xref: /openbmc/linux/drivers/md/dm.c (revision ae9da83f6d800fe1f3b23bfbc8f7222ad1c5bb74)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 #include <linux/smp_lock.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * One of these is allocated per bio.
35  */
36 struct dm_io {
37 	struct mapped_device *md;
38 	int error;
39 	struct bio *bio;
40 	atomic_t io_count;
41 	unsigned long start_time;
42 };
43 
44 /*
45  * One of these is allocated per target within a bio.  Hopefully
46  * this will be simplified out one day.
47  */
48 struct dm_target_io {
49 	struct dm_io *io;
50 	struct dm_target *ti;
51 	union map_info info;
52 };
53 
54 union map_info *dm_get_mapinfo(struct bio *bio)
55 {
56 	if (bio && bio->bi_private)
57 		return &((struct dm_target_io *)bio->bi_private)->info;
58 	return NULL;
59 }
60 
61 #define MINOR_ALLOCED ((void *)-1)
62 
63 /*
64  * Bits for the md->flags field.
65  */
66 #define DMF_BLOCK_IO 0
67 #define DMF_SUSPENDED 1
68 #define DMF_FROZEN 2
69 #define DMF_FREEING 3
70 #define DMF_DELETING 4
71 #define DMF_NOFLUSH_SUSPENDING 5
72 
73 struct mapped_device {
74 	struct rw_semaphore io_lock;
75 	struct semaphore suspend_lock;
76 	spinlock_t pushback_lock;
77 	rwlock_t map_lock;
78 	atomic_t holders;
79 	atomic_t open_count;
80 
81 	unsigned long flags;
82 
83 	struct request_queue *queue;
84 	struct gendisk *disk;
85 	char name[16];
86 
87 	void *interface_ptr;
88 
89 	/*
90 	 * A list of ios that arrived while we were suspended.
91 	 */
92 	atomic_t pending;
93 	wait_queue_head_t wait;
94 	struct bio_list deferred;
95 	struct bio_list pushback;
96 
97 	/*
98 	 * The current mapping.
99 	 */
100 	struct dm_table *map;
101 
102 	/*
103 	 * io objects are allocated from here.
104 	 */
105 	mempool_t *io_pool;
106 	mempool_t *tio_pool;
107 
108 	struct bio_set *bs;
109 
110 	/*
111 	 * Event handling.
112 	 */
113 	atomic_t event_nr;
114 	wait_queue_head_t eventq;
115 
116 	/*
117 	 * freeze/thaw support require holding onto a super block
118 	 */
119 	struct super_block *frozen_sb;
120 	struct block_device *suspended_bdev;
121 
122 	/* forced geometry settings */
123 	struct hd_geometry geometry;
124 };
125 
126 #define MIN_IOS 256
127 static struct kmem_cache *_io_cache;
128 static struct kmem_cache *_tio_cache;
129 
130 static int __init local_init(void)
131 {
132 	int r;
133 
134 	/* allocate a slab for the dm_ios */
135 	_io_cache = KMEM_CACHE(dm_io, 0);
136 	if (!_io_cache)
137 		return -ENOMEM;
138 
139 	/* allocate a slab for the target ios */
140 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
141 	if (!_tio_cache) {
142 		kmem_cache_destroy(_io_cache);
143 		return -ENOMEM;
144 	}
145 
146 	_major = major;
147 	r = register_blkdev(_major, _name);
148 	if (r < 0) {
149 		kmem_cache_destroy(_tio_cache);
150 		kmem_cache_destroy(_io_cache);
151 		return r;
152 	}
153 
154 	if (!_major)
155 		_major = r;
156 
157 	return 0;
158 }
159 
160 static void local_exit(void)
161 {
162 	kmem_cache_destroy(_tio_cache);
163 	kmem_cache_destroy(_io_cache);
164 	unregister_blkdev(_major, _name);
165 
166 	_major = 0;
167 
168 	DMINFO("cleaned up");
169 }
170 
171 int (*_inits[])(void) __initdata = {
172 	local_init,
173 	dm_target_init,
174 	dm_linear_init,
175 	dm_stripe_init,
176 	dm_interface_init,
177 };
178 
179 void (*_exits[])(void) = {
180 	local_exit,
181 	dm_target_exit,
182 	dm_linear_exit,
183 	dm_stripe_exit,
184 	dm_interface_exit,
185 };
186 
187 static int __init dm_init(void)
188 {
189 	const int count = ARRAY_SIZE(_inits);
190 
191 	int r, i;
192 
193 	for (i = 0; i < count; i++) {
194 		r = _inits[i]();
195 		if (r)
196 			goto bad;
197 	}
198 
199 	return 0;
200 
201       bad:
202 	while (i--)
203 		_exits[i]();
204 
205 	return r;
206 }
207 
208 static void __exit dm_exit(void)
209 {
210 	int i = ARRAY_SIZE(_exits);
211 
212 	while (i--)
213 		_exits[i]();
214 }
215 
216 /*
217  * Block device functions
218  */
219 static int dm_blk_open(struct inode *inode, struct file *file)
220 {
221 	struct mapped_device *md;
222 
223 	spin_lock(&_minor_lock);
224 
225 	md = inode->i_bdev->bd_disk->private_data;
226 	if (!md)
227 		goto out;
228 
229 	if (test_bit(DMF_FREEING, &md->flags) ||
230 	    test_bit(DMF_DELETING, &md->flags)) {
231 		md = NULL;
232 		goto out;
233 	}
234 
235 	dm_get(md);
236 	atomic_inc(&md->open_count);
237 
238 out:
239 	spin_unlock(&_minor_lock);
240 
241 	return md ? 0 : -ENXIO;
242 }
243 
244 static int dm_blk_close(struct inode *inode, struct file *file)
245 {
246 	struct mapped_device *md;
247 
248 	md = inode->i_bdev->bd_disk->private_data;
249 	atomic_dec(&md->open_count);
250 	dm_put(md);
251 	return 0;
252 }
253 
254 int dm_open_count(struct mapped_device *md)
255 {
256 	return atomic_read(&md->open_count);
257 }
258 
259 /*
260  * Guarantees nothing is using the device before it's deleted.
261  */
262 int dm_lock_for_deletion(struct mapped_device *md)
263 {
264 	int r = 0;
265 
266 	spin_lock(&_minor_lock);
267 
268 	if (dm_open_count(md))
269 		r = -EBUSY;
270 	else
271 		set_bit(DMF_DELETING, &md->flags);
272 
273 	spin_unlock(&_minor_lock);
274 
275 	return r;
276 }
277 
278 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
279 {
280 	struct mapped_device *md = bdev->bd_disk->private_data;
281 
282 	return dm_get_geometry(md, geo);
283 }
284 
285 static int dm_blk_ioctl(struct inode *inode, struct file *file,
286 			unsigned int cmd, unsigned long arg)
287 {
288 	struct mapped_device *md;
289 	struct dm_table *map;
290 	struct dm_target *tgt;
291 	int r = -ENOTTY;
292 
293 	/* We don't really need this lock, but we do need 'inode'. */
294 	unlock_kernel();
295 
296 	md = inode->i_bdev->bd_disk->private_data;
297 
298 	map = dm_get_table(md);
299 
300 	if (!map || !dm_table_get_size(map))
301 		goto out;
302 
303 	/* We only support devices that have a single target */
304 	if (dm_table_get_num_targets(map) != 1)
305 		goto out;
306 
307 	tgt = dm_table_get_target(map, 0);
308 
309 	if (dm_suspended(md)) {
310 		r = -EAGAIN;
311 		goto out;
312 	}
313 
314 	if (tgt->type->ioctl)
315 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
316 
317 out:
318 	dm_table_put(map);
319 
320 	lock_kernel();
321 	return r;
322 }
323 
324 static struct dm_io *alloc_io(struct mapped_device *md)
325 {
326 	return mempool_alloc(md->io_pool, GFP_NOIO);
327 }
328 
329 static void free_io(struct mapped_device *md, struct dm_io *io)
330 {
331 	mempool_free(io, md->io_pool);
332 }
333 
334 static struct dm_target_io *alloc_tio(struct mapped_device *md)
335 {
336 	return mempool_alloc(md->tio_pool, GFP_NOIO);
337 }
338 
339 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
340 {
341 	mempool_free(tio, md->tio_pool);
342 }
343 
344 static void start_io_acct(struct dm_io *io)
345 {
346 	struct mapped_device *md = io->md;
347 
348 	io->start_time = jiffies;
349 
350 	preempt_disable();
351 	disk_round_stats(dm_disk(md));
352 	preempt_enable();
353 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
354 }
355 
356 static int end_io_acct(struct dm_io *io)
357 {
358 	struct mapped_device *md = io->md;
359 	struct bio *bio = io->bio;
360 	unsigned long duration = jiffies - io->start_time;
361 	int pending;
362 	int rw = bio_data_dir(bio);
363 
364 	preempt_disable();
365 	disk_round_stats(dm_disk(md));
366 	preempt_enable();
367 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
368 
369 	disk_stat_add(dm_disk(md), ticks[rw], duration);
370 
371 	return !pending;
372 }
373 
374 /*
375  * Add the bio to the list of deferred io.
376  */
377 static int queue_io(struct mapped_device *md, struct bio *bio)
378 {
379 	down_write(&md->io_lock);
380 
381 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
382 		up_write(&md->io_lock);
383 		return 1;
384 	}
385 
386 	bio_list_add(&md->deferred, bio);
387 
388 	up_write(&md->io_lock);
389 	return 0;		/* deferred successfully */
390 }
391 
392 /*
393  * Everyone (including functions in this file), should use this
394  * function to access the md->map field, and make sure they call
395  * dm_table_put() when finished.
396  */
397 struct dm_table *dm_get_table(struct mapped_device *md)
398 {
399 	struct dm_table *t;
400 
401 	read_lock(&md->map_lock);
402 	t = md->map;
403 	if (t)
404 		dm_table_get(t);
405 	read_unlock(&md->map_lock);
406 
407 	return t;
408 }
409 
410 /*
411  * Get the geometry associated with a dm device
412  */
413 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
414 {
415 	*geo = md->geometry;
416 
417 	return 0;
418 }
419 
420 /*
421  * Set the geometry of a device.
422  */
423 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
424 {
425 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
426 
427 	if (geo->start > sz) {
428 		DMWARN("Start sector is beyond the geometry limits.");
429 		return -EINVAL;
430 	}
431 
432 	md->geometry = *geo;
433 
434 	return 0;
435 }
436 
437 /*-----------------------------------------------------------------
438  * CRUD START:
439  *   A more elegant soln is in the works that uses the queue
440  *   merge fn, unfortunately there are a couple of changes to
441  *   the block layer that I want to make for this.  So in the
442  *   interests of getting something for people to use I give
443  *   you this clearly demarcated crap.
444  *---------------------------------------------------------------*/
445 
446 static int __noflush_suspending(struct mapped_device *md)
447 {
448 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
449 }
450 
451 /*
452  * Decrements the number of outstanding ios that a bio has been
453  * cloned into, completing the original io if necc.
454  */
455 static void dec_pending(struct dm_io *io, int error)
456 {
457 	unsigned long flags;
458 
459 	/* Push-back supersedes any I/O errors */
460 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
461 		io->error = error;
462 
463 	if (atomic_dec_and_test(&io->io_count)) {
464 		if (io->error == DM_ENDIO_REQUEUE) {
465 			/*
466 			 * Target requested pushing back the I/O.
467 			 * This must be handled before the sleeper on
468 			 * suspend queue merges the pushback list.
469 			 */
470 			spin_lock_irqsave(&io->md->pushback_lock, flags);
471 			if (__noflush_suspending(io->md))
472 				bio_list_add(&io->md->pushback, io->bio);
473 			else
474 				/* noflush suspend was interrupted. */
475 				io->error = -EIO;
476 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
477 		}
478 
479 		if (end_io_acct(io))
480 			/* nudge anyone waiting on suspend queue */
481 			wake_up(&io->md->wait);
482 
483 		if (io->error != DM_ENDIO_REQUEUE) {
484 			blk_add_trace_bio(io->md->queue, io->bio,
485 					  BLK_TA_COMPLETE);
486 
487 			bio_endio(io->bio, io->error);
488 		}
489 
490 		free_io(io->md, io);
491 	}
492 }
493 
494 static void clone_endio(struct bio *bio, int error)
495 {
496 	int r = 0;
497 	struct dm_target_io *tio = bio->bi_private;
498 	struct mapped_device *md = tio->io->md;
499 	dm_endio_fn endio = tio->ti->type->end_io;
500 
501 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
502 		error = -EIO;
503 
504 	if (endio) {
505 		r = endio(tio->ti, bio, error, &tio->info);
506 		if (r < 0 || r == DM_ENDIO_REQUEUE)
507 			/*
508 			 * error and requeue request are handled
509 			 * in dec_pending().
510 			 */
511 			error = r;
512 		else if (r == DM_ENDIO_INCOMPLETE)
513 			/* The target will handle the io */
514 			return;
515 		else if (r) {
516 			DMWARN("unimplemented target endio return value: %d", r);
517 			BUG();
518 		}
519 	}
520 
521 	dec_pending(tio->io, error);
522 
523 	/*
524 	 * Store md for cleanup instead of tio which is about to get freed.
525 	 */
526 	bio->bi_private = md->bs;
527 
528 	bio_put(bio);
529 	free_tio(md, tio);
530 }
531 
532 static sector_t max_io_len(struct mapped_device *md,
533 			   sector_t sector, struct dm_target *ti)
534 {
535 	sector_t offset = sector - ti->begin;
536 	sector_t len = ti->len - offset;
537 
538 	/*
539 	 * Does the target need to split even further ?
540 	 */
541 	if (ti->split_io) {
542 		sector_t boundary;
543 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
544 			   - offset;
545 		if (len > boundary)
546 			len = boundary;
547 	}
548 
549 	return len;
550 }
551 
552 static void __map_bio(struct dm_target *ti, struct bio *clone,
553 		      struct dm_target_io *tio)
554 {
555 	int r;
556 	sector_t sector;
557 	struct mapped_device *md;
558 
559 	/*
560 	 * Sanity checks.
561 	 */
562 	BUG_ON(!clone->bi_size);
563 
564 	clone->bi_end_io = clone_endio;
565 	clone->bi_private = tio;
566 
567 	/*
568 	 * Map the clone.  If r == 0 we don't need to do
569 	 * anything, the target has assumed ownership of
570 	 * this io.
571 	 */
572 	atomic_inc(&tio->io->io_count);
573 	sector = clone->bi_sector;
574 	r = ti->type->map(ti, clone, &tio->info);
575 	if (r == DM_MAPIO_REMAPPED) {
576 		/* the bio has been remapped so dispatch it */
577 
578 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
579 				    tio->io->bio->bi_bdev->bd_dev,
580 				    clone->bi_sector, sector);
581 
582 		generic_make_request(clone);
583 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
584 		/* error the io and bail out, or requeue it if needed */
585 		md = tio->io->md;
586 		dec_pending(tio->io, r);
587 		/*
588 		 * Store bio_set for cleanup.
589 		 */
590 		clone->bi_private = md->bs;
591 		bio_put(clone);
592 		free_tio(md, tio);
593 	} else if (r) {
594 		DMWARN("unimplemented target map return value: %d", r);
595 		BUG();
596 	}
597 }
598 
599 struct clone_info {
600 	struct mapped_device *md;
601 	struct dm_table *map;
602 	struct bio *bio;
603 	struct dm_io *io;
604 	sector_t sector;
605 	sector_t sector_count;
606 	unsigned short idx;
607 };
608 
609 static void dm_bio_destructor(struct bio *bio)
610 {
611 	struct bio_set *bs = bio->bi_private;
612 
613 	bio_free(bio, bs);
614 }
615 
616 /*
617  * Creates a little bio that is just does part of a bvec.
618  */
619 static struct bio *split_bvec(struct bio *bio, sector_t sector,
620 			      unsigned short idx, unsigned int offset,
621 			      unsigned int len, struct bio_set *bs)
622 {
623 	struct bio *clone;
624 	struct bio_vec *bv = bio->bi_io_vec + idx;
625 
626 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
627 	clone->bi_destructor = dm_bio_destructor;
628 	*clone->bi_io_vec = *bv;
629 
630 	clone->bi_sector = sector;
631 	clone->bi_bdev = bio->bi_bdev;
632 	clone->bi_rw = bio->bi_rw;
633 	clone->bi_vcnt = 1;
634 	clone->bi_size = to_bytes(len);
635 	clone->bi_io_vec->bv_offset = offset;
636 	clone->bi_io_vec->bv_len = clone->bi_size;
637 
638 	return clone;
639 }
640 
641 /*
642  * Creates a bio that consists of range of complete bvecs.
643  */
644 static struct bio *clone_bio(struct bio *bio, sector_t sector,
645 			     unsigned short idx, unsigned short bv_count,
646 			     unsigned int len, struct bio_set *bs)
647 {
648 	struct bio *clone;
649 
650 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
651 	__bio_clone(clone, bio);
652 	clone->bi_destructor = dm_bio_destructor;
653 	clone->bi_sector = sector;
654 	clone->bi_idx = idx;
655 	clone->bi_vcnt = idx + bv_count;
656 	clone->bi_size = to_bytes(len);
657 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
658 
659 	return clone;
660 }
661 
662 static void __clone_and_map(struct clone_info *ci)
663 {
664 	struct bio *clone, *bio = ci->bio;
665 	struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
666 	sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
667 	struct dm_target_io *tio;
668 
669 	/*
670 	 * Allocate a target io object.
671 	 */
672 	tio = alloc_tio(ci->md);
673 	tio->io = ci->io;
674 	tio->ti = ti;
675 	memset(&tio->info, 0, sizeof(tio->info));
676 
677 	if (ci->sector_count <= max) {
678 		/*
679 		 * Optimise for the simple case where we can do all of
680 		 * the remaining io with a single clone.
681 		 */
682 		clone = clone_bio(bio, ci->sector, ci->idx,
683 				  bio->bi_vcnt - ci->idx, ci->sector_count,
684 				  ci->md->bs);
685 		__map_bio(ti, clone, tio);
686 		ci->sector_count = 0;
687 
688 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
689 		/*
690 		 * There are some bvecs that don't span targets.
691 		 * Do as many of these as possible.
692 		 */
693 		int i;
694 		sector_t remaining = max;
695 		sector_t bv_len;
696 
697 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
698 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
699 
700 			if (bv_len > remaining)
701 				break;
702 
703 			remaining -= bv_len;
704 			len += bv_len;
705 		}
706 
707 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
708 				  ci->md->bs);
709 		__map_bio(ti, clone, tio);
710 
711 		ci->sector += len;
712 		ci->sector_count -= len;
713 		ci->idx = i;
714 
715 	} else {
716 		/*
717 		 * Handle a bvec that must be split between two or more targets.
718 		 */
719 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
720 		sector_t remaining = to_sector(bv->bv_len);
721 		unsigned int offset = 0;
722 
723 		do {
724 			if (offset) {
725 				ti = dm_table_find_target(ci->map, ci->sector);
726 				max = max_io_len(ci->md, ci->sector, ti);
727 
728 				tio = alloc_tio(ci->md);
729 				tio->io = ci->io;
730 				tio->ti = ti;
731 				memset(&tio->info, 0, sizeof(tio->info));
732 			}
733 
734 			len = min(remaining, max);
735 
736 			clone = split_bvec(bio, ci->sector, ci->idx,
737 					   bv->bv_offset + offset, len,
738 					   ci->md->bs);
739 
740 			__map_bio(ti, clone, tio);
741 
742 			ci->sector += len;
743 			ci->sector_count -= len;
744 			offset += to_bytes(len);
745 		} while (remaining -= len);
746 
747 		ci->idx++;
748 	}
749 }
750 
751 /*
752  * Split the bio into several clones.
753  */
754 static void __split_bio(struct mapped_device *md, struct bio *bio)
755 {
756 	struct clone_info ci;
757 
758 	ci.map = dm_get_table(md);
759 	if (!ci.map) {
760 		bio_io_error(bio);
761 		return;
762 	}
763 
764 	ci.md = md;
765 	ci.bio = bio;
766 	ci.io = alloc_io(md);
767 	ci.io->error = 0;
768 	atomic_set(&ci.io->io_count, 1);
769 	ci.io->bio = bio;
770 	ci.io->md = md;
771 	ci.sector = bio->bi_sector;
772 	ci.sector_count = bio_sectors(bio);
773 	ci.idx = bio->bi_idx;
774 
775 	start_io_acct(ci.io);
776 	while (ci.sector_count)
777 		__clone_and_map(&ci);
778 
779 	/* drop the extra reference count */
780 	dec_pending(ci.io, 0);
781 	dm_table_put(ci.map);
782 }
783 /*-----------------------------------------------------------------
784  * CRUD END
785  *---------------------------------------------------------------*/
786 
787 /*
788  * The request function that just remaps the bio built up by
789  * dm_merge_bvec.
790  */
791 static int dm_request(struct request_queue *q, struct bio *bio)
792 {
793 	int r;
794 	int rw = bio_data_dir(bio);
795 	struct mapped_device *md = q->queuedata;
796 
797 	/*
798 	 * There is no use in forwarding any barrier request since we can't
799 	 * guarantee it is (or can be) handled by the targets correctly.
800 	 */
801 	if (unlikely(bio_barrier(bio))) {
802 		bio_endio(bio, -EOPNOTSUPP);
803 		return 0;
804 	}
805 
806 	down_read(&md->io_lock);
807 
808 	disk_stat_inc(dm_disk(md), ios[rw]);
809 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
810 
811 	/*
812 	 * If we're suspended we have to queue
813 	 * this io for later.
814 	 */
815 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
816 		up_read(&md->io_lock);
817 
818 		if (bio_rw(bio) == READA) {
819 			bio_io_error(bio);
820 			return 0;
821 		}
822 
823 		r = queue_io(md, bio);
824 		if (r < 0) {
825 			bio_io_error(bio);
826 			return 0;
827 
828 		} else if (r == 0)
829 			return 0;	/* deferred successfully */
830 
831 		/*
832 		 * We're in a while loop, because someone could suspend
833 		 * before we get to the following read lock.
834 		 */
835 		down_read(&md->io_lock);
836 	}
837 
838 	__split_bio(md, bio);
839 	up_read(&md->io_lock);
840 	return 0;
841 }
842 
843 static void dm_unplug_all(struct request_queue *q)
844 {
845 	struct mapped_device *md = q->queuedata;
846 	struct dm_table *map = dm_get_table(md);
847 
848 	if (map) {
849 		dm_table_unplug_all(map);
850 		dm_table_put(map);
851 	}
852 }
853 
854 static int dm_any_congested(void *congested_data, int bdi_bits)
855 {
856 	int r;
857 	struct mapped_device *md = (struct mapped_device *) congested_data;
858 	struct dm_table *map = dm_get_table(md);
859 
860 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
861 		r = bdi_bits;
862 	else
863 		r = dm_table_any_congested(map, bdi_bits);
864 
865 	dm_table_put(map);
866 	return r;
867 }
868 
869 /*-----------------------------------------------------------------
870  * An IDR is used to keep track of allocated minor numbers.
871  *---------------------------------------------------------------*/
872 static DEFINE_IDR(_minor_idr);
873 
874 static void free_minor(int minor)
875 {
876 	spin_lock(&_minor_lock);
877 	idr_remove(&_minor_idr, minor);
878 	spin_unlock(&_minor_lock);
879 }
880 
881 /*
882  * See if the device with a specific minor # is free.
883  */
884 static int specific_minor(struct mapped_device *md, int minor)
885 {
886 	int r, m;
887 
888 	if (minor >= (1 << MINORBITS))
889 		return -EINVAL;
890 
891 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
892 	if (!r)
893 		return -ENOMEM;
894 
895 	spin_lock(&_minor_lock);
896 
897 	if (idr_find(&_minor_idr, minor)) {
898 		r = -EBUSY;
899 		goto out;
900 	}
901 
902 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
903 	if (r)
904 		goto out;
905 
906 	if (m != minor) {
907 		idr_remove(&_minor_idr, m);
908 		r = -EBUSY;
909 		goto out;
910 	}
911 
912 out:
913 	spin_unlock(&_minor_lock);
914 	return r;
915 }
916 
917 static int next_free_minor(struct mapped_device *md, int *minor)
918 {
919 	int r, m;
920 
921 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
922 	if (!r)
923 		return -ENOMEM;
924 
925 	spin_lock(&_minor_lock);
926 
927 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
928 	if (r) {
929 		goto out;
930 	}
931 
932 	if (m >= (1 << MINORBITS)) {
933 		idr_remove(&_minor_idr, m);
934 		r = -ENOSPC;
935 		goto out;
936 	}
937 
938 	*minor = m;
939 
940 out:
941 	spin_unlock(&_minor_lock);
942 	return r;
943 }
944 
945 static struct block_device_operations dm_blk_dops;
946 
947 /*
948  * Allocate and initialise a blank device with a given minor.
949  */
950 static struct mapped_device *alloc_dev(int minor)
951 {
952 	int r;
953 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
954 	void *old_md;
955 
956 	if (!md) {
957 		DMWARN("unable to allocate device, out of memory.");
958 		return NULL;
959 	}
960 
961 	if (!try_module_get(THIS_MODULE))
962 		goto bad0;
963 
964 	/* get a minor number for the dev */
965 	if (minor == DM_ANY_MINOR)
966 		r = next_free_minor(md, &minor);
967 	else
968 		r = specific_minor(md, minor);
969 	if (r < 0)
970 		goto bad1;
971 
972 	memset(md, 0, sizeof(*md));
973 	init_rwsem(&md->io_lock);
974 	init_MUTEX(&md->suspend_lock);
975 	spin_lock_init(&md->pushback_lock);
976 	rwlock_init(&md->map_lock);
977 	atomic_set(&md->holders, 1);
978 	atomic_set(&md->open_count, 0);
979 	atomic_set(&md->event_nr, 0);
980 
981 	md->queue = blk_alloc_queue(GFP_KERNEL);
982 	if (!md->queue)
983 		goto bad1_free_minor;
984 
985 	md->queue->queuedata = md;
986 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
987 	md->queue->backing_dev_info.congested_data = md;
988 	blk_queue_make_request(md->queue, dm_request);
989 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
990 	md->queue->unplug_fn = dm_unplug_all;
991 
992 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
993 	if (!md->io_pool)
994 		goto bad2;
995 
996 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
997 	if (!md->tio_pool)
998 		goto bad3;
999 
1000 	md->bs = bioset_create(16, 16);
1001 	if (!md->bs)
1002 		goto bad_no_bioset;
1003 
1004 	md->disk = alloc_disk(1);
1005 	if (!md->disk)
1006 		goto bad4;
1007 
1008 	atomic_set(&md->pending, 0);
1009 	init_waitqueue_head(&md->wait);
1010 	init_waitqueue_head(&md->eventq);
1011 
1012 	md->disk->major = _major;
1013 	md->disk->first_minor = minor;
1014 	md->disk->fops = &dm_blk_dops;
1015 	md->disk->queue = md->queue;
1016 	md->disk->private_data = md;
1017 	sprintf(md->disk->disk_name, "dm-%d", minor);
1018 	add_disk(md->disk);
1019 	format_dev_t(md->name, MKDEV(_major, minor));
1020 
1021 	/* Populate the mapping, nobody knows we exist yet */
1022 	spin_lock(&_minor_lock);
1023 	old_md = idr_replace(&_minor_idr, md, minor);
1024 	spin_unlock(&_minor_lock);
1025 
1026 	BUG_ON(old_md != MINOR_ALLOCED);
1027 
1028 	return md;
1029 
1030  bad4:
1031 	bioset_free(md->bs);
1032  bad_no_bioset:
1033 	mempool_destroy(md->tio_pool);
1034  bad3:
1035 	mempool_destroy(md->io_pool);
1036  bad2:
1037 	blk_cleanup_queue(md->queue);
1038  bad1_free_minor:
1039 	free_minor(minor);
1040  bad1:
1041 	module_put(THIS_MODULE);
1042  bad0:
1043 	kfree(md);
1044 	return NULL;
1045 }
1046 
1047 static void unlock_fs(struct mapped_device *md);
1048 
1049 static void free_dev(struct mapped_device *md)
1050 {
1051 	int minor = md->disk->first_minor;
1052 
1053 	if (md->suspended_bdev) {
1054 		unlock_fs(md);
1055 		bdput(md->suspended_bdev);
1056 	}
1057 	mempool_destroy(md->tio_pool);
1058 	mempool_destroy(md->io_pool);
1059 	bioset_free(md->bs);
1060 	del_gendisk(md->disk);
1061 	free_minor(minor);
1062 
1063 	spin_lock(&_minor_lock);
1064 	md->disk->private_data = NULL;
1065 	spin_unlock(&_minor_lock);
1066 
1067 	put_disk(md->disk);
1068 	blk_cleanup_queue(md->queue);
1069 	module_put(THIS_MODULE);
1070 	kfree(md);
1071 }
1072 
1073 /*
1074  * Bind a table to the device.
1075  */
1076 static void event_callback(void *context)
1077 {
1078 	struct mapped_device *md = (struct mapped_device *) context;
1079 
1080 	atomic_inc(&md->event_nr);
1081 	wake_up(&md->eventq);
1082 }
1083 
1084 static void __set_size(struct mapped_device *md, sector_t size)
1085 {
1086 	set_capacity(md->disk, size);
1087 
1088 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1089 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1090 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1091 }
1092 
1093 static int __bind(struct mapped_device *md, struct dm_table *t)
1094 {
1095 	struct request_queue *q = md->queue;
1096 	sector_t size;
1097 
1098 	size = dm_table_get_size(t);
1099 
1100 	/*
1101 	 * Wipe any geometry if the size of the table changed.
1102 	 */
1103 	if (size != get_capacity(md->disk))
1104 		memset(&md->geometry, 0, sizeof(md->geometry));
1105 
1106 	if (md->suspended_bdev)
1107 		__set_size(md, size);
1108 	if (size == 0)
1109 		return 0;
1110 
1111 	dm_table_get(t);
1112 	dm_table_event_callback(t, event_callback, md);
1113 
1114 	write_lock(&md->map_lock);
1115 	md->map = t;
1116 	dm_table_set_restrictions(t, q);
1117 	write_unlock(&md->map_lock);
1118 
1119 	return 0;
1120 }
1121 
1122 static void __unbind(struct mapped_device *md)
1123 {
1124 	struct dm_table *map = md->map;
1125 
1126 	if (!map)
1127 		return;
1128 
1129 	dm_table_event_callback(map, NULL, NULL);
1130 	write_lock(&md->map_lock);
1131 	md->map = NULL;
1132 	write_unlock(&md->map_lock);
1133 	dm_table_put(map);
1134 }
1135 
1136 /*
1137  * Constructor for a new device.
1138  */
1139 int dm_create(int minor, struct mapped_device **result)
1140 {
1141 	struct mapped_device *md;
1142 
1143 	md = alloc_dev(minor);
1144 	if (!md)
1145 		return -ENXIO;
1146 
1147 	*result = md;
1148 	return 0;
1149 }
1150 
1151 static struct mapped_device *dm_find_md(dev_t dev)
1152 {
1153 	struct mapped_device *md;
1154 	unsigned minor = MINOR(dev);
1155 
1156 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1157 		return NULL;
1158 
1159 	spin_lock(&_minor_lock);
1160 
1161 	md = idr_find(&_minor_idr, minor);
1162 	if (md && (md == MINOR_ALLOCED ||
1163 		   (dm_disk(md)->first_minor != minor) ||
1164 		   test_bit(DMF_FREEING, &md->flags))) {
1165 		md = NULL;
1166 		goto out;
1167 	}
1168 
1169 out:
1170 	spin_unlock(&_minor_lock);
1171 
1172 	return md;
1173 }
1174 
1175 struct mapped_device *dm_get_md(dev_t dev)
1176 {
1177 	struct mapped_device *md = dm_find_md(dev);
1178 
1179 	if (md)
1180 		dm_get(md);
1181 
1182 	return md;
1183 }
1184 
1185 void *dm_get_mdptr(struct mapped_device *md)
1186 {
1187 	return md->interface_ptr;
1188 }
1189 
1190 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1191 {
1192 	md->interface_ptr = ptr;
1193 }
1194 
1195 void dm_get(struct mapped_device *md)
1196 {
1197 	atomic_inc(&md->holders);
1198 }
1199 
1200 const char *dm_device_name(struct mapped_device *md)
1201 {
1202 	return md->name;
1203 }
1204 EXPORT_SYMBOL_GPL(dm_device_name);
1205 
1206 void dm_put(struct mapped_device *md)
1207 {
1208 	struct dm_table *map;
1209 
1210 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1211 
1212 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1213 		map = dm_get_table(md);
1214 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1215 		set_bit(DMF_FREEING, &md->flags);
1216 		spin_unlock(&_minor_lock);
1217 		if (!dm_suspended(md)) {
1218 			dm_table_presuspend_targets(map);
1219 			dm_table_postsuspend_targets(map);
1220 		}
1221 		__unbind(md);
1222 		dm_table_put(map);
1223 		free_dev(md);
1224 	}
1225 }
1226 EXPORT_SYMBOL_GPL(dm_put);
1227 
1228 /*
1229  * Process the deferred bios
1230  */
1231 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1232 {
1233 	struct bio *n;
1234 
1235 	while (c) {
1236 		n = c->bi_next;
1237 		c->bi_next = NULL;
1238 		__split_bio(md, c);
1239 		c = n;
1240 	}
1241 }
1242 
1243 /*
1244  * Swap in a new table (destroying old one).
1245  */
1246 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1247 {
1248 	int r = -EINVAL;
1249 
1250 	down(&md->suspend_lock);
1251 
1252 	/* device must be suspended */
1253 	if (!dm_suspended(md))
1254 		goto out;
1255 
1256 	/* without bdev, the device size cannot be changed */
1257 	if (!md->suspended_bdev)
1258 		if (get_capacity(md->disk) != dm_table_get_size(table))
1259 			goto out;
1260 
1261 	__unbind(md);
1262 	r = __bind(md, table);
1263 
1264 out:
1265 	up(&md->suspend_lock);
1266 	return r;
1267 }
1268 
1269 /*
1270  * Functions to lock and unlock any filesystem running on the
1271  * device.
1272  */
1273 static int lock_fs(struct mapped_device *md)
1274 {
1275 	int r;
1276 
1277 	WARN_ON(md->frozen_sb);
1278 
1279 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1280 	if (IS_ERR(md->frozen_sb)) {
1281 		r = PTR_ERR(md->frozen_sb);
1282 		md->frozen_sb = NULL;
1283 		return r;
1284 	}
1285 
1286 	set_bit(DMF_FROZEN, &md->flags);
1287 
1288 	/* don't bdput right now, we don't want the bdev
1289 	 * to go away while it is locked.
1290 	 */
1291 	return 0;
1292 }
1293 
1294 static void unlock_fs(struct mapped_device *md)
1295 {
1296 	if (!test_bit(DMF_FROZEN, &md->flags))
1297 		return;
1298 
1299 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1300 	md->frozen_sb = NULL;
1301 	clear_bit(DMF_FROZEN, &md->flags);
1302 }
1303 
1304 /*
1305  * We need to be able to change a mapping table under a mounted
1306  * filesystem.  For example we might want to move some data in
1307  * the background.  Before the table can be swapped with
1308  * dm_bind_table, dm_suspend must be called to flush any in
1309  * flight bios and ensure that any further io gets deferred.
1310  */
1311 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1312 {
1313 	struct dm_table *map = NULL;
1314 	unsigned long flags;
1315 	DECLARE_WAITQUEUE(wait, current);
1316 	struct bio *def;
1317 	int r = -EINVAL;
1318 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1319 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1320 
1321 	down(&md->suspend_lock);
1322 
1323 	if (dm_suspended(md))
1324 		goto out_unlock;
1325 
1326 	map = dm_get_table(md);
1327 
1328 	/*
1329 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1330 	 * This flag is cleared before dm_suspend returns.
1331 	 */
1332 	if (noflush)
1333 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1334 
1335 	/* This does not get reverted if there's an error later. */
1336 	dm_table_presuspend_targets(map);
1337 
1338 	/* bdget() can stall if the pending I/Os are not flushed */
1339 	if (!noflush) {
1340 		md->suspended_bdev = bdget_disk(md->disk, 0);
1341 		if (!md->suspended_bdev) {
1342 			DMWARN("bdget failed in dm_suspend");
1343 			r = -ENOMEM;
1344 			goto flush_and_out;
1345 		}
1346 	}
1347 
1348 	/*
1349 	 * Flush I/O to the device.
1350 	 * noflush supersedes do_lockfs, because lock_fs() needs to flush I/Os.
1351 	 */
1352 	if (do_lockfs && !noflush) {
1353 		r = lock_fs(md);
1354 		if (r)
1355 			goto out;
1356 	}
1357 
1358 	/*
1359 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1360 	 */
1361 	down_write(&md->io_lock);
1362 	set_bit(DMF_BLOCK_IO, &md->flags);
1363 
1364 	add_wait_queue(&md->wait, &wait);
1365 	up_write(&md->io_lock);
1366 
1367 	/* unplug */
1368 	if (map)
1369 		dm_table_unplug_all(map);
1370 
1371 	/*
1372 	 * Then we wait for the already mapped ios to
1373 	 * complete.
1374 	 */
1375 	while (1) {
1376 		set_current_state(TASK_INTERRUPTIBLE);
1377 
1378 		if (!atomic_read(&md->pending) || signal_pending(current))
1379 			break;
1380 
1381 		io_schedule();
1382 	}
1383 	set_current_state(TASK_RUNNING);
1384 
1385 	down_write(&md->io_lock);
1386 	remove_wait_queue(&md->wait, &wait);
1387 
1388 	if (noflush) {
1389 		spin_lock_irqsave(&md->pushback_lock, flags);
1390 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1391 		bio_list_merge_head(&md->deferred, &md->pushback);
1392 		bio_list_init(&md->pushback);
1393 		spin_unlock_irqrestore(&md->pushback_lock, flags);
1394 	}
1395 
1396 	/* were we interrupted ? */
1397 	r = -EINTR;
1398 	if (atomic_read(&md->pending)) {
1399 		clear_bit(DMF_BLOCK_IO, &md->flags);
1400 		def = bio_list_get(&md->deferred);
1401 		__flush_deferred_io(md, def);
1402 		up_write(&md->io_lock);
1403 		unlock_fs(md);
1404 		goto out; /* pushback list is already flushed, so skip flush */
1405 	}
1406 	up_write(&md->io_lock);
1407 
1408 	dm_table_postsuspend_targets(map);
1409 
1410 	set_bit(DMF_SUSPENDED, &md->flags);
1411 
1412 	r = 0;
1413 
1414 flush_and_out:
1415 	if (r && noflush) {
1416 		/*
1417 		 * Because there may be already I/Os in the pushback list,
1418 		 * flush them before return.
1419 		 */
1420 		down_write(&md->io_lock);
1421 
1422 		spin_lock_irqsave(&md->pushback_lock, flags);
1423 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1424 		bio_list_merge_head(&md->deferred, &md->pushback);
1425 		bio_list_init(&md->pushback);
1426 		spin_unlock_irqrestore(&md->pushback_lock, flags);
1427 
1428 		def = bio_list_get(&md->deferred);
1429 		__flush_deferred_io(md, def);
1430 		up_write(&md->io_lock);
1431 	}
1432 
1433 out:
1434 	if (r && md->suspended_bdev) {
1435 		bdput(md->suspended_bdev);
1436 		md->suspended_bdev = NULL;
1437 	}
1438 
1439 	dm_table_put(map);
1440 
1441 out_unlock:
1442 	up(&md->suspend_lock);
1443 	return r;
1444 }
1445 
1446 int dm_resume(struct mapped_device *md)
1447 {
1448 	int r = -EINVAL;
1449 	struct bio *def;
1450 	struct dm_table *map = NULL;
1451 
1452 	down(&md->suspend_lock);
1453 	if (!dm_suspended(md))
1454 		goto out;
1455 
1456 	map = dm_get_table(md);
1457 	if (!map || !dm_table_get_size(map))
1458 		goto out;
1459 
1460 	r = dm_table_resume_targets(map);
1461 	if (r)
1462 		goto out;
1463 
1464 	down_write(&md->io_lock);
1465 	clear_bit(DMF_BLOCK_IO, &md->flags);
1466 
1467 	def = bio_list_get(&md->deferred);
1468 	__flush_deferred_io(md, def);
1469 	up_write(&md->io_lock);
1470 
1471 	unlock_fs(md);
1472 
1473 	if (md->suspended_bdev) {
1474 		bdput(md->suspended_bdev);
1475 		md->suspended_bdev = NULL;
1476 	}
1477 
1478 	clear_bit(DMF_SUSPENDED, &md->flags);
1479 
1480 	dm_table_unplug_all(map);
1481 
1482 	kobject_uevent(&md->disk->kobj, KOBJ_CHANGE);
1483 
1484 	r = 0;
1485 
1486 out:
1487 	dm_table_put(map);
1488 	up(&md->suspend_lock);
1489 
1490 	return r;
1491 }
1492 
1493 /*-----------------------------------------------------------------
1494  * Event notification.
1495  *---------------------------------------------------------------*/
1496 uint32_t dm_get_event_nr(struct mapped_device *md)
1497 {
1498 	return atomic_read(&md->event_nr);
1499 }
1500 
1501 int dm_wait_event(struct mapped_device *md, int event_nr)
1502 {
1503 	return wait_event_interruptible(md->eventq,
1504 			(event_nr != atomic_read(&md->event_nr)));
1505 }
1506 
1507 /*
1508  * The gendisk is only valid as long as you have a reference
1509  * count on 'md'.
1510  */
1511 struct gendisk *dm_disk(struct mapped_device *md)
1512 {
1513 	return md->disk;
1514 }
1515 
1516 int dm_suspended(struct mapped_device *md)
1517 {
1518 	return test_bit(DMF_SUSPENDED, &md->flags);
1519 }
1520 
1521 int dm_noflush_suspending(struct dm_target *ti)
1522 {
1523 	struct mapped_device *md = dm_table_get_md(ti->table);
1524 	int r = __noflush_suspending(md);
1525 
1526 	dm_put(md);
1527 
1528 	return r;
1529 }
1530 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1531 
1532 static struct block_device_operations dm_blk_dops = {
1533 	.open = dm_blk_open,
1534 	.release = dm_blk_close,
1535 	.ioctl = dm_blk_ioctl,
1536 	.getgeo = dm_blk_getgeo,
1537 	.owner = THIS_MODULE
1538 };
1539 
1540 EXPORT_SYMBOL(dm_get_mapinfo);
1541 
1542 /*
1543  * module hooks
1544  */
1545 module_init(dm_init);
1546 module_exit(dm_exit);
1547 
1548 module_param(major, uint, 0);
1549 MODULE_PARM_DESC(major, "The major number of the device mapper");
1550 MODULE_DESCRIPTION(DM_NAME " driver");
1551 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1552 MODULE_LICENSE("GPL");
1553