xref: /openbmc/linux/drivers/md/dm.c (revision bfebd1cdb497a57757c83f5fbf1a29931591e2a4)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 };
90 
91 /*
92  * For request-based dm - the bio clones we allocate are embedded in these
93  * structs.
94  *
95  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96  * the bioset is created - this means the bio has to come at the end of the
97  * struct.
98  */
99 struct dm_rq_clone_bio_info {
100 	struct bio *orig;
101 	struct dm_rq_target_io *tio;
102 	struct bio clone;
103 };
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127 
128 /*
129  * A dummy definition to make RCU happy.
130  * struct dm_table should never be dereferenced in this file.
131  */
132 struct dm_table {
133 	int undefined__;
134 };
135 
136 /*
137  * Work processed by per-device workqueue.
138  */
139 struct mapped_device {
140 	struct srcu_struct io_barrier;
141 	struct mutex suspend_lock;
142 	atomic_t holders;
143 	atomic_t open_count;
144 
145 	/*
146 	 * The current mapping.
147 	 * Use dm_get_live_table{_fast} or take suspend_lock for
148 	 * dereference.
149 	 */
150 	struct dm_table __rcu *map;
151 
152 	struct list_head table_devices;
153 	struct mutex table_devices_lock;
154 
155 	unsigned long flags;
156 
157 	struct request_queue *queue;
158 	unsigned type;
159 	/* Protect queue and type against concurrent access. */
160 	struct mutex type_lock;
161 
162 	struct target_type *immutable_target_type;
163 
164 	struct gendisk *disk;
165 	char name[16];
166 
167 	void *interface_ptr;
168 
169 	/*
170 	 * A list of ios that arrived while we were suspended.
171 	 */
172 	atomic_t pending[2];
173 	wait_queue_head_t wait;
174 	struct work_struct work;
175 	struct bio_list deferred;
176 	spinlock_t deferred_lock;
177 
178 	/*
179 	 * Processing queue (flush)
180 	 */
181 	struct workqueue_struct *wq;
182 
183 	/*
184 	 * io objects are allocated from here.
185 	 */
186 	mempool_t *io_pool;
187 	mempool_t *rq_pool;
188 
189 	struct bio_set *bs;
190 
191 	/*
192 	 * Event handling.
193 	 */
194 	atomic_t event_nr;
195 	wait_queue_head_t eventq;
196 	atomic_t uevent_seq;
197 	struct list_head uevent_list;
198 	spinlock_t uevent_lock; /* Protect access to uevent_list */
199 
200 	/*
201 	 * freeze/thaw support require holding onto a super block
202 	 */
203 	struct super_block *frozen_sb;
204 	struct block_device *bdev;
205 
206 	/* forced geometry settings */
207 	struct hd_geometry geometry;
208 
209 	/* kobject and completion */
210 	struct dm_kobject_holder kobj_holder;
211 
212 	/* zero-length flush that will be cloned and submitted to targets */
213 	struct bio flush_bio;
214 
215 	/* the number of internal suspends */
216 	unsigned internal_suspend_count;
217 
218 	struct dm_stats stats;
219 
220 	struct kthread_worker kworker;
221 	struct task_struct *kworker_task;
222 
223 	/* for request-based merge heuristic in dm_request_fn() */
224 	unsigned seq_rq_merge_deadline_usecs;
225 	int last_rq_rw;
226 	sector_t last_rq_pos;
227 	ktime_t last_rq_start_time;
228 
229 	/* for blk-mq request-based DM support */
230 	struct blk_mq_tag_set tag_set;
231 };
232 
233 /*
234  * For mempools pre-allocation at the table loading time.
235  */
236 struct dm_md_mempools {
237 	mempool_t *io_pool;
238 	mempool_t *rq_pool;
239 	struct bio_set *bs;
240 };
241 
242 struct table_device {
243 	struct list_head list;
244 	atomic_t count;
245 	struct dm_dev dm_dev;
246 };
247 
248 #define RESERVED_BIO_BASED_IOS		16
249 #define RESERVED_REQUEST_BASED_IOS	256
250 #define RESERVED_MAX_IOS		1024
251 static struct kmem_cache *_io_cache;
252 static struct kmem_cache *_rq_tio_cache;
253 static struct kmem_cache *_rq_cache;
254 
255 /*
256  * Bio-based DM's mempools' reserved IOs set by the user.
257  */
258 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
259 
260 /*
261  * Request-based DM's mempools' reserved IOs set by the user.
262  */
263 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
264 
265 static unsigned __dm_get_module_param(unsigned *module_param,
266 				      unsigned def, unsigned max)
267 {
268 	unsigned param = ACCESS_ONCE(*module_param);
269 	unsigned modified_param = 0;
270 
271 	if (!param)
272 		modified_param = def;
273 	else if (param > max)
274 		modified_param = max;
275 
276 	if (modified_param) {
277 		(void)cmpxchg(module_param, param, modified_param);
278 		param = modified_param;
279 	}
280 
281 	return param;
282 }
283 
284 unsigned dm_get_reserved_bio_based_ios(void)
285 {
286 	return __dm_get_module_param(&reserved_bio_based_ios,
287 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
288 }
289 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
290 
291 unsigned dm_get_reserved_rq_based_ios(void)
292 {
293 	return __dm_get_module_param(&reserved_rq_based_ios,
294 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
295 }
296 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
297 
298 static int __init local_init(void)
299 {
300 	int r = -ENOMEM;
301 
302 	/* allocate a slab for the dm_ios */
303 	_io_cache = KMEM_CACHE(dm_io, 0);
304 	if (!_io_cache)
305 		return r;
306 
307 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
308 	if (!_rq_tio_cache)
309 		goto out_free_io_cache;
310 
311 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
312 				      __alignof__(struct request), 0, NULL);
313 	if (!_rq_cache)
314 		goto out_free_rq_tio_cache;
315 
316 	r = dm_uevent_init();
317 	if (r)
318 		goto out_free_rq_cache;
319 
320 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
321 	if (!deferred_remove_workqueue) {
322 		r = -ENOMEM;
323 		goto out_uevent_exit;
324 	}
325 
326 	_major = major;
327 	r = register_blkdev(_major, _name);
328 	if (r < 0)
329 		goto out_free_workqueue;
330 
331 	if (!_major)
332 		_major = r;
333 
334 	return 0;
335 
336 out_free_workqueue:
337 	destroy_workqueue(deferred_remove_workqueue);
338 out_uevent_exit:
339 	dm_uevent_exit();
340 out_free_rq_cache:
341 	kmem_cache_destroy(_rq_cache);
342 out_free_rq_tio_cache:
343 	kmem_cache_destroy(_rq_tio_cache);
344 out_free_io_cache:
345 	kmem_cache_destroy(_io_cache);
346 
347 	return r;
348 }
349 
350 static void local_exit(void)
351 {
352 	flush_scheduled_work();
353 	destroy_workqueue(deferred_remove_workqueue);
354 
355 	kmem_cache_destroy(_rq_cache);
356 	kmem_cache_destroy(_rq_tio_cache);
357 	kmem_cache_destroy(_io_cache);
358 	unregister_blkdev(_major, _name);
359 	dm_uevent_exit();
360 
361 	_major = 0;
362 
363 	DMINFO("cleaned up");
364 }
365 
366 static int (*_inits[])(void) __initdata = {
367 	local_init,
368 	dm_target_init,
369 	dm_linear_init,
370 	dm_stripe_init,
371 	dm_io_init,
372 	dm_kcopyd_init,
373 	dm_interface_init,
374 	dm_statistics_init,
375 };
376 
377 static void (*_exits[])(void) = {
378 	local_exit,
379 	dm_target_exit,
380 	dm_linear_exit,
381 	dm_stripe_exit,
382 	dm_io_exit,
383 	dm_kcopyd_exit,
384 	dm_interface_exit,
385 	dm_statistics_exit,
386 };
387 
388 static int __init dm_init(void)
389 {
390 	const int count = ARRAY_SIZE(_inits);
391 
392 	int r, i;
393 
394 	for (i = 0; i < count; i++) {
395 		r = _inits[i]();
396 		if (r)
397 			goto bad;
398 	}
399 
400 	return 0;
401 
402       bad:
403 	while (i--)
404 		_exits[i]();
405 
406 	return r;
407 }
408 
409 static void __exit dm_exit(void)
410 {
411 	int i = ARRAY_SIZE(_exits);
412 
413 	while (i--)
414 		_exits[i]();
415 
416 	/*
417 	 * Should be empty by this point.
418 	 */
419 	idr_destroy(&_minor_idr);
420 }
421 
422 /*
423  * Block device functions
424  */
425 int dm_deleting_md(struct mapped_device *md)
426 {
427 	return test_bit(DMF_DELETING, &md->flags);
428 }
429 
430 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
431 {
432 	struct mapped_device *md;
433 
434 	spin_lock(&_minor_lock);
435 
436 	md = bdev->bd_disk->private_data;
437 	if (!md)
438 		goto out;
439 
440 	if (test_bit(DMF_FREEING, &md->flags) ||
441 	    dm_deleting_md(md)) {
442 		md = NULL;
443 		goto out;
444 	}
445 
446 	dm_get(md);
447 	atomic_inc(&md->open_count);
448 out:
449 	spin_unlock(&_minor_lock);
450 
451 	return md ? 0 : -ENXIO;
452 }
453 
454 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
455 {
456 	struct mapped_device *md;
457 
458 	spin_lock(&_minor_lock);
459 
460 	md = disk->private_data;
461 	if (WARN_ON(!md))
462 		goto out;
463 
464 	if (atomic_dec_and_test(&md->open_count) &&
465 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
466 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
467 
468 	dm_put(md);
469 out:
470 	spin_unlock(&_minor_lock);
471 }
472 
473 int dm_open_count(struct mapped_device *md)
474 {
475 	return atomic_read(&md->open_count);
476 }
477 
478 /*
479  * Guarantees nothing is using the device before it's deleted.
480  */
481 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
482 {
483 	int r = 0;
484 
485 	spin_lock(&_minor_lock);
486 
487 	if (dm_open_count(md)) {
488 		r = -EBUSY;
489 		if (mark_deferred)
490 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
491 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
492 		r = -EEXIST;
493 	else
494 		set_bit(DMF_DELETING, &md->flags);
495 
496 	spin_unlock(&_minor_lock);
497 
498 	return r;
499 }
500 
501 int dm_cancel_deferred_remove(struct mapped_device *md)
502 {
503 	int r = 0;
504 
505 	spin_lock(&_minor_lock);
506 
507 	if (test_bit(DMF_DELETING, &md->flags))
508 		r = -EBUSY;
509 	else
510 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
511 
512 	spin_unlock(&_minor_lock);
513 
514 	return r;
515 }
516 
517 static void do_deferred_remove(struct work_struct *w)
518 {
519 	dm_deferred_remove();
520 }
521 
522 sector_t dm_get_size(struct mapped_device *md)
523 {
524 	return get_capacity(md->disk);
525 }
526 
527 struct request_queue *dm_get_md_queue(struct mapped_device *md)
528 {
529 	return md->queue;
530 }
531 
532 struct dm_stats *dm_get_stats(struct mapped_device *md)
533 {
534 	return &md->stats;
535 }
536 
537 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
538 {
539 	struct mapped_device *md = bdev->bd_disk->private_data;
540 
541 	return dm_get_geometry(md, geo);
542 }
543 
544 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
545 			unsigned int cmd, unsigned long arg)
546 {
547 	struct mapped_device *md = bdev->bd_disk->private_data;
548 	int srcu_idx;
549 	struct dm_table *map;
550 	struct dm_target *tgt;
551 	int r = -ENOTTY;
552 
553 retry:
554 	map = dm_get_live_table(md, &srcu_idx);
555 
556 	if (!map || !dm_table_get_size(map))
557 		goto out;
558 
559 	/* We only support devices that have a single target */
560 	if (dm_table_get_num_targets(map) != 1)
561 		goto out;
562 
563 	tgt = dm_table_get_target(map, 0);
564 	if (!tgt->type->ioctl)
565 		goto out;
566 
567 	if (dm_suspended_md(md)) {
568 		r = -EAGAIN;
569 		goto out;
570 	}
571 
572 	r = tgt->type->ioctl(tgt, cmd, arg);
573 
574 out:
575 	dm_put_live_table(md, srcu_idx);
576 
577 	if (r == -ENOTCONN) {
578 		msleep(10);
579 		goto retry;
580 	}
581 
582 	return r;
583 }
584 
585 static struct dm_io *alloc_io(struct mapped_device *md)
586 {
587 	return mempool_alloc(md->io_pool, GFP_NOIO);
588 }
589 
590 static void free_io(struct mapped_device *md, struct dm_io *io)
591 {
592 	mempool_free(io, md->io_pool);
593 }
594 
595 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
596 {
597 	bio_put(&tio->clone);
598 }
599 
600 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
601 					    gfp_t gfp_mask)
602 {
603 	return mempool_alloc(md->io_pool, gfp_mask);
604 }
605 
606 static void free_rq_tio(struct dm_rq_target_io *tio)
607 {
608 	mempool_free(tio, tio->md->io_pool);
609 }
610 
611 static struct request *alloc_clone_request(struct mapped_device *md,
612 					   gfp_t gfp_mask)
613 {
614 	return mempool_alloc(md->rq_pool, gfp_mask);
615 }
616 
617 static void free_clone_request(struct mapped_device *md, struct request *rq)
618 {
619 	mempool_free(rq, md->rq_pool);
620 }
621 
622 static int md_in_flight(struct mapped_device *md)
623 {
624 	return atomic_read(&md->pending[READ]) +
625 	       atomic_read(&md->pending[WRITE]);
626 }
627 
628 static void start_io_acct(struct dm_io *io)
629 {
630 	struct mapped_device *md = io->md;
631 	struct bio *bio = io->bio;
632 	int cpu;
633 	int rw = bio_data_dir(bio);
634 
635 	io->start_time = jiffies;
636 
637 	cpu = part_stat_lock();
638 	part_round_stats(cpu, &dm_disk(md)->part0);
639 	part_stat_unlock();
640 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
641 		atomic_inc_return(&md->pending[rw]));
642 
643 	if (unlikely(dm_stats_used(&md->stats)))
644 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
645 				    bio_sectors(bio), false, 0, &io->stats_aux);
646 }
647 
648 static void end_io_acct(struct dm_io *io)
649 {
650 	struct mapped_device *md = io->md;
651 	struct bio *bio = io->bio;
652 	unsigned long duration = jiffies - io->start_time;
653 	int pending;
654 	int rw = bio_data_dir(bio);
655 
656 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
657 
658 	if (unlikely(dm_stats_used(&md->stats)))
659 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 				    bio_sectors(bio), true, duration, &io->stats_aux);
661 
662 	/*
663 	 * After this is decremented the bio must not be touched if it is
664 	 * a flush.
665 	 */
666 	pending = atomic_dec_return(&md->pending[rw]);
667 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
668 	pending += atomic_read(&md->pending[rw^0x1]);
669 
670 	/* nudge anyone waiting on suspend queue */
671 	if (!pending)
672 		wake_up(&md->wait);
673 }
674 
675 /*
676  * Add the bio to the list of deferred io.
677  */
678 static void queue_io(struct mapped_device *md, struct bio *bio)
679 {
680 	unsigned long flags;
681 
682 	spin_lock_irqsave(&md->deferred_lock, flags);
683 	bio_list_add(&md->deferred, bio);
684 	spin_unlock_irqrestore(&md->deferred_lock, flags);
685 	queue_work(md->wq, &md->work);
686 }
687 
688 /*
689  * Everyone (including functions in this file), should use this
690  * function to access the md->map field, and make sure they call
691  * dm_put_live_table() when finished.
692  */
693 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
694 {
695 	*srcu_idx = srcu_read_lock(&md->io_barrier);
696 
697 	return srcu_dereference(md->map, &md->io_barrier);
698 }
699 
700 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
701 {
702 	srcu_read_unlock(&md->io_barrier, srcu_idx);
703 }
704 
705 void dm_sync_table(struct mapped_device *md)
706 {
707 	synchronize_srcu(&md->io_barrier);
708 	synchronize_rcu_expedited();
709 }
710 
711 /*
712  * A fast alternative to dm_get_live_table/dm_put_live_table.
713  * The caller must not block between these two functions.
714  */
715 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
716 {
717 	rcu_read_lock();
718 	return rcu_dereference(md->map);
719 }
720 
721 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
722 {
723 	rcu_read_unlock();
724 }
725 
726 /*
727  * Open a table device so we can use it as a map destination.
728  */
729 static int open_table_device(struct table_device *td, dev_t dev,
730 			     struct mapped_device *md)
731 {
732 	static char *_claim_ptr = "I belong to device-mapper";
733 	struct block_device *bdev;
734 
735 	int r;
736 
737 	BUG_ON(td->dm_dev.bdev);
738 
739 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
740 	if (IS_ERR(bdev))
741 		return PTR_ERR(bdev);
742 
743 	r = bd_link_disk_holder(bdev, dm_disk(md));
744 	if (r) {
745 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
746 		return r;
747 	}
748 
749 	td->dm_dev.bdev = bdev;
750 	return 0;
751 }
752 
753 /*
754  * Close a table device that we've been using.
755  */
756 static void close_table_device(struct table_device *td, struct mapped_device *md)
757 {
758 	if (!td->dm_dev.bdev)
759 		return;
760 
761 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
762 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
763 	td->dm_dev.bdev = NULL;
764 }
765 
766 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
767 					      fmode_t mode) {
768 	struct table_device *td;
769 
770 	list_for_each_entry(td, l, list)
771 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
772 			return td;
773 
774 	return NULL;
775 }
776 
777 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
778 			struct dm_dev **result) {
779 	int r;
780 	struct table_device *td;
781 
782 	mutex_lock(&md->table_devices_lock);
783 	td = find_table_device(&md->table_devices, dev, mode);
784 	if (!td) {
785 		td = kmalloc(sizeof(*td), GFP_KERNEL);
786 		if (!td) {
787 			mutex_unlock(&md->table_devices_lock);
788 			return -ENOMEM;
789 		}
790 
791 		td->dm_dev.mode = mode;
792 		td->dm_dev.bdev = NULL;
793 
794 		if ((r = open_table_device(td, dev, md))) {
795 			mutex_unlock(&md->table_devices_lock);
796 			kfree(td);
797 			return r;
798 		}
799 
800 		format_dev_t(td->dm_dev.name, dev);
801 
802 		atomic_set(&td->count, 0);
803 		list_add(&td->list, &md->table_devices);
804 	}
805 	atomic_inc(&td->count);
806 	mutex_unlock(&md->table_devices_lock);
807 
808 	*result = &td->dm_dev;
809 	return 0;
810 }
811 EXPORT_SYMBOL_GPL(dm_get_table_device);
812 
813 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
814 {
815 	struct table_device *td = container_of(d, struct table_device, dm_dev);
816 
817 	mutex_lock(&md->table_devices_lock);
818 	if (atomic_dec_and_test(&td->count)) {
819 		close_table_device(td, md);
820 		list_del(&td->list);
821 		kfree(td);
822 	}
823 	mutex_unlock(&md->table_devices_lock);
824 }
825 EXPORT_SYMBOL(dm_put_table_device);
826 
827 static void free_table_devices(struct list_head *devices)
828 {
829 	struct list_head *tmp, *next;
830 
831 	list_for_each_safe(tmp, next, devices) {
832 		struct table_device *td = list_entry(tmp, struct table_device, list);
833 
834 		DMWARN("dm_destroy: %s still exists with %d references",
835 		       td->dm_dev.name, atomic_read(&td->count));
836 		kfree(td);
837 	}
838 }
839 
840 /*
841  * Get the geometry associated with a dm device
842  */
843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
844 {
845 	*geo = md->geometry;
846 
847 	return 0;
848 }
849 
850 /*
851  * Set the geometry of a device.
852  */
853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
856 
857 	if (geo->start > sz) {
858 		DMWARN("Start sector is beyond the geometry limits.");
859 		return -EINVAL;
860 	}
861 
862 	md->geometry = *geo;
863 
864 	return 0;
865 }
866 
867 /*-----------------------------------------------------------------
868  * CRUD START:
869  *   A more elegant soln is in the works that uses the queue
870  *   merge fn, unfortunately there are a couple of changes to
871  *   the block layer that I want to make for this.  So in the
872  *   interests of getting something for people to use I give
873  *   you this clearly demarcated crap.
874  *---------------------------------------------------------------*/
875 
876 static int __noflush_suspending(struct mapped_device *md)
877 {
878 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
879 }
880 
881 /*
882  * Decrements the number of outstanding ios that a bio has been
883  * cloned into, completing the original io if necc.
884  */
885 static void dec_pending(struct dm_io *io, int error)
886 {
887 	unsigned long flags;
888 	int io_error;
889 	struct bio *bio;
890 	struct mapped_device *md = io->md;
891 
892 	/* Push-back supersedes any I/O errors */
893 	if (unlikely(error)) {
894 		spin_lock_irqsave(&io->endio_lock, flags);
895 		if (!(io->error > 0 && __noflush_suspending(md)))
896 			io->error = error;
897 		spin_unlock_irqrestore(&io->endio_lock, flags);
898 	}
899 
900 	if (atomic_dec_and_test(&io->io_count)) {
901 		if (io->error == DM_ENDIO_REQUEUE) {
902 			/*
903 			 * Target requested pushing back the I/O.
904 			 */
905 			spin_lock_irqsave(&md->deferred_lock, flags);
906 			if (__noflush_suspending(md))
907 				bio_list_add_head(&md->deferred, io->bio);
908 			else
909 				/* noflush suspend was interrupted. */
910 				io->error = -EIO;
911 			spin_unlock_irqrestore(&md->deferred_lock, flags);
912 		}
913 
914 		io_error = io->error;
915 		bio = io->bio;
916 		end_io_acct(io);
917 		free_io(md, io);
918 
919 		if (io_error == DM_ENDIO_REQUEUE)
920 			return;
921 
922 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
923 			/*
924 			 * Preflush done for flush with data, reissue
925 			 * without REQ_FLUSH.
926 			 */
927 			bio->bi_rw &= ~REQ_FLUSH;
928 			queue_io(md, bio);
929 		} else {
930 			/* done with normal IO or empty flush */
931 			trace_block_bio_complete(md->queue, bio, io_error);
932 			bio_endio(bio, io_error);
933 		}
934 	}
935 }
936 
937 static void disable_write_same(struct mapped_device *md)
938 {
939 	struct queue_limits *limits = dm_get_queue_limits(md);
940 
941 	/* device doesn't really support WRITE SAME, disable it */
942 	limits->max_write_same_sectors = 0;
943 }
944 
945 static void clone_endio(struct bio *bio, int error)
946 {
947 	int r = error;
948 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
949 	struct dm_io *io = tio->io;
950 	struct mapped_device *md = tio->io->md;
951 	dm_endio_fn endio = tio->ti->type->end_io;
952 
953 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
954 		error = -EIO;
955 
956 	if (endio) {
957 		r = endio(tio->ti, bio, error);
958 		if (r < 0 || r == DM_ENDIO_REQUEUE)
959 			/*
960 			 * error and requeue request are handled
961 			 * in dec_pending().
962 			 */
963 			error = r;
964 		else if (r == DM_ENDIO_INCOMPLETE)
965 			/* The target will handle the io */
966 			return;
967 		else if (r) {
968 			DMWARN("unimplemented target endio return value: %d", r);
969 			BUG();
970 		}
971 	}
972 
973 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
974 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
975 		disable_write_same(md);
976 
977 	free_tio(md, tio);
978 	dec_pending(io, error);
979 }
980 
981 /*
982  * Partial completion handling for request-based dm
983  */
984 static void end_clone_bio(struct bio *clone, int error)
985 {
986 	struct dm_rq_clone_bio_info *info =
987 		container_of(clone, struct dm_rq_clone_bio_info, clone);
988 	struct dm_rq_target_io *tio = info->tio;
989 	struct bio *bio = info->orig;
990 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
991 
992 	bio_put(clone);
993 
994 	if (tio->error)
995 		/*
996 		 * An error has already been detected on the request.
997 		 * Once error occurred, just let clone->end_io() handle
998 		 * the remainder.
999 		 */
1000 		return;
1001 	else if (error) {
1002 		/*
1003 		 * Don't notice the error to the upper layer yet.
1004 		 * The error handling decision is made by the target driver,
1005 		 * when the request is completed.
1006 		 */
1007 		tio->error = error;
1008 		return;
1009 	}
1010 
1011 	/*
1012 	 * I/O for the bio successfully completed.
1013 	 * Notice the data completion to the upper layer.
1014 	 */
1015 
1016 	/*
1017 	 * bios are processed from the head of the list.
1018 	 * So the completing bio should always be rq->bio.
1019 	 * If it's not, something wrong is happening.
1020 	 */
1021 	if (tio->orig->bio != bio)
1022 		DMERR("bio completion is going in the middle of the request");
1023 
1024 	/*
1025 	 * Update the original request.
1026 	 * Do not use blk_end_request() here, because it may complete
1027 	 * the original request before the clone, and break the ordering.
1028 	 */
1029 	blk_update_request(tio->orig, 0, nr_bytes);
1030 }
1031 
1032 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1033 {
1034 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1035 }
1036 
1037 /*
1038  * Don't touch any member of the md after calling this function because
1039  * the md may be freed in dm_put() at the end of this function.
1040  * Or do dm_get() before calling this function and dm_put() later.
1041  */
1042 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1043 {
1044 	int nr_requests_pending;
1045 
1046 	atomic_dec(&md->pending[rw]);
1047 
1048 	/* nudge anyone waiting on suspend queue */
1049 	nr_requests_pending = md_in_flight(md);
1050 	if (!nr_requests_pending)
1051 		wake_up(&md->wait);
1052 
1053 	/*
1054 	 * Run this off this callpath, as drivers could invoke end_io while
1055 	 * inside their request_fn (and holding the queue lock). Calling
1056 	 * back into ->request_fn() could deadlock attempting to grab the
1057 	 * queue lock again.
1058 	 */
1059 	if (run_queue) {
1060 		if (md->queue->mq_ops)
1061 			blk_mq_run_hw_queues(md->queue, true);
1062 		else if (!nr_requests_pending ||
1063 			 (nr_requests_pending >= md->queue->nr_congestion_on))
1064 			blk_run_queue_async(md->queue);
1065 	}
1066 
1067 	/*
1068 	 * dm_put() must be at the end of this function. See the comment above
1069 	 */
1070 	dm_put(md);
1071 }
1072 
1073 static void free_rq_clone(struct request *clone)
1074 {
1075 	struct dm_rq_target_io *tio = clone->end_io_data;
1076 	struct mapped_device *md = tio->md;
1077 
1078 	blk_rq_unprep_clone(clone);
1079 
1080 	if (clone->q && clone->q->mq_ops)
1081 		tio->ti->type->release_clone_rq(clone);
1082 	else
1083 		free_clone_request(md, clone);
1084 
1085 	if (!md->queue->mq_ops)
1086 		free_rq_tio(tio);
1087 }
1088 
1089 /*
1090  * Complete the clone and the original request.
1091  * Must be called without clone's queue lock held,
1092  * see end_clone_request() for more details.
1093  */
1094 static void dm_end_request(struct request *clone, int error)
1095 {
1096 	int rw = rq_data_dir(clone);
1097 	struct dm_rq_target_io *tio = clone->end_io_data;
1098 	struct mapped_device *md = tio->md;
1099 	struct request *rq = tio->orig;
1100 
1101 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1102 		rq->errors = clone->errors;
1103 		rq->resid_len = clone->resid_len;
1104 
1105 		if (rq->sense)
1106 			/*
1107 			 * We are using the sense buffer of the original
1108 			 * request.
1109 			 * So setting the length of the sense data is enough.
1110 			 */
1111 			rq->sense_len = clone->sense_len;
1112 	}
1113 
1114 	free_rq_clone(clone);
1115 	if (!rq->q->mq_ops)
1116 		blk_end_request_all(rq, error);
1117 	else
1118 		blk_mq_end_request(rq, error);
1119 	rq_completed(md, rw, true);
1120 }
1121 
1122 static void dm_unprep_request(struct request *rq)
1123 {
1124 	struct dm_rq_target_io *tio = tio_from_request(rq);
1125 	struct request *clone = tio->clone;
1126 
1127 	if (!rq->q->mq_ops) {
1128 		rq->special = NULL;
1129 		rq->cmd_flags &= ~REQ_DONTPREP;
1130 	}
1131 
1132 	if (clone)
1133 		free_rq_clone(clone);
1134 }
1135 
1136 /*
1137  * Requeue the original request of a clone.
1138  */
1139 static void old_requeue_request(struct request *rq)
1140 {
1141 	struct request_queue *q = rq->q;
1142 	unsigned long flags;
1143 
1144 	spin_lock_irqsave(q->queue_lock, flags);
1145 	blk_requeue_request(q, rq);
1146 	spin_unlock_irqrestore(q->queue_lock, flags);
1147 }
1148 
1149 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1150 						 struct request *rq)
1151 {
1152 	int rw = rq_data_dir(rq);
1153 
1154 	dm_unprep_request(rq);
1155 
1156 	if (!rq->q->mq_ops)
1157 		old_requeue_request(rq);
1158 	else {
1159 		blk_mq_requeue_request(rq);
1160 		blk_mq_kick_requeue_list(rq->q);
1161 	}
1162 
1163 	rq_completed(md, rw, false);
1164 }
1165 
1166 static void dm_requeue_unmapped_request(struct request *clone)
1167 {
1168 	struct dm_rq_target_io *tio = clone->end_io_data;
1169 
1170 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1171 }
1172 
1173 static void old_stop_queue(struct request_queue *q)
1174 {
1175 	unsigned long flags;
1176 
1177 	if (blk_queue_stopped(q))
1178 		return;
1179 
1180 	spin_lock_irqsave(q->queue_lock, flags);
1181 	blk_stop_queue(q);
1182 	spin_unlock_irqrestore(q->queue_lock, flags);
1183 }
1184 
1185 static void stop_queue(struct request_queue *q)
1186 {
1187 	if (!q->mq_ops)
1188 		old_stop_queue(q);
1189 	else
1190 		blk_mq_stop_hw_queues(q);
1191 }
1192 
1193 static void old_start_queue(struct request_queue *q)
1194 {
1195 	unsigned long flags;
1196 
1197 	spin_lock_irqsave(q->queue_lock, flags);
1198 	if (blk_queue_stopped(q))
1199 		blk_start_queue(q);
1200 	spin_unlock_irqrestore(q->queue_lock, flags);
1201 }
1202 
1203 static void start_queue(struct request_queue *q)
1204 {
1205 	if (!q->mq_ops)
1206 		old_start_queue(q);
1207 	else
1208 		blk_mq_start_stopped_hw_queues(q, true);
1209 }
1210 
1211 static void dm_done(struct request *clone, int error, bool mapped)
1212 {
1213 	int r = error;
1214 	struct dm_rq_target_io *tio = clone->end_io_data;
1215 	dm_request_endio_fn rq_end_io = NULL;
1216 
1217 	if (tio->ti) {
1218 		rq_end_io = tio->ti->type->rq_end_io;
1219 
1220 		if (mapped && rq_end_io)
1221 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1222 	}
1223 
1224 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1225 		     !clone->q->limits.max_write_same_sectors))
1226 		disable_write_same(tio->md);
1227 
1228 	if (r <= 0)
1229 		/* The target wants to complete the I/O */
1230 		dm_end_request(clone, r);
1231 	else if (r == DM_ENDIO_INCOMPLETE)
1232 		/* The target will handle the I/O */
1233 		return;
1234 	else if (r == DM_ENDIO_REQUEUE)
1235 		/* The target wants to requeue the I/O */
1236 		dm_requeue_unmapped_request(clone);
1237 	else {
1238 		DMWARN("unimplemented target endio return value: %d", r);
1239 		BUG();
1240 	}
1241 }
1242 
1243 /*
1244  * Request completion handler for request-based dm
1245  */
1246 static void dm_softirq_done(struct request *rq)
1247 {
1248 	bool mapped = true;
1249 	struct dm_rq_target_io *tio = tio_from_request(rq);
1250 	struct request *clone = tio->clone;
1251 	int rw;
1252 
1253 	if (!clone) {
1254 		rw = rq_data_dir(rq);
1255 		if (!rq->q->mq_ops) {
1256 			blk_end_request_all(rq, tio->error);
1257 			rq_completed(tio->md, rw, false);
1258 			free_rq_tio(tio);
1259 		} else {
1260 			blk_mq_end_request(rq, tio->error);
1261 			rq_completed(tio->md, rw, false);
1262 		}
1263 		return;
1264 	}
1265 
1266 	if (rq->cmd_flags & REQ_FAILED)
1267 		mapped = false;
1268 
1269 	dm_done(clone, tio->error, mapped);
1270 }
1271 
1272 /*
1273  * Complete the clone and the original request with the error status
1274  * through softirq context.
1275  */
1276 static void dm_complete_request(struct request *rq, int error)
1277 {
1278 	struct dm_rq_target_io *tio = tio_from_request(rq);
1279 
1280 	tio->error = error;
1281 	blk_complete_request(rq);
1282 }
1283 
1284 /*
1285  * Complete the not-mapped clone and the original request with the error status
1286  * through softirq context.
1287  * Target's rq_end_io() function isn't called.
1288  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1289  */
1290 static void dm_kill_unmapped_request(struct request *rq, int error)
1291 {
1292 	rq->cmd_flags |= REQ_FAILED;
1293 	dm_complete_request(rq, error);
1294 }
1295 
1296 /*
1297  * Called with the clone's queue lock held (for non-blk-mq)
1298  */
1299 static void end_clone_request(struct request *clone, int error)
1300 {
1301 	struct dm_rq_target_io *tio = clone->end_io_data;
1302 
1303 	if (!clone->q->mq_ops) {
1304 		/*
1305 		 * For just cleaning up the information of the queue in which
1306 		 * the clone was dispatched.
1307 		 * The clone is *NOT* freed actually here because it is alloced
1308 		 * from dm own mempool (REQ_ALLOCED isn't set).
1309 		 */
1310 		__blk_put_request(clone->q, clone);
1311 	}
1312 
1313 	/*
1314 	 * Actual request completion is done in a softirq context which doesn't
1315 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1316 	 *     - another request may be submitted by the upper level driver
1317 	 *       of the stacking during the completion
1318 	 *     - the submission which requires queue lock may be done
1319 	 *       against this clone's queue
1320 	 */
1321 	dm_complete_request(tio->orig, error);
1322 }
1323 
1324 /*
1325  * Return maximum size of I/O possible at the supplied sector up to the current
1326  * target boundary.
1327  */
1328 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1329 {
1330 	sector_t target_offset = dm_target_offset(ti, sector);
1331 
1332 	return ti->len - target_offset;
1333 }
1334 
1335 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1336 {
1337 	sector_t len = max_io_len_target_boundary(sector, ti);
1338 	sector_t offset, max_len;
1339 
1340 	/*
1341 	 * Does the target need to split even further?
1342 	 */
1343 	if (ti->max_io_len) {
1344 		offset = dm_target_offset(ti, sector);
1345 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1346 			max_len = sector_div(offset, ti->max_io_len);
1347 		else
1348 			max_len = offset & (ti->max_io_len - 1);
1349 		max_len = ti->max_io_len - max_len;
1350 
1351 		if (len > max_len)
1352 			len = max_len;
1353 	}
1354 
1355 	return len;
1356 }
1357 
1358 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1359 {
1360 	if (len > UINT_MAX) {
1361 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1362 		      (unsigned long long)len, UINT_MAX);
1363 		ti->error = "Maximum size of target IO is too large";
1364 		return -EINVAL;
1365 	}
1366 
1367 	ti->max_io_len = (uint32_t) len;
1368 
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1372 
1373 /*
1374  * A target may call dm_accept_partial_bio only from the map routine.  It is
1375  * allowed for all bio types except REQ_FLUSH.
1376  *
1377  * dm_accept_partial_bio informs the dm that the target only wants to process
1378  * additional n_sectors sectors of the bio and the rest of the data should be
1379  * sent in a next bio.
1380  *
1381  * A diagram that explains the arithmetics:
1382  * +--------------------+---------------+-------+
1383  * |         1          |       2       |   3   |
1384  * +--------------------+---------------+-------+
1385  *
1386  * <-------------- *tio->len_ptr --------------->
1387  *                      <------- bi_size ------->
1388  *                      <-- n_sectors -->
1389  *
1390  * Region 1 was already iterated over with bio_advance or similar function.
1391  *	(it may be empty if the target doesn't use bio_advance)
1392  * Region 2 is the remaining bio size that the target wants to process.
1393  *	(it may be empty if region 1 is non-empty, although there is no reason
1394  *	 to make it empty)
1395  * The target requires that region 3 is to be sent in the next bio.
1396  *
1397  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1398  * the partially processed part (the sum of regions 1+2) must be the same for all
1399  * copies of the bio.
1400  */
1401 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1402 {
1403 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1404 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1405 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1406 	BUG_ON(bi_size > *tio->len_ptr);
1407 	BUG_ON(n_sectors > bi_size);
1408 	*tio->len_ptr -= bi_size - n_sectors;
1409 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1410 }
1411 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1412 
1413 static void __map_bio(struct dm_target_io *tio)
1414 {
1415 	int r;
1416 	sector_t sector;
1417 	struct mapped_device *md;
1418 	struct bio *clone = &tio->clone;
1419 	struct dm_target *ti = tio->ti;
1420 
1421 	clone->bi_end_io = clone_endio;
1422 
1423 	/*
1424 	 * Map the clone.  If r == 0 we don't need to do
1425 	 * anything, the target has assumed ownership of
1426 	 * this io.
1427 	 */
1428 	atomic_inc(&tio->io->io_count);
1429 	sector = clone->bi_iter.bi_sector;
1430 	r = ti->type->map(ti, clone);
1431 	if (r == DM_MAPIO_REMAPPED) {
1432 		/* the bio has been remapped so dispatch it */
1433 
1434 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1435 				      tio->io->bio->bi_bdev->bd_dev, sector);
1436 
1437 		generic_make_request(clone);
1438 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1439 		/* error the io and bail out, or requeue it if needed */
1440 		md = tio->io->md;
1441 		dec_pending(tio->io, r);
1442 		free_tio(md, tio);
1443 	} else if (r) {
1444 		DMWARN("unimplemented target map return value: %d", r);
1445 		BUG();
1446 	}
1447 }
1448 
1449 struct clone_info {
1450 	struct mapped_device *md;
1451 	struct dm_table *map;
1452 	struct bio *bio;
1453 	struct dm_io *io;
1454 	sector_t sector;
1455 	unsigned sector_count;
1456 };
1457 
1458 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1459 {
1460 	bio->bi_iter.bi_sector = sector;
1461 	bio->bi_iter.bi_size = to_bytes(len);
1462 }
1463 
1464 /*
1465  * Creates a bio that consists of range of complete bvecs.
1466  */
1467 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1468 		      sector_t sector, unsigned len)
1469 {
1470 	struct bio *clone = &tio->clone;
1471 
1472 	__bio_clone_fast(clone, bio);
1473 
1474 	if (bio_integrity(bio))
1475 		bio_integrity_clone(clone, bio, GFP_NOIO);
1476 
1477 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1478 	clone->bi_iter.bi_size = to_bytes(len);
1479 
1480 	if (bio_integrity(bio))
1481 		bio_integrity_trim(clone, 0, len);
1482 }
1483 
1484 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1485 				      struct dm_target *ti,
1486 				      unsigned target_bio_nr)
1487 {
1488 	struct dm_target_io *tio;
1489 	struct bio *clone;
1490 
1491 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1492 	tio = container_of(clone, struct dm_target_io, clone);
1493 
1494 	tio->io = ci->io;
1495 	tio->ti = ti;
1496 	tio->target_bio_nr = target_bio_nr;
1497 
1498 	return tio;
1499 }
1500 
1501 static void __clone_and_map_simple_bio(struct clone_info *ci,
1502 				       struct dm_target *ti,
1503 				       unsigned target_bio_nr, unsigned *len)
1504 {
1505 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1506 	struct bio *clone = &tio->clone;
1507 
1508 	tio->len_ptr = len;
1509 
1510 	__bio_clone_fast(clone, ci->bio);
1511 	if (len)
1512 		bio_setup_sector(clone, ci->sector, *len);
1513 
1514 	__map_bio(tio);
1515 }
1516 
1517 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1518 				  unsigned num_bios, unsigned *len)
1519 {
1520 	unsigned target_bio_nr;
1521 
1522 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1523 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1524 }
1525 
1526 static int __send_empty_flush(struct clone_info *ci)
1527 {
1528 	unsigned target_nr = 0;
1529 	struct dm_target *ti;
1530 
1531 	BUG_ON(bio_has_data(ci->bio));
1532 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1533 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1534 
1535 	return 0;
1536 }
1537 
1538 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1539 				     sector_t sector, unsigned *len)
1540 {
1541 	struct bio *bio = ci->bio;
1542 	struct dm_target_io *tio;
1543 	unsigned target_bio_nr;
1544 	unsigned num_target_bios = 1;
1545 
1546 	/*
1547 	 * Does the target want to receive duplicate copies of the bio?
1548 	 */
1549 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1550 		num_target_bios = ti->num_write_bios(ti, bio);
1551 
1552 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1553 		tio = alloc_tio(ci, ti, target_bio_nr);
1554 		tio->len_ptr = len;
1555 		clone_bio(tio, bio, sector, *len);
1556 		__map_bio(tio);
1557 	}
1558 }
1559 
1560 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1561 
1562 static unsigned get_num_discard_bios(struct dm_target *ti)
1563 {
1564 	return ti->num_discard_bios;
1565 }
1566 
1567 static unsigned get_num_write_same_bios(struct dm_target *ti)
1568 {
1569 	return ti->num_write_same_bios;
1570 }
1571 
1572 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1573 
1574 static bool is_split_required_for_discard(struct dm_target *ti)
1575 {
1576 	return ti->split_discard_bios;
1577 }
1578 
1579 static int __send_changing_extent_only(struct clone_info *ci,
1580 				       get_num_bios_fn get_num_bios,
1581 				       is_split_required_fn is_split_required)
1582 {
1583 	struct dm_target *ti;
1584 	unsigned len;
1585 	unsigned num_bios;
1586 
1587 	do {
1588 		ti = dm_table_find_target(ci->map, ci->sector);
1589 		if (!dm_target_is_valid(ti))
1590 			return -EIO;
1591 
1592 		/*
1593 		 * Even though the device advertised support for this type of
1594 		 * request, that does not mean every target supports it, and
1595 		 * reconfiguration might also have changed that since the
1596 		 * check was performed.
1597 		 */
1598 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1599 		if (!num_bios)
1600 			return -EOPNOTSUPP;
1601 
1602 		if (is_split_required && !is_split_required(ti))
1603 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1604 		else
1605 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1606 
1607 		__send_duplicate_bios(ci, ti, num_bios, &len);
1608 
1609 		ci->sector += len;
1610 	} while (ci->sector_count -= len);
1611 
1612 	return 0;
1613 }
1614 
1615 static int __send_discard(struct clone_info *ci)
1616 {
1617 	return __send_changing_extent_only(ci, get_num_discard_bios,
1618 					   is_split_required_for_discard);
1619 }
1620 
1621 static int __send_write_same(struct clone_info *ci)
1622 {
1623 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1624 }
1625 
1626 /*
1627  * Select the correct strategy for processing a non-flush bio.
1628  */
1629 static int __split_and_process_non_flush(struct clone_info *ci)
1630 {
1631 	struct bio *bio = ci->bio;
1632 	struct dm_target *ti;
1633 	unsigned len;
1634 
1635 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1636 		return __send_discard(ci);
1637 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1638 		return __send_write_same(ci);
1639 
1640 	ti = dm_table_find_target(ci->map, ci->sector);
1641 	if (!dm_target_is_valid(ti))
1642 		return -EIO;
1643 
1644 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1645 
1646 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1647 
1648 	ci->sector += len;
1649 	ci->sector_count -= len;
1650 
1651 	return 0;
1652 }
1653 
1654 /*
1655  * Entry point to split a bio into clones and submit them to the targets.
1656  */
1657 static void __split_and_process_bio(struct mapped_device *md,
1658 				    struct dm_table *map, struct bio *bio)
1659 {
1660 	struct clone_info ci;
1661 	int error = 0;
1662 
1663 	if (unlikely(!map)) {
1664 		bio_io_error(bio);
1665 		return;
1666 	}
1667 
1668 	ci.map = map;
1669 	ci.md = md;
1670 	ci.io = alloc_io(md);
1671 	ci.io->error = 0;
1672 	atomic_set(&ci.io->io_count, 1);
1673 	ci.io->bio = bio;
1674 	ci.io->md = md;
1675 	spin_lock_init(&ci.io->endio_lock);
1676 	ci.sector = bio->bi_iter.bi_sector;
1677 
1678 	start_io_acct(ci.io);
1679 
1680 	if (bio->bi_rw & REQ_FLUSH) {
1681 		ci.bio = &ci.md->flush_bio;
1682 		ci.sector_count = 0;
1683 		error = __send_empty_flush(&ci);
1684 		/* dec_pending submits any data associated with flush */
1685 	} else {
1686 		ci.bio = bio;
1687 		ci.sector_count = bio_sectors(bio);
1688 		while (ci.sector_count && !error)
1689 			error = __split_and_process_non_flush(&ci);
1690 	}
1691 
1692 	/* drop the extra reference count */
1693 	dec_pending(ci.io, error);
1694 }
1695 /*-----------------------------------------------------------------
1696  * CRUD END
1697  *---------------------------------------------------------------*/
1698 
1699 static int dm_merge_bvec(struct request_queue *q,
1700 			 struct bvec_merge_data *bvm,
1701 			 struct bio_vec *biovec)
1702 {
1703 	struct mapped_device *md = q->queuedata;
1704 	struct dm_table *map = dm_get_live_table_fast(md);
1705 	struct dm_target *ti;
1706 	sector_t max_sectors;
1707 	int max_size = 0;
1708 
1709 	if (unlikely(!map))
1710 		goto out;
1711 
1712 	ti = dm_table_find_target(map, bvm->bi_sector);
1713 	if (!dm_target_is_valid(ti))
1714 		goto out;
1715 
1716 	/*
1717 	 * Find maximum amount of I/O that won't need splitting
1718 	 */
1719 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1720 			  (sector_t) queue_max_sectors(q));
1721 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1722 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1723 		max_size = 0;
1724 
1725 	/*
1726 	 * merge_bvec_fn() returns number of bytes
1727 	 * it can accept at this offset
1728 	 * max is precomputed maximal io size
1729 	 */
1730 	if (max_size && ti->type->merge)
1731 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1732 	/*
1733 	 * If the target doesn't support merge method and some of the devices
1734 	 * provided their merge_bvec method (we know this by looking for the
1735 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1736 	 * allow bios with multiple vector entries.  So always set max_size
1737 	 * to 0, and the code below allows just one page.
1738 	 */
1739 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1740 		max_size = 0;
1741 
1742 out:
1743 	dm_put_live_table_fast(md);
1744 	/*
1745 	 * Always allow an entire first page
1746 	 */
1747 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1748 		max_size = biovec->bv_len;
1749 
1750 	return max_size;
1751 }
1752 
1753 /*
1754  * The request function that just remaps the bio built up by
1755  * dm_merge_bvec.
1756  */
1757 static void dm_make_request(struct request_queue *q, struct bio *bio)
1758 {
1759 	int rw = bio_data_dir(bio);
1760 	struct mapped_device *md = q->queuedata;
1761 	int srcu_idx;
1762 	struct dm_table *map;
1763 
1764 	map = dm_get_live_table(md, &srcu_idx);
1765 
1766 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1767 
1768 	/* if we're suspended, we have to queue this io for later */
1769 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1770 		dm_put_live_table(md, srcu_idx);
1771 
1772 		if (bio_rw(bio) != READA)
1773 			queue_io(md, bio);
1774 		else
1775 			bio_io_error(bio);
1776 		return;
1777 	}
1778 
1779 	__split_and_process_bio(md, map, bio);
1780 	dm_put_live_table(md, srcu_idx);
1781 	return;
1782 }
1783 
1784 int dm_request_based(struct mapped_device *md)
1785 {
1786 	return blk_queue_stackable(md->queue);
1787 }
1788 
1789 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1790 {
1791 	int r;
1792 
1793 	if (blk_queue_io_stat(clone->q))
1794 		clone->cmd_flags |= REQ_IO_STAT;
1795 
1796 	clone->start_time = jiffies;
1797 	r = blk_insert_cloned_request(clone->q, clone);
1798 	if (r)
1799 		/* must complete clone in terms of original request */
1800 		dm_complete_request(rq, r);
1801 }
1802 
1803 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1804 				 void *data)
1805 {
1806 	struct dm_rq_target_io *tio = data;
1807 	struct dm_rq_clone_bio_info *info =
1808 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1809 
1810 	info->orig = bio_orig;
1811 	info->tio = tio;
1812 	bio->bi_end_io = end_clone_bio;
1813 
1814 	return 0;
1815 }
1816 
1817 static int setup_clone(struct request *clone, struct request *rq,
1818 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1819 {
1820 	int r;
1821 
1822 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1823 			      dm_rq_bio_constructor, tio);
1824 	if (r)
1825 		return r;
1826 
1827 	clone->cmd = rq->cmd;
1828 	clone->cmd_len = rq->cmd_len;
1829 	clone->sense = rq->sense;
1830 	clone->end_io = end_clone_request;
1831 	clone->end_io_data = tio;
1832 
1833 	tio->clone = clone;
1834 
1835 	return 0;
1836 }
1837 
1838 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1839 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1840 {
1841 	struct request *clone = alloc_clone_request(md, gfp_mask);
1842 
1843 	if (!clone)
1844 		return NULL;
1845 
1846 	blk_rq_init(NULL, clone);
1847 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1848 		/* -ENOMEM */
1849 		free_clone_request(md, clone);
1850 		return NULL;
1851 	}
1852 
1853 	return clone;
1854 }
1855 
1856 static void map_tio_request(struct kthread_work *work);
1857 
1858 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1859 		     struct mapped_device *md)
1860 {
1861 	tio->md = md;
1862 	tio->ti = NULL;
1863 	tio->clone = NULL;
1864 	tio->orig = rq;
1865 	tio->error = 0;
1866 	memset(&tio->info, 0, sizeof(tio->info));
1867 	init_kthread_work(&tio->work, map_tio_request);
1868 }
1869 
1870 static struct dm_rq_target_io *prep_tio(struct request *rq,
1871 					struct mapped_device *md, gfp_t gfp_mask)
1872 {
1873 	struct dm_rq_target_io *tio;
1874 	int srcu_idx;
1875 	struct dm_table *table;
1876 
1877 	tio = alloc_rq_tio(md, gfp_mask);
1878 	if (!tio)
1879 		return NULL;
1880 
1881 	init_tio(tio, rq, md);
1882 
1883 	table = dm_get_live_table(md, &srcu_idx);
1884 	if (!dm_table_mq_request_based(table)) {
1885 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1886 			dm_put_live_table(md, srcu_idx);
1887 			free_rq_tio(tio);
1888 			return NULL;
1889 		}
1890 	}
1891 	dm_put_live_table(md, srcu_idx);
1892 
1893 	return tio;
1894 }
1895 
1896 /*
1897  * Called with the queue lock held.
1898  */
1899 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1900 {
1901 	struct mapped_device *md = q->queuedata;
1902 	struct dm_rq_target_io *tio;
1903 
1904 	if (unlikely(rq->special)) {
1905 		DMWARN("Already has something in rq->special.");
1906 		return BLKPREP_KILL;
1907 	}
1908 
1909 	tio = prep_tio(rq, md, GFP_ATOMIC);
1910 	if (!tio)
1911 		return BLKPREP_DEFER;
1912 
1913 	rq->special = tio;
1914 	rq->cmd_flags |= REQ_DONTPREP;
1915 
1916 	return BLKPREP_OK;
1917 }
1918 
1919 /*
1920  * Returns:
1921  * 0                : the request has been processed
1922  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1923  * < 0              : the request was completed due to failure
1924  */
1925 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1926 		       struct mapped_device *md)
1927 {
1928 	int r;
1929 	struct dm_target *ti = tio->ti;
1930 	struct request *clone = NULL;
1931 
1932 	if (tio->clone) {
1933 		clone = tio->clone;
1934 		r = ti->type->map_rq(ti, clone, &tio->info);
1935 	} else {
1936 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1937 		if (r < 0) {
1938 			/* The target wants to complete the I/O */
1939 			dm_kill_unmapped_request(rq, r);
1940 			return r;
1941 		}
1942 		if (IS_ERR(clone))
1943 			return DM_MAPIO_REQUEUE;
1944 		if (setup_clone(clone, rq, tio, GFP_NOIO)) {
1945 			/* -ENOMEM */
1946 			ti->type->release_clone_rq(clone);
1947 			return DM_MAPIO_REQUEUE;
1948 		}
1949 	}
1950 
1951 	switch (r) {
1952 	case DM_MAPIO_SUBMITTED:
1953 		/* The target has taken the I/O to submit by itself later */
1954 		break;
1955 	case DM_MAPIO_REMAPPED:
1956 		/* The target has remapped the I/O so dispatch it */
1957 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1958 				     blk_rq_pos(rq));
1959 		dm_dispatch_clone_request(clone, rq);
1960 		break;
1961 	case DM_MAPIO_REQUEUE:
1962 		/* The target wants to requeue the I/O */
1963 		dm_requeue_unmapped_request(clone);
1964 		break;
1965 	default:
1966 		if (r > 0) {
1967 			DMWARN("unimplemented target map return value: %d", r);
1968 			BUG();
1969 		}
1970 
1971 		/* The target wants to complete the I/O */
1972 		dm_kill_unmapped_request(rq, r);
1973 		return r;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static void map_tio_request(struct kthread_work *work)
1980 {
1981 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1982 	struct request *rq = tio->orig;
1983 	struct mapped_device *md = tio->md;
1984 
1985 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1986 		dm_requeue_unmapped_original_request(md, rq);
1987 }
1988 
1989 static void dm_start_request(struct mapped_device *md, struct request *orig)
1990 {
1991 	if (!orig->q->mq_ops)
1992 		blk_start_request(orig);
1993 	else
1994 		blk_mq_start_request(orig);
1995 	atomic_inc(&md->pending[rq_data_dir(orig)]);
1996 
1997 	if (md->seq_rq_merge_deadline_usecs) {
1998 		md->last_rq_pos = rq_end_sector(orig);
1999 		md->last_rq_rw = rq_data_dir(orig);
2000 		md->last_rq_start_time = ktime_get();
2001 	}
2002 
2003 	/*
2004 	 * Hold the md reference here for the in-flight I/O.
2005 	 * We can't rely on the reference count by device opener,
2006 	 * because the device may be closed during the request completion
2007 	 * when all bios are completed.
2008 	 * See the comment in rq_completed() too.
2009 	 */
2010 	dm_get(md);
2011 }
2012 
2013 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2014 
2015 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2016 {
2017 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2018 }
2019 
2020 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2021 						     const char *buf, size_t count)
2022 {
2023 	unsigned deadline;
2024 
2025 	if (!dm_request_based(md))
2026 		return count;
2027 
2028 	if (kstrtouint(buf, 10, &deadline))
2029 		return -EINVAL;
2030 
2031 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2032 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2033 
2034 	md->seq_rq_merge_deadline_usecs = deadline;
2035 
2036 	return count;
2037 }
2038 
2039 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2040 {
2041 	ktime_t kt_deadline;
2042 
2043 	if (!md->seq_rq_merge_deadline_usecs)
2044 		return false;
2045 
2046 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2047 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2048 
2049 	return !ktime_after(ktime_get(), kt_deadline);
2050 }
2051 
2052 /*
2053  * q->request_fn for request-based dm.
2054  * Called with the queue lock held.
2055  */
2056 static void dm_request_fn(struct request_queue *q)
2057 {
2058 	struct mapped_device *md = q->queuedata;
2059 	int srcu_idx;
2060 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2061 	struct dm_target *ti;
2062 	struct request *rq;
2063 	struct dm_rq_target_io *tio;
2064 	sector_t pos;
2065 
2066 	/*
2067 	 * For suspend, check blk_queue_stopped() and increment
2068 	 * ->pending within a single queue_lock not to increment the
2069 	 * number of in-flight I/Os after the queue is stopped in
2070 	 * dm_suspend().
2071 	 */
2072 	while (!blk_queue_stopped(q)) {
2073 		rq = blk_peek_request(q);
2074 		if (!rq)
2075 			goto out;
2076 
2077 		/* always use block 0 to find the target for flushes for now */
2078 		pos = 0;
2079 		if (!(rq->cmd_flags & REQ_FLUSH))
2080 			pos = blk_rq_pos(rq);
2081 
2082 		ti = dm_table_find_target(map, pos);
2083 		if (!dm_target_is_valid(ti)) {
2084 			/*
2085 			 * Must perform setup, that rq_completed() requires,
2086 			 * before calling dm_kill_unmapped_request
2087 			 */
2088 			DMERR_LIMIT("request attempted access beyond the end of device");
2089 			dm_start_request(md, rq);
2090 			dm_kill_unmapped_request(rq, -EIO);
2091 			continue;
2092 		}
2093 
2094 		if (dm_request_peeked_before_merge_deadline(md) &&
2095 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2096 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2097 			goto delay_and_out;
2098 
2099 		if (ti->type->busy && ti->type->busy(ti))
2100 			goto delay_and_out;
2101 
2102 		dm_start_request(md, rq);
2103 
2104 		tio = tio_from_request(rq);
2105 		/* Establish tio->ti before queuing work (map_tio_request) */
2106 		tio->ti = ti;
2107 		queue_kthread_work(&md->kworker, &tio->work);
2108 		BUG_ON(!irqs_disabled());
2109 	}
2110 
2111 	goto out;
2112 
2113 delay_and_out:
2114 	blk_delay_queue(q, HZ / 100);
2115 out:
2116 	dm_put_live_table(md, srcu_idx);
2117 }
2118 
2119 static int dm_any_congested(void *congested_data, int bdi_bits)
2120 {
2121 	int r = bdi_bits;
2122 	struct mapped_device *md = congested_data;
2123 	struct dm_table *map;
2124 
2125 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2126 		map = dm_get_live_table_fast(md);
2127 		if (map) {
2128 			/*
2129 			 * Request-based dm cares about only own queue for
2130 			 * the query about congestion status of request_queue
2131 			 */
2132 			if (dm_request_based(md))
2133 				r = md->queue->backing_dev_info.state &
2134 				    bdi_bits;
2135 			else
2136 				r = dm_table_any_congested(map, bdi_bits);
2137 		}
2138 		dm_put_live_table_fast(md);
2139 	}
2140 
2141 	return r;
2142 }
2143 
2144 /*-----------------------------------------------------------------
2145  * An IDR is used to keep track of allocated minor numbers.
2146  *---------------------------------------------------------------*/
2147 static void free_minor(int minor)
2148 {
2149 	spin_lock(&_minor_lock);
2150 	idr_remove(&_minor_idr, minor);
2151 	spin_unlock(&_minor_lock);
2152 }
2153 
2154 /*
2155  * See if the device with a specific minor # is free.
2156  */
2157 static int specific_minor(int minor)
2158 {
2159 	int r;
2160 
2161 	if (minor >= (1 << MINORBITS))
2162 		return -EINVAL;
2163 
2164 	idr_preload(GFP_KERNEL);
2165 	spin_lock(&_minor_lock);
2166 
2167 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2168 
2169 	spin_unlock(&_minor_lock);
2170 	idr_preload_end();
2171 	if (r < 0)
2172 		return r == -ENOSPC ? -EBUSY : r;
2173 	return 0;
2174 }
2175 
2176 static int next_free_minor(int *minor)
2177 {
2178 	int r;
2179 
2180 	idr_preload(GFP_KERNEL);
2181 	spin_lock(&_minor_lock);
2182 
2183 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2184 
2185 	spin_unlock(&_minor_lock);
2186 	idr_preload_end();
2187 	if (r < 0)
2188 		return r;
2189 	*minor = r;
2190 	return 0;
2191 }
2192 
2193 static const struct block_device_operations dm_blk_dops;
2194 
2195 static void dm_wq_work(struct work_struct *work);
2196 
2197 static void dm_init_md_queue(struct mapped_device *md)
2198 {
2199 	/*
2200 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2201 	 * devices.  The type of this dm device may not have been decided yet.
2202 	 * The type is decided at the first table loading time.
2203 	 * To prevent problematic device stacking, clear the queue flag
2204 	 * for request stacking support until then.
2205 	 *
2206 	 * This queue is new, so no concurrency on the queue_flags.
2207 	 */
2208 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2209 }
2210 
2211 static void dm_init_old_md_queue(struct mapped_device *md)
2212 {
2213 	dm_init_md_queue(md);
2214 
2215 	/*
2216 	 * Initialize aspects of queue that aren't relevant for blk-mq
2217 	 */
2218 	md->queue->queuedata = md;
2219 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2220 	md->queue->backing_dev_info.congested_data = md;
2221 
2222 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2223 }
2224 
2225 /*
2226  * Allocate and initialise a blank device with a given minor.
2227  */
2228 static struct mapped_device *alloc_dev(int minor)
2229 {
2230 	int r;
2231 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2232 	void *old_md;
2233 
2234 	if (!md) {
2235 		DMWARN("unable to allocate device, out of memory.");
2236 		return NULL;
2237 	}
2238 
2239 	if (!try_module_get(THIS_MODULE))
2240 		goto bad_module_get;
2241 
2242 	/* get a minor number for the dev */
2243 	if (minor == DM_ANY_MINOR)
2244 		r = next_free_minor(&minor);
2245 	else
2246 		r = specific_minor(minor);
2247 	if (r < 0)
2248 		goto bad_minor;
2249 
2250 	r = init_srcu_struct(&md->io_barrier);
2251 	if (r < 0)
2252 		goto bad_io_barrier;
2253 
2254 	md->type = DM_TYPE_NONE;
2255 	mutex_init(&md->suspend_lock);
2256 	mutex_init(&md->type_lock);
2257 	mutex_init(&md->table_devices_lock);
2258 	spin_lock_init(&md->deferred_lock);
2259 	atomic_set(&md->holders, 1);
2260 	atomic_set(&md->open_count, 0);
2261 	atomic_set(&md->event_nr, 0);
2262 	atomic_set(&md->uevent_seq, 0);
2263 	INIT_LIST_HEAD(&md->uevent_list);
2264 	INIT_LIST_HEAD(&md->table_devices);
2265 	spin_lock_init(&md->uevent_lock);
2266 
2267 	md->queue = blk_alloc_queue(GFP_KERNEL);
2268 	if (!md->queue)
2269 		goto bad_queue;
2270 
2271 	dm_init_md_queue(md);
2272 
2273 	md->disk = alloc_disk(1);
2274 	if (!md->disk)
2275 		goto bad_disk;
2276 
2277 	atomic_set(&md->pending[0], 0);
2278 	atomic_set(&md->pending[1], 0);
2279 	init_waitqueue_head(&md->wait);
2280 	INIT_WORK(&md->work, dm_wq_work);
2281 	init_waitqueue_head(&md->eventq);
2282 	init_completion(&md->kobj_holder.completion);
2283 	md->kworker_task = NULL;
2284 
2285 	md->disk->major = _major;
2286 	md->disk->first_minor = minor;
2287 	md->disk->fops = &dm_blk_dops;
2288 	md->disk->queue = md->queue;
2289 	md->disk->private_data = md;
2290 	sprintf(md->disk->disk_name, "dm-%d", minor);
2291 	add_disk(md->disk);
2292 	format_dev_t(md->name, MKDEV(_major, minor));
2293 
2294 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2295 	if (!md->wq)
2296 		goto bad_thread;
2297 
2298 	md->bdev = bdget_disk(md->disk, 0);
2299 	if (!md->bdev)
2300 		goto bad_bdev;
2301 
2302 	bio_init(&md->flush_bio);
2303 	md->flush_bio.bi_bdev = md->bdev;
2304 	md->flush_bio.bi_rw = WRITE_FLUSH;
2305 
2306 	dm_stats_init(&md->stats);
2307 
2308 	/* Populate the mapping, nobody knows we exist yet */
2309 	spin_lock(&_minor_lock);
2310 	old_md = idr_replace(&_minor_idr, md, minor);
2311 	spin_unlock(&_minor_lock);
2312 
2313 	BUG_ON(old_md != MINOR_ALLOCED);
2314 
2315 	return md;
2316 
2317 bad_bdev:
2318 	destroy_workqueue(md->wq);
2319 bad_thread:
2320 	del_gendisk(md->disk);
2321 	put_disk(md->disk);
2322 bad_disk:
2323 	blk_cleanup_queue(md->queue);
2324 bad_queue:
2325 	cleanup_srcu_struct(&md->io_barrier);
2326 bad_io_barrier:
2327 	free_minor(minor);
2328 bad_minor:
2329 	module_put(THIS_MODULE);
2330 bad_module_get:
2331 	kfree(md);
2332 	return NULL;
2333 }
2334 
2335 static void unlock_fs(struct mapped_device *md);
2336 
2337 static void free_dev(struct mapped_device *md)
2338 {
2339 	int minor = MINOR(disk_devt(md->disk));
2340 	bool using_blk_mq = !!md->queue->mq_ops;
2341 
2342 	unlock_fs(md);
2343 	destroy_workqueue(md->wq);
2344 
2345 	if (md->kworker_task)
2346 		kthread_stop(md->kworker_task);
2347 	if (md->io_pool)
2348 		mempool_destroy(md->io_pool);
2349 	if (md->rq_pool)
2350 		mempool_destroy(md->rq_pool);
2351 	if (md->bs)
2352 		bioset_free(md->bs);
2353 
2354 	cleanup_srcu_struct(&md->io_barrier);
2355 	free_table_devices(&md->table_devices);
2356 	dm_stats_cleanup(&md->stats);
2357 
2358 	spin_lock(&_minor_lock);
2359 	md->disk->private_data = NULL;
2360 	spin_unlock(&_minor_lock);
2361 	if (blk_get_integrity(md->disk))
2362 		blk_integrity_unregister(md->disk);
2363 	del_gendisk(md->disk);
2364 	put_disk(md->disk);
2365 	blk_cleanup_queue(md->queue);
2366 	if (using_blk_mq)
2367 		blk_mq_free_tag_set(&md->tag_set);
2368 	bdput(md->bdev);
2369 	free_minor(minor);
2370 
2371 	module_put(THIS_MODULE);
2372 	kfree(md);
2373 }
2374 
2375 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2376 {
2377 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2378 
2379 	if (md->io_pool && md->bs) {
2380 		/* The md already has necessary mempools. */
2381 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2382 			/*
2383 			 * Reload bioset because front_pad may have changed
2384 			 * because a different table was loaded.
2385 			 */
2386 			bioset_free(md->bs);
2387 			md->bs = p->bs;
2388 			p->bs = NULL;
2389 		}
2390 		/*
2391 		 * There's no need to reload with request-based dm
2392 		 * because the size of front_pad doesn't change.
2393 		 * Note for future: If you are to reload bioset,
2394 		 * prep-ed requests in the queue may refer
2395 		 * to bio from the old bioset, so you must walk
2396 		 * through the queue to unprep.
2397 		 */
2398 		goto out;
2399 	}
2400 
2401 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2402 
2403 	md->io_pool = p->io_pool;
2404 	p->io_pool = NULL;
2405 	md->rq_pool = p->rq_pool;
2406 	p->rq_pool = NULL;
2407 	md->bs = p->bs;
2408 	p->bs = NULL;
2409 
2410 out:
2411 	/* mempool bind completed, now no need any mempools in the table */
2412 	dm_table_free_md_mempools(t);
2413 }
2414 
2415 /*
2416  * Bind a table to the device.
2417  */
2418 static void event_callback(void *context)
2419 {
2420 	unsigned long flags;
2421 	LIST_HEAD(uevents);
2422 	struct mapped_device *md = (struct mapped_device *) context;
2423 
2424 	spin_lock_irqsave(&md->uevent_lock, flags);
2425 	list_splice_init(&md->uevent_list, &uevents);
2426 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2427 
2428 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2429 
2430 	atomic_inc(&md->event_nr);
2431 	wake_up(&md->eventq);
2432 }
2433 
2434 /*
2435  * Protected by md->suspend_lock obtained by dm_swap_table().
2436  */
2437 static void __set_size(struct mapped_device *md, sector_t size)
2438 {
2439 	set_capacity(md->disk, size);
2440 
2441 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2442 }
2443 
2444 /*
2445  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2446  *
2447  * If this function returns 0, then the device is either a non-dm
2448  * device without a merge_bvec_fn, or it is a dm device that is
2449  * able to split any bios it receives that are too big.
2450  */
2451 int dm_queue_merge_is_compulsory(struct request_queue *q)
2452 {
2453 	struct mapped_device *dev_md;
2454 
2455 	if (!q->merge_bvec_fn)
2456 		return 0;
2457 
2458 	if (q->make_request_fn == dm_make_request) {
2459 		dev_md = q->queuedata;
2460 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2461 			return 0;
2462 	}
2463 
2464 	return 1;
2465 }
2466 
2467 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2468 					 struct dm_dev *dev, sector_t start,
2469 					 sector_t len, void *data)
2470 {
2471 	struct block_device *bdev = dev->bdev;
2472 	struct request_queue *q = bdev_get_queue(bdev);
2473 
2474 	return dm_queue_merge_is_compulsory(q);
2475 }
2476 
2477 /*
2478  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2479  * on the properties of the underlying devices.
2480  */
2481 static int dm_table_merge_is_optional(struct dm_table *table)
2482 {
2483 	unsigned i = 0;
2484 	struct dm_target *ti;
2485 
2486 	while (i < dm_table_get_num_targets(table)) {
2487 		ti = dm_table_get_target(table, i++);
2488 
2489 		if (ti->type->iterate_devices &&
2490 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2491 			return 0;
2492 	}
2493 
2494 	return 1;
2495 }
2496 
2497 /*
2498  * Returns old map, which caller must destroy.
2499  */
2500 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2501 			       struct queue_limits *limits)
2502 {
2503 	struct dm_table *old_map;
2504 	struct request_queue *q = md->queue;
2505 	sector_t size;
2506 	int merge_is_optional;
2507 
2508 	size = dm_table_get_size(t);
2509 
2510 	/*
2511 	 * Wipe any geometry if the size of the table changed.
2512 	 */
2513 	if (size != dm_get_size(md))
2514 		memset(&md->geometry, 0, sizeof(md->geometry));
2515 
2516 	__set_size(md, size);
2517 
2518 	dm_table_event_callback(t, event_callback, md);
2519 
2520 	/*
2521 	 * The queue hasn't been stopped yet, if the old table type wasn't
2522 	 * for request-based during suspension.  So stop it to prevent
2523 	 * I/O mapping before resume.
2524 	 * This must be done before setting the queue restrictions,
2525 	 * because request-based dm may be run just after the setting.
2526 	 */
2527 	if (dm_table_request_based(t))
2528 		stop_queue(q);
2529 
2530 	__bind_mempools(md, t);
2531 
2532 	merge_is_optional = dm_table_merge_is_optional(t);
2533 
2534 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2535 	rcu_assign_pointer(md->map, t);
2536 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2537 
2538 	dm_table_set_restrictions(t, q, limits);
2539 	if (merge_is_optional)
2540 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2541 	else
2542 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2543 	if (old_map)
2544 		dm_sync_table(md);
2545 
2546 	return old_map;
2547 }
2548 
2549 /*
2550  * Returns unbound table for the caller to free.
2551  */
2552 static struct dm_table *__unbind(struct mapped_device *md)
2553 {
2554 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2555 
2556 	if (!map)
2557 		return NULL;
2558 
2559 	dm_table_event_callback(map, NULL, NULL);
2560 	RCU_INIT_POINTER(md->map, NULL);
2561 	dm_sync_table(md);
2562 
2563 	return map;
2564 }
2565 
2566 /*
2567  * Constructor for a new device.
2568  */
2569 int dm_create(int minor, struct mapped_device **result)
2570 {
2571 	struct mapped_device *md;
2572 
2573 	md = alloc_dev(minor);
2574 	if (!md)
2575 		return -ENXIO;
2576 
2577 	dm_sysfs_init(md);
2578 
2579 	*result = md;
2580 	return 0;
2581 }
2582 
2583 /*
2584  * Functions to manage md->type.
2585  * All are required to hold md->type_lock.
2586  */
2587 void dm_lock_md_type(struct mapped_device *md)
2588 {
2589 	mutex_lock(&md->type_lock);
2590 }
2591 
2592 void dm_unlock_md_type(struct mapped_device *md)
2593 {
2594 	mutex_unlock(&md->type_lock);
2595 }
2596 
2597 void dm_set_md_type(struct mapped_device *md, unsigned type)
2598 {
2599 	BUG_ON(!mutex_is_locked(&md->type_lock));
2600 	md->type = type;
2601 }
2602 
2603 unsigned dm_get_md_type(struct mapped_device *md)
2604 {
2605 	BUG_ON(!mutex_is_locked(&md->type_lock));
2606 	return md->type;
2607 }
2608 
2609 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2610 {
2611 	return md->immutable_target_type;
2612 }
2613 
2614 /*
2615  * The queue_limits are only valid as long as you have a reference
2616  * count on 'md'.
2617  */
2618 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2619 {
2620 	BUG_ON(!atomic_read(&md->holders));
2621 	return &md->queue->limits;
2622 }
2623 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2624 
2625 static void init_rq_based_worker_thread(struct mapped_device *md)
2626 {
2627 	/* Initialize the request-based DM worker thread */
2628 	init_kthread_worker(&md->kworker);
2629 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2630 				       "kdmwork-%s", dm_device_name(md));
2631 }
2632 
2633 /*
2634  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2635  */
2636 static int dm_init_request_based_queue(struct mapped_device *md)
2637 {
2638 	struct request_queue *q = NULL;
2639 
2640 	if (md->queue->elevator)
2641 		return 0;
2642 
2643 	/* Fully initialize the queue */
2644 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2645 	if (!q)
2646 		return -EINVAL;
2647 
2648 	/* disable dm_request_fn's merge heuristic by default */
2649 	md->seq_rq_merge_deadline_usecs = 0;
2650 
2651 	md->queue = q;
2652 	dm_init_old_md_queue(md);
2653 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2654 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2655 
2656 	init_rq_based_worker_thread(md);
2657 
2658 	elv_register_queue(md->queue);
2659 
2660 	return 0;
2661 }
2662 
2663 static int dm_mq_init_request(void *data, struct request *rq,
2664 			      unsigned int hctx_idx, unsigned int request_idx,
2665 			      unsigned int numa_node)
2666 {
2667 	struct mapped_device *md = data;
2668 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2669 
2670 	/*
2671 	 * Must initialize md member of tio, otherwise it won't
2672 	 * be available in dm_mq_queue_rq.
2673 	 */
2674 	tio->md = md;
2675 
2676 	return 0;
2677 }
2678 
2679 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2680 			  const struct blk_mq_queue_data *bd)
2681 {
2682 	struct request *rq = bd->rq;
2683 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2684 	struct mapped_device *md = tio->md;
2685 	int srcu_idx;
2686 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2687 	struct dm_target *ti;
2688 	sector_t pos;
2689 
2690 	/* always use block 0 to find the target for flushes for now */
2691 	pos = 0;
2692 	if (!(rq->cmd_flags & REQ_FLUSH))
2693 		pos = blk_rq_pos(rq);
2694 
2695 	ti = dm_table_find_target(map, pos);
2696 	if (!dm_target_is_valid(ti)) {
2697 		dm_put_live_table(md, srcu_idx);
2698 		DMERR_LIMIT("request attempted access beyond the end of device");
2699 		/*
2700 		 * Must perform setup, that rq_completed() requires,
2701 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2702 		 */
2703 		dm_start_request(md, rq);
2704 		return BLK_MQ_RQ_QUEUE_ERROR;
2705 	}
2706 	dm_put_live_table(md, srcu_idx);
2707 
2708 	if (ti->type->busy && ti->type->busy(ti))
2709 		return BLK_MQ_RQ_QUEUE_BUSY;
2710 
2711 	dm_start_request(md, rq);
2712 
2713 	/* Init tio using md established in .init_request */
2714 	init_tio(tio, rq, md);
2715 
2716 	/* Establish tio->ti before queuing work (map_tio_request) */
2717 	tio->ti = ti;
2718 	queue_kthread_work(&md->kworker, &tio->work);
2719 
2720 	return BLK_MQ_RQ_QUEUE_OK;
2721 }
2722 
2723 static struct blk_mq_ops dm_mq_ops = {
2724 	.queue_rq = dm_mq_queue_rq,
2725 	.map_queue = blk_mq_map_queue,
2726 	.complete = dm_softirq_done,
2727 	.init_request = dm_mq_init_request,
2728 };
2729 
2730 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2731 {
2732 	struct request_queue *q;
2733 	int err;
2734 
2735 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2736 	md->tag_set.ops = &dm_mq_ops;
2737 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2738 	md->tag_set.numa_node = NUMA_NO_NODE;
2739 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2740 	md->tag_set.nr_hw_queues = 1;
2741 	md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2742 	md->tag_set.driver_data = md;
2743 
2744 	err = blk_mq_alloc_tag_set(&md->tag_set);
2745 	if (err)
2746 		return err;
2747 
2748 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2749 	if (IS_ERR(q)) {
2750 		err = PTR_ERR(q);
2751 		goto out_tag_set;
2752 	}
2753 	md->queue = q;
2754 	dm_init_md_queue(md);
2755 
2756 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2757 	blk_mq_register_disk(md->disk);
2758 
2759 	init_rq_based_worker_thread(md);
2760 
2761 	return 0;
2762 
2763 out_tag_set:
2764 	blk_mq_free_tag_set(&md->tag_set);
2765 	return err;
2766 }
2767 
2768 /*
2769  * Setup the DM device's queue based on md's type
2770  */
2771 int dm_setup_md_queue(struct mapped_device *md)
2772 {
2773 	int r;
2774 	unsigned md_type = dm_get_md_type(md);
2775 
2776 	switch (md_type) {
2777 	case DM_TYPE_REQUEST_BASED:
2778 		r = dm_init_request_based_queue(md);
2779 		if (r) {
2780 			DMWARN("Cannot initialize queue for request-based mapped device");
2781 			return r;
2782 		}
2783 		break;
2784 	case DM_TYPE_MQ_REQUEST_BASED:
2785 		r = dm_init_request_based_blk_mq_queue(md);
2786 		if (r) {
2787 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2788 			return r;
2789 		}
2790 		break;
2791 	case DM_TYPE_BIO_BASED:
2792 		dm_init_old_md_queue(md);
2793 		blk_queue_make_request(md->queue, dm_make_request);
2794 		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2795 		break;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 struct mapped_device *dm_get_md(dev_t dev)
2802 {
2803 	struct mapped_device *md;
2804 	unsigned minor = MINOR(dev);
2805 
2806 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2807 		return NULL;
2808 
2809 	spin_lock(&_minor_lock);
2810 
2811 	md = idr_find(&_minor_idr, minor);
2812 	if (md) {
2813 		if ((md == MINOR_ALLOCED ||
2814 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2815 		     dm_deleting_md(md) ||
2816 		     test_bit(DMF_FREEING, &md->flags))) {
2817 			md = NULL;
2818 			goto out;
2819 		}
2820 		dm_get(md);
2821 	}
2822 
2823 out:
2824 	spin_unlock(&_minor_lock);
2825 
2826 	return md;
2827 }
2828 EXPORT_SYMBOL_GPL(dm_get_md);
2829 
2830 void *dm_get_mdptr(struct mapped_device *md)
2831 {
2832 	return md->interface_ptr;
2833 }
2834 
2835 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2836 {
2837 	md->interface_ptr = ptr;
2838 }
2839 
2840 void dm_get(struct mapped_device *md)
2841 {
2842 	atomic_inc(&md->holders);
2843 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2844 }
2845 
2846 int dm_hold(struct mapped_device *md)
2847 {
2848 	spin_lock(&_minor_lock);
2849 	if (test_bit(DMF_FREEING, &md->flags)) {
2850 		spin_unlock(&_minor_lock);
2851 		return -EBUSY;
2852 	}
2853 	dm_get(md);
2854 	spin_unlock(&_minor_lock);
2855 	return 0;
2856 }
2857 EXPORT_SYMBOL_GPL(dm_hold);
2858 
2859 const char *dm_device_name(struct mapped_device *md)
2860 {
2861 	return md->name;
2862 }
2863 EXPORT_SYMBOL_GPL(dm_device_name);
2864 
2865 static void __dm_destroy(struct mapped_device *md, bool wait)
2866 {
2867 	struct dm_table *map;
2868 	int srcu_idx;
2869 
2870 	might_sleep();
2871 
2872 	map = dm_get_live_table(md, &srcu_idx);
2873 
2874 	spin_lock(&_minor_lock);
2875 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2876 	set_bit(DMF_FREEING, &md->flags);
2877 	spin_unlock(&_minor_lock);
2878 
2879 	if (dm_request_based(md))
2880 		flush_kthread_worker(&md->kworker);
2881 
2882 	/*
2883 	 * Take suspend_lock so that presuspend and postsuspend methods
2884 	 * do not race with internal suspend.
2885 	 */
2886 	mutex_lock(&md->suspend_lock);
2887 	if (!dm_suspended_md(md)) {
2888 		dm_table_presuspend_targets(map);
2889 		dm_table_postsuspend_targets(map);
2890 	}
2891 	mutex_unlock(&md->suspend_lock);
2892 
2893 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2894 	dm_put_live_table(md, srcu_idx);
2895 
2896 	/*
2897 	 * Rare, but there may be I/O requests still going to complete,
2898 	 * for example.  Wait for all references to disappear.
2899 	 * No one should increment the reference count of the mapped_device,
2900 	 * after the mapped_device state becomes DMF_FREEING.
2901 	 */
2902 	if (wait)
2903 		while (atomic_read(&md->holders))
2904 			msleep(1);
2905 	else if (atomic_read(&md->holders))
2906 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2907 		       dm_device_name(md), atomic_read(&md->holders));
2908 
2909 	dm_sysfs_exit(md);
2910 	dm_table_destroy(__unbind(md));
2911 	free_dev(md);
2912 }
2913 
2914 void dm_destroy(struct mapped_device *md)
2915 {
2916 	__dm_destroy(md, true);
2917 }
2918 
2919 void dm_destroy_immediate(struct mapped_device *md)
2920 {
2921 	__dm_destroy(md, false);
2922 }
2923 
2924 void dm_put(struct mapped_device *md)
2925 {
2926 	atomic_dec(&md->holders);
2927 }
2928 EXPORT_SYMBOL_GPL(dm_put);
2929 
2930 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2931 {
2932 	int r = 0;
2933 	DECLARE_WAITQUEUE(wait, current);
2934 
2935 	add_wait_queue(&md->wait, &wait);
2936 
2937 	while (1) {
2938 		set_current_state(interruptible);
2939 
2940 		if (!md_in_flight(md))
2941 			break;
2942 
2943 		if (interruptible == TASK_INTERRUPTIBLE &&
2944 		    signal_pending(current)) {
2945 			r = -EINTR;
2946 			break;
2947 		}
2948 
2949 		io_schedule();
2950 	}
2951 	set_current_state(TASK_RUNNING);
2952 
2953 	remove_wait_queue(&md->wait, &wait);
2954 
2955 	return r;
2956 }
2957 
2958 /*
2959  * Process the deferred bios
2960  */
2961 static void dm_wq_work(struct work_struct *work)
2962 {
2963 	struct mapped_device *md = container_of(work, struct mapped_device,
2964 						work);
2965 	struct bio *c;
2966 	int srcu_idx;
2967 	struct dm_table *map;
2968 
2969 	map = dm_get_live_table(md, &srcu_idx);
2970 
2971 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2972 		spin_lock_irq(&md->deferred_lock);
2973 		c = bio_list_pop(&md->deferred);
2974 		spin_unlock_irq(&md->deferred_lock);
2975 
2976 		if (!c)
2977 			break;
2978 
2979 		if (dm_request_based(md))
2980 			generic_make_request(c);
2981 		else
2982 			__split_and_process_bio(md, map, c);
2983 	}
2984 
2985 	dm_put_live_table(md, srcu_idx);
2986 }
2987 
2988 static void dm_queue_flush(struct mapped_device *md)
2989 {
2990 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2991 	smp_mb__after_atomic();
2992 	queue_work(md->wq, &md->work);
2993 }
2994 
2995 /*
2996  * Swap in a new table, returning the old one for the caller to destroy.
2997  */
2998 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2999 {
3000 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3001 	struct queue_limits limits;
3002 	int r;
3003 
3004 	mutex_lock(&md->suspend_lock);
3005 
3006 	/* device must be suspended */
3007 	if (!dm_suspended_md(md))
3008 		goto out;
3009 
3010 	/*
3011 	 * If the new table has no data devices, retain the existing limits.
3012 	 * This helps multipath with queue_if_no_path if all paths disappear,
3013 	 * then new I/O is queued based on these limits, and then some paths
3014 	 * reappear.
3015 	 */
3016 	if (dm_table_has_no_data_devices(table)) {
3017 		live_map = dm_get_live_table_fast(md);
3018 		if (live_map)
3019 			limits = md->queue->limits;
3020 		dm_put_live_table_fast(md);
3021 	}
3022 
3023 	if (!live_map) {
3024 		r = dm_calculate_queue_limits(table, &limits);
3025 		if (r) {
3026 			map = ERR_PTR(r);
3027 			goto out;
3028 		}
3029 	}
3030 
3031 	map = __bind(md, table, &limits);
3032 
3033 out:
3034 	mutex_unlock(&md->suspend_lock);
3035 	return map;
3036 }
3037 
3038 /*
3039  * Functions to lock and unlock any filesystem running on the
3040  * device.
3041  */
3042 static int lock_fs(struct mapped_device *md)
3043 {
3044 	int r;
3045 
3046 	WARN_ON(md->frozen_sb);
3047 
3048 	md->frozen_sb = freeze_bdev(md->bdev);
3049 	if (IS_ERR(md->frozen_sb)) {
3050 		r = PTR_ERR(md->frozen_sb);
3051 		md->frozen_sb = NULL;
3052 		return r;
3053 	}
3054 
3055 	set_bit(DMF_FROZEN, &md->flags);
3056 
3057 	return 0;
3058 }
3059 
3060 static void unlock_fs(struct mapped_device *md)
3061 {
3062 	if (!test_bit(DMF_FROZEN, &md->flags))
3063 		return;
3064 
3065 	thaw_bdev(md->bdev, md->frozen_sb);
3066 	md->frozen_sb = NULL;
3067 	clear_bit(DMF_FROZEN, &md->flags);
3068 }
3069 
3070 /*
3071  * If __dm_suspend returns 0, the device is completely quiescent
3072  * now. There is no request-processing activity. All new requests
3073  * are being added to md->deferred list.
3074  *
3075  * Caller must hold md->suspend_lock
3076  */
3077 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3078 			unsigned suspend_flags, int interruptible)
3079 {
3080 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3081 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3082 	int r;
3083 
3084 	/*
3085 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3086 	 * This flag is cleared before dm_suspend returns.
3087 	 */
3088 	if (noflush)
3089 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3090 
3091 	/*
3092 	 * This gets reverted if there's an error later and the targets
3093 	 * provide the .presuspend_undo hook.
3094 	 */
3095 	dm_table_presuspend_targets(map);
3096 
3097 	/*
3098 	 * Flush I/O to the device.
3099 	 * Any I/O submitted after lock_fs() may not be flushed.
3100 	 * noflush takes precedence over do_lockfs.
3101 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3102 	 */
3103 	if (!noflush && do_lockfs) {
3104 		r = lock_fs(md);
3105 		if (r) {
3106 			dm_table_presuspend_undo_targets(map);
3107 			return r;
3108 		}
3109 	}
3110 
3111 	/*
3112 	 * Here we must make sure that no processes are submitting requests
3113 	 * to target drivers i.e. no one may be executing
3114 	 * __split_and_process_bio. This is called from dm_request and
3115 	 * dm_wq_work.
3116 	 *
3117 	 * To get all processes out of __split_and_process_bio in dm_request,
3118 	 * we take the write lock. To prevent any process from reentering
3119 	 * __split_and_process_bio from dm_request and quiesce the thread
3120 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3121 	 * flush_workqueue(md->wq).
3122 	 */
3123 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3124 	if (map)
3125 		synchronize_srcu(&md->io_barrier);
3126 
3127 	/*
3128 	 * Stop md->queue before flushing md->wq in case request-based
3129 	 * dm defers requests to md->wq from md->queue.
3130 	 */
3131 	if (dm_request_based(md)) {
3132 		stop_queue(md->queue);
3133 		flush_kthread_worker(&md->kworker);
3134 	}
3135 
3136 	flush_workqueue(md->wq);
3137 
3138 	/*
3139 	 * At this point no more requests are entering target request routines.
3140 	 * We call dm_wait_for_completion to wait for all existing requests
3141 	 * to finish.
3142 	 */
3143 	r = dm_wait_for_completion(md, interruptible);
3144 
3145 	if (noflush)
3146 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3147 	if (map)
3148 		synchronize_srcu(&md->io_barrier);
3149 
3150 	/* were we interrupted ? */
3151 	if (r < 0) {
3152 		dm_queue_flush(md);
3153 
3154 		if (dm_request_based(md))
3155 			start_queue(md->queue);
3156 
3157 		unlock_fs(md);
3158 		dm_table_presuspend_undo_targets(map);
3159 		/* pushback list is already flushed, so skip flush */
3160 	}
3161 
3162 	return r;
3163 }
3164 
3165 /*
3166  * We need to be able to change a mapping table under a mounted
3167  * filesystem.  For example we might want to move some data in
3168  * the background.  Before the table can be swapped with
3169  * dm_bind_table, dm_suspend must be called to flush any in
3170  * flight bios and ensure that any further io gets deferred.
3171  */
3172 /*
3173  * Suspend mechanism in request-based dm.
3174  *
3175  * 1. Flush all I/Os by lock_fs() if needed.
3176  * 2. Stop dispatching any I/O by stopping the request_queue.
3177  * 3. Wait for all in-flight I/Os to be completed or requeued.
3178  *
3179  * To abort suspend, start the request_queue.
3180  */
3181 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3182 {
3183 	struct dm_table *map = NULL;
3184 	int r = 0;
3185 
3186 retry:
3187 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3188 
3189 	if (dm_suspended_md(md)) {
3190 		r = -EINVAL;
3191 		goto out_unlock;
3192 	}
3193 
3194 	if (dm_suspended_internally_md(md)) {
3195 		/* already internally suspended, wait for internal resume */
3196 		mutex_unlock(&md->suspend_lock);
3197 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3198 		if (r)
3199 			return r;
3200 		goto retry;
3201 	}
3202 
3203 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3204 
3205 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3206 	if (r)
3207 		goto out_unlock;
3208 
3209 	set_bit(DMF_SUSPENDED, &md->flags);
3210 
3211 	dm_table_postsuspend_targets(map);
3212 
3213 out_unlock:
3214 	mutex_unlock(&md->suspend_lock);
3215 	return r;
3216 }
3217 
3218 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3219 {
3220 	if (map) {
3221 		int r = dm_table_resume_targets(map);
3222 		if (r)
3223 			return r;
3224 	}
3225 
3226 	dm_queue_flush(md);
3227 
3228 	/*
3229 	 * Flushing deferred I/Os must be done after targets are resumed
3230 	 * so that mapping of targets can work correctly.
3231 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3232 	 */
3233 	if (dm_request_based(md))
3234 		start_queue(md->queue);
3235 
3236 	unlock_fs(md);
3237 
3238 	return 0;
3239 }
3240 
3241 int dm_resume(struct mapped_device *md)
3242 {
3243 	int r = -EINVAL;
3244 	struct dm_table *map = NULL;
3245 
3246 retry:
3247 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3248 
3249 	if (!dm_suspended_md(md))
3250 		goto out;
3251 
3252 	if (dm_suspended_internally_md(md)) {
3253 		/* already internally suspended, wait for internal resume */
3254 		mutex_unlock(&md->suspend_lock);
3255 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3256 		if (r)
3257 			return r;
3258 		goto retry;
3259 	}
3260 
3261 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3262 	if (!map || !dm_table_get_size(map))
3263 		goto out;
3264 
3265 	r = __dm_resume(md, map);
3266 	if (r)
3267 		goto out;
3268 
3269 	clear_bit(DMF_SUSPENDED, &md->flags);
3270 
3271 	r = 0;
3272 out:
3273 	mutex_unlock(&md->suspend_lock);
3274 
3275 	return r;
3276 }
3277 
3278 /*
3279  * Internal suspend/resume works like userspace-driven suspend. It waits
3280  * until all bios finish and prevents issuing new bios to the target drivers.
3281  * It may be used only from the kernel.
3282  */
3283 
3284 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3285 {
3286 	struct dm_table *map = NULL;
3287 
3288 	if (md->internal_suspend_count++)
3289 		return; /* nested internal suspend */
3290 
3291 	if (dm_suspended_md(md)) {
3292 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3293 		return; /* nest suspend */
3294 	}
3295 
3296 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3297 
3298 	/*
3299 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3300 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3301 	 * would require changing .presuspend to return an error -- avoid this
3302 	 * until there is a need for more elaborate variants of internal suspend.
3303 	 */
3304 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3305 
3306 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3307 
3308 	dm_table_postsuspend_targets(map);
3309 }
3310 
3311 static void __dm_internal_resume(struct mapped_device *md)
3312 {
3313 	BUG_ON(!md->internal_suspend_count);
3314 
3315 	if (--md->internal_suspend_count)
3316 		return; /* resume from nested internal suspend */
3317 
3318 	if (dm_suspended_md(md))
3319 		goto done; /* resume from nested suspend */
3320 
3321 	/*
3322 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3323 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3324 	 */
3325 	(void) __dm_resume(md, NULL);
3326 
3327 done:
3328 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3329 	smp_mb__after_atomic();
3330 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3331 }
3332 
3333 void dm_internal_suspend_noflush(struct mapped_device *md)
3334 {
3335 	mutex_lock(&md->suspend_lock);
3336 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3337 	mutex_unlock(&md->suspend_lock);
3338 }
3339 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3340 
3341 void dm_internal_resume(struct mapped_device *md)
3342 {
3343 	mutex_lock(&md->suspend_lock);
3344 	__dm_internal_resume(md);
3345 	mutex_unlock(&md->suspend_lock);
3346 }
3347 EXPORT_SYMBOL_GPL(dm_internal_resume);
3348 
3349 /*
3350  * Fast variants of internal suspend/resume hold md->suspend_lock,
3351  * which prevents interaction with userspace-driven suspend.
3352  */
3353 
3354 void dm_internal_suspend_fast(struct mapped_device *md)
3355 {
3356 	mutex_lock(&md->suspend_lock);
3357 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3358 		return;
3359 
3360 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3361 	synchronize_srcu(&md->io_barrier);
3362 	flush_workqueue(md->wq);
3363 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3364 }
3365 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3366 
3367 void dm_internal_resume_fast(struct mapped_device *md)
3368 {
3369 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3370 		goto done;
3371 
3372 	dm_queue_flush(md);
3373 
3374 done:
3375 	mutex_unlock(&md->suspend_lock);
3376 }
3377 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3378 
3379 /*-----------------------------------------------------------------
3380  * Event notification.
3381  *---------------------------------------------------------------*/
3382 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3383 		       unsigned cookie)
3384 {
3385 	char udev_cookie[DM_COOKIE_LENGTH];
3386 	char *envp[] = { udev_cookie, NULL };
3387 
3388 	if (!cookie)
3389 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3390 	else {
3391 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3392 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3393 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3394 					  action, envp);
3395 	}
3396 }
3397 
3398 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3399 {
3400 	return atomic_add_return(1, &md->uevent_seq);
3401 }
3402 
3403 uint32_t dm_get_event_nr(struct mapped_device *md)
3404 {
3405 	return atomic_read(&md->event_nr);
3406 }
3407 
3408 int dm_wait_event(struct mapped_device *md, int event_nr)
3409 {
3410 	return wait_event_interruptible(md->eventq,
3411 			(event_nr != atomic_read(&md->event_nr)));
3412 }
3413 
3414 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3415 {
3416 	unsigned long flags;
3417 
3418 	spin_lock_irqsave(&md->uevent_lock, flags);
3419 	list_add(elist, &md->uevent_list);
3420 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3421 }
3422 
3423 /*
3424  * The gendisk is only valid as long as you have a reference
3425  * count on 'md'.
3426  */
3427 struct gendisk *dm_disk(struct mapped_device *md)
3428 {
3429 	return md->disk;
3430 }
3431 
3432 struct kobject *dm_kobject(struct mapped_device *md)
3433 {
3434 	return &md->kobj_holder.kobj;
3435 }
3436 
3437 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3438 {
3439 	struct mapped_device *md;
3440 
3441 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3442 
3443 	if (test_bit(DMF_FREEING, &md->flags) ||
3444 	    dm_deleting_md(md))
3445 		return NULL;
3446 
3447 	dm_get(md);
3448 	return md;
3449 }
3450 
3451 int dm_suspended_md(struct mapped_device *md)
3452 {
3453 	return test_bit(DMF_SUSPENDED, &md->flags);
3454 }
3455 
3456 int dm_suspended_internally_md(struct mapped_device *md)
3457 {
3458 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3459 }
3460 
3461 int dm_test_deferred_remove_flag(struct mapped_device *md)
3462 {
3463 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3464 }
3465 
3466 int dm_suspended(struct dm_target *ti)
3467 {
3468 	return dm_suspended_md(dm_table_get_md(ti->table));
3469 }
3470 EXPORT_SYMBOL_GPL(dm_suspended);
3471 
3472 int dm_noflush_suspending(struct dm_target *ti)
3473 {
3474 	return __noflush_suspending(dm_table_get_md(ti->table));
3475 }
3476 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3477 
3478 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3479 {
3480 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3481 	struct kmem_cache *cachep;
3482 	unsigned int pool_size = 0;
3483 	unsigned int front_pad;
3484 
3485 	if (!pools)
3486 		return NULL;
3487 
3488 	switch (type) {
3489 	case DM_TYPE_BIO_BASED:
3490 		cachep = _io_cache;
3491 		pool_size = dm_get_reserved_bio_based_ios();
3492 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3493 		break;
3494 	case DM_TYPE_REQUEST_BASED:
3495 		pool_size = dm_get_reserved_rq_based_ios();
3496 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3497 		if (!pools->rq_pool)
3498 			goto out;
3499 		/* fall through to setup remaining rq-based pools */
3500 	case DM_TYPE_MQ_REQUEST_BASED:
3501 		cachep = _rq_tio_cache;
3502 		if (!pool_size)
3503 			pool_size = dm_get_reserved_rq_based_ios();
3504 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3505 		/* per_bio_data_size is not used. See __bind_mempools(). */
3506 		WARN_ON(per_bio_data_size != 0);
3507 		break;
3508 	default:
3509 		goto out;
3510 	}
3511 
3512 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3513 	if (!pools->io_pool)
3514 		goto out;
3515 
3516 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3517 	if (!pools->bs)
3518 		goto out;
3519 
3520 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3521 		goto out;
3522 
3523 	return pools;
3524 
3525 out:
3526 	dm_free_md_mempools(pools);
3527 
3528 	return NULL;
3529 }
3530 
3531 void dm_free_md_mempools(struct dm_md_mempools *pools)
3532 {
3533 	if (!pools)
3534 		return;
3535 
3536 	if (pools->io_pool)
3537 		mempool_destroy(pools->io_pool);
3538 
3539 	if (pools->rq_pool)
3540 		mempool_destroy(pools->rq_pool);
3541 
3542 	if (pools->bs)
3543 		bioset_free(pools->bs);
3544 
3545 	kfree(pools);
3546 }
3547 
3548 static const struct block_device_operations dm_blk_dops = {
3549 	.open = dm_blk_open,
3550 	.release = dm_blk_close,
3551 	.ioctl = dm_blk_ioctl,
3552 	.getgeo = dm_blk_getgeo,
3553 	.owner = THIS_MODULE
3554 };
3555 
3556 /*
3557  * module hooks
3558  */
3559 module_init(dm_init);
3560 module_exit(dm_exit);
3561 
3562 module_param(major, uint, 0);
3563 MODULE_PARM_DESC(major, "The major number of the device mapper");
3564 
3565 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3566 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3567 
3568 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3569 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3570 
3571 MODULE_DESCRIPTION(DM_NAME " driver");
3572 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3573 MODULE_LICENSE("GPL");
3574