1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-list.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/moduleparam.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/buffer_head.h> 19 #include <linux/mempool.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/hdreg.h> 23 #include <linux/blktrace_api.h> 24 #include <trace/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 static const char *_name = DM_NAME; 29 30 static unsigned int major = 0; 31 static unsigned int _major = 0; 32 33 static DEFINE_SPINLOCK(_minor_lock); 34 /* 35 * One of these is allocated per bio. 36 */ 37 struct dm_io { 38 struct mapped_device *md; 39 int error; 40 atomic_t io_count; 41 struct bio *bio; 42 unsigned long start_time; 43 }; 44 45 /* 46 * One of these is allocated per target within a bio. Hopefully 47 * this will be simplified out one day. 48 */ 49 struct dm_target_io { 50 struct dm_io *io; 51 struct dm_target *ti; 52 union map_info info; 53 }; 54 55 DEFINE_TRACE(block_bio_complete); 56 57 union map_info *dm_get_mapinfo(struct bio *bio) 58 { 59 if (bio && bio->bi_private) 60 return &((struct dm_target_io *)bio->bi_private)->info; 61 return NULL; 62 } 63 64 #define MINOR_ALLOCED ((void *)-1) 65 66 /* 67 * Bits for the md->flags field. 68 */ 69 #define DMF_BLOCK_IO 0 70 #define DMF_SUSPENDED 1 71 #define DMF_FROZEN 2 72 #define DMF_FREEING 3 73 #define DMF_DELETING 4 74 #define DMF_NOFLUSH_SUSPENDING 5 75 76 /* 77 * Work processed by per-device workqueue. 78 */ 79 struct dm_wq_req { 80 enum { 81 DM_WQ_FLUSH_DEFERRED, 82 } type; 83 struct work_struct work; 84 struct mapped_device *md; 85 void *context; 86 }; 87 88 struct mapped_device { 89 struct rw_semaphore io_lock; 90 struct mutex suspend_lock; 91 spinlock_t pushback_lock; 92 rwlock_t map_lock; 93 atomic_t holders; 94 atomic_t open_count; 95 96 unsigned long flags; 97 98 struct request_queue *queue; 99 struct gendisk *disk; 100 char name[16]; 101 102 void *interface_ptr; 103 104 /* 105 * A list of ios that arrived while we were suspended. 106 */ 107 atomic_t pending; 108 wait_queue_head_t wait; 109 struct bio_list deferred; 110 struct bio_list pushback; 111 112 /* 113 * Processing queue (flush/barriers) 114 */ 115 struct workqueue_struct *wq; 116 117 /* 118 * The current mapping. 119 */ 120 struct dm_table *map; 121 122 /* 123 * io objects are allocated from here. 124 */ 125 mempool_t *io_pool; 126 mempool_t *tio_pool; 127 128 struct bio_set *bs; 129 130 /* 131 * Event handling. 132 */ 133 atomic_t event_nr; 134 wait_queue_head_t eventq; 135 atomic_t uevent_seq; 136 struct list_head uevent_list; 137 spinlock_t uevent_lock; /* Protect access to uevent_list */ 138 139 /* 140 * freeze/thaw support require holding onto a super block 141 */ 142 struct super_block *frozen_sb; 143 struct block_device *suspended_bdev; 144 145 /* forced geometry settings */ 146 struct hd_geometry geometry; 147 }; 148 149 #define MIN_IOS 256 150 static struct kmem_cache *_io_cache; 151 static struct kmem_cache *_tio_cache; 152 153 static int __init local_init(void) 154 { 155 int r = -ENOMEM; 156 157 /* allocate a slab for the dm_ios */ 158 _io_cache = KMEM_CACHE(dm_io, 0); 159 if (!_io_cache) 160 return r; 161 162 /* allocate a slab for the target ios */ 163 _tio_cache = KMEM_CACHE(dm_target_io, 0); 164 if (!_tio_cache) 165 goto out_free_io_cache; 166 167 r = dm_uevent_init(); 168 if (r) 169 goto out_free_tio_cache; 170 171 _major = major; 172 r = register_blkdev(_major, _name); 173 if (r < 0) 174 goto out_uevent_exit; 175 176 if (!_major) 177 _major = r; 178 179 return 0; 180 181 out_uevent_exit: 182 dm_uevent_exit(); 183 out_free_tio_cache: 184 kmem_cache_destroy(_tio_cache); 185 out_free_io_cache: 186 kmem_cache_destroy(_io_cache); 187 188 return r; 189 } 190 191 static void local_exit(void) 192 { 193 kmem_cache_destroy(_tio_cache); 194 kmem_cache_destroy(_io_cache); 195 unregister_blkdev(_major, _name); 196 dm_uevent_exit(); 197 198 _major = 0; 199 200 DMINFO("cleaned up"); 201 } 202 203 static int (*_inits[])(void) __initdata = { 204 local_init, 205 dm_target_init, 206 dm_linear_init, 207 dm_stripe_init, 208 dm_kcopyd_init, 209 dm_interface_init, 210 }; 211 212 static void (*_exits[])(void) = { 213 local_exit, 214 dm_target_exit, 215 dm_linear_exit, 216 dm_stripe_exit, 217 dm_kcopyd_exit, 218 dm_interface_exit, 219 }; 220 221 static int __init dm_init(void) 222 { 223 const int count = ARRAY_SIZE(_inits); 224 225 int r, i; 226 227 for (i = 0; i < count; i++) { 228 r = _inits[i](); 229 if (r) 230 goto bad; 231 } 232 233 return 0; 234 235 bad: 236 while (i--) 237 _exits[i](); 238 239 return r; 240 } 241 242 static void __exit dm_exit(void) 243 { 244 int i = ARRAY_SIZE(_exits); 245 246 while (i--) 247 _exits[i](); 248 } 249 250 /* 251 * Block device functions 252 */ 253 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 254 { 255 struct mapped_device *md; 256 257 spin_lock(&_minor_lock); 258 259 md = bdev->bd_disk->private_data; 260 if (!md) 261 goto out; 262 263 if (test_bit(DMF_FREEING, &md->flags) || 264 test_bit(DMF_DELETING, &md->flags)) { 265 md = NULL; 266 goto out; 267 } 268 269 dm_get(md); 270 atomic_inc(&md->open_count); 271 272 out: 273 spin_unlock(&_minor_lock); 274 275 return md ? 0 : -ENXIO; 276 } 277 278 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 279 { 280 struct mapped_device *md = disk->private_data; 281 atomic_dec(&md->open_count); 282 dm_put(md); 283 return 0; 284 } 285 286 int dm_open_count(struct mapped_device *md) 287 { 288 return atomic_read(&md->open_count); 289 } 290 291 /* 292 * Guarantees nothing is using the device before it's deleted. 293 */ 294 int dm_lock_for_deletion(struct mapped_device *md) 295 { 296 int r = 0; 297 298 spin_lock(&_minor_lock); 299 300 if (dm_open_count(md)) 301 r = -EBUSY; 302 else 303 set_bit(DMF_DELETING, &md->flags); 304 305 spin_unlock(&_minor_lock); 306 307 return r; 308 } 309 310 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 311 { 312 struct mapped_device *md = bdev->bd_disk->private_data; 313 314 return dm_get_geometry(md, geo); 315 } 316 317 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 318 unsigned int cmd, unsigned long arg) 319 { 320 struct mapped_device *md = bdev->bd_disk->private_data; 321 struct dm_table *map = dm_get_table(md); 322 struct dm_target *tgt; 323 int r = -ENOTTY; 324 325 if (!map || !dm_table_get_size(map)) 326 goto out; 327 328 /* We only support devices that have a single target */ 329 if (dm_table_get_num_targets(map) != 1) 330 goto out; 331 332 tgt = dm_table_get_target(map, 0); 333 334 if (dm_suspended(md)) { 335 r = -EAGAIN; 336 goto out; 337 } 338 339 if (tgt->type->ioctl) 340 r = tgt->type->ioctl(tgt, cmd, arg); 341 342 out: 343 dm_table_put(map); 344 345 return r; 346 } 347 348 static struct dm_io *alloc_io(struct mapped_device *md) 349 { 350 return mempool_alloc(md->io_pool, GFP_NOIO); 351 } 352 353 static void free_io(struct mapped_device *md, struct dm_io *io) 354 { 355 mempool_free(io, md->io_pool); 356 } 357 358 static struct dm_target_io *alloc_tio(struct mapped_device *md) 359 { 360 return mempool_alloc(md->tio_pool, GFP_NOIO); 361 } 362 363 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 364 { 365 mempool_free(tio, md->tio_pool); 366 } 367 368 static void start_io_acct(struct dm_io *io) 369 { 370 struct mapped_device *md = io->md; 371 int cpu; 372 373 io->start_time = jiffies; 374 375 cpu = part_stat_lock(); 376 part_round_stats(cpu, &dm_disk(md)->part0); 377 part_stat_unlock(); 378 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending); 379 } 380 381 static void end_io_acct(struct dm_io *io) 382 { 383 struct mapped_device *md = io->md; 384 struct bio *bio = io->bio; 385 unsigned long duration = jiffies - io->start_time; 386 int pending, cpu; 387 int rw = bio_data_dir(bio); 388 389 cpu = part_stat_lock(); 390 part_round_stats(cpu, &dm_disk(md)->part0); 391 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 392 part_stat_unlock(); 393 394 dm_disk(md)->part0.in_flight = pending = 395 atomic_dec_return(&md->pending); 396 397 /* nudge anyone waiting on suspend queue */ 398 if (!pending) 399 wake_up(&md->wait); 400 } 401 402 /* 403 * Add the bio to the list of deferred io. 404 */ 405 static int queue_io(struct mapped_device *md, struct bio *bio) 406 { 407 down_write(&md->io_lock); 408 409 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 410 up_write(&md->io_lock); 411 return 1; 412 } 413 414 bio_list_add(&md->deferred, bio); 415 416 up_write(&md->io_lock); 417 return 0; /* deferred successfully */ 418 } 419 420 /* 421 * Everyone (including functions in this file), should use this 422 * function to access the md->map field, and make sure they call 423 * dm_table_put() when finished. 424 */ 425 struct dm_table *dm_get_table(struct mapped_device *md) 426 { 427 struct dm_table *t; 428 429 read_lock(&md->map_lock); 430 t = md->map; 431 if (t) 432 dm_table_get(t); 433 read_unlock(&md->map_lock); 434 435 return t; 436 } 437 438 /* 439 * Get the geometry associated with a dm device 440 */ 441 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 442 { 443 *geo = md->geometry; 444 445 return 0; 446 } 447 448 /* 449 * Set the geometry of a device. 450 */ 451 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 452 { 453 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 454 455 if (geo->start > sz) { 456 DMWARN("Start sector is beyond the geometry limits."); 457 return -EINVAL; 458 } 459 460 md->geometry = *geo; 461 462 return 0; 463 } 464 465 /*----------------------------------------------------------------- 466 * CRUD START: 467 * A more elegant soln is in the works that uses the queue 468 * merge fn, unfortunately there are a couple of changes to 469 * the block layer that I want to make for this. So in the 470 * interests of getting something for people to use I give 471 * you this clearly demarcated crap. 472 *---------------------------------------------------------------*/ 473 474 static int __noflush_suspending(struct mapped_device *md) 475 { 476 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 477 } 478 479 /* 480 * Decrements the number of outstanding ios that a bio has been 481 * cloned into, completing the original io if necc. 482 */ 483 static void dec_pending(struct dm_io *io, int error) 484 { 485 unsigned long flags; 486 487 /* Push-back supersedes any I/O errors */ 488 if (error && !(io->error > 0 && __noflush_suspending(io->md))) 489 io->error = error; 490 491 if (atomic_dec_and_test(&io->io_count)) { 492 if (io->error == DM_ENDIO_REQUEUE) { 493 /* 494 * Target requested pushing back the I/O. 495 * This must be handled before the sleeper on 496 * suspend queue merges the pushback list. 497 */ 498 spin_lock_irqsave(&io->md->pushback_lock, flags); 499 if (__noflush_suspending(io->md)) 500 bio_list_add(&io->md->pushback, io->bio); 501 else 502 /* noflush suspend was interrupted. */ 503 io->error = -EIO; 504 spin_unlock_irqrestore(&io->md->pushback_lock, flags); 505 } 506 507 end_io_acct(io); 508 509 if (io->error != DM_ENDIO_REQUEUE) { 510 trace_block_bio_complete(io->md->queue, io->bio); 511 512 bio_endio(io->bio, io->error); 513 } 514 515 free_io(io->md, io); 516 } 517 } 518 519 static void clone_endio(struct bio *bio, int error) 520 { 521 int r = 0; 522 struct dm_target_io *tio = bio->bi_private; 523 struct mapped_device *md = tio->io->md; 524 dm_endio_fn endio = tio->ti->type->end_io; 525 526 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 527 error = -EIO; 528 529 if (endio) { 530 r = endio(tio->ti, bio, error, &tio->info); 531 if (r < 0 || r == DM_ENDIO_REQUEUE) 532 /* 533 * error and requeue request are handled 534 * in dec_pending(). 535 */ 536 error = r; 537 else if (r == DM_ENDIO_INCOMPLETE) 538 /* The target will handle the io */ 539 return; 540 else if (r) { 541 DMWARN("unimplemented target endio return value: %d", r); 542 BUG(); 543 } 544 } 545 546 dec_pending(tio->io, error); 547 548 /* 549 * Store md for cleanup instead of tio which is about to get freed. 550 */ 551 bio->bi_private = md->bs; 552 553 bio_put(bio); 554 free_tio(md, tio); 555 } 556 557 static sector_t max_io_len(struct mapped_device *md, 558 sector_t sector, struct dm_target *ti) 559 { 560 sector_t offset = sector - ti->begin; 561 sector_t len = ti->len - offset; 562 563 /* 564 * Does the target need to split even further ? 565 */ 566 if (ti->split_io) { 567 sector_t boundary; 568 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 569 - offset; 570 if (len > boundary) 571 len = boundary; 572 } 573 574 return len; 575 } 576 577 static void __map_bio(struct dm_target *ti, struct bio *clone, 578 struct dm_target_io *tio) 579 { 580 int r; 581 sector_t sector; 582 struct mapped_device *md; 583 584 /* 585 * Sanity checks. 586 */ 587 BUG_ON(!clone->bi_size); 588 589 clone->bi_end_io = clone_endio; 590 clone->bi_private = tio; 591 592 /* 593 * Map the clone. If r == 0 we don't need to do 594 * anything, the target has assumed ownership of 595 * this io. 596 */ 597 atomic_inc(&tio->io->io_count); 598 sector = clone->bi_sector; 599 r = ti->type->map(ti, clone, &tio->info); 600 if (r == DM_MAPIO_REMAPPED) { 601 /* the bio has been remapped so dispatch it */ 602 603 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone, 604 tio->io->bio->bi_bdev->bd_dev, 605 clone->bi_sector, sector); 606 607 generic_make_request(clone); 608 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 609 /* error the io and bail out, or requeue it if needed */ 610 md = tio->io->md; 611 dec_pending(tio->io, r); 612 /* 613 * Store bio_set for cleanup. 614 */ 615 clone->bi_private = md->bs; 616 bio_put(clone); 617 free_tio(md, tio); 618 } else if (r) { 619 DMWARN("unimplemented target map return value: %d", r); 620 BUG(); 621 } 622 } 623 624 struct clone_info { 625 struct mapped_device *md; 626 struct dm_table *map; 627 struct bio *bio; 628 struct dm_io *io; 629 sector_t sector; 630 sector_t sector_count; 631 unsigned short idx; 632 }; 633 634 static void dm_bio_destructor(struct bio *bio) 635 { 636 struct bio_set *bs = bio->bi_private; 637 638 bio_free(bio, bs); 639 } 640 641 /* 642 * Creates a little bio that is just does part of a bvec. 643 */ 644 static struct bio *split_bvec(struct bio *bio, sector_t sector, 645 unsigned short idx, unsigned int offset, 646 unsigned int len, struct bio_set *bs) 647 { 648 struct bio *clone; 649 struct bio_vec *bv = bio->bi_io_vec + idx; 650 651 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 652 clone->bi_destructor = dm_bio_destructor; 653 *clone->bi_io_vec = *bv; 654 655 clone->bi_sector = sector; 656 clone->bi_bdev = bio->bi_bdev; 657 clone->bi_rw = bio->bi_rw; 658 clone->bi_vcnt = 1; 659 clone->bi_size = to_bytes(len); 660 clone->bi_io_vec->bv_offset = offset; 661 clone->bi_io_vec->bv_len = clone->bi_size; 662 clone->bi_flags |= 1 << BIO_CLONED; 663 664 return clone; 665 } 666 667 /* 668 * Creates a bio that consists of range of complete bvecs. 669 */ 670 static struct bio *clone_bio(struct bio *bio, sector_t sector, 671 unsigned short idx, unsigned short bv_count, 672 unsigned int len, struct bio_set *bs) 673 { 674 struct bio *clone; 675 676 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 677 __bio_clone(clone, bio); 678 clone->bi_destructor = dm_bio_destructor; 679 clone->bi_sector = sector; 680 clone->bi_idx = idx; 681 clone->bi_vcnt = idx + bv_count; 682 clone->bi_size = to_bytes(len); 683 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 684 685 return clone; 686 } 687 688 static int __clone_and_map(struct clone_info *ci) 689 { 690 struct bio *clone, *bio = ci->bio; 691 struct dm_target *ti; 692 sector_t len = 0, max; 693 struct dm_target_io *tio; 694 695 ti = dm_table_find_target(ci->map, ci->sector); 696 if (!dm_target_is_valid(ti)) 697 return -EIO; 698 699 max = max_io_len(ci->md, ci->sector, ti); 700 701 /* 702 * Allocate a target io object. 703 */ 704 tio = alloc_tio(ci->md); 705 tio->io = ci->io; 706 tio->ti = ti; 707 memset(&tio->info, 0, sizeof(tio->info)); 708 709 if (ci->sector_count <= max) { 710 /* 711 * Optimise for the simple case where we can do all of 712 * the remaining io with a single clone. 713 */ 714 clone = clone_bio(bio, ci->sector, ci->idx, 715 bio->bi_vcnt - ci->idx, ci->sector_count, 716 ci->md->bs); 717 __map_bio(ti, clone, tio); 718 ci->sector_count = 0; 719 720 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 721 /* 722 * There are some bvecs that don't span targets. 723 * Do as many of these as possible. 724 */ 725 int i; 726 sector_t remaining = max; 727 sector_t bv_len; 728 729 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 730 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 731 732 if (bv_len > remaining) 733 break; 734 735 remaining -= bv_len; 736 len += bv_len; 737 } 738 739 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 740 ci->md->bs); 741 __map_bio(ti, clone, tio); 742 743 ci->sector += len; 744 ci->sector_count -= len; 745 ci->idx = i; 746 747 } else { 748 /* 749 * Handle a bvec that must be split between two or more targets. 750 */ 751 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 752 sector_t remaining = to_sector(bv->bv_len); 753 unsigned int offset = 0; 754 755 do { 756 if (offset) { 757 ti = dm_table_find_target(ci->map, ci->sector); 758 if (!dm_target_is_valid(ti)) 759 return -EIO; 760 761 max = max_io_len(ci->md, ci->sector, ti); 762 763 tio = alloc_tio(ci->md); 764 tio->io = ci->io; 765 tio->ti = ti; 766 memset(&tio->info, 0, sizeof(tio->info)); 767 } 768 769 len = min(remaining, max); 770 771 clone = split_bvec(bio, ci->sector, ci->idx, 772 bv->bv_offset + offset, len, 773 ci->md->bs); 774 775 __map_bio(ti, clone, tio); 776 777 ci->sector += len; 778 ci->sector_count -= len; 779 offset += to_bytes(len); 780 } while (remaining -= len); 781 782 ci->idx++; 783 } 784 785 return 0; 786 } 787 788 /* 789 * Split the bio into several clones. 790 */ 791 static int __split_bio(struct mapped_device *md, struct bio *bio) 792 { 793 struct clone_info ci; 794 int error = 0; 795 796 ci.map = dm_get_table(md); 797 if (unlikely(!ci.map)) 798 return -EIO; 799 800 ci.md = md; 801 ci.bio = bio; 802 ci.io = alloc_io(md); 803 ci.io->error = 0; 804 atomic_set(&ci.io->io_count, 1); 805 ci.io->bio = bio; 806 ci.io->md = md; 807 ci.sector = bio->bi_sector; 808 ci.sector_count = bio_sectors(bio); 809 ci.idx = bio->bi_idx; 810 811 start_io_acct(ci.io); 812 while (ci.sector_count && !error) 813 error = __clone_and_map(&ci); 814 815 /* drop the extra reference count */ 816 dec_pending(ci.io, error); 817 dm_table_put(ci.map); 818 819 return 0; 820 } 821 /*----------------------------------------------------------------- 822 * CRUD END 823 *---------------------------------------------------------------*/ 824 825 static int dm_merge_bvec(struct request_queue *q, 826 struct bvec_merge_data *bvm, 827 struct bio_vec *biovec) 828 { 829 struct mapped_device *md = q->queuedata; 830 struct dm_table *map = dm_get_table(md); 831 struct dm_target *ti; 832 sector_t max_sectors; 833 int max_size = 0; 834 835 if (unlikely(!map)) 836 goto out; 837 838 ti = dm_table_find_target(map, bvm->bi_sector); 839 if (!dm_target_is_valid(ti)) 840 goto out_table; 841 842 /* 843 * Find maximum amount of I/O that won't need splitting 844 */ 845 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 846 (sector_t) BIO_MAX_SECTORS); 847 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 848 if (max_size < 0) 849 max_size = 0; 850 851 /* 852 * merge_bvec_fn() returns number of bytes 853 * it can accept at this offset 854 * max is precomputed maximal io size 855 */ 856 if (max_size && ti->type->merge) 857 max_size = ti->type->merge(ti, bvm, biovec, max_size); 858 859 out_table: 860 dm_table_put(map); 861 862 out: 863 /* 864 * Always allow an entire first page 865 */ 866 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 867 max_size = biovec->bv_len; 868 869 return max_size; 870 } 871 872 /* 873 * The request function that just remaps the bio built up by 874 * dm_merge_bvec. 875 */ 876 static int dm_request(struct request_queue *q, struct bio *bio) 877 { 878 int r = -EIO; 879 int rw = bio_data_dir(bio); 880 struct mapped_device *md = q->queuedata; 881 int cpu; 882 883 /* 884 * There is no use in forwarding any barrier request since we can't 885 * guarantee it is (or can be) handled by the targets correctly. 886 */ 887 if (unlikely(bio_barrier(bio))) { 888 bio_endio(bio, -EOPNOTSUPP); 889 return 0; 890 } 891 892 down_read(&md->io_lock); 893 894 cpu = part_stat_lock(); 895 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 896 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 897 part_stat_unlock(); 898 899 /* 900 * If we're suspended we have to queue 901 * this io for later. 902 */ 903 while (test_bit(DMF_BLOCK_IO, &md->flags)) { 904 up_read(&md->io_lock); 905 906 if (bio_rw(bio) != READA) 907 r = queue_io(md, bio); 908 909 if (r <= 0) 910 goto out_req; 911 912 /* 913 * We're in a while loop, because someone could suspend 914 * before we get to the following read lock. 915 */ 916 down_read(&md->io_lock); 917 } 918 919 r = __split_bio(md, bio); 920 up_read(&md->io_lock); 921 922 out_req: 923 if (r < 0) 924 bio_io_error(bio); 925 926 return 0; 927 } 928 929 static void dm_unplug_all(struct request_queue *q) 930 { 931 struct mapped_device *md = q->queuedata; 932 struct dm_table *map = dm_get_table(md); 933 934 if (map) { 935 dm_table_unplug_all(map); 936 dm_table_put(map); 937 } 938 } 939 940 static int dm_any_congested(void *congested_data, int bdi_bits) 941 { 942 int r = bdi_bits; 943 struct mapped_device *md = congested_data; 944 struct dm_table *map; 945 946 atomic_inc(&md->pending); 947 948 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 949 map = dm_get_table(md); 950 if (map) { 951 r = dm_table_any_congested(map, bdi_bits); 952 dm_table_put(map); 953 } 954 } 955 956 if (!atomic_dec_return(&md->pending)) 957 /* nudge anyone waiting on suspend queue */ 958 wake_up(&md->wait); 959 960 return r; 961 } 962 963 /*----------------------------------------------------------------- 964 * An IDR is used to keep track of allocated minor numbers. 965 *---------------------------------------------------------------*/ 966 static DEFINE_IDR(_minor_idr); 967 968 static void free_minor(int minor) 969 { 970 spin_lock(&_minor_lock); 971 idr_remove(&_minor_idr, minor); 972 spin_unlock(&_minor_lock); 973 } 974 975 /* 976 * See if the device with a specific minor # is free. 977 */ 978 static int specific_minor(int minor) 979 { 980 int r, m; 981 982 if (minor >= (1 << MINORBITS)) 983 return -EINVAL; 984 985 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 986 if (!r) 987 return -ENOMEM; 988 989 spin_lock(&_minor_lock); 990 991 if (idr_find(&_minor_idr, minor)) { 992 r = -EBUSY; 993 goto out; 994 } 995 996 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 997 if (r) 998 goto out; 999 1000 if (m != minor) { 1001 idr_remove(&_minor_idr, m); 1002 r = -EBUSY; 1003 goto out; 1004 } 1005 1006 out: 1007 spin_unlock(&_minor_lock); 1008 return r; 1009 } 1010 1011 static int next_free_minor(int *minor) 1012 { 1013 int r, m; 1014 1015 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1016 if (!r) 1017 return -ENOMEM; 1018 1019 spin_lock(&_minor_lock); 1020 1021 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1022 if (r) 1023 goto out; 1024 1025 if (m >= (1 << MINORBITS)) { 1026 idr_remove(&_minor_idr, m); 1027 r = -ENOSPC; 1028 goto out; 1029 } 1030 1031 *minor = m; 1032 1033 out: 1034 spin_unlock(&_minor_lock); 1035 return r; 1036 } 1037 1038 static struct block_device_operations dm_blk_dops; 1039 1040 /* 1041 * Allocate and initialise a blank device with a given minor. 1042 */ 1043 static struct mapped_device *alloc_dev(int minor) 1044 { 1045 int r; 1046 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1047 void *old_md; 1048 1049 if (!md) { 1050 DMWARN("unable to allocate device, out of memory."); 1051 return NULL; 1052 } 1053 1054 if (!try_module_get(THIS_MODULE)) 1055 goto bad_module_get; 1056 1057 /* get a minor number for the dev */ 1058 if (minor == DM_ANY_MINOR) 1059 r = next_free_minor(&minor); 1060 else 1061 r = specific_minor(minor); 1062 if (r < 0) 1063 goto bad_minor; 1064 1065 init_rwsem(&md->io_lock); 1066 mutex_init(&md->suspend_lock); 1067 spin_lock_init(&md->pushback_lock); 1068 rwlock_init(&md->map_lock); 1069 atomic_set(&md->holders, 1); 1070 atomic_set(&md->open_count, 0); 1071 atomic_set(&md->event_nr, 0); 1072 atomic_set(&md->uevent_seq, 0); 1073 INIT_LIST_HEAD(&md->uevent_list); 1074 spin_lock_init(&md->uevent_lock); 1075 1076 md->queue = blk_alloc_queue(GFP_KERNEL); 1077 if (!md->queue) 1078 goto bad_queue; 1079 1080 md->queue->queuedata = md; 1081 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1082 md->queue->backing_dev_info.congested_data = md; 1083 blk_queue_make_request(md->queue, dm_request); 1084 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1085 md->queue->unplug_fn = dm_unplug_all; 1086 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1087 1088 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 1089 if (!md->io_pool) 1090 goto bad_io_pool; 1091 1092 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 1093 if (!md->tio_pool) 1094 goto bad_tio_pool; 1095 1096 md->bs = bioset_create(16, 0); 1097 if (!md->bs) 1098 goto bad_no_bioset; 1099 1100 md->disk = alloc_disk(1); 1101 if (!md->disk) 1102 goto bad_disk; 1103 1104 atomic_set(&md->pending, 0); 1105 init_waitqueue_head(&md->wait); 1106 init_waitqueue_head(&md->eventq); 1107 1108 md->disk->major = _major; 1109 md->disk->first_minor = minor; 1110 md->disk->fops = &dm_blk_dops; 1111 md->disk->queue = md->queue; 1112 md->disk->private_data = md; 1113 sprintf(md->disk->disk_name, "dm-%d", minor); 1114 add_disk(md->disk); 1115 format_dev_t(md->name, MKDEV(_major, minor)); 1116 1117 md->wq = create_singlethread_workqueue("kdmflush"); 1118 if (!md->wq) 1119 goto bad_thread; 1120 1121 /* Populate the mapping, nobody knows we exist yet */ 1122 spin_lock(&_minor_lock); 1123 old_md = idr_replace(&_minor_idr, md, minor); 1124 spin_unlock(&_minor_lock); 1125 1126 BUG_ON(old_md != MINOR_ALLOCED); 1127 1128 return md; 1129 1130 bad_thread: 1131 put_disk(md->disk); 1132 bad_disk: 1133 bioset_free(md->bs); 1134 bad_no_bioset: 1135 mempool_destroy(md->tio_pool); 1136 bad_tio_pool: 1137 mempool_destroy(md->io_pool); 1138 bad_io_pool: 1139 blk_cleanup_queue(md->queue); 1140 bad_queue: 1141 free_minor(minor); 1142 bad_minor: 1143 module_put(THIS_MODULE); 1144 bad_module_get: 1145 kfree(md); 1146 return NULL; 1147 } 1148 1149 static void unlock_fs(struct mapped_device *md); 1150 1151 static void free_dev(struct mapped_device *md) 1152 { 1153 int minor = MINOR(disk_devt(md->disk)); 1154 1155 if (md->suspended_bdev) { 1156 unlock_fs(md); 1157 bdput(md->suspended_bdev); 1158 } 1159 destroy_workqueue(md->wq); 1160 mempool_destroy(md->tio_pool); 1161 mempool_destroy(md->io_pool); 1162 bioset_free(md->bs); 1163 del_gendisk(md->disk); 1164 free_minor(minor); 1165 1166 spin_lock(&_minor_lock); 1167 md->disk->private_data = NULL; 1168 spin_unlock(&_minor_lock); 1169 1170 put_disk(md->disk); 1171 blk_cleanup_queue(md->queue); 1172 module_put(THIS_MODULE); 1173 kfree(md); 1174 } 1175 1176 /* 1177 * Bind a table to the device. 1178 */ 1179 static void event_callback(void *context) 1180 { 1181 unsigned long flags; 1182 LIST_HEAD(uevents); 1183 struct mapped_device *md = (struct mapped_device *) context; 1184 1185 spin_lock_irqsave(&md->uevent_lock, flags); 1186 list_splice_init(&md->uevent_list, &uevents); 1187 spin_unlock_irqrestore(&md->uevent_lock, flags); 1188 1189 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1190 1191 atomic_inc(&md->event_nr); 1192 wake_up(&md->eventq); 1193 } 1194 1195 static void __set_size(struct mapped_device *md, sector_t size) 1196 { 1197 set_capacity(md->disk, size); 1198 1199 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex); 1200 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1201 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex); 1202 } 1203 1204 static int __bind(struct mapped_device *md, struct dm_table *t) 1205 { 1206 struct request_queue *q = md->queue; 1207 sector_t size; 1208 1209 size = dm_table_get_size(t); 1210 1211 /* 1212 * Wipe any geometry if the size of the table changed. 1213 */ 1214 if (size != get_capacity(md->disk)) 1215 memset(&md->geometry, 0, sizeof(md->geometry)); 1216 1217 if (md->suspended_bdev) 1218 __set_size(md, size); 1219 if (size == 0) 1220 return 0; 1221 1222 dm_table_get(t); 1223 dm_table_event_callback(t, event_callback, md); 1224 1225 write_lock(&md->map_lock); 1226 md->map = t; 1227 dm_table_set_restrictions(t, q); 1228 write_unlock(&md->map_lock); 1229 1230 return 0; 1231 } 1232 1233 static void __unbind(struct mapped_device *md) 1234 { 1235 struct dm_table *map = md->map; 1236 1237 if (!map) 1238 return; 1239 1240 dm_table_event_callback(map, NULL, NULL); 1241 write_lock(&md->map_lock); 1242 md->map = NULL; 1243 write_unlock(&md->map_lock); 1244 dm_table_put(map); 1245 } 1246 1247 /* 1248 * Constructor for a new device. 1249 */ 1250 int dm_create(int minor, struct mapped_device **result) 1251 { 1252 struct mapped_device *md; 1253 1254 md = alloc_dev(minor); 1255 if (!md) 1256 return -ENXIO; 1257 1258 *result = md; 1259 return 0; 1260 } 1261 1262 static struct mapped_device *dm_find_md(dev_t dev) 1263 { 1264 struct mapped_device *md; 1265 unsigned minor = MINOR(dev); 1266 1267 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1268 return NULL; 1269 1270 spin_lock(&_minor_lock); 1271 1272 md = idr_find(&_minor_idr, minor); 1273 if (md && (md == MINOR_ALLOCED || 1274 (MINOR(disk_devt(dm_disk(md))) != minor) || 1275 test_bit(DMF_FREEING, &md->flags))) { 1276 md = NULL; 1277 goto out; 1278 } 1279 1280 out: 1281 spin_unlock(&_minor_lock); 1282 1283 return md; 1284 } 1285 1286 struct mapped_device *dm_get_md(dev_t dev) 1287 { 1288 struct mapped_device *md = dm_find_md(dev); 1289 1290 if (md) 1291 dm_get(md); 1292 1293 return md; 1294 } 1295 1296 void *dm_get_mdptr(struct mapped_device *md) 1297 { 1298 return md->interface_ptr; 1299 } 1300 1301 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1302 { 1303 md->interface_ptr = ptr; 1304 } 1305 1306 void dm_get(struct mapped_device *md) 1307 { 1308 atomic_inc(&md->holders); 1309 } 1310 1311 const char *dm_device_name(struct mapped_device *md) 1312 { 1313 return md->name; 1314 } 1315 EXPORT_SYMBOL_GPL(dm_device_name); 1316 1317 void dm_put(struct mapped_device *md) 1318 { 1319 struct dm_table *map; 1320 1321 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1322 1323 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 1324 map = dm_get_table(md); 1325 idr_replace(&_minor_idr, MINOR_ALLOCED, 1326 MINOR(disk_devt(dm_disk(md)))); 1327 set_bit(DMF_FREEING, &md->flags); 1328 spin_unlock(&_minor_lock); 1329 if (!dm_suspended(md)) { 1330 dm_table_presuspend_targets(map); 1331 dm_table_postsuspend_targets(map); 1332 } 1333 __unbind(md); 1334 dm_table_put(map); 1335 free_dev(md); 1336 } 1337 } 1338 EXPORT_SYMBOL_GPL(dm_put); 1339 1340 static int dm_wait_for_completion(struct mapped_device *md) 1341 { 1342 int r = 0; 1343 1344 while (1) { 1345 set_current_state(TASK_INTERRUPTIBLE); 1346 1347 smp_mb(); 1348 if (!atomic_read(&md->pending)) 1349 break; 1350 1351 if (signal_pending(current)) { 1352 r = -EINTR; 1353 break; 1354 } 1355 1356 io_schedule(); 1357 } 1358 set_current_state(TASK_RUNNING); 1359 1360 return r; 1361 } 1362 1363 /* 1364 * Process the deferred bios 1365 */ 1366 static void __flush_deferred_io(struct mapped_device *md) 1367 { 1368 struct bio *c; 1369 1370 while ((c = bio_list_pop(&md->deferred))) { 1371 if (__split_bio(md, c)) 1372 bio_io_error(c); 1373 } 1374 1375 clear_bit(DMF_BLOCK_IO, &md->flags); 1376 } 1377 1378 static void __merge_pushback_list(struct mapped_device *md) 1379 { 1380 unsigned long flags; 1381 1382 spin_lock_irqsave(&md->pushback_lock, flags); 1383 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1384 bio_list_merge_head(&md->deferred, &md->pushback); 1385 bio_list_init(&md->pushback); 1386 spin_unlock_irqrestore(&md->pushback_lock, flags); 1387 } 1388 1389 static void dm_wq_work(struct work_struct *work) 1390 { 1391 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work); 1392 struct mapped_device *md = req->md; 1393 1394 down_write(&md->io_lock); 1395 switch (req->type) { 1396 case DM_WQ_FLUSH_DEFERRED: 1397 __flush_deferred_io(md); 1398 break; 1399 default: 1400 DMERR("dm_wq_work: unrecognised work type %d", req->type); 1401 BUG(); 1402 } 1403 up_write(&md->io_lock); 1404 } 1405 1406 static void dm_wq_queue(struct mapped_device *md, int type, void *context, 1407 struct dm_wq_req *req) 1408 { 1409 req->type = type; 1410 req->md = md; 1411 req->context = context; 1412 INIT_WORK(&req->work, dm_wq_work); 1413 queue_work(md->wq, &req->work); 1414 } 1415 1416 static void dm_queue_flush(struct mapped_device *md, int type, void *context) 1417 { 1418 struct dm_wq_req req; 1419 1420 dm_wq_queue(md, type, context, &req); 1421 flush_workqueue(md->wq); 1422 } 1423 1424 /* 1425 * Swap in a new table (destroying old one). 1426 */ 1427 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1428 { 1429 int r = -EINVAL; 1430 1431 mutex_lock(&md->suspend_lock); 1432 1433 /* device must be suspended */ 1434 if (!dm_suspended(md)) 1435 goto out; 1436 1437 /* without bdev, the device size cannot be changed */ 1438 if (!md->suspended_bdev) 1439 if (get_capacity(md->disk) != dm_table_get_size(table)) 1440 goto out; 1441 1442 __unbind(md); 1443 r = __bind(md, table); 1444 1445 out: 1446 mutex_unlock(&md->suspend_lock); 1447 return r; 1448 } 1449 1450 /* 1451 * Functions to lock and unlock any filesystem running on the 1452 * device. 1453 */ 1454 static int lock_fs(struct mapped_device *md) 1455 { 1456 int r; 1457 1458 WARN_ON(md->frozen_sb); 1459 1460 md->frozen_sb = freeze_bdev(md->suspended_bdev); 1461 if (IS_ERR(md->frozen_sb)) { 1462 r = PTR_ERR(md->frozen_sb); 1463 md->frozen_sb = NULL; 1464 return r; 1465 } 1466 1467 set_bit(DMF_FROZEN, &md->flags); 1468 1469 /* don't bdput right now, we don't want the bdev 1470 * to go away while it is locked. 1471 */ 1472 return 0; 1473 } 1474 1475 static void unlock_fs(struct mapped_device *md) 1476 { 1477 if (!test_bit(DMF_FROZEN, &md->flags)) 1478 return; 1479 1480 thaw_bdev(md->suspended_bdev, md->frozen_sb); 1481 md->frozen_sb = NULL; 1482 clear_bit(DMF_FROZEN, &md->flags); 1483 } 1484 1485 /* 1486 * We need to be able to change a mapping table under a mounted 1487 * filesystem. For example we might want to move some data in 1488 * the background. Before the table can be swapped with 1489 * dm_bind_table, dm_suspend must be called to flush any in 1490 * flight bios and ensure that any further io gets deferred. 1491 */ 1492 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 1493 { 1494 struct dm_table *map = NULL; 1495 DECLARE_WAITQUEUE(wait, current); 1496 int r = 0; 1497 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 1498 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 1499 1500 mutex_lock(&md->suspend_lock); 1501 1502 if (dm_suspended(md)) { 1503 r = -EINVAL; 1504 goto out_unlock; 1505 } 1506 1507 map = dm_get_table(md); 1508 1509 /* 1510 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 1511 * This flag is cleared before dm_suspend returns. 1512 */ 1513 if (noflush) 1514 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1515 1516 /* This does not get reverted if there's an error later. */ 1517 dm_table_presuspend_targets(map); 1518 1519 /* bdget() can stall if the pending I/Os are not flushed */ 1520 if (!noflush) { 1521 md->suspended_bdev = bdget_disk(md->disk, 0); 1522 if (!md->suspended_bdev) { 1523 DMWARN("bdget failed in dm_suspend"); 1524 r = -ENOMEM; 1525 goto out; 1526 } 1527 1528 /* 1529 * Flush I/O to the device. noflush supersedes do_lockfs, 1530 * because lock_fs() needs to flush I/Os. 1531 */ 1532 if (do_lockfs) { 1533 r = lock_fs(md); 1534 if (r) 1535 goto out; 1536 } 1537 } 1538 1539 /* 1540 * First we set the BLOCK_IO flag so no more ios will be mapped. 1541 */ 1542 down_write(&md->io_lock); 1543 set_bit(DMF_BLOCK_IO, &md->flags); 1544 1545 add_wait_queue(&md->wait, &wait); 1546 up_write(&md->io_lock); 1547 1548 /* unplug */ 1549 if (map) 1550 dm_table_unplug_all(map); 1551 1552 /* 1553 * Wait for the already-mapped ios to complete. 1554 */ 1555 r = dm_wait_for_completion(md); 1556 1557 down_write(&md->io_lock); 1558 remove_wait_queue(&md->wait, &wait); 1559 1560 if (noflush) 1561 __merge_pushback_list(md); 1562 up_write(&md->io_lock); 1563 1564 /* were we interrupted ? */ 1565 if (r < 0) { 1566 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1567 1568 unlock_fs(md); 1569 goto out; /* pushback list is already flushed, so skip flush */ 1570 } 1571 1572 dm_table_postsuspend_targets(map); 1573 1574 set_bit(DMF_SUSPENDED, &md->flags); 1575 1576 out: 1577 if (r && md->suspended_bdev) { 1578 bdput(md->suspended_bdev); 1579 md->suspended_bdev = NULL; 1580 } 1581 1582 dm_table_put(map); 1583 1584 out_unlock: 1585 mutex_unlock(&md->suspend_lock); 1586 return r; 1587 } 1588 1589 int dm_resume(struct mapped_device *md) 1590 { 1591 int r = -EINVAL; 1592 struct dm_table *map = NULL; 1593 1594 mutex_lock(&md->suspend_lock); 1595 if (!dm_suspended(md)) 1596 goto out; 1597 1598 map = dm_get_table(md); 1599 if (!map || !dm_table_get_size(map)) 1600 goto out; 1601 1602 r = dm_table_resume_targets(map); 1603 if (r) 1604 goto out; 1605 1606 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1607 1608 unlock_fs(md); 1609 1610 if (md->suspended_bdev) { 1611 bdput(md->suspended_bdev); 1612 md->suspended_bdev = NULL; 1613 } 1614 1615 clear_bit(DMF_SUSPENDED, &md->flags); 1616 1617 dm_table_unplug_all(map); 1618 1619 dm_kobject_uevent(md); 1620 1621 r = 0; 1622 1623 out: 1624 dm_table_put(map); 1625 mutex_unlock(&md->suspend_lock); 1626 1627 return r; 1628 } 1629 1630 /*----------------------------------------------------------------- 1631 * Event notification. 1632 *---------------------------------------------------------------*/ 1633 void dm_kobject_uevent(struct mapped_device *md) 1634 { 1635 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE); 1636 } 1637 1638 uint32_t dm_next_uevent_seq(struct mapped_device *md) 1639 { 1640 return atomic_add_return(1, &md->uevent_seq); 1641 } 1642 1643 uint32_t dm_get_event_nr(struct mapped_device *md) 1644 { 1645 return atomic_read(&md->event_nr); 1646 } 1647 1648 int dm_wait_event(struct mapped_device *md, int event_nr) 1649 { 1650 return wait_event_interruptible(md->eventq, 1651 (event_nr != atomic_read(&md->event_nr))); 1652 } 1653 1654 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 1655 { 1656 unsigned long flags; 1657 1658 spin_lock_irqsave(&md->uevent_lock, flags); 1659 list_add(elist, &md->uevent_list); 1660 spin_unlock_irqrestore(&md->uevent_lock, flags); 1661 } 1662 1663 /* 1664 * The gendisk is only valid as long as you have a reference 1665 * count on 'md'. 1666 */ 1667 struct gendisk *dm_disk(struct mapped_device *md) 1668 { 1669 return md->disk; 1670 } 1671 1672 int dm_suspended(struct mapped_device *md) 1673 { 1674 return test_bit(DMF_SUSPENDED, &md->flags); 1675 } 1676 1677 int dm_noflush_suspending(struct dm_target *ti) 1678 { 1679 struct mapped_device *md = dm_table_get_md(ti->table); 1680 int r = __noflush_suspending(md); 1681 1682 dm_put(md); 1683 1684 return r; 1685 } 1686 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 1687 1688 static struct block_device_operations dm_blk_dops = { 1689 .open = dm_blk_open, 1690 .release = dm_blk_close, 1691 .ioctl = dm_blk_ioctl, 1692 .getgeo = dm_blk_getgeo, 1693 .owner = THIS_MODULE 1694 }; 1695 1696 EXPORT_SYMBOL(dm_get_mapinfo); 1697 1698 /* 1699 * module hooks 1700 */ 1701 module_init(dm_init); 1702 module_exit(dm_exit); 1703 1704 module_param(major, uint, 0); 1705 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1706 MODULE_DESCRIPTION(DM_NAME " driver"); 1707 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1708 MODULE_LICENSE("GPL"); 1709