xref: /openbmc/linux/drivers/md/dm.c (revision ab4c1424882be9cd70b89abf2b484add355712fa)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * For bio-based dm.
36  * One of these is allocated per bio.
37  */
38 struct dm_io {
39 	struct mapped_device *md;
40 	int error;
41 	atomic_t io_count;
42 	struct bio *bio;
43 	unsigned long start_time;
44 };
45 
46 /*
47  * For bio-based dm.
48  * One of these is allocated per target within a bio.  Hopefully
49  * this will be simplified out one day.
50  */
51 struct dm_target_io {
52 	struct dm_io *io;
53 	struct dm_target *ti;
54 	union map_info info;
55 };
56 
57 DEFINE_TRACE(block_bio_complete);
58 
59 /*
60  * For request-based dm.
61  * One of these is allocated per request.
62  */
63 struct dm_rq_target_io {
64 	struct mapped_device *md;
65 	struct dm_target *ti;
66 	struct request *orig, clone;
67 	int error;
68 	union map_info info;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per bio.
74  */
75 struct dm_rq_clone_bio_info {
76 	struct bio *orig;
77 	struct request *rq;
78 };
79 
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 	if (bio && bio->bi_private)
83 		return &((struct dm_target_io *)bio->bi_private)->info;
84 	return NULL;
85 }
86 
87 #define MINOR_ALLOCED ((void *)-1)
88 
89 /*
90  * Bits for the md->flags field.
91  */
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98 
99 /*
100  * Work processed by per-device workqueue.
101  */
102 struct dm_wq_req {
103 	enum {
104 		DM_WQ_FLUSH_DEFERRED,
105 	} type;
106 	struct work_struct work;
107 	struct mapped_device *md;
108 	void *context;
109 };
110 
111 struct mapped_device {
112 	struct rw_semaphore io_lock;
113 	struct mutex suspend_lock;
114 	spinlock_t pushback_lock;
115 	rwlock_t map_lock;
116 	atomic_t holders;
117 	atomic_t open_count;
118 
119 	unsigned long flags;
120 
121 	struct request_queue *queue;
122 	struct gendisk *disk;
123 	char name[16];
124 
125 	void *interface_ptr;
126 
127 	/*
128 	 * A list of ios that arrived while we were suspended.
129 	 */
130 	atomic_t pending;
131 	wait_queue_head_t wait;
132 	struct bio_list deferred;
133 	struct bio_list pushback;
134 
135 	/*
136 	 * Processing queue (flush/barriers)
137 	 */
138 	struct workqueue_struct *wq;
139 
140 	/*
141 	 * The current mapping.
142 	 */
143 	struct dm_table *map;
144 
145 	/*
146 	 * io objects are allocated from here.
147 	 */
148 	mempool_t *io_pool;
149 	mempool_t *tio_pool;
150 
151 	struct bio_set *bs;
152 
153 	/*
154 	 * Event handling.
155 	 */
156 	atomic_t event_nr;
157 	wait_queue_head_t eventq;
158 	atomic_t uevent_seq;
159 	struct list_head uevent_list;
160 	spinlock_t uevent_lock; /* Protect access to uevent_list */
161 
162 	/*
163 	 * freeze/thaw support require holding onto a super block
164 	 */
165 	struct super_block *frozen_sb;
166 	struct block_device *suspended_bdev;
167 
168 	/* forced geometry settings */
169 	struct hd_geometry geometry;
170 };
171 
172 #define MIN_IOS 256
173 static struct kmem_cache *_io_cache;
174 static struct kmem_cache *_tio_cache;
175 static struct kmem_cache *_rq_tio_cache;
176 static struct kmem_cache *_rq_bio_info_cache;
177 
178 static int __init local_init(void)
179 {
180 	int r = -ENOMEM;
181 
182 	/* allocate a slab for the dm_ios */
183 	_io_cache = KMEM_CACHE(dm_io, 0);
184 	if (!_io_cache)
185 		return r;
186 
187 	/* allocate a slab for the target ios */
188 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
189 	if (!_tio_cache)
190 		goto out_free_io_cache;
191 
192 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
193 	if (!_rq_tio_cache)
194 		goto out_free_tio_cache;
195 
196 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
197 	if (!_rq_bio_info_cache)
198 		goto out_free_rq_tio_cache;
199 
200 	r = dm_uevent_init();
201 	if (r)
202 		goto out_free_rq_bio_info_cache;
203 
204 	_major = major;
205 	r = register_blkdev(_major, _name);
206 	if (r < 0)
207 		goto out_uevent_exit;
208 
209 	if (!_major)
210 		_major = r;
211 
212 	return 0;
213 
214 out_uevent_exit:
215 	dm_uevent_exit();
216 out_free_rq_bio_info_cache:
217 	kmem_cache_destroy(_rq_bio_info_cache);
218 out_free_rq_tio_cache:
219 	kmem_cache_destroy(_rq_tio_cache);
220 out_free_tio_cache:
221 	kmem_cache_destroy(_tio_cache);
222 out_free_io_cache:
223 	kmem_cache_destroy(_io_cache);
224 
225 	return r;
226 }
227 
228 static void local_exit(void)
229 {
230 	kmem_cache_destroy(_rq_bio_info_cache);
231 	kmem_cache_destroy(_rq_tio_cache);
232 	kmem_cache_destroy(_tio_cache);
233 	kmem_cache_destroy(_io_cache);
234 	unregister_blkdev(_major, _name);
235 	dm_uevent_exit();
236 
237 	_major = 0;
238 
239 	DMINFO("cleaned up");
240 }
241 
242 static int (*_inits[])(void) __initdata = {
243 	local_init,
244 	dm_target_init,
245 	dm_linear_init,
246 	dm_stripe_init,
247 	dm_kcopyd_init,
248 	dm_interface_init,
249 };
250 
251 static void (*_exits[])(void) = {
252 	local_exit,
253 	dm_target_exit,
254 	dm_linear_exit,
255 	dm_stripe_exit,
256 	dm_kcopyd_exit,
257 	dm_interface_exit,
258 };
259 
260 static int __init dm_init(void)
261 {
262 	const int count = ARRAY_SIZE(_inits);
263 
264 	int r, i;
265 
266 	for (i = 0; i < count; i++) {
267 		r = _inits[i]();
268 		if (r)
269 			goto bad;
270 	}
271 
272 	return 0;
273 
274       bad:
275 	while (i--)
276 		_exits[i]();
277 
278 	return r;
279 }
280 
281 static void __exit dm_exit(void)
282 {
283 	int i = ARRAY_SIZE(_exits);
284 
285 	while (i--)
286 		_exits[i]();
287 }
288 
289 /*
290  * Block device functions
291  */
292 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
293 {
294 	struct mapped_device *md;
295 
296 	spin_lock(&_minor_lock);
297 
298 	md = bdev->bd_disk->private_data;
299 	if (!md)
300 		goto out;
301 
302 	if (test_bit(DMF_FREEING, &md->flags) ||
303 	    test_bit(DMF_DELETING, &md->flags)) {
304 		md = NULL;
305 		goto out;
306 	}
307 
308 	dm_get(md);
309 	atomic_inc(&md->open_count);
310 
311 out:
312 	spin_unlock(&_minor_lock);
313 
314 	return md ? 0 : -ENXIO;
315 }
316 
317 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
318 {
319 	struct mapped_device *md = disk->private_data;
320 	atomic_dec(&md->open_count);
321 	dm_put(md);
322 	return 0;
323 }
324 
325 int dm_open_count(struct mapped_device *md)
326 {
327 	return atomic_read(&md->open_count);
328 }
329 
330 /*
331  * Guarantees nothing is using the device before it's deleted.
332  */
333 int dm_lock_for_deletion(struct mapped_device *md)
334 {
335 	int r = 0;
336 
337 	spin_lock(&_minor_lock);
338 
339 	if (dm_open_count(md))
340 		r = -EBUSY;
341 	else
342 		set_bit(DMF_DELETING, &md->flags);
343 
344 	spin_unlock(&_minor_lock);
345 
346 	return r;
347 }
348 
349 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
350 {
351 	struct mapped_device *md = bdev->bd_disk->private_data;
352 
353 	return dm_get_geometry(md, geo);
354 }
355 
356 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
357 			unsigned int cmd, unsigned long arg)
358 {
359 	struct mapped_device *md = bdev->bd_disk->private_data;
360 	struct dm_table *map = dm_get_table(md);
361 	struct dm_target *tgt;
362 	int r = -ENOTTY;
363 
364 	if (!map || !dm_table_get_size(map))
365 		goto out;
366 
367 	/* We only support devices that have a single target */
368 	if (dm_table_get_num_targets(map) != 1)
369 		goto out;
370 
371 	tgt = dm_table_get_target(map, 0);
372 
373 	if (dm_suspended(md)) {
374 		r = -EAGAIN;
375 		goto out;
376 	}
377 
378 	if (tgt->type->ioctl)
379 		r = tgt->type->ioctl(tgt, cmd, arg);
380 
381 out:
382 	dm_table_put(map);
383 
384 	return r;
385 }
386 
387 static struct dm_io *alloc_io(struct mapped_device *md)
388 {
389 	return mempool_alloc(md->io_pool, GFP_NOIO);
390 }
391 
392 static void free_io(struct mapped_device *md, struct dm_io *io)
393 {
394 	mempool_free(io, md->io_pool);
395 }
396 
397 static struct dm_target_io *alloc_tio(struct mapped_device *md)
398 {
399 	return mempool_alloc(md->tio_pool, GFP_NOIO);
400 }
401 
402 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
403 {
404 	mempool_free(tio, md->tio_pool);
405 }
406 
407 static void start_io_acct(struct dm_io *io)
408 {
409 	struct mapped_device *md = io->md;
410 	int cpu;
411 
412 	io->start_time = jiffies;
413 
414 	cpu = part_stat_lock();
415 	part_round_stats(cpu, &dm_disk(md)->part0);
416 	part_stat_unlock();
417 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
418 }
419 
420 static void end_io_acct(struct dm_io *io)
421 {
422 	struct mapped_device *md = io->md;
423 	struct bio *bio = io->bio;
424 	unsigned long duration = jiffies - io->start_time;
425 	int pending, cpu;
426 	int rw = bio_data_dir(bio);
427 
428 	cpu = part_stat_lock();
429 	part_round_stats(cpu, &dm_disk(md)->part0);
430 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
431 	part_stat_unlock();
432 
433 	dm_disk(md)->part0.in_flight = pending =
434 		atomic_dec_return(&md->pending);
435 
436 	/* nudge anyone waiting on suspend queue */
437 	if (!pending)
438 		wake_up(&md->wait);
439 }
440 
441 /*
442  * Add the bio to the list of deferred io.
443  */
444 static int queue_io(struct mapped_device *md, struct bio *bio)
445 {
446 	down_write(&md->io_lock);
447 
448 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
449 		up_write(&md->io_lock);
450 		return 1;
451 	}
452 
453 	bio_list_add(&md->deferred, bio);
454 
455 	up_write(&md->io_lock);
456 	return 0;		/* deferred successfully */
457 }
458 
459 /*
460  * Everyone (including functions in this file), should use this
461  * function to access the md->map field, and make sure they call
462  * dm_table_put() when finished.
463  */
464 struct dm_table *dm_get_table(struct mapped_device *md)
465 {
466 	struct dm_table *t;
467 
468 	read_lock(&md->map_lock);
469 	t = md->map;
470 	if (t)
471 		dm_table_get(t);
472 	read_unlock(&md->map_lock);
473 
474 	return t;
475 }
476 
477 /*
478  * Get the geometry associated with a dm device
479  */
480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
481 {
482 	*geo = md->geometry;
483 
484 	return 0;
485 }
486 
487 /*
488  * Set the geometry of a device.
489  */
490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
491 {
492 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
493 
494 	if (geo->start > sz) {
495 		DMWARN("Start sector is beyond the geometry limits.");
496 		return -EINVAL;
497 	}
498 
499 	md->geometry = *geo;
500 
501 	return 0;
502 }
503 
504 /*-----------------------------------------------------------------
505  * CRUD START:
506  *   A more elegant soln is in the works that uses the queue
507  *   merge fn, unfortunately there are a couple of changes to
508  *   the block layer that I want to make for this.  So in the
509  *   interests of getting something for people to use I give
510  *   you this clearly demarcated crap.
511  *---------------------------------------------------------------*/
512 
513 static int __noflush_suspending(struct mapped_device *md)
514 {
515 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
516 }
517 
518 /*
519  * Decrements the number of outstanding ios that a bio has been
520  * cloned into, completing the original io if necc.
521  */
522 static void dec_pending(struct dm_io *io, int error)
523 {
524 	unsigned long flags;
525 
526 	/* Push-back supersedes any I/O errors */
527 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
528 		io->error = error;
529 
530 	if (atomic_dec_and_test(&io->io_count)) {
531 		if (io->error == DM_ENDIO_REQUEUE) {
532 			/*
533 			 * Target requested pushing back the I/O.
534 			 * This must be handled before the sleeper on
535 			 * suspend queue merges the pushback list.
536 			 */
537 			spin_lock_irqsave(&io->md->pushback_lock, flags);
538 			if (__noflush_suspending(io->md))
539 				bio_list_add(&io->md->pushback, io->bio);
540 			else
541 				/* noflush suspend was interrupted. */
542 				io->error = -EIO;
543 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
544 		}
545 
546 		end_io_acct(io);
547 
548 		if (io->error != DM_ENDIO_REQUEUE) {
549 			trace_block_bio_complete(io->md->queue, io->bio);
550 
551 			bio_endio(io->bio, io->error);
552 		}
553 
554 		free_io(io->md, io);
555 	}
556 }
557 
558 static void clone_endio(struct bio *bio, int error)
559 {
560 	int r = 0;
561 	struct dm_target_io *tio = bio->bi_private;
562 	struct mapped_device *md = tio->io->md;
563 	dm_endio_fn endio = tio->ti->type->end_io;
564 
565 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
566 		error = -EIO;
567 
568 	if (endio) {
569 		r = endio(tio->ti, bio, error, &tio->info);
570 		if (r < 0 || r == DM_ENDIO_REQUEUE)
571 			/*
572 			 * error and requeue request are handled
573 			 * in dec_pending().
574 			 */
575 			error = r;
576 		else if (r == DM_ENDIO_INCOMPLETE)
577 			/* The target will handle the io */
578 			return;
579 		else if (r) {
580 			DMWARN("unimplemented target endio return value: %d", r);
581 			BUG();
582 		}
583 	}
584 
585 	dec_pending(tio->io, error);
586 
587 	/*
588 	 * Store md for cleanup instead of tio which is about to get freed.
589 	 */
590 	bio->bi_private = md->bs;
591 
592 	bio_put(bio);
593 	free_tio(md, tio);
594 }
595 
596 static sector_t max_io_len(struct mapped_device *md,
597 			   sector_t sector, struct dm_target *ti)
598 {
599 	sector_t offset = sector - ti->begin;
600 	sector_t len = ti->len - offset;
601 
602 	/*
603 	 * Does the target need to split even further ?
604 	 */
605 	if (ti->split_io) {
606 		sector_t boundary;
607 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
608 			   - offset;
609 		if (len > boundary)
610 			len = boundary;
611 	}
612 
613 	return len;
614 }
615 
616 static void __map_bio(struct dm_target *ti, struct bio *clone,
617 		      struct dm_target_io *tio)
618 {
619 	int r;
620 	sector_t sector;
621 	struct mapped_device *md;
622 
623 	/*
624 	 * Sanity checks.
625 	 */
626 	BUG_ON(!clone->bi_size);
627 
628 	clone->bi_end_io = clone_endio;
629 	clone->bi_private = tio;
630 
631 	/*
632 	 * Map the clone.  If r == 0 we don't need to do
633 	 * anything, the target has assumed ownership of
634 	 * this io.
635 	 */
636 	atomic_inc(&tio->io->io_count);
637 	sector = clone->bi_sector;
638 	r = ti->type->map(ti, clone, &tio->info);
639 	if (r == DM_MAPIO_REMAPPED) {
640 		/* the bio has been remapped so dispatch it */
641 
642 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
643 				    tio->io->bio->bi_bdev->bd_dev,
644 				    clone->bi_sector, sector);
645 
646 		generic_make_request(clone);
647 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
648 		/* error the io and bail out, or requeue it if needed */
649 		md = tio->io->md;
650 		dec_pending(tio->io, r);
651 		/*
652 		 * Store bio_set for cleanup.
653 		 */
654 		clone->bi_private = md->bs;
655 		bio_put(clone);
656 		free_tio(md, tio);
657 	} else if (r) {
658 		DMWARN("unimplemented target map return value: %d", r);
659 		BUG();
660 	}
661 }
662 
663 struct clone_info {
664 	struct mapped_device *md;
665 	struct dm_table *map;
666 	struct bio *bio;
667 	struct dm_io *io;
668 	sector_t sector;
669 	sector_t sector_count;
670 	unsigned short idx;
671 };
672 
673 static void dm_bio_destructor(struct bio *bio)
674 {
675 	struct bio_set *bs = bio->bi_private;
676 
677 	bio_free(bio, bs);
678 }
679 
680 /*
681  * Creates a little bio that is just does part of a bvec.
682  */
683 static struct bio *split_bvec(struct bio *bio, sector_t sector,
684 			      unsigned short idx, unsigned int offset,
685 			      unsigned int len, struct bio_set *bs)
686 {
687 	struct bio *clone;
688 	struct bio_vec *bv = bio->bi_io_vec + idx;
689 
690 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
691 	clone->bi_destructor = dm_bio_destructor;
692 	*clone->bi_io_vec = *bv;
693 
694 	clone->bi_sector = sector;
695 	clone->bi_bdev = bio->bi_bdev;
696 	clone->bi_rw = bio->bi_rw;
697 	clone->bi_vcnt = 1;
698 	clone->bi_size = to_bytes(len);
699 	clone->bi_io_vec->bv_offset = offset;
700 	clone->bi_io_vec->bv_len = clone->bi_size;
701 	clone->bi_flags |= 1 << BIO_CLONED;
702 
703 	return clone;
704 }
705 
706 /*
707  * Creates a bio that consists of range of complete bvecs.
708  */
709 static struct bio *clone_bio(struct bio *bio, sector_t sector,
710 			     unsigned short idx, unsigned short bv_count,
711 			     unsigned int len, struct bio_set *bs)
712 {
713 	struct bio *clone;
714 
715 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
716 	__bio_clone(clone, bio);
717 	clone->bi_destructor = dm_bio_destructor;
718 	clone->bi_sector = sector;
719 	clone->bi_idx = idx;
720 	clone->bi_vcnt = idx + bv_count;
721 	clone->bi_size = to_bytes(len);
722 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
723 
724 	return clone;
725 }
726 
727 static int __clone_and_map(struct clone_info *ci)
728 {
729 	struct bio *clone, *bio = ci->bio;
730 	struct dm_target *ti;
731 	sector_t len = 0, max;
732 	struct dm_target_io *tio;
733 
734 	ti = dm_table_find_target(ci->map, ci->sector);
735 	if (!dm_target_is_valid(ti))
736 		return -EIO;
737 
738 	max = max_io_len(ci->md, ci->sector, ti);
739 
740 	/*
741 	 * Allocate a target io object.
742 	 */
743 	tio = alloc_tio(ci->md);
744 	tio->io = ci->io;
745 	tio->ti = ti;
746 	memset(&tio->info, 0, sizeof(tio->info));
747 
748 	if (ci->sector_count <= max) {
749 		/*
750 		 * Optimise for the simple case where we can do all of
751 		 * the remaining io with a single clone.
752 		 */
753 		clone = clone_bio(bio, ci->sector, ci->idx,
754 				  bio->bi_vcnt - ci->idx, ci->sector_count,
755 				  ci->md->bs);
756 		__map_bio(ti, clone, tio);
757 		ci->sector_count = 0;
758 
759 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
760 		/*
761 		 * There are some bvecs that don't span targets.
762 		 * Do as many of these as possible.
763 		 */
764 		int i;
765 		sector_t remaining = max;
766 		sector_t bv_len;
767 
768 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
769 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
770 
771 			if (bv_len > remaining)
772 				break;
773 
774 			remaining -= bv_len;
775 			len += bv_len;
776 		}
777 
778 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
779 				  ci->md->bs);
780 		__map_bio(ti, clone, tio);
781 
782 		ci->sector += len;
783 		ci->sector_count -= len;
784 		ci->idx = i;
785 
786 	} else {
787 		/*
788 		 * Handle a bvec that must be split between two or more targets.
789 		 */
790 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
791 		sector_t remaining = to_sector(bv->bv_len);
792 		unsigned int offset = 0;
793 
794 		do {
795 			if (offset) {
796 				ti = dm_table_find_target(ci->map, ci->sector);
797 				if (!dm_target_is_valid(ti))
798 					return -EIO;
799 
800 				max = max_io_len(ci->md, ci->sector, ti);
801 
802 				tio = alloc_tio(ci->md);
803 				tio->io = ci->io;
804 				tio->ti = ti;
805 				memset(&tio->info, 0, sizeof(tio->info));
806 			}
807 
808 			len = min(remaining, max);
809 
810 			clone = split_bvec(bio, ci->sector, ci->idx,
811 					   bv->bv_offset + offset, len,
812 					   ci->md->bs);
813 
814 			__map_bio(ti, clone, tio);
815 
816 			ci->sector += len;
817 			ci->sector_count -= len;
818 			offset += to_bytes(len);
819 		} while (remaining -= len);
820 
821 		ci->idx++;
822 	}
823 
824 	return 0;
825 }
826 
827 /*
828  * Split the bio into several clones.
829  */
830 static int __split_bio(struct mapped_device *md, struct bio *bio)
831 {
832 	struct clone_info ci;
833 	int error = 0;
834 
835 	ci.map = dm_get_table(md);
836 	if (unlikely(!ci.map))
837 		return -EIO;
838 	if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
839 		dm_table_put(ci.map);
840 		bio_endio(bio, -EOPNOTSUPP);
841 		return 0;
842 	}
843 	ci.md = md;
844 	ci.bio = bio;
845 	ci.io = alloc_io(md);
846 	ci.io->error = 0;
847 	atomic_set(&ci.io->io_count, 1);
848 	ci.io->bio = bio;
849 	ci.io->md = md;
850 	ci.sector = bio->bi_sector;
851 	ci.sector_count = bio_sectors(bio);
852 	ci.idx = bio->bi_idx;
853 
854 	start_io_acct(ci.io);
855 	while (ci.sector_count && !error)
856 		error = __clone_and_map(&ci);
857 
858 	/* drop the extra reference count */
859 	dec_pending(ci.io, error);
860 	dm_table_put(ci.map);
861 
862 	return 0;
863 }
864 /*-----------------------------------------------------------------
865  * CRUD END
866  *---------------------------------------------------------------*/
867 
868 static int dm_merge_bvec(struct request_queue *q,
869 			 struct bvec_merge_data *bvm,
870 			 struct bio_vec *biovec)
871 {
872 	struct mapped_device *md = q->queuedata;
873 	struct dm_table *map = dm_get_table(md);
874 	struct dm_target *ti;
875 	sector_t max_sectors;
876 	int max_size = 0;
877 
878 	if (unlikely(!map))
879 		goto out;
880 
881 	ti = dm_table_find_target(map, bvm->bi_sector);
882 	if (!dm_target_is_valid(ti))
883 		goto out_table;
884 
885 	/*
886 	 * Find maximum amount of I/O that won't need splitting
887 	 */
888 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
889 			  (sector_t) BIO_MAX_SECTORS);
890 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
891 	if (max_size < 0)
892 		max_size = 0;
893 
894 	/*
895 	 * merge_bvec_fn() returns number of bytes
896 	 * it can accept at this offset
897 	 * max is precomputed maximal io size
898 	 */
899 	if (max_size && ti->type->merge)
900 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
901 
902 out_table:
903 	dm_table_put(map);
904 
905 out:
906 	/*
907 	 * Always allow an entire first page
908 	 */
909 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
910 		max_size = biovec->bv_len;
911 
912 	return max_size;
913 }
914 
915 /*
916  * The request function that just remaps the bio built up by
917  * dm_merge_bvec.
918  */
919 static int dm_request(struct request_queue *q, struct bio *bio)
920 {
921 	int r = -EIO;
922 	int rw = bio_data_dir(bio);
923 	struct mapped_device *md = q->queuedata;
924 	int cpu;
925 
926 	down_read(&md->io_lock);
927 
928 	cpu = part_stat_lock();
929 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
930 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
931 	part_stat_unlock();
932 
933 	/*
934 	 * If we're suspended we have to queue
935 	 * this io for later.
936 	 */
937 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
938 		up_read(&md->io_lock);
939 
940 		if (bio_rw(bio) != READA)
941 			r = queue_io(md, bio);
942 
943 		if (r <= 0)
944 			goto out_req;
945 
946 		/*
947 		 * We're in a while loop, because someone could suspend
948 		 * before we get to the following read lock.
949 		 */
950 		down_read(&md->io_lock);
951 	}
952 
953 	r = __split_bio(md, bio);
954 	up_read(&md->io_lock);
955 
956 out_req:
957 	if (r < 0)
958 		bio_io_error(bio);
959 
960 	return 0;
961 }
962 
963 static void dm_unplug_all(struct request_queue *q)
964 {
965 	struct mapped_device *md = q->queuedata;
966 	struct dm_table *map = dm_get_table(md);
967 
968 	if (map) {
969 		dm_table_unplug_all(map);
970 		dm_table_put(map);
971 	}
972 }
973 
974 static int dm_any_congested(void *congested_data, int bdi_bits)
975 {
976 	int r = bdi_bits;
977 	struct mapped_device *md = congested_data;
978 	struct dm_table *map;
979 
980 	atomic_inc(&md->pending);
981 
982 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
983 		map = dm_get_table(md);
984 		if (map) {
985 			r = dm_table_any_congested(map, bdi_bits);
986 			dm_table_put(map);
987 		}
988 	}
989 
990 	if (!atomic_dec_return(&md->pending))
991 		/* nudge anyone waiting on suspend queue */
992 		wake_up(&md->wait);
993 
994 	return r;
995 }
996 
997 /*-----------------------------------------------------------------
998  * An IDR is used to keep track of allocated minor numbers.
999  *---------------------------------------------------------------*/
1000 static DEFINE_IDR(_minor_idr);
1001 
1002 static void free_minor(int minor)
1003 {
1004 	spin_lock(&_minor_lock);
1005 	idr_remove(&_minor_idr, minor);
1006 	spin_unlock(&_minor_lock);
1007 }
1008 
1009 /*
1010  * See if the device with a specific minor # is free.
1011  */
1012 static int specific_minor(int minor)
1013 {
1014 	int r, m;
1015 
1016 	if (minor >= (1 << MINORBITS))
1017 		return -EINVAL;
1018 
1019 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1020 	if (!r)
1021 		return -ENOMEM;
1022 
1023 	spin_lock(&_minor_lock);
1024 
1025 	if (idr_find(&_minor_idr, minor)) {
1026 		r = -EBUSY;
1027 		goto out;
1028 	}
1029 
1030 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1031 	if (r)
1032 		goto out;
1033 
1034 	if (m != minor) {
1035 		idr_remove(&_minor_idr, m);
1036 		r = -EBUSY;
1037 		goto out;
1038 	}
1039 
1040 out:
1041 	spin_unlock(&_minor_lock);
1042 	return r;
1043 }
1044 
1045 static int next_free_minor(int *minor)
1046 {
1047 	int r, m;
1048 
1049 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1050 	if (!r)
1051 		return -ENOMEM;
1052 
1053 	spin_lock(&_minor_lock);
1054 
1055 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1056 	if (r)
1057 		goto out;
1058 
1059 	if (m >= (1 << MINORBITS)) {
1060 		idr_remove(&_minor_idr, m);
1061 		r = -ENOSPC;
1062 		goto out;
1063 	}
1064 
1065 	*minor = m;
1066 
1067 out:
1068 	spin_unlock(&_minor_lock);
1069 	return r;
1070 }
1071 
1072 static struct block_device_operations dm_blk_dops;
1073 
1074 /*
1075  * Allocate and initialise a blank device with a given minor.
1076  */
1077 static struct mapped_device *alloc_dev(int minor)
1078 {
1079 	int r;
1080 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1081 	void *old_md;
1082 
1083 	if (!md) {
1084 		DMWARN("unable to allocate device, out of memory.");
1085 		return NULL;
1086 	}
1087 
1088 	if (!try_module_get(THIS_MODULE))
1089 		goto bad_module_get;
1090 
1091 	/* get a minor number for the dev */
1092 	if (minor == DM_ANY_MINOR)
1093 		r = next_free_minor(&minor);
1094 	else
1095 		r = specific_minor(minor);
1096 	if (r < 0)
1097 		goto bad_minor;
1098 
1099 	init_rwsem(&md->io_lock);
1100 	mutex_init(&md->suspend_lock);
1101 	spin_lock_init(&md->pushback_lock);
1102 	rwlock_init(&md->map_lock);
1103 	atomic_set(&md->holders, 1);
1104 	atomic_set(&md->open_count, 0);
1105 	atomic_set(&md->event_nr, 0);
1106 	atomic_set(&md->uevent_seq, 0);
1107 	INIT_LIST_HEAD(&md->uevent_list);
1108 	spin_lock_init(&md->uevent_lock);
1109 
1110 	md->queue = blk_alloc_queue(GFP_KERNEL);
1111 	if (!md->queue)
1112 		goto bad_queue;
1113 
1114 	md->queue->queuedata = md;
1115 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1116 	md->queue->backing_dev_info.congested_data = md;
1117 	blk_queue_make_request(md->queue, dm_request);
1118 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1119 	md->queue->unplug_fn = dm_unplug_all;
1120 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1121 
1122 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1123 	if (!md->io_pool)
1124 		goto bad_io_pool;
1125 
1126 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1127 	if (!md->tio_pool)
1128 		goto bad_tio_pool;
1129 
1130 	md->bs = bioset_create(16, 0);
1131 	if (!md->bs)
1132 		goto bad_no_bioset;
1133 
1134 	md->disk = alloc_disk(1);
1135 	if (!md->disk)
1136 		goto bad_disk;
1137 
1138 	atomic_set(&md->pending, 0);
1139 	init_waitqueue_head(&md->wait);
1140 	init_waitqueue_head(&md->eventq);
1141 
1142 	md->disk->major = _major;
1143 	md->disk->first_minor = minor;
1144 	md->disk->fops = &dm_blk_dops;
1145 	md->disk->queue = md->queue;
1146 	md->disk->private_data = md;
1147 	sprintf(md->disk->disk_name, "dm-%d", minor);
1148 	add_disk(md->disk);
1149 	format_dev_t(md->name, MKDEV(_major, minor));
1150 
1151 	md->wq = create_singlethread_workqueue("kdmflush");
1152 	if (!md->wq)
1153 		goto bad_thread;
1154 
1155 	/* Populate the mapping, nobody knows we exist yet */
1156 	spin_lock(&_minor_lock);
1157 	old_md = idr_replace(&_minor_idr, md, minor);
1158 	spin_unlock(&_minor_lock);
1159 
1160 	BUG_ON(old_md != MINOR_ALLOCED);
1161 
1162 	return md;
1163 
1164 bad_thread:
1165 	put_disk(md->disk);
1166 bad_disk:
1167 	bioset_free(md->bs);
1168 bad_no_bioset:
1169 	mempool_destroy(md->tio_pool);
1170 bad_tio_pool:
1171 	mempool_destroy(md->io_pool);
1172 bad_io_pool:
1173 	blk_cleanup_queue(md->queue);
1174 bad_queue:
1175 	free_minor(minor);
1176 bad_minor:
1177 	module_put(THIS_MODULE);
1178 bad_module_get:
1179 	kfree(md);
1180 	return NULL;
1181 }
1182 
1183 static void unlock_fs(struct mapped_device *md);
1184 
1185 static void free_dev(struct mapped_device *md)
1186 {
1187 	int minor = MINOR(disk_devt(md->disk));
1188 
1189 	if (md->suspended_bdev) {
1190 		unlock_fs(md);
1191 		bdput(md->suspended_bdev);
1192 	}
1193 	destroy_workqueue(md->wq);
1194 	mempool_destroy(md->tio_pool);
1195 	mempool_destroy(md->io_pool);
1196 	bioset_free(md->bs);
1197 	del_gendisk(md->disk);
1198 	free_minor(minor);
1199 
1200 	spin_lock(&_minor_lock);
1201 	md->disk->private_data = NULL;
1202 	spin_unlock(&_minor_lock);
1203 
1204 	put_disk(md->disk);
1205 	blk_cleanup_queue(md->queue);
1206 	module_put(THIS_MODULE);
1207 	kfree(md);
1208 }
1209 
1210 /*
1211  * Bind a table to the device.
1212  */
1213 static void event_callback(void *context)
1214 {
1215 	unsigned long flags;
1216 	LIST_HEAD(uevents);
1217 	struct mapped_device *md = (struct mapped_device *) context;
1218 
1219 	spin_lock_irqsave(&md->uevent_lock, flags);
1220 	list_splice_init(&md->uevent_list, &uevents);
1221 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1222 
1223 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1224 
1225 	atomic_inc(&md->event_nr);
1226 	wake_up(&md->eventq);
1227 }
1228 
1229 static void __set_size(struct mapped_device *md, sector_t size)
1230 {
1231 	set_capacity(md->disk, size);
1232 
1233 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1234 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1235 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1236 }
1237 
1238 static int __bind(struct mapped_device *md, struct dm_table *t)
1239 {
1240 	struct request_queue *q = md->queue;
1241 	sector_t size;
1242 
1243 	size = dm_table_get_size(t);
1244 
1245 	/*
1246 	 * Wipe any geometry if the size of the table changed.
1247 	 */
1248 	if (size != get_capacity(md->disk))
1249 		memset(&md->geometry, 0, sizeof(md->geometry));
1250 
1251 	if (md->suspended_bdev)
1252 		__set_size(md, size);
1253 	if (size == 0)
1254 		return 0;
1255 
1256 	dm_table_get(t);
1257 	dm_table_event_callback(t, event_callback, md);
1258 
1259 	write_lock(&md->map_lock);
1260 	md->map = t;
1261 	dm_table_set_restrictions(t, q);
1262 	write_unlock(&md->map_lock);
1263 
1264 	return 0;
1265 }
1266 
1267 static void __unbind(struct mapped_device *md)
1268 {
1269 	struct dm_table *map = md->map;
1270 
1271 	if (!map)
1272 		return;
1273 
1274 	dm_table_event_callback(map, NULL, NULL);
1275 	write_lock(&md->map_lock);
1276 	md->map = NULL;
1277 	write_unlock(&md->map_lock);
1278 	dm_table_put(map);
1279 }
1280 
1281 /*
1282  * Constructor for a new device.
1283  */
1284 int dm_create(int minor, struct mapped_device **result)
1285 {
1286 	struct mapped_device *md;
1287 
1288 	md = alloc_dev(minor);
1289 	if (!md)
1290 		return -ENXIO;
1291 
1292 	*result = md;
1293 	return 0;
1294 }
1295 
1296 static struct mapped_device *dm_find_md(dev_t dev)
1297 {
1298 	struct mapped_device *md;
1299 	unsigned minor = MINOR(dev);
1300 
1301 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1302 		return NULL;
1303 
1304 	spin_lock(&_minor_lock);
1305 
1306 	md = idr_find(&_minor_idr, minor);
1307 	if (md && (md == MINOR_ALLOCED ||
1308 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1309 		   test_bit(DMF_FREEING, &md->flags))) {
1310 		md = NULL;
1311 		goto out;
1312 	}
1313 
1314 out:
1315 	spin_unlock(&_minor_lock);
1316 
1317 	return md;
1318 }
1319 
1320 struct mapped_device *dm_get_md(dev_t dev)
1321 {
1322 	struct mapped_device *md = dm_find_md(dev);
1323 
1324 	if (md)
1325 		dm_get(md);
1326 
1327 	return md;
1328 }
1329 
1330 void *dm_get_mdptr(struct mapped_device *md)
1331 {
1332 	return md->interface_ptr;
1333 }
1334 
1335 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1336 {
1337 	md->interface_ptr = ptr;
1338 }
1339 
1340 void dm_get(struct mapped_device *md)
1341 {
1342 	atomic_inc(&md->holders);
1343 }
1344 
1345 const char *dm_device_name(struct mapped_device *md)
1346 {
1347 	return md->name;
1348 }
1349 EXPORT_SYMBOL_GPL(dm_device_name);
1350 
1351 void dm_put(struct mapped_device *md)
1352 {
1353 	struct dm_table *map;
1354 
1355 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1356 
1357 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1358 		map = dm_get_table(md);
1359 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1360 			    MINOR(disk_devt(dm_disk(md))));
1361 		set_bit(DMF_FREEING, &md->flags);
1362 		spin_unlock(&_minor_lock);
1363 		if (!dm_suspended(md)) {
1364 			dm_table_presuspend_targets(map);
1365 			dm_table_postsuspend_targets(map);
1366 		}
1367 		dm_table_put(map);
1368 		__unbind(md);
1369 		free_dev(md);
1370 	}
1371 }
1372 EXPORT_SYMBOL_GPL(dm_put);
1373 
1374 static int dm_wait_for_completion(struct mapped_device *md)
1375 {
1376 	int r = 0;
1377 
1378 	while (1) {
1379 		set_current_state(TASK_INTERRUPTIBLE);
1380 
1381 		smp_mb();
1382 		if (!atomic_read(&md->pending))
1383 			break;
1384 
1385 		if (signal_pending(current)) {
1386 			r = -EINTR;
1387 			break;
1388 		}
1389 
1390 		io_schedule();
1391 	}
1392 	set_current_state(TASK_RUNNING);
1393 
1394 	return r;
1395 }
1396 
1397 /*
1398  * Process the deferred bios
1399  */
1400 static void __flush_deferred_io(struct mapped_device *md)
1401 {
1402 	struct bio *c;
1403 
1404 	while ((c = bio_list_pop(&md->deferred))) {
1405 		if (__split_bio(md, c))
1406 			bio_io_error(c);
1407 	}
1408 
1409 	clear_bit(DMF_BLOCK_IO, &md->flags);
1410 }
1411 
1412 static void __merge_pushback_list(struct mapped_device *md)
1413 {
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&md->pushback_lock, flags);
1417 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1418 	bio_list_merge_head(&md->deferred, &md->pushback);
1419 	bio_list_init(&md->pushback);
1420 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1421 }
1422 
1423 static void dm_wq_work(struct work_struct *work)
1424 {
1425 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1426 	struct mapped_device *md = req->md;
1427 
1428 	down_write(&md->io_lock);
1429 	switch (req->type) {
1430 	case DM_WQ_FLUSH_DEFERRED:
1431 		__flush_deferred_io(md);
1432 		break;
1433 	default:
1434 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1435 		BUG();
1436 	}
1437 	up_write(&md->io_lock);
1438 }
1439 
1440 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1441 			struct dm_wq_req *req)
1442 {
1443 	req->type = type;
1444 	req->md = md;
1445 	req->context = context;
1446 	INIT_WORK(&req->work, dm_wq_work);
1447 	queue_work(md->wq, &req->work);
1448 }
1449 
1450 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1451 {
1452 	struct dm_wq_req req;
1453 
1454 	dm_wq_queue(md, type, context, &req);
1455 	flush_workqueue(md->wq);
1456 }
1457 
1458 /*
1459  * Swap in a new table (destroying old one).
1460  */
1461 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1462 {
1463 	int r = -EINVAL;
1464 
1465 	mutex_lock(&md->suspend_lock);
1466 
1467 	/* device must be suspended */
1468 	if (!dm_suspended(md))
1469 		goto out;
1470 
1471 	/* without bdev, the device size cannot be changed */
1472 	if (!md->suspended_bdev)
1473 		if (get_capacity(md->disk) != dm_table_get_size(table))
1474 			goto out;
1475 
1476 	__unbind(md);
1477 	r = __bind(md, table);
1478 
1479 out:
1480 	mutex_unlock(&md->suspend_lock);
1481 	return r;
1482 }
1483 
1484 /*
1485  * Functions to lock and unlock any filesystem running on the
1486  * device.
1487  */
1488 static int lock_fs(struct mapped_device *md)
1489 {
1490 	int r;
1491 
1492 	WARN_ON(md->frozen_sb);
1493 
1494 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1495 	if (IS_ERR(md->frozen_sb)) {
1496 		r = PTR_ERR(md->frozen_sb);
1497 		md->frozen_sb = NULL;
1498 		return r;
1499 	}
1500 
1501 	set_bit(DMF_FROZEN, &md->flags);
1502 
1503 	/* don't bdput right now, we don't want the bdev
1504 	 * to go away while it is locked.
1505 	 */
1506 	return 0;
1507 }
1508 
1509 static void unlock_fs(struct mapped_device *md)
1510 {
1511 	if (!test_bit(DMF_FROZEN, &md->flags))
1512 		return;
1513 
1514 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1515 	md->frozen_sb = NULL;
1516 	clear_bit(DMF_FROZEN, &md->flags);
1517 }
1518 
1519 /*
1520  * We need to be able to change a mapping table under a mounted
1521  * filesystem.  For example we might want to move some data in
1522  * the background.  Before the table can be swapped with
1523  * dm_bind_table, dm_suspend must be called to flush any in
1524  * flight bios and ensure that any further io gets deferred.
1525  */
1526 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1527 {
1528 	struct dm_table *map = NULL;
1529 	DECLARE_WAITQUEUE(wait, current);
1530 	int r = 0;
1531 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1532 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1533 
1534 	mutex_lock(&md->suspend_lock);
1535 
1536 	if (dm_suspended(md)) {
1537 		r = -EINVAL;
1538 		goto out_unlock;
1539 	}
1540 
1541 	map = dm_get_table(md);
1542 
1543 	/*
1544 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1545 	 * This flag is cleared before dm_suspend returns.
1546 	 */
1547 	if (noflush)
1548 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1549 
1550 	/* This does not get reverted if there's an error later. */
1551 	dm_table_presuspend_targets(map);
1552 
1553 	/* bdget() can stall if the pending I/Os are not flushed */
1554 	if (!noflush) {
1555 		md->suspended_bdev = bdget_disk(md->disk, 0);
1556 		if (!md->suspended_bdev) {
1557 			DMWARN("bdget failed in dm_suspend");
1558 			r = -ENOMEM;
1559 			goto out;
1560 		}
1561 
1562 		/*
1563 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1564 		 * because lock_fs() needs to flush I/Os.
1565 		 */
1566 		if (do_lockfs) {
1567 			r = lock_fs(md);
1568 			if (r)
1569 				goto out;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1575 	 */
1576 	down_write(&md->io_lock);
1577 	set_bit(DMF_BLOCK_IO, &md->flags);
1578 
1579 	add_wait_queue(&md->wait, &wait);
1580 	up_write(&md->io_lock);
1581 
1582 	/* unplug */
1583 	if (map)
1584 		dm_table_unplug_all(map);
1585 
1586 	/*
1587 	 * Wait for the already-mapped ios to complete.
1588 	 */
1589 	r = dm_wait_for_completion(md);
1590 
1591 	down_write(&md->io_lock);
1592 	remove_wait_queue(&md->wait, &wait);
1593 
1594 	if (noflush)
1595 		__merge_pushback_list(md);
1596 	up_write(&md->io_lock);
1597 
1598 	/* were we interrupted ? */
1599 	if (r < 0) {
1600 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1601 
1602 		unlock_fs(md);
1603 		goto out; /* pushback list is already flushed, so skip flush */
1604 	}
1605 
1606 	dm_table_postsuspend_targets(map);
1607 
1608 	set_bit(DMF_SUSPENDED, &md->flags);
1609 
1610 out:
1611 	if (r && md->suspended_bdev) {
1612 		bdput(md->suspended_bdev);
1613 		md->suspended_bdev = NULL;
1614 	}
1615 
1616 	dm_table_put(map);
1617 
1618 out_unlock:
1619 	mutex_unlock(&md->suspend_lock);
1620 	return r;
1621 }
1622 
1623 int dm_resume(struct mapped_device *md)
1624 {
1625 	int r = -EINVAL;
1626 	struct dm_table *map = NULL;
1627 
1628 	mutex_lock(&md->suspend_lock);
1629 	if (!dm_suspended(md))
1630 		goto out;
1631 
1632 	map = dm_get_table(md);
1633 	if (!map || !dm_table_get_size(map))
1634 		goto out;
1635 
1636 	r = dm_table_resume_targets(map);
1637 	if (r)
1638 		goto out;
1639 
1640 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1641 
1642 	unlock_fs(md);
1643 
1644 	if (md->suspended_bdev) {
1645 		bdput(md->suspended_bdev);
1646 		md->suspended_bdev = NULL;
1647 	}
1648 
1649 	clear_bit(DMF_SUSPENDED, &md->flags);
1650 
1651 	dm_table_unplug_all(map);
1652 
1653 	dm_kobject_uevent(md);
1654 
1655 	r = 0;
1656 
1657 out:
1658 	dm_table_put(map);
1659 	mutex_unlock(&md->suspend_lock);
1660 
1661 	return r;
1662 }
1663 
1664 /*-----------------------------------------------------------------
1665  * Event notification.
1666  *---------------------------------------------------------------*/
1667 void dm_kobject_uevent(struct mapped_device *md)
1668 {
1669 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1670 }
1671 
1672 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1673 {
1674 	return atomic_add_return(1, &md->uevent_seq);
1675 }
1676 
1677 uint32_t dm_get_event_nr(struct mapped_device *md)
1678 {
1679 	return atomic_read(&md->event_nr);
1680 }
1681 
1682 int dm_wait_event(struct mapped_device *md, int event_nr)
1683 {
1684 	return wait_event_interruptible(md->eventq,
1685 			(event_nr != atomic_read(&md->event_nr)));
1686 }
1687 
1688 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1689 {
1690 	unsigned long flags;
1691 
1692 	spin_lock_irqsave(&md->uevent_lock, flags);
1693 	list_add(elist, &md->uevent_list);
1694 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1695 }
1696 
1697 /*
1698  * The gendisk is only valid as long as you have a reference
1699  * count on 'md'.
1700  */
1701 struct gendisk *dm_disk(struct mapped_device *md)
1702 {
1703 	return md->disk;
1704 }
1705 
1706 int dm_suspended(struct mapped_device *md)
1707 {
1708 	return test_bit(DMF_SUSPENDED, &md->flags);
1709 }
1710 
1711 int dm_noflush_suspending(struct dm_target *ti)
1712 {
1713 	struct mapped_device *md = dm_table_get_md(ti->table);
1714 	int r = __noflush_suspending(md);
1715 
1716 	dm_put(md);
1717 
1718 	return r;
1719 }
1720 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1721 
1722 static struct block_device_operations dm_blk_dops = {
1723 	.open = dm_blk_open,
1724 	.release = dm_blk_close,
1725 	.ioctl = dm_blk_ioctl,
1726 	.getgeo = dm_blk_getgeo,
1727 	.owner = THIS_MODULE
1728 };
1729 
1730 EXPORT_SYMBOL(dm_get_mapinfo);
1731 
1732 /*
1733  * module hooks
1734  */
1735 module_init(dm_init);
1736 module_exit(dm_exit);
1737 
1738 module_param(major, uint, 0);
1739 MODULE_PARM_DESC(major, "The major number of the device mapper");
1740 MODULE_DESCRIPTION(DM_NAME " driver");
1741 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1742 MODULE_LICENSE("GPL");
1743