1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pr.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 static struct workqueue_struct *deferred_remove_workqueue; 58 59 /* 60 * One of these is allocated per bio. 61 */ 62 struct dm_io { 63 struct mapped_device *md; 64 int error; 65 atomic_t io_count; 66 struct bio *bio; 67 unsigned long start_time; 68 spinlock_t endio_lock; 69 struct dm_stats_aux stats_aux; 70 }; 71 72 #define MINOR_ALLOCED ((void *)-1) 73 74 /* 75 * Bits for the md->flags field. 76 */ 77 #define DMF_BLOCK_IO_FOR_SUSPEND 0 78 #define DMF_SUSPENDED 1 79 #define DMF_FROZEN 2 80 #define DMF_FREEING 3 81 #define DMF_DELETING 4 82 #define DMF_NOFLUSH_SUSPENDING 5 83 #define DMF_DEFERRED_REMOVE 6 84 #define DMF_SUSPENDED_INTERNALLY 7 85 86 #define DM_NUMA_NODE NUMA_NO_NODE 87 static int dm_numa_node = DM_NUMA_NODE; 88 89 /* 90 * For mempools pre-allocation at the table loading time. 91 */ 92 struct dm_md_mempools { 93 mempool_t *io_pool; 94 mempool_t *rq_pool; 95 struct bio_set *bs; 96 }; 97 98 struct table_device { 99 struct list_head list; 100 atomic_t count; 101 struct dm_dev dm_dev; 102 }; 103 104 static struct kmem_cache *_io_cache; 105 static struct kmem_cache *_rq_tio_cache; 106 static struct kmem_cache *_rq_cache; 107 108 /* 109 * Bio-based DM's mempools' reserved IOs set by the user. 110 */ 111 #define RESERVED_BIO_BASED_IOS 16 112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 113 114 static int __dm_get_module_param_int(int *module_param, int min, int max) 115 { 116 int param = ACCESS_ONCE(*module_param); 117 int modified_param = 0; 118 bool modified = true; 119 120 if (param < min) 121 modified_param = min; 122 else if (param > max) 123 modified_param = max; 124 else 125 modified = false; 126 127 if (modified) { 128 (void)cmpxchg(module_param, param, modified_param); 129 param = modified_param; 130 } 131 132 return param; 133 } 134 135 unsigned __dm_get_module_param(unsigned *module_param, 136 unsigned def, unsigned max) 137 { 138 unsigned param = ACCESS_ONCE(*module_param); 139 unsigned modified_param = 0; 140 141 if (!param) 142 modified_param = def; 143 else if (param > max) 144 modified_param = max; 145 146 if (modified_param) { 147 (void)cmpxchg(module_param, param, modified_param); 148 param = modified_param; 149 } 150 151 return param; 152 } 153 154 unsigned dm_get_reserved_bio_based_ios(void) 155 { 156 return __dm_get_module_param(&reserved_bio_based_ios, 157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 158 } 159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 160 161 static unsigned dm_get_numa_node(void) 162 { 163 return __dm_get_module_param_int(&dm_numa_node, 164 DM_NUMA_NODE, num_online_nodes() - 1); 165 } 166 167 static int __init local_init(void) 168 { 169 int r = -ENOMEM; 170 171 /* allocate a slab for the dm_ios */ 172 _io_cache = KMEM_CACHE(dm_io, 0); 173 if (!_io_cache) 174 return r; 175 176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 177 if (!_rq_tio_cache) 178 goto out_free_io_cache; 179 180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 181 __alignof__(struct request), 0, NULL); 182 if (!_rq_cache) 183 goto out_free_rq_tio_cache; 184 185 r = dm_uevent_init(); 186 if (r) 187 goto out_free_rq_cache; 188 189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 190 if (!deferred_remove_workqueue) { 191 r = -ENOMEM; 192 goto out_uevent_exit; 193 } 194 195 _major = major; 196 r = register_blkdev(_major, _name); 197 if (r < 0) 198 goto out_free_workqueue; 199 200 if (!_major) 201 _major = r; 202 203 return 0; 204 205 out_free_workqueue: 206 destroy_workqueue(deferred_remove_workqueue); 207 out_uevent_exit: 208 dm_uevent_exit(); 209 out_free_rq_cache: 210 kmem_cache_destroy(_rq_cache); 211 out_free_rq_tio_cache: 212 kmem_cache_destroy(_rq_tio_cache); 213 out_free_io_cache: 214 kmem_cache_destroy(_io_cache); 215 216 return r; 217 } 218 219 static void local_exit(void) 220 { 221 flush_scheduled_work(); 222 destroy_workqueue(deferred_remove_workqueue); 223 224 kmem_cache_destroy(_rq_cache); 225 kmem_cache_destroy(_rq_tio_cache); 226 kmem_cache_destroy(_io_cache); 227 unregister_blkdev(_major, _name); 228 dm_uevent_exit(); 229 230 _major = 0; 231 232 DMINFO("cleaned up"); 233 } 234 235 static int (*_inits[])(void) __initdata = { 236 local_init, 237 dm_target_init, 238 dm_linear_init, 239 dm_stripe_init, 240 dm_io_init, 241 dm_kcopyd_init, 242 dm_interface_init, 243 dm_statistics_init, 244 }; 245 246 static void (*_exits[])(void) = { 247 local_exit, 248 dm_target_exit, 249 dm_linear_exit, 250 dm_stripe_exit, 251 dm_io_exit, 252 dm_kcopyd_exit, 253 dm_interface_exit, 254 dm_statistics_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 285 /* 286 * Should be empty by this point. 287 */ 288 idr_destroy(&_minor_idr); 289 } 290 291 /* 292 * Block device functions 293 */ 294 int dm_deleting_md(struct mapped_device *md) 295 { 296 return test_bit(DMF_DELETING, &md->flags); 297 } 298 299 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 300 { 301 struct mapped_device *md; 302 303 spin_lock(&_minor_lock); 304 305 md = bdev->bd_disk->private_data; 306 if (!md) 307 goto out; 308 309 if (test_bit(DMF_FREEING, &md->flags) || 310 dm_deleting_md(md)) { 311 md = NULL; 312 goto out; 313 } 314 315 dm_get(md); 316 atomic_inc(&md->open_count); 317 out: 318 spin_unlock(&_minor_lock); 319 320 return md ? 0 : -ENXIO; 321 } 322 323 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 324 { 325 struct mapped_device *md; 326 327 spin_lock(&_minor_lock); 328 329 md = disk->private_data; 330 if (WARN_ON(!md)) 331 goto out; 332 333 if (atomic_dec_and_test(&md->open_count) && 334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 335 queue_work(deferred_remove_workqueue, &deferred_remove_work); 336 337 dm_put(md); 338 out: 339 spin_unlock(&_minor_lock); 340 } 341 342 int dm_open_count(struct mapped_device *md) 343 { 344 return atomic_read(&md->open_count); 345 } 346 347 /* 348 * Guarantees nothing is using the device before it's deleted. 349 */ 350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 351 { 352 int r = 0; 353 354 spin_lock(&_minor_lock); 355 356 if (dm_open_count(md)) { 357 r = -EBUSY; 358 if (mark_deferred) 359 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 361 r = -EEXIST; 362 else 363 set_bit(DMF_DELETING, &md->flags); 364 365 spin_unlock(&_minor_lock); 366 367 return r; 368 } 369 370 int dm_cancel_deferred_remove(struct mapped_device *md) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (test_bit(DMF_DELETING, &md->flags)) 377 r = -EBUSY; 378 else 379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 381 spin_unlock(&_minor_lock); 382 383 return r; 384 } 385 386 static void do_deferred_remove(struct work_struct *w) 387 { 388 dm_deferred_remove(); 389 } 390 391 sector_t dm_get_size(struct mapped_device *md) 392 { 393 return get_capacity(md->disk); 394 } 395 396 struct request_queue *dm_get_md_queue(struct mapped_device *md) 397 { 398 return md->queue; 399 } 400 401 struct dm_stats *dm_get_stats(struct mapped_device *md) 402 { 403 return &md->stats; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 414 struct block_device **bdev, 415 fmode_t *mode) 416 { 417 struct dm_target *tgt; 418 struct dm_table *map; 419 int srcu_idx, r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, &srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 goto out; 426 427 /* We only support devices that have a single target */ 428 if (dm_table_get_num_targets(map) != 1) 429 goto out; 430 431 tgt = dm_table_get_target(map, 0); 432 if (!tgt->type->prepare_ioctl) 433 goto out; 434 435 if (dm_suspended_md(md)) { 436 r = -EAGAIN; 437 goto out; 438 } 439 440 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 441 if (r < 0) 442 goto out; 443 444 bdgrab(*bdev); 445 dm_put_live_table(md, srcu_idx); 446 return r; 447 448 out: 449 dm_put_live_table(md, srcu_idx); 450 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 451 msleep(10); 452 goto retry; 453 } 454 return r; 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r; 462 463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 464 if (r < 0) 465 return r; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against 470 * a logical partition of the parent bdev; so extra 471 * validation is needed. 472 */ 473 r = scsi_verify_blk_ioctl(NULL, cmd); 474 if (r) 475 goto out; 476 } 477 478 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 479 out: 480 bdput(bdev); 481 return r; 482 } 483 484 static struct dm_io *alloc_io(struct mapped_device *md) 485 { 486 return mempool_alloc(md->io_pool, GFP_NOIO); 487 } 488 489 static void free_io(struct mapped_device *md, struct dm_io *io) 490 { 491 mempool_free(io, md->io_pool); 492 } 493 494 static void free_tio(struct dm_target_io *tio) 495 { 496 bio_put(&tio->clone); 497 } 498 499 int md_in_flight(struct mapped_device *md) 500 { 501 return atomic_read(&md->pending[READ]) + 502 atomic_read(&md->pending[WRITE]); 503 } 504 505 static void start_io_acct(struct dm_io *io) 506 { 507 struct mapped_device *md = io->md; 508 struct bio *bio = io->bio; 509 int cpu; 510 int rw = bio_data_dir(bio); 511 512 io->start_time = jiffies; 513 514 cpu = part_stat_lock(); 515 part_round_stats(cpu, &dm_disk(md)->part0); 516 part_stat_unlock(); 517 atomic_set(&dm_disk(md)->part0.in_flight[rw], 518 atomic_inc_return(&md->pending[rw])); 519 520 if (unlikely(dm_stats_used(&md->stats))) 521 dm_stats_account_io(&md->stats, bio_data_dir(bio), 522 bio->bi_iter.bi_sector, bio_sectors(bio), 523 false, 0, &io->stats_aux); 524 } 525 526 static void end_io_acct(struct dm_io *io) 527 { 528 struct mapped_device *md = io->md; 529 struct bio *bio = io->bio; 530 unsigned long duration = jiffies - io->start_time; 531 int pending; 532 int rw = bio_data_dir(bio); 533 534 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 535 536 if (unlikely(dm_stats_used(&md->stats))) 537 dm_stats_account_io(&md->stats, bio_data_dir(bio), 538 bio->bi_iter.bi_sector, bio_sectors(bio), 539 true, duration, &io->stats_aux); 540 541 /* 542 * After this is decremented the bio must not be touched if it is 543 * a flush. 544 */ 545 pending = atomic_dec_return(&md->pending[rw]); 546 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 547 pending += atomic_read(&md->pending[rw^0x1]); 548 549 /* nudge anyone waiting on suspend queue */ 550 if (!pending) 551 wake_up(&md->wait); 552 } 553 554 /* 555 * Add the bio to the list of deferred io. 556 */ 557 static void queue_io(struct mapped_device *md, struct bio *bio) 558 { 559 unsigned long flags; 560 561 spin_lock_irqsave(&md->deferred_lock, flags); 562 bio_list_add(&md->deferred, bio); 563 spin_unlock_irqrestore(&md->deferred_lock, flags); 564 queue_work(md->wq, &md->work); 565 } 566 567 /* 568 * Everyone (including functions in this file), should use this 569 * function to access the md->map field, and make sure they call 570 * dm_put_live_table() when finished. 571 */ 572 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 573 { 574 *srcu_idx = srcu_read_lock(&md->io_barrier); 575 576 return srcu_dereference(md->map, &md->io_barrier); 577 } 578 579 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 580 { 581 srcu_read_unlock(&md->io_barrier, srcu_idx); 582 } 583 584 void dm_sync_table(struct mapped_device *md) 585 { 586 synchronize_srcu(&md->io_barrier); 587 synchronize_rcu_expedited(); 588 } 589 590 /* 591 * A fast alternative to dm_get_live_table/dm_put_live_table. 592 * The caller must not block between these two functions. 593 */ 594 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 595 { 596 rcu_read_lock(); 597 return rcu_dereference(md->map); 598 } 599 600 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 601 { 602 rcu_read_unlock(); 603 } 604 605 /* 606 * Open a table device so we can use it as a map destination. 607 */ 608 static int open_table_device(struct table_device *td, dev_t dev, 609 struct mapped_device *md) 610 { 611 static char *_claim_ptr = "I belong to device-mapper"; 612 struct block_device *bdev; 613 614 int r; 615 616 BUG_ON(td->dm_dev.bdev); 617 618 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 619 if (IS_ERR(bdev)) 620 return PTR_ERR(bdev); 621 622 r = bd_link_disk_holder(bdev, dm_disk(md)); 623 if (r) { 624 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 625 return r; 626 } 627 628 td->dm_dev.bdev = bdev; 629 return 0; 630 } 631 632 /* 633 * Close a table device that we've been using. 634 */ 635 static void close_table_device(struct table_device *td, struct mapped_device *md) 636 { 637 if (!td->dm_dev.bdev) 638 return; 639 640 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 641 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 642 td->dm_dev.bdev = NULL; 643 } 644 645 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 646 fmode_t mode) { 647 struct table_device *td; 648 649 list_for_each_entry(td, l, list) 650 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 651 return td; 652 653 return NULL; 654 } 655 656 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 657 struct dm_dev **result) { 658 int r; 659 struct table_device *td; 660 661 mutex_lock(&md->table_devices_lock); 662 td = find_table_device(&md->table_devices, dev, mode); 663 if (!td) { 664 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 665 if (!td) { 666 mutex_unlock(&md->table_devices_lock); 667 return -ENOMEM; 668 } 669 670 td->dm_dev.mode = mode; 671 td->dm_dev.bdev = NULL; 672 673 if ((r = open_table_device(td, dev, md))) { 674 mutex_unlock(&md->table_devices_lock); 675 kfree(td); 676 return r; 677 } 678 679 format_dev_t(td->dm_dev.name, dev); 680 681 atomic_set(&td->count, 0); 682 list_add(&td->list, &md->table_devices); 683 } 684 atomic_inc(&td->count); 685 mutex_unlock(&md->table_devices_lock); 686 687 *result = &td->dm_dev; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(dm_get_table_device); 691 692 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 693 { 694 struct table_device *td = container_of(d, struct table_device, dm_dev); 695 696 mutex_lock(&md->table_devices_lock); 697 if (atomic_dec_and_test(&td->count)) { 698 close_table_device(td, md); 699 list_del(&td->list); 700 kfree(td); 701 } 702 mutex_unlock(&md->table_devices_lock); 703 } 704 EXPORT_SYMBOL(dm_put_table_device); 705 706 static void free_table_devices(struct list_head *devices) 707 { 708 struct list_head *tmp, *next; 709 710 list_for_each_safe(tmp, next, devices) { 711 struct table_device *td = list_entry(tmp, struct table_device, list); 712 713 DMWARN("dm_destroy: %s still exists with %d references", 714 td->dm_dev.name, atomic_read(&td->count)); 715 kfree(td); 716 } 717 } 718 719 /* 720 * Get the geometry associated with a dm device 721 */ 722 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 723 { 724 *geo = md->geometry; 725 726 return 0; 727 } 728 729 /* 730 * Set the geometry of a device. 731 */ 732 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 733 { 734 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 735 736 if (geo->start > sz) { 737 DMWARN("Start sector is beyond the geometry limits."); 738 return -EINVAL; 739 } 740 741 md->geometry = *geo; 742 743 return 0; 744 } 745 746 /*----------------------------------------------------------------- 747 * CRUD START: 748 * A more elegant soln is in the works that uses the queue 749 * merge fn, unfortunately there are a couple of changes to 750 * the block layer that I want to make for this. So in the 751 * interests of getting something for people to use I give 752 * you this clearly demarcated crap. 753 *---------------------------------------------------------------*/ 754 755 static int __noflush_suspending(struct mapped_device *md) 756 { 757 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 758 } 759 760 /* 761 * Decrements the number of outstanding ios that a bio has been 762 * cloned into, completing the original io if necc. 763 */ 764 static void dec_pending(struct dm_io *io, int error) 765 { 766 unsigned long flags; 767 int io_error; 768 struct bio *bio; 769 struct mapped_device *md = io->md; 770 771 /* Push-back supersedes any I/O errors */ 772 if (unlikely(error)) { 773 spin_lock_irqsave(&io->endio_lock, flags); 774 if (!(io->error > 0 && __noflush_suspending(md))) 775 io->error = error; 776 spin_unlock_irqrestore(&io->endio_lock, flags); 777 } 778 779 if (atomic_dec_and_test(&io->io_count)) { 780 if (io->error == DM_ENDIO_REQUEUE) { 781 /* 782 * Target requested pushing back the I/O. 783 */ 784 spin_lock_irqsave(&md->deferred_lock, flags); 785 if (__noflush_suspending(md)) 786 bio_list_add_head(&md->deferred, io->bio); 787 else 788 /* noflush suspend was interrupted. */ 789 io->error = -EIO; 790 spin_unlock_irqrestore(&md->deferred_lock, flags); 791 } 792 793 io_error = io->error; 794 bio = io->bio; 795 end_io_acct(io); 796 free_io(md, io); 797 798 if (io_error == DM_ENDIO_REQUEUE) 799 return; 800 801 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 802 /* 803 * Preflush done for flush with data, reissue 804 * without REQ_PREFLUSH. 805 */ 806 bio->bi_opf &= ~REQ_PREFLUSH; 807 queue_io(md, bio); 808 } else { 809 /* done with normal IO or empty flush */ 810 trace_block_bio_complete(md->queue, bio, io_error); 811 bio->bi_error = io_error; 812 bio_endio(bio); 813 } 814 } 815 } 816 817 void disable_write_same(struct mapped_device *md) 818 { 819 struct queue_limits *limits = dm_get_queue_limits(md); 820 821 /* device doesn't really support WRITE SAME, disable it */ 822 limits->max_write_same_sectors = 0; 823 } 824 825 static void clone_endio(struct bio *bio) 826 { 827 int error = bio->bi_error; 828 int r = error; 829 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 830 struct dm_io *io = tio->io; 831 struct mapped_device *md = tio->io->md; 832 dm_endio_fn endio = tio->ti->type->end_io; 833 834 if (endio) { 835 r = endio(tio->ti, bio, error); 836 if (r < 0 || r == DM_ENDIO_REQUEUE) 837 /* 838 * error and requeue request are handled 839 * in dec_pending(). 840 */ 841 error = r; 842 else if (r == DM_ENDIO_INCOMPLETE) 843 /* The target will handle the io */ 844 return; 845 else if (r) { 846 DMWARN("unimplemented target endio return value: %d", r); 847 BUG(); 848 } 849 } 850 851 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) && 852 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 853 disable_write_same(md); 854 855 free_tio(tio); 856 dec_pending(io, error); 857 } 858 859 /* 860 * Return maximum size of I/O possible at the supplied sector up to the current 861 * target boundary. 862 */ 863 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 864 { 865 sector_t target_offset = dm_target_offset(ti, sector); 866 867 return ti->len - target_offset; 868 } 869 870 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 871 { 872 sector_t len = max_io_len_target_boundary(sector, ti); 873 sector_t offset, max_len; 874 875 /* 876 * Does the target need to split even further? 877 */ 878 if (ti->max_io_len) { 879 offset = dm_target_offset(ti, sector); 880 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 881 max_len = sector_div(offset, ti->max_io_len); 882 else 883 max_len = offset & (ti->max_io_len - 1); 884 max_len = ti->max_io_len - max_len; 885 886 if (len > max_len) 887 len = max_len; 888 } 889 890 return len; 891 } 892 893 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 894 { 895 if (len > UINT_MAX) { 896 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 897 (unsigned long long)len, UINT_MAX); 898 ti->error = "Maximum size of target IO is too large"; 899 return -EINVAL; 900 } 901 902 ti->max_io_len = (uint32_t) len; 903 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 907 908 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector, 909 void **kaddr, pfn_t *pfn, long size) 910 { 911 struct mapped_device *md = bdev->bd_disk->private_data; 912 struct dm_table *map; 913 struct dm_target *ti; 914 int srcu_idx; 915 long len, ret = -EIO; 916 917 map = dm_get_live_table(md, &srcu_idx); 918 if (!map) 919 goto out; 920 921 ti = dm_table_find_target(map, sector); 922 if (!dm_target_is_valid(ti)) 923 goto out; 924 925 len = max_io_len(sector, ti) << SECTOR_SHIFT; 926 size = min(len, size); 927 928 if (ti->type->direct_access) 929 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size); 930 out: 931 dm_put_live_table(md, srcu_idx); 932 return min(ret, size); 933 } 934 935 /* 936 * A target may call dm_accept_partial_bio only from the map routine. It is 937 * allowed for all bio types except REQ_PREFLUSH. 938 * 939 * dm_accept_partial_bio informs the dm that the target only wants to process 940 * additional n_sectors sectors of the bio and the rest of the data should be 941 * sent in a next bio. 942 * 943 * A diagram that explains the arithmetics: 944 * +--------------------+---------------+-------+ 945 * | 1 | 2 | 3 | 946 * +--------------------+---------------+-------+ 947 * 948 * <-------------- *tio->len_ptr ---------------> 949 * <------- bi_size -------> 950 * <-- n_sectors --> 951 * 952 * Region 1 was already iterated over with bio_advance or similar function. 953 * (it may be empty if the target doesn't use bio_advance) 954 * Region 2 is the remaining bio size that the target wants to process. 955 * (it may be empty if region 1 is non-empty, although there is no reason 956 * to make it empty) 957 * The target requires that region 3 is to be sent in the next bio. 958 * 959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 960 * the partially processed part (the sum of regions 1+2) must be the same for all 961 * copies of the bio. 962 */ 963 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 964 { 965 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 966 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 967 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 968 BUG_ON(bi_size > *tio->len_ptr); 969 BUG_ON(n_sectors > bi_size); 970 *tio->len_ptr -= bi_size - n_sectors; 971 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 972 } 973 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 974 975 /* 976 * Flush current->bio_list when the target map method blocks. 977 * This fixes deadlocks in snapshot and possibly in other targets. 978 */ 979 struct dm_offload { 980 struct blk_plug plug; 981 struct blk_plug_cb cb; 982 }; 983 984 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 985 { 986 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 987 struct bio_list list; 988 struct bio *bio; 989 990 INIT_LIST_HEAD(&o->cb.list); 991 992 if (unlikely(!current->bio_list)) 993 return; 994 995 list = *current->bio_list; 996 bio_list_init(current->bio_list); 997 998 while ((bio = bio_list_pop(&list))) { 999 struct bio_set *bs = bio->bi_pool; 1000 if (unlikely(!bs) || bs == fs_bio_set) { 1001 bio_list_add(current->bio_list, bio); 1002 continue; 1003 } 1004 1005 spin_lock(&bs->rescue_lock); 1006 bio_list_add(&bs->rescue_list, bio); 1007 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1008 spin_unlock(&bs->rescue_lock); 1009 } 1010 } 1011 1012 static void dm_offload_start(struct dm_offload *o) 1013 { 1014 blk_start_plug(&o->plug); 1015 o->cb.callback = flush_current_bio_list; 1016 list_add(&o->cb.list, ¤t->plug->cb_list); 1017 } 1018 1019 static void dm_offload_end(struct dm_offload *o) 1020 { 1021 list_del(&o->cb.list); 1022 blk_finish_plug(&o->plug); 1023 } 1024 1025 static void __map_bio(struct dm_target_io *tio) 1026 { 1027 int r; 1028 sector_t sector; 1029 struct dm_offload o; 1030 struct bio *clone = &tio->clone; 1031 struct dm_target *ti = tio->ti; 1032 1033 clone->bi_end_io = clone_endio; 1034 1035 /* 1036 * Map the clone. If r == 0 we don't need to do 1037 * anything, the target has assumed ownership of 1038 * this io. 1039 */ 1040 atomic_inc(&tio->io->io_count); 1041 sector = clone->bi_iter.bi_sector; 1042 1043 dm_offload_start(&o); 1044 r = ti->type->map(ti, clone); 1045 dm_offload_end(&o); 1046 1047 if (r == DM_MAPIO_REMAPPED) { 1048 /* the bio has been remapped so dispatch it */ 1049 1050 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1051 tio->io->bio->bi_bdev->bd_dev, sector); 1052 1053 generic_make_request(clone); 1054 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1055 /* error the io and bail out, or requeue it if needed */ 1056 dec_pending(tio->io, r); 1057 free_tio(tio); 1058 } else if (r != DM_MAPIO_SUBMITTED) { 1059 DMWARN("unimplemented target map return value: %d", r); 1060 BUG(); 1061 } 1062 } 1063 1064 struct clone_info { 1065 struct mapped_device *md; 1066 struct dm_table *map; 1067 struct bio *bio; 1068 struct dm_io *io; 1069 sector_t sector; 1070 unsigned sector_count; 1071 }; 1072 1073 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1074 { 1075 bio->bi_iter.bi_sector = sector; 1076 bio->bi_iter.bi_size = to_bytes(len); 1077 } 1078 1079 /* 1080 * Creates a bio that consists of range of complete bvecs. 1081 */ 1082 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1083 sector_t sector, unsigned len) 1084 { 1085 struct bio *clone = &tio->clone; 1086 1087 __bio_clone_fast(clone, bio); 1088 1089 if (bio_integrity(bio)) { 1090 int r = bio_integrity_clone(clone, bio, GFP_NOIO); 1091 if (r < 0) 1092 return r; 1093 } 1094 1095 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1096 clone->bi_iter.bi_size = to_bytes(len); 1097 1098 if (bio_integrity(bio)) 1099 bio_integrity_trim(clone, 0, len); 1100 1101 return 0; 1102 } 1103 1104 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1105 struct dm_target *ti, 1106 unsigned target_bio_nr) 1107 { 1108 struct dm_target_io *tio; 1109 struct bio *clone; 1110 1111 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1112 tio = container_of(clone, struct dm_target_io, clone); 1113 1114 tio->io = ci->io; 1115 tio->ti = ti; 1116 tio->target_bio_nr = target_bio_nr; 1117 1118 return tio; 1119 } 1120 1121 static void __clone_and_map_simple_bio(struct clone_info *ci, 1122 struct dm_target *ti, 1123 unsigned target_bio_nr, unsigned *len) 1124 { 1125 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1126 struct bio *clone = &tio->clone; 1127 1128 tio->len_ptr = len; 1129 1130 __bio_clone_fast(clone, ci->bio); 1131 if (len) 1132 bio_setup_sector(clone, ci->sector, *len); 1133 1134 __map_bio(tio); 1135 } 1136 1137 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1138 unsigned num_bios, unsigned *len) 1139 { 1140 unsigned target_bio_nr; 1141 1142 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1143 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1144 } 1145 1146 static int __send_empty_flush(struct clone_info *ci) 1147 { 1148 unsigned target_nr = 0; 1149 struct dm_target *ti; 1150 1151 BUG_ON(bio_has_data(ci->bio)); 1152 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1153 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1154 1155 return 0; 1156 } 1157 1158 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1159 sector_t sector, unsigned *len) 1160 { 1161 struct bio *bio = ci->bio; 1162 struct dm_target_io *tio; 1163 unsigned target_bio_nr; 1164 unsigned num_target_bios = 1; 1165 int r = 0; 1166 1167 /* 1168 * Does the target want to receive duplicate copies of the bio? 1169 */ 1170 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1171 num_target_bios = ti->num_write_bios(ti, bio); 1172 1173 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1174 tio = alloc_tio(ci, ti, target_bio_nr); 1175 tio->len_ptr = len; 1176 r = clone_bio(tio, bio, sector, *len); 1177 if (r < 0) { 1178 free_tio(tio); 1179 break; 1180 } 1181 __map_bio(tio); 1182 } 1183 1184 return r; 1185 } 1186 1187 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1188 1189 static unsigned get_num_discard_bios(struct dm_target *ti) 1190 { 1191 return ti->num_discard_bios; 1192 } 1193 1194 static unsigned get_num_write_same_bios(struct dm_target *ti) 1195 { 1196 return ti->num_write_same_bios; 1197 } 1198 1199 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1200 1201 static bool is_split_required_for_discard(struct dm_target *ti) 1202 { 1203 return ti->split_discard_bios; 1204 } 1205 1206 static int __send_changing_extent_only(struct clone_info *ci, 1207 get_num_bios_fn get_num_bios, 1208 is_split_required_fn is_split_required) 1209 { 1210 struct dm_target *ti; 1211 unsigned len; 1212 unsigned num_bios; 1213 1214 do { 1215 ti = dm_table_find_target(ci->map, ci->sector); 1216 if (!dm_target_is_valid(ti)) 1217 return -EIO; 1218 1219 /* 1220 * Even though the device advertised support for this type of 1221 * request, that does not mean every target supports it, and 1222 * reconfiguration might also have changed that since the 1223 * check was performed. 1224 */ 1225 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1226 if (!num_bios) 1227 return -EOPNOTSUPP; 1228 1229 if (is_split_required && !is_split_required(ti)) 1230 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1231 else 1232 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1233 1234 __send_duplicate_bios(ci, ti, num_bios, &len); 1235 1236 ci->sector += len; 1237 } while (ci->sector_count -= len); 1238 1239 return 0; 1240 } 1241 1242 static int __send_discard(struct clone_info *ci) 1243 { 1244 return __send_changing_extent_only(ci, get_num_discard_bios, 1245 is_split_required_for_discard); 1246 } 1247 1248 static int __send_write_same(struct clone_info *ci) 1249 { 1250 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1251 } 1252 1253 /* 1254 * Select the correct strategy for processing a non-flush bio. 1255 */ 1256 static int __split_and_process_non_flush(struct clone_info *ci) 1257 { 1258 struct bio *bio = ci->bio; 1259 struct dm_target *ti; 1260 unsigned len; 1261 int r; 1262 1263 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1264 return __send_discard(ci); 1265 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1266 return __send_write_same(ci); 1267 1268 ti = dm_table_find_target(ci->map, ci->sector); 1269 if (!dm_target_is_valid(ti)) 1270 return -EIO; 1271 1272 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1273 1274 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1275 if (r < 0) 1276 return r; 1277 1278 ci->sector += len; 1279 ci->sector_count -= len; 1280 1281 return 0; 1282 } 1283 1284 /* 1285 * Entry point to split a bio into clones and submit them to the targets. 1286 */ 1287 static void __split_and_process_bio(struct mapped_device *md, 1288 struct dm_table *map, struct bio *bio) 1289 { 1290 struct clone_info ci; 1291 int error = 0; 1292 1293 if (unlikely(!map)) { 1294 bio_io_error(bio); 1295 return; 1296 } 1297 1298 ci.map = map; 1299 ci.md = md; 1300 ci.io = alloc_io(md); 1301 ci.io->error = 0; 1302 atomic_set(&ci.io->io_count, 1); 1303 ci.io->bio = bio; 1304 ci.io->md = md; 1305 spin_lock_init(&ci.io->endio_lock); 1306 ci.sector = bio->bi_iter.bi_sector; 1307 1308 start_io_acct(ci.io); 1309 1310 if (bio->bi_opf & REQ_PREFLUSH) { 1311 ci.bio = &ci.md->flush_bio; 1312 ci.sector_count = 0; 1313 error = __send_empty_flush(&ci); 1314 /* dec_pending submits any data associated with flush */ 1315 } else { 1316 ci.bio = bio; 1317 ci.sector_count = bio_sectors(bio); 1318 while (ci.sector_count && !error) 1319 error = __split_and_process_non_flush(&ci); 1320 } 1321 1322 /* drop the extra reference count */ 1323 dec_pending(ci.io, error); 1324 } 1325 /*----------------------------------------------------------------- 1326 * CRUD END 1327 *---------------------------------------------------------------*/ 1328 1329 /* 1330 * The request function that just remaps the bio built up by 1331 * dm_merge_bvec. 1332 */ 1333 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1334 { 1335 int rw = bio_data_dir(bio); 1336 struct mapped_device *md = q->queuedata; 1337 int srcu_idx; 1338 struct dm_table *map; 1339 1340 map = dm_get_live_table(md, &srcu_idx); 1341 1342 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1343 1344 /* if we're suspended, we have to queue this io for later */ 1345 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1346 dm_put_live_table(md, srcu_idx); 1347 1348 if (!(bio->bi_opf & REQ_RAHEAD)) 1349 queue_io(md, bio); 1350 else 1351 bio_io_error(bio); 1352 return BLK_QC_T_NONE; 1353 } 1354 1355 __split_and_process_bio(md, map, bio); 1356 dm_put_live_table(md, srcu_idx); 1357 return BLK_QC_T_NONE; 1358 } 1359 1360 static int dm_any_congested(void *congested_data, int bdi_bits) 1361 { 1362 int r = bdi_bits; 1363 struct mapped_device *md = congested_data; 1364 struct dm_table *map; 1365 1366 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1367 if (dm_request_based(md)) { 1368 /* 1369 * With request-based DM we only need to check the 1370 * top-level queue for congestion. 1371 */ 1372 r = md->queue->backing_dev_info.wb.state & bdi_bits; 1373 } else { 1374 map = dm_get_live_table_fast(md); 1375 if (map) 1376 r = dm_table_any_congested(map, bdi_bits); 1377 dm_put_live_table_fast(md); 1378 } 1379 } 1380 1381 return r; 1382 } 1383 1384 /*----------------------------------------------------------------- 1385 * An IDR is used to keep track of allocated minor numbers. 1386 *---------------------------------------------------------------*/ 1387 static void free_minor(int minor) 1388 { 1389 spin_lock(&_minor_lock); 1390 idr_remove(&_minor_idr, minor); 1391 spin_unlock(&_minor_lock); 1392 } 1393 1394 /* 1395 * See if the device with a specific minor # is free. 1396 */ 1397 static int specific_minor(int minor) 1398 { 1399 int r; 1400 1401 if (minor >= (1 << MINORBITS)) 1402 return -EINVAL; 1403 1404 idr_preload(GFP_KERNEL); 1405 spin_lock(&_minor_lock); 1406 1407 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1408 1409 spin_unlock(&_minor_lock); 1410 idr_preload_end(); 1411 if (r < 0) 1412 return r == -ENOSPC ? -EBUSY : r; 1413 return 0; 1414 } 1415 1416 static int next_free_minor(int *minor) 1417 { 1418 int r; 1419 1420 idr_preload(GFP_KERNEL); 1421 spin_lock(&_minor_lock); 1422 1423 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1424 1425 spin_unlock(&_minor_lock); 1426 idr_preload_end(); 1427 if (r < 0) 1428 return r; 1429 *minor = r; 1430 return 0; 1431 } 1432 1433 static const struct block_device_operations dm_blk_dops; 1434 1435 static void dm_wq_work(struct work_struct *work); 1436 1437 void dm_init_md_queue(struct mapped_device *md) 1438 { 1439 /* 1440 * Request-based dm devices cannot be stacked on top of bio-based dm 1441 * devices. The type of this dm device may not have been decided yet. 1442 * The type is decided at the first table loading time. 1443 * To prevent problematic device stacking, clear the queue flag 1444 * for request stacking support until then. 1445 * 1446 * This queue is new, so no concurrency on the queue_flags. 1447 */ 1448 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1449 1450 /* 1451 * Initialize data that will only be used by a non-blk-mq DM queue 1452 * - must do so here (in alloc_dev callchain) before queue is used 1453 */ 1454 md->queue->queuedata = md; 1455 md->queue->backing_dev_info.congested_data = md; 1456 } 1457 1458 void dm_init_normal_md_queue(struct mapped_device *md) 1459 { 1460 md->use_blk_mq = false; 1461 dm_init_md_queue(md); 1462 1463 /* 1464 * Initialize aspects of queue that aren't relevant for blk-mq 1465 */ 1466 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1467 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1468 } 1469 1470 static void cleanup_mapped_device(struct mapped_device *md) 1471 { 1472 if (md->wq) 1473 destroy_workqueue(md->wq); 1474 if (md->kworker_task) 1475 kthread_stop(md->kworker_task); 1476 mempool_destroy(md->io_pool); 1477 mempool_destroy(md->rq_pool); 1478 if (md->bs) 1479 bioset_free(md->bs); 1480 1481 if (md->disk) { 1482 spin_lock(&_minor_lock); 1483 md->disk->private_data = NULL; 1484 spin_unlock(&_minor_lock); 1485 del_gendisk(md->disk); 1486 put_disk(md->disk); 1487 } 1488 1489 if (md->queue) 1490 blk_cleanup_queue(md->queue); 1491 1492 cleanup_srcu_struct(&md->io_barrier); 1493 1494 if (md->bdev) { 1495 bdput(md->bdev); 1496 md->bdev = NULL; 1497 } 1498 1499 dm_mq_cleanup_mapped_device(md); 1500 } 1501 1502 /* 1503 * Allocate and initialise a blank device with a given minor. 1504 */ 1505 static struct mapped_device *alloc_dev(int minor) 1506 { 1507 int r, numa_node_id = dm_get_numa_node(); 1508 struct mapped_device *md; 1509 void *old_md; 1510 1511 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1512 if (!md) { 1513 DMWARN("unable to allocate device, out of memory."); 1514 return NULL; 1515 } 1516 1517 if (!try_module_get(THIS_MODULE)) 1518 goto bad_module_get; 1519 1520 /* get a minor number for the dev */ 1521 if (minor == DM_ANY_MINOR) 1522 r = next_free_minor(&minor); 1523 else 1524 r = specific_minor(minor); 1525 if (r < 0) 1526 goto bad_minor; 1527 1528 r = init_srcu_struct(&md->io_barrier); 1529 if (r < 0) 1530 goto bad_io_barrier; 1531 1532 md->numa_node_id = numa_node_id; 1533 md->use_blk_mq = dm_use_blk_mq_default(); 1534 md->init_tio_pdu = false; 1535 md->type = DM_TYPE_NONE; 1536 mutex_init(&md->suspend_lock); 1537 mutex_init(&md->type_lock); 1538 mutex_init(&md->table_devices_lock); 1539 spin_lock_init(&md->deferred_lock); 1540 atomic_set(&md->holders, 1); 1541 atomic_set(&md->open_count, 0); 1542 atomic_set(&md->event_nr, 0); 1543 atomic_set(&md->uevent_seq, 0); 1544 INIT_LIST_HEAD(&md->uevent_list); 1545 INIT_LIST_HEAD(&md->table_devices); 1546 spin_lock_init(&md->uevent_lock); 1547 1548 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1549 if (!md->queue) 1550 goto bad; 1551 1552 dm_init_md_queue(md); 1553 1554 md->disk = alloc_disk_node(1, numa_node_id); 1555 if (!md->disk) 1556 goto bad; 1557 1558 atomic_set(&md->pending[0], 0); 1559 atomic_set(&md->pending[1], 0); 1560 init_waitqueue_head(&md->wait); 1561 INIT_WORK(&md->work, dm_wq_work); 1562 init_waitqueue_head(&md->eventq); 1563 init_completion(&md->kobj_holder.completion); 1564 md->kworker_task = NULL; 1565 1566 md->disk->major = _major; 1567 md->disk->first_minor = minor; 1568 md->disk->fops = &dm_blk_dops; 1569 md->disk->queue = md->queue; 1570 md->disk->private_data = md; 1571 sprintf(md->disk->disk_name, "dm-%d", minor); 1572 add_disk(md->disk); 1573 format_dev_t(md->name, MKDEV(_major, minor)); 1574 1575 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1576 if (!md->wq) 1577 goto bad; 1578 1579 md->bdev = bdget_disk(md->disk, 0); 1580 if (!md->bdev) 1581 goto bad; 1582 1583 bio_init(&md->flush_bio, NULL, 0); 1584 md->flush_bio.bi_bdev = md->bdev; 1585 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1586 1587 dm_stats_init(&md->stats); 1588 1589 /* Populate the mapping, nobody knows we exist yet */ 1590 spin_lock(&_minor_lock); 1591 old_md = idr_replace(&_minor_idr, md, minor); 1592 spin_unlock(&_minor_lock); 1593 1594 BUG_ON(old_md != MINOR_ALLOCED); 1595 1596 return md; 1597 1598 bad: 1599 cleanup_mapped_device(md); 1600 bad_io_barrier: 1601 free_minor(minor); 1602 bad_minor: 1603 module_put(THIS_MODULE); 1604 bad_module_get: 1605 kfree(md); 1606 return NULL; 1607 } 1608 1609 static void unlock_fs(struct mapped_device *md); 1610 1611 static void free_dev(struct mapped_device *md) 1612 { 1613 int minor = MINOR(disk_devt(md->disk)); 1614 1615 unlock_fs(md); 1616 1617 cleanup_mapped_device(md); 1618 1619 free_table_devices(&md->table_devices); 1620 dm_stats_cleanup(&md->stats); 1621 free_minor(minor); 1622 1623 module_put(THIS_MODULE); 1624 kfree(md); 1625 } 1626 1627 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1628 { 1629 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1630 1631 if (md->bs) { 1632 /* The md already has necessary mempools. */ 1633 if (dm_table_bio_based(t)) { 1634 /* 1635 * Reload bioset because front_pad may have changed 1636 * because a different table was loaded. 1637 */ 1638 bioset_free(md->bs); 1639 md->bs = p->bs; 1640 p->bs = NULL; 1641 } 1642 /* 1643 * There's no need to reload with request-based dm 1644 * because the size of front_pad doesn't change. 1645 * Note for future: If you are to reload bioset, 1646 * prep-ed requests in the queue may refer 1647 * to bio from the old bioset, so you must walk 1648 * through the queue to unprep. 1649 */ 1650 goto out; 1651 } 1652 1653 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 1654 1655 md->io_pool = p->io_pool; 1656 p->io_pool = NULL; 1657 md->rq_pool = p->rq_pool; 1658 p->rq_pool = NULL; 1659 md->bs = p->bs; 1660 p->bs = NULL; 1661 1662 out: 1663 /* mempool bind completed, no longer need any mempools in the table */ 1664 dm_table_free_md_mempools(t); 1665 } 1666 1667 /* 1668 * Bind a table to the device. 1669 */ 1670 static void event_callback(void *context) 1671 { 1672 unsigned long flags; 1673 LIST_HEAD(uevents); 1674 struct mapped_device *md = (struct mapped_device *) context; 1675 1676 spin_lock_irqsave(&md->uevent_lock, flags); 1677 list_splice_init(&md->uevent_list, &uevents); 1678 spin_unlock_irqrestore(&md->uevent_lock, flags); 1679 1680 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1681 1682 atomic_inc(&md->event_nr); 1683 wake_up(&md->eventq); 1684 } 1685 1686 /* 1687 * Protected by md->suspend_lock obtained by dm_swap_table(). 1688 */ 1689 static void __set_size(struct mapped_device *md, sector_t size) 1690 { 1691 set_capacity(md->disk, size); 1692 1693 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1694 } 1695 1696 /* 1697 * Returns old map, which caller must destroy. 1698 */ 1699 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1700 struct queue_limits *limits) 1701 { 1702 struct dm_table *old_map; 1703 struct request_queue *q = md->queue; 1704 sector_t size; 1705 1706 lockdep_assert_held(&md->suspend_lock); 1707 1708 size = dm_table_get_size(t); 1709 1710 /* 1711 * Wipe any geometry if the size of the table changed. 1712 */ 1713 if (size != dm_get_size(md)) 1714 memset(&md->geometry, 0, sizeof(md->geometry)); 1715 1716 __set_size(md, size); 1717 1718 dm_table_event_callback(t, event_callback, md); 1719 1720 /* 1721 * The queue hasn't been stopped yet, if the old table type wasn't 1722 * for request-based during suspension. So stop it to prevent 1723 * I/O mapping before resume. 1724 * This must be done before setting the queue restrictions, 1725 * because request-based dm may be run just after the setting. 1726 */ 1727 if (dm_table_request_based(t)) { 1728 dm_stop_queue(q); 1729 /* 1730 * Leverage the fact that request-based DM targets are 1731 * immutable singletons and establish md->immutable_target 1732 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1733 */ 1734 md->immutable_target = dm_table_get_immutable_target(t); 1735 } 1736 1737 __bind_mempools(md, t); 1738 1739 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1740 rcu_assign_pointer(md->map, (void *)t); 1741 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1742 1743 dm_table_set_restrictions(t, q, limits); 1744 if (old_map) 1745 dm_sync_table(md); 1746 1747 return old_map; 1748 } 1749 1750 /* 1751 * Returns unbound table for the caller to free. 1752 */ 1753 static struct dm_table *__unbind(struct mapped_device *md) 1754 { 1755 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1756 1757 if (!map) 1758 return NULL; 1759 1760 dm_table_event_callback(map, NULL, NULL); 1761 RCU_INIT_POINTER(md->map, NULL); 1762 dm_sync_table(md); 1763 1764 return map; 1765 } 1766 1767 /* 1768 * Constructor for a new device. 1769 */ 1770 int dm_create(int minor, struct mapped_device **result) 1771 { 1772 struct mapped_device *md; 1773 1774 md = alloc_dev(minor); 1775 if (!md) 1776 return -ENXIO; 1777 1778 dm_sysfs_init(md); 1779 1780 *result = md; 1781 return 0; 1782 } 1783 1784 /* 1785 * Functions to manage md->type. 1786 * All are required to hold md->type_lock. 1787 */ 1788 void dm_lock_md_type(struct mapped_device *md) 1789 { 1790 mutex_lock(&md->type_lock); 1791 } 1792 1793 void dm_unlock_md_type(struct mapped_device *md) 1794 { 1795 mutex_unlock(&md->type_lock); 1796 } 1797 1798 void dm_set_md_type(struct mapped_device *md, unsigned type) 1799 { 1800 BUG_ON(!mutex_is_locked(&md->type_lock)); 1801 md->type = type; 1802 } 1803 1804 unsigned dm_get_md_type(struct mapped_device *md) 1805 { 1806 return md->type; 1807 } 1808 1809 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1810 { 1811 return md->immutable_target_type; 1812 } 1813 1814 /* 1815 * The queue_limits are only valid as long as you have a reference 1816 * count on 'md'. 1817 */ 1818 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1819 { 1820 BUG_ON(!atomic_read(&md->holders)); 1821 return &md->queue->limits; 1822 } 1823 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1824 1825 /* 1826 * Setup the DM device's queue based on md's type 1827 */ 1828 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1829 { 1830 int r; 1831 unsigned type = dm_get_md_type(md); 1832 1833 switch (type) { 1834 case DM_TYPE_REQUEST_BASED: 1835 r = dm_old_init_request_queue(md); 1836 if (r) { 1837 DMERR("Cannot initialize queue for request-based mapped device"); 1838 return r; 1839 } 1840 break; 1841 case DM_TYPE_MQ_REQUEST_BASED: 1842 r = dm_mq_init_request_queue(md, t); 1843 if (r) { 1844 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1845 return r; 1846 } 1847 break; 1848 case DM_TYPE_BIO_BASED: 1849 case DM_TYPE_DAX_BIO_BASED: 1850 dm_init_normal_md_queue(md); 1851 blk_queue_make_request(md->queue, dm_make_request); 1852 /* 1853 * DM handles splitting bios as needed. Free the bio_split bioset 1854 * since it won't be used (saves 1 process per bio-based DM device). 1855 */ 1856 bioset_free(md->queue->bio_split); 1857 md->queue->bio_split = NULL; 1858 1859 if (type == DM_TYPE_DAX_BIO_BASED) 1860 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1861 break; 1862 } 1863 1864 return 0; 1865 } 1866 1867 struct mapped_device *dm_get_md(dev_t dev) 1868 { 1869 struct mapped_device *md; 1870 unsigned minor = MINOR(dev); 1871 1872 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1873 return NULL; 1874 1875 spin_lock(&_minor_lock); 1876 1877 md = idr_find(&_minor_idr, minor); 1878 if (md) { 1879 if ((md == MINOR_ALLOCED || 1880 (MINOR(disk_devt(dm_disk(md))) != minor) || 1881 dm_deleting_md(md) || 1882 test_bit(DMF_FREEING, &md->flags))) { 1883 md = NULL; 1884 goto out; 1885 } 1886 dm_get(md); 1887 } 1888 1889 out: 1890 spin_unlock(&_minor_lock); 1891 1892 return md; 1893 } 1894 EXPORT_SYMBOL_GPL(dm_get_md); 1895 1896 void *dm_get_mdptr(struct mapped_device *md) 1897 { 1898 return md->interface_ptr; 1899 } 1900 1901 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1902 { 1903 md->interface_ptr = ptr; 1904 } 1905 1906 void dm_get(struct mapped_device *md) 1907 { 1908 atomic_inc(&md->holders); 1909 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1910 } 1911 1912 int dm_hold(struct mapped_device *md) 1913 { 1914 spin_lock(&_minor_lock); 1915 if (test_bit(DMF_FREEING, &md->flags)) { 1916 spin_unlock(&_minor_lock); 1917 return -EBUSY; 1918 } 1919 dm_get(md); 1920 spin_unlock(&_minor_lock); 1921 return 0; 1922 } 1923 EXPORT_SYMBOL_GPL(dm_hold); 1924 1925 const char *dm_device_name(struct mapped_device *md) 1926 { 1927 return md->name; 1928 } 1929 EXPORT_SYMBOL_GPL(dm_device_name); 1930 1931 static void __dm_destroy(struct mapped_device *md, bool wait) 1932 { 1933 struct request_queue *q = dm_get_md_queue(md); 1934 struct dm_table *map; 1935 int srcu_idx; 1936 1937 might_sleep(); 1938 1939 spin_lock(&_minor_lock); 1940 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1941 set_bit(DMF_FREEING, &md->flags); 1942 spin_unlock(&_minor_lock); 1943 1944 blk_set_queue_dying(q); 1945 1946 if (dm_request_based(md) && md->kworker_task) 1947 kthread_flush_worker(&md->kworker); 1948 1949 /* 1950 * Take suspend_lock so that presuspend and postsuspend methods 1951 * do not race with internal suspend. 1952 */ 1953 mutex_lock(&md->suspend_lock); 1954 map = dm_get_live_table(md, &srcu_idx); 1955 if (!dm_suspended_md(md)) { 1956 dm_table_presuspend_targets(map); 1957 dm_table_postsuspend_targets(map); 1958 } 1959 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1960 dm_put_live_table(md, srcu_idx); 1961 mutex_unlock(&md->suspend_lock); 1962 1963 /* 1964 * Rare, but there may be I/O requests still going to complete, 1965 * for example. Wait for all references to disappear. 1966 * No one should increment the reference count of the mapped_device, 1967 * after the mapped_device state becomes DMF_FREEING. 1968 */ 1969 if (wait) 1970 while (atomic_read(&md->holders)) 1971 msleep(1); 1972 else if (atomic_read(&md->holders)) 1973 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 1974 dm_device_name(md), atomic_read(&md->holders)); 1975 1976 dm_sysfs_exit(md); 1977 dm_table_destroy(__unbind(md)); 1978 free_dev(md); 1979 } 1980 1981 void dm_destroy(struct mapped_device *md) 1982 { 1983 __dm_destroy(md, true); 1984 } 1985 1986 void dm_destroy_immediate(struct mapped_device *md) 1987 { 1988 __dm_destroy(md, false); 1989 } 1990 1991 void dm_put(struct mapped_device *md) 1992 { 1993 atomic_dec(&md->holders); 1994 } 1995 EXPORT_SYMBOL_GPL(dm_put); 1996 1997 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 1998 { 1999 int r = 0; 2000 DEFINE_WAIT(wait); 2001 2002 while (1) { 2003 prepare_to_wait(&md->wait, &wait, task_state); 2004 2005 if (!md_in_flight(md)) 2006 break; 2007 2008 if (signal_pending_state(task_state, current)) { 2009 r = -EINTR; 2010 break; 2011 } 2012 2013 io_schedule(); 2014 } 2015 finish_wait(&md->wait, &wait); 2016 2017 return r; 2018 } 2019 2020 /* 2021 * Process the deferred bios 2022 */ 2023 static void dm_wq_work(struct work_struct *work) 2024 { 2025 struct mapped_device *md = container_of(work, struct mapped_device, 2026 work); 2027 struct bio *c; 2028 int srcu_idx; 2029 struct dm_table *map; 2030 2031 map = dm_get_live_table(md, &srcu_idx); 2032 2033 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2034 spin_lock_irq(&md->deferred_lock); 2035 c = bio_list_pop(&md->deferred); 2036 spin_unlock_irq(&md->deferred_lock); 2037 2038 if (!c) 2039 break; 2040 2041 if (dm_request_based(md)) 2042 generic_make_request(c); 2043 else 2044 __split_and_process_bio(md, map, c); 2045 } 2046 2047 dm_put_live_table(md, srcu_idx); 2048 } 2049 2050 static void dm_queue_flush(struct mapped_device *md) 2051 { 2052 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2053 smp_mb__after_atomic(); 2054 queue_work(md->wq, &md->work); 2055 } 2056 2057 /* 2058 * Swap in a new table, returning the old one for the caller to destroy. 2059 */ 2060 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2061 { 2062 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2063 struct queue_limits limits; 2064 int r; 2065 2066 mutex_lock(&md->suspend_lock); 2067 2068 /* device must be suspended */ 2069 if (!dm_suspended_md(md)) 2070 goto out; 2071 2072 /* 2073 * If the new table has no data devices, retain the existing limits. 2074 * This helps multipath with queue_if_no_path if all paths disappear, 2075 * then new I/O is queued based on these limits, and then some paths 2076 * reappear. 2077 */ 2078 if (dm_table_has_no_data_devices(table)) { 2079 live_map = dm_get_live_table_fast(md); 2080 if (live_map) 2081 limits = md->queue->limits; 2082 dm_put_live_table_fast(md); 2083 } 2084 2085 if (!live_map) { 2086 r = dm_calculate_queue_limits(table, &limits); 2087 if (r) { 2088 map = ERR_PTR(r); 2089 goto out; 2090 } 2091 } 2092 2093 map = __bind(md, table, &limits); 2094 2095 out: 2096 mutex_unlock(&md->suspend_lock); 2097 return map; 2098 } 2099 2100 /* 2101 * Functions to lock and unlock any filesystem running on the 2102 * device. 2103 */ 2104 static int lock_fs(struct mapped_device *md) 2105 { 2106 int r; 2107 2108 WARN_ON(md->frozen_sb); 2109 2110 md->frozen_sb = freeze_bdev(md->bdev); 2111 if (IS_ERR(md->frozen_sb)) { 2112 r = PTR_ERR(md->frozen_sb); 2113 md->frozen_sb = NULL; 2114 return r; 2115 } 2116 2117 set_bit(DMF_FROZEN, &md->flags); 2118 2119 return 0; 2120 } 2121 2122 static void unlock_fs(struct mapped_device *md) 2123 { 2124 if (!test_bit(DMF_FROZEN, &md->flags)) 2125 return; 2126 2127 thaw_bdev(md->bdev, md->frozen_sb); 2128 md->frozen_sb = NULL; 2129 clear_bit(DMF_FROZEN, &md->flags); 2130 } 2131 2132 /* 2133 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2134 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2135 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2136 * 2137 * If __dm_suspend returns 0, the device is completely quiescent 2138 * now. There is no request-processing activity. All new requests 2139 * are being added to md->deferred list. 2140 * 2141 * Caller must hold md->suspend_lock 2142 */ 2143 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2144 unsigned suspend_flags, long task_state, 2145 int dmf_suspended_flag) 2146 { 2147 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2148 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2149 int r; 2150 2151 lockdep_assert_held(&md->suspend_lock); 2152 2153 /* 2154 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2155 * This flag is cleared before dm_suspend returns. 2156 */ 2157 if (noflush) 2158 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2159 2160 /* 2161 * This gets reverted if there's an error later and the targets 2162 * provide the .presuspend_undo hook. 2163 */ 2164 dm_table_presuspend_targets(map); 2165 2166 /* 2167 * Flush I/O to the device. 2168 * Any I/O submitted after lock_fs() may not be flushed. 2169 * noflush takes precedence over do_lockfs. 2170 * (lock_fs() flushes I/Os and waits for them to complete.) 2171 */ 2172 if (!noflush && do_lockfs) { 2173 r = lock_fs(md); 2174 if (r) { 2175 dm_table_presuspend_undo_targets(map); 2176 return r; 2177 } 2178 } 2179 2180 /* 2181 * Here we must make sure that no processes are submitting requests 2182 * to target drivers i.e. no one may be executing 2183 * __split_and_process_bio. This is called from dm_request and 2184 * dm_wq_work. 2185 * 2186 * To get all processes out of __split_and_process_bio in dm_request, 2187 * we take the write lock. To prevent any process from reentering 2188 * __split_and_process_bio from dm_request and quiesce the thread 2189 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2190 * flush_workqueue(md->wq). 2191 */ 2192 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2193 if (map) 2194 synchronize_srcu(&md->io_barrier); 2195 2196 /* 2197 * Stop md->queue before flushing md->wq in case request-based 2198 * dm defers requests to md->wq from md->queue. 2199 */ 2200 if (dm_request_based(md)) { 2201 dm_stop_queue(md->queue); 2202 if (md->kworker_task) 2203 kthread_flush_worker(&md->kworker); 2204 } 2205 2206 flush_workqueue(md->wq); 2207 2208 /* 2209 * At this point no more requests are entering target request routines. 2210 * We call dm_wait_for_completion to wait for all existing requests 2211 * to finish. 2212 */ 2213 r = dm_wait_for_completion(md, task_state); 2214 if (!r) 2215 set_bit(dmf_suspended_flag, &md->flags); 2216 2217 if (noflush) 2218 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2219 if (map) 2220 synchronize_srcu(&md->io_barrier); 2221 2222 /* were we interrupted ? */ 2223 if (r < 0) { 2224 dm_queue_flush(md); 2225 2226 if (dm_request_based(md)) 2227 dm_start_queue(md->queue); 2228 2229 unlock_fs(md); 2230 dm_table_presuspend_undo_targets(map); 2231 /* pushback list is already flushed, so skip flush */ 2232 } 2233 2234 return r; 2235 } 2236 2237 /* 2238 * We need to be able to change a mapping table under a mounted 2239 * filesystem. For example we might want to move some data in 2240 * the background. Before the table can be swapped with 2241 * dm_bind_table, dm_suspend must be called to flush any in 2242 * flight bios and ensure that any further io gets deferred. 2243 */ 2244 /* 2245 * Suspend mechanism in request-based dm. 2246 * 2247 * 1. Flush all I/Os by lock_fs() if needed. 2248 * 2. Stop dispatching any I/O by stopping the request_queue. 2249 * 3. Wait for all in-flight I/Os to be completed or requeued. 2250 * 2251 * To abort suspend, start the request_queue. 2252 */ 2253 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2254 { 2255 struct dm_table *map = NULL; 2256 int r = 0; 2257 2258 retry: 2259 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2260 2261 if (dm_suspended_md(md)) { 2262 r = -EINVAL; 2263 goto out_unlock; 2264 } 2265 2266 if (dm_suspended_internally_md(md)) { 2267 /* already internally suspended, wait for internal resume */ 2268 mutex_unlock(&md->suspend_lock); 2269 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2270 if (r) 2271 return r; 2272 goto retry; 2273 } 2274 2275 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2276 2277 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2278 if (r) 2279 goto out_unlock; 2280 2281 dm_table_postsuspend_targets(map); 2282 2283 out_unlock: 2284 mutex_unlock(&md->suspend_lock); 2285 return r; 2286 } 2287 2288 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2289 { 2290 if (map) { 2291 int r = dm_table_resume_targets(map); 2292 if (r) 2293 return r; 2294 } 2295 2296 dm_queue_flush(md); 2297 2298 /* 2299 * Flushing deferred I/Os must be done after targets are resumed 2300 * so that mapping of targets can work correctly. 2301 * Request-based dm is queueing the deferred I/Os in its request_queue. 2302 */ 2303 if (dm_request_based(md)) 2304 dm_start_queue(md->queue); 2305 2306 unlock_fs(md); 2307 2308 return 0; 2309 } 2310 2311 int dm_resume(struct mapped_device *md) 2312 { 2313 int r; 2314 struct dm_table *map = NULL; 2315 2316 retry: 2317 r = -EINVAL; 2318 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2319 2320 if (!dm_suspended_md(md)) 2321 goto out; 2322 2323 if (dm_suspended_internally_md(md)) { 2324 /* already internally suspended, wait for internal resume */ 2325 mutex_unlock(&md->suspend_lock); 2326 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2327 if (r) 2328 return r; 2329 goto retry; 2330 } 2331 2332 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2333 if (!map || !dm_table_get_size(map)) 2334 goto out; 2335 2336 r = __dm_resume(md, map); 2337 if (r) 2338 goto out; 2339 2340 clear_bit(DMF_SUSPENDED, &md->flags); 2341 out: 2342 mutex_unlock(&md->suspend_lock); 2343 2344 return r; 2345 } 2346 2347 /* 2348 * Internal suspend/resume works like userspace-driven suspend. It waits 2349 * until all bios finish and prevents issuing new bios to the target drivers. 2350 * It may be used only from the kernel. 2351 */ 2352 2353 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2354 { 2355 struct dm_table *map = NULL; 2356 2357 if (md->internal_suspend_count++) 2358 return; /* nested internal suspend */ 2359 2360 if (dm_suspended_md(md)) { 2361 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2362 return; /* nest suspend */ 2363 } 2364 2365 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2366 2367 /* 2368 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2369 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2370 * would require changing .presuspend to return an error -- avoid this 2371 * until there is a need for more elaborate variants of internal suspend. 2372 */ 2373 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2374 DMF_SUSPENDED_INTERNALLY); 2375 2376 dm_table_postsuspend_targets(map); 2377 } 2378 2379 static void __dm_internal_resume(struct mapped_device *md) 2380 { 2381 BUG_ON(!md->internal_suspend_count); 2382 2383 if (--md->internal_suspend_count) 2384 return; /* resume from nested internal suspend */ 2385 2386 if (dm_suspended_md(md)) 2387 goto done; /* resume from nested suspend */ 2388 2389 /* 2390 * NOTE: existing callers don't need to call dm_table_resume_targets 2391 * (which may fail -- so best to avoid it for now by passing NULL map) 2392 */ 2393 (void) __dm_resume(md, NULL); 2394 2395 done: 2396 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2397 smp_mb__after_atomic(); 2398 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2399 } 2400 2401 void dm_internal_suspend_noflush(struct mapped_device *md) 2402 { 2403 mutex_lock(&md->suspend_lock); 2404 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2405 mutex_unlock(&md->suspend_lock); 2406 } 2407 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2408 2409 void dm_internal_resume(struct mapped_device *md) 2410 { 2411 mutex_lock(&md->suspend_lock); 2412 __dm_internal_resume(md); 2413 mutex_unlock(&md->suspend_lock); 2414 } 2415 EXPORT_SYMBOL_GPL(dm_internal_resume); 2416 2417 /* 2418 * Fast variants of internal suspend/resume hold md->suspend_lock, 2419 * which prevents interaction with userspace-driven suspend. 2420 */ 2421 2422 void dm_internal_suspend_fast(struct mapped_device *md) 2423 { 2424 mutex_lock(&md->suspend_lock); 2425 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2426 return; 2427 2428 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2429 synchronize_srcu(&md->io_barrier); 2430 flush_workqueue(md->wq); 2431 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2432 } 2433 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2434 2435 void dm_internal_resume_fast(struct mapped_device *md) 2436 { 2437 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2438 goto done; 2439 2440 dm_queue_flush(md); 2441 2442 done: 2443 mutex_unlock(&md->suspend_lock); 2444 } 2445 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2446 2447 /*----------------------------------------------------------------- 2448 * Event notification. 2449 *---------------------------------------------------------------*/ 2450 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2451 unsigned cookie) 2452 { 2453 char udev_cookie[DM_COOKIE_LENGTH]; 2454 char *envp[] = { udev_cookie, NULL }; 2455 2456 if (!cookie) 2457 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2458 else { 2459 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2460 DM_COOKIE_ENV_VAR_NAME, cookie); 2461 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2462 action, envp); 2463 } 2464 } 2465 2466 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2467 { 2468 return atomic_add_return(1, &md->uevent_seq); 2469 } 2470 2471 uint32_t dm_get_event_nr(struct mapped_device *md) 2472 { 2473 return atomic_read(&md->event_nr); 2474 } 2475 2476 int dm_wait_event(struct mapped_device *md, int event_nr) 2477 { 2478 return wait_event_interruptible(md->eventq, 2479 (event_nr != atomic_read(&md->event_nr))); 2480 } 2481 2482 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2483 { 2484 unsigned long flags; 2485 2486 spin_lock_irqsave(&md->uevent_lock, flags); 2487 list_add(elist, &md->uevent_list); 2488 spin_unlock_irqrestore(&md->uevent_lock, flags); 2489 } 2490 2491 /* 2492 * The gendisk is only valid as long as you have a reference 2493 * count on 'md'. 2494 */ 2495 struct gendisk *dm_disk(struct mapped_device *md) 2496 { 2497 return md->disk; 2498 } 2499 EXPORT_SYMBOL_GPL(dm_disk); 2500 2501 struct kobject *dm_kobject(struct mapped_device *md) 2502 { 2503 return &md->kobj_holder.kobj; 2504 } 2505 2506 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2507 { 2508 struct mapped_device *md; 2509 2510 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2511 2512 if (test_bit(DMF_FREEING, &md->flags) || 2513 dm_deleting_md(md)) 2514 return NULL; 2515 2516 dm_get(md); 2517 return md; 2518 } 2519 2520 int dm_suspended_md(struct mapped_device *md) 2521 { 2522 return test_bit(DMF_SUSPENDED, &md->flags); 2523 } 2524 2525 int dm_suspended_internally_md(struct mapped_device *md) 2526 { 2527 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2528 } 2529 2530 int dm_test_deferred_remove_flag(struct mapped_device *md) 2531 { 2532 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2533 } 2534 2535 int dm_suspended(struct dm_target *ti) 2536 { 2537 return dm_suspended_md(dm_table_get_md(ti->table)); 2538 } 2539 EXPORT_SYMBOL_GPL(dm_suspended); 2540 2541 int dm_noflush_suspending(struct dm_target *ti) 2542 { 2543 return __noflush_suspending(dm_table_get_md(ti->table)); 2544 } 2545 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2546 2547 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 2548 unsigned integrity, unsigned per_io_data_size) 2549 { 2550 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2551 struct kmem_cache *cachep = NULL; 2552 unsigned int pool_size = 0; 2553 unsigned int front_pad; 2554 2555 if (!pools) 2556 return NULL; 2557 2558 switch (type) { 2559 case DM_TYPE_BIO_BASED: 2560 case DM_TYPE_DAX_BIO_BASED: 2561 cachep = _io_cache; 2562 pool_size = dm_get_reserved_bio_based_ios(); 2563 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2564 break; 2565 case DM_TYPE_REQUEST_BASED: 2566 cachep = _rq_tio_cache; 2567 pool_size = dm_get_reserved_rq_based_ios(); 2568 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 2569 if (!pools->rq_pool) 2570 goto out; 2571 /* fall through to setup remaining rq-based pools */ 2572 case DM_TYPE_MQ_REQUEST_BASED: 2573 if (!pool_size) 2574 pool_size = dm_get_reserved_rq_based_ios(); 2575 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2576 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2577 break; 2578 default: 2579 BUG(); 2580 } 2581 2582 if (cachep) { 2583 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2584 if (!pools->io_pool) 2585 goto out; 2586 } 2587 2588 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2589 if (!pools->bs) 2590 goto out; 2591 2592 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2593 goto out; 2594 2595 return pools; 2596 2597 out: 2598 dm_free_md_mempools(pools); 2599 2600 return NULL; 2601 } 2602 2603 void dm_free_md_mempools(struct dm_md_mempools *pools) 2604 { 2605 if (!pools) 2606 return; 2607 2608 mempool_destroy(pools->io_pool); 2609 mempool_destroy(pools->rq_pool); 2610 2611 if (pools->bs) 2612 bioset_free(pools->bs); 2613 2614 kfree(pools); 2615 } 2616 2617 struct dm_pr { 2618 u64 old_key; 2619 u64 new_key; 2620 u32 flags; 2621 bool fail_early; 2622 }; 2623 2624 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2625 void *data) 2626 { 2627 struct mapped_device *md = bdev->bd_disk->private_data; 2628 struct dm_table *table; 2629 struct dm_target *ti; 2630 int ret = -ENOTTY, srcu_idx; 2631 2632 table = dm_get_live_table(md, &srcu_idx); 2633 if (!table || !dm_table_get_size(table)) 2634 goto out; 2635 2636 /* We only support devices that have a single target */ 2637 if (dm_table_get_num_targets(table) != 1) 2638 goto out; 2639 ti = dm_table_get_target(table, 0); 2640 2641 ret = -EINVAL; 2642 if (!ti->type->iterate_devices) 2643 goto out; 2644 2645 ret = ti->type->iterate_devices(ti, fn, data); 2646 out: 2647 dm_put_live_table(md, srcu_idx); 2648 return ret; 2649 } 2650 2651 /* 2652 * For register / unregister we need to manually call out to every path. 2653 */ 2654 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2655 sector_t start, sector_t len, void *data) 2656 { 2657 struct dm_pr *pr = data; 2658 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2659 2660 if (!ops || !ops->pr_register) 2661 return -EOPNOTSUPP; 2662 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2663 } 2664 2665 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2666 u32 flags) 2667 { 2668 struct dm_pr pr = { 2669 .old_key = old_key, 2670 .new_key = new_key, 2671 .flags = flags, 2672 .fail_early = true, 2673 }; 2674 int ret; 2675 2676 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2677 if (ret && new_key) { 2678 /* unregister all paths if we failed to register any path */ 2679 pr.old_key = new_key; 2680 pr.new_key = 0; 2681 pr.flags = 0; 2682 pr.fail_early = false; 2683 dm_call_pr(bdev, __dm_pr_register, &pr); 2684 } 2685 2686 return ret; 2687 } 2688 2689 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2690 u32 flags) 2691 { 2692 struct mapped_device *md = bdev->bd_disk->private_data; 2693 const struct pr_ops *ops; 2694 fmode_t mode; 2695 int r; 2696 2697 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2698 if (r < 0) 2699 return r; 2700 2701 ops = bdev->bd_disk->fops->pr_ops; 2702 if (ops && ops->pr_reserve) 2703 r = ops->pr_reserve(bdev, key, type, flags); 2704 else 2705 r = -EOPNOTSUPP; 2706 2707 bdput(bdev); 2708 return r; 2709 } 2710 2711 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2712 { 2713 struct mapped_device *md = bdev->bd_disk->private_data; 2714 const struct pr_ops *ops; 2715 fmode_t mode; 2716 int r; 2717 2718 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2719 if (r < 0) 2720 return r; 2721 2722 ops = bdev->bd_disk->fops->pr_ops; 2723 if (ops && ops->pr_release) 2724 r = ops->pr_release(bdev, key, type); 2725 else 2726 r = -EOPNOTSUPP; 2727 2728 bdput(bdev); 2729 return r; 2730 } 2731 2732 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2733 enum pr_type type, bool abort) 2734 { 2735 struct mapped_device *md = bdev->bd_disk->private_data; 2736 const struct pr_ops *ops; 2737 fmode_t mode; 2738 int r; 2739 2740 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2741 if (r < 0) 2742 return r; 2743 2744 ops = bdev->bd_disk->fops->pr_ops; 2745 if (ops && ops->pr_preempt) 2746 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2747 else 2748 r = -EOPNOTSUPP; 2749 2750 bdput(bdev); 2751 return r; 2752 } 2753 2754 static int dm_pr_clear(struct block_device *bdev, u64 key) 2755 { 2756 struct mapped_device *md = bdev->bd_disk->private_data; 2757 const struct pr_ops *ops; 2758 fmode_t mode; 2759 int r; 2760 2761 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2762 if (r < 0) 2763 return r; 2764 2765 ops = bdev->bd_disk->fops->pr_ops; 2766 if (ops && ops->pr_clear) 2767 r = ops->pr_clear(bdev, key); 2768 else 2769 r = -EOPNOTSUPP; 2770 2771 bdput(bdev); 2772 return r; 2773 } 2774 2775 static const struct pr_ops dm_pr_ops = { 2776 .pr_register = dm_pr_register, 2777 .pr_reserve = dm_pr_reserve, 2778 .pr_release = dm_pr_release, 2779 .pr_preempt = dm_pr_preempt, 2780 .pr_clear = dm_pr_clear, 2781 }; 2782 2783 static const struct block_device_operations dm_blk_dops = { 2784 .open = dm_blk_open, 2785 .release = dm_blk_close, 2786 .ioctl = dm_blk_ioctl, 2787 .direct_access = dm_blk_direct_access, 2788 .getgeo = dm_blk_getgeo, 2789 .pr_ops = &dm_pr_ops, 2790 .owner = THIS_MODULE 2791 }; 2792 2793 /* 2794 * module hooks 2795 */ 2796 module_init(dm_init); 2797 module_exit(dm_exit); 2798 2799 module_param(major, uint, 0); 2800 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2801 2802 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2803 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2804 2805 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2806 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2807 2808 MODULE_DESCRIPTION(DM_NAME " driver"); 2809 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2810 MODULE_LICENSE("GPL"); 2811