table(md, &srcu_idx); 2853 if (!table || !dm_table_get_size(table)) 2854 goto out; 2855 2856 /* We only support devices that have a single target */ 2857 if (dm_table_get_num_targets(table) != 1) 2858 goto out; 2859 ti = dm_table_get_target(table, 0); 2860 2861 ret = -EINVAL; 2862 if (!ti->type->iterate_devices) 2863 goto out; 2864 2865 ret = ti->type->iterate_devices(ti, fn, data); 2866 out: 2867 dm_put_live_table(md, srcu_idx); 2868 return ret; 2869 } 2870 2871 /* 2872 * For register / unregister we need to manually call out to every path. 2873 */ 2874 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2875 sector_t start, sector_t len, void *data) 2876 { 2877 struct dm_pr *pr = data; 2878 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2879 2880 if (!ops || !ops->pr_register) 2881 return -EOPNOTSUPP; 2882 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2883 } 2884 2885 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2886 u32 flags) 2887 { 2888 struct dm_pr pr = { 2889 .old_key = old_key, 2890 .new_key = new_key, 2891 .flags = flags, 2892 .fail_early = true, 2893 }; 2894 int ret; 2895 2896 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2897 if (ret && new_key) { 2898 /* unregister all paths if we failed to register any path */ 2899 pr.old_key = new_key; 2900 pr.new_key = 0; 2901 pr.flags = 0; 2902 pr.fail_early = false; 2903 dm_call_pr(bdev, __dm_pr_register, &pr); 2904 } 2905 2906 return ret; 2907 } 2908 2909 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2910 u32 flags) 2911 { 2912 struct mapped_device *md = bdev->bd_disk->private_data; 2913 const struct pr_ops *ops; 2914 fmode_t mode; 2915 int r; 2916 2917 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2918 if (r < 0) 2919 return r; 2920 2921 ops = bdev->bd_disk->fops->pr_ops; 2922 if (ops && ops->pr_reserve) 2923 r = ops->pr_reserve(bdev, key, type, flags); 2924 else 2925 r = -EOPNOTSUPP; 2926 2927 bdput(bdev); 2928 return r; 2929 } 2930 2931 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2932 { 2933 struct mapped_device *md = bdev->bd_disk->private_data; 2934 const struct pr_ops *ops; 2935 fmode_t mode; 2936 int r; 2937 2938 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2939 if (r < 0) 2940 return r; 2941 2942 ops = bdev->bd_disk->fops->pr_ops; 2943 if (ops && ops->pr_release) 2944 r = ops->pr_release(bdev, key, type); 2945 else 2946 r = -EOPNOTSUPP; 2947 2948 bdput(bdev); 2949 return r; 2950 } 2951 2952 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2953 enum pr_type type, bool abort) 2954 { 2955 struct mapped_device *md = bdev->bd_disk->private_data; 2956 const struct pr_ops *ops; 2957 fmode_t mode; 2958 int r; 2959 2960 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2961 if (r < 0) 2962 return r; 2963 2964 ops = bdev->bd_disk->fops->pr_ops; 2965 if (ops && ops->pr_preempt) 2966 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2967 else 2968 r = -EOPNOTSUPP; 2969 2970 bdput(bdev); 2971 return r; 2972 } 2973 2974 static int dm_pr_clear(struct block_device *bdev, u64 key) 2975 { 2976 struct mapped_device *md = bdev->bd_disk->private_data; 2977 const struct pr_ops *ops; 2978 fmode_t mode; 2979 int r; 2980 2981 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2982 if (r < 0) 2983 return r; 2984 2985 ops = bdev->bd_disk->fops->pr_ops; 2986 if (ops && ops->pr_clear) 2987 r = ops->pr_clear(bdev, key); 2988 else 2989 r = -EOPNOTSUPP; 2990 2991 bdput(bdev); 2992 return r; 2993 } 2994 2995 static const struct pr_ops dm_pr_ops = { 2996 .pr_register = dm_pr_register, 2997 .pr_reserve = dm_pr_reserve, 2998 .pr_release = dm_pr_release, 2999 .pr_preempt = dm_pr_preempt, 3000 .pr_clear = dm_pr_clear, 3001 }; 3002 3003 static const struct block_device_operations dm_blk_dops = { 3004 .open = dm_blk_open, 3005 .release = dm_blk_close, 3006 .ioctl = dm_blk_ioctl, 3007 .getgeo = dm_blk_getgeo, 3008 .pr_ops = &dm_pr_ops, 3009 .owner = THIS_MODULE 3010 }; 3011 3012 static const struct dax_operations dm_dax_ops = { 3013 .direct_access = dm_dax_direct_access, 3014 .copy_from_iter = dm_dax_copy_from_iter, 3015 }; 3016 3017 /* 3018 * module hooks 3019 */ 3020 module_init(dm_init); 3021 module_exit(dm_exit); 3022 3023 module_param(major, uint, 0); 3024 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3025 3026 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3027 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3028 3029 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3030 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3031 3032 MODULE_DESCRIPTION(DM_NAME " driver"); 3033 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3034 MODULE_LICENSE("GPL"); 3035