1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static void start_io_acct(struct dm_io *io) 489 { 490 struct mapped_device *md = io->md; 491 struct bio *bio = io->orig_bio; 492 493 bio_start_io_acct_time(bio, io->start_time); 494 if (unlikely(dm_stats_used(&md->stats))) 495 dm_stats_account_io(&md->stats, bio_data_dir(bio), 496 bio->bi_iter.bi_sector, bio_sectors(bio), 497 false, 0, &io->stats_aux); 498 } 499 500 static void end_io_acct(struct mapped_device *md, struct bio *bio, 501 unsigned long start_time, struct dm_stats_aux *stats_aux) 502 { 503 unsigned long duration = jiffies - start_time; 504 505 bio_end_io_acct(bio, start_time); 506 507 if (unlikely(dm_stats_used(&md->stats))) 508 dm_stats_account_io(&md->stats, bio_data_dir(bio), 509 bio->bi_iter.bi_sector, bio_sectors(bio), 510 true, duration, stats_aux); 511 512 /* nudge anyone waiting on suspend queue */ 513 if (unlikely(wq_has_sleeper(&md->wait))) 514 wake_up(&md->wait); 515 } 516 517 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 518 { 519 struct dm_io *io; 520 struct dm_target_io *tio; 521 struct bio *clone; 522 523 clone = bio_alloc_bioset(NULL, 0, 0, GFP_NOIO, &md->io_bs); 524 525 tio = clone_to_tio(clone); 526 tio->inside_dm_io = true; 527 tio->io = NULL; 528 529 io = container_of(tio, struct dm_io, tio); 530 io->magic = DM_IO_MAGIC; 531 io->status = 0; 532 atomic_set(&io->io_count, 1); 533 io->orig_bio = bio; 534 io->md = md; 535 spin_lock_init(&io->endio_lock); 536 537 io->start_time = jiffies; 538 539 return io; 540 } 541 542 static void free_io(struct mapped_device *md, struct dm_io *io) 543 { 544 bio_put(&io->tio.clone); 545 } 546 547 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 548 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 549 { 550 struct dm_target_io *tio; 551 552 if (!ci->io->tio.io) { 553 /* the dm_target_io embedded in ci->io is available */ 554 tio = &ci->io->tio; 555 } else { 556 struct bio *clone = bio_alloc_bioset(NULL, 0, 0, gfp_mask, 557 &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = clone_to_tio(clone); 562 tio->inside_dm_io = false; 563 } 564 __bio_clone_fast(&tio->clone, ci->bio); 565 566 tio->magic = DM_TIO_MAGIC; 567 tio->io = ci->io; 568 tio->ti = ti; 569 tio->target_bio_nr = target_bio_nr; 570 tio->len_ptr = len; 571 572 return tio; 573 } 574 575 static void free_tio(struct dm_target_io *tio) 576 { 577 if (tio->inside_dm_io) 578 return; 579 bio_put(&tio->clone); 580 } 581 582 /* 583 * Add the bio to the list of deferred io. 584 */ 585 static void queue_io(struct mapped_device *md, struct bio *bio) 586 { 587 unsigned long flags; 588 589 spin_lock_irqsave(&md->deferred_lock, flags); 590 bio_list_add(&md->deferred, bio); 591 spin_unlock_irqrestore(&md->deferred_lock, flags); 592 queue_work(md->wq, &md->work); 593 } 594 595 /* 596 * Everyone (including functions in this file), should use this 597 * function to access the md->map field, and make sure they call 598 * dm_put_live_table() when finished. 599 */ 600 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 601 { 602 *srcu_idx = srcu_read_lock(&md->io_barrier); 603 604 return srcu_dereference(md->map, &md->io_barrier); 605 } 606 607 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 608 { 609 srcu_read_unlock(&md->io_barrier, srcu_idx); 610 } 611 612 void dm_sync_table(struct mapped_device *md) 613 { 614 synchronize_srcu(&md->io_barrier); 615 synchronize_rcu_expedited(); 616 } 617 618 /* 619 * A fast alternative to dm_get_live_table/dm_put_live_table. 620 * The caller must not block between these two functions. 621 */ 622 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 623 { 624 rcu_read_lock(); 625 return rcu_dereference(md->map); 626 } 627 628 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 629 { 630 rcu_read_unlock(); 631 } 632 633 static char *_dm_claim_ptr = "I belong to device-mapper"; 634 635 /* 636 * Open a table device so we can use it as a map destination. 637 */ 638 static int open_table_device(struct table_device *td, dev_t dev, 639 struct mapped_device *md) 640 { 641 struct block_device *bdev; 642 u64 part_off; 643 int r; 644 645 BUG_ON(td->dm_dev.bdev); 646 647 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 648 if (IS_ERR(bdev)) 649 return PTR_ERR(bdev); 650 651 r = bd_link_disk_holder(bdev, dm_disk(md)); 652 if (r) { 653 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 654 return r; 655 } 656 657 td->dm_dev.bdev = bdev; 658 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 659 return 0; 660 } 661 662 /* 663 * Close a table device that we've been using. 664 */ 665 static void close_table_device(struct table_device *td, struct mapped_device *md) 666 { 667 if (!td->dm_dev.bdev) 668 return; 669 670 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 671 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 672 put_dax(td->dm_dev.dax_dev); 673 td->dm_dev.bdev = NULL; 674 td->dm_dev.dax_dev = NULL; 675 } 676 677 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 678 fmode_t mode) 679 { 680 struct table_device *td; 681 682 list_for_each_entry(td, l, list) 683 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 684 return td; 685 686 return NULL; 687 } 688 689 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 690 struct dm_dev **result) 691 { 692 int r; 693 struct table_device *td; 694 695 mutex_lock(&md->table_devices_lock); 696 td = find_table_device(&md->table_devices, dev, mode); 697 if (!td) { 698 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 699 if (!td) { 700 mutex_unlock(&md->table_devices_lock); 701 return -ENOMEM; 702 } 703 704 td->dm_dev.mode = mode; 705 td->dm_dev.bdev = NULL; 706 707 if ((r = open_table_device(td, dev, md))) { 708 mutex_unlock(&md->table_devices_lock); 709 kfree(td); 710 return r; 711 } 712 713 format_dev_t(td->dm_dev.name, dev); 714 715 refcount_set(&td->count, 1); 716 list_add(&td->list, &md->table_devices); 717 } else { 718 refcount_inc(&td->count); 719 } 720 mutex_unlock(&md->table_devices_lock); 721 722 *result = &td->dm_dev; 723 return 0; 724 } 725 726 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 727 { 728 struct table_device *td = container_of(d, struct table_device, dm_dev); 729 730 mutex_lock(&md->table_devices_lock); 731 if (refcount_dec_and_test(&td->count)) { 732 close_table_device(td, md); 733 list_del(&td->list); 734 kfree(td); 735 } 736 mutex_unlock(&md->table_devices_lock); 737 } 738 739 static void free_table_devices(struct list_head *devices) 740 { 741 struct list_head *tmp, *next; 742 743 list_for_each_safe(tmp, next, devices) { 744 struct table_device *td = list_entry(tmp, struct table_device, list); 745 746 DMWARN("dm_destroy: %s still exists with %d references", 747 td->dm_dev.name, refcount_read(&td->count)); 748 kfree(td); 749 } 750 } 751 752 /* 753 * Get the geometry associated with a dm device 754 */ 755 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 756 { 757 *geo = md->geometry; 758 759 return 0; 760 } 761 762 /* 763 * Set the geometry of a device. 764 */ 765 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 766 { 767 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 768 769 if (geo->start > sz) { 770 DMWARN("Start sector is beyond the geometry limits."); 771 return -EINVAL; 772 } 773 774 md->geometry = *geo; 775 776 return 0; 777 } 778 779 static int __noflush_suspending(struct mapped_device *md) 780 { 781 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 782 } 783 784 /* 785 * Decrements the number of outstanding ios that a bio has been 786 * cloned into, completing the original io if necc. 787 */ 788 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 789 { 790 unsigned long flags; 791 blk_status_t io_error; 792 struct bio *bio; 793 struct mapped_device *md = io->md; 794 unsigned long start_time = 0; 795 struct dm_stats_aux stats_aux; 796 797 /* Push-back supersedes any I/O errors */ 798 if (unlikely(error)) { 799 spin_lock_irqsave(&io->endio_lock, flags); 800 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 801 io->status = error; 802 spin_unlock_irqrestore(&io->endio_lock, flags); 803 } 804 805 if (atomic_dec_and_test(&io->io_count)) { 806 bio = io->orig_bio; 807 if (io->status == BLK_STS_DM_REQUEUE) { 808 /* 809 * Target requested pushing back the I/O. 810 */ 811 spin_lock_irqsave(&md->deferred_lock, flags); 812 if (__noflush_suspending(md) && 813 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 814 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 815 bio_list_add_head(&md->deferred, bio); 816 } else { 817 /* 818 * noflush suspend was interrupted or this is 819 * a write to a zoned target. 820 */ 821 io->status = BLK_STS_IOERR; 822 } 823 spin_unlock_irqrestore(&md->deferred_lock, flags); 824 } 825 826 io_error = io->status; 827 start_time = io->start_time; 828 stats_aux = io->stats_aux; 829 free_io(md, io); 830 end_io_acct(md, bio, start_time, &stats_aux); 831 832 if (io_error == BLK_STS_DM_REQUEUE) 833 return; 834 835 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 836 /* 837 * Preflush done for flush with data, reissue 838 * without REQ_PREFLUSH. 839 */ 840 bio->bi_opf &= ~REQ_PREFLUSH; 841 queue_io(md, bio); 842 } else { 843 /* done with normal IO or empty flush */ 844 if (io_error) 845 bio->bi_status = io_error; 846 bio_endio(bio); 847 } 848 } 849 } 850 851 void disable_discard(struct mapped_device *md) 852 { 853 struct queue_limits *limits = dm_get_queue_limits(md); 854 855 /* device doesn't really support DISCARD, disable it */ 856 limits->max_discard_sectors = 0; 857 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 858 } 859 860 void disable_write_same(struct mapped_device *md) 861 { 862 struct queue_limits *limits = dm_get_queue_limits(md); 863 864 /* device doesn't really support WRITE SAME, disable it */ 865 limits->max_write_same_sectors = 0; 866 } 867 868 void disable_write_zeroes(struct mapped_device *md) 869 { 870 struct queue_limits *limits = dm_get_queue_limits(md); 871 872 /* device doesn't really support WRITE ZEROES, disable it */ 873 limits->max_write_zeroes_sectors = 0; 874 } 875 876 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 877 { 878 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 879 } 880 881 static void clone_endio(struct bio *bio) 882 { 883 blk_status_t error = bio->bi_status; 884 struct dm_target_io *tio = clone_to_tio(bio); 885 struct dm_io *io = tio->io; 886 struct mapped_device *md = tio->io->md; 887 dm_endio_fn endio = tio->ti->type->end_io; 888 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 889 890 if (unlikely(error == BLK_STS_TARGET)) { 891 if (bio_op(bio) == REQ_OP_DISCARD && 892 !q->limits.max_discard_sectors) 893 disable_discard(md); 894 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 895 !q->limits.max_write_same_sectors) 896 disable_write_same(md); 897 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 898 !q->limits.max_write_zeroes_sectors) 899 disable_write_zeroes(md); 900 } 901 902 if (blk_queue_is_zoned(q)) 903 dm_zone_endio(io, bio); 904 905 if (endio) { 906 int r = endio(tio->ti, bio, &error); 907 switch (r) { 908 case DM_ENDIO_REQUEUE: 909 /* 910 * Requeuing writes to a sequential zone of a zoned 911 * target will break the sequential write pattern: 912 * fail such IO. 913 */ 914 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 915 error = BLK_STS_IOERR; 916 else 917 error = BLK_STS_DM_REQUEUE; 918 fallthrough; 919 case DM_ENDIO_DONE: 920 break; 921 case DM_ENDIO_INCOMPLETE: 922 /* The target will handle the io */ 923 return; 924 default: 925 DMWARN("unimplemented target endio return value: %d", r); 926 BUG(); 927 } 928 } 929 930 if (unlikely(swap_bios_limit(tio->ti, bio))) { 931 struct mapped_device *md = io->md; 932 up(&md->swap_bios_semaphore); 933 } 934 935 free_tio(tio); 936 dm_io_dec_pending(io, error); 937 } 938 939 /* 940 * Return maximum size of I/O possible at the supplied sector up to the current 941 * target boundary. 942 */ 943 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 944 sector_t target_offset) 945 { 946 return ti->len - target_offset; 947 } 948 949 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 950 { 951 sector_t target_offset = dm_target_offset(ti, sector); 952 sector_t len = max_io_len_target_boundary(ti, target_offset); 953 sector_t max_len; 954 955 /* 956 * Does the target need to split IO even further? 957 * - varied (per target) IO splitting is a tenet of DM; this 958 * explains why stacked chunk_sectors based splitting via 959 * blk_max_size_offset() isn't possible here. So pass in 960 * ti->max_io_len to override stacked chunk_sectors. 961 */ 962 if (ti->max_io_len) { 963 max_len = blk_max_size_offset(ti->table->md->queue, 964 target_offset, ti->max_io_len); 965 if (len > max_len) 966 len = max_len; 967 } 968 969 return len; 970 } 971 972 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 973 { 974 if (len > UINT_MAX) { 975 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 976 (unsigned long long)len, UINT_MAX); 977 ti->error = "Maximum size of target IO is too large"; 978 return -EINVAL; 979 } 980 981 ti->max_io_len = (uint32_t) len; 982 983 return 0; 984 } 985 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 986 987 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 988 sector_t sector, int *srcu_idx) 989 __acquires(md->io_barrier) 990 { 991 struct dm_table *map; 992 struct dm_target *ti; 993 994 map = dm_get_live_table(md, srcu_idx); 995 if (!map) 996 return NULL; 997 998 ti = dm_table_find_target(map, sector); 999 if (!ti) 1000 return NULL; 1001 1002 return ti; 1003 } 1004 1005 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1006 long nr_pages, void **kaddr, pfn_t *pfn) 1007 { 1008 struct mapped_device *md = dax_get_private(dax_dev); 1009 sector_t sector = pgoff * PAGE_SECTORS; 1010 struct dm_target *ti; 1011 long len, ret = -EIO; 1012 int srcu_idx; 1013 1014 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1015 1016 if (!ti) 1017 goto out; 1018 if (!ti->type->direct_access) 1019 goto out; 1020 len = max_io_len(ti, sector) / PAGE_SECTORS; 1021 if (len < 1) 1022 goto out; 1023 nr_pages = min(len, nr_pages); 1024 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1025 1026 out: 1027 dm_put_live_table(md, srcu_idx); 1028 1029 return ret; 1030 } 1031 1032 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1033 size_t nr_pages) 1034 { 1035 struct mapped_device *md = dax_get_private(dax_dev); 1036 sector_t sector = pgoff * PAGE_SECTORS; 1037 struct dm_target *ti; 1038 int ret = -EIO; 1039 int srcu_idx; 1040 1041 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1042 1043 if (!ti) 1044 goto out; 1045 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1046 /* 1047 * ->zero_page_range() is mandatory dax operation. If we are 1048 * here, something is wrong. 1049 */ 1050 goto out; 1051 } 1052 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1053 out: 1054 dm_put_live_table(md, srcu_idx); 1055 1056 return ret; 1057 } 1058 1059 /* 1060 * A target may call dm_accept_partial_bio only from the map routine. It is 1061 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1062 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1063 * 1064 * dm_accept_partial_bio informs the dm that the target only wants to process 1065 * additional n_sectors sectors of the bio and the rest of the data should be 1066 * sent in a next bio. 1067 * 1068 * A diagram that explains the arithmetics: 1069 * +--------------------+---------------+-------+ 1070 * | 1 | 2 | 3 | 1071 * +--------------------+---------------+-------+ 1072 * 1073 * <-------------- *tio->len_ptr ---------------> 1074 * <------- bi_size -------> 1075 * <-- n_sectors --> 1076 * 1077 * Region 1 was already iterated over with bio_advance or similar function. 1078 * (it may be empty if the target doesn't use bio_advance) 1079 * Region 2 is the remaining bio size that the target wants to process. 1080 * (it may be empty if region 1 is non-empty, although there is no reason 1081 * to make it empty) 1082 * The target requires that region 3 is to be sent in the next bio. 1083 * 1084 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1085 * the partially processed part (the sum of regions 1+2) must be the same for all 1086 * copies of the bio. 1087 */ 1088 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1089 { 1090 struct dm_target_io *tio = clone_to_tio(bio); 1091 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1092 1093 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1094 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1095 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1096 BUG_ON(bi_size > *tio->len_ptr); 1097 BUG_ON(n_sectors > bi_size); 1098 1099 *tio->len_ptr -= bi_size - n_sectors; 1100 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1101 } 1102 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1103 1104 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1105 { 1106 mutex_lock(&md->swap_bios_lock); 1107 while (latch < md->swap_bios) { 1108 cond_resched(); 1109 down(&md->swap_bios_semaphore); 1110 md->swap_bios--; 1111 } 1112 while (latch > md->swap_bios) { 1113 cond_resched(); 1114 up(&md->swap_bios_semaphore); 1115 md->swap_bios++; 1116 } 1117 mutex_unlock(&md->swap_bios_lock); 1118 } 1119 1120 static void __map_bio(struct dm_target_io *tio) 1121 { 1122 int r; 1123 sector_t sector; 1124 struct bio *clone = &tio->clone; 1125 struct dm_io *io = tio->io; 1126 struct dm_target *ti = tio->ti; 1127 1128 clone->bi_end_io = clone_endio; 1129 1130 /* 1131 * Map the clone. If r == 0 we don't need to do 1132 * anything, the target has assumed ownership of 1133 * this io. 1134 */ 1135 dm_io_inc_pending(io); 1136 sector = clone->bi_iter.bi_sector; 1137 1138 if (unlikely(swap_bios_limit(ti, clone))) { 1139 struct mapped_device *md = io->md; 1140 int latch = get_swap_bios(); 1141 if (unlikely(latch != md->swap_bios)) 1142 __set_swap_bios_limit(md, latch); 1143 down(&md->swap_bios_semaphore); 1144 } 1145 1146 /* 1147 * Check if the IO needs a special mapping due to zone append emulation 1148 * on zoned target. In this case, dm_zone_map_bio() calls the target 1149 * map operation. 1150 */ 1151 if (dm_emulate_zone_append(io->md)) 1152 r = dm_zone_map_bio(tio); 1153 else 1154 r = ti->type->map(ti, clone); 1155 1156 switch (r) { 1157 case DM_MAPIO_SUBMITTED: 1158 break; 1159 case DM_MAPIO_REMAPPED: 1160 /* the bio has been remapped so dispatch it */ 1161 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1162 submit_bio_noacct(clone); 1163 break; 1164 case DM_MAPIO_KILL: 1165 if (unlikely(swap_bios_limit(ti, clone))) { 1166 struct mapped_device *md = io->md; 1167 up(&md->swap_bios_semaphore); 1168 } 1169 free_tio(tio); 1170 dm_io_dec_pending(io, BLK_STS_IOERR); 1171 break; 1172 case DM_MAPIO_REQUEUE: 1173 if (unlikely(swap_bios_limit(ti, clone))) { 1174 struct mapped_device *md = io->md; 1175 up(&md->swap_bios_semaphore); 1176 } 1177 free_tio(tio); 1178 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1179 break; 1180 default: 1181 DMWARN("unimplemented target map return value: %d", r); 1182 BUG(); 1183 } 1184 } 1185 1186 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1187 { 1188 bio->bi_iter.bi_sector = sector; 1189 bio->bi_iter.bi_size = to_bytes(len); 1190 } 1191 1192 /* 1193 * Creates a bio that consists of range of complete bvecs. 1194 */ 1195 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1196 sector_t sector, unsigned *len) 1197 { 1198 struct bio *bio = ci->bio, *clone; 1199 struct dm_target_io *tio; 1200 int r; 1201 1202 tio = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1203 clone = &tio->clone; 1204 1205 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1206 if (r < 0) 1207 goto free_tio; 1208 1209 if (bio_integrity(bio)) { 1210 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1211 !dm_target_passes_integrity(tio->ti->type))) { 1212 DMWARN("%s: the target %s doesn't support integrity data.", 1213 dm_device_name(tio->io->md), 1214 tio->ti->type->name); 1215 r = -EIO; 1216 goto free_tio; 1217 } 1218 1219 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1220 if (r < 0) 1221 goto free_tio; 1222 } 1223 1224 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1225 clone->bi_iter.bi_size = to_bytes(*len); 1226 1227 if (bio_integrity(bio)) 1228 bio_integrity_trim(clone); 1229 1230 __map_bio(tio); 1231 return 0; 1232 free_tio: 1233 free_tio(tio); 1234 return r; 1235 } 1236 1237 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1238 struct dm_target *ti, unsigned num_bios, 1239 unsigned *len) 1240 { 1241 struct dm_target_io *tio; 1242 int try; 1243 1244 if (!num_bios) 1245 return; 1246 1247 if (num_bios == 1) { 1248 tio = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1249 bio_list_add(blist, &tio->clone); 1250 return; 1251 } 1252 1253 for (try = 0; try < 2; try++) { 1254 int bio_nr; 1255 struct bio *bio; 1256 1257 if (try) 1258 mutex_lock(&ci->io->md->table_devices_lock); 1259 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1260 tio = alloc_tio(ci, ti, bio_nr, len, 1261 try ? GFP_NOIO : GFP_NOWAIT); 1262 if (!tio) 1263 break; 1264 1265 bio_list_add(blist, &tio->clone); 1266 } 1267 if (try) 1268 mutex_unlock(&ci->io->md->table_devices_lock); 1269 if (bio_nr == num_bios) 1270 return; 1271 1272 while ((bio = bio_list_pop(blist))) 1273 free_tio(clone_to_tio(bio)); 1274 } 1275 } 1276 1277 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1278 unsigned num_bios, unsigned *len) 1279 { 1280 struct bio_list blist = BIO_EMPTY_LIST; 1281 struct bio *clone; 1282 1283 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1284 1285 while ((clone = bio_list_pop(&blist))) { 1286 struct dm_target_io *tio = clone_to_tio(clone); 1287 1288 if (len) 1289 bio_setup_sector(clone, ci->sector, *len); 1290 __map_bio(tio); 1291 } 1292 } 1293 1294 static int __send_empty_flush(struct clone_info *ci) 1295 { 1296 unsigned target_nr = 0; 1297 struct dm_target *ti; 1298 struct bio flush_bio; 1299 1300 /* 1301 * Use an on-stack bio for this, it's safe since we don't 1302 * need to reference it after submit. It's just used as 1303 * the basis for the clone(s). 1304 */ 1305 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1306 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1307 1308 ci->bio = &flush_bio; 1309 ci->sector_count = 0; 1310 1311 BUG_ON(bio_has_data(ci->bio)); 1312 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1313 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1314 1315 bio_uninit(ci->bio); 1316 return 0; 1317 } 1318 1319 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1320 unsigned num_bios) 1321 { 1322 unsigned len; 1323 1324 /* 1325 * Even though the device advertised support for this type of 1326 * request, that does not mean every target supports it, and 1327 * reconfiguration might also have changed that since the 1328 * check was performed. 1329 */ 1330 if (!num_bios) 1331 return -EOPNOTSUPP; 1332 1333 len = min_t(sector_t, ci->sector_count, 1334 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1335 1336 __send_duplicate_bios(ci, ti, num_bios, &len); 1337 1338 ci->sector += len; 1339 ci->sector_count -= len; 1340 1341 return 0; 1342 } 1343 1344 static bool is_abnormal_io(struct bio *bio) 1345 { 1346 bool r = false; 1347 1348 switch (bio_op(bio)) { 1349 case REQ_OP_DISCARD: 1350 case REQ_OP_SECURE_ERASE: 1351 case REQ_OP_WRITE_SAME: 1352 case REQ_OP_WRITE_ZEROES: 1353 r = true; 1354 break; 1355 } 1356 1357 return r; 1358 } 1359 1360 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1361 int *result) 1362 { 1363 struct bio *bio = ci->bio; 1364 unsigned num_bios = 0; 1365 1366 switch (bio_op(bio)) { 1367 case REQ_OP_DISCARD: 1368 num_bios = ti->num_discard_bios; 1369 break; 1370 case REQ_OP_SECURE_ERASE: 1371 num_bios = ti->num_secure_erase_bios; 1372 break; 1373 case REQ_OP_WRITE_SAME: 1374 num_bios = ti->num_write_same_bios; 1375 break; 1376 case REQ_OP_WRITE_ZEROES: 1377 num_bios = ti->num_write_zeroes_bios; 1378 break; 1379 default: 1380 return false; 1381 } 1382 1383 *result = __send_changing_extent_only(ci, ti, num_bios); 1384 return true; 1385 } 1386 1387 /* 1388 * Select the correct strategy for processing a non-flush bio. 1389 */ 1390 static int __split_and_process_non_flush(struct clone_info *ci) 1391 { 1392 struct dm_target *ti; 1393 unsigned len; 1394 int r; 1395 1396 ti = dm_table_find_target(ci->map, ci->sector); 1397 if (!ti) 1398 return -EIO; 1399 1400 if (__process_abnormal_io(ci, ti, &r)) 1401 return r; 1402 1403 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1404 1405 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1406 if (r < 0) 1407 return r; 1408 1409 ci->sector += len; 1410 ci->sector_count -= len; 1411 1412 return 0; 1413 } 1414 1415 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1416 struct dm_table *map, struct bio *bio) 1417 { 1418 ci->map = map; 1419 ci->io = alloc_io(md, bio); 1420 ci->sector = bio->bi_iter.bi_sector; 1421 } 1422 1423 /* 1424 * Entry point to split a bio into clones and submit them to the targets. 1425 */ 1426 static void __split_and_process_bio(struct mapped_device *md, 1427 struct dm_table *map, struct bio *bio) 1428 { 1429 struct clone_info ci; 1430 int error = 0; 1431 1432 init_clone_info(&ci, md, map, bio); 1433 1434 if (bio->bi_opf & REQ_PREFLUSH) { 1435 error = __send_empty_flush(&ci); 1436 /* dm_io_dec_pending submits any data associated with flush */ 1437 } else if (op_is_zone_mgmt(bio_op(bio))) { 1438 ci.bio = bio; 1439 ci.sector_count = 0; 1440 error = __split_and_process_non_flush(&ci); 1441 } else { 1442 ci.bio = bio; 1443 ci.sector_count = bio_sectors(bio); 1444 error = __split_and_process_non_flush(&ci); 1445 if (ci.sector_count && !error) { 1446 /* 1447 * Remainder must be passed to submit_bio_noacct() 1448 * so that it gets handled *after* bios already submitted 1449 * have been completely processed. 1450 * We take a clone of the original to store in 1451 * ci.io->orig_bio to be used by end_io_acct() and 1452 * for dec_pending to use for completion handling. 1453 */ 1454 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1455 GFP_NOIO, &md->queue->bio_split); 1456 ci.io->orig_bio = b; 1457 1458 bio_chain(b, bio); 1459 trace_block_split(b, bio->bi_iter.bi_sector); 1460 submit_bio_noacct(bio); 1461 } 1462 } 1463 start_io_acct(ci.io); 1464 1465 /* drop the extra reference count */ 1466 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1467 } 1468 1469 static void dm_submit_bio(struct bio *bio) 1470 { 1471 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1472 int srcu_idx; 1473 struct dm_table *map; 1474 1475 map = dm_get_live_table(md, &srcu_idx); 1476 if (unlikely(!map)) { 1477 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1478 dm_device_name(md)); 1479 bio_io_error(bio); 1480 goto out; 1481 } 1482 1483 /* If suspended, queue this IO for later */ 1484 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1485 if (bio->bi_opf & REQ_NOWAIT) 1486 bio_wouldblock_error(bio); 1487 else if (bio->bi_opf & REQ_RAHEAD) 1488 bio_io_error(bio); 1489 else 1490 queue_io(md, bio); 1491 goto out; 1492 } 1493 1494 /* 1495 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1496 * otherwise associated queue_limits won't be imposed. 1497 */ 1498 if (is_abnormal_io(bio)) 1499 blk_queue_split(&bio); 1500 1501 __split_and_process_bio(md, map, bio); 1502 out: 1503 dm_put_live_table(md, srcu_idx); 1504 } 1505 1506 /*----------------------------------------------------------------- 1507 * An IDR is used to keep track of allocated minor numbers. 1508 *---------------------------------------------------------------*/ 1509 static void free_minor(int minor) 1510 { 1511 spin_lock(&_minor_lock); 1512 idr_remove(&_minor_idr, minor); 1513 spin_unlock(&_minor_lock); 1514 } 1515 1516 /* 1517 * See if the device with a specific minor # is free. 1518 */ 1519 static int specific_minor(int minor) 1520 { 1521 int r; 1522 1523 if (minor >= (1 << MINORBITS)) 1524 return -EINVAL; 1525 1526 idr_preload(GFP_KERNEL); 1527 spin_lock(&_minor_lock); 1528 1529 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1530 1531 spin_unlock(&_minor_lock); 1532 idr_preload_end(); 1533 if (r < 0) 1534 return r == -ENOSPC ? -EBUSY : r; 1535 return 0; 1536 } 1537 1538 static int next_free_minor(int *minor) 1539 { 1540 int r; 1541 1542 idr_preload(GFP_KERNEL); 1543 spin_lock(&_minor_lock); 1544 1545 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1546 1547 spin_unlock(&_minor_lock); 1548 idr_preload_end(); 1549 if (r < 0) 1550 return r; 1551 *minor = r; 1552 return 0; 1553 } 1554 1555 static const struct block_device_operations dm_blk_dops; 1556 static const struct block_device_operations dm_rq_blk_dops; 1557 static const struct dax_operations dm_dax_ops; 1558 1559 static void dm_wq_work(struct work_struct *work); 1560 1561 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1562 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1563 { 1564 dm_destroy_crypto_profile(q->crypto_profile); 1565 } 1566 1567 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1568 1569 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1570 { 1571 } 1572 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1573 1574 static void cleanup_mapped_device(struct mapped_device *md) 1575 { 1576 if (md->wq) 1577 destroy_workqueue(md->wq); 1578 bioset_exit(&md->bs); 1579 bioset_exit(&md->io_bs); 1580 1581 if (md->dax_dev) { 1582 dax_remove_host(md->disk); 1583 kill_dax(md->dax_dev); 1584 put_dax(md->dax_dev); 1585 md->dax_dev = NULL; 1586 } 1587 1588 if (md->disk) { 1589 spin_lock(&_minor_lock); 1590 md->disk->private_data = NULL; 1591 spin_unlock(&_minor_lock); 1592 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1593 dm_sysfs_exit(md); 1594 del_gendisk(md->disk); 1595 } 1596 dm_queue_destroy_crypto_profile(md->queue); 1597 blk_cleanup_disk(md->disk); 1598 } 1599 1600 cleanup_srcu_struct(&md->io_barrier); 1601 1602 mutex_destroy(&md->suspend_lock); 1603 mutex_destroy(&md->type_lock); 1604 mutex_destroy(&md->table_devices_lock); 1605 mutex_destroy(&md->swap_bios_lock); 1606 1607 dm_mq_cleanup_mapped_device(md); 1608 dm_cleanup_zoned_dev(md); 1609 } 1610 1611 /* 1612 * Allocate and initialise a blank device with a given minor. 1613 */ 1614 static struct mapped_device *alloc_dev(int minor) 1615 { 1616 int r, numa_node_id = dm_get_numa_node(); 1617 struct mapped_device *md; 1618 void *old_md; 1619 1620 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1621 if (!md) { 1622 DMWARN("unable to allocate device, out of memory."); 1623 return NULL; 1624 } 1625 1626 if (!try_module_get(THIS_MODULE)) 1627 goto bad_module_get; 1628 1629 /* get a minor number for the dev */ 1630 if (minor == DM_ANY_MINOR) 1631 r = next_free_minor(&minor); 1632 else 1633 r = specific_minor(minor); 1634 if (r < 0) 1635 goto bad_minor; 1636 1637 r = init_srcu_struct(&md->io_barrier); 1638 if (r < 0) 1639 goto bad_io_barrier; 1640 1641 md->numa_node_id = numa_node_id; 1642 md->init_tio_pdu = false; 1643 md->type = DM_TYPE_NONE; 1644 mutex_init(&md->suspend_lock); 1645 mutex_init(&md->type_lock); 1646 mutex_init(&md->table_devices_lock); 1647 spin_lock_init(&md->deferred_lock); 1648 atomic_set(&md->holders, 1); 1649 atomic_set(&md->open_count, 0); 1650 atomic_set(&md->event_nr, 0); 1651 atomic_set(&md->uevent_seq, 0); 1652 INIT_LIST_HEAD(&md->uevent_list); 1653 INIT_LIST_HEAD(&md->table_devices); 1654 spin_lock_init(&md->uevent_lock); 1655 1656 /* 1657 * default to bio-based until DM table is loaded and md->type 1658 * established. If request-based table is loaded: blk-mq will 1659 * override accordingly. 1660 */ 1661 md->disk = blk_alloc_disk(md->numa_node_id); 1662 if (!md->disk) 1663 goto bad; 1664 md->queue = md->disk->queue; 1665 1666 init_waitqueue_head(&md->wait); 1667 INIT_WORK(&md->work, dm_wq_work); 1668 init_waitqueue_head(&md->eventq); 1669 init_completion(&md->kobj_holder.completion); 1670 1671 md->swap_bios = get_swap_bios(); 1672 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1673 mutex_init(&md->swap_bios_lock); 1674 1675 md->disk->major = _major; 1676 md->disk->first_minor = minor; 1677 md->disk->minors = 1; 1678 md->disk->flags |= GENHD_FL_NO_PART; 1679 md->disk->fops = &dm_blk_dops; 1680 md->disk->queue = md->queue; 1681 md->disk->private_data = md; 1682 sprintf(md->disk->disk_name, "dm-%d", minor); 1683 1684 if (IS_ENABLED(CONFIG_FS_DAX)) { 1685 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1686 if (IS_ERR(md->dax_dev)) { 1687 md->dax_dev = NULL; 1688 goto bad; 1689 } 1690 set_dax_nocache(md->dax_dev); 1691 set_dax_nomc(md->dax_dev); 1692 if (dax_add_host(md->dax_dev, md->disk)) 1693 goto bad; 1694 } 1695 1696 format_dev_t(md->name, MKDEV(_major, minor)); 1697 1698 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1699 if (!md->wq) 1700 goto bad; 1701 1702 dm_stats_init(&md->stats); 1703 1704 /* Populate the mapping, nobody knows we exist yet */ 1705 spin_lock(&_minor_lock); 1706 old_md = idr_replace(&_minor_idr, md, minor); 1707 spin_unlock(&_minor_lock); 1708 1709 BUG_ON(old_md != MINOR_ALLOCED); 1710 1711 return md; 1712 1713 bad: 1714 cleanup_mapped_device(md); 1715 bad_io_barrier: 1716 free_minor(minor); 1717 bad_minor: 1718 module_put(THIS_MODULE); 1719 bad_module_get: 1720 kvfree(md); 1721 return NULL; 1722 } 1723 1724 static void unlock_fs(struct mapped_device *md); 1725 1726 static void free_dev(struct mapped_device *md) 1727 { 1728 int minor = MINOR(disk_devt(md->disk)); 1729 1730 unlock_fs(md); 1731 1732 cleanup_mapped_device(md); 1733 1734 free_table_devices(&md->table_devices); 1735 dm_stats_cleanup(&md->stats); 1736 free_minor(minor); 1737 1738 module_put(THIS_MODULE); 1739 kvfree(md); 1740 } 1741 1742 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1743 { 1744 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1745 int ret = 0; 1746 1747 if (dm_table_bio_based(t)) { 1748 /* 1749 * The md may already have mempools that need changing. 1750 * If so, reload bioset because front_pad may have changed 1751 * because a different table was loaded. 1752 */ 1753 bioset_exit(&md->bs); 1754 bioset_exit(&md->io_bs); 1755 1756 } else if (bioset_initialized(&md->bs)) { 1757 /* 1758 * There's no need to reload with request-based dm 1759 * because the size of front_pad doesn't change. 1760 * Note for future: If you are to reload bioset, 1761 * prep-ed requests in the queue may refer 1762 * to bio from the old bioset, so you must walk 1763 * through the queue to unprep. 1764 */ 1765 goto out; 1766 } 1767 1768 BUG_ON(!p || 1769 bioset_initialized(&md->bs) || 1770 bioset_initialized(&md->io_bs)); 1771 1772 ret = bioset_init_from_src(&md->bs, &p->bs); 1773 if (ret) 1774 goto out; 1775 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1776 if (ret) 1777 bioset_exit(&md->bs); 1778 out: 1779 /* mempool bind completed, no longer need any mempools in the table */ 1780 dm_table_free_md_mempools(t); 1781 return ret; 1782 } 1783 1784 /* 1785 * Bind a table to the device. 1786 */ 1787 static void event_callback(void *context) 1788 { 1789 unsigned long flags; 1790 LIST_HEAD(uevents); 1791 struct mapped_device *md = (struct mapped_device *) context; 1792 1793 spin_lock_irqsave(&md->uevent_lock, flags); 1794 list_splice_init(&md->uevent_list, &uevents); 1795 spin_unlock_irqrestore(&md->uevent_lock, flags); 1796 1797 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1798 1799 atomic_inc(&md->event_nr); 1800 wake_up(&md->eventq); 1801 dm_issue_global_event(); 1802 } 1803 1804 /* 1805 * Returns old map, which caller must destroy. 1806 */ 1807 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1808 struct queue_limits *limits) 1809 { 1810 struct dm_table *old_map; 1811 struct request_queue *q = md->queue; 1812 bool request_based = dm_table_request_based(t); 1813 sector_t size; 1814 int ret; 1815 1816 lockdep_assert_held(&md->suspend_lock); 1817 1818 size = dm_table_get_size(t); 1819 1820 /* 1821 * Wipe any geometry if the size of the table changed. 1822 */ 1823 if (size != dm_get_size(md)) 1824 memset(&md->geometry, 0, sizeof(md->geometry)); 1825 1826 if (!get_capacity(md->disk)) 1827 set_capacity(md->disk, size); 1828 else 1829 set_capacity_and_notify(md->disk, size); 1830 1831 dm_table_event_callback(t, event_callback, md); 1832 1833 if (request_based) { 1834 /* 1835 * Leverage the fact that request-based DM targets are 1836 * immutable singletons - used to optimize dm_mq_queue_rq. 1837 */ 1838 md->immutable_target = dm_table_get_immutable_target(t); 1839 } 1840 1841 ret = __bind_mempools(md, t); 1842 if (ret) { 1843 old_map = ERR_PTR(ret); 1844 goto out; 1845 } 1846 1847 ret = dm_table_set_restrictions(t, q, limits); 1848 if (ret) { 1849 old_map = ERR_PTR(ret); 1850 goto out; 1851 } 1852 1853 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1854 rcu_assign_pointer(md->map, (void *)t); 1855 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1856 1857 if (old_map) 1858 dm_sync_table(md); 1859 1860 out: 1861 return old_map; 1862 } 1863 1864 /* 1865 * Returns unbound table for the caller to free. 1866 */ 1867 static struct dm_table *__unbind(struct mapped_device *md) 1868 { 1869 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1870 1871 if (!map) 1872 return NULL; 1873 1874 dm_table_event_callback(map, NULL, NULL); 1875 RCU_INIT_POINTER(md->map, NULL); 1876 dm_sync_table(md); 1877 1878 return map; 1879 } 1880 1881 /* 1882 * Constructor for a new device. 1883 */ 1884 int dm_create(int minor, struct mapped_device **result) 1885 { 1886 struct mapped_device *md; 1887 1888 md = alloc_dev(minor); 1889 if (!md) 1890 return -ENXIO; 1891 1892 dm_ima_reset_data(md); 1893 1894 *result = md; 1895 return 0; 1896 } 1897 1898 /* 1899 * Functions to manage md->type. 1900 * All are required to hold md->type_lock. 1901 */ 1902 void dm_lock_md_type(struct mapped_device *md) 1903 { 1904 mutex_lock(&md->type_lock); 1905 } 1906 1907 void dm_unlock_md_type(struct mapped_device *md) 1908 { 1909 mutex_unlock(&md->type_lock); 1910 } 1911 1912 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1913 { 1914 BUG_ON(!mutex_is_locked(&md->type_lock)); 1915 md->type = type; 1916 } 1917 1918 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1919 { 1920 return md->type; 1921 } 1922 1923 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1924 { 1925 return md->immutable_target_type; 1926 } 1927 1928 /* 1929 * The queue_limits are only valid as long as you have a reference 1930 * count on 'md'. 1931 */ 1932 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1933 { 1934 BUG_ON(!atomic_read(&md->holders)); 1935 return &md->queue->limits; 1936 } 1937 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1938 1939 /* 1940 * Setup the DM device's queue based on md's type 1941 */ 1942 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1943 { 1944 enum dm_queue_mode type = dm_table_get_type(t); 1945 struct queue_limits limits; 1946 int r; 1947 1948 switch (type) { 1949 case DM_TYPE_REQUEST_BASED: 1950 md->disk->fops = &dm_rq_blk_dops; 1951 r = dm_mq_init_request_queue(md, t); 1952 if (r) { 1953 DMERR("Cannot initialize queue for request-based dm mapped device"); 1954 return r; 1955 } 1956 break; 1957 case DM_TYPE_BIO_BASED: 1958 case DM_TYPE_DAX_BIO_BASED: 1959 break; 1960 case DM_TYPE_NONE: 1961 WARN_ON_ONCE(true); 1962 break; 1963 } 1964 1965 r = dm_calculate_queue_limits(t, &limits); 1966 if (r) { 1967 DMERR("Cannot calculate initial queue limits"); 1968 return r; 1969 } 1970 r = dm_table_set_restrictions(t, md->queue, &limits); 1971 if (r) 1972 return r; 1973 1974 r = add_disk(md->disk); 1975 if (r) 1976 return r; 1977 1978 r = dm_sysfs_init(md); 1979 if (r) { 1980 del_gendisk(md->disk); 1981 return r; 1982 } 1983 md->type = type; 1984 return 0; 1985 } 1986 1987 struct mapped_device *dm_get_md(dev_t dev) 1988 { 1989 struct mapped_device *md; 1990 unsigned minor = MINOR(dev); 1991 1992 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1993 return NULL; 1994 1995 spin_lock(&_minor_lock); 1996 1997 md = idr_find(&_minor_idr, minor); 1998 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 1999 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2000 md = NULL; 2001 goto out; 2002 } 2003 dm_get(md); 2004 out: 2005 spin_unlock(&_minor_lock); 2006 2007 return md; 2008 } 2009 EXPORT_SYMBOL_GPL(dm_get_md); 2010 2011 void *dm_get_mdptr(struct mapped_device *md) 2012 { 2013 return md->interface_ptr; 2014 } 2015 2016 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2017 { 2018 md->interface_ptr = ptr; 2019 } 2020 2021 void dm_get(struct mapped_device *md) 2022 { 2023 atomic_inc(&md->holders); 2024 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2025 } 2026 2027 int dm_hold(struct mapped_device *md) 2028 { 2029 spin_lock(&_minor_lock); 2030 if (test_bit(DMF_FREEING, &md->flags)) { 2031 spin_unlock(&_minor_lock); 2032 return -EBUSY; 2033 } 2034 dm_get(md); 2035 spin_unlock(&_minor_lock); 2036 return 0; 2037 } 2038 EXPORT_SYMBOL_GPL(dm_hold); 2039 2040 const char *dm_device_name(struct mapped_device *md) 2041 { 2042 return md->name; 2043 } 2044 EXPORT_SYMBOL_GPL(dm_device_name); 2045 2046 static void __dm_destroy(struct mapped_device *md, bool wait) 2047 { 2048 struct dm_table *map; 2049 int srcu_idx; 2050 2051 might_sleep(); 2052 2053 spin_lock(&_minor_lock); 2054 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2055 set_bit(DMF_FREEING, &md->flags); 2056 spin_unlock(&_minor_lock); 2057 2058 blk_set_queue_dying(md->queue); 2059 2060 /* 2061 * Take suspend_lock so that presuspend and postsuspend methods 2062 * do not race with internal suspend. 2063 */ 2064 mutex_lock(&md->suspend_lock); 2065 map = dm_get_live_table(md, &srcu_idx); 2066 if (!dm_suspended_md(md)) { 2067 dm_table_presuspend_targets(map); 2068 set_bit(DMF_SUSPENDED, &md->flags); 2069 set_bit(DMF_POST_SUSPENDING, &md->flags); 2070 dm_table_postsuspend_targets(map); 2071 } 2072 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2073 dm_put_live_table(md, srcu_idx); 2074 mutex_unlock(&md->suspend_lock); 2075 2076 /* 2077 * Rare, but there may be I/O requests still going to complete, 2078 * for example. Wait for all references to disappear. 2079 * No one should increment the reference count of the mapped_device, 2080 * after the mapped_device state becomes DMF_FREEING. 2081 */ 2082 if (wait) 2083 while (atomic_read(&md->holders)) 2084 msleep(1); 2085 else if (atomic_read(&md->holders)) 2086 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2087 dm_device_name(md), atomic_read(&md->holders)); 2088 2089 dm_table_destroy(__unbind(md)); 2090 free_dev(md); 2091 } 2092 2093 void dm_destroy(struct mapped_device *md) 2094 { 2095 __dm_destroy(md, true); 2096 } 2097 2098 void dm_destroy_immediate(struct mapped_device *md) 2099 { 2100 __dm_destroy(md, false); 2101 } 2102 2103 void dm_put(struct mapped_device *md) 2104 { 2105 atomic_dec(&md->holders); 2106 } 2107 EXPORT_SYMBOL_GPL(dm_put); 2108 2109 static bool md_in_flight_bios(struct mapped_device *md) 2110 { 2111 int cpu; 2112 struct block_device *part = dm_disk(md)->part0; 2113 long sum = 0; 2114 2115 for_each_possible_cpu(cpu) { 2116 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2117 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2118 } 2119 2120 return sum != 0; 2121 } 2122 2123 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2124 { 2125 int r = 0; 2126 DEFINE_WAIT(wait); 2127 2128 while (true) { 2129 prepare_to_wait(&md->wait, &wait, task_state); 2130 2131 if (!md_in_flight_bios(md)) 2132 break; 2133 2134 if (signal_pending_state(task_state, current)) { 2135 r = -EINTR; 2136 break; 2137 } 2138 2139 io_schedule(); 2140 } 2141 finish_wait(&md->wait, &wait); 2142 2143 return r; 2144 } 2145 2146 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2147 { 2148 int r = 0; 2149 2150 if (!queue_is_mq(md->queue)) 2151 return dm_wait_for_bios_completion(md, task_state); 2152 2153 while (true) { 2154 if (!blk_mq_queue_inflight(md->queue)) 2155 break; 2156 2157 if (signal_pending_state(task_state, current)) { 2158 r = -EINTR; 2159 break; 2160 } 2161 2162 msleep(5); 2163 } 2164 2165 return r; 2166 } 2167 2168 /* 2169 * Process the deferred bios 2170 */ 2171 static void dm_wq_work(struct work_struct *work) 2172 { 2173 struct mapped_device *md = container_of(work, struct mapped_device, work); 2174 struct bio *bio; 2175 2176 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2177 spin_lock_irq(&md->deferred_lock); 2178 bio = bio_list_pop(&md->deferred); 2179 spin_unlock_irq(&md->deferred_lock); 2180 2181 if (!bio) 2182 break; 2183 2184 submit_bio_noacct(bio); 2185 } 2186 } 2187 2188 static void dm_queue_flush(struct mapped_device *md) 2189 { 2190 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2191 smp_mb__after_atomic(); 2192 queue_work(md->wq, &md->work); 2193 } 2194 2195 /* 2196 * Swap in a new table, returning the old one for the caller to destroy. 2197 */ 2198 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2199 { 2200 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2201 struct queue_limits limits; 2202 int r; 2203 2204 mutex_lock(&md->suspend_lock); 2205 2206 /* device must be suspended */ 2207 if (!dm_suspended_md(md)) 2208 goto out; 2209 2210 /* 2211 * If the new table has no data devices, retain the existing limits. 2212 * This helps multipath with queue_if_no_path if all paths disappear, 2213 * then new I/O is queued based on these limits, and then some paths 2214 * reappear. 2215 */ 2216 if (dm_table_has_no_data_devices(table)) { 2217 live_map = dm_get_live_table_fast(md); 2218 if (live_map) 2219 limits = md->queue->limits; 2220 dm_put_live_table_fast(md); 2221 } 2222 2223 if (!live_map) { 2224 r = dm_calculate_queue_limits(table, &limits); 2225 if (r) { 2226 map = ERR_PTR(r); 2227 goto out; 2228 } 2229 } 2230 2231 map = __bind(md, table, &limits); 2232 dm_issue_global_event(); 2233 2234 out: 2235 mutex_unlock(&md->suspend_lock); 2236 return map; 2237 } 2238 2239 /* 2240 * Functions to lock and unlock any filesystem running on the 2241 * device. 2242 */ 2243 static int lock_fs(struct mapped_device *md) 2244 { 2245 int r; 2246 2247 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2248 2249 r = freeze_bdev(md->disk->part0); 2250 if (!r) 2251 set_bit(DMF_FROZEN, &md->flags); 2252 return r; 2253 } 2254 2255 static void unlock_fs(struct mapped_device *md) 2256 { 2257 if (!test_bit(DMF_FROZEN, &md->flags)) 2258 return; 2259 thaw_bdev(md->disk->part0); 2260 clear_bit(DMF_FROZEN, &md->flags); 2261 } 2262 2263 /* 2264 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2265 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2266 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2267 * 2268 * If __dm_suspend returns 0, the device is completely quiescent 2269 * now. There is no request-processing activity. All new requests 2270 * are being added to md->deferred list. 2271 */ 2272 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2273 unsigned suspend_flags, unsigned int task_state, 2274 int dmf_suspended_flag) 2275 { 2276 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2277 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2278 int r; 2279 2280 lockdep_assert_held(&md->suspend_lock); 2281 2282 /* 2283 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2284 * This flag is cleared before dm_suspend returns. 2285 */ 2286 if (noflush) 2287 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2288 else 2289 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2290 2291 /* 2292 * This gets reverted if there's an error later and the targets 2293 * provide the .presuspend_undo hook. 2294 */ 2295 dm_table_presuspend_targets(map); 2296 2297 /* 2298 * Flush I/O to the device. 2299 * Any I/O submitted after lock_fs() may not be flushed. 2300 * noflush takes precedence over do_lockfs. 2301 * (lock_fs() flushes I/Os and waits for them to complete.) 2302 */ 2303 if (!noflush && do_lockfs) { 2304 r = lock_fs(md); 2305 if (r) { 2306 dm_table_presuspend_undo_targets(map); 2307 return r; 2308 } 2309 } 2310 2311 /* 2312 * Here we must make sure that no processes are submitting requests 2313 * to target drivers i.e. no one may be executing 2314 * __split_and_process_bio from dm_submit_bio. 2315 * 2316 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2317 * we take the write lock. To prevent any process from reentering 2318 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2319 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2320 * flush_workqueue(md->wq). 2321 */ 2322 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2323 if (map) 2324 synchronize_srcu(&md->io_barrier); 2325 2326 /* 2327 * Stop md->queue before flushing md->wq in case request-based 2328 * dm defers requests to md->wq from md->queue. 2329 */ 2330 if (dm_request_based(md)) 2331 dm_stop_queue(md->queue); 2332 2333 flush_workqueue(md->wq); 2334 2335 /* 2336 * At this point no more requests are entering target request routines. 2337 * We call dm_wait_for_completion to wait for all existing requests 2338 * to finish. 2339 */ 2340 r = dm_wait_for_completion(md, task_state); 2341 if (!r) 2342 set_bit(dmf_suspended_flag, &md->flags); 2343 2344 if (noflush) 2345 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2346 if (map) 2347 synchronize_srcu(&md->io_barrier); 2348 2349 /* were we interrupted ? */ 2350 if (r < 0) { 2351 dm_queue_flush(md); 2352 2353 if (dm_request_based(md)) 2354 dm_start_queue(md->queue); 2355 2356 unlock_fs(md); 2357 dm_table_presuspend_undo_targets(map); 2358 /* pushback list is already flushed, so skip flush */ 2359 } 2360 2361 return r; 2362 } 2363 2364 /* 2365 * We need to be able to change a mapping table under a mounted 2366 * filesystem. For example we might want to move some data in 2367 * the background. Before the table can be swapped with 2368 * dm_bind_table, dm_suspend must be called to flush any in 2369 * flight bios and ensure that any further io gets deferred. 2370 */ 2371 /* 2372 * Suspend mechanism in request-based dm. 2373 * 2374 * 1. Flush all I/Os by lock_fs() if needed. 2375 * 2. Stop dispatching any I/O by stopping the request_queue. 2376 * 3. Wait for all in-flight I/Os to be completed or requeued. 2377 * 2378 * To abort suspend, start the request_queue. 2379 */ 2380 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2381 { 2382 struct dm_table *map = NULL; 2383 int r = 0; 2384 2385 retry: 2386 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2387 2388 if (dm_suspended_md(md)) { 2389 r = -EINVAL; 2390 goto out_unlock; 2391 } 2392 2393 if (dm_suspended_internally_md(md)) { 2394 /* already internally suspended, wait for internal resume */ 2395 mutex_unlock(&md->suspend_lock); 2396 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2397 if (r) 2398 return r; 2399 goto retry; 2400 } 2401 2402 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2403 2404 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2405 if (r) 2406 goto out_unlock; 2407 2408 set_bit(DMF_POST_SUSPENDING, &md->flags); 2409 dm_table_postsuspend_targets(map); 2410 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2411 2412 out_unlock: 2413 mutex_unlock(&md->suspend_lock); 2414 return r; 2415 } 2416 2417 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2418 { 2419 if (map) { 2420 int r = dm_table_resume_targets(map); 2421 if (r) 2422 return r; 2423 } 2424 2425 dm_queue_flush(md); 2426 2427 /* 2428 * Flushing deferred I/Os must be done after targets are resumed 2429 * so that mapping of targets can work correctly. 2430 * Request-based dm is queueing the deferred I/Os in its request_queue. 2431 */ 2432 if (dm_request_based(md)) 2433 dm_start_queue(md->queue); 2434 2435 unlock_fs(md); 2436 2437 return 0; 2438 } 2439 2440 int dm_resume(struct mapped_device *md) 2441 { 2442 int r; 2443 struct dm_table *map = NULL; 2444 2445 retry: 2446 r = -EINVAL; 2447 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2448 2449 if (!dm_suspended_md(md)) 2450 goto out; 2451 2452 if (dm_suspended_internally_md(md)) { 2453 /* already internally suspended, wait for internal resume */ 2454 mutex_unlock(&md->suspend_lock); 2455 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2456 if (r) 2457 return r; 2458 goto retry; 2459 } 2460 2461 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2462 if (!map || !dm_table_get_size(map)) 2463 goto out; 2464 2465 r = __dm_resume(md, map); 2466 if (r) 2467 goto out; 2468 2469 clear_bit(DMF_SUSPENDED, &md->flags); 2470 out: 2471 mutex_unlock(&md->suspend_lock); 2472 2473 return r; 2474 } 2475 2476 /* 2477 * Internal suspend/resume works like userspace-driven suspend. It waits 2478 * until all bios finish and prevents issuing new bios to the target drivers. 2479 * It may be used only from the kernel. 2480 */ 2481 2482 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2483 { 2484 struct dm_table *map = NULL; 2485 2486 lockdep_assert_held(&md->suspend_lock); 2487 2488 if (md->internal_suspend_count++) 2489 return; /* nested internal suspend */ 2490 2491 if (dm_suspended_md(md)) { 2492 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2493 return; /* nest suspend */ 2494 } 2495 2496 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2497 2498 /* 2499 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2500 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2501 * would require changing .presuspend to return an error -- avoid this 2502 * until there is a need for more elaborate variants of internal suspend. 2503 */ 2504 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2505 DMF_SUSPENDED_INTERNALLY); 2506 2507 set_bit(DMF_POST_SUSPENDING, &md->flags); 2508 dm_table_postsuspend_targets(map); 2509 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2510 } 2511 2512 static void __dm_internal_resume(struct mapped_device *md) 2513 { 2514 BUG_ON(!md->internal_suspend_count); 2515 2516 if (--md->internal_suspend_count) 2517 return; /* resume from nested internal suspend */ 2518 2519 if (dm_suspended_md(md)) 2520 goto done; /* resume from nested suspend */ 2521 2522 /* 2523 * NOTE: existing callers don't need to call dm_table_resume_targets 2524 * (which may fail -- so best to avoid it for now by passing NULL map) 2525 */ 2526 (void) __dm_resume(md, NULL); 2527 2528 done: 2529 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2530 smp_mb__after_atomic(); 2531 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2532 } 2533 2534 void dm_internal_suspend_noflush(struct mapped_device *md) 2535 { 2536 mutex_lock(&md->suspend_lock); 2537 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2538 mutex_unlock(&md->suspend_lock); 2539 } 2540 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2541 2542 void dm_internal_resume(struct mapped_device *md) 2543 { 2544 mutex_lock(&md->suspend_lock); 2545 __dm_internal_resume(md); 2546 mutex_unlock(&md->suspend_lock); 2547 } 2548 EXPORT_SYMBOL_GPL(dm_internal_resume); 2549 2550 /* 2551 * Fast variants of internal suspend/resume hold md->suspend_lock, 2552 * which prevents interaction with userspace-driven suspend. 2553 */ 2554 2555 void dm_internal_suspend_fast(struct mapped_device *md) 2556 { 2557 mutex_lock(&md->suspend_lock); 2558 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2559 return; 2560 2561 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2562 synchronize_srcu(&md->io_barrier); 2563 flush_workqueue(md->wq); 2564 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2565 } 2566 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2567 2568 void dm_internal_resume_fast(struct mapped_device *md) 2569 { 2570 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2571 goto done; 2572 2573 dm_queue_flush(md); 2574 2575 done: 2576 mutex_unlock(&md->suspend_lock); 2577 } 2578 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2579 2580 /*----------------------------------------------------------------- 2581 * Event notification. 2582 *---------------------------------------------------------------*/ 2583 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2584 unsigned cookie) 2585 { 2586 int r; 2587 unsigned noio_flag; 2588 char udev_cookie[DM_COOKIE_LENGTH]; 2589 char *envp[] = { udev_cookie, NULL }; 2590 2591 noio_flag = memalloc_noio_save(); 2592 2593 if (!cookie) 2594 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2595 else { 2596 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2597 DM_COOKIE_ENV_VAR_NAME, cookie); 2598 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2599 action, envp); 2600 } 2601 2602 memalloc_noio_restore(noio_flag); 2603 2604 return r; 2605 } 2606 2607 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2608 { 2609 return atomic_add_return(1, &md->uevent_seq); 2610 } 2611 2612 uint32_t dm_get_event_nr(struct mapped_device *md) 2613 { 2614 return atomic_read(&md->event_nr); 2615 } 2616 2617 int dm_wait_event(struct mapped_device *md, int event_nr) 2618 { 2619 return wait_event_interruptible(md->eventq, 2620 (event_nr != atomic_read(&md->event_nr))); 2621 } 2622 2623 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2624 { 2625 unsigned long flags; 2626 2627 spin_lock_irqsave(&md->uevent_lock, flags); 2628 list_add(elist, &md->uevent_list); 2629 spin_unlock_irqrestore(&md->uevent_lock, flags); 2630 } 2631 2632 /* 2633 * The gendisk is only valid as long as you have a reference 2634 * count on 'md'. 2635 */ 2636 struct gendisk *dm_disk(struct mapped_device *md) 2637 { 2638 return md->disk; 2639 } 2640 EXPORT_SYMBOL_GPL(dm_disk); 2641 2642 struct kobject *dm_kobject(struct mapped_device *md) 2643 { 2644 return &md->kobj_holder.kobj; 2645 } 2646 2647 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2648 { 2649 struct mapped_device *md; 2650 2651 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2652 2653 spin_lock(&_minor_lock); 2654 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2655 md = NULL; 2656 goto out; 2657 } 2658 dm_get(md); 2659 out: 2660 spin_unlock(&_minor_lock); 2661 2662 return md; 2663 } 2664 2665 int dm_suspended_md(struct mapped_device *md) 2666 { 2667 return test_bit(DMF_SUSPENDED, &md->flags); 2668 } 2669 2670 static int dm_post_suspending_md(struct mapped_device *md) 2671 { 2672 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2673 } 2674 2675 int dm_suspended_internally_md(struct mapped_device *md) 2676 { 2677 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2678 } 2679 2680 int dm_test_deferred_remove_flag(struct mapped_device *md) 2681 { 2682 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2683 } 2684 2685 int dm_suspended(struct dm_target *ti) 2686 { 2687 return dm_suspended_md(ti->table->md); 2688 } 2689 EXPORT_SYMBOL_GPL(dm_suspended); 2690 2691 int dm_post_suspending(struct dm_target *ti) 2692 { 2693 return dm_post_suspending_md(ti->table->md); 2694 } 2695 EXPORT_SYMBOL_GPL(dm_post_suspending); 2696 2697 int dm_noflush_suspending(struct dm_target *ti) 2698 { 2699 return __noflush_suspending(ti->table->md); 2700 } 2701 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2702 2703 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2704 unsigned integrity, unsigned per_io_data_size, 2705 unsigned min_pool_size) 2706 { 2707 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2708 unsigned int pool_size = 0; 2709 unsigned int front_pad, io_front_pad; 2710 int ret; 2711 2712 if (!pools) 2713 return NULL; 2714 2715 switch (type) { 2716 case DM_TYPE_BIO_BASED: 2717 case DM_TYPE_DAX_BIO_BASED: 2718 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2719 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2720 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2721 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2722 if (ret) 2723 goto out; 2724 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2725 goto out; 2726 break; 2727 case DM_TYPE_REQUEST_BASED: 2728 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2729 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2730 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2731 break; 2732 default: 2733 BUG(); 2734 } 2735 2736 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2737 if (ret) 2738 goto out; 2739 2740 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2741 goto out; 2742 2743 return pools; 2744 2745 out: 2746 dm_free_md_mempools(pools); 2747 2748 return NULL; 2749 } 2750 2751 void dm_free_md_mempools(struct dm_md_mempools *pools) 2752 { 2753 if (!pools) 2754 return; 2755 2756 bioset_exit(&pools->bs); 2757 bioset_exit(&pools->io_bs); 2758 2759 kfree(pools); 2760 } 2761 2762 struct dm_pr { 2763 u64 old_key; 2764 u64 new_key; 2765 u32 flags; 2766 bool fail_early; 2767 }; 2768 2769 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2770 void *data) 2771 { 2772 struct mapped_device *md = bdev->bd_disk->private_data; 2773 struct dm_table *table; 2774 struct dm_target *ti; 2775 int ret = -ENOTTY, srcu_idx; 2776 2777 table = dm_get_live_table(md, &srcu_idx); 2778 if (!table || !dm_table_get_size(table)) 2779 goto out; 2780 2781 /* We only support devices that have a single target */ 2782 if (dm_table_get_num_targets(table) != 1) 2783 goto out; 2784 ti = dm_table_get_target(table, 0); 2785 2786 ret = -EINVAL; 2787 if (!ti->type->iterate_devices) 2788 goto out; 2789 2790 ret = ti->type->iterate_devices(ti, fn, data); 2791 out: 2792 dm_put_live_table(md, srcu_idx); 2793 return ret; 2794 } 2795 2796 /* 2797 * For register / unregister we need to manually call out to every path. 2798 */ 2799 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2800 sector_t start, sector_t len, void *data) 2801 { 2802 struct dm_pr *pr = data; 2803 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2804 2805 if (!ops || !ops->pr_register) 2806 return -EOPNOTSUPP; 2807 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2808 } 2809 2810 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2811 u32 flags) 2812 { 2813 struct dm_pr pr = { 2814 .old_key = old_key, 2815 .new_key = new_key, 2816 .flags = flags, 2817 .fail_early = true, 2818 }; 2819 int ret; 2820 2821 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2822 if (ret && new_key) { 2823 /* unregister all paths if we failed to register any path */ 2824 pr.old_key = new_key; 2825 pr.new_key = 0; 2826 pr.flags = 0; 2827 pr.fail_early = false; 2828 dm_call_pr(bdev, __dm_pr_register, &pr); 2829 } 2830 2831 return ret; 2832 } 2833 2834 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2835 u32 flags) 2836 { 2837 struct mapped_device *md = bdev->bd_disk->private_data; 2838 const struct pr_ops *ops; 2839 int r, srcu_idx; 2840 2841 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2842 if (r < 0) 2843 goto out; 2844 2845 ops = bdev->bd_disk->fops->pr_ops; 2846 if (ops && ops->pr_reserve) 2847 r = ops->pr_reserve(bdev, key, type, flags); 2848 else 2849 r = -EOPNOTSUPP; 2850 out: 2851 dm_unprepare_ioctl(md, srcu_idx); 2852 return r; 2853 } 2854 2855 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2856 { 2857 struct mapped_device *md = bdev->bd_disk->private_data; 2858 const struct pr_ops *ops; 2859 int r, srcu_idx; 2860 2861 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2862 if (r < 0) 2863 goto out; 2864 2865 ops = bdev->bd_disk->fops->pr_ops; 2866 if (ops && ops->pr_release) 2867 r = ops->pr_release(bdev, key, type); 2868 else 2869 r = -EOPNOTSUPP; 2870 out: 2871 dm_unprepare_ioctl(md, srcu_idx); 2872 return r; 2873 } 2874 2875 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2876 enum pr_type type, bool abort) 2877 { 2878 struct mapped_device *md = bdev->bd_disk->private_data; 2879 const struct pr_ops *ops; 2880 int r, srcu_idx; 2881 2882 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2883 if (r < 0) 2884 goto out; 2885 2886 ops = bdev->bd_disk->fops->pr_ops; 2887 if (ops && ops->pr_preempt) 2888 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2889 else 2890 r = -EOPNOTSUPP; 2891 out: 2892 dm_unprepare_ioctl(md, srcu_idx); 2893 return r; 2894 } 2895 2896 static int dm_pr_clear(struct block_device *bdev, u64 key) 2897 { 2898 struct mapped_device *md = bdev->bd_disk->private_data; 2899 const struct pr_ops *ops; 2900 int r, srcu_idx; 2901 2902 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2903 if (r < 0) 2904 goto out; 2905 2906 ops = bdev->bd_disk->fops->pr_ops; 2907 if (ops && ops->pr_clear) 2908 r = ops->pr_clear(bdev, key); 2909 else 2910 r = -EOPNOTSUPP; 2911 out: 2912 dm_unprepare_ioctl(md, srcu_idx); 2913 return r; 2914 } 2915 2916 static const struct pr_ops dm_pr_ops = { 2917 .pr_register = dm_pr_register, 2918 .pr_reserve = dm_pr_reserve, 2919 .pr_release = dm_pr_release, 2920 .pr_preempt = dm_pr_preempt, 2921 .pr_clear = dm_pr_clear, 2922 }; 2923 2924 static const struct block_device_operations dm_blk_dops = { 2925 .submit_bio = dm_submit_bio, 2926 .open = dm_blk_open, 2927 .release = dm_blk_close, 2928 .ioctl = dm_blk_ioctl, 2929 .getgeo = dm_blk_getgeo, 2930 .report_zones = dm_blk_report_zones, 2931 .pr_ops = &dm_pr_ops, 2932 .owner = THIS_MODULE 2933 }; 2934 2935 static const struct block_device_operations dm_rq_blk_dops = { 2936 .open = dm_blk_open, 2937 .release = dm_blk_close, 2938 .ioctl = dm_blk_ioctl, 2939 .getgeo = dm_blk_getgeo, 2940 .pr_ops = &dm_pr_ops, 2941 .owner = THIS_MODULE 2942 }; 2943 2944 static const struct dax_operations dm_dax_ops = { 2945 .direct_access = dm_dax_direct_access, 2946 .zero_page_range = dm_dax_zero_page_range, 2947 }; 2948 2949 /* 2950 * module hooks 2951 */ 2952 module_init(dm_init); 2953 module_exit(dm_exit); 2954 2955 module_param(major, uint, 0); 2956 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2957 2958 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2959 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2960 2961 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2962 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2963 2964 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2965 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2966 2967 MODULE_DESCRIPTION(DM_NAME " driver"); 2968 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2969 MODULE_LICENSE("GPL"); 2970