xref: /openbmc/linux/drivers/md/dm.c (revision bb799ca0202a360fa74d5f17039b9100caebdde7)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * One of these is allocated per target within a bio.  Hopefully
47  * this will be simplified out one day.
48  */
49 struct dm_target_io {
50 	struct dm_io *io;
51 	struct dm_target *ti;
52 	union map_info info;
53 };
54 
55 DEFINE_TRACE(block_bio_complete);
56 
57 union map_info *dm_get_mapinfo(struct bio *bio)
58 {
59 	if (bio && bio->bi_private)
60 		return &((struct dm_target_io *)bio->bi_private)->info;
61 	return NULL;
62 }
63 
64 #define MINOR_ALLOCED ((void *)-1)
65 
66 /*
67  * Bits for the md->flags field.
68  */
69 #define DMF_BLOCK_IO 0
70 #define DMF_SUSPENDED 1
71 #define DMF_FROZEN 2
72 #define DMF_FREEING 3
73 #define DMF_DELETING 4
74 #define DMF_NOFLUSH_SUSPENDING 5
75 
76 /*
77  * Work processed by per-device workqueue.
78  */
79 struct dm_wq_req {
80 	enum {
81 		DM_WQ_FLUSH_DEFERRED,
82 	} type;
83 	struct work_struct work;
84 	struct mapped_device *md;
85 	void *context;
86 };
87 
88 struct mapped_device {
89 	struct rw_semaphore io_lock;
90 	struct mutex suspend_lock;
91 	spinlock_t pushback_lock;
92 	rwlock_t map_lock;
93 	atomic_t holders;
94 	atomic_t open_count;
95 
96 	unsigned long flags;
97 
98 	struct request_queue *queue;
99 	struct gendisk *disk;
100 	char name[16];
101 
102 	void *interface_ptr;
103 
104 	/*
105 	 * A list of ios that arrived while we were suspended.
106 	 */
107 	atomic_t pending;
108 	wait_queue_head_t wait;
109 	struct bio_list deferred;
110 	struct bio_list pushback;
111 
112 	/*
113 	 * Processing queue (flush/barriers)
114 	 */
115 	struct workqueue_struct *wq;
116 
117 	/*
118 	 * The current mapping.
119 	 */
120 	struct dm_table *map;
121 
122 	/*
123 	 * io objects are allocated from here.
124 	 */
125 	mempool_t *io_pool;
126 	mempool_t *tio_pool;
127 
128 	struct bio_set *bs;
129 
130 	/*
131 	 * Event handling.
132 	 */
133 	atomic_t event_nr;
134 	wait_queue_head_t eventq;
135 	atomic_t uevent_seq;
136 	struct list_head uevent_list;
137 	spinlock_t uevent_lock; /* Protect access to uevent_list */
138 
139 	/*
140 	 * freeze/thaw support require holding onto a super block
141 	 */
142 	struct super_block *frozen_sb;
143 	struct block_device *suspended_bdev;
144 
145 	/* forced geometry settings */
146 	struct hd_geometry geometry;
147 };
148 
149 #define MIN_IOS 256
150 static struct kmem_cache *_io_cache;
151 static struct kmem_cache *_tio_cache;
152 
153 static int __init local_init(void)
154 {
155 	int r = -ENOMEM;
156 
157 	/* allocate a slab for the dm_ios */
158 	_io_cache = KMEM_CACHE(dm_io, 0);
159 	if (!_io_cache)
160 		return r;
161 
162 	/* allocate a slab for the target ios */
163 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
164 	if (!_tio_cache)
165 		goto out_free_io_cache;
166 
167 	r = dm_uevent_init();
168 	if (r)
169 		goto out_free_tio_cache;
170 
171 	_major = major;
172 	r = register_blkdev(_major, _name);
173 	if (r < 0)
174 		goto out_uevent_exit;
175 
176 	if (!_major)
177 		_major = r;
178 
179 	return 0;
180 
181 out_uevent_exit:
182 	dm_uevent_exit();
183 out_free_tio_cache:
184 	kmem_cache_destroy(_tio_cache);
185 out_free_io_cache:
186 	kmem_cache_destroy(_io_cache);
187 
188 	return r;
189 }
190 
191 static void local_exit(void)
192 {
193 	kmem_cache_destroy(_tio_cache);
194 	kmem_cache_destroy(_io_cache);
195 	unregister_blkdev(_major, _name);
196 	dm_uevent_exit();
197 
198 	_major = 0;
199 
200 	DMINFO("cleaned up");
201 }
202 
203 static int (*_inits[])(void) __initdata = {
204 	local_init,
205 	dm_target_init,
206 	dm_linear_init,
207 	dm_stripe_init,
208 	dm_kcopyd_init,
209 	dm_interface_init,
210 };
211 
212 static void (*_exits[])(void) = {
213 	local_exit,
214 	dm_target_exit,
215 	dm_linear_exit,
216 	dm_stripe_exit,
217 	dm_kcopyd_exit,
218 	dm_interface_exit,
219 };
220 
221 static int __init dm_init(void)
222 {
223 	const int count = ARRAY_SIZE(_inits);
224 
225 	int r, i;
226 
227 	for (i = 0; i < count; i++) {
228 		r = _inits[i]();
229 		if (r)
230 			goto bad;
231 	}
232 
233 	return 0;
234 
235       bad:
236 	while (i--)
237 		_exits[i]();
238 
239 	return r;
240 }
241 
242 static void __exit dm_exit(void)
243 {
244 	int i = ARRAY_SIZE(_exits);
245 
246 	while (i--)
247 		_exits[i]();
248 }
249 
250 /*
251  * Block device functions
252  */
253 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
254 {
255 	struct mapped_device *md;
256 
257 	spin_lock(&_minor_lock);
258 
259 	md = bdev->bd_disk->private_data;
260 	if (!md)
261 		goto out;
262 
263 	if (test_bit(DMF_FREEING, &md->flags) ||
264 	    test_bit(DMF_DELETING, &md->flags)) {
265 		md = NULL;
266 		goto out;
267 	}
268 
269 	dm_get(md);
270 	atomic_inc(&md->open_count);
271 
272 out:
273 	spin_unlock(&_minor_lock);
274 
275 	return md ? 0 : -ENXIO;
276 }
277 
278 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
279 {
280 	struct mapped_device *md = disk->private_data;
281 	atomic_dec(&md->open_count);
282 	dm_put(md);
283 	return 0;
284 }
285 
286 int dm_open_count(struct mapped_device *md)
287 {
288 	return atomic_read(&md->open_count);
289 }
290 
291 /*
292  * Guarantees nothing is using the device before it's deleted.
293  */
294 int dm_lock_for_deletion(struct mapped_device *md)
295 {
296 	int r = 0;
297 
298 	spin_lock(&_minor_lock);
299 
300 	if (dm_open_count(md))
301 		r = -EBUSY;
302 	else
303 		set_bit(DMF_DELETING, &md->flags);
304 
305 	spin_unlock(&_minor_lock);
306 
307 	return r;
308 }
309 
310 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
311 {
312 	struct mapped_device *md = bdev->bd_disk->private_data;
313 
314 	return dm_get_geometry(md, geo);
315 }
316 
317 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
318 			unsigned int cmd, unsigned long arg)
319 {
320 	struct mapped_device *md = bdev->bd_disk->private_data;
321 	struct dm_table *map = dm_get_table(md);
322 	struct dm_target *tgt;
323 	int r = -ENOTTY;
324 
325 	if (!map || !dm_table_get_size(map))
326 		goto out;
327 
328 	/* We only support devices that have a single target */
329 	if (dm_table_get_num_targets(map) != 1)
330 		goto out;
331 
332 	tgt = dm_table_get_target(map, 0);
333 
334 	if (dm_suspended(md)) {
335 		r = -EAGAIN;
336 		goto out;
337 	}
338 
339 	if (tgt->type->ioctl)
340 		r = tgt->type->ioctl(tgt, cmd, arg);
341 
342 out:
343 	dm_table_put(map);
344 
345 	return r;
346 }
347 
348 static struct dm_io *alloc_io(struct mapped_device *md)
349 {
350 	return mempool_alloc(md->io_pool, GFP_NOIO);
351 }
352 
353 static void free_io(struct mapped_device *md, struct dm_io *io)
354 {
355 	mempool_free(io, md->io_pool);
356 }
357 
358 static struct dm_target_io *alloc_tio(struct mapped_device *md)
359 {
360 	return mempool_alloc(md->tio_pool, GFP_NOIO);
361 }
362 
363 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
364 {
365 	mempool_free(tio, md->tio_pool);
366 }
367 
368 static void start_io_acct(struct dm_io *io)
369 {
370 	struct mapped_device *md = io->md;
371 	int cpu;
372 
373 	io->start_time = jiffies;
374 
375 	cpu = part_stat_lock();
376 	part_round_stats(cpu, &dm_disk(md)->part0);
377 	part_stat_unlock();
378 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
379 }
380 
381 static void end_io_acct(struct dm_io *io)
382 {
383 	struct mapped_device *md = io->md;
384 	struct bio *bio = io->bio;
385 	unsigned long duration = jiffies - io->start_time;
386 	int pending, cpu;
387 	int rw = bio_data_dir(bio);
388 
389 	cpu = part_stat_lock();
390 	part_round_stats(cpu, &dm_disk(md)->part0);
391 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
392 	part_stat_unlock();
393 
394 	dm_disk(md)->part0.in_flight = pending =
395 		atomic_dec_return(&md->pending);
396 
397 	/* nudge anyone waiting on suspend queue */
398 	if (!pending)
399 		wake_up(&md->wait);
400 }
401 
402 /*
403  * Add the bio to the list of deferred io.
404  */
405 static int queue_io(struct mapped_device *md, struct bio *bio)
406 {
407 	down_write(&md->io_lock);
408 
409 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
410 		up_write(&md->io_lock);
411 		return 1;
412 	}
413 
414 	bio_list_add(&md->deferred, bio);
415 
416 	up_write(&md->io_lock);
417 	return 0;		/* deferred successfully */
418 }
419 
420 /*
421  * Everyone (including functions in this file), should use this
422  * function to access the md->map field, and make sure they call
423  * dm_table_put() when finished.
424  */
425 struct dm_table *dm_get_table(struct mapped_device *md)
426 {
427 	struct dm_table *t;
428 
429 	read_lock(&md->map_lock);
430 	t = md->map;
431 	if (t)
432 		dm_table_get(t);
433 	read_unlock(&md->map_lock);
434 
435 	return t;
436 }
437 
438 /*
439  * Get the geometry associated with a dm device
440  */
441 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
442 {
443 	*geo = md->geometry;
444 
445 	return 0;
446 }
447 
448 /*
449  * Set the geometry of a device.
450  */
451 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
452 {
453 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
454 
455 	if (geo->start > sz) {
456 		DMWARN("Start sector is beyond the geometry limits.");
457 		return -EINVAL;
458 	}
459 
460 	md->geometry = *geo;
461 
462 	return 0;
463 }
464 
465 /*-----------------------------------------------------------------
466  * CRUD START:
467  *   A more elegant soln is in the works that uses the queue
468  *   merge fn, unfortunately there are a couple of changes to
469  *   the block layer that I want to make for this.  So in the
470  *   interests of getting something for people to use I give
471  *   you this clearly demarcated crap.
472  *---------------------------------------------------------------*/
473 
474 static int __noflush_suspending(struct mapped_device *md)
475 {
476 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
477 }
478 
479 /*
480  * Decrements the number of outstanding ios that a bio has been
481  * cloned into, completing the original io if necc.
482  */
483 static void dec_pending(struct dm_io *io, int error)
484 {
485 	unsigned long flags;
486 
487 	/* Push-back supersedes any I/O errors */
488 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
489 		io->error = error;
490 
491 	if (atomic_dec_and_test(&io->io_count)) {
492 		if (io->error == DM_ENDIO_REQUEUE) {
493 			/*
494 			 * Target requested pushing back the I/O.
495 			 * This must be handled before the sleeper on
496 			 * suspend queue merges the pushback list.
497 			 */
498 			spin_lock_irqsave(&io->md->pushback_lock, flags);
499 			if (__noflush_suspending(io->md))
500 				bio_list_add(&io->md->pushback, io->bio);
501 			else
502 				/* noflush suspend was interrupted. */
503 				io->error = -EIO;
504 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
505 		}
506 
507 		end_io_acct(io);
508 
509 		if (io->error != DM_ENDIO_REQUEUE) {
510 			trace_block_bio_complete(io->md->queue, io->bio);
511 
512 			bio_endio(io->bio, io->error);
513 		}
514 
515 		free_io(io->md, io);
516 	}
517 }
518 
519 static void clone_endio(struct bio *bio, int error)
520 {
521 	int r = 0;
522 	struct dm_target_io *tio = bio->bi_private;
523 	struct mapped_device *md = tio->io->md;
524 	dm_endio_fn endio = tio->ti->type->end_io;
525 
526 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
527 		error = -EIO;
528 
529 	if (endio) {
530 		r = endio(tio->ti, bio, error, &tio->info);
531 		if (r < 0 || r == DM_ENDIO_REQUEUE)
532 			/*
533 			 * error and requeue request are handled
534 			 * in dec_pending().
535 			 */
536 			error = r;
537 		else if (r == DM_ENDIO_INCOMPLETE)
538 			/* The target will handle the io */
539 			return;
540 		else if (r) {
541 			DMWARN("unimplemented target endio return value: %d", r);
542 			BUG();
543 		}
544 	}
545 
546 	dec_pending(tio->io, error);
547 
548 	/*
549 	 * Store md for cleanup instead of tio which is about to get freed.
550 	 */
551 	bio->bi_private = md->bs;
552 
553 	bio_put(bio);
554 	free_tio(md, tio);
555 }
556 
557 static sector_t max_io_len(struct mapped_device *md,
558 			   sector_t sector, struct dm_target *ti)
559 {
560 	sector_t offset = sector - ti->begin;
561 	sector_t len = ti->len - offset;
562 
563 	/*
564 	 * Does the target need to split even further ?
565 	 */
566 	if (ti->split_io) {
567 		sector_t boundary;
568 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
569 			   - offset;
570 		if (len > boundary)
571 			len = boundary;
572 	}
573 
574 	return len;
575 }
576 
577 static void __map_bio(struct dm_target *ti, struct bio *clone,
578 		      struct dm_target_io *tio)
579 {
580 	int r;
581 	sector_t sector;
582 	struct mapped_device *md;
583 
584 	/*
585 	 * Sanity checks.
586 	 */
587 	BUG_ON(!clone->bi_size);
588 
589 	clone->bi_end_io = clone_endio;
590 	clone->bi_private = tio;
591 
592 	/*
593 	 * Map the clone.  If r == 0 we don't need to do
594 	 * anything, the target has assumed ownership of
595 	 * this io.
596 	 */
597 	atomic_inc(&tio->io->io_count);
598 	sector = clone->bi_sector;
599 	r = ti->type->map(ti, clone, &tio->info);
600 	if (r == DM_MAPIO_REMAPPED) {
601 		/* the bio has been remapped so dispatch it */
602 
603 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
604 				    tio->io->bio->bi_bdev->bd_dev,
605 				    clone->bi_sector, sector);
606 
607 		generic_make_request(clone);
608 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
609 		/* error the io and bail out, or requeue it if needed */
610 		md = tio->io->md;
611 		dec_pending(tio->io, r);
612 		/*
613 		 * Store bio_set for cleanup.
614 		 */
615 		clone->bi_private = md->bs;
616 		bio_put(clone);
617 		free_tio(md, tio);
618 	} else if (r) {
619 		DMWARN("unimplemented target map return value: %d", r);
620 		BUG();
621 	}
622 }
623 
624 struct clone_info {
625 	struct mapped_device *md;
626 	struct dm_table *map;
627 	struct bio *bio;
628 	struct dm_io *io;
629 	sector_t sector;
630 	sector_t sector_count;
631 	unsigned short idx;
632 };
633 
634 static void dm_bio_destructor(struct bio *bio)
635 {
636 	struct bio_set *bs = bio->bi_private;
637 
638 	bio_free(bio, bs);
639 }
640 
641 /*
642  * Creates a little bio that is just does part of a bvec.
643  */
644 static struct bio *split_bvec(struct bio *bio, sector_t sector,
645 			      unsigned short idx, unsigned int offset,
646 			      unsigned int len, struct bio_set *bs)
647 {
648 	struct bio *clone;
649 	struct bio_vec *bv = bio->bi_io_vec + idx;
650 
651 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
652 	clone->bi_destructor = dm_bio_destructor;
653 	*clone->bi_io_vec = *bv;
654 
655 	clone->bi_sector = sector;
656 	clone->bi_bdev = bio->bi_bdev;
657 	clone->bi_rw = bio->bi_rw;
658 	clone->bi_vcnt = 1;
659 	clone->bi_size = to_bytes(len);
660 	clone->bi_io_vec->bv_offset = offset;
661 	clone->bi_io_vec->bv_len = clone->bi_size;
662 	clone->bi_flags |= 1 << BIO_CLONED;
663 
664 	return clone;
665 }
666 
667 /*
668  * Creates a bio that consists of range of complete bvecs.
669  */
670 static struct bio *clone_bio(struct bio *bio, sector_t sector,
671 			     unsigned short idx, unsigned short bv_count,
672 			     unsigned int len, struct bio_set *bs)
673 {
674 	struct bio *clone;
675 
676 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
677 	__bio_clone(clone, bio);
678 	clone->bi_destructor = dm_bio_destructor;
679 	clone->bi_sector = sector;
680 	clone->bi_idx = idx;
681 	clone->bi_vcnt = idx + bv_count;
682 	clone->bi_size = to_bytes(len);
683 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
684 
685 	return clone;
686 }
687 
688 static int __clone_and_map(struct clone_info *ci)
689 {
690 	struct bio *clone, *bio = ci->bio;
691 	struct dm_target *ti;
692 	sector_t len = 0, max;
693 	struct dm_target_io *tio;
694 
695 	ti = dm_table_find_target(ci->map, ci->sector);
696 	if (!dm_target_is_valid(ti))
697 		return -EIO;
698 
699 	max = max_io_len(ci->md, ci->sector, ti);
700 
701 	/*
702 	 * Allocate a target io object.
703 	 */
704 	tio = alloc_tio(ci->md);
705 	tio->io = ci->io;
706 	tio->ti = ti;
707 	memset(&tio->info, 0, sizeof(tio->info));
708 
709 	if (ci->sector_count <= max) {
710 		/*
711 		 * Optimise for the simple case where we can do all of
712 		 * the remaining io with a single clone.
713 		 */
714 		clone = clone_bio(bio, ci->sector, ci->idx,
715 				  bio->bi_vcnt - ci->idx, ci->sector_count,
716 				  ci->md->bs);
717 		__map_bio(ti, clone, tio);
718 		ci->sector_count = 0;
719 
720 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
721 		/*
722 		 * There are some bvecs that don't span targets.
723 		 * Do as many of these as possible.
724 		 */
725 		int i;
726 		sector_t remaining = max;
727 		sector_t bv_len;
728 
729 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
730 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
731 
732 			if (bv_len > remaining)
733 				break;
734 
735 			remaining -= bv_len;
736 			len += bv_len;
737 		}
738 
739 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
740 				  ci->md->bs);
741 		__map_bio(ti, clone, tio);
742 
743 		ci->sector += len;
744 		ci->sector_count -= len;
745 		ci->idx = i;
746 
747 	} else {
748 		/*
749 		 * Handle a bvec that must be split between two or more targets.
750 		 */
751 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
752 		sector_t remaining = to_sector(bv->bv_len);
753 		unsigned int offset = 0;
754 
755 		do {
756 			if (offset) {
757 				ti = dm_table_find_target(ci->map, ci->sector);
758 				if (!dm_target_is_valid(ti))
759 					return -EIO;
760 
761 				max = max_io_len(ci->md, ci->sector, ti);
762 
763 				tio = alloc_tio(ci->md);
764 				tio->io = ci->io;
765 				tio->ti = ti;
766 				memset(&tio->info, 0, sizeof(tio->info));
767 			}
768 
769 			len = min(remaining, max);
770 
771 			clone = split_bvec(bio, ci->sector, ci->idx,
772 					   bv->bv_offset + offset, len,
773 					   ci->md->bs);
774 
775 			__map_bio(ti, clone, tio);
776 
777 			ci->sector += len;
778 			ci->sector_count -= len;
779 			offset += to_bytes(len);
780 		} while (remaining -= len);
781 
782 		ci->idx++;
783 	}
784 
785 	return 0;
786 }
787 
788 /*
789  * Split the bio into several clones.
790  */
791 static int __split_bio(struct mapped_device *md, struct bio *bio)
792 {
793 	struct clone_info ci;
794 	int error = 0;
795 
796 	ci.map = dm_get_table(md);
797 	if (unlikely(!ci.map))
798 		return -EIO;
799 
800 	ci.md = md;
801 	ci.bio = bio;
802 	ci.io = alloc_io(md);
803 	ci.io->error = 0;
804 	atomic_set(&ci.io->io_count, 1);
805 	ci.io->bio = bio;
806 	ci.io->md = md;
807 	ci.sector = bio->bi_sector;
808 	ci.sector_count = bio_sectors(bio);
809 	ci.idx = bio->bi_idx;
810 
811 	start_io_acct(ci.io);
812 	while (ci.sector_count && !error)
813 		error = __clone_and_map(&ci);
814 
815 	/* drop the extra reference count */
816 	dec_pending(ci.io, error);
817 	dm_table_put(ci.map);
818 
819 	return 0;
820 }
821 /*-----------------------------------------------------------------
822  * CRUD END
823  *---------------------------------------------------------------*/
824 
825 static int dm_merge_bvec(struct request_queue *q,
826 			 struct bvec_merge_data *bvm,
827 			 struct bio_vec *biovec)
828 {
829 	struct mapped_device *md = q->queuedata;
830 	struct dm_table *map = dm_get_table(md);
831 	struct dm_target *ti;
832 	sector_t max_sectors;
833 	int max_size = 0;
834 
835 	if (unlikely(!map))
836 		goto out;
837 
838 	ti = dm_table_find_target(map, bvm->bi_sector);
839 	if (!dm_target_is_valid(ti))
840 		goto out_table;
841 
842 	/*
843 	 * Find maximum amount of I/O that won't need splitting
844 	 */
845 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
846 			  (sector_t) BIO_MAX_SECTORS);
847 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
848 	if (max_size < 0)
849 		max_size = 0;
850 
851 	/*
852 	 * merge_bvec_fn() returns number of bytes
853 	 * it can accept at this offset
854 	 * max is precomputed maximal io size
855 	 */
856 	if (max_size && ti->type->merge)
857 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
858 
859 out_table:
860 	dm_table_put(map);
861 
862 out:
863 	/*
864 	 * Always allow an entire first page
865 	 */
866 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
867 		max_size = biovec->bv_len;
868 
869 	return max_size;
870 }
871 
872 /*
873  * The request function that just remaps the bio built up by
874  * dm_merge_bvec.
875  */
876 static int dm_request(struct request_queue *q, struct bio *bio)
877 {
878 	int r = -EIO;
879 	int rw = bio_data_dir(bio);
880 	struct mapped_device *md = q->queuedata;
881 	int cpu;
882 
883 	/*
884 	 * There is no use in forwarding any barrier request since we can't
885 	 * guarantee it is (or can be) handled by the targets correctly.
886 	 */
887 	if (unlikely(bio_barrier(bio))) {
888 		bio_endio(bio, -EOPNOTSUPP);
889 		return 0;
890 	}
891 
892 	down_read(&md->io_lock);
893 
894 	cpu = part_stat_lock();
895 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
896 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
897 	part_stat_unlock();
898 
899 	/*
900 	 * If we're suspended we have to queue
901 	 * this io for later.
902 	 */
903 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
904 		up_read(&md->io_lock);
905 
906 		if (bio_rw(bio) != READA)
907 			r = queue_io(md, bio);
908 
909 		if (r <= 0)
910 			goto out_req;
911 
912 		/*
913 		 * We're in a while loop, because someone could suspend
914 		 * before we get to the following read lock.
915 		 */
916 		down_read(&md->io_lock);
917 	}
918 
919 	r = __split_bio(md, bio);
920 	up_read(&md->io_lock);
921 
922 out_req:
923 	if (r < 0)
924 		bio_io_error(bio);
925 
926 	return 0;
927 }
928 
929 static void dm_unplug_all(struct request_queue *q)
930 {
931 	struct mapped_device *md = q->queuedata;
932 	struct dm_table *map = dm_get_table(md);
933 
934 	if (map) {
935 		dm_table_unplug_all(map);
936 		dm_table_put(map);
937 	}
938 }
939 
940 static int dm_any_congested(void *congested_data, int bdi_bits)
941 {
942 	int r = bdi_bits;
943 	struct mapped_device *md = congested_data;
944 	struct dm_table *map;
945 
946 	atomic_inc(&md->pending);
947 
948 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
949 		map = dm_get_table(md);
950 		if (map) {
951 			r = dm_table_any_congested(map, bdi_bits);
952 			dm_table_put(map);
953 		}
954 	}
955 
956 	if (!atomic_dec_return(&md->pending))
957 		/* nudge anyone waiting on suspend queue */
958 		wake_up(&md->wait);
959 
960 	return r;
961 }
962 
963 /*-----------------------------------------------------------------
964  * An IDR is used to keep track of allocated minor numbers.
965  *---------------------------------------------------------------*/
966 static DEFINE_IDR(_minor_idr);
967 
968 static void free_minor(int minor)
969 {
970 	spin_lock(&_minor_lock);
971 	idr_remove(&_minor_idr, minor);
972 	spin_unlock(&_minor_lock);
973 }
974 
975 /*
976  * See if the device with a specific minor # is free.
977  */
978 static int specific_minor(int minor)
979 {
980 	int r, m;
981 
982 	if (minor >= (1 << MINORBITS))
983 		return -EINVAL;
984 
985 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
986 	if (!r)
987 		return -ENOMEM;
988 
989 	spin_lock(&_minor_lock);
990 
991 	if (idr_find(&_minor_idr, minor)) {
992 		r = -EBUSY;
993 		goto out;
994 	}
995 
996 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
997 	if (r)
998 		goto out;
999 
1000 	if (m != minor) {
1001 		idr_remove(&_minor_idr, m);
1002 		r = -EBUSY;
1003 		goto out;
1004 	}
1005 
1006 out:
1007 	spin_unlock(&_minor_lock);
1008 	return r;
1009 }
1010 
1011 static int next_free_minor(int *minor)
1012 {
1013 	int r, m;
1014 
1015 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1016 	if (!r)
1017 		return -ENOMEM;
1018 
1019 	spin_lock(&_minor_lock);
1020 
1021 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1022 	if (r)
1023 		goto out;
1024 
1025 	if (m >= (1 << MINORBITS)) {
1026 		idr_remove(&_minor_idr, m);
1027 		r = -ENOSPC;
1028 		goto out;
1029 	}
1030 
1031 	*minor = m;
1032 
1033 out:
1034 	spin_unlock(&_minor_lock);
1035 	return r;
1036 }
1037 
1038 static struct block_device_operations dm_blk_dops;
1039 
1040 /*
1041  * Allocate and initialise a blank device with a given minor.
1042  */
1043 static struct mapped_device *alloc_dev(int minor)
1044 {
1045 	int r;
1046 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1047 	void *old_md;
1048 
1049 	if (!md) {
1050 		DMWARN("unable to allocate device, out of memory.");
1051 		return NULL;
1052 	}
1053 
1054 	if (!try_module_get(THIS_MODULE))
1055 		goto bad_module_get;
1056 
1057 	/* get a minor number for the dev */
1058 	if (minor == DM_ANY_MINOR)
1059 		r = next_free_minor(&minor);
1060 	else
1061 		r = specific_minor(minor);
1062 	if (r < 0)
1063 		goto bad_minor;
1064 
1065 	init_rwsem(&md->io_lock);
1066 	mutex_init(&md->suspend_lock);
1067 	spin_lock_init(&md->pushback_lock);
1068 	rwlock_init(&md->map_lock);
1069 	atomic_set(&md->holders, 1);
1070 	atomic_set(&md->open_count, 0);
1071 	atomic_set(&md->event_nr, 0);
1072 	atomic_set(&md->uevent_seq, 0);
1073 	INIT_LIST_HEAD(&md->uevent_list);
1074 	spin_lock_init(&md->uevent_lock);
1075 
1076 	md->queue = blk_alloc_queue(GFP_KERNEL);
1077 	if (!md->queue)
1078 		goto bad_queue;
1079 
1080 	md->queue->queuedata = md;
1081 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1082 	md->queue->backing_dev_info.congested_data = md;
1083 	blk_queue_make_request(md->queue, dm_request);
1084 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1085 	md->queue->unplug_fn = dm_unplug_all;
1086 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1087 
1088 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1089 	if (!md->io_pool)
1090 		goto bad_io_pool;
1091 
1092 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1093 	if (!md->tio_pool)
1094 		goto bad_tio_pool;
1095 
1096 	md->bs = bioset_create(16, 0);
1097 	if (!md->bs)
1098 		goto bad_no_bioset;
1099 
1100 	md->disk = alloc_disk(1);
1101 	if (!md->disk)
1102 		goto bad_disk;
1103 
1104 	atomic_set(&md->pending, 0);
1105 	init_waitqueue_head(&md->wait);
1106 	init_waitqueue_head(&md->eventq);
1107 
1108 	md->disk->major = _major;
1109 	md->disk->first_minor = minor;
1110 	md->disk->fops = &dm_blk_dops;
1111 	md->disk->queue = md->queue;
1112 	md->disk->private_data = md;
1113 	sprintf(md->disk->disk_name, "dm-%d", minor);
1114 	add_disk(md->disk);
1115 	format_dev_t(md->name, MKDEV(_major, minor));
1116 
1117 	md->wq = create_singlethread_workqueue("kdmflush");
1118 	if (!md->wq)
1119 		goto bad_thread;
1120 
1121 	/* Populate the mapping, nobody knows we exist yet */
1122 	spin_lock(&_minor_lock);
1123 	old_md = idr_replace(&_minor_idr, md, minor);
1124 	spin_unlock(&_minor_lock);
1125 
1126 	BUG_ON(old_md != MINOR_ALLOCED);
1127 
1128 	return md;
1129 
1130 bad_thread:
1131 	put_disk(md->disk);
1132 bad_disk:
1133 	bioset_free(md->bs);
1134 bad_no_bioset:
1135 	mempool_destroy(md->tio_pool);
1136 bad_tio_pool:
1137 	mempool_destroy(md->io_pool);
1138 bad_io_pool:
1139 	blk_cleanup_queue(md->queue);
1140 bad_queue:
1141 	free_minor(minor);
1142 bad_minor:
1143 	module_put(THIS_MODULE);
1144 bad_module_get:
1145 	kfree(md);
1146 	return NULL;
1147 }
1148 
1149 static void unlock_fs(struct mapped_device *md);
1150 
1151 static void free_dev(struct mapped_device *md)
1152 {
1153 	int minor = MINOR(disk_devt(md->disk));
1154 
1155 	if (md->suspended_bdev) {
1156 		unlock_fs(md);
1157 		bdput(md->suspended_bdev);
1158 	}
1159 	destroy_workqueue(md->wq);
1160 	mempool_destroy(md->tio_pool);
1161 	mempool_destroy(md->io_pool);
1162 	bioset_free(md->bs);
1163 	del_gendisk(md->disk);
1164 	free_minor(minor);
1165 
1166 	spin_lock(&_minor_lock);
1167 	md->disk->private_data = NULL;
1168 	spin_unlock(&_minor_lock);
1169 
1170 	put_disk(md->disk);
1171 	blk_cleanup_queue(md->queue);
1172 	module_put(THIS_MODULE);
1173 	kfree(md);
1174 }
1175 
1176 /*
1177  * Bind a table to the device.
1178  */
1179 static void event_callback(void *context)
1180 {
1181 	unsigned long flags;
1182 	LIST_HEAD(uevents);
1183 	struct mapped_device *md = (struct mapped_device *) context;
1184 
1185 	spin_lock_irqsave(&md->uevent_lock, flags);
1186 	list_splice_init(&md->uevent_list, &uevents);
1187 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1188 
1189 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1190 
1191 	atomic_inc(&md->event_nr);
1192 	wake_up(&md->eventq);
1193 }
1194 
1195 static void __set_size(struct mapped_device *md, sector_t size)
1196 {
1197 	set_capacity(md->disk, size);
1198 
1199 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1200 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1201 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1202 }
1203 
1204 static int __bind(struct mapped_device *md, struct dm_table *t)
1205 {
1206 	struct request_queue *q = md->queue;
1207 	sector_t size;
1208 
1209 	size = dm_table_get_size(t);
1210 
1211 	/*
1212 	 * Wipe any geometry if the size of the table changed.
1213 	 */
1214 	if (size != get_capacity(md->disk))
1215 		memset(&md->geometry, 0, sizeof(md->geometry));
1216 
1217 	if (md->suspended_bdev)
1218 		__set_size(md, size);
1219 	if (size == 0)
1220 		return 0;
1221 
1222 	dm_table_get(t);
1223 	dm_table_event_callback(t, event_callback, md);
1224 
1225 	write_lock(&md->map_lock);
1226 	md->map = t;
1227 	dm_table_set_restrictions(t, q);
1228 	write_unlock(&md->map_lock);
1229 
1230 	return 0;
1231 }
1232 
1233 static void __unbind(struct mapped_device *md)
1234 {
1235 	struct dm_table *map = md->map;
1236 
1237 	if (!map)
1238 		return;
1239 
1240 	dm_table_event_callback(map, NULL, NULL);
1241 	write_lock(&md->map_lock);
1242 	md->map = NULL;
1243 	write_unlock(&md->map_lock);
1244 	dm_table_put(map);
1245 }
1246 
1247 /*
1248  * Constructor for a new device.
1249  */
1250 int dm_create(int minor, struct mapped_device **result)
1251 {
1252 	struct mapped_device *md;
1253 
1254 	md = alloc_dev(minor);
1255 	if (!md)
1256 		return -ENXIO;
1257 
1258 	*result = md;
1259 	return 0;
1260 }
1261 
1262 static struct mapped_device *dm_find_md(dev_t dev)
1263 {
1264 	struct mapped_device *md;
1265 	unsigned minor = MINOR(dev);
1266 
1267 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1268 		return NULL;
1269 
1270 	spin_lock(&_minor_lock);
1271 
1272 	md = idr_find(&_minor_idr, minor);
1273 	if (md && (md == MINOR_ALLOCED ||
1274 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1275 		   test_bit(DMF_FREEING, &md->flags))) {
1276 		md = NULL;
1277 		goto out;
1278 	}
1279 
1280 out:
1281 	spin_unlock(&_minor_lock);
1282 
1283 	return md;
1284 }
1285 
1286 struct mapped_device *dm_get_md(dev_t dev)
1287 {
1288 	struct mapped_device *md = dm_find_md(dev);
1289 
1290 	if (md)
1291 		dm_get(md);
1292 
1293 	return md;
1294 }
1295 
1296 void *dm_get_mdptr(struct mapped_device *md)
1297 {
1298 	return md->interface_ptr;
1299 }
1300 
1301 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1302 {
1303 	md->interface_ptr = ptr;
1304 }
1305 
1306 void dm_get(struct mapped_device *md)
1307 {
1308 	atomic_inc(&md->holders);
1309 }
1310 
1311 const char *dm_device_name(struct mapped_device *md)
1312 {
1313 	return md->name;
1314 }
1315 EXPORT_SYMBOL_GPL(dm_device_name);
1316 
1317 void dm_put(struct mapped_device *md)
1318 {
1319 	struct dm_table *map;
1320 
1321 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1322 
1323 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1324 		map = dm_get_table(md);
1325 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1326 			    MINOR(disk_devt(dm_disk(md))));
1327 		set_bit(DMF_FREEING, &md->flags);
1328 		spin_unlock(&_minor_lock);
1329 		if (!dm_suspended(md)) {
1330 			dm_table_presuspend_targets(map);
1331 			dm_table_postsuspend_targets(map);
1332 		}
1333 		__unbind(md);
1334 		dm_table_put(map);
1335 		free_dev(md);
1336 	}
1337 }
1338 EXPORT_SYMBOL_GPL(dm_put);
1339 
1340 static int dm_wait_for_completion(struct mapped_device *md)
1341 {
1342 	int r = 0;
1343 
1344 	while (1) {
1345 		set_current_state(TASK_INTERRUPTIBLE);
1346 
1347 		smp_mb();
1348 		if (!atomic_read(&md->pending))
1349 			break;
1350 
1351 		if (signal_pending(current)) {
1352 			r = -EINTR;
1353 			break;
1354 		}
1355 
1356 		io_schedule();
1357 	}
1358 	set_current_state(TASK_RUNNING);
1359 
1360 	return r;
1361 }
1362 
1363 /*
1364  * Process the deferred bios
1365  */
1366 static void __flush_deferred_io(struct mapped_device *md)
1367 {
1368 	struct bio *c;
1369 
1370 	while ((c = bio_list_pop(&md->deferred))) {
1371 		if (__split_bio(md, c))
1372 			bio_io_error(c);
1373 	}
1374 
1375 	clear_bit(DMF_BLOCK_IO, &md->flags);
1376 }
1377 
1378 static void __merge_pushback_list(struct mapped_device *md)
1379 {
1380 	unsigned long flags;
1381 
1382 	spin_lock_irqsave(&md->pushback_lock, flags);
1383 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1384 	bio_list_merge_head(&md->deferred, &md->pushback);
1385 	bio_list_init(&md->pushback);
1386 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1387 }
1388 
1389 static void dm_wq_work(struct work_struct *work)
1390 {
1391 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1392 	struct mapped_device *md = req->md;
1393 
1394 	down_write(&md->io_lock);
1395 	switch (req->type) {
1396 	case DM_WQ_FLUSH_DEFERRED:
1397 		__flush_deferred_io(md);
1398 		break;
1399 	default:
1400 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1401 		BUG();
1402 	}
1403 	up_write(&md->io_lock);
1404 }
1405 
1406 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1407 			struct dm_wq_req *req)
1408 {
1409 	req->type = type;
1410 	req->md = md;
1411 	req->context = context;
1412 	INIT_WORK(&req->work, dm_wq_work);
1413 	queue_work(md->wq, &req->work);
1414 }
1415 
1416 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1417 {
1418 	struct dm_wq_req req;
1419 
1420 	dm_wq_queue(md, type, context, &req);
1421 	flush_workqueue(md->wq);
1422 }
1423 
1424 /*
1425  * Swap in a new table (destroying old one).
1426  */
1427 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1428 {
1429 	int r = -EINVAL;
1430 
1431 	mutex_lock(&md->suspend_lock);
1432 
1433 	/* device must be suspended */
1434 	if (!dm_suspended(md))
1435 		goto out;
1436 
1437 	/* without bdev, the device size cannot be changed */
1438 	if (!md->suspended_bdev)
1439 		if (get_capacity(md->disk) != dm_table_get_size(table))
1440 			goto out;
1441 
1442 	__unbind(md);
1443 	r = __bind(md, table);
1444 
1445 out:
1446 	mutex_unlock(&md->suspend_lock);
1447 	return r;
1448 }
1449 
1450 /*
1451  * Functions to lock and unlock any filesystem running on the
1452  * device.
1453  */
1454 static int lock_fs(struct mapped_device *md)
1455 {
1456 	int r;
1457 
1458 	WARN_ON(md->frozen_sb);
1459 
1460 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1461 	if (IS_ERR(md->frozen_sb)) {
1462 		r = PTR_ERR(md->frozen_sb);
1463 		md->frozen_sb = NULL;
1464 		return r;
1465 	}
1466 
1467 	set_bit(DMF_FROZEN, &md->flags);
1468 
1469 	/* don't bdput right now, we don't want the bdev
1470 	 * to go away while it is locked.
1471 	 */
1472 	return 0;
1473 }
1474 
1475 static void unlock_fs(struct mapped_device *md)
1476 {
1477 	if (!test_bit(DMF_FROZEN, &md->flags))
1478 		return;
1479 
1480 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1481 	md->frozen_sb = NULL;
1482 	clear_bit(DMF_FROZEN, &md->flags);
1483 }
1484 
1485 /*
1486  * We need to be able to change a mapping table under a mounted
1487  * filesystem.  For example we might want to move some data in
1488  * the background.  Before the table can be swapped with
1489  * dm_bind_table, dm_suspend must be called to flush any in
1490  * flight bios and ensure that any further io gets deferred.
1491  */
1492 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1493 {
1494 	struct dm_table *map = NULL;
1495 	DECLARE_WAITQUEUE(wait, current);
1496 	int r = 0;
1497 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1498 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1499 
1500 	mutex_lock(&md->suspend_lock);
1501 
1502 	if (dm_suspended(md)) {
1503 		r = -EINVAL;
1504 		goto out_unlock;
1505 	}
1506 
1507 	map = dm_get_table(md);
1508 
1509 	/*
1510 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1511 	 * This flag is cleared before dm_suspend returns.
1512 	 */
1513 	if (noflush)
1514 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1515 
1516 	/* This does not get reverted if there's an error later. */
1517 	dm_table_presuspend_targets(map);
1518 
1519 	/* bdget() can stall if the pending I/Os are not flushed */
1520 	if (!noflush) {
1521 		md->suspended_bdev = bdget_disk(md->disk, 0);
1522 		if (!md->suspended_bdev) {
1523 			DMWARN("bdget failed in dm_suspend");
1524 			r = -ENOMEM;
1525 			goto out;
1526 		}
1527 
1528 		/*
1529 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1530 		 * because lock_fs() needs to flush I/Os.
1531 		 */
1532 		if (do_lockfs) {
1533 			r = lock_fs(md);
1534 			if (r)
1535 				goto out;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1541 	 */
1542 	down_write(&md->io_lock);
1543 	set_bit(DMF_BLOCK_IO, &md->flags);
1544 
1545 	add_wait_queue(&md->wait, &wait);
1546 	up_write(&md->io_lock);
1547 
1548 	/* unplug */
1549 	if (map)
1550 		dm_table_unplug_all(map);
1551 
1552 	/*
1553 	 * Wait for the already-mapped ios to complete.
1554 	 */
1555 	r = dm_wait_for_completion(md);
1556 
1557 	down_write(&md->io_lock);
1558 	remove_wait_queue(&md->wait, &wait);
1559 
1560 	if (noflush)
1561 		__merge_pushback_list(md);
1562 	up_write(&md->io_lock);
1563 
1564 	/* were we interrupted ? */
1565 	if (r < 0) {
1566 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1567 
1568 		unlock_fs(md);
1569 		goto out; /* pushback list is already flushed, so skip flush */
1570 	}
1571 
1572 	dm_table_postsuspend_targets(map);
1573 
1574 	set_bit(DMF_SUSPENDED, &md->flags);
1575 
1576 out:
1577 	if (r && md->suspended_bdev) {
1578 		bdput(md->suspended_bdev);
1579 		md->suspended_bdev = NULL;
1580 	}
1581 
1582 	dm_table_put(map);
1583 
1584 out_unlock:
1585 	mutex_unlock(&md->suspend_lock);
1586 	return r;
1587 }
1588 
1589 int dm_resume(struct mapped_device *md)
1590 {
1591 	int r = -EINVAL;
1592 	struct dm_table *map = NULL;
1593 
1594 	mutex_lock(&md->suspend_lock);
1595 	if (!dm_suspended(md))
1596 		goto out;
1597 
1598 	map = dm_get_table(md);
1599 	if (!map || !dm_table_get_size(map))
1600 		goto out;
1601 
1602 	r = dm_table_resume_targets(map);
1603 	if (r)
1604 		goto out;
1605 
1606 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1607 
1608 	unlock_fs(md);
1609 
1610 	if (md->suspended_bdev) {
1611 		bdput(md->suspended_bdev);
1612 		md->suspended_bdev = NULL;
1613 	}
1614 
1615 	clear_bit(DMF_SUSPENDED, &md->flags);
1616 
1617 	dm_table_unplug_all(map);
1618 
1619 	dm_kobject_uevent(md);
1620 
1621 	r = 0;
1622 
1623 out:
1624 	dm_table_put(map);
1625 	mutex_unlock(&md->suspend_lock);
1626 
1627 	return r;
1628 }
1629 
1630 /*-----------------------------------------------------------------
1631  * Event notification.
1632  *---------------------------------------------------------------*/
1633 void dm_kobject_uevent(struct mapped_device *md)
1634 {
1635 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1636 }
1637 
1638 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1639 {
1640 	return atomic_add_return(1, &md->uevent_seq);
1641 }
1642 
1643 uint32_t dm_get_event_nr(struct mapped_device *md)
1644 {
1645 	return atomic_read(&md->event_nr);
1646 }
1647 
1648 int dm_wait_event(struct mapped_device *md, int event_nr)
1649 {
1650 	return wait_event_interruptible(md->eventq,
1651 			(event_nr != atomic_read(&md->event_nr)));
1652 }
1653 
1654 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1655 {
1656 	unsigned long flags;
1657 
1658 	spin_lock_irqsave(&md->uevent_lock, flags);
1659 	list_add(elist, &md->uevent_list);
1660 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1661 }
1662 
1663 /*
1664  * The gendisk is only valid as long as you have a reference
1665  * count on 'md'.
1666  */
1667 struct gendisk *dm_disk(struct mapped_device *md)
1668 {
1669 	return md->disk;
1670 }
1671 
1672 int dm_suspended(struct mapped_device *md)
1673 {
1674 	return test_bit(DMF_SUSPENDED, &md->flags);
1675 }
1676 
1677 int dm_noflush_suspending(struct dm_target *ti)
1678 {
1679 	struct mapped_device *md = dm_table_get_md(ti->table);
1680 	int r = __noflush_suspending(md);
1681 
1682 	dm_put(md);
1683 
1684 	return r;
1685 }
1686 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1687 
1688 static struct block_device_operations dm_blk_dops = {
1689 	.open = dm_blk_open,
1690 	.release = dm_blk_close,
1691 	.ioctl = dm_blk_ioctl,
1692 	.getgeo = dm_blk_getgeo,
1693 	.owner = THIS_MODULE
1694 };
1695 
1696 EXPORT_SYMBOL(dm_get_mapinfo);
1697 
1698 /*
1699  * module hooks
1700  */
1701 module_init(dm_init);
1702 module_exit(dm_exit);
1703 
1704 module_param(major, uint, 0);
1705 MODULE_PARM_DESC(major, "The major number of the device mapper");
1706 MODULE_DESCRIPTION(DM_NAME " driver");
1707 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1708 MODULE_LICENSE("GPL");
1709