xref: /openbmc/linux/drivers/md/dm.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 	struct dm_stats_aux stats_aux;
90 	unsigned long duration_jiffies;
91 	unsigned n_sectors;
92 };
93 
94 /*
95  * For request-based dm - the bio clones we allocate are embedded in these
96  * structs.
97  *
98  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99  * the bioset is created - this means the bio has to come at the end of the
100  * struct.
101  */
102 struct dm_rq_clone_bio_info {
103 	struct bio *orig;
104 	struct dm_rq_target_io *tio;
105 	struct bio clone;
106 };
107 
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 	if (rq && rq->end_io_data)
111 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 	return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115 
116 #define MINOR_ALLOCED ((void *)-1)
117 
118 /*
119  * Bits for the md->flags field.
120  */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_DEFERRED_REMOVE 6
128 #define DMF_SUSPENDED_INTERNALLY 7
129 
130 /*
131  * A dummy definition to make RCU happy.
132  * struct dm_table should never be dereferenced in this file.
133  */
134 struct dm_table {
135 	int undefined__;
136 };
137 
138 /*
139  * Work processed by per-device workqueue.
140  */
141 struct mapped_device {
142 	struct srcu_struct io_barrier;
143 	struct mutex suspend_lock;
144 	atomic_t holders;
145 	atomic_t open_count;
146 
147 	/*
148 	 * The current mapping.
149 	 * Use dm_get_live_table{_fast} or take suspend_lock for
150 	 * dereference.
151 	 */
152 	struct dm_table __rcu *map;
153 
154 	struct list_head table_devices;
155 	struct mutex table_devices_lock;
156 
157 	unsigned long flags;
158 
159 	struct request_queue *queue;
160 	unsigned type;
161 	/* Protect queue and type against concurrent access. */
162 	struct mutex type_lock;
163 
164 	struct target_type *immutable_target_type;
165 
166 	struct gendisk *disk;
167 	char name[16];
168 
169 	void *interface_ptr;
170 
171 	/*
172 	 * A list of ios that arrived while we were suspended.
173 	 */
174 	atomic_t pending[2];
175 	wait_queue_head_t wait;
176 	struct work_struct work;
177 	struct bio_list deferred;
178 	spinlock_t deferred_lock;
179 
180 	/*
181 	 * Processing queue (flush)
182 	 */
183 	struct workqueue_struct *wq;
184 
185 	/*
186 	 * io objects are allocated from here.
187 	 */
188 	mempool_t *io_pool;
189 	mempool_t *rq_pool;
190 
191 	struct bio_set *bs;
192 
193 	/*
194 	 * Event handling.
195 	 */
196 	atomic_t event_nr;
197 	wait_queue_head_t eventq;
198 	atomic_t uevent_seq;
199 	struct list_head uevent_list;
200 	spinlock_t uevent_lock; /* Protect access to uevent_list */
201 
202 	/*
203 	 * freeze/thaw support require holding onto a super block
204 	 */
205 	struct super_block *frozen_sb;
206 	struct block_device *bdev;
207 
208 	/* forced geometry settings */
209 	struct hd_geometry geometry;
210 
211 	/* kobject and completion */
212 	struct dm_kobject_holder kobj_holder;
213 
214 	/* zero-length flush that will be cloned and submitted to targets */
215 	struct bio flush_bio;
216 
217 	/* the number of internal suspends */
218 	unsigned internal_suspend_count;
219 
220 	struct dm_stats stats;
221 
222 	struct kthread_worker kworker;
223 	struct task_struct *kworker_task;
224 
225 	/* for request-based merge heuristic in dm_request_fn() */
226 	unsigned seq_rq_merge_deadline_usecs;
227 	int last_rq_rw;
228 	sector_t last_rq_pos;
229 	ktime_t last_rq_start_time;
230 
231 	/* for blk-mq request-based DM support */
232 	struct blk_mq_tag_set tag_set;
233 	bool use_blk_mq;
234 };
235 
236 #ifdef CONFIG_DM_MQ_DEFAULT
237 static bool use_blk_mq = true;
238 #else
239 static bool use_blk_mq = false;
240 #endif
241 
242 bool dm_use_blk_mq(struct mapped_device *md)
243 {
244 	return md->use_blk_mq;
245 }
246 
247 /*
248  * For mempools pre-allocation at the table loading time.
249  */
250 struct dm_md_mempools {
251 	mempool_t *io_pool;
252 	mempool_t *rq_pool;
253 	struct bio_set *bs;
254 };
255 
256 struct table_device {
257 	struct list_head list;
258 	atomic_t count;
259 	struct dm_dev dm_dev;
260 };
261 
262 #define RESERVED_BIO_BASED_IOS		16
263 #define RESERVED_REQUEST_BASED_IOS	256
264 #define RESERVED_MAX_IOS		1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268 
269 /*
270  * Bio-based DM's mempools' reserved IOs set by the user.
271  */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 
274 /*
275  * Request-based DM's mempools' reserved IOs set by the user.
276  */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278 
279 static unsigned __dm_get_module_param(unsigned *module_param,
280 				      unsigned def, unsigned max)
281 {
282 	unsigned param = ACCESS_ONCE(*module_param);
283 	unsigned modified_param = 0;
284 
285 	if (!param)
286 		modified_param = def;
287 	else if (param > max)
288 		modified_param = max;
289 
290 	if (modified_param) {
291 		(void)cmpxchg(module_param, param, modified_param);
292 		param = modified_param;
293 	}
294 
295 	return param;
296 }
297 
298 unsigned dm_get_reserved_bio_based_ios(void)
299 {
300 	return __dm_get_module_param(&reserved_bio_based_ios,
301 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
302 }
303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
304 
305 unsigned dm_get_reserved_rq_based_ios(void)
306 {
307 	return __dm_get_module_param(&reserved_rq_based_ios,
308 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
309 }
310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
311 
312 static int __init local_init(void)
313 {
314 	int r = -ENOMEM;
315 
316 	/* allocate a slab for the dm_ios */
317 	_io_cache = KMEM_CACHE(dm_io, 0);
318 	if (!_io_cache)
319 		return r;
320 
321 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
322 	if (!_rq_tio_cache)
323 		goto out_free_io_cache;
324 
325 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
326 				      __alignof__(struct request), 0, NULL);
327 	if (!_rq_cache)
328 		goto out_free_rq_tio_cache;
329 
330 	r = dm_uevent_init();
331 	if (r)
332 		goto out_free_rq_cache;
333 
334 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
335 	if (!deferred_remove_workqueue) {
336 		r = -ENOMEM;
337 		goto out_uevent_exit;
338 	}
339 
340 	_major = major;
341 	r = register_blkdev(_major, _name);
342 	if (r < 0)
343 		goto out_free_workqueue;
344 
345 	if (!_major)
346 		_major = r;
347 
348 	return 0;
349 
350 out_free_workqueue:
351 	destroy_workqueue(deferred_remove_workqueue);
352 out_uevent_exit:
353 	dm_uevent_exit();
354 out_free_rq_cache:
355 	kmem_cache_destroy(_rq_cache);
356 out_free_rq_tio_cache:
357 	kmem_cache_destroy(_rq_tio_cache);
358 out_free_io_cache:
359 	kmem_cache_destroy(_io_cache);
360 
361 	return r;
362 }
363 
364 static void local_exit(void)
365 {
366 	flush_scheduled_work();
367 	destroy_workqueue(deferred_remove_workqueue);
368 
369 	kmem_cache_destroy(_rq_cache);
370 	kmem_cache_destroy(_rq_tio_cache);
371 	kmem_cache_destroy(_io_cache);
372 	unregister_blkdev(_major, _name);
373 	dm_uevent_exit();
374 
375 	_major = 0;
376 
377 	DMINFO("cleaned up");
378 }
379 
380 static int (*_inits[])(void) __initdata = {
381 	local_init,
382 	dm_target_init,
383 	dm_linear_init,
384 	dm_stripe_init,
385 	dm_io_init,
386 	dm_kcopyd_init,
387 	dm_interface_init,
388 	dm_statistics_init,
389 };
390 
391 static void (*_exits[])(void) = {
392 	local_exit,
393 	dm_target_exit,
394 	dm_linear_exit,
395 	dm_stripe_exit,
396 	dm_io_exit,
397 	dm_kcopyd_exit,
398 	dm_interface_exit,
399 	dm_statistics_exit,
400 };
401 
402 static int __init dm_init(void)
403 {
404 	const int count = ARRAY_SIZE(_inits);
405 
406 	int r, i;
407 
408 	for (i = 0; i < count; i++) {
409 		r = _inits[i]();
410 		if (r)
411 			goto bad;
412 	}
413 
414 	return 0;
415 
416       bad:
417 	while (i--)
418 		_exits[i]();
419 
420 	return r;
421 }
422 
423 static void __exit dm_exit(void)
424 {
425 	int i = ARRAY_SIZE(_exits);
426 
427 	while (i--)
428 		_exits[i]();
429 
430 	/*
431 	 * Should be empty by this point.
432 	 */
433 	idr_destroy(&_minor_idr);
434 }
435 
436 /*
437  * Block device functions
438  */
439 int dm_deleting_md(struct mapped_device *md)
440 {
441 	return test_bit(DMF_DELETING, &md->flags);
442 }
443 
444 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
445 {
446 	struct mapped_device *md;
447 
448 	spin_lock(&_minor_lock);
449 
450 	md = bdev->bd_disk->private_data;
451 	if (!md)
452 		goto out;
453 
454 	if (test_bit(DMF_FREEING, &md->flags) ||
455 	    dm_deleting_md(md)) {
456 		md = NULL;
457 		goto out;
458 	}
459 
460 	dm_get(md);
461 	atomic_inc(&md->open_count);
462 out:
463 	spin_unlock(&_minor_lock);
464 
465 	return md ? 0 : -ENXIO;
466 }
467 
468 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
469 {
470 	struct mapped_device *md;
471 
472 	spin_lock(&_minor_lock);
473 
474 	md = disk->private_data;
475 	if (WARN_ON(!md))
476 		goto out;
477 
478 	if (atomic_dec_and_test(&md->open_count) &&
479 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
480 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
481 
482 	dm_put(md);
483 out:
484 	spin_unlock(&_minor_lock);
485 }
486 
487 int dm_open_count(struct mapped_device *md)
488 {
489 	return atomic_read(&md->open_count);
490 }
491 
492 /*
493  * Guarantees nothing is using the device before it's deleted.
494  */
495 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
496 {
497 	int r = 0;
498 
499 	spin_lock(&_minor_lock);
500 
501 	if (dm_open_count(md)) {
502 		r = -EBUSY;
503 		if (mark_deferred)
504 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
505 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
506 		r = -EEXIST;
507 	else
508 		set_bit(DMF_DELETING, &md->flags);
509 
510 	spin_unlock(&_minor_lock);
511 
512 	return r;
513 }
514 
515 int dm_cancel_deferred_remove(struct mapped_device *md)
516 {
517 	int r = 0;
518 
519 	spin_lock(&_minor_lock);
520 
521 	if (test_bit(DMF_DELETING, &md->flags))
522 		r = -EBUSY;
523 	else
524 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
525 
526 	spin_unlock(&_minor_lock);
527 
528 	return r;
529 }
530 
531 static void do_deferred_remove(struct work_struct *w)
532 {
533 	dm_deferred_remove();
534 }
535 
536 sector_t dm_get_size(struct mapped_device *md)
537 {
538 	return get_capacity(md->disk);
539 }
540 
541 struct request_queue *dm_get_md_queue(struct mapped_device *md)
542 {
543 	return md->queue;
544 }
545 
546 struct dm_stats *dm_get_stats(struct mapped_device *md)
547 {
548 	return &md->stats;
549 }
550 
551 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
552 {
553 	struct mapped_device *md = bdev->bd_disk->private_data;
554 
555 	return dm_get_geometry(md, geo);
556 }
557 
558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
559 			unsigned int cmd, unsigned long arg)
560 {
561 	struct mapped_device *md = bdev->bd_disk->private_data;
562 	int srcu_idx;
563 	struct dm_table *map;
564 	struct dm_target *tgt;
565 	int r = -ENOTTY;
566 
567 retry:
568 	map = dm_get_live_table(md, &srcu_idx);
569 
570 	if (!map || !dm_table_get_size(map))
571 		goto out;
572 
573 	/* We only support devices that have a single target */
574 	if (dm_table_get_num_targets(map) != 1)
575 		goto out;
576 
577 	tgt = dm_table_get_target(map, 0);
578 	if (!tgt->type->ioctl)
579 		goto out;
580 
581 	if (dm_suspended_md(md)) {
582 		r = -EAGAIN;
583 		goto out;
584 	}
585 
586 	r = tgt->type->ioctl(tgt, cmd, arg);
587 
588 out:
589 	dm_put_live_table(md, srcu_idx);
590 
591 	if (r == -ENOTCONN) {
592 		msleep(10);
593 		goto retry;
594 	}
595 
596 	return r;
597 }
598 
599 static struct dm_io *alloc_io(struct mapped_device *md)
600 {
601 	return mempool_alloc(md->io_pool, GFP_NOIO);
602 }
603 
604 static void free_io(struct mapped_device *md, struct dm_io *io)
605 {
606 	mempool_free(io, md->io_pool);
607 }
608 
609 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
610 {
611 	bio_put(&tio->clone);
612 }
613 
614 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
615 					    gfp_t gfp_mask)
616 {
617 	return mempool_alloc(md->io_pool, gfp_mask);
618 }
619 
620 static void free_rq_tio(struct dm_rq_target_io *tio)
621 {
622 	mempool_free(tio, tio->md->io_pool);
623 }
624 
625 static struct request *alloc_clone_request(struct mapped_device *md,
626 					   gfp_t gfp_mask)
627 {
628 	return mempool_alloc(md->rq_pool, gfp_mask);
629 }
630 
631 static void free_clone_request(struct mapped_device *md, struct request *rq)
632 {
633 	mempool_free(rq, md->rq_pool);
634 }
635 
636 static int md_in_flight(struct mapped_device *md)
637 {
638 	return atomic_read(&md->pending[READ]) +
639 	       atomic_read(&md->pending[WRITE]);
640 }
641 
642 static void start_io_acct(struct dm_io *io)
643 {
644 	struct mapped_device *md = io->md;
645 	struct bio *bio = io->bio;
646 	int cpu;
647 	int rw = bio_data_dir(bio);
648 
649 	io->start_time = jiffies;
650 
651 	cpu = part_stat_lock();
652 	part_round_stats(cpu, &dm_disk(md)->part0);
653 	part_stat_unlock();
654 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
655 		atomic_inc_return(&md->pending[rw]));
656 
657 	if (unlikely(dm_stats_used(&md->stats)))
658 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
659 				    bio_sectors(bio), false, 0, &io->stats_aux);
660 }
661 
662 static void end_io_acct(struct dm_io *io)
663 {
664 	struct mapped_device *md = io->md;
665 	struct bio *bio = io->bio;
666 	unsigned long duration = jiffies - io->start_time;
667 	int pending;
668 	int rw = bio_data_dir(bio);
669 
670 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
671 
672 	if (unlikely(dm_stats_used(&md->stats)))
673 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
674 				    bio_sectors(bio), true, duration, &io->stats_aux);
675 
676 	/*
677 	 * After this is decremented the bio must not be touched if it is
678 	 * a flush.
679 	 */
680 	pending = atomic_dec_return(&md->pending[rw]);
681 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
682 	pending += atomic_read(&md->pending[rw^0x1]);
683 
684 	/* nudge anyone waiting on suspend queue */
685 	if (!pending)
686 		wake_up(&md->wait);
687 }
688 
689 /*
690  * Add the bio to the list of deferred io.
691  */
692 static void queue_io(struct mapped_device *md, struct bio *bio)
693 {
694 	unsigned long flags;
695 
696 	spin_lock_irqsave(&md->deferred_lock, flags);
697 	bio_list_add(&md->deferred, bio);
698 	spin_unlock_irqrestore(&md->deferred_lock, flags);
699 	queue_work(md->wq, &md->work);
700 }
701 
702 /*
703  * Everyone (including functions in this file), should use this
704  * function to access the md->map field, and make sure they call
705  * dm_put_live_table() when finished.
706  */
707 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
708 {
709 	*srcu_idx = srcu_read_lock(&md->io_barrier);
710 
711 	return srcu_dereference(md->map, &md->io_barrier);
712 }
713 
714 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
715 {
716 	srcu_read_unlock(&md->io_barrier, srcu_idx);
717 }
718 
719 void dm_sync_table(struct mapped_device *md)
720 {
721 	synchronize_srcu(&md->io_barrier);
722 	synchronize_rcu_expedited();
723 }
724 
725 /*
726  * A fast alternative to dm_get_live_table/dm_put_live_table.
727  * The caller must not block between these two functions.
728  */
729 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
730 {
731 	rcu_read_lock();
732 	return rcu_dereference(md->map);
733 }
734 
735 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
736 {
737 	rcu_read_unlock();
738 }
739 
740 /*
741  * Open a table device so we can use it as a map destination.
742  */
743 static int open_table_device(struct table_device *td, dev_t dev,
744 			     struct mapped_device *md)
745 {
746 	static char *_claim_ptr = "I belong to device-mapper";
747 	struct block_device *bdev;
748 
749 	int r;
750 
751 	BUG_ON(td->dm_dev.bdev);
752 
753 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
754 	if (IS_ERR(bdev))
755 		return PTR_ERR(bdev);
756 
757 	r = bd_link_disk_holder(bdev, dm_disk(md));
758 	if (r) {
759 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 		return r;
761 	}
762 
763 	td->dm_dev.bdev = bdev;
764 	return 0;
765 }
766 
767 /*
768  * Close a table device that we've been using.
769  */
770 static void close_table_device(struct table_device *td, struct mapped_device *md)
771 {
772 	if (!td->dm_dev.bdev)
773 		return;
774 
775 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
776 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
777 	td->dm_dev.bdev = NULL;
778 }
779 
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781 					      fmode_t mode) {
782 	struct table_device *td;
783 
784 	list_for_each_entry(td, l, list)
785 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 			return td;
787 
788 	return NULL;
789 }
790 
791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
792 			struct dm_dev **result) {
793 	int r;
794 	struct table_device *td;
795 
796 	mutex_lock(&md->table_devices_lock);
797 	td = find_table_device(&md->table_devices, dev, mode);
798 	if (!td) {
799 		td = kmalloc(sizeof(*td), GFP_KERNEL);
800 		if (!td) {
801 			mutex_unlock(&md->table_devices_lock);
802 			return -ENOMEM;
803 		}
804 
805 		td->dm_dev.mode = mode;
806 		td->dm_dev.bdev = NULL;
807 
808 		if ((r = open_table_device(td, dev, md))) {
809 			mutex_unlock(&md->table_devices_lock);
810 			kfree(td);
811 			return r;
812 		}
813 
814 		format_dev_t(td->dm_dev.name, dev);
815 
816 		atomic_set(&td->count, 0);
817 		list_add(&td->list, &md->table_devices);
818 	}
819 	atomic_inc(&td->count);
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (atomic_dec_and_test(&td->count)) {
833 		close_table_device(td, md);
834 		list_del(&td->list);
835 		kfree(td);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840 
841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, atomic_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
881 /*-----------------------------------------------------------------
882  * CRUD START:
883  *   A more elegant soln is in the works that uses the queue
884  *   merge fn, unfortunately there are a couple of changes to
885  *   the block layer that I want to make for this.  So in the
886  *   interests of getting something for people to use I give
887  *   you this clearly demarcated crap.
888  *---------------------------------------------------------------*/
889 
890 static int __noflush_suspending(struct mapped_device *md)
891 {
892 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
893 }
894 
895 /*
896  * Decrements the number of outstanding ios that a bio has been
897  * cloned into, completing the original io if necc.
898  */
899 static void dec_pending(struct dm_io *io, int error)
900 {
901 	unsigned long flags;
902 	int io_error;
903 	struct bio *bio;
904 	struct mapped_device *md = io->md;
905 
906 	/* Push-back supersedes any I/O errors */
907 	if (unlikely(error)) {
908 		spin_lock_irqsave(&io->endio_lock, flags);
909 		if (!(io->error > 0 && __noflush_suspending(md)))
910 			io->error = error;
911 		spin_unlock_irqrestore(&io->endio_lock, flags);
912 	}
913 
914 	if (atomic_dec_and_test(&io->io_count)) {
915 		if (io->error == DM_ENDIO_REQUEUE) {
916 			/*
917 			 * Target requested pushing back the I/O.
918 			 */
919 			spin_lock_irqsave(&md->deferred_lock, flags);
920 			if (__noflush_suspending(md))
921 				bio_list_add_head(&md->deferred, io->bio);
922 			else
923 				/* noflush suspend was interrupted. */
924 				io->error = -EIO;
925 			spin_unlock_irqrestore(&md->deferred_lock, flags);
926 		}
927 
928 		io_error = io->error;
929 		bio = io->bio;
930 		end_io_acct(io);
931 		free_io(md, io);
932 
933 		if (io_error == DM_ENDIO_REQUEUE)
934 			return;
935 
936 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
937 			/*
938 			 * Preflush done for flush with data, reissue
939 			 * without REQ_FLUSH.
940 			 */
941 			bio->bi_rw &= ~REQ_FLUSH;
942 			queue_io(md, bio);
943 		} else {
944 			/* done with normal IO or empty flush */
945 			trace_block_bio_complete(md->queue, bio, io_error);
946 			bio->bi_error = io_error;
947 			bio_endio(bio);
948 		}
949 	}
950 }
951 
952 static void disable_write_same(struct mapped_device *md)
953 {
954 	struct queue_limits *limits = dm_get_queue_limits(md);
955 
956 	/* device doesn't really support WRITE SAME, disable it */
957 	limits->max_write_same_sectors = 0;
958 }
959 
960 static void clone_endio(struct bio *bio)
961 {
962 	int error = bio->bi_error;
963 	int r = error;
964 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
965 	struct dm_io *io = tio->io;
966 	struct mapped_device *md = tio->io->md;
967 	dm_endio_fn endio = tio->ti->type->end_io;
968 
969 	if (endio) {
970 		r = endio(tio->ti, bio, error);
971 		if (r < 0 || r == DM_ENDIO_REQUEUE)
972 			/*
973 			 * error and requeue request are handled
974 			 * in dec_pending().
975 			 */
976 			error = r;
977 		else if (r == DM_ENDIO_INCOMPLETE)
978 			/* The target will handle the io */
979 			return;
980 		else if (r) {
981 			DMWARN("unimplemented target endio return value: %d", r);
982 			BUG();
983 		}
984 	}
985 
986 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
987 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
988 		disable_write_same(md);
989 
990 	free_tio(md, tio);
991 	dec_pending(io, error);
992 }
993 
994 /*
995  * Partial completion handling for request-based dm
996  */
997 static void end_clone_bio(struct bio *clone)
998 {
999 	struct dm_rq_clone_bio_info *info =
1000 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1001 	struct dm_rq_target_io *tio = info->tio;
1002 	struct bio *bio = info->orig;
1003 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1004 	int error = clone->bi_error;
1005 
1006 	bio_put(clone);
1007 
1008 	if (tio->error)
1009 		/*
1010 		 * An error has already been detected on the request.
1011 		 * Once error occurred, just let clone->end_io() handle
1012 		 * the remainder.
1013 		 */
1014 		return;
1015 	else if (error) {
1016 		/*
1017 		 * Don't notice the error to the upper layer yet.
1018 		 * The error handling decision is made by the target driver,
1019 		 * when the request is completed.
1020 		 */
1021 		tio->error = error;
1022 		return;
1023 	}
1024 
1025 	/*
1026 	 * I/O for the bio successfully completed.
1027 	 * Notice the data completion to the upper layer.
1028 	 */
1029 
1030 	/*
1031 	 * bios are processed from the head of the list.
1032 	 * So the completing bio should always be rq->bio.
1033 	 * If it's not, something wrong is happening.
1034 	 */
1035 	if (tio->orig->bio != bio)
1036 		DMERR("bio completion is going in the middle of the request");
1037 
1038 	/*
1039 	 * Update the original request.
1040 	 * Do not use blk_end_request() here, because it may complete
1041 	 * the original request before the clone, and break the ordering.
1042 	 */
1043 	blk_update_request(tio->orig, 0, nr_bytes);
1044 }
1045 
1046 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1047 {
1048 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1049 }
1050 
1051 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1052 {
1053 	if (unlikely(dm_stats_used(&md->stats))) {
1054 		struct dm_rq_target_io *tio = tio_from_request(orig);
1055 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1056 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1057 				    tio->n_sectors, true, tio->duration_jiffies,
1058 				    &tio->stats_aux);
1059 	}
1060 }
1061 
1062 /*
1063  * Don't touch any member of the md after calling this function because
1064  * the md may be freed in dm_put() at the end of this function.
1065  * Or do dm_get() before calling this function and dm_put() later.
1066  */
1067 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1068 {
1069 	atomic_dec(&md->pending[rw]);
1070 
1071 	/* nudge anyone waiting on suspend queue */
1072 	if (!md_in_flight(md))
1073 		wake_up(&md->wait);
1074 
1075 	/*
1076 	 * Run this off this callpath, as drivers could invoke end_io while
1077 	 * inside their request_fn (and holding the queue lock). Calling
1078 	 * back into ->request_fn() could deadlock attempting to grab the
1079 	 * queue lock again.
1080 	 */
1081 	if (run_queue) {
1082 		if (md->queue->mq_ops)
1083 			blk_mq_run_hw_queues(md->queue, true);
1084 		else
1085 			blk_run_queue_async(md->queue);
1086 	}
1087 
1088 	/*
1089 	 * dm_put() must be at the end of this function. See the comment above
1090 	 */
1091 	dm_put(md);
1092 }
1093 
1094 static void free_rq_clone(struct request *clone)
1095 {
1096 	struct dm_rq_target_io *tio = clone->end_io_data;
1097 	struct mapped_device *md = tio->md;
1098 
1099 	blk_rq_unprep_clone(clone);
1100 
1101 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1102 		/* stacked on blk-mq queue(s) */
1103 		tio->ti->type->release_clone_rq(clone);
1104 	else if (!md->queue->mq_ops)
1105 		/* request_fn queue stacked on request_fn queue(s) */
1106 		free_clone_request(md, clone);
1107 	/*
1108 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1109 	 * no need to call free_clone_request() because we leverage blk-mq by
1110 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1111 	 */
1112 
1113 	if (!md->queue->mq_ops)
1114 		free_rq_tio(tio);
1115 }
1116 
1117 /*
1118  * Complete the clone and the original request.
1119  * Must be called without clone's queue lock held,
1120  * see end_clone_request() for more details.
1121  */
1122 static void dm_end_request(struct request *clone, int error)
1123 {
1124 	int rw = rq_data_dir(clone);
1125 	struct dm_rq_target_io *tio = clone->end_io_data;
1126 	struct mapped_device *md = tio->md;
1127 	struct request *rq = tio->orig;
1128 
1129 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1130 		rq->errors = clone->errors;
1131 		rq->resid_len = clone->resid_len;
1132 
1133 		if (rq->sense)
1134 			/*
1135 			 * We are using the sense buffer of the original
1136 			 * request.
1137 			 * So setting the length of the sense data is enough.
1138 			 */
1139 			rq->sense_len = clone->sense_len;
1140 	}
1141 
1142 	free_rq_clone(clone);
1143 	rq_end_stats(md, rq);
1144 	if (!rq->q->mq_ops)
1145 		blk_end_request_all(rq, error);
1146 	else
1147 		blk_mq_end_request(rq, error);
1148 	rq_completed(md, rw, true);
1149 }
1150 
1151 static void dm_unprep_request(struct request *rq)
1152 {
1153 	struct dm_rq_target_io *tio = tio_from_request(rq);
1154 	struct request *clone = tio->clone;
1155 
1156 	if (!rq->q->mq_ops) {
1157 		rq->special = NULL;
1158 		rq->cmd_flags &= ~REQ_DONTPREP;
1159 	}
1160 
1161 	if (clone)
1162 		free_rq_clone(clone);
1163 }
1164 
1165 /*
1166  * Requeue the original request of a clone.
1167  */
1168 static void old_requeue_request(struct request *rq)
1169 {
1170 	struct request_queue *q = rq->q;
1171 	unsigned long flags;
1172 
1173 	spin_lock_irqsave(q->queue_lock, flags);
1174 	blk_requeue_request(q, rq);
1175 	blk_run_queue_async(q);
1176 	spin_unlock_irqrestore(q->queue_lock, flags);
1177 }
1178 
1179 static void dm_requeue_original_request(struct mapped_device *md,
1180 					struct request *rq)
1181 {
1182 	int rw = rq_data_dir(rq);
1183 
1184 	dm_unprep_request(rq);
1185 
1186 	rq_end_stats(md, rq);
1187 	if (!rq->q->mq_ops)
1188 		old_requeue_request(rq);
1189 	else {
1190 		blk_mq_requeue_request(rq);
1191 		blk_mq_kick_requeue_list(rq->q);
1192 	}
1193 
1194 	rq_completed(md, rw, false);
1195 }
1196 
1197 static void old_stop_queue(struct request_queue *q)
1198 {
1199 	unsigned long flags;
1200 
1201 	if (blk_queue_stopped(q))
1202 		return;
1203 
1204 	spin_lock_irqsave(q->queue_lock, flags);
1205 	blk_stop_queue(q);
1206 	spin_unlock_irqrestore(q->queue_lock, flags);
1207 }
1208 
1209 static void stop_queue(struct request_queue *q)
1210 {
1211 	if (!q->mq_ops)
1212 		old_stop_queue(q);
1213 	else
1214 		blk_mq_stop_hw_queues(q);
1215 }
1216 
1217 static void old_start_queue(struct request_queue *q)
1218 {
1219 	unsigned long flags;
1220 
1221 	spin_lock_irqsave(q->queue_lock, flags);
1222 	if (blk_queue_stopped(q))
1223 		blk_start_queue(q);
1224 	spin_unlock_irqrestore(q->queue_lock, flags);
1225 }
1226 
1227 static void start_queue(struct request_queue *q)
1228 {
1229 	if (!q->mq_ops)
1230 		old_start_queue(q);
1231 	else
1232 		blk_mq_start_stopped_hw_queues(q, true);
1233 }
1234 
1235 static void dm_done(struct request *clone, int error, bool mapped)
1236 {
1237 	int r = error;
1238 	struct dm_rq_target_io *tio = clone->end_io_data;
1239 	dm_request_endio_fn rq_end_io = NULL;
1240 
1241 	if (tio->ti) {
1242 		rq_end_io = tio->ti->type->rq_end_io;
1243 
1244 		if (mapped && rq_end_io)
1245 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1246 	}
1247 
1248 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1249 		     !clone->q->limits.max_write_same_sectors))
1250 		disable_write_same(tio->md);
1251 
1252 	if (r <= 0)
1253 		/* The target wants to complete the I/O */
1254 		dm_end_request(clone, r);
1255 	else if (r == DM_ENDIO_INCOMPLETE)
1256 		/* The target will handle the I/O */
1257 		return;
1258 	else if (r == DM_ENDIO_REQUEUE)
1259 		/* The target wants to requeue the I/O */
1260 		dm_requeue_original_request(tio->md, tio->orig);
1261 	else {
1262 		DMWARN("unimplemented target endio return value: %d", r);
1263 		BUG();
1264 	}
1265 }
1266 
1267 /*
1268  * Request completion handler for request-based dm
1269  */
1270 static void dm_softirq_done(struct request *rq)
1271 {
1272 	bool mapped = true;
1273 	struct dm_rq_target_io *tio = tio_from_request(rq);
1274 	struct request *clone = tio->clone;
1275 	int rw;
1276 
1277 	if (!clone) {
1278 		rq_end_stats(tio->md, rq);
1279 		rw = rq_data_dir(rq);
1280 		if (!rq->q->mq_ops) {
1281 			blk_end_request_all(rq, tio->error);
1282 			rq_completed(tio->md, rw, false);
1283 			free_rq_tio(tio);
1284 		} else {
1285 			blk_mq_end_request(rq, tio->error);
1286 			rq_completed(tio->md, rw, false);
1287 		}
1288 		return;
1289 	}
1290 
1291 	if (rq->cmd_flags & REQ_FAILED)
1292 		mapped = false;
1293 
1294 	dm_done(clone, tio->error, mapped);
1295 }
1296 
1297 /*
1298  * Complete the clone and the original request with the error status
1299  * through softirq context.
1300  */
1301 static void dm_complete_request(struct request *rq, int error)
1302 {
1303 	struct dm_rq_target_io *tio = tio_from_request(rq);
1304 
1305 	tio->error = error;
1306 	blk_complete_request(rq);
1307 }
1308 
1309 /*
1310  * Complete the not-mapped clone and the original request with the error status
1311  * through softirq context.
1312  * Target's rq_end_io() function isn't called.
1313  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1314  */
1315 static void dm_kill_unmapped_request(struct request *rq, int error)
1316 {
1317 	rq->cmd_flags |= REQ_FAILED;
1318 	dm_complete_request(rq, error);
1319 }
1320 
1321 /*
1322  * Called with the clone's queue lock held (for non-blk-mq)
1323  */
1324 static void end_clone_request(struct request *clone, int error)
1325 {
1326 	struct dm_rq_target_io *tio = clone->end_io_data;
1327 
1328 	if (!clone->q->mq_ops) {
1329 		/*
1330 		 * For just cleaning up the information of the queue in which
1331 		 * the clone was dispatched.
1332 		 * The clone is *NOT* freed actually here because it is alloced
1333 		 * from dm own mempool (REQ_ALLOCED isn't set).
1334 		 */
1335 		__blk_put_request(clone->q, clone);
1336 	}
1337 
1338 	/*
1339 	 * Actual request completion is done in a softirq context which doesn't
1340 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1341 	 *     - another request may be submitted by the upper level driver
1342 	 *       of the stacking during the completion
1343 	 *     - the submission which requires queue lock may be done
1344 	 *       against this clone's queue
1345 	 */
1346 	dm_complete_request(tio->orig, error);
1347 }
1348 
1349 /*
1350  * Return maximum size of I/O possible at the supplied sector up to the current
1351  * target boundary.
1352  */
1353 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1354 {
1355 	sector_t target_offset = dm_target_offset(ti, sector);
1356 
1357 	return ti->len - target_offset;
1358 }
1359 
1360 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1361 {
1362 	sector_t len = max_io_len_target_boundary(sector, ti);
1363 	sector_t offset, max_len;
1364 
1365 	/*
1366 	 * Does the target need to split even further?
1367 	 */
1368 	if (ti->max_io_len) {
1369 		offset = dm_target_offset(ti, sector);
1370 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1371 			max_len = sector_div(offset, ti->max_io_len);
1372 		else
1373 			max_len = offset & (ti->max_io_len - 1);
1374 		max_len = ti->max_io_len - max_len;
1375 
1376 		if (len > max_len)
1377 			len = max_len;
1378 	}
1379 
1380 	return len;
1381 }
1382 
1383 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1384 {
1385 	if (len > UINT_MAX) {
1386 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1387 		      (unsigned long long)len, UINT_MAX);
1388 		ti->error = "Maximum size of target IO is too large";
1389 		return -EINVAL;
1390 	}
1391 
1392 	ti->max_io_len = (uint32_t) len;
1393 
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1397 
1398 /*
1399  * A target may call dm_accept_partial_bio only from the map routine.  It is
1400  * allowed for all bio types except REQ_FLUSH.
1401  *
1402  * dm_accept_partial_bio informs the dm that the target only wants to process
1403  * additional n_sectors sectors of the bio and the rest of the data should be
1404  * sent in a next bio.
1405  *
1406  * A diagram that explains the arithmetics:
1407  * +--------------------+---------------+-------+
1408  * |         1          |       2       |   3   |
1409  * +--------------------+---------------+-------+
1410  *
1411  * <-------------- *tio->len_ptr --------------->
1412  *                      <------- bi_size ------->
1413  *                      <-- n_sectors -->
1414  *
1415  * Region 1 was already iterated over with bio_advance or similar function.
1416  *	(it may be empty if the target doesn't use bio_advance)
1417  * Region 2 is the remaining bio size that the target wants to process.
1418  *	(it may be empty if region 1 is non-empty, although there is no reason
1419  *	 to make it empty)
1420  * The target requires that region 3 is to be sent in the next bio.
1421  *
1422  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1423  * the partially processed part (the sum of regions 1+2) must be the same for all
1424  * copies of the bio.
1425  */
1426 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1427 {
1428 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1429 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1430 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1431 	BUG_ON(bi_size > *tio->len_ptr);
1432 	BUG_ON(n_sectors > bi_size);
1433 	*tio->len_ptr -= bi_size - n_sectors;
1434 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1435 }
1436 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1437 
1438 static void __map_bio(struct dm_target_io *tio)
1439 {
1440 	int r;
1441 	sector_t sector;
1442 	struct mapped_device *md;
1443 	struct bio *clone = &tio->clone;
1444 	struct dm_target *ti = tio->ti;
1445 
1446 	clone->bi_end_io = clone_endio;
1447 
1448 	/*
1449 	 * Map the clone.  If r == 0 we don't need to do
1450 	 * anything, the target has assumed ownership of
1451 	 * this io.
1452 	 */
1453 	atomic_inc(&tio->io->io_count);
1454 	sector = clone->bi_iter.bi_sector;
1455 	r = ti->type->map(ti, clone);
1456 	if (r == DM_MAPIO_REMAPPED) {
1457 		/* the bio has been remapped so dispatch it */
1458 
1459 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1460 				      tio->io->bio->bi_bdev->bd_dev, sector);
1461 
1462 		generic_make_request(clone);
1463 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1464 		/* error the io and bail out, or requeue it if needed */
1465 		md = tio->io->md;
1466 		dec_pending(tio->io, r);
1467 		free_tio(md, tio);
1468 	} else if (r != DM_MAPIO_SUBMITTED) {
1469 		DMWARN("unimplemented target map return value: %d", r);
1470 		BUG();
1471 	}
1472 }
1473 
1474 struct clone_info {
1475 	struct mapped_device *md;
1476 	struct dm_table *map;
1477 	struct bio *bio;
1478 	struct dm_io *io;
1479 	sector_t sector;
1480 	unsigned sector_count;
1481 };
1482 
1483 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1484 {
1485 	bio->bi_iter.bi_sector = sector;
1486 	bio->bi_iter.bi_size = to_bytes(len);
1487 }
1488 
1489 /*
1490  * Creates a bio that consists of range of complete bvecs.
1491  */
1492 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1493 		      sector_t sector, unsigned len)
1494 {
1495 	struct bio *clone = &tio->clone;
1496 
1497 	__bio_clone_fast(clone, bio);
1498 
1499 	if (bio_integrity(bio))
1500 		bio_integrity_clone(clone, bio, GFP_NOIO);
1501 
1502 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1503 	clone->bi_iter.bi_size = to_bytes(len);
1504 
1505 	if (bio_integrity(bio))
1506 		bio_integrity_trim(clone, 0, len);
1507 }
1508 
1509 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1510 				      struct dm_target *ti,
1511 				      unsigned target_bio_nr)
1512 {
1513 	struct dm_target_io *tio;
1514 	struct bio *clone;
1515 
1516 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1517 	tio = container_of(clone, struct dm_target_io, clone);
1518 
1519 	tio->io = ci->io;
1520 	tio->ti = ti;
1521 	tio->target_bio_nr = target_bio_nr;
1522 
1523 	return tio;
1524 }
1525 
1526 static void __clone_and_map_simple_bio(struct clone_info *ci,
1527 				       struct dm_target *ti,
1528 				       unsigned target_bio_nr, unsigned *len)
1529 {
1530 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1531 	struct bio *clone = &tio->clone;
1532 
1533 	tio->len_ptr = len;
1534 
1535 	__bio_clone_fast(clone, ci->bio);
1536 	if (len)
1537 		bio_setup_sector(clone, ci->sector, *len);
1538 
1539 	__map_bio(tio);
1540 }
1541 
1542 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1543 				  unsigned num_bios, unsigned *len)
1544 {
1545 	unsigned target_bio_nr;
1546 
1547 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1548 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1549 }
1550 
1551 static int __send_empty_flush(struct clone_info *ci)
1552 {
1553 	unsigned target_nr = 0;
1554 	struct dm_target *ti;
1555 
1556 	BUG_ON(bio_has_data(ci->bio));
1557 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1558 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1559 
1560 	return 0;
1561 }
1562 
1563 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1564 				     sector_t sector, unsigned *len)
1565 {
1566 	struct bio *bio = ci->bio;
1567 	struct dm_target_io *tio;
1568 	unsigned target_bio_nr;
1569 	unsigned num_target_bios = 1;
1570 
1571 	/*
1572 	 * Does the target want to receive duplicate copies of the bio?
1573 	 */
1574 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1575 		num_target_bios = ti->num_write_bios(ti, bio);
1576 
1577 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1578 		tio = alloc_tio(ci, ti, target_bio_nr);
1579 		tio->len_ptr = len;
1580 		clone_bio(tio, bio, sector, *len);
1581 		__map_bio(tio);
1582 	}
1583 }
1584 
1585 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1586 
1587 static unsigned get_num_discard_bios(struct dm_target *ti)
1588 {
1589 	return ti->num_discard_bios;
1590 }
1591 
1592 static unsigned get_num_write_same_bios(struct dm_target *ti)
1593 {
1594 	return ti->num_write_same_bios;
1595 }
1596 
1597 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1598 
1599 static bool is_split_required_for_discard(struct dm_target *ti)
1600 {
1601 	return ti->split_discard_bios;
1602 }
1603 
1604 static int __send_changing_extent_only(struct clone_info *ci,
1605 				       get_num_bios_fn get_num_bios,
1606 				       is_split_required_fn is_split_required)
1607 {
1608 	struct dm_target *ti;
1609 	unsigned len;
1610 	unsigned num_bios;
1611 
1612 	do {
1613 		ti = dm_table_find_target(ci->map, ci->sector);
1614 		if (!dm_target_is_valid(ti))
1615 			return -EIO;
1616 
1617 		/*
1618 		 * Even though the device advertised support for this type of
1619 		 * request, that does not mean every target supports it, and
1620 		 * reconfiguration might also have changed that since the
1621 		 * check was performed.
1622 		 */
1623 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1624 		if (!num_bios)
1625 			return -EOPNOTSUPP;
1626 
1627 		if (is_split_required && !is_split_required(ti))
1628 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1629 		else
1630 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1631 
1632 		__send_duplicate_bios(ci, ti, num_bios, &len);
1633 
1634 		ci->sector += len;
1635 	} while (ci->sector_count -= len);
1636 
1637 	return 0;
1638 }
1639 
1640 static int __send_discard(struct clone_info *ci)
1641 {
1642 	return __send_changing_extent_only(ci, get_num_discard_bios,
1643 					   is_split_required_for_discard);
1644 }
1645 
1646 static int __send_write_same(struct clone_info *ci)
1647 {
1648 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1649 }
1650 
1651 /*
1652  * Select the correct strategy for processing a non-flush bio.
1653  */
1654 static int __split_and_process_non_flush(struct clone_info *ci)
1655 {
1656 	struct bio *bio = ci->bio;
1657 	struct dm_target *ti;
1658 	unsigned len;
1659 
1660 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1661 		return __send_discard(ci);
1662 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1663 		return __send_write_same(ci);
1664 
1665 	ti = dm_table_find_target(ci->map, ci->sector);
1666 	if (!dm_target_is_valid(ti))
1667 		return -EIO;
1668 
1669 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1670 
1671 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1672 
1673 	ci->sector += len;
1674 	ci->sector_count -= len;
1675 
1676 	return 0;
1677 }
1678 
1679 /*
1680  * Entry point to split a bio into clones and submit them to the targets.
1681  */
1682 static void __split_and_process_bio(struct mapped_device *md,
1683 				    struct dm_table *map, struct bio *bio)
1684 {
1685 	struct clone_info ci;
1686 	int error = 0;
1687 
1688 	if (unlikely(!map)) {
1689 		bio_io_error(bio);
1690 		return;
1691 	}
1692 
1693 	ci.map = map;
1694 	ci.md = md;
1695 	ci.io = alloc_io(md);
1696 	ci.io->error = 0;
1697 	atomic_set(&ci.io->io_count, 1);
1698 	ci.io->bio = bio;
1699 	ci.io->md = md;
1700 	spin_lock_init(&ci.io->endio_lock);
1701 	ci.sector = bio->bi_iter.bi_sector;
1702 
1703 	start_io_acct(ci.io);
1704 
1705 	if (bio->bi_rw & REQ_FLUSH) {
1706 		ci.bio = &ci.md->flush_bio;
1707 		ci.sector_count = 0;
1708 		error = __send_empty_flush(&ci);
1709 		/* dec_pending submits any data associated with flush */
1710 	} else {
1711 		ci.bio = bio;
1712 		ci.sector_count = bio_sectors(bio);
1713 		while (ci.sector_count && !error)
1714 			error = __split_and_process_non_flush(&ci);
1715 	}
1716 
1717 	/* drop the extra reference count */
1718 	dec_pending(ci.io, error);
1719 }
1720 /*-----------------------------------------------------------------
1721  * CRUD END
1722  *---------------------------------------------------------------*/
1723 
1724 /*
1725  * The request function that just remaps the bio built up by
1726  * dm_merge_bvec.
1727  */
1728 static void dm_make_request(struct request_queue *q, struct bio *bio)
1729 {
1730 	int rw = bio_data_dir(bio);
1731 	struct mapped_device *md = q->queuedata;
1732 	int srcu_idx;
1733 	struct dm_table *map;
1734 
1735 	map = dm_get_live_table(md, &srcu_idx);
1736 
1737 	blk_queue_split(q, &bio, q->bio_split);
1738 
1739 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1740 
1741 	/* if we're suspended, we have to queue this io for later */
1742 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1743 		dm_put_live_table(md, srcu_idx);
1744 
1745 		if (bio_rw(bio) != READA)
1746 			queue_io(md, bio);
1747 		else
1748 			bio_io_error(bio);
1749 		return;
1750 	}
1751 
1752 	__split_and_process_bio(md, map, bio);
1753 	dm_put_live_table(md, srcu_idx);
1754 	return;
1755 }
1756 
1757 int dm_request_based(struct mapped_device *md)
1758 {
1759 	return blk_queue_stackable(md->queue);
1760 }
1761 
1762 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1763 {
1764 	int r;
1765 
1766 	if (blk_queue_io_stat(clone->q))
1767 		clone->cmd_flags |= REQ_IO_STAT;
1768 
1769 	clone->start_time = jiffies;
1770 	r = blk_insert_cloned_request(clone->q, clone);
1771 	if (r)
1772 		/* must complete clone in terms of original request */
1773 		dm_complete_request(rq, r);
1774 }
1775 
1776 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1777 				 void *data)
1778 {
1779 	struct dm_rq_target_io *tio = data;
1780 	struct dm_rq_clone_bio_info *info =
1781 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1782 
1783 	info->orig = bio_orig;
1784 	info->tio = tio;
1785 	bio->bi_end_io = end_clone_bio;
1786 
1787 	return 0;
1788 }
1789 
1790 static int setup_clone(struct request *clone, struct request *rq,
1791 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1792 {
1793 	int r;
1794 
1795 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1796 			      dm_rq_bio_constructor, tio);
1797 	if (r)
1798 		return r;
1799 
1800 	clone->cmd = rq->cmd;
1801 	clone->cmd_len = rq->cmd_len;
1802 	clone->sense = rq->sense;
1803 	clone->end_io = end_clone_request;
1804 	clone->end_io_data = tio;
1805 
1806 	tio->clone = clone;
1807 
1808 	return 0;
1809 }
1810 
1811 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1812 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1813 {
1814 	/*
1815 	 * Do not allocate a clone if tio->clone was already set
1816 	 * (see: dm_mq_queue_rq).
1817 	 */
1818 	bool alloc_clone = !tio->clone;
1819 	struct request *clone;
1820 
1821 	if (alloc_clone) {
1822 		clone = alloc_clone_request(md, gfp_mask);
1823 		if (!clone)
1824 			return NULL;
1825 	} else
1826 		clone = tio->clone;
1827 
1828 	blk_rq_init(NULL, clone);
1829 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1830 		/* -ENOMEM */
1831 		if (alloc_clone)
1832 			free_clone_request(md, clone);
1833 		return NULL;
1834 	}
1835 
1836 	return clone;
1837 }
1838 
1839 static void map_tio_request(struct kthread_work *work);
1840 
1841 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1842 		     struct mapped_device *md)
1843 {
1844 	tio->md = md;
1845 	tio->ti = NULL;
1846 	tio->clone = NULL;
1847 	tio->orig = rq;
1848 	tio->error = 0;
1849 	memset(&tio->info, 0, sizeof(tio->info));
1850 	if (md->kworker_task)
1851 		init_kthread_work(&tio->work, map_tio_request);
1852 }
1853 
1854 static struct dm_rq_target_io *prep_tio(struct request *rq,
1855 					struct mapped_device *md, gfp_t gfp_mask)
1856 {
1857 	struct dm_rq_target_io *tio;
1858 	int srcu_idx;
1859 	struct dm_table *table;
1860 
1861 	tio = alloc_rq_tio(md, gfp_mask);
1862 	if (!tio)
1863 		return NULL;
1864 
1865 	init_tio(tio, rq, md);
1866 
1867 	table = dm_get_live_table(md, &srcu_idx);
1868 	if (!dm_table_mq_request_based(table)) {
1869 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1870 			dm_put_live_table(md, srcu_idx);
1871 			free_rq_tio(tio);
1872 			return NULL;
1873 		}
1874 	}
1875 	dm_put_live_table(md, srcu_idx);
1876 
1877 	return tio;
1878 }
1879 
1880 /*
1881  * Called with the queue lock held.
1882  */
1883 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1884 {
1885 	struct mapped_device *md = q->queuedata;
1886 	struct dm_rq_target_io *tio;
1887 
1888 	if (unlikely(rq->special)) {
1889 		DMWARN("Already has something in rq->special.");
1890 		return BLKPREP_KILL;
1891 	}
1892 
1893 	tio = prep_tio(rq, md, GFP_ATOMIC);
1894 	if (!tio)
1895 		return BLKPREP_DEFER;
1896 
1897 	rq->special = tio;
1898 	rq->cmd_flags |= REQ_DONTPREP;
1899 
1900 	return BLKPREP_OK;
1901 }
1902 
1903 /*
1904  * Returns:
1905  * 0                : the request has been processed
1906  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1907  * < 0              : the request was completed due to failure
1908  */
1909 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1910 		       struct mapped_device *md)
1911 {
1912 	int r;
1913 	struct dm_target *ti = tio->ti;
1914 	struct request *clone = NULL;
1915 
1916 	if (tio->clone) {
1917 		clone = tio->clone;
1918 		r = ti->type->map_rq(ti, clone, &tio->info);
1919 	} else {
1920 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1921 		if (r < 0) {
1922 			/* The target wants to complete the I/O */
1923 			dm_kill_unmapped_request(rq, r);
1924 			return r;
1925 		}
1926 		if (r != DM_MAPIO_REMAPPED)
1927 			return r;
1928 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1929 			/* -ENOMEM */
1930 			ti->type->release_clone_rq(clone);
1931 			return DM_MAPIO_REQUEUE;
1932 		}
1933 	}
1934 
1935 	switch (r) {
1936 	case DM_MAPIO_SUBMITTED:
1937 		/* The target has taken the I/O to submit by itself later */
1938 		break;
1939 	case DM_MAPIO_REMAPPED:
1940 		/* The target has remapped the I/O so dispatch it */
1941 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1942 				     blk_rq_pos(rq));
1943 		dm_dispatch_clone_request(clone, rq);
1944 		break;
1945 	case DM_MAPIO_REQUEUE:
1946 		/* The target wants to requeue the I/O */
1947 		dm_requeue_original_request(md, tio->orig);
1948 		break;
1949 	default:
1950 		if (r > 0) {
1951 			DMWARN("unimplemented target map return value: %d", r);
1952 			BUG();
1953 		}
1954 
1955 		/* The target wants to complete the I/O */
1956 		dm_kill_unmapped_request(rq, r);
1957 		return r;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 static void map_tio_request(struct kthread_work *work)
1964 {
1965 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1966 	struct request *rq = tio->orig;
1967 	struct mapped_device *md = tio->md;
1968 
1969 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1970 		dm_requeue_original_request(md, rq);
1971 }
1972 
1973 static void dm_start_request(struct mapped_device *md, struct request *orig)
1974 {
1975 	if (!orig->q->mq_ops)
1976 		blk_start_request(orig);
1977 	else
1978 		blk_mq_start_request(orig);
1979 	atomic_inc(&md->pending[rq_data_dir(orig)]);
1980 
1981 	if (md->seq_rq_merge_deadline_usecs) {
1982 		md->last_rq_pos = rq_end_sector(orig);
1983 		md->last_rq_rw = rq_data_dir(orig);
1984 		md->last_rq_start_time = ktime_get();
1985 	}
1986 
1987 	if (unlikely(dm_stats_used(&md->stats))) {
1988 		struct dm_rq_target_io *tio = tio_from_request(orig);
1989 		tio->duration_jiffies = jiffies;
1990 		tio->n_sectors = blk_rq_sectors(orig);
1991 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1992 				    tio->n_sectors, false, 0, &tio->stats_aux);
1993 	}
1994 
1995 	/*
1996 	 * Hold the md reference here for the in-flight I/O.
1997 	 * We can't rely on the reference count by device opener,
1998 	 * because the device may be closed during the request completion
1999 	 * when all bios are completed.
2000 	 * See the comment in rq_completed() too.
2001 	 */
2002 	dm_get(md);
2003 }
2004 
2005 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2006 
2007 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2008 {
2009 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2010 }
2011 
2012 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2013 						     const char *buf, size_t count)
2014 {
2015 	unsigned deadline;
2016 
2017 	if (!dm_request_based(md) || md->use_blk_mq)
2018 		return count;
2019 
2020 	if (kstrtouint(buf, 10, &deadline))
2021 		return -EINVAL;
2022 
2023 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2024 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2025 
2026 	md->seq_rq_merge_deadline_usecs = deadline;
2027 
2028 	return count;
2029 }
2030 
2031 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2032 {
2033 	ktime_t kt_deadline;
2034 
2035 	if (!md->seq_rq_merge_deadline_usecs)
2036 		return false;
2037 
2038 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2039 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2040 
2041 	return !ktime_after(ktime_get(), kt_deadline);
2042 }
2043 
2044 /*
2045  * q->request_fn for request-based dm.
2046  * Called with the queue lock held.
2047  */
2048 static void dm_request_fn(struct request_queue *q)
2049 {
2050 	struct mapped_device *md = q->queuedata;
2051 	int srcu_idx;
2052 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2053 	struct dm_target *ti;
2054 	struct request *rq;
2055 	struct dm_rq_target_io *tio;
2056 	sector_t pos;
2057 
2058 	/*
2059 	 * For suspend, check blk_queue_stopped() and increment
2060 	 * ->pending within a single queue_lock not to increment the
2061 	 * number of in-flight I/Os after the queue is stopped in
2062 	 * dm_suspend().
2063 	 */
2064 	while (!blk_queue_stopped(q)) {
2065 		rq = blk_peek_request(q);
2066 		if (!rq)
2067 			goto out;
2068 
2069 		/* always use block 0 to find the target for flushes for now */
2070 		pos = 0;
2071 		if (!(rq->cmd_flags & REQ_FLUSH))
2072 			pos = blk_rq_pos(rq);
2073 
2074 		ti = dm_table_find_target(map, pos);
2075 		if (!dm_target_is_valid(ti)) {
2076 			/*
2077 			 * Must perform setup, that rq_completed() requires,
2078 			 * before calling dm_kill_unmapped_request
2079 			 */
2080 			DMERR_LIMIT("request attempted access beyond the end of device");
2081 			dm_start_request(md, rq);
2082 			dm_kill_unmapped_request(rq, -EIO);
2083 			continue;
2084 		}
2085 
2086 		if (dm_request_peeked_before_merge_deadline(md) &&
2087 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2088 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2089 			goto delay_and_out;
2090 
2091 		if (ti->type->busy && ti->type->busy(ti))
2092 			goto delay_and_out;
2093 
2094 		dm_start_request(md, rq);
2095 
2096 		tio = tio_from_request(rq);
2097 		/* Establish tio->ti before queuing work (map_tio_request) */
2098 		tio->ti = ti;
2099 		queue_kthread_work(&md->kworker, &tio->work);
2100 		BUG_ON(!irqs_disabled());
2101 	}
2102 
2103 	goto out;
2104 
2105 delay_and_out:
2106 	blk_delay_queue(q, HZ / 100);
2107 out:
2108 	dm_put_live_table(md, srcu_idx);
2109 }
2110 
2111 static int dm_any_congested(void *congested_data, int bdi_bits)
2112 {
2113 	int r = bdi_bits;
2114 	struct mapped_device *md = congested_data;
2115 	struct dm_table *map;
2116 
2117 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2118 		map = dm_get_live_table_fast(md);
2119 		if (map) {
2120 			/*
2121 			 * Request-based dm cares about only own queue for
2122 			 * the query about congestion status of request_queue
2123 			 */
2124 			if (dm_request_based(md))
2125 				r = md->queue->backing_dev_info.wb.state &
2126 				    bdi_bits;
2127 			else
2128 				r = dm_table_any_congested(map, bdi_bits);
2129 		}
2130 		dm_put_live_table_fast(md);
2131 	}
2132 
2133 	return r;
2134 }
2135 
2136 /*-----------------------------------------------------------------
2137  * An IDR is used to keep track of allocated minor numbers.
2138  *---------------------------------------------------------------*/
2139 static void free_minor(int minor)
2140 {
2141 	spin_lock(&_minor_lock);
2142 	idr_remove(&_minor_idr, minor);
2143 	spin_unlock(&_minor_lock);
2144 }
2145 
2146 /*
2147  * See if the device with a specific minor # is free.
2148  */
2149 static int specific_minor(int minor)
2150 {
2151 	int r;
2152 
2153 	if (minor >= (1 << MINORBITS))
2154 		return -EINVAL;
2155 
2156 	idr_preload(GFP_KERNEL);
2157 	spin_lock(&_minor_lock);
2158 
2159 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2160 
2161 	spin_unlock(&_minor_lock);
2162 	idr_preload_end();
2163 	if (r < 0)
2164 		return r == -ENOSPC ? -EBUSY : r;
2165 	return 0;
2166 }
2167 
2168 static int next_free_minor(int *minor)
2169 {
2170 	int r;
2171 
2172 	idr_preload(GFP_KERNEL);
2173 	spin_lock(&_minor_lock);
2174 
2175 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2176 
2177 	spin_unlock(&_minor_lock);
2178 	idr_preload_end();
2179 	if (r < 0)
2180 		return r;
2181 	*minor = r;
2182 	return 0;
2183 }
2184 
2185 static const struct block_device_operations dm_blk_dops;
2186 
2187 static void dm_wq_work(struct work_struct *work);
2188 
2189 static void dm_init_md_queue(struct mapped_device *md)
2190 {
2191 	/*
2192 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2193 	 * devices.  The type of this dm device may not have been decided yet.
2194 	 * The type is decided at the first table loading time.
2195 	 * To prevent problematic device stacking, clear the queue flag
2196 	 * for request stacking support until then.
2197 	 *
2198 	 * This queue is new, so no concurrency on the queue_flags.
2199 	 */
2200 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2201 }
2202 
2203 static void dm_init_old_md_queue(struct mapped_device *md)
2204 {
2205 	md->use_blk_mq = false;
2206 	dm_init_md_queue(md);
2207 
2208 	/*
2209 	 * Initialize aspects of queue that aren't relevant for blk-mq
2210 	 */
2211 	md->queue->queuedata = md;
2212 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2213 	md->queue->backing_dev_info.congested_data = md;
2214 
2215 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2216 }
2217 
2218 static void cleanup_mapped_device(struct mapped_device *md)
2219 {
2220 	if (md->wq)
2221 		destroy_workqueue(md->wq);
2222 	if (md->kworker_task)
2223 		kthread_stop(md->kworker_task);
2224 	if (md->io_pool)
2225 		mempool_destroy(md->io_pool);
2226 	if (md->rq_pool)
2227 		mempool_destroy(md->rq_pool);
2228 	if (md->bs)
2229 		bioset_free(md->bs);
2230 
2231 	cleanup_srcu_struct(&md->io_barrier);
2232 
2233 	if (md->disk) {
2234 		spin_lock(&_minor_lock);
2235 		md->disk->private_data = NULL;
2236 		spin_unlock(&_minor_lock);
2237 		if (blk_get_integrity(md->disk))
2238 			blk_integrity_unregister(md->disk);
2239 		del_gendisk(md->disk);
2240 		put_disk(md->disk);
2241 	}
2242 
2243 	if (md->queue)
2244 		blk_cleanup_queue(md->queue);
2245 
2246 	if (md->bdev) {
2247 		bdput(md->bdev);
2248 		md->bdev = NULL;
2249 	}
2250 }
2251 
2252 /*
2253  * Allocate and initialise a blank device with a given minor.
2254  */
2255 static struct mapped_device *alloc_dev(int minor)
2256 {
2257 	int r;
2258 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2259 	void *old_md;
2260 
2261 	if (!md) {
2262 		DMWARN("unable to allocate device, out of memory.");
2263 		return NULL;
2264 	}
2265 
2266 	if (!try_module_get(THIS_MODULE))
2267 		goto bad_module_get;
2268 
2269 	/* get a minor number for the dev */
2270 	if (minor == DM_ANY_MINOR)
2271 		r = next_free_minor(&minor);
2272 	else
2273 		r = specific_minor(minor);
2274 	if (r < 0)
2275 		goto bad_minor;
2276 
2277 	r = init_srcu_struct(&md->io_barrier);
2278 	if (r < 0)
2279 		goto bad_io_barrier;
2280 
2281 	md->use_blk_mq = use_blk_mq;
2282 	md->type = DM_TYPE_NONE;
2283 	mutex_init(&md->suspend_lock);
2284 	mutex_init(&md->type_lock);
2285 	mutex_init(&md->table_devices_lock);
2286 	spin_lock_init(&md->deferred_lock);
2287 	atomic_set(&md->holders, 1);
2288 	atomic_set(&md->open_count, 0);
2289 	atomic_set(&md->event_nr, 0);
2290 	atomic_set(&md->uevent_seq, 0);
2291 	INIT_LIST_HEAD(&md->uevent_list);
2292 	INIT_LIST_HEAD(&md->table_devices);
2293 	spin_lock_init(&md->uevent_lock);
2294 
2295 	md->queue = blk_alloc_queue(GFP_KERNEL);
2296 	if (!md->queue)
2297 		goto bad;
2298 
2299 	dm_init_md_queue(md);
2300 
2301 	md->disk = alloc_disk(1);
2302 	if (!md->disk)
2303 		goto bad;
2304 
2305 	atomic_set(&md->pending[0], 0);
2306 	atomic_set(&md->pending[1], 0);
2307 	init_waitqueue_head(&md->wait);
2308 	INIT_WORK(&md->work, dm_wq_work);
2309 	init_waitqueue_head(&md->eventq);
2310 	init_completion(&md->kobj_holder.completion);
2311 	md->kworker_task = NULL;
2312 
2313 	md->disk->major = _major;
2314 	md->disk->first_minor = minor;
2315 	md->disk->fops = &dm_blk_dops;
2316 	md->disk->queue = md->queue;
2317 	md->disk->private_data = md;
2318 	sprintf(md->disk->disk_name, "dm-%d", minor);
2319 	add_disk(md->disk);
2320 	format_dev_t(md->name, MKDEV(_major, minor));
2321 
2322 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2323 	if (!md->wq)
2324 		goto bad;
2325 
2326 	md->bdev = bdget_disk(md->disk, 0);
2327 	if (!md->bdev)
2328 		goto bad;
2329 
2330 	bio_init(&md->flush_bio);
2331 	md->flush_bio.bi_bdev = md->bdev;
2332 	md->flush_bio.bi_rw = WRITE_FLUSH;
2333 
2334 	dm_stats_init(&md->stats);
2335 
2336 	/* Populate the mapping, nobody knows we exist yet */
2337 	spin_lock(&_minor_lock);
2338 	old_md = idr_replace(&_minor_idr, md, minor);
2339 	spin_unlock(&_minor_lock);
2340 
2341 	BUG_ON(old_md != MINOR_ALLOCED);
2342 
2343 	return md;
2344 
2345 bad:
2346 	cleanup_mapped_device(md);
2347 bad_io_barrier:
2348 	free_minor(minor);
2349 bad_minor:
2350 	module_put(THIS_MODULE);
2351 bad_module_get:
2352 	kfree(md);
2353 	return NULL;
2354 }
2355 
2356 static void unlock_fs(struct mapped_device *md);
2357 
2358 static void free_dev(struct mapped_device *md)
2359 {
2360 	int minor = MINOR(disk_devt(md->disk));
2361 
2362 	unlock_fs(md);
2363 
2364 	cleanup_mapped_device(md);
2365 	if (md->use_blk_mq)
2366 		blk_mq_free_tag_set(&md->tag_set);
2367 
2368 	free_table_devices(&md->table_devices);
2369 	dm_stats_cleanup(&md->stats);
2370 	free_minor(minor);
2371 
2372 	module_put(THIS_MODULE);
2373 	kfree(md);
2374 }
2375 
2376 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2377 {
2378 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2379 
2380 	if (md->bs) {
2381 		/* The md already has necessary mempools. */
2382 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2383 			/*
2384 			 * Reload bioset because front_pad may have changed
2385 			 * because a different table was loaded.
2386 			 */
2387 			bioset_free(md->bs);
2388 			md->bs = p->bs;
2389 			p->bs = NULL;
2390 		}
2391 		/*
2392 		 * There's no need to reload with request-based dm
2393 		 * because the size of front_pad doesn't change.
2394 		 * Note for future: If you are to reload bioset,
2395 		 * prep-ed requests in the queue may refer
2396 		 * to bio from the old bioset, so you must walk
2397 		 * through the queue to unprep.
2398 		 */
2399 		goto out;
2400 	}
2401 
2402 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2403 
2404 	md->io_pool = p->io_pool;
2405 	p->io_pool = NULL;
2406 	md->rq_pool = p->rq_pool;
2407 	p->rq_pool = NULL;
2408 	md->bs = p->bs;
2409 	p->bs = NULL;
2410 
2411 out:
2412 	/* mempool bind completed, no longer need any mempools in the table */
2413 	dm_table_free_md_mempools(t);
2414 }
2415 
2416 /*
2417  * Bind a table to the device.
2418  */
2419 static void event_callback(void *context)
2420 {
2421 	unsigned long flags;
2422 	LIST_HEAD(uevents);
2423 	struct mapped_device *md = (struct mapped_device *) context;
2424 
2425 	spin_lock_irqsave(&md->uevent_lock, flags);
2426 	list_splice_init(&md->uevent_list, &uevents);
2427 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2428 
2429 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2430 
2431 	atomic_inc(&md->event_nr);
2432 	wake_up(&md->eventq);
2433 }
2434 
2435 /*
2436  * Protected by md->suspend_lock obtained by dm_swap_table().
2437  */
2438 static void __set_size(struct mapped_device *md, sector_t size)
2439 {
2440 	set_capacity(md->disk, size);
2441 
2442 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2443 }
2444 
2445 /*
2446  * Returns old map, which caller must destroy.
2447  */
2448 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2449 			       struct queue_limits *limits)
2450 {
2451 	struct dm_table *old_map;
2452 	struct request_queue *q = md->queue;
2453 	sector_t size;
2454 
2455 	size = dm_table_get_size(t);
2456 
2457 	/*
2458 	 * Wipe any geometry if the size of the table changed.
2459 	 */
2460 	if (size != dm_get_size(md))
2461 		memset(&md->geometry, 0, sizeof(md->geometry));
2462 
2463 	__set_size(md, size);
2464 
2465 	dm_table_event_callback(t, event_callback, md);
2466 
2467 	/*
2468 	 * The queue hasn't been stopped yet, if the old table type wasn't
2469 	 * for request-based during suspension.  So stop it to prevent
2470 	 * I/O mapping before resume.
2471 	 * This must be done before setting the queue restrictions,
2472 	 * because request-based dm may be run just after the setting.
2473 	 */
2474 	if (dm_table_request_based(t))
2475 		stop_queue(q);
2476 
2477 	__bind_mempools(md, t);
2478 
2479 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2480 	rcu_assign_pointer(md->map, t);
2481 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2482 
2483 	dm_table_set_restrictions(t, q, limits);
2484 	if (old_map)
2485 		dm_sync_table(md);
2486 
2487 	return old_map;
2488 }
2489 
2490 /*
2491  * Returns unbound table for the caller to free.
2492  */
2493 static struct dm_table *__unbind(struct mapped_device *md)
2494 {
2495 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2496 
2497 	if (!map)
2498 		return NULL;
2499 
2500 	dm_table_event_callback(map, NULL, NULL);
2501 	RCU_INIT_POINTER(md->map, NULL);
2502 	dm_sync_table(md);
2503 
2504 	return map;
2505 }
2506 
2507 /*
2508  * Constructor for a new device.
2509  */
2510 int dm_create(int minor, struct mapped_device **result)
2511 {
2512 	struct mapped_device *md;
2513 
2514 	md = alloc_dev(minor);
2515 	if (!md)
2516 		return -ENXIO;
2517 
2518 	dm_sysfs_init(md);
2519 
2520 	*result = md;
2521 	return 0;
2522 }
2523 
2524 /*
2525  * Functions to manage md->type.
2526  * All are required to hold md->type_lock.
2527  */
2528 void dm_lock_md_type(struct mapped_device *md)
2529 {
2530 	mutex_lock(&md->type_lock);
2531 }
2532 
2533 void dm_unlock_md_type(struct mapped_device *md)
2534 {
2535 	mutex_unlock(&md->type_lock);
2536 }
2537 
2538 void dm_set_md_type(struct mapped_device *md, unsigned type)
2539 {
2540 	BUG_ON(!mutex_is_locked(&md->type_lock));
2541 	md->type = type;
2542 }
2543 
2544 unsigned dm_get_md_type(struct mapped_device *md)
2545 {
2546 	BUG_ON(!mutex_is_locked(&md->type_lock));
2547 	return md->type;
2548 }
2549 
2550 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2551 {
2552 	return md->immutable_target_type;
2553 }
2554 
2555 /*
2556  * The queue_limits are only valid as long as you have a reference
2557  * count on 'md'.
2558  */
2559 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2560 {
2561 	BUG_ON(!atomic_read(&md->holders));
2562 	return &md->queue->limits;
2563 }
2564 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2565 
2566 static void init_rq_based_worker_thread(struct mapped_device *md)
2567 {
2568 	/* Initialize the request-based DM worker thread */
2569 	init_kthread_worker(&md->kworker);
2570 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2571 				       "kdmwork-%s", dm_device_name(md));
2572 }
2573 
2574 /*
2575  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2576  */
2577 static int dm_init_request_based_queue(struct mapped_device *md)
2578 {
2579 	struct request_queue *q = NULL;
2580 
2581 	/* Fully initialize the queue */
2582 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2583 	if (!q)
2584 		return -EINVAL;
2585 
2586 	/* disable dm_request_fn's merge heuristic by default */
2587 	md->seq_rq_merge_deadline_usecs = 0;
2588 
2589 	md->queue = q;
2590 	dm_init_old_md_queue(md);
2591 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2592 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2593 
2594 	init_rq_based_worker_thread(md);
2595 
2596 	elv_register_queue(md->queue);
2597 
2598 	return 0;
2599 }
2600 
2601 static int dm_mq_init_request(void *data, struct request *rq,
2602 			      unsigned int hctx_idx, unsigned int request_idx,
2603 			      unsigned int numa_node)
2604 {
2605 	struct mapped_device *md = data;
2606 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2607 
2608 	/*
2609 	 * Must initialize md member of tio, otherwise it won't
2610 	 * be available in dm_mq_queue_rq.
2611 	 */
2612 	tio->md = md;
2613 
2614 	return 0;
2615 }
2616 
2617 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2618 			  const struct blk_mq_queue_data *bd)
2619 {
2620 	struct request *rq = bd->rq;
2621 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2622 	struct mapped_device *md = tio->md;
2623 	int srcu_idx;
2624 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2625 	struct dm_target *ti;
2626 	sector_t pos;
2627 
2628 	/* always use block 0 to find the target for flushes for now */
2629 	pos = 0;
2630 	if (!(rq->cmd_flags & REQ_FLUSH))
2631 		pos = blk_rq_pos(rq);
2632 
2633 	ti = dm_table_find_target(map, pos);
2634 	if (!dm_target_is_valid(ti)) {
2635 		dm_put_live_table(md, srcu_idx);
2636 		DMERR_LIMIT("request attempted access beyond the end of device");
2637 		/*
2638 		 * Must perform setup, that rq_completed() requires,
2639 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2640 		 */
2641 		dm_start_request(md, rq);
2642 		return BLK_MQ_RQ_QUEUE_ERROR;
2643 	}
2644 	dm_put_live_table(md, srcu_idx);
2645 
2646 	if (ti->type->busy && ti->type->busy(ti))
2647 		return BLK_MQ_RQ_QUEUE_BUSY;
2648 
2649 	dm_start_request(md, rq);
2650 
2651 	/* Init tio using md established in .init_request */
2652 	init_tio(tio, rq, md);
2653 
2654 	/*
2655 	 * Establish tio->ti before queuing work (map_tio_request)
2656 	 * or making direct call to map_request().
2657 	 */
2658 	tio->ti = ti;
2659 
2660 	/* Clone the request if underlying devices aren't blk-mq */
2661 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2662 		/* clone request is allocated at the end of the pdu */
2663 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2664 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2665 		queue_kthread_work(&md->kworker, &tio->work);
2666 	} else {
2667 		/* Direct call is fine since .queue_rq allows allocations */
2668 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2669 			/* Undo dm_start_request() before requeuing */
2670 			rq_end_stats(md, rq);
2671 			rq_completed(md, rq_data_dir(rq), false);
2672 			return BLK_MQ_RQ_QUEUE_BUSY;
2673 		}
2674 	}
2675 
2676 	return BLK_MQ_RQ_QUEUE_OK;
2677 }
2678 
2679 static struct blk_mq_ops dm_mq_ops = {
2680 	.queue_rq = dm_mq_queue_rq,
2681 	.map_queue = blk_mq_map_queue,
2682 	.complete = dm_softirq_done,
2683 	.init_request = dm_mq_init_request,
2684 };
2685 
2686 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2687 {
2688 	unsigned md_type = dm_get_md_type(md);
2689 	struct request_queue *q;
2690 	int err;
2691 
2692 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2693 	md->tag_set.ops = &dm_mq_ops;
2694 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2695 	md->tag_set.numa_node = NUMA_NO_NODE;
2696 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2697 	md->tag_set.nr_hw_queues = 1;
2698 	if (md_type == DM_TYPE_REQUEST_BASED) {
2699 		/* make the memory for non-blk-mq clone part of the pdu */
2700 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2701 	} else
2702 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2703 	md->tag_set.driver_data = md;
2704 
2705 	err = blk_mq_alloc_tag_set(&md->tag_set);
2706 	if (err)
2707 		return err;
2708 
2709 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2710 	if (IS_ERR(q)) {
2711 		err = PTR_ERR(q);
2712 		goto out_tag_set;
2713 	}
2714 	md->queue = q;
2715 	dm_init_md_queue(md);
2716 
2717 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2718 	blk_mq_register_disk(md->disk);
2719 
2720 	if (md_type == DM_TYPE_REQUEST_BASED)
2721 		init_rq_based_worker_thread(md);
2722 
2723 	return 0;
2724 
2725 out_tag_set:
2726 	blk_mq_free_tag_set(&md->tag_set);
2727 	return err;
2728 }
2729 
2730 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2731 {
2732 	if (type == DM_TYPE_BIO_BASED)
2733 		return type;
2734 
2735 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2736 }
2737 
2738 /*
2739  * Setup the DM device's queue based on md's type
2740  */
2741 int dm_setup_md_queue(struct mapped_device *md)
2742 {
2743 	int r;
2744 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2745 
2746 	switch (md_type) {
2747 	case DM_TYPE_REQUEST_BASED:
2748 		r = dm_init_request_based_queue(md);
2749 		if (r) {
2750 			DMWARN("Cannot initialize queue for request-based mapped device");
2751 			return r;
2752 		}
2753 		break;
2754 	case DM_TYPE_MQ_REQUEST_BASED:
2755 		r = dm_init_request_based_blk_mq_queue(md);
2756 		if (r) {
2757 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2758 			return r;
2759 		}
2760 		break;
2761 	case DM_TYPE_BIO_BASED:
2762 		dm_init_old_md_queue(md);
2763 		blk_queue_make_request(md->queue, dm_make_request);
2764 		break;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 struct mapped_device *dm_get_md(dev_t dev)
2771 {
2772 	struct mapped_device *md;
2773 	unsigned minor = MINOR(dev);
2774 
2775 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2776 		return NULL;
2777 
2778 	spin_lock(&_minor_lock);
2779 
2780 	md = idr_find(&_minor_idr, minor);
2781 	if (md) {
2782 		if ((md == MINOR_ALLOCED ||
2783 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2784 		     dm_deleting_md(md) ||
2785 		     test_bit(DMF_FREEING, &md->flags))) {
2786 			md = NULL;
2787 			goto out;
2788 		}
2789 		dm_get(md);
2790 	}
2791 
2792 out:
2793 	spin_unlock(&_minor_lock);
2794 
2795 	return md;
2796 }
2797 EXPORT_SYMBOL_GPL(dm_get_md);
2798 
2799 void *dm_get_mdptr(struct mapped_device *md)
2800 {
2801 	return md->interface_ptr;
2802 }
2803 
2804 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2805 {
2806 	md->interface_ptr = ptr;
2807 }
2808 
2809 void dm_get(struct mapped_device *md)
2810 {
2811 	atomic_inc(&md->holders);
2812 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2813 }
2814 
2815 int dm_hold(struct mapped_device *md)
2816 {
2817 	spin_lock(&_minor_lock);
2818 	if (test_bit(DMF_FREEING, &md->flags)) {
2819 		spin_unlock(&_minor_lock);
2820 		return -EBUSY;
2821 	}
2822 	dm_get(md);
2823 	spin_unlock(&_minor_lock);
2824 	return 0;
2825 }
2826 EXPORT_SYMBOL_GPL(dm_hold);
2827 
2828 const char *dm_device_name(struct mapped_device *md)
2829 {
2830 	return md->name;
2831 }
2832 EXPORT_SYMBOL_GPL(dm_device_name);
2833 
2834 static void __dm_destroy(struct mapped_device *md, bool wait)
2835 {
2836 	struct dm_table *map;
2837 	int srcu_idx;
2838 
2839 	might_sleep();
2840 
2841 	spin_lock(&_minor_lock);
2842 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2843 	set_bit(DMF_FREEING, &md->flags);
2844 	spin_unlock(&_minor_lock);
2845 
2846 	if (dm_request_based(md) && md->kworker_task)
2847 		flush_kthread_worker(&md->kworker);
2848 
2849 	/*
2850 	 * Take suspend_lock so that presuspend and postsuspend methods
2851 	 * do not race with internal suspend.
2852 	 */
2853 	mutex_lock(&md->suspend_lock);
2854 	map = dm_get_live_table(md, &srcu_idx);
2855 	if (!dm_suspended_md(md)) {
2856 		dm_table_presuspend_targets(map);
2857 		dm_table_postsuspend_targets(map);
2858 	}
2859 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2860 	dm_put_live_table(md, srcu_idx);
2861 	mutex_unlock(&md->suspend_lock);
2862 
2863 	/*
2864 	 * Rare, but there may be I/O requests still going to complete,
2865 	 * for example.  Wait for all references to disappear.
2866 	 * No one should increment the reference count of the mapped_device,
2867 	 * after the mapped_device state becomes DMF_FREEING.
2868 	 */
2869 	if (wait)
2870 		while (atomic_read(&md->holders))
2871 			msleep(1);
2872 	else if (atomic_read(&md->holders))
2873 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2874 		       dm_device_name(md), atomic_read(&md->holders));
2875 
2876 	dm_sysfs_exit(md);
2877 	dm_table_destroy(__unbind(md));
2878 	free_dev(md);
2879 }
2880 
2881 void dm_destroy(struct mapped_device *md)
2882 {
2883 	__dm_destroy(md, true);
2884 }
2885 
2886 void dm_destroy_immediate(struct mapped_device *md)
2887 {
2888 	__dm_destroy(md, false);
2889 }
2890 
2891 void dm_put(struct mapped_device *md)
2892 {
2893 	atomic_dec(&md->holders);
2894 }
2895 EXPORT_SYMBOL_GPL(dm_put);
2896 
2897 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2898 {
2899 	int r = 0;
2900 	DECLARE_WAITQUEUE(wait, current);
2901 
2902 	add_wait_queue(&md->wait, &wait);
2903 
2904 	while (1) {
2905 		set_current_state(interruptible);
2906 
2907 		if (!md_in_flight(md))
2908 			break;
2909 
2910 		if (interruptible == TASK_INTERRUPTIBLE &&
2911 		    signal_pending(current)) {
2912 			r = -EINTR;
2913 			break;
2914 		}
2915 
2916 		io_schedule();
2917 	}
2918 	set_current_state(TASK_RUNNING);
2919 
2920 	remove_wait_queue(&md->wait, &wait);
2921 
2922 	return r;
2923 }
2924 
2925 /*
2926  * Process the deferred bios
2927  */
2928 static void dm_wq_work(struct work_struct *work)
2929 {
2930 	struct mapped_device *md = container_of(work, struct mapped_device,
2931 						work);
2932 	struct bio *c;
2933 	int srcu_idx;
2934 	struct dm_table *map;
2935 
2936 	map = dm_get_live_table(md, &srcu_idx);
2937 
2938 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2939 		spin_lock_irq(&md->deferred_lock);
2940 		c = bio_list_pop(&md->deferred);
2941 		spin_unlock_irq(&md->deferred_lock);
2942 
2943 		if (!c)
2944 			break;
2945 
2946 		if (dm_request_based(md))
2947 			generic_make_request(c);
2948 		else
2949 			__split_and_process_bio(md, map, c);
2950 	}
2951 
2952 	dm_put_live_table(md, srcu_idx);
2953 }
2954 
2955 static void dm_queue_flush(struct mapped_device *md)
2956 {
2957 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2958 	smp_mb__after_atomic();
2959 	queue_work(md->wq, &md->work);
2960 }
2961 
2962 /*
2963  * Swap in a new table, returning the old one for the caller to destroy.
2964  */
2965 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2966 {
2967 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2968 	struct queue_limits limits;
2969 	int r;
2970 
2971 	mutex_lock(&md->suspend_lock);
2972 
2973 	/* device must be suspended */
2974 	if (!dm_suspended_md(md))
2975 		goto out;
2976 
2977 	/*
2978 	 * If the new table has no data devices, retain the existing limits.
2979 	 * This helps multipath with queue_if_no_path if all paths disappear,
2980 	 * then new I/O is queued based on these limits, and then some paths
2981 	 * reappear.
2982 	 */
2983 	if (dm_table_has_no_data_devices(table)) {
2984 		live_map = dm_get_live_table_fast(md);
2985 		if (live_map)
2986 			limits = md->queue->limits;
2987 		dm_put_live_table_fast(md);
2988 	}
2989 
2990 	if (!live_map) {
2991 		r = dm_calculate_queue_limits(table, &limits);
2992 		if (r) {
2993 			map = ERR_PTR(r);
2994 			goto out;
2995 		}
2996 	}
2997 
2998 	map = __bind(md, table, &limits);
2999 
3000 out:
3001 	mutex_unlock(&md->suspend_lock);
3002 	return map;
3003 }
3004 
3005 /*
3006  * Functions to lock and unlock any filesystem running on the
3007  * device.
3008  */
3009 static int lock_fs(struct mapped_device *md)
3010 {
3011 	int r;
3012 
3013 	WARN_ON(md->frozen_sb);
3014 
3015 	md->frozen_sb = freeze_bdev(md->bdev);
3016 	if (IS_ERR(md->frozen_sb)) {
3017 		r = PTR_ERR(md->frozen_sb);
3018 		md->frozen_sb = NULL;
3019 		return r;
3020 	}
3021 
3022 	set_bit(DMF_FROZEN, &md->flags);
3023 
3024 	return 0;
3025 }
3026 
3027 static void unlock_fs(struct mapped_device *md)
3028 {
3029 	if (!test_bit(DMF_FROZEN, &md->flags))
3030 		return;
3031 
3032 	thaw_bdev(md->bdev, md->frozen_sb);
3033 	md->frozen_sb = NULL;
3034 	clear_bit(DMF_FROZEN, &md->flags);
3035 }
3036 
3037 /*
3038  * If __dm_suspend returns 0, the device is completely quiescent
3039  * now. There is no request-processing activity. All new requests
3040  * are being added to md->deferred list.
3041  *
3042  * Caller must hold md->suspend_lock
3043  */
3044 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3045 			unsigned suspend_flags, int interruptible)
3046 {
3047 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3048 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3049 	int r;
3050 
3051 	/*
3052 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3053 	 * This flag is cleared before dm_suspend returns.
3054 	 */
3055 	if (noflush)
3056 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3057 
3058 	/*
3059 	 * This gets reverted if there's an error later and the targets
3060 	 * provide the .presuspend_undo hook.
3061 	 */
3062 	dm_table_presuspend_targets(map);
3063 
3064 	/*
3065 	 * Flush I/O to the device.
3066 	 * Any I/O submitted after lock_fs() may not be flushed.
3067 	 * noflush takes precedence over do_lockfs.
3068 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3069 	 */
3070 	if (!noflush && do_lockfs) {
3071 		r = lock_fs(md);
3072 		if (r) {
3073 			dm_table_presuspend_undo_targets(map);
3074 			return r;
3075 		}
3076 	}
3077 
3078 	/*
3079 	 * Here we must make sure that no processes are submitting requests
3080 	 * to target drivers i.e. no one may be executing
3081 	 * __split_and_process_bio. This is called from dm_request and
3082 	 * dm_wq_work.
3083 	 *
3084 	 * To get all processes out of __split_and_process_bio in dm_request,
3085 	 * we take the write lock. To prevent any process from reentering
3086 	 * __split_and_process_bio from dm_request and quiesce the thread
3087 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3088 	 * flush_workqueue(md->wq).
3089 	 */
3090 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3091 	if (map)
3092 		synchronize_srcu(&md->io_barrier);
3093 
3094 	/*
3095 	 * Stop md->queue before flushing md->wq in case request-based
3096 	 * dm defers requests to md->wq from md->queue.
3097 	 */
3098 	if (dm_request_based(md)) {
3099 		stop_queue(md->queue);
3100 		if (md->kworker_task)
3101 			flush_kthread_worker(&md->kworker);
3102 	}
3103 
3104 	flush_workqueue(md->wq);
3105 
3106 	/*
3107 	 * At this point no more requests are entering target request routines.
3108 	 * We call dm_wait_for_completion to wait for all existing requests
3109 	 * to finish.
3110 	 */
3111 	r = dm_wait_for_completion(md, interruptible);
3112 
3113 	if (noflush)
3114 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3115 	if (map)
3116 		synchronize_srcu(&md->io_barrier);
3117 
3118 	/* were we interrupted ? */
3119 	if (r < 0) {
3120 		dm_queue_flush(md);
3121 
3122 		if (dm_request_based(md))
3123 			start_queue(md->queue);
3124 
3125 		unlock_fs(md);
3126 		dm_table_presuspend_undo_targets(map);
3127 		/* pushback list is already flushed, so skip flush */
3128 	}
3129 
3130 	return r;
3131 }
3132 
3133 /*
3134  * We need to be able to change a mapping table under a mounted
3135  * filesystem.  For example we might want to move some data in
3136  * the background.  Before the table can be swapped with
3137  * dm_bind_table, dm_suspend must be called to flush any in
3138  * flight bios and ensure that any further io gets deferred.
3139  */
3140 /*
3141  * Suspend mechanism in request-based dm.
3142  *
3143  * 1. Flush all I/Os by lock_fs() if needed.
3144  * 2. Stop dispatching any I/O by stopping the request_queue.
3145  * 3. Wait for all in-flight I/Os to be completed or requeued.
3146  *
3147  * To abort suspend, start the request_queue.
3148  */
3149 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3150 {
3151 	struct dm_table *map = NULL;
3152 	int r = 0;
3153 
3154 retry:
3155 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3156 
3157 	if (dm_suspended_md(md)) {
3158 		r = -EINVAL;
3159 		goto out_unlock;
3160 	}
3161 
3162 	if (dm_suspended_internally_md(md)) {
3163 		/* already internally suspended, wait for internal resume */
3164 		mutex_unlock(&md->suspend_lock);
3165 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3166 		if (r)
3167 			return r;
3168 		goto retry;
3169 	}
3170 
3171 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3172 
3173 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3174 	if (r)
3175 		goto out_unlock;
3176 
3177 	set_bit(DMF_SUSPENDED, &md->flags);
3178 
3179 	dm_table_postsuspend_targets(map);
3180 
3181 out_unlock:
3182 	mutex_unlock(&md->suspend_lock);
3183 	return r;
3184 }
3185 
3186 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3187 {
3188 	if (map) {
3189 		int r = dm_table_resume_targets(map);
3190 		if (r)
3191 			return r;
3192 	}
3193 
3194 	dm_queue_flush(md);
3195 
3196 	/*
3197 	 * Flushing deferred I/Os must be done after targets are resumed
3198 	 * so that mapping of targets can work correctly.
3199 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3200 	 */
3201 	if (dm_request_based(md))
3202 		start_queue(md->queue);
3203 
3204 	unlock_fs(md);
3205 
3206 	return 0;
3207 }
3208 
3209 int dm_resume(struct mapped_device *md)
3210 {
3211 	int r = -EINVAL;
3212 	struct dm_table *map = NULL;
3213 
3214 retry:
3215 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3216 
3217 	if (!dm_suspended_md(md))
3218 		goto out;
3219 
3220 	if (dm_suspended_internally_md(md)) {
3221 		/* already internally suspended, wait for internal resume */
3222 		mutex_unlock(&md->suspend_lock);
3223 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3224 		if (r)
3225 			return r;
3226 		goto retry;
3227 	}
3228 
3229 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3230 	if (!map || !dm_table_get_size(map))
3231 		goto out;
3232 
3233 	r = __dm_resume(md, map);
3234 	if (r)
3235 		goto out;
3236 
3237 	clear_bit(DMF_SUSPENDED, &md->flags);
3238 
3239 	r = 0;
3240 out:
3241 	mutex_unlock(&md->suspend_lock);
3242 
3243 	return r;
3244 }
3245 
3246 /*
3247  * Internal suspend/resume works like userspace-driven suspend. It waits
3248  * until all bios finish and prevents issuing new bios to the target drivers.
3249  * It may be used only from the kernel.
3250  */
3251 
3252 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3253 {
3254 	struct dm_table *map = NULL;
3255 
3256 	if (md->internal_suspend_count++)
3257 		return; /* nested internal suspend */
3258 
3259 	if (dm_suspended_md(md)) {
3260 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3261 		return; /* nest suspend */
3262 	}
3263 
3264 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3265 
3266 	/*
3267 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3268 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3269 	 * would require changing .presuspend to return an error -- avoid this
3270 	 * until there is a need for more elaborate variants of internal suspend.
3271 	 */
3272 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3273 
3274 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3275 
3276 	dm_table_postsuspend_targets(map);
3277 }
3278 
3279 static void __dm_internal_resume(struct mapped_device *md)
3280 {
3281 	BUG_ON(!md->internal_suspend_count);
3282 
3283 	if (--md->internal_suspend_count)
3284 		return; /* resume from nested internal suspend */
3285 
3286 	if (dm_suspended_md(md))
3287 		goto done; /* resume from nested suspend */
3288 
3289 	/*
3290 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3291 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3292 	 */
3293 	(void) __dm_resume(md, NULL);
3294 
3295 done:
3296 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3297 	smp_mb__after_atomic();
3298 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3299 }
3300 
3301 void dm_internal_suspend_noflush(struct mapped_device *md)
3302 {
3303 	mutex_lock(&md->suspend_lock);
3304 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3305 	mutex_unlock(&md->suspend_lock);
3306 }
3307 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3308 
3309 void dm_internal_resume(struct mapped_device *md)
3310 {
3311 	mutex_lock(&md->suspend_lock);
3312 	__dm_internal_resume(md);
3313 	mutex_unlock(&md->suspend_lock);
3314 }
3315 EXPORT_SYMBOL_GPL(dm_internal_resume);
3316 
3317 /*
3318  * Fast variants of internal suspend/resume hold md->suspend_lock,
3319  * which prevents interaction with userspace-driven suspend.
3320  */
3321 
3322 void dm_internal_suspend_fast(struct mapped_device *md)
3323 {
3324 	mutex_lock(&md->suspend_lock);
3325 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3326 		return;
3327 
3328 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3329 	synchronize_srcu(&md->io_barrier);
3330 	flush_workqueue(md->wq);
3331 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3332 }
3333 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3334 
3335 void dm_internal_resume_fast(struct mapped_device *md)
3336 {
3337 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3338 		goto done;
3339 
3340 	dm_queue_flush(md);
3341 
3342 done:
3343 	mutex_unlock(&md->suspend_lock);
3344 }
3345 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3346 
3347 /*-----------------------------------------------------------------
3348  * Event notification.
3349  *---------------------------------------------------------------*/
3350 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3351 		       unsigned cookie)
3352 {
3353 	char udev_cookie[DM_COOKIE_LENGTH];
3354 	char *envp[] = { udev_cookie, NULL };
3355 
3356 	if (!cookie)
3357 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3358 	else {
3359 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3360 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3361 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3362 					  action, envp);
3363 	}
3364 }
3365 
3366 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3367 {
3368 	return atomic_add_return(1, &md->uevent_seq);
3369 }
3370 
3371 uint32_t dm_get_event_nr(struct mapped_device *md)
3372 {
3373 	return atomic_read(&md->event_nr);
3374 }
3375 
3376 int dm_wait_event(struct mapped_device *md, int event_nr)
3377 {
3378 	return wait_event_interruptible(md->eventq,
3379 			(event_nr != atomic_read(&md->event_nr)));
3380 }
3381 
3382 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3383 {
3384 	unsigned long flags;
3385 
3386 	spin_lock_irqsave(&md->uevent_lock, flags);
3387 	list_add(elist, &md->uevent_list);
3388 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3389 }
3390 
3391 /*
3392  * The gendisk is only valid as long as you have a reference
3393  * count on 'md'.
3394  */
3395 struct gendisk *dm_disk(struct mapped_device *md)
3396 {
3397 	return md->disk;
3398 }
3399 EXPORT_SYMBOL_GPL(dm_disk);
3400 
3401 struct kobject *dm_kobject(struct mapped_device *md)
3402 {
3403 	return &md->kobj_holder.kobj;
3404 }
3405 
3406 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3407 {
3408 	struct mapped_device *md;
3409 
3410 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3411 
3412 	if (test_bit(DMF_FREEING, &md->flags) ||
3413 	    dm_deleting_md(md))
3414 		return NULL;
3415 
3416 	dm_get(md);
3417 	return md;
3418 }
3419 
3420 int dm_suspended_md(struct mapped_device *md)
3421 {
3422 	return test_bit(DMF_SUSPENDED, &md->flags);
3423 }
3424 
3425 int dm_suspended_internally_md(struct mapped_device *md)
3426 {
3427 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3428 }
3429 
3430 int dm_test_deferred_remove_flag(struct mapped_device *md)
3431 {
3432 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3433 }
3434 
3435 int dm_suspended(struct dm_target *ti)
3436 {
3437 	return dm_suspended_md(dm_table_get_md(ti->table));
3438 }
3439 EXPORT_SYMBOL_GPL(dm_suspended);
3440 
3441 int dm_noflush_suspending(struct dm_target *ti)
3442 {
3443 	return __noflush_suspending(dm_table_get_md(ti->table));
3444 }
3445 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3446 
3447 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3448 					    unsigned integrity, unsigned per_bio_data_size)
3449 {
3450 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3451 	struct kmem_cache *cachep = NULL;
3452 	unsigned int pool_size = 0;
3453 	unsigned int front_pad;
3454 
3455 	if (!pools)
3456 		return NULL;
3457 
3458 	type = filter_md_type(type, md);
3459 
3460 	switch (type) {
3461 	case DM_TYPE_BIO_BASED:
3462 		cachep = _io_cache;
3463 		pool_size = dm_get_reserved_bio_based_ios();
3464 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3465 		break;
3466 	case DM_TYPE_REQUEST_BASED:
3467 		cachep = _rq_tio_cache;
3468 		pool_size = dm_get_reserved_rq_based_ios();
3469 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3470 		if (!pools->rq_pool)
3471 			goto out;
3472 		/* fall through to setup remaining rq-based pools */
3473 	case DM_TYPE_MQ_REQUEST_BASED:
3474 		if (!pool_size)
3475 			pool_size = dm_get_reserved_rq_based_ios();
3476 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3477 		/* per_bio_data_size is not used. See __bind_mempools(). */
3478 		WARN_ON(per_bio_data_size != 0);
3479 		break;
3480 	default:
3481 		BUG();
3482 	}
3483 
3484 	if (cachep) {
3485 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3486 		if (!pools->io_pool)
3487 			goto out;
3488 	}
3489 
3490 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3491 	if (!pools->bs)
3492 		goto out;
3493 
3494 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3495 		goto out;
3496 
3497 	return pools;
3498 
3499 out:
3500 	dm_free_md_mempools(pools);
3501 
3502 	return NULL;
3503 }
3504 
3505 void dm_free_md_mempools(struct dm_md_mempools *pools)
3506 {
3507 	if (!pools)
3508 		return;
3509 
3510 	if (pools->io_pool)
3511 		mempool_destroy(pools->io_pool);
3512 
3513 	if (pools->rq_pool)
3514 		mempool_destroy(pools->rq_pool);
3515 
3516 	if (pools->bs)
3517 		bioset_free(pools->bs);
3518 
3519 	kfree(pools);
3520 }
3521 
3522 static const struct block_device_operations dm_blk_dops = {
3523 	.open = dm_blk_open,
3524 	.release = dm_blk_close,
3525 	.ioctl = dm_blk_ioctl,
3526 	.getgeo = dm_blk_getgeo,
3527 	.owner = THIS_MODULE
3528 };
3529 
3530 /*
3531  * module hooks
3532  */
3533 module_init(dm_init);
3534 module_exit(dm_exit);
3535 
3536 module_param(major, uint, 0);
3537 MODULE_PARM_DESC(major, "The major number of the device mapper");
3538 
3539 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3540 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3541 
3542 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3543 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3544 
3545 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3546 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3547 
3548 MODULE_DESCRIPTION(DM_NAME " driver");
3549 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3550 MODULE_LICENSE("GPL");
3551