xref: /openbmc/linux/drivers/md/dm.c (revision a4aa5e56e5189b88a2891cdcc350dac618810354)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
24 #include <linux/wait.h>
25 #include <linux/pr.h>
26 
27 #define DM_MSG_PREFIX "core"
28 
29 #ifdef CONFIG_PRINTK
30 /*
31  * ratelimit state to be used in DMXXX_LIMIT().
32  */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 		       DEFAULT_RATELIMIT_INTERVAL,
35 		       DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38 
39 /*
40  * Cookies are numeric values sent with CHANGE and REMOVE
41  * uevents while resuming, removing or renaming the device.
42  */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45 
46 static const char *_name = DM_NAME;
47 
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50 
51 static DEFINE_IDR(_minor_idr);
52 
53 static DEFINE_SPINLOCK(_minor_lock);
54 
55 static void do_deferred_remove(struct work_struct *w);
56 
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 
59 static struct workqueue_struct *deferred_remove_workqueue;
60 
61 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
62 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
63 
64 /*
65  * One of these is allocated per bio.
66  */
67 struct dm_io {
68 	struct mapped_device *md;
69 	blk_status_t status;
70 	atomic_t io_count;
71 	struct bio *bio;
72 	unsigned long start_time;
73 	spinlock_t endio_lock;
74 	struct dm_stats_aux stats_aux;
75 };
76 
77 #define MINOR_ALLOCED ((void *)-1)
78 
79 /*
80  * Bits for the md->flags field.
81  */
82 #define DMF_BLOCK_IO_FOR_SUSPEND 0
83 #define DMF_SUSPENDED 1
84 #define DMF_FROZEN 2
85 #define DMF_FREEING 3
86 #define DMF_DELETING 4
87 #define DMF_NOFLUSH_SUSPENDING 5
88 #define DMF_DEFERRED_REMOVE 6
89 #define DMF_SUSPENDED_INTERNALLY 7
90 
91 #define DM_NUMA_NODE NUMA_NO_NODE
92 static int dm_numa_node = DM_NUMA_NODE;
93 
94 /*
95  * For mempools pre-allocation at the table loading time.
96  */
97 struct dm_md_mempools {
98 	mempool_t *io_pool;
99 	struct bio_set *bs;
100 };
101 
102 struct table_device {
103 	struct list_head list;
104 	atomic_t count;
105 	struct dm_dev dm_dev;
106 };
107 
108 static struct kmem_cache *_io_cache;
109 static struct kmem_cache *_rq_tio_cache;
110 static struct kmem_cache *_rq_cache;
111 
112 /*
113  * Bio-based DM's mempools' reserved IOs set by the user.
114  */
115 #define RESERVED_BIO_BASED_IOS		16
116 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
117 
118 static int __dm_get_module_param_int(int *module_param, int min, int max)
119 {
120 	int param = ACCESS_ONCE(*module_param);
121 	int modified_param = 0;
122 	bool modified = true;
123 
124 	if (param < min)
125 		modified_param = min;
126 	else if (param > max)
127 		modified_param = max;
128 	else
129 		modified = false;
130 
131 	if (modified) {
132 		(void)cmpxchg(module_param, param, modified_param);
133 		param = modified_param;
134 	}
135 
136 	return param;
137 }
138 
139 unsigned __dm_get_module_param(unsigned *module_param,
140 			       unsigned def, unsigned max)
141 {
142 	unsigned param = ACCESS_ONCE(*module_param);
143 	unsigned modified_param = 0;
144 
145 	if (!param)
146 		modified_param = def;
147 	else if (param > max)
148 		modified_param = max;
149 
150 	if (modified_param) {
151 		(void)cmpxchg(module_param, param, modified_param);
152 		param = modified_param;
153 	}
154 
155 	return param;
156 }
157 
158 unsigned dm_get_reserved_bio_based_ios(void)
159 {
160 	return __dm_get_module_param(&reserved_bio_based_ios,
161 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
162 }
163 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
164 
165 static unsigned dm_get_numa_node(void)
166 {
167 	return __dm_get_module_param_int(&dm_numa_node,
168 					 DM_NUMA_NODE, num_online_nodes() - 1);
169 }
170 
171 static int __init local_init(void)
172 {
173 	int r = -ENOMEM;
174 
175 	/* allocate a slab for the dm_ios */
176 	_io_cache = KMEM_CACHE(dm_io, 0);
177 	if (!_io_cache)
178 		return r;
179 
180 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
181 	if (!_rq_tio_cache)
182 		goto out_free_io_cache;
183 
184 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
185 				      __alignof__(struct request), 0, NULL);
186 	if (!_rq_cache)
187 		goto out_free_rq_tio_cache;
188 
189 	r = dm_uevent_init();
190 	if (r)
191 		goto out_free_rq_cache;
192 
193 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
194 	if (!deferred_remove_workqueue) {
195 		r = -ENOMEM;
196 		goto out_uevent_exit;
197 	}
198 
199 	_major = major;
200 	r = register_blkdev(_major, _name);
201 	if (r < 0)
202 		goto out_free_workqueue;
203 
204 	if (!_major)
205 		_major = r;
206 
207 	return 0;
208 
209 out_free_workqueue:
210 	destroy_workqueue(deferred_remove_workqueue);
211 out_uevent_exit:
212 	dm_uevent_exit();
213 out_free_rq_cache:
214 	kmem_cache_destroy(_rq_cache);
215 out_free_rq_tio_cache:
216 	kmem_cache_destroy(_rq_tio_cache);
217 out_free_io_cache:
218 	kmem_cache_destroy(_io_cache);
219 
220 	return r;
221 }
222 
223 static void local_exit(void)
224 {
225 	flush_scheduled_work();
226 	destroy_workqueue(deferred_remove_workqueue);
227 
228 	kmem_cache_destroy(_rq_cache);
229 	kmem_cache_destroy(_rq_tio_cache);
230 	kmem_cache_destroy(_io_cache);
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_io_init,
245 	dm_kcopyd_init,
246 	dm_interface_init,
247 	dm_statistics_init,
248 };
249 
250 static void (*_exits[])(void) = {
251 	local_exit,
252 	dm_target_exit,
253 	dm_linear_exit,
254 	dm_stripe_exit,
255 	dm_io_exit,
256 	dm_kcopyd_exit,
257 	dm_interface_exit,
258 	dm_statistics_exit,
259 };
260 
261 static int __init dm_init(void)
262 {
263 	const int count = ARRAY_SIZE(_inits);
264 
265 	int r, i;
266 
267 	for (i = 0; i < count; i++) {
268 		r = _inits[i]();
269 		if (r)
270 			goto bad;
271 	}
272 
273 	return 0;
274 
275       bad:
276 	while (i--)
277 		_exits[i]();
278 
279 	return r;
280 }
281 
282 static void __exit dm_exit(void)
283 {
284 	int i = ARRAY_SIZE(_exits);
285 
286 	while (i--)
287 		_exits[i]();
288 
289 	/*
290 	 * Should be empty by this point.
291 	 */
292 	idr_destroy(&_minor_idr);
293 }
294 
295 /*
296  * Block device functions
297  */
298 int dm_deleting_md(struct mapped_device *md)
299 {
300 	return test_bit(DMF_DELETING, &md->flags);
301 }
302 
303 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
304 {
305 	struct mapped_device *md;
306 
307 	spin_lock(&_minor_lock);
308 
309 	md = bdev->bd_disk->private_data;
310 	if (!md)
311 		goto out;
312 
313 	if (test_bit(DMF_FREEING, &md->flags) ||
314 	    dm_deleting_md(md)) {
315 		md = NULL;
316 		goto out;
317 	}
318 
319 	dm_get(md);
320 	atomic_inc(&md->open_count);
321 out:
322 	spin_unlock(&_minor_lock);
323 
324 	return md ? 0 : -ENXIO;
325 }
326 
327 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
328 {
329 	struct mapped_device *md;
330 
331 	spin_lock(&_minor_lock);
332 
333 	md = disk->private_data;
334 	if (WARN_ON(!md))
335 		goto out;
336 
337 	if (atomic_dec_and_test(&md->open_count) &&
338 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
339 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
340 
341 	dm_put(md);
342 out:
343 	spin_unlock(&_minor_lock);
344 }
345 
346 int dm_open_count(struct mapped_device *md)
347 {
348 	return atomic_read(&md->open_count);
349 }
350 
351 /*
352  * Guarantees nothing is using the device before it's deleted.
353  */
354 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
355 {
356 	int r = 0;
357 
358 	spin_lock(&_minor_lock);
359 
360 	if (dm_open_count(md)) {
361 		r = -EBUSY;
362 		if (mark_deferred)
363 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
364 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
365 		r = -EEXIST;
366 	else
367 		set_bit(DMF_DELETING, &md->flags);
368 
369 	spin_unlock(&_minor_lock);
370 
371 	return r;
372 }
373 
374 int dm_cancel_deferred_remove(struct mapped_device *md)
375 {
376 	int r = 0;
377 
378 	spin_lock(&_minor_lock);
379 
380 	if (test_bit(DMF_DELETING, &md->flags))
381 		r = -EBUSY;
382 	else
383 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 static void do_deferred_remove(struct work_struct *w)
391 {
392 	dm_deferred_remove();
393 }
394 
395 sector_t dm_get_size(struct mapped_device *md)
396 {
397 	return get_capacity(md->disk);
398 }
399 
400 struct request_queue *dm_get_md_queue(struct mapped_device *md)
401 {
402 	return md->queue;
403 }
404 
405 struct dm_stats *dm_get_stats(struct mapped_device *md)
406 {
407 	return &md->stats;
408 }
409 
410 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
411 {
412 	struct mapped_device *md = bdev->bd_disk->private_data;
413 
414 	return dm_get_geometry(md, geo);
415 }
416 
417 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
418 				  struct block_device **bdev,
419 				  fmode_t *mode)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int srcu_idx, r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, &srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		goto out;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		goto out;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		goto out;
438 
439 	if (dm_suspended_md(md)) {
440 		r = -EAGAIN;
441 		goto out;
442 	}
443 
444 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
445 	if (r < 0)
446 		goto out;
447 
448 	bdgrab(*bdev);
449 	dm_put_live_table(md, srcu_idx);
450 	return r;
451 
452 out:
453 	dm_put_live_table(md, srcu_idx);
454 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
455 		msleep(10);
456 		goto retry;
457 	}
458 	return r;
459 }
460 
461 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
462 			unsigned int cmd, unsigned long arg)
463 {
464 	struct mapped_device *md = bdev->bd_disk->private_data;
465 	int r;
466 
467 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
468 	if (r < 0)
469 		return r;
470 
471 	if (r > 0) {
472 		/*
473 		 * Target determined this ioctl is being issued against a
474 		 * subset of the parent bdev; require extra privileges.
475 		 */
476 		if (!capable(CAP_SYS_RAWIO)) {
477 			DMWARN_LIMIT(
478 	"%s: sending ioctl %x to DM device without required privilege.",
479 				current->comm, cmd);
480 			r = -ENOIOCTLCMD;
481 			goto out;
482 		}
483 	}
484 
485 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
486 out:
487 	bdput(bdev);
488 	return r;
489 }
490 
491 static struct dm_io *alloc_io(struct mapped_device *md)
492 {
493 	return mempool_alloc(md->io_pool, GFP_NOIO);
494 }
495 
496 static void free_io(struct mapped_device *md, struct dm_io *io)
497 {
498 	mempool_free(io, md->io_pool);
499 }
500 
501 static void free_tio(struct dm_target_io *tio)
502 {
503 	bio_put(&tio->clone);
504 }
505 
506 int md_in_flight(struct mapped_device *md)
507 {
508 	return atomic_read(&md->pending[READ]) +
509 	       atomic_read(&md->pending[WRITE]);
510 }
511 
512 static void start_io_acct(struct dm_io *io)
513 {
514 	struct mapped_device *md = io->md;
515 	struct bio *bio = io->bio;
516 	int cpu;
517 	int rw = bio_data_dir(bio);
518 
519 	io->start_time = jiffies;
520 
521 	cpu = part_stat_lock();
522 	part_round_stats(cpu, &dm_disk(md)->part0);
523 	part_stat_unlock();
524 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
525 		atomic_inc_return(&md->pending[rw]));
526 
527 	if (unlikely(dm_stats_used(&md->stats)))
528 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 				    bio->bi_iter.bi_sector, bio_sectors(bio),
530 				    false, 0, &io->stats_aux);
531 }
532 
533 static void end_io_acct(struct dm_io *io)
534 {
535 	struct mapped_device *md = io->md;
536 	struct bio *bio = io->bio;
537 	unsigned long duration = jiffies - io->start_time;
538 	int pending;
539 	int rw = bio_data_dir(bio);
540 
541 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
542 
543 	if (unlikely(dm_stats_used(&md->stats)))
544 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
545 				    bio->bi_iter.bi_sector, bio_sectors(bio),
546 				    true, duration, &io->stats_aux);
547 
548 	/*
549 	 * After this is decremented the bio must not be touched if it is
550 	 * a flush.
551 	 */
552 	pending = atomic_dec_return(&md->pending[rw]);
553 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
554 	pending += atomic_read(&md->pending[rw^0x1]);
555 
556 	/* nudge anyone waiting on suspend queue */
557 	if (!pending)
558 		wake_up(&md->wait);
559 }
560 
561 /*
562  * Add the bio to the list of deferred io.
563  */
564 static void queue_io(struct mapped_device *md, struct bio *bio)
565 {
566 	unsigned long flags;
567 
568 	spin_lock_irqsave(&md->deferred_lock, flags);
569 	bio_list_add(&md->deferred, bio);
570 	spin_unlock_irqrestore(&md->deferred_lock, flags);
571 	queue_work(md->wq, &md->work);
572 }
573 
574 /*
575  * Everyone (including functions in this file), should use this
576  * function to access the md->map field, and make sure they call
577  * dm_put_live_table() when finished.
578  */
579 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
580 {
581 	*srcu_idx = srcu_read_lock(&md->io_barrier);
582 
583 	return srcu_dereference(md->map, &md->io_barrier);
584 }
585 
586 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
587 {
588 	srcu_read_unlock(&md->io_barrier, srcu_idx);
589 }
590 
591 void dm_sync_table(struct mapped_device *md)
592 {
593 	synchronize_srcu(&md->io_barrier);
594 	synchronize_rcu_expedited();
595 }
596 
597 /*
598  * A fast alternative to dm_get_live_table/dm_put_live_table.
599  * The caller must not block between these two functions.
600  */
601 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
602 {
603 	rcu_read_lock();
604 	return rcu_dereference(md->map);
605 }
606 
607 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
608 {
609 	rcu_read_unlock();
610 }
611 
612 /*
613  * Open a table device so we can use it as a map destination.
614  */
615 static int open_table_device(struct table_device *td, dev_t dev,
616 			     struct mapped_device *md)
617 {
618 	static char *_claim_ptr = "I belong to device-mapper";
619 	struct block_device *bdev;
620 
621 	int r;
622 
623 	BUG_ON(td->dm_dev.bdev);
624 
625 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
626 	if (IS_ERR(bdev))
627 		return PTR_ERR(bdev);
628 
629 	r = bd_link_disk_holder(bdev, dm_disk(md));
630 	if (r) {
631 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
632 		return r;
633 	}
634 
635 	td->dm_dev.bdev = bdev;
636 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
637 	return 0;
638 }
639 
640 /*
641  * Close a table device that we've been using.
642  */
643 static void close_table_device(struct table_device *td, struct mapped_device *md)
644 {
645 	if (!td->dm_dev.bdev)
646 		return;
647 
648 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
649 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
650 	put_dax(td->dm_dev.dax_dev);
651 	td->dm_dev.bdev = NULL;
652 	td->dm_dev.dax_dev = NULL;
653 }
654 
655 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
656 					      fmode_t mode) {
657 	struct table_device *td;
658 
659 	list_for_each_entry(td, l, list)
660 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
661 			return td;
662 
663 	return NULL;
664 }
665 
666 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
667 			struct dm_dev **result) {
668 	int r;
669 	struct table_device *td;
670 
671 	mutex_lock(&md->table_devices_lock);
672 	td = find_table_device(&md->table_devices, dev, mode);
673 	if (!td) {
674 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
675 		if (!td) {
676 			mutex_unlock(&md->table_devices_lock);
677 			return -ENOMEM;
678 		}
679 
680 		td->dm_dev.mode = mode;
681 		td->dm_dev.bdev = NULL;
682 
683 		if ((r = open_table_device(td, dev, md))) {
684 			mutex_unlock(&md->table_devices_lock);
685 			kfree(td);
686 			return r;
687 		}
688 
689 		format_dev_t(td->dm_dev.name, dev);
690 
691 		atomic_set(&td->count, 0);
692 		list_add(&td->list, &md->table_devices);
693 	}
694 	atomic_inc(&td->count);
695 	mutex_unlock(&md->table_devices_lock);
696 
697 	*result = &td->dm_dev;
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(dm_get_table_device);
701 
702 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
703 {
704 	struct table_device *td = container_of(d, struct table_device, dm_dev);
705 
706 	mutex_lock(&md->table_devices_lock);
707 	if (atomic_dec_and_test(&td->count)) {
708 		close_table_device(td, md);
709 		list_del(&td->list);
710 		kfree(td);
711 	}
712 	mutex_unlock(&md->table_devices_lock);
713 }
714 EXPORT_SYMBOL(dm_put_table_device);
715 
716 static void free_table_devices(struct list_head *devices)
717 {
718 	struct list_head *tmp, *next;
719 
720 	list_for_each_safe(tmp, next, devices) {
721 		struct table_device *td = list_entry(tmp, struct table_device, list);
722 
723 		DMWARN("dm_destroy: %s still exists with %d references",
724 		       td->dm_dev.name, atomic_read(&td->count));
725 		kfree(td);
726 	}
727 }
728 
729 /*
730  * Get the geometry associated with a dm device
731  */
732 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
733 {
734 	*geo = md->geometry;
735 
736 	return 0;
737 }
738 
739 /*
740  * Set the geometry of a device.
741  */
742 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
743 {
744 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
745 
746 	if (geo->start > sz) {
747 		DMWARN("Start sector is beyond the geometry limits.");
748 		return -EINVAL;
749 	}
750 
751 	md->geometry = *geo;
752 
753 	return 0;
754 }
755 
756 /*-----------------------------------------------------------------
757  * CRUD START:
758  *   A more elegant soln is in the works that uses the queue
759  *   merge fn, unfortunately there are a couple of changes to
760  *   the block layer that I want to make for this.  So in the
761  *   interests of getting something for people to use I give
762  *   you this clearly demarcated crap.
763  *---------------------------------------------------------------*/
764 
765 static int __noflush_suspending(struct mapped_device *md)
766 {
767 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
768 }
769 
770 /*
771  * Decrements the number of outstanding ios that a bio has been
772  * cloned into, completing the original io if necc.
773  */
774 static void dec_pending(struct dm_io *io, blk_status_t error)
775 {
776 	unsigned long flags;
777 	blk_status_t io_error;
778 	struct bio *bio;
779 	struct mapped_device *md = io->md;
780 
781 	/* Push-back supersedes any I/O errors */
782 	if (unlikely(error)) {
783 		spin_lock_irqsave(&io->endio_lock, flags);
784 		if (!(io->status == BLK_STS_DM_REQUEUE &&
785 				__noflush_suspending(md)))
786 			io->status = error;
787 		spin_unlock_irqrestore(&io->endio_lock, flags);
788 	}
789 
790 	if (atomic_dec_and_test(&io->io_count)) {
791 		if (io->status == BLK_STS_DM_REQUEUE) {
792 			/*
793 			 * Target requested pushing back the I/O.
794 			 */
795 			spin_lock_irqsave(&md->deferred_lock, flags);
796 			if (__noflush_suspending(md))
797 				bio_list_add_head(&md->deferred, io->bio);
798 			else
799 				/* noflush suspend was interrupted. */
800 				io->status = BLK_STS_IOERR;
801 			spin_unlock_irqrestore(&md->deferred_lock, flags);
802 		}
803 
804 		io_error = io->status;
805 		bio = io->bio;
806 		end_io_acct(io);
807 		free_io(md, io);
808 
809 		if (io_error == BLK_STS_DM_REQUEUE)
810 			return;
811 
812 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
813 			/*
814 			 * Preflush done for flush with data, reissue
815 			 * without REQ_PREFLUSH.
816 			 */
817 			bio->bi_opf &= ~REQ_PREFLUSH;
818 			queue_io(md, bio);
819 		} else {
820 			/* done with normal IO or empty flush */
821 			bio->bi_status = io_error;
822 			bio_endio(bio);
823 		}
824 	}
825 }
826 
827 void disable_write_same(struct mapped_device *md)
828 {
829 	struct queue_limits *limits = dm_get_queue_limits(md);
830 
831 	/* device doesn't really support WRITE SAME, disable it */
832 	limits->max_write_same_sectors = 0;
833 }
834 
835 void disable_write_zeroes(struct mapped_device *md)
836 {
837 	struct queue_limits *limits = dm_get_queue_limits(md);
838 
839 	/* device doesn't really support WRITE ZEROES, disable it */
840 	limits->max_write_zeroes_sectors = 0;
841 }
842 
843 static void clone_endio(struct bio *bio)
844 {
845 	blk_status_t error = bio->bi_status;
846 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
847 	struct dm_io *io = tio->io;
848 	struct mapped_device *md = tio->io->md;
849 	dm_endio_fn endio = tio->ti->type->end_io;
850 
851 	if (unlikely(error == BLK_STS_TARGET)) {
852 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
853 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
854 			disable_write_same(md);
855 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
856 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
857 			disable_write_zeroes(md);
858 	}
859 
860 	if (endio) {
861 		int r = endio(tio->ti, bio, &error);
862 		switch (r) {
863 		case DM_ENDIO_REQUEUE:
864 			error = BLK_STS_DM_REQUEUE;
865 			/*FALLTHRU*/
866 		case DM_ENDIO_DONE:
867 			break;
868 		case DM_ENDIO_INCOMPLETE:
869 			/* The target will handle the io */
870 			return;
871 		default:
872 			DMWARN("unimplemented target endio return value: %d", r);
873 			BUG();
874 		}
875 	}
876 
877 	free_tio(tio);
878 	dec_pending(io, error);
879 }
880 
881 /*
882  * Return maximum size of I/O possible at the supplied sector up to the current
883  * target boundary.
884  */
885 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
886 {
887 	sector_t target_offset = dm_target_offset(ti, sector);
888 
889 	return ti->len - target_offset;
890 }
891 
892 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
893 {
894 	sector_t len = max_io_len_target_boundary(sector, ti);
895 	sector_t offset, max_len;
896 
897 	/*
898 	 * Does the target need to split even further?
899 	 */
900 	if (ti->max_io_len) {
901 		offset = dm_target_offset(ti, sector);
902 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
903 			max_len = sector_div(offset, ti->max_io_len);
904 		else
905 			max_len = offset & (ti->max_io_len - 1);
906 		max_len = ti->max_io_len - max_len;
907 
908 		if (len > max_len)
909 			len = max_len;
910 	}
911 
912 	return len;
913 }
914 
915 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
916 {
917 	if (len > UINT_MAX) {
918 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
919 		      (unsigned long long)len, UINT_MAX);
920 		ti->error = "Maximum size of target IO is too large";
921 		return -EINVAL;
922 	}
923 
924 	ti->max_io_len = (uint32_t) len;
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
929 
930 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
931 		sector_t sector, int *srcu_idx)
932 {
933 	struct dm_table *map;
934 	struct dm_target *ti;
935 
936 	map = dm_get_live_table(md, srcu_idx);
937 	if (!map)
938 		return NULL;
939 
940 	ti = dm_table_find_target(map, sector);
941 	if (!dm_target_is_valid(ti))
942 		return NULL;
943 
944 	return ti;
945 }
946 
947 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
948 		long nr_pages, void **kaddr, pfn_t *pfn)
949 {
950 	struct mapped_device *md = dax_get_private(dax_dev);
951 	sector_t sector = pgoff * PAGE_SECTORS;
952 	struct dm_target *ti;
953 	long len, ret = -EIO;
954 	int srcu_idx;
955 
956 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
957 
958 	if (!ti)
959 		goto out;
960 	if (!ti->type->direct_access)
961 		goto out;
962 	len = max_io_len(sector, ti) / PAGE_SECTORS;
963 	if (len < 1)
964 		goto out;
965 	nr_pages = min(len, nr_pages);
966 	if (ti->type->direct_access)
967 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
968 
969  out:
970 	dm_put_live_table(md, srcu_idx);
971 
972 	return ret;
973 }
974 
975 /*
976  * A target may call dm_accept_partial_bio only from the map routine.  It is
977  * allowed for all bio types except REQ_PREFLUSH.
978  *
979  * dm_accept_partial_bio informs the dm that the target only wants to process
980  * additional n_sectors sectors of the bio and the rest of the data should be
981  * sent in a next bio.
982  *
983  * A diagram that explains the arithmetics:
984  * +--------------------+---------------+-------+
985  * |         1          |       2       |   3   |
986  * +--------------------+---------------+-------+
987  *
988  * <-------------- *tio->len_ptr --------------->
989  *                      <------- bi_size ------->
990  *                      <-- n_sectors -->
991  *
992  * Region 1 was already iterated over with bio_advance or similar function.
993  *	(it may be empty if the target doesn't use bio_advance)
994  * Region 2 is the remaining bio size that the target wants to process.
995  *	(it may be empty if region 1 is non-empty, although there is no reason
996  *	 to make it empty)
997  * The target requires that region 3 is to be sent in the next bio.
998  *
999  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1000  * the partially processed part (the sum of regions 1+2) must be the same for all
1001  * copies of the bio.
1002  */
1003 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1004 {
1005 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1006 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1007 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1008 	BUG_ON(bi_size > *tio->len_ptr);
1009 	BUG_ON(n_sectors > bi_size);
1010 	*tio->len_ptr -= bi_size - n_sectors;
1011 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1012 }
1013 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1014 
1015 /*
1016  * Flush current->bio_list when the target map method blocks.
1017  * This fixes deadlocks in snapshot and possibly in other targets.
1018  */
1019 struct dm_offload {
1020 	struct blk_plug plug;
1021 	struct blk_plug_cb cb;
1022 };
1023 
1024 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1025 {
1026 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1027 	struct bio_list list;
1028 	struct bio *bio;
1029 	int i;
1030 
1031 	INIT_LIST_HEAD(&o->cb.list);
1032 
1033 	if (unlikely(!current->bio_list))
1034 		return;
1035 
1036 	for (i = 0; i < 2; i++) {
1037 		list = current->bio_list[i];
1038 		bio_list_init(&current->bio_list[i]);
1039 
1040 		while ((bio = bio_list_pop(&list))) {
1041 			struct bio_set *bs = bio->bi_pool;
1042 			if (unlikely(!bs) || bs == fs_bio_set ||
1043 			    !bs->rescue_workqueue) {
1044 				bio_list_add(&current->bio_list[i], bio);
1045 				continue;
1046 			}
1047 
1048 			spin_lock(&bs->rescue_lock);
1049 			bio_list_add(&bs->rescue_list, bio);
1050 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1051 			spin_unlock(&bs->rescue_lock);
1052 		}
1053 	}
1054 }
1055 
1056 static void dm_offload_start(struct dm_offload *o)
1057 {
1058 	blk_start_plug(&o->plug);
1059 	o->cb.callback = flush_current_bio_list;
1060 	list_add(&o->cb.list, &current->plug->cb_list);
1061 }
1062 
1063 static void dm_offload_end(struct dm_offload *o)
1064 {
1065 	list_del(&o->cb.list);
1066 	blk_finish_plug(&o->plug);
1067 }
1068 
1069 static void __map_bio(struct dm_target_io *tio)
1070 {
1071 	int r;
1072 	sector_t sector;
1073 	struct dm_offload o;
1074 	struct bio *clone = &tio->clone;
1075 	struct dm_target *ti = tio->ti;
1076 
1077 	clone->bi_end_io = clone_endio;
1078 
1079 	/*
1080 	 * Map the clone.  If r == 0 we don't need to do
1081 	 * anything, the target has assumed ownership of
1082 	 * this io.
1083 	 */
1084 	atomic_inc(&tio->io->io_count);
1085 	sector = clone->bi_iter.bi_sector;
1086 
1087 	dm_offload_start(&o);
1088 	r = ti->type->map(ti, clone);
1089 	dm_offload_end(&o);
1090 
1091 	switch (r) {
1092 	case DM_MAPIO_SUBMITTED:
1093 		break;
1094 	case DM_MAPIO_REMAPPED:
1095 		/* the bio has been remapped so dispatch it */
1096 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1097 				      tio->io->bio->bi_bdev->bd_dev, sector);
1098 		generic_make_request(clone);
1099 		break;
1100 	case DM_MAPIO_KILL:
1101 		dec_pending(tio->io, BLK_STS_IOERR);
1102 		free_tio(tio);
1103 		break;
1104 	case DM_MAPIO_REQUEUE:
1105 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1106 		free_tio(tio);
1107 		break;
1108 	default:
1109 		DMWARN("unimplemented target map return value: %d", r);
1110 		BUG();
1111 	}
1112 }
1113 
1114 struct clone_info {
1115 	struct mapped_device *md;
1116 	struct dm_table *map;
1117 	struct bio *bio;
1118 	struct dm_io *io;
1119 	sector_t sector;
1120 	unsigned sector_count;
1121 };
1122 
1123 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1124 {
1125 	bio->bi_iter.bi_sector = sector;
1126 	bio->bi_iter.bi_size = to_bytes(len);
1127 }
1128 
1129 /*
1130  * Creates a bio that consists of range of complete bvecs.
1131  */
1132 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1133 		     sector_t sector, unsigned len)
1134 {
1135 	struct bio *clone = &tio->clone;
1136 
1137 	__bio_clone_fast(clone, bio);
1138 
1139 	if (unlikely(bio_integrity(bio) != NULL)) {
1140 		int r;
1141 
1142 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1143 			     !dm_target_passes_integrity(tio->ti->type))) {
1144 			DMWARN("%s: the target %s doesn't support integrity data.",
1145 				dm_device_name(tio->io->md),
1146 				tio->ti->type->name);
1147 			return -EIO;
1148 		}
1149 
1150 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1151 		if (r < 0)
1152 			return r;
1153 	}
1154 
1155 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1156 	clone->bi_iter.bi_size = to_bytes(len);
1157 
1158 	if (unlikely(bio_integrity(bio) != NULL))
1159 		bio_integrity_trim(clone, 0, len);
1160 
1161 	return 0;
1162 }
1163 
1164 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1165 				      struct dm_target *ti,
1166 				      unsigned target_bio_nr)
1167 {
1168 	struct dm_target_io *tio;
1169 	struct bio *clone;
1170 
1171 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1172 	tio = container_of(clone, struct dm_target_io, clone);
1173 
1174 	tio->io = ci->io;
1175 	tio->ti = ti;
1176 	tio->target_bio_nr = target_bio_nr;
1177 
1178 	return tio;
1179 }
1180 
1181 static void __clone_and_map_simple_bio(struct clone_info *ci,
1182 				       struct dm_target *ti,
1183 				       unsigned target_bio_nr, unsigned *len)
1184 {
1185 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1186 	struct bio *clone = &tio->clone;
1187 
1188 	tio->len_ptr = len;
1189 
1190 	__bio_clone_fast(clone, ci->bio);
1191 	if (len)
1192 		bio_setup_sector(clone, ci->sector, *len);
1193 
1194 	__map_bio(tio);
1195 }
1196 
1197 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1198 				  unsigned num_bios, unsigned *len)
1199 {
1200 	unsigned target_bio_nr;
1201 
1202 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1203 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1204 }
1205 
1206 static int __send_empty_flush(struct clone_info *ci)
1207 {
1208 	unsigned target_nr = 0;
1209 	struct dm_target *ti;
1210 
1211 	BUG_ON(bio_has_data(ci->bio));
1212 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1213 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1214 
1215 	return 0;
1216 }
1217 
1218 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1219 				     sector_t sector, unsigned *len)
1220 {
1221 	struct bio *bio = ci->bio;
1222 	struct dm_target_io *tio;
1223 	unsigned target_bio_nr;
1224 	unsigned num_target_bios = 1;
1225 	int r = 0;
1226 
1227 	/*
1228 	 * Does the target want to receive duplicate copies of the bio?
1229 	 */
1230 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1231 		num_target_bios = ti->num_write_bios(ti, bio);
1232 
1233 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1234 		tio = alloc_tio(ci, ti, target_bio_nr);
1235 		tio->len_ptr = len;
1236 		r = clone_bio(tio, bio, sector, *len);
1237 		if (r < 0) {
1238 			free_tio(tio);
1239 			break;
1240 		}
1241 		__map_bio(tio);
1242 	}
1243 
1244 	return r;
1245 }
1246 
1247 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1248 
1249 static unsigned get_num_discard_bios(struct dm_target *ti)
1250 {
1251 	return ti->num_discard_bios;
1252 }
1253 
1254 static unsigned get_num_write_same_bios(struct dm_target *ti)
1255 {
1256 	return ti->num_write_same_bios;
1257 }
1258 
1259 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1260 {
1261 	return ti->num_write_zeroes_bios;
1262 }
1263 
1264 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1265 
1266 static bool is_split_required_for_discard(struct dm_target *ti)
1267 {
1268 	return ti->split_discard_bios;
1269 }
1270 
1271 static int __send_changing_extent_only(struct clone_info *ci,
1272 				       get_num_bios_fn get_num_bios,
1273 				       is_split_required_fn is_split_required)
1274 {
1275 	struct dm_target *ti;
1276 	unsigned len;
1277 	unsigned num_bios;
1278 
1279 	do {
1280 		ti = dm_table_find_target(ci->map, ci->sector);
1281 		if (!dm_target_is_valid(ti))
1282 			return -EIO;
1283 
1284 		/*
1285 		 * Even though the device advertised support for this type of
1286 		 * request, that does not mean every target supports it, and
1287 		 * reconfiguration might also have changed that since the
1288 		 * check was performed.
1289 		 */
1290 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1291 		if (!num_bios)
1292 			return -EOPNOTSUPP;
1293 
1294 		if (is_split_required && !is_split_required(ti))
1295 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1296 		else
1297 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1298 
1299 		__send_duplicate_bios(ci, ti, num_bios, &len);
1300 
1301 		ci->sector += len;
1302 	} while (ci->sector_count -= len);
1303 
1304 	return 0;
1305 }
1306 
1307 static int __send_discard(struct clone_info *ci)
1308 {
1309 	return __send_changing_extent_only(ci, get_num_discard_bios,
1310 					   is_split_required_for_discard);
1311 }
1312 
1313 static int __send_write_same(struct clone_info *ci)
1314 {
1315 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1316 }
1317 
1318 static int __send_write_zeroes(struct clone_info *ci)
1319 {
1320 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1321 }
1322 
1323 /*
1324  * Select the correct strategy for processing a non-flush bio.
1325  */
1326 static int __split_and_process_non_flush(struct clone_info *ci)
1327 {
1328 	struct bio *bio = ci->bio;
1329 	struct dm_target *ti;
1330 	unsigned len;
1331 	int r;
1332 
1333 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1334 		return __send_discard(ci);
1335 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1336 		return __send_write_same(ci);
1337 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1338 		return __send_write_zeroes(ci);
1339 
1340 	ti = dm_table_find_target(ci->map, ci->sector);
1341 	if (!dm_target_is_valid(ti))
1342 		return -EIO;
1343 
1344 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1345 
1346 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1347 	if (r < 0)
1348 		return r;
1349 
1350 	ci->sector += len;
1351 	ci->sector_count -= len;
1352 
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Entry point to split a bio into clones and submit them to the targets.
1358  */
1359 static void __split_and_process_bio(struct mapped_device *md,
1360 				    struct dm_table *map, struct bio *bio)
1361 {
1362 	struct clone_info ci;
1363 	int error = 0;
1364 
1365 	if (unlikely(!map)) {
1366 		bio_io_error(bio);
1367 		return;
1368 	}
1369 
1370 	ci.map = map;
1371 	ci.md = md;
1372 	ci.io = alloc_io(md);
1373 	ci.io->status = 0;
1374 	atomic_set(&ci.io->io_count, 1);
1375 	ci.io->bio = bio;
1376 	ci.io->md = md;
1377 	spin_lock_init(&ci.io->endio_lock);
1378 	ci.sector = bio->bi_iter.bi_sector;
1379 
1380 	start_io_acct(ci.io);
1381 
1382 	if (bio->bi_opf & REQ_PREFLUSH) {
1383 		ci.bio = &ci.md->flush_bio;
1384 		ci.sector_count = 0;
1385 		error = __send_empty_flush(&ci);
1386 		/* dec_pending submits any data associated with flush */
1387 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1388 		ci.bio = bio;
1389 		ci.sector_count = 0;
1390 		error = __split_and_process_non_flush(&ci);
1391 	} else {
1392 		ci.bio = bio;
1393 		ci.sector_count = bio_sectors(bio);
1394 		while (ci.sector_count && !error)
1395 			error = __split_and_process_non_flush(&ci);
1396 	}
1397 
1398 	/* drop the extra reference count */
1399 	dec_pending(ci.io, error);
1400 }
1401 /*-----------------------------------------------------------------
1402  * CRUD END
1403  *---------------------------------------------------------------*/
1404 
1405 /*
1406  * The request function that just remaps the bio built up by
1407  * dm_merge_bvec.
1408  */
1409 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1410 {
1411 	int rw = bio_data_dir(bio);
1412 	struct mapped_device *md = q->queuedata;
1413 	int srcu_idx;
1414 	struct dm_table *map;
1415 
1416 	map = dm_get_live_table(md, &srcu_idx);
1417 
1418 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1419 
1420 	/* if we're suspended, we have to queue this io for later */
1421 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1422 		dm_put_live_table(md, srcu_idx);
1423 
1424 		if (!(bio->bi_opf & REQ_RAHEAD))
1425 			queue_io(md, bio);
1426 		else
1427 			bio_io_error(bio);
1428 		return BLK_QC_T_NONE;
1429 	}
1430 
1431 	__split_and_process_bio(md, map, bio);
1432 	dm_put_live_table(md, srcu_idx);
1433 	return BLK_QC_T_NONE;
1434 }
1435 
1436 static int dm_any_congested(void *congested_data, int bdi_bits)
1437 {
1438 	int r = bdi_bits;
1439 	struct mapped_device *md = congested_data;
1440 	struct dm_table *map;
1441 
1442 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1443 		if (dm_request_based(md)) {
1444 			/*
1445 			 * With request-based DM we only need to check the
1446 			 * top-level queue for congestion.
1447 			 */
1448 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1449 		} else {
1450 			map = dm_get_live_table_fast(md);
1451 			if (map)
1452 				r = dm_table_any_congested(map, bdi_bits);
1453 			dm_put_live_table_fast(md);
1454 		}
1455 	}
1456 
1457 	return r;
1458 }
1459 
1460 /*-----------------------------------------------------------------
1461  * An IDR is used to keep track of allocated minor numbers.
1462  *---------------------------------------------------------------*/
1463 static void free_minor(int minor)
1464 {
1465 	spin_lock(&_minor_lock);
1466 	idr_remove(&_minor_idr, minor);
1467 	spin_unlock(&_minor_lock);
1468 }
1469 
1470 /*
1471  * See if the device with a specific minor # is free.
1472  */
1473 static int specific_minor(int minor)
1474 {
1475 	int r;
1476 
1477 	if (minor >= (1 << MINORBITS))
1478 		return -EINVAL;
1479 
1480 	idr_preload(GFP_KERNEL);
1481 	spin_lock(&_minor_lock);
1482 
1483 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1484 
1485 	spin_unlock(&_minor_lock);
1486 	idr_preload_end();
1487 	if (r < 0)
1488 		return r == -ENOSPC ? -EBUSY : r;
1489 	return 0;
1490 }
1491 
1492 static int next_free_minor(int *minor)
1493 {
1494 	int r;
1495 
1496 	idr_preload(GFP_KERNEL);
1497 	spin_lock(&_minor_lock);
1498 
1499 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1500 
1501 	spin_unlock(&_minor_lock);
1502 	idr_preload_end();
1503 	if (r < 0)
1504 		return r;
1505 	*minor = r;
1506 	return 0;
1507 }
1508 
1509 static const struct block_device_operations dm_blk_dops;
1510 static const struct dax_operations dm_dax_ops;
1511 
1512 static void dm_wq_work(struct work_struct *work);
1513 
1514 void dm_init_md_queue(struct mapped_device *md)
1515 {
1516 	/*
1517 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1518 	 * devices.  The type of this dm device may not have been decided yet.
1519 	 * The type is decided at the first table loading time.
1520 	 * To prevent problematic device stacking, clear the queue flag
1521 	 * for request stacking support until then.
1522 	 *
1523 	 * This queue is new, so no concurrency on the queue_flags.
1524 	 */
1525 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1526 
1527 	/*
1528 	 * Initialize data that will only be used by a non-blk-mq DM queue
1529 	 * - must do so here (in alloc_dev callchain) before queue is used
1530 	 */
1531 	md->queue->queuedata = md;
1532 	md->queue->backing_dev_info->congested_data = md;
1533 }
1534 
1535 void dm_init_normal_md_queue(struct mapped_device *md)
1536 {
1537 	md->use_blk_mq = false;
1538 	dm_init_md_queue(md);
1539 
1540 	/*
1541 	 * Initialize aspects of queue that aren't relevant for blk-mq
1542 	 */
1543 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1544 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1545 }
1546 
1547 static void cleanup_mapped_device(struct mapped_device *md)
1548 {
1549 	if (md->wq)
1550 		destroy_workqueue(md->wq);
1551 	if (md->kworker_task)
1552 		kthread_stop(md->kworker_task);
1553 	mempool_destroy(md->io_pool);
1554 	if (md->bs)
1555 		bioset_free(md->bs);
1556 
1557 	if (md->dax_dev) {
1558 		kill_dax(md->dax_dev);
1559 		put_dax(md->dax_dev);
1560 		md->dax_dev = NULL;
1561 	}
1562 
1563 	if (md->disk) {
1564 		spin_lock(&_minor_lock);
1565 		md->disk->private_data = NULL;
1566 		spin_unlock(&_minor_lock);
1567 		del_gendisk(md->disk);
1568 		put_disk(md->disk);
1569 	}
1570 
1571 	if (md->queue)
1572 		blk_cleanup_queue(md->queue);
1573 
1574 	cleanup_srcu_struct(&md->io_barrier);
1575 
1576 	if (md->bdev) {
1577 		bdput(md->bdev);
1578 		md->bdev = NULL;
1579 	}
1580 
1581 	dm_mq_cleanup_mapped_device(md);
1582 }
1583 
1584 /*
1585  * Allocate and initialise a blank device with a given minor.
1586  */
1587 static struct mapped_device *alloc_dev(int minor)
1588 {
1589 	int r, numa_node_id = dm_get_numa_node();
1590 	struct dax_device *dax_dev;
1591 	struct mapped_device *md;
1592 	void *old_md;
1593 
1594 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1595 	if (!md) {
1596 		DMWARN("unable to allocate device, out of memory.");
1597 		return NULL;
1598 	}
1599 
1600 	if (!try_module_get(THIS_MODULE))
1601 		goto bad_module_get;
1602 
1603 	/* get a minor number for the dev */
1604 	if (minor == DM_ANY_MINOR)
1605 		r = next_free_minor(&minor);
1606 	else
1607 		r = specific_minor(minor);
1608 	if (r < 0)
1609 		goto bad_minor;
1610 
1611 	r = init_srcu_struct(&md->io_barrier);
1612 	if (r < 0)
1613 		goto bad_io_barrier;
1614 
1615 	md->numa_node_id = numa_node_id;
1616 	md->use_blk_mq = dm_use_blk_mq_default();
1617 	md->init_tio_pdu = false;
1618 	md->type = DM_TYPE_NONE;
1619 	mutex_init(&md->suspend_lock);
1620 	mutex_init(&md->type_lock);
1621 	mutex_init(&md->table_devices_lock);
1622 	spin_lock_init(&md->deferred_lock);
1623 	atomic_set(&md->holders, 1);
1624 	atomic_set(&md->open_count, 0);
1625 	atomic_set(&md->event_nr, 0);
1626 	atomic_set(&md->uevent_seq, 0);
1627 	INIT_LIST_HEAD(&md->uevent_list);
1628 	INIT_LIST_HEAD(&md->table_devices);
1629 	spin_lock_init(&md->uevent_lock);
1630 
1631 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1632 	if (!md->queue)
1633 		goto bad;
1634 
1635 	dm_init_md_queue(md);
1636 
1637 	md->disk = alloc_disk_node(1, numa_node_id);
1638 	if (!md->disk)
1639 		goto bad;
1640 
1641 	atomic_set(&md->pending[0], 0);
1642 	atomic_set(&md->pending[1], 0);
1643 	init_waitqueue_head(&md->wait);
1644 	INIT_WORK(&md->work, dm_wq_work);
1645 	init_waitqueue_head(&md->eventq);
1646 	init_completion(&md->kobj_holder.completion);
1647 	md->kworker_task = NULL;
1648 
1649 	md->disk->major = _major;
1650 	md->disk->first_minor = minor;
1651 	md->disk->fops = &dm_blk_dops;
1652 	md->disk->queue = md->queue;
1653 	md->disk->private_data = md;
1654 	sprintf(md->disk->disk_name, "dm-%d", minor);
1655 
1656 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1657 	if (!dax_dev)
1658 		goto bad;
1659 	md->dax_dev = dax_dev;
1660 
1661 	add_disk(md->disk);
1662 	format_dev_t(md->name, MKDEV(_major, minor));
1663 
1664 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1665 	if (!md->wq)
1666 		goto bad;
1667 
1668 	md->bdev = bdget_disk(md->disk, 0);
1669 	if (!md->bdev)
1670 		goto bad;
1671 
1672 	bio_init(&md->flush_bio, NULL, 0);
1673 	md->flush_bio.bi_bdev = md->bdev;
1674 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1675 
1676 	dm_stats_init(&md->stats);
1677 
1678 	/* Populate the mapping, nobody knows we exist yet */
1679 	spin_lock(&_minor_lock);
1680 	old_md = idr_replace(&_minor_idr, md, minor);
1681 	spin_unlock(&_minor_lock);
1682 
1683 	BUG_ON(old_md != MINOR_ALLOCED);
1684 
1685 	return md;
1686 
1687 bad:
1688 	cleanup_mapped_device(md);
1689 bad_io_barrier:
1690 	free_minor(minor);
1691 bad_minor:
1692 	module_put(THIS_MODULE);
1693 bad_module_get:
1694 	kfree(md);
1695 	return NULL;
1696 }
1697 
1698 static void unlock_fs(struct mapped_device *md);
1699 
1700 static void free_dev(struct mapped_device *md)
1701 {
1702 	int minor = MINOR(disk_devt(md->disk));
1703 
1704 	unlock_fs(md);
1705 
1706 	cleanup_mapped_device(md);
1707 
1708 	free_table_devices(&md->table_devices);
1709 	dm_stats_cleanup(&md->stats);
1710 	free_minor(minor);
1711 
1712 	module_put(THIS_MODULE);
1713 	kfree(md);
1714 }
1715 
1716 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1717 {
1718 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1719 
1720 	if (md->bs) {
1721 		/* The md already has necessary mempools. */
1722 		if (dm_table_bio_based(t)) {
1723 			/*
1724 			 * Reload bioset because front_pad may have changed
1725 			 * because a different table was loaded.
1726 			 */
1727 			bioset_free(md->bs);
1728 			md->bs = p->bs;
1729 			p->bs = NULL;
1730 		}
1731 		/*
1732 		 * There's no need to reload with request-based dm
1733 		 * because the size of front_pad doesn't change.
1734 		 * Note for future: If you are to reload bioset,
1735 		 * prep-ed requests in the queue may refer
1736 		 * to bio from the old bioset, so you must walk
1737 		 * through the queue to unprep.
1738 		 */
1739 		goto out;
1740 	}
1741 
1742 	BUG_ON(!p || md->io_pool || md->bs);
1743 
1744 	md->io_pool = p->io_pool;
1745 	p->io_pool = NULL;
1746 	md->bs = p->bs;
1747 	p->bs = NULL;
1748 
1749 out:
1750 	/* mempool bind completed, no longer need any mempools in the table */
1751 	dm_table_free_md_mempools(t);
1752 }
1753 
1754 /*
1755  * Bind a table to the device.
1756  */
1757 static void event_callback(void *context)
1758 {
1759 	unsigned long flags;
1760 	LIST_HEAD(uevents);
1761 	struct mapped_device *md = (struct mapped_device *) context;
1762 
1763 	spin_lock_irqsave(&md->uevent_lock, flags);
1764 	list_splice_init(&md->uevent_list, &uevents);
1765 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1766 
1767 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1768 
1769 	atomic_inc(&md->event_nr);
1770 	atomic_inc(&dm_global_event_nr);
1771 	wake_up(&md->eventq);
1772 	wake_up(&dm_global_eventq);
1773 }
1774 
1775 /*
1776  * Protected by md->suspend_lock obtained by dm_swap_table().
1777  */
1778 static void __set_size(struct mapped_device *md, sector_t size)
1779 {
1780 	lockdep_assert_held(&md->suspend_lock);
1781 
1782 	set_capacity(md->disk, size);
1783 
1784 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1785 }
1786 
1787 /*
1788  * Returns old map, which caller must destroy.
1789  */
1790 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1791 			       struct queue_limits *limits)
1792 {
1793 	struct dm_table *old_map;
1794 	struct request_queue *q = md->queue;
1795 	sector_t size;
1796 
1797 	lockdep_assert_held(&md->suspend_lock);
1798 
1799 	size = dm_table_get_size(t);
1800 
1801 	/*
1802 	 * Wipe any geometry if the size of the table changed.
1803 	 */
1804 	if (size != dm_get_size(md))
1805 		memset(&md->geometry, 0, sizeof(md->geometry));
1806 
1807 	__set_size(md, size);
1808 
1809 	dm_table_event_callback(t, event_callback, md);
1810 
1811 	/*
1812 	 * The queue hasn't been stopped yet, if the old table type wasn't
1813 	 * for request-based during suspension.  So stop it to prevent
1814 	 * I/O mapping before resume.
1815 	 * This must be done before setting the queue restrictions,
1816 	 * because request-based dm may be run just after the setting.
1817 	 */
1818 	if (dm_table_request_based(t)) {
1819 		dm_stop_queue(q);
1820 		/*
1821 		 * Leverage the fact that request-based DM targets are
1822 		 * immutable singletons and establish md->immutable_target
1823 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1824 		 */
1825 		md->immutable_target = dm_table_get_immutable_target(t);
1826 	}
1827 
1828 	__bind_mempools(md, t);
1829 
1830 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1831 	rcu_assign_pointer(md->map, (void *)t);
1832 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1833 
1834 	dm_table_set_restrictions(t, q, limits);
1835 	if (old_map)
1836 		dm_sync_table(md);
1837 
1838 	return old_map;
1839 }
1840 
1841 /*
1842  * Returns unbound table for the caller to free.
1843  */
1844 static struct dm_table *__unbind(struct mapped_device *md)
1845 {
1846 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1847 
1848 	if (!map)
1849 		return NULL;
1850 
1851 	dm_table_event_callback(map, NULL, NULL);
1852 	RCU_INIT_POINTER(md->map, NULL);
1853 	dm_sync_table(md);
1854 
1855 	return map;
1856 }
1857 
1858 /*
1859  * Constructor for a new device.
1860  */
1861 int dm_create(int minor, struct mapped_device **result)
1862 {
1863 	struct mapped_device *md;
1864 
1865 	md = alloc_dev(minor);
1866 	if (!md)
1867 		return -ENXIO;
1868 
1869 	dm_sysfs_init(md);
1870 
1871 	*result = md;
1872 	return 0;
1873 }
1874 
1875 /*
1876  * Functions to manage md->type.
1877  * All are required to hold md->type_lock.
1878  */
1879 void dm_lock_md_type(struct mapped_device *md)
1880 {
1881 	mutex_lock(&md->type_lock);
1882 }
1883 
1884 void dm_unlock_md_type(struct mapped_device *md)
1885 {
1886 	mutex_unlock(&md->type_lock);
1887 }
1888 
1889 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1890 {
1891 	BUG_ON(!mutex_is_locked(&md->type_lock));
1892 	md->type = type;
1893 }
1894 
1895 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1896 {
1897 	return md->type;
1898 }
1899 
1900 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1901 {
1902 	return md->immutable_target_type;
1903 }
1904 
1905 /*
1906  * The queue_limits are only valid as long as you have a reference
1907  * count on 'md'.
1908  */
1909 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1910 {
1911 	BUG_ON(!atomic_read(&md->holders));
1912 	return &md->queue->limits;
1913 }
1914 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1915 
1916 /*
1917  * Setup the DM device's queue based on md's type
1918  */
1919 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1920 {
1921 	int r;
1922 	enum dm_queue_mode type = dm_get_md_type(md);
1923 
1924 	switch (type) {
1925 	case DM_TYPE_REQUEST_BASED:
1926 		r = dm_old_init_request_queue(md, t);
1927 		if (r) {
1928 			DMERR("Cannot initialize queue for request-based mapped device");
1929 			return r;
1930 		}
1931 		break;
1932 	case DM_TYPE_MQ_REQUEST_BASED:
1933 		r = dm_mq_init_request_queue(md, t);
1934 		if (r) {
1935 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1936 			return r;
1937 		}
1938 		break;
1939 	case DM_TYPE_BIO_BASED:
1940 	case DM_TYPE_DAX_BIO_BASED:
1941 		dm_init_normal_md_queue(md);
1942 		blk_queue_make_request(md->queue, dm_make_request);
1943 		/*
1944 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1945 		 * since it won't be used (saves 1 process per bio-based DM device).
1946 		 */
1947 		bioset_free(md->queue->bio_split);
1948 		md->queue->bio_split = NULL;
1949 
1950 		if (type == DM_TYPE_DAX_BIO_BASED)
1951 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1952 		break;
1953 	case DM_TYPE_NONE:
1954 		WARN_ON_ONCE(true);
1955 		break;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 struct mapped_device *dm_get_md(dev_t dev)
1962 {
1963 	struct mapped_device *md;
1964 	unsigned minor = MINOR(dev);
1965 
1966 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1967 		return NULL;
1968 
1969 	spin_lock(&_minor_lock);
1970 
1971 	md = idr_find(&_minor_idr, minor);
1972 	if (md) {
1973 		if ((md == MINOR_ALLOCED ||
1974 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1975 		     dm_deleting_md(md) ||
1976 		     test_bit(DMF_FREEING, &md->flags))) {
1977 			md = NULL;
1978 			goto out;
1979 		}
1980 		dm_get(md);
1981 	}
1982 
1983 out:
1984 	spin_unlock(&_minor_lock);
1985 
1986 	return md;
1987 }
1988 EXPORT_SYMBOL_GPL(dm_get_md);
1989 
1990 void *dm_get_mdptr(struct mapped_device *md)
1991 {
1992 	return md->interface_ptr;
1993 }
1994 
1995 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1996 {
1997 	md->interface_ptr = ptr;
1998 }
1999 
2000 void dm_get(struct mapped_device *md)
2001 {
2002 	atomic_inc(&md->holders);
2003 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2004 }
2005 
2006 int dm_hold(struct mapped_device *md)
2007 {
2008 	spin_lock(&_minor_lock);
2009 	if (test_bit(DMF_FREEING, &md->flags)) {
2010 		spin_unlock(&_minor_lock);
2011 		return -EBUSY;
2012 	}
2013 	dm_get(md);
2014 	spin_unlock(&_minor_lock);
2015 	return 0;
2016 }
2017 EXPORT_SYMBOL_GPL(dm_hold);
2018 
2019 const char *dm_device_name(struct mapped_device *md)
2020 {
2021 	return md->name;
2022 }
2023 EXPORT_SYMBOL_GPL(dm_device_name);
2024 
2025 static void __dm_destroy(struct mapped_device *md, bool wait)
2026 {
2027 	struct request_queue *q = dm_get_md_queue(md);
2028 	struct dm_table *map;
2029 	int srcu_idx;
2030 
2031 	might_sleep();
2032 
2033 	spin_lock(&_minor_lock);
2034 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2035 	set_bit(DMF_FREEING, &md->flags);
2036 	spin_unlock(&_minor_lock);
2037 
2038 	blk_set_queue_dying(q);
2039 
2040 	if (dm_request_based(md) && md->kworker_task)
2041 		kthread_flush_worker(&md->kworker);
2042 
2043 	/*
2044 	 * Take suspend_lock so that presuspend and postsuspend methods
2045 	 * do not race with internal suspend.
2046 	 */
2047 	mutex_lock(&md->suspend_lock);
2048 	map = dm_get_live_table(md, &srcu_idx);
2049 	if (!dm_suspended_md(md)) {
2050 		dm_table_presuspend_targets(map);
2051 		dm_table_postsuspend_targets(map);
2052 	}
2053 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2054 	dm_put_live_table(md, srcu_idx);
2055 	mutex_unlock(&md->suspend_lock);
2056 
2057 	/*
2058 	 * Rare, but there may be I/O requests still going to complete,
2059 	 * for example.  Wait for all references to disappear.
2060 	 * No one should increment the reference count of the mapped_device,
2061 	 * after the mapped_device state becomes DMF_FREEING.
2062 	 */
2063 	if (wait)
2064 		while (atomic_read(&md->holders))
2065 			msleep(1);
2066 	else if (atomic_read(&md->holders))
2067 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2068 		       dm_device_name(md), atomic_read(&md->holders));
2069 
2070 	dm_sysfs_exit(md);
2071 	dm_table_destroy(__unbind(md));
2072 	free_dev(md);
2073 }
2074 
2075 void dm_destroy(struct mapped_device *md)
2076 {
2077 	__dm_destroy(md, true);
2078 }
2079 
2080 void dm_destroy_immediate(struct mapped_device *md)
2081 {
2082 	__dm_destroy(md, false);
2083 }
2084 
2085 void dm_put(struct mapped_device *md)
2086 {
2087 	atomic_dec(&md->holders);
2088 }
2089 EXPORT_SYMBOL_GPL(dm_put);
2090 
2091 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2092 {
2093 	int r = 0;
2094 	DEFINE_WAIT(wait);
2095 
2096 	while (1) {
2097 		prepare_to_wait(&md->wait, &wait, task_state);
2098 
2099 		if (!md_in_flight(md))
2100 			break;
2101 
2102 		if (signal_pending_state(task_state, current)) {
2103 			r = -EINTR;
2104 			break;
2105 		}
2106 
2107 		io_schedule();
2108 	}
2109 	finish_wait(&md->wait, &wait);
2110 
2111 	return r;
2112 }
2113 
2114 /*
2115  * Process the deferred bios
2116  */
2117 static void dm_wq_work(struct work_struct *work)
2118 {
2119 	struct mapped_device *md = container_of(work, struct mapped_device,
2120 						work);
2121 	struct bio *c;
2122 	int srcu_idx;
2123 	struct dm_table *map;
2124 
2125 	map = dm_get_live_table(md, &srcu_idx);
2126 
2127 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2128 		spin_lock_irq(&md->deferred_lock);
2129 		c = bio_list_pop(&md->deferred);
2130 		spin_unlock_irq(&md->deferred_lock);
2131 
2132 		if (!c)
2133 			break;
2134 
2135 		if (dm_request_based(md))
2136 			generic_make_request(c);
2137 		else
2138 			__split_and_process_bio(md, map, c);
2139 	}
2140 
2141 	dm_put_live_table(md, srcu_idx);
2142 }
2143 
2144 static void dm_queue_flush(struct mapped_device *md)
2145 {
2146 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2147 	smp_mb__after_atomic();
2148 	queue_work(md->wq, &md->work);
2149 }
2150 
2151 /*
2152  * Swap in a new table, returning the old one for the caller to destroy.
2153  */
2154 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2155 {
2156 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2157 	struct queue_limits limits;
2158 	int r;
2159 
2160 	mutex_lock(&md->suspend_lock);
2161 
2162 	/* device must be suspended */
2163 	if (!dm_suspended_md(md))
2164 		goto out;
2165 
2166 	/*
2167 	 * If the new table has no data devices, retain the existing limits.
2168 	 * This helps multipath with queue_if_no_path if all paths disappear,
2169 	 * then new I/O is queued based on these limits, and then some paths
2170 	 * reappear.
2171 	 */
2172 	if (dm_table_has_no_data_devices(table)) {
2173 		live_map = dm_get_live_table_fast(md);
2174 		if (live_map)
2175 			limits = md->queue->limits;
2176 		dm_put_live_table_fast(md);
2177 	}
2178 
2179 	if (!live_map) {
2180 		r = dm_calculate_queue_limits(table, &limits);
2181 		if (r) {
2182 			map = ERR_PTR(r);
2183 			goto out;
2184 		}
2185 	}
2186 
2187 	map = __bind(md, table, &limits);
2188 
2189 out:
2190 	mutex_unlock(&md->suspend_lock);
2191 	return map;
2192 }
2193 
2194 /*
2195  * Functions to lock and unlock any filesystem running on the
2196  * device.
2197  */
2198 static int lock_fs(struct mapped_device *md)
2199 {
2200 	int r;
2201 
2202 	WARN_ON(md->frozen_sb);
2203 
2204 	md->frozen_sb = freeze_bdev(md->bdev);
2205 	if (IS_ERR(md->frozen_sb)) {
2206 		r = PTR_ERR(md->frozen_sb);
2207 		md->frozen_sb = NULL;
2208 		return r;
2209 	}
2210 
2211 	set_bit(DMF_FROZEN, &md->flags);
2212 
2213 	return 0;
2214 }
2215 
2216 static void unlock_fs(struct mapped_device *md)
2217 {
2218 	if (!test_bit(DMF_FROZEN, &md->flags))
2219 		return;
2220 
2221 	thaw_bdev(md->bdev, md->frozen_sb);
2222 	md->frozen_sb = NULL;
2223 	clear_bit(DMF_FROZEN, &md->flags);
2224 }
2225 
2226 /*
2227  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2228  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2229  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2230  *
2231  * If __dm_suspend returns 0, the device is completely quiescent
2232  * now. There is no request-processing activity. All new requests
2233  * are being added to md->deferred list.
2234  */
2235 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2236 			unsigned suspend_flags, long task_state,
2237 			int dmf_suspended_flag)
2238 {
2239 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2240 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2241 	int r;
2242 
2243 	lockdep_assert_held(&md->suspend_lock);
2244 
2245 	/*
2246 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2247 	 * This flag is cleared before dm_suspend returns.
2248 	 */
2249 	if (noflush)
2250 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2251 	else
2252 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2253 
2254 	/*
2255 	 * This gets reverted if there's an error later and the targets
2256 	 * provide the .presuspend_undo hook.
2257 	 */
2258 	dm_table_presuspend_targets(map);
2259 
2260 	/*
2261 	 * Flush I/O to the device.
2262 	 * Any I/O submitted after lock_fs() may not be flushed.
2263 	 * noflush takes precedence over do_lockfs.
2264 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2265 	 */
2266 	if (!noflush && do_lockfs) {
2267 		r = lock_fs(md);
2268 		if (r) {
2269 			dm_table_presuspend_undo_targets(map);
2270 			return r;
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * Here we must make sure that no processes are submitting requests
2276 	 * to target drivers i.e. no one may be executing
2277 	 * __split_and_process_bio. This is called from dm_request and
2278 	 * dm_wq_work.
2279 	 *
2280 	 * To get all processes out of __split_and_process_bio in dm_request,
2281 	 * we take the write lock. To prevent any process from reentering
2282 	 * __split_and_process_bio from dm_request and quiesce the thread
2283 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2284 	 * flush_workqueue(md->wq).
2285 	 */
2286 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2287 	if (map)
2288 		synchronize_srcu(&md->io_barrier);
2289 
2290 	/*
2291 	 * Stop md->queue before flushing md->wq in case request-based
2292 	 * dm defers requests to md->wq from md->queue.
2293 	 */
2294 	if (dm_request_based(md)) {
2295 		dm_stop_queue(md->queue);
2296 		if (md->kworker_task)
2297 			kthread_flush_worker(&md->kworker);
2298 	}
2299 
2300 	flush_workqueue(md->wq);
2301 
2302 	/*
2303 	 * At this point no more requests are entering target request routines.
2304 	 * We call dm_wait_for_completion to wait for all existing requests
2305 	 * to finish.
2306 	 */
2307 	r = dm_wait_for_completion(md, task_state);
2308 	if (!r)
2309 		set_bit(dmf_suspended_flag, &md->flags);
2310 
2311 	if (noflush)
2312 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2313 	if (map)
2314 		synchronize_srcu(&md->io_barrier);
2315 
2316 	/* were we interrupted ? */
2317 	if (r < 0) {
2318 		dm_queue_flush(md);
2319 
2320 		if (dm_request_based(md))
2321 			dm_start_queue(md->queue);
2322 
2323 		unlock_fs(md);
2324 		dm_table_presuspend_undo_targets(map);
2325 		/* pushback list is already flushed, so skip flush */
2326 	}
2327 
2328 	return r;
2329 }
2330 
2331 /*
2332  * We need to be able to change a mapping table under a mounted
2333  * filesystem.  For example we might want to move some data in
2334  * the background.  Before the table can be swapped with
2335  * dm_bind_table, dm_suspend must be called to flush any in
2336  * flight bios and ensure that any further io gets deferred.
2337  */
2338 /*
2339  * Suspend mechanism in request-based dm.
2340  *
2341  * 1. Flush all I/Os by lock_fs() if needed.
2342  * 2. Stop dispatching any I/O by stopping the request_queue.
2343  * 3. Wait for all in-flight I/Os to be completed or requeued.
2344  *
2345  * To abort suspend, start the request_queue.
2346  */
2347 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2348 {
2349 	struct dm_table *map = NULL;
2350 	int r = 0;
2351 
2352 retry:
2353 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2354 
2355 	if (dm_suspended_md(md)) {
2356 		r = -EINVAL;
2357 		goto out_unlock;
2358 	}
2359 
2360 	if (dm_suspended_internally_md(md)) {
2361 		/* already internally suspended, wait for internal resume */
2362 		mutex_unlock(&md->suspend_lock);
2363 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2364 		if (r)
2365 			return r;
2366 		goto retry;
2367 	}
2368 
2369 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2370 
2371 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2372 	if (r)
2373 		goto out_unlock;
2374 
2375 	dm_table_postsuspend_targets(map);
2376 
2377 out_unlock:
2378 	mutex_unlock(&md->suspend_lock);
2379 	return r;
2380 }
2381 
2382 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2383 {
2384 	if (map) {
2385 		int r = dm_table_resume_targets(map);
2386 		if (r)
2387 			return r;
2388 	}
2389 
2390 	dm_queue_flush(md);
2391 
2392 	/*
2393 	 * Flushing deferred I/Os must be done after targets are resumed
2394 	 * so that mapping of targets can work correctly.
2395 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2396 	 */
2397 	if (dm_request_based(md))
2398 		dm_start_queue(md->queue);
2399 
2400 	unlock_fs(md);
2401 
2402 	return 0;
2403 }
2404 
2405 int dm_resume(struct mapped_device *md)
2406 {
2407 	int r;
2408 	struct dm_table *map = NULL;
2409 
2410 retry:
2411 	r = -EINVAL;
2412 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2413 
2414 	if (!dm_suspended_md(md))
2415 		goto out;
2416 
2417 	if (dm_suspended_internally_md(md)) {
2418 		/* already internally suspended, wait for internal resume */
2419 		mutex_unlock(&md->suspend_lock);
2420 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2421 		if (r)
2422 			return r;
2423 		goto retry;
2424 	}
2425 
2426 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2427 	if (!map || !dm_table_get_size(map))
2428 		goto out;
2429 
2430 	r = __dm_resume(md, map);
2431 	if (r)
2432 		goto out;
2433 
2434 	clear_bit(DMF_SUSPENDED, &md->flags);
2435 out:
2436 	mutex_unlock(&md->suspend_lock);
2437 
2438 	return r;
2439 }
2440 
2441 /*
2442  * Internal suspend/resume works like userspace-driven suspend. It waits
2443  * until all bios finish and prevents issuing new bios to the target drivers.
2444  * It may be used only from the kernel.
2445  */
2446 
2447 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2448 {
2449 	struct dm_table *map = NULL;
2450 
2451 	lockdep_assert_held(&md->suspend_lock);
2452 
2453 	if (md->internal_suspend_count++)
2454 		return; /* nested internal suspend */
2455 
2456 	if (dm_suspended_md(md)) {
2457 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2458 		return; /* nest suspend */
2459 	}
2460 
2461 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2462 
2463 	/*
2464 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2465 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2466 	 * would require changing .presuspend to return an error -- avoid this
2467 	 * until there is a need for more elaborate variants of internal suspend.
2468 	 */
2469 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2470 			    DMF_SUSPENDED_INTERNALLY);
2471 
2472 	dm_table_postsuspend_targets(map);
2473 }
2474 
2475 static void __dm_internal_resume(struct mapped_device *md)
2476 {
2477 	BUG_ON(!md->internal_suspend_count);
2478 
2479 	if (--md->internal_suspend_count)
2480 		return; /* resume from nested internal suspend */
2481 
2482 	if (dm_suspended_md(md))
2483 		goto done; /* resume from nested suspend */
2484 
2485 	/*
2486 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2487 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2488 	 */
2489 	(void) __dm_resume(md, NULL);
2490 
2491 done:
2492 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2493 	smp_mb__after_atomic();
2494 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2495 }
2496 
2497 void dm_internal_suspend_noflush(struct mapped_device *md)
2498 {
2499 	mutex_lock(&md->suspend_lock);
2500 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2501 	mutex_unlock(&md->suspend_lock);
2502 }
2503 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2504 
2505 void dm_internal_resume(struct mapped_device *md)
2506 {
2507 	mutex_lock(&md->suspend_lock);
2508 	__dm_internal_resume(md);
2509 	mutex_unlock(&md->suspend_lock);
2510 }
2511 EXPORT_SYMBOL_GPL(dm_internal_resume);
2512 
2513 /*
2514  * Fast variants of internal suspend/resume hold md->suspend_lock,
2515  * which prevents interaction with userspace-driven suspend.
2516  */
2517 
2518 void dm_internal_suspend_fast(struct mapped_device *md)
2519 {
2520 	mutex_lock(&md->suspend_lock);
2521 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2522 		return;
2523 
2524 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2525 	synchronize_srcu(&md->io_barrier);
2526 	flush_workqueue(md->wq);
2527 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2528 }
2529 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2530 
2531 void dm_internal_resume_fast(struct mapped_device *md)
2532 {
2533 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2534 		goto done;
2535 
2536 	dm_queue_flush(md);
2537 
2538 done:
2539 	mutex_unlock(&md->suspend_lock);
2540 }
2541 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2542 
2543 /*-----------------------------------------------------------------
2544  * Event notification.
2545  *---------------------------------------------------------------*/
2546 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2547 		       unsigned cookie)
2548 {
2549 	char udev_cookie[DM_COOKIE_LENGTH];
2550 	char *envp[] = { udev_cookie, NULL };
2551 
2552 	if (!cookie)
2553 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2554 	else {
2555 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2556 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2557 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2558 					  action, envp);
2559 	}
2560 }
2561 
2562 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2563 {
2564 	return atomic_add_return(1, &md->uevent_seq);
2565 }
2566 
2567 uint32_t dm_get_event_nr(struct mapped_device *md)
2568 {
2569 	return atomic_read(&md->event_nr);
2570 }
2571 
2572 int dm_wait_event(struct mapped_device *md, int event_nr)
2573 {
2574 	return wait_event_interruptible(md->eventq,
2575 			(event_nr != atomic_read(&md->event_nr)));
2576 }
2577 
2578 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2579 {
2580 	unsigned long flags;
2581 
2582 	spin_lock_irqsave(&md->uevent_lock, flags);
2583 	list_add(elist, &md->uevent_list);
2584 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2585 }
2586 
2587 /*
2588  * The gendisk is only valid as long as you have a reference
2589  * count on 'md'.
2590  */
2591 struct gendisk *dm_disk(struct mapped_device *md)
2592 {
2593 	return md->disk;
2594 }
2595 EXPORT_SYMBOL_GPL(dm_disk);
2596 
2597 struct kobject *dm_kobject(struct mapped_device *md)
2598 {
2599 	return &md->kobj_holder.kobj;
2600 }
2601 
2602 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2603 {
2604 	struct mapped_device *md;
2605 
2606 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2607 
2608 	if (test_bit(DMF_FREEING, &md->flags) ||
2609 	    dm_deleting_md(md))
2610 		return NULL;
2611 
2612 	dm_get(md);
2613 	return md;
2614 }
2615 
2616 int dm_suspended_md(struct mapped_device *md)
2617 {
2618 	return test_bit(DMF_SUSPENDED, &md->flags);
2619 }
2620 
2621 int dm_suspended_internally_md(struct mapped_device *md)
2622 {
2623 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2624 }
2625 
2626 int dm_test_deferred_remove_flag(struct mapped_device *md)
2627 {
2628 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2629 }
2630 
2631 int dm_suspended(struct dm_target *ti)
2632 {
2633 	return dm_suspended_md(dm_table_get_md(ti->table));
2634 }
2635 EXPORT_SYMBOL_GPL(dm_suspended);
2636 
2637 int dm_noflush_suspending(struct dm_target *ti)
2638 {
2639 	return __noflush_suspending(dm_table_get_md(ti->table));
2640 }
2641 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2642 
2643 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2644 					    unsigned integrity, unsigned per_io_data_size)
2645 {
2646 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2647 	unsigned int pool_size = 0;
2648 	unsigned int front_pad;
2649 
2650 	if (!pools)
2651 		return NULL;
2652 
2653 	switch (type) {
2654 	case DM_TYPE_BIO_BASED:
2655 	case DM_TYPE_DAX_BIO_BASED:
2656 		pool_size = dm_get_reserved_bio_based_ios();
2657 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2658 
2659 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2660 		if (!pools->io_pool)
2661 			goto out;
2662 		break;
2663 	case DM_TYPE_REQUEST_BASED:
2664 	case DM_TYPE_MQ_REQUEST_BASED:
2665 		pool_size = dm_get_reserved_rq_based_ios();
2666 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2667 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2668 		break;
2669 	default:
2670 		BUG();
2671 	}
2672 
2673 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2674 	if (!pools->bs)
2675 		goto out;
2676 
2677 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2678 		goto out;
2679 
2680 	return pools;
2681 
2682 out:
2683 	dm_free_md_mempools(pools);
2684 
2685 	return NULL;
2686 }
2687 
2688 void dm_free_md_mempools(struct dm_md_mempools *pools)
2689 {
2690 	if (!pools)
2691 		return;
2692 
2693 	mempool_destroy(pools->io_pool);
2694 
2695 	if (pools->bs)
2696 		bioset_free(pools->bs);
2697 
2698 	kfree(pools);
2699 }
2700 
2701 struct dm_pr {
2702 	u64	old_key;
2703 	u64	new_key;
2704 	u32	flags;
2705 	bool	fail_early;
2706 };
2707 
2708 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2709 		      void *data)
2710 {
2711 	struct mapped_device *md = bdev->bd_disk->private_data;
2712 	struct dm_table *table;
2713 	struct dm_target *ti;
2714 	int ret = -ENOTTY, srcu_idx;
2715 
2716 	table = dm_get_live_table(md, &srcu_idx);
2717 	if (!table || !dm_table_get_size(table))
2718 		goto out;
2719 
2720 	/* We only support devices that have a single target */
2721 	if (dm_table_get_num_targets(table) != 1)
2722 		goto out;
2723 	ti = dm_table_get_target(table, 0);
2724 
2725 	ret = -EINVAL;
2726 	if (!ti->type->iterate_devices)
2727 		goto out;
2728 
2729 	ret = ti->type->iterate_devices(ti, fn, data);
2730 out:
2731 	dm_put_live_table(md, srcu_idx);
2732 	return ret;
2733 }
2734 
2735 /*
2736  * For register / unregister we need to manually call out to every path.
2737  */
2738 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2739 			    sector_t start, sector_t len, void *data)
2740 {
2741 	struct dm_pr *pr = data;
2742 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2743 
2744 	if (!ops || !ops->pr_register)
2745 		return -EOPNOTSUPP;
2746 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2747 }
2748 
2749 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2750 			  u32 flags)
2751 {
2752 	struct dm_pr pr = {
2753 		.old_key	= old_key,
2754 		.new_key	= new_key,
2755 		.flags		= flags,
2756 		.fail_early	= true,
2757 	};
2758 	int ret;
2759 
2760 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2761 	if (ret && new_key) {
2762 		/* unregister all paths if we failed to register any path */
2763 		pr.old_key = new_key;
2764 		pr.new_key = 0;
2765 		pr.flags = 0;
2766 		pr.fail_early = false;
2767 		dm_call_pr(bdev, __dm_pr_register, &pr);
2768 	}
2769 
2770 	return ret;
2771 }
2772 
2773 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2774 			 u32 flags)
2775 {
2776 	struct mapped_device *md = bdev->bd_disk->private_data;
2777 	const struct pr_ops *ops;
2778 	fmode_t mode;
2779 	int r;
2780 
2781 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2782 	if (r < 0)
2783 		return r;
2784 
2785 	ops = bdev->bd_disk->fops->pr_ops;
2786 	if (ops && ops->pr_reserve)
2787 		r = ops->pr_reserve(bdev, key, type, flags);
2788 	else
2789 		r = -EOPNOTSUPP;
2790 
2791 	bdput(bdev);
2792 	return r;
2793 }
2794 
2795 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2796 {
2797 	struct mapped_device *md = bdev->bd_disk->private_data;
2798 	const struct pr_ops *ops;
2799 	fmode_t mode;
2800 	int r;
2801 
2802 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2803 	if (r < 0)
2804 		return r;
2805 
2806 	ops = bdev->bd_disk->fops->pr_ops;
2807 	if (ops && ops->pr_release)
2808 		r = ops->pr_release(bdev, key, type);
2809 	else
2810 		r = -EOPNOTSUPP;
2811 
2812 	bdput(bdev);
2813 	return r;
2814 }
2815 
2816 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2817 			 enum pr_type type, bool abort)
2818 {
2819 	struct mapped_device *md = bdev->bd_disk->private_data;
2820 	const struct pr_ops *ops;
2821 	fmode_t mode;
2822 	int r;
2823 
2824 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2825 	if (r < 0)
2826 		return r;
2827 
2828 	ops = bdev->bd_disk->fops->pr_ops;
2829 	if (ops && ops->pr_preempt)
2830 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2831 	else
2832 		r = -EOPNOTSUPP;
2833 
2834 	bdput(bdev);
2835 	return r;
2836 }
2837 
2838 static int dm_pr_clear(struct block_device *bdev, u64 key)
2839 {
2840 	struct mapped_device *md = bdev->bd_disk->private_data;
2841 	const struct pr_ops *ops;
2842 	fmode_t mode;
2843 	int r;
2844 
2845 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2846 	if (r < 0)
2847 		return r;
2848 
2849 	ops = bdev->bd_disk->fops->pr_ops;
2850 	if (ops && ops->pr_clear)
2851 		r = ops->pr_clear(bdev, key);
2852 	else
2853 		r = -EOPNOTSUPP;
2854 
2855 	bdput(bdev);
2856 	return r;
2857 }
2858 
2859 static const struct pr_ops dm_pr_ops = {
2860 	.pr_register	= dm_pr_register,
2861 	.pr_reserve	= dm_pr_reserve,
2862 	.pr_release	= dm_pr_release,
2863 	.pr_preempt	= dm_pr_preempt,
2864 	.pr_clear	= dm_pr_clear,
2865 };
2866 
2867 static const struct block_device_operations dm_blk_dops = {
2868 	.open = dm_blk_open,
2869 	.release = dm_blk_close,
2870 	.ioctl = dm_blk_ioctl,
2871 	.getgeo = dm_blk_getgeo,
2872 	.pr_ops = &dm_pr_ops,
2873 	.owner = THIS_MODULE
2874 };
2875 
2876 static const struct dax_operations dm_dax_ops = {
2877 	.direct_access = dm_dax_direct_access,
2878 };
2879 
2880 /*
2881  * module hooks
2882  */
2883 module_init(dm_init);
2884 module_exit(dm_exit);
2885 
2886 module_param(major, uint, 0);
2887 MODULE_PARM_DESC(major, "The major number of the device mapper");
2888 
2889 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2890 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2891 
2892 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2893 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2894 
2895 MODULE_DESCRIPTION(DM_NAME " driver");
2896 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2897 MODULE_LICENSE("GPL");
2898