xref: /openbmc/linux/drivers/md/dm.c (revision a3d77d35be6f416a250c528c3ed5c70013a915e8)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 #include <linux/smp_lock.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * One of these is allocated per bio.
35  */
36 struct dm_io {
37 	struct mapped_device *md;
38 	int error;
39 	struct bio *bio;
40 	atomic_t io_count;
41 	unsigned long start_time;
42 };
43 
44 /*
45  * One of these is allocated per target within a bio.  Hopefully
46  * this will be simplified out one day.
47  */
48 struct target_io {
49 	struct dm_io *io;
50 	struct dm_target *ti;
51 	union map_info info;
52 };
53 
54 union map_info *dm_get_mapinfo(struct bio *bio)
55 {
56 	if (bio && bio->bi_private)
57 		return &((struct target_io *)bio->bi_private)->info;
58 	return NULL;
59 }
60 
61 #define MINOR_ALLOCED ((void *)-1)
62 
63 /*
64  * Bits for the md->flags field.
65  */
66 #define DMF_BLOCK_IO 0
67 #define DMF_SUSPENDED 1
68 #define DMF_FROZEN 2
69 #define DMF_FREEING 3
70 #define DMF_DELETING 4
71 
72 struct mapped_device {
73 	struct rw_semaphore io_lock;
74 	struct semaphore suspend_lock;
75 	rwlock_t map_lock;
76 	atomic_t holders;
77 	atomic_t open_count;
78 
79 	unsigned long flags;
80 
81 	request_queue_t *queue;
82 	struct gendisk *disk;
83 	char name[16];
84 
85 	void *interface_ptr;
86 
87 	/*
88 	 * A list of ios that arrived while we were suspended.
89 	 */
90 	atomic_t pending;
91 	wait_queue_head_t wait;
92 	struct bio_list deferred;
93 
94 	/*
95 	 * The current mapping.
96 	 */
97 	struct dm_table *map;
98 
99 	/*
100 	 * io objects are allocated from here.
101 	 */
102 	mempool_t *io_pool;
103 	mempool_t *tio_pool;
104 
105 	struct bio_set *bs;
106 
107 	/*
108 	 * Event handling.
109 	 */
110 	atomic_t event_nr;
111 	wait_queue_head_t eventq;
112 
113 	/*
114 	 * freeze/thaw support require holding onto a super block
115 	 */
116 	struct super_block *frozen_sb;
117 	struct block_device *suspended_bdev;
118 
119 	/* forced geometry settings */
120 	struct hd_geometry geometry;
121 };
122 
123 #define MIN_IOS 256
124 static struct kmem_cache *_io_cache;
125 static struct kmem_cache *_tio_cache;
126 
127 static int __init local_init(void)
128 {
129 	int r;
130 
131 	/* allocate a slab for the dm_ios */
132 	_io_cache = kmem_cache_create("dm_io",
133 				      sizeof(struct dm_io), 0, 0, NULL, NULL);
134 	if (!_io_cache)
135 		return -ENOMEM;
136 
137 	/* allocate a slab for the target ios */
138 	_tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
139 				       0, 0, NULL, NULL);
140 	if (!_tio_cache) {
141 		kmem_cache_destroy(_io_cache);
142 		return -ENOMEM;
143 	}
144 
145 	_major = major;
146 	r = register_blkdev(_major, _name);
147 	if (r < 0) {
148 		kmem_cache_destroy(_tio_cache);
149 		kmem_cache_destroy(_io_cache);
150 		return r;
151 	}
152 
153 	if (!_major)
154 		_major = r;
155 
156 	return 0;
157 }
158 
159 static void local_exit(void)
160 {
161 	kmem_cache_destroy(_tio_cache);
162 	kmem_cache_destroy(_io_cache);
163 
164 	if (unregister_blkdev(_major, _name) < 0)
165 		DMERR("unregister_blkdev failed");
166 
167 	_major = 0;
168 
169 	DMINFO("cleaned up");
170 }
171 
172 int (*_inits[])(void) __initdata = {
173 	local_init,
174 	dm_target_init,
175 	dm_linear_init,
176 	dm_stripe_init,
177 	dm_interface_init,
178 };
179 
180 void (*_exits[])(void) = {
181 	local_exit,
182 	dm_target_exit,
183 	dm_linear_exit,
184 	dm_stripe_exit,
185 	dm_interface_exit,
186 };
187 
188 static int __init dm_init(void)
189 {
190 	const int count = ARRAY_SIZE(_inits);
191 
192 	int r, i;
193 
194 	for (i = 0; i < count; i++) {
195 		r = _inits[i]();
196 		if (r)
197 			goto bad;
198 	}
199 
200 	return 0;
201 
202       bad:
203 	while (i--)
204 		_exits[i]();
205 
206 	return r;
207 }
208 
209 static void __exit dm_exit(void)
210 {
211 	int i = ARRAY_SIZE(_exits);
212 
213 	while (i--)
214 		_exits[i]();
215 }
216 
217 /*
218  * Block device functions
219  */
220 static int dm_blk_open(struct inode *inode, struct file *file)
221 {
222 	struct mapped_device *md;
223 
224 	spin_lock(&_minor_lock);
225 
226 	md = inode->i_bdev->bd_disk->private_data;
227 	if (!md)
228 		goto out;
229 
230 	if (test_bit(DMF_FREEING, &md->flags) ||
231 	    test_bit(DMF_DELETING, &md->flags)) {
232 		md = NULL;
233 		goto out;
234 	}
235 
236 	dm_get(md);
237 	atomic_inc(&md->open_count);
238 
239 out:
240 	spin_unlock(&_minor_lock);
241 
242 	return md ? 0 : -ENXIO;
243 }
244 
245 static int dm_blk_close(struct inode *inode, struct file *file)
246 {
247 	struct mapped_device *md;
248 
249 	md = inode->i_bdev->bd_disk->private_data;
250 	atomic_dec(&md->open_count);
251 	dm_put(md);
252 	return 0;
253 }
254 
255 int dm_open_count(struct mapped_device *md)
256 {
257 	return atomic_read(&md->open_count);
258 }
259 
260 /*
261  * Guarantees nothing is using the device before it's deleted.
262  */
263 int dm_lock_for_deletion(struct mapped_device *md)
264 {
265 	int r = 0;
266 
267 	spin_lock(&_minor_lock);
268 
269 	if (dm_open_count(md))
270 		r = -EBUSY;
271 	else
272 		set_bit(DMF_DELETING, &md->flags);
273 
274 	spin_unlock(&_minor_lock);
275 
276 	return r;
277 }
278 
279 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
280 {
281 	struct mapped_device *md = bdev->bd_disk->private_data;
282 
283 	return dm_get_geometry(md, geo);
284 }
285 
286 static int dm_blk_ioctl(struct inode *inode, struct file *file,
287 			unsigned int cmd, unsigned long arg)
288 {
289 	struct mapped_device *md;
290 	struct dm_table *map;
291 	struct dm_target *tgt;
292 	int r = -ENOTTY;
293 
294 	/* We don't really need this lock, but we do need 'inode'. */
295 	unlock_kernel();
296 
297 	md = inode->i_bdev->bd_disk->private_data;
298 
299 	map = dm_get_table(md);
300 
301 	if (!map || !dm_table_get_size(map))
302 		goto out;
303 
304 	/* We only support devices that have a single target */
305 	if (dm_table_get_num_targets(map) != 1)
306 		goto out;
307 
308 	tgt = dm_table_get_target(map, 0);
309 
310 	if (dm_suspended(md)) {
311 		r = -EAGAIN;
312 		goto out;
313 	}
314 
315 	if (tgt->type->ioctl)
316 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
317 
318 out:
319 	dm_table_put(map);
320 
321 	lock_kernel();
322 	return r;
323 }
324 
325 static inline struct dm_io *alloc_io(struct mapped_device *md)
326 {
327 	return mempool_alloc(md->io_pool, GFP_NOIO);
328 }
329 
330 static inline void free_io(struct mapped_device *md, struct dm_io *io)
331 {
332 	mempool_free(io, md->io_pool);
333 }
334 
335 static inline struct target_io *alloc_tio(struct mapped_device *md)
336 {
337 	return mempool_alloc(md->tio_pool, GFP_NOIO);
338 }
339 
340 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
341 {
342 	mempool_free(tio, md->tio_pool);
343 }
344 
345 static void start_io_acct(struct dm_io *io)
346 {
347 	struct mapped_device *md = io->md;
348 
349 	io->start_time = jiffies;
350 
351 	preempt_disable();
352 	disk_round_stats(dm_disk(md));
353 	preempt_enable();
354 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
355 }
356 
357 static int end_io_acct(struct dm_io *io)
358 {
359 	struct mapped_device *md = io->md;
360 	struct bio *bio = io->bio;
361 	unsigned long duration = jiffies - io->start_time;
362 	int pending;
363 	int rw = bio_data_dir(bio);
364 
365 	preempt_disable();
366 	disk_round_stats(dm_disk(md));
367 	preempt_enable();
368 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
369 
370 	disk_stat_add(dm_disk(md), ticks[rw], duration);
371 
372 	return !pending;
373 }
374 
375 /*
376  * Add the bio to the list of deferred io.
377  */
378 static int queue_io(struct mapped_device *md, struct bio *bio)
379 {
380 	down_write(&md->io_lock);
381 
382 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
383 		up_write(&md->io_lock);
384 		return 1;
385 	}
386 
387 	bio_list_add(&md->deferred, bio);
388 
389 	up_write(&md->io_lock);
390 	return 0;		/* deferred successfully */
391 }
392 
393 /*
394  * Everyone (including functions in this file), should use this
395  * function to access the md->map field, and make sure they call
396  * dm_table_put() when finished.
397  */
398 struct dm_table *dm_get_table(struct mapped_device *md)
399 {
400 	struct dm_table *t;
401 
402 	read_lock(&md->map_lock);
403 	t = md->map;
404 	if (t)
405 		dm_table_get(t);
406 	read_unlock(&md->map_lock);
407 
408 	return t;
409 }
410 
411 /*
412  * Get the geometry associated with a dm device
413  */
414 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
415 {
416 	*geo = md->geometry;
417 
418 	return 0;
419 }
420 
421 /*
422  * Set the geometry of a device.
423  */
424 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
425 {
426 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
427 
428 	if (geo->start > sz) {
429 		DMWARN("Start sector is beyond the geometry limits.");
430 		return -EINVAL;
431 	}
432 
433 	md->geometry = *geo;
434 
435 	return 0;
436 }
437 
438 /*-----------------------------------------------------------------
439  * CRUD START:
440  *   A more elegant soln is in the works that uses the queue
441  *   merge fn, unfortunately there are a couple of changes to
442  *   the block layer that I want to make for this.  So in the
443  *   interests of getting something for people to use I give
444  *   you this clearly demarcated crap.
445  *---------------------------------------------------------------*/
446 
447 /*
448  * Decrements the number of outstanding ios that a bio has been
449  * cloned into, completing the original io if necc.
450  */
451 static void dec_pending(struct dm_io *io, int error)
452 {
453 	if (error)
454 		io->error = error;
455 
456 	if (atomic_dec_and_test(&io->io_count)) {
457 		if (end_io_acct(io))
458 			/* nudge anyone waiting on suspend queue */
459 			wake_up(&io->md->wait);
460 
461 		blk_add_trace_bio(io->md->queue, io->bio, BLK_TA_COMPLETE);
462 
463 		bio_endio(io->bio, io->bio->bi_size, io->error);
464 		free_io(io->md, io);
465 	}
466 }
467 
468 static int clone_endio(struct bio *bio, unsigned int done, int error)
469 {
470 	int r = 0;
471 	struct target_io *tio = bio->bi_private;
472 	struct mapped_device *md = tio->io->md;
473 	dm_endio_fn endio = tio->ti->type->end_io;
474 
475 	if (bio->bi_size)
476 		return 1;
477 
478 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
479 		error = -EIO;
480 
481 	if (endio) {
482 		r = endio(tio->ti, bio, error, &tio->info);
483 		if (r < 0)
484 			error = r;
485 		else if (r > 0)
486 			/* the target wants another shot at the io */
487 			return 1;
488 	}
489 
490 	dec_pending(tio->io, error);
491 
492 	/*
493 	 * Store md for cleanup instead of tio which is about to get freed.
494 	 */
495 	bio->bi_private = md->bs;
496 
497 	bio_put(bio);
498 	free_tio(md, tio);
499 	return r;
500 }
501 
502 static sector_t max_io_len(struct mapped_device *md,
503 			   sector_t sector, struct dm_target *ti)
504 {
505 	sector_t offset = sector - ti->begin;
506 	sector_t len = ti->len - offset;
507 
508 	/*
509 	 * Does the target need to split even further ?
510 	 */
511 	if (ti->split_io) {
512 		sector_t boundary;
513 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
514 			   - offset;
515 		if (len > boundary)
516 			len = boundary;
517 	}
518 
519 	return len;
520 }
521 
522 static void __map_bio(struct dm_target *ti, struct bio *clone,
523 		      struct target_io *tio)
524 {
525 	int r;
526 	sector_t sector;
527 	struct mapped_device *md;
528 
529 	/*
530 	 * Sanity checks.
531 	 */
532 	BUG_ON(!clone->bi_size);
533 
534 	clone->bi_end_io = clone_endio;
535 	clone->bi_private = tio;
536 
537 	/*
538 	 * Map the clone.  If r == 0 we don't need to do
539 	 * anything, the target has assumed ownership of
540 	 * this io.
541 	 */
542 	atomic_inc(&tio->io->io_count);
543 	sector = clone->bi_sector;
544 	r = ti->type->map(ti, clone, &tio->info);
545 	if (r > 0) {
546 		/* the bio has been remapped so dispatch it */
547 
548 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
549 				    tio->io->bio->bi_bdev->bd_dev, sector,
550 				    clone->bi_sector);
551 
552 		generic_make_request(clone);
553 	} else if (r < 0) {
554 		/* error the io and bail out */
555 		md = tio->io->md;
556 		dec_pending(tio->io, r);
557 		/*
558 		 * Store bio_set for cleanup.
559 		 */
560 		clone->bi_private = md->bs;
561 		bio_put(clone);
562 		free_tio(md, tio);
563 	}
564 }
565 
566 struct clone_info {
567 	struct mapped_device *md;
568 	struct dm_table *map;
569 	struct bio *bio;
570 	struct dm_io *io;
571 	sector_t sector;
572 	sector_t sector_count;
573 	unsigned short idx;
574 };
575 
576 static void dm_bio_destructor(struct bio *bio)
577 {
578 	struct bio_set *bs = bio->bi_private;
579 
580 	bio_free(bio, bs);
581 }
582 
583 /*
584  * Creates a little bio that is just does part of a bvec.
585  */
586 static struct bio *split_bvec(struct bio *bio, sector_t sector,
587 			      unsigned short idx, unsigned int offset,
588 			      unsigned int len, struct bio_set *bs)
589 {
590 	struct bio *clone;
591 	struct bio_vec *bv = bio->bi_io_vec + idx;
592 
593 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
594 	clone->bi_destructor = dm_bio_destructor;
595 	*clone->bi_io_vec = *bv;
596 
597 	clone->bi_sector = sector;
598 	clone->bi_bdev = bio->bi_bdev;
599 	clone->bi_rw = bio->bi_rw;
600 	clone->bi_vcnt = 1;
601 	clone->bi_size = to_bytes(len);
602 	clone->bi_io_vec->bv_offset = offset;
603 	clone->bi_io_vec->bv_len = clone->bi_size;
604 
605 	return clone;
606 }
607 
608 /*
609  * Creates a bio that consists of range of complete bvecs.
610  */
611 static struct bio *clone_bio(struct bio *bio, sector_t sector,
612 			     unsigned short idx, unsigned short bv_count,
613 			     unsigned int len, struct bio_set *bs)
614 {
615 	struct bio *clone;
616 
617 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
618 	__bio_clone(clone, bio);
619 	clone->bi_destructor = dm_bio_destructor;
620 	clone->bi_sector = sector;
621 	clone->bi_idx = idx;
622 	clone->bi_vcnt = idx + bv_count;
623 	clone->bi_size = to_bytes(len);
624 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
625 
626 	return clone;
627 }
628 
629 static void __clone_and_map(struct clone_info *ci)
630 {
631 	struct bio *clone, *bio = ci->bio;
632 	struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
633 	sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
634 	struct target_io *tio;
635 
636 	/*
637 	 * Allocate a target io object.
638 	 */
639 	tio = alloc_tio(ci->md);
640 	tio->io = ci->io;
641 	tio->ti = ti;
642 	memset(&tio->info, 0, sizeof(tio->info));
643 
644 	if (ci->sector_count <= max) {
645 		/*
646 		 * Optimise for the simple case where we can do all of
647 		 * the remaining io with a single clone.
648 		 */
649 		clone = clone_bio(bio, ci->sector, ci->idx,
650 				  bio->bi_vcnt - ci->idx, ci->sector_count,
651 				  ci->md->bs);
652 		__map_bio(ti, clone, tio);
653 		ci->sector_count = 0;
654 
655 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
656 		/*
657 		 * There are some bvecs that don't span targets.
658 		 * Do as many of these as possible.
659 		 */
660 		int i;
661 		sector_t remaining = max;
662 		sector_t bv_len;
663 
664 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
665 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
666 
667 			if (bv_len > remaining)
668 				break;
669 
670 			remaining -= bv_len;
671 			len += bv_len;
672 		}
673 
674 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
675 				  ci->md->bs);
676 		__map_bio(ti, clone, tio);
677 
678 		ci->sector += len;
679 		ci->sector_count -= len;
680 		ci->idx = i;
681 
682 	} else {
683 		/*
684 		 * Handle a bvec that must be split between two or more targets.
685 		 */
686 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
687 		sector_t remaining = to_sector(bv->bv_len);
688 		unsigned int offset = 0;
689 
690 		do {
691 			if (offset) {
692 				ti = dm_table_find_target(ci->map, ci->sector);
693 				max = max_io_len(ci->md, ci->sector, ti);
694 
695 				tio = alloc_tio(ci->md);
696 				tio->io = ci->io;
697 				tio->ti = ti;
698 				memset(&tio->info, 0, sizeof(tio->info));
699 			}
700 
701 			len = min(remaining, max);
702 
703 			clone = split_bvec(bio, ci->sector, ci->idx,
704 					   bv->bv_offset + offset, len,
705 					   ci->md->bs);
706 
707 			__map_bio(ti, clone, tio);
708 
709 			ci->sector += len;
710 			ci->sector_count -= len;
711 			offset += to_bytes(len);
712 		} while (remaining -= len);
713 
714 		ci->idx++;
715 	}
716 }
717 
718 /*
719  * Split the bio into several clones.
720  */
721 static void __split_bio(struct mapped_device *md, struct bio *bio)
722 {
723 	struct clone_info ci;
724 
725 	ci.map = dm_get_table(md);
726 	if (!ci.map) {
727 		bio_io_error(bio, bio->bi_size);
728 		return;
729 	}
730 
731 	ci.md = md;
732 	ci.bio = bio;
733 	ci.io = alloc_io(md);
734 	ci.io->error = 0;
735 	atomic_set(&ci.io->io_count, 1);
736 	ci.io->bio = bio;
737 	ci.io->md = md;
738 	ci.sector = bio->bi_sector;
739 	ci.sector_count = bio_sectors(bio);
740 	ci.idx = bio->bi_idx;
741 
742 	start_io_acct(ci.io);
743 	while (ci.sector_count)
744 		__clone_and_map(&ci);
745 
746 	/* drop the extra reference count */
747 	dec_pending(ci.io, 0);
748 	dm_table_put(ci.map);
749 }
750 /*-----------------------------------------------------------------
751  * CRUD END
752  *---------------------------------------------------------------*/
753 
754 /*
755  * The request function that just remaps the bio built up by
756  * dm_merge_bvec.
757  */
758 static int dm_request(request_queue_t *q, struct bio *bio)
759 {
760 	int r;
761 	int rw = bio_data_dir(bio);
762 	struct mapped_device *md = q->queuedata;
763 
764 	down_read(&md->io_lock);
765 
766 	disk_stat_inc(dm_disk(md), ios[rw]);
767 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
768 
769 	/*
770 	 * If we're suspended we have to queue
771 	 * this io for later.
772 	 */
773 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
774 		up_read(&md->io_lock);
775 
776 		if (bio_rw(bio) == READA) {
777 			bio_io_error(bio, bio->bi_size);
778 			return 0;
779 		}
780 
781 		r = queue_io(md, bio);
782 		if (r < 0) {
783 			bio_io_error(bio, bio->bi_size);
784 			return 0;
785 
786 		} else if (r == 0)
787 			return 0;	/* deferred successfully */
788 
789 		/*
790 		 * We're in a while loop, because someone could suspend
791 		 * before we get to the following read lock.
792 		 */
793 		down_read(&md->io_lock);
794 	}
795 
796 	__split_bio(md, bio);
797 	up_read(&md->io_lock);
798 	return 0;
799 }
800 
801 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
802 			sector_t *error_sector)
803 {
804 	struct mapped_device *md = q->queuedata;
805 	struct dm_table *map = dm_get_table(md);
806 	int ret = -ENXIO;
807 
808 	if (map) {
809 		ret = dm_table_flush_all(map);
810 		dm_table_put(map);
811 	}
812 
813 	return ret;
814 }
815 
816 static void dm_unplug_all(request_queue_t *q)
817 {
818 	struct mapped_device *md = q->queuedata;
819 	struct dm_table *map = dm_get_table(md);
820 
821 	if (map) {
822 		dm_table_unplug_all(map);
823 		dm_table_put(map);
824 	}
825 }
826 
827 static int dm_any_congested(void *congested_data, int bdi_bits)
828 {
829 	int r;
830 	struct mapped_device *md = (struct mapped_device *) congested_data;
831 	struct dm_table *map = dm_get_table(md);
832 
833 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
834 		r = bdi_bits;
835 	else
836 		r = dm_table_any_congested(map, bdi_bits);
837 
838 	dm_table_put(map);
839 	return r;
840 }
841 
842 /*-----------------------------------------------------------------
843  * An IDR is used to keep track of allocated minor numbers.
844  *---------------------------------------------------------------*/
845 static DEFINE_IDR(_minor_idr);
846 
847 static void free_minor(int minor)
848 {
849 	spin_lock(&_minor_lock);
850 	idr_remove(&_minor_idr, minor);
851 	spin_unlock(&_minor_lock);
852 }
853 
854 /*
855  * See if the device with a specific minor # is free.
856  */
857 static int specific_minor(struct mapped_device *md, int minor)
858 {
859 	int r, m;
860 
861 	if (minor >= (1 << MINORBITS))
862 		return -EINVAL;
863 
864 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
865 	if (!r)
866 		return -ENOMEM;
867 
868 	spin_lock(&_minor_lock);
869 
870 	if (idr_find(&_minor_idr, minor)) {
871 		r = -EBUSY;
872 		goto out;
873 	}
874 
875 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
876 	if (r)
877 		goto out;
878 
879 	if (m != minor) {
880 		idr_remove(&_minor_idr, m);
881 		r = -EBUSY;
882 		goto out;
883 	}
884 
885 out:
886 	spin_unlock(&_minor_lock);
887 	return r;
888 }
889 
890 static int next_free_minor(struct mapped_device *md, int *minor)
891 {
892 	int r, m;
893 
894 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
895 	if (!r)
896 		return -ENOMEM;
897 
898 	spin_lock(&_minor_lock);
899 
900 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
901 	if (r) {
902 		goto out;
903 	}
904 
905 	if (m >= (1 << MINORBITS)) {
906 		idr_remove(&_minor_idr, m);
907 		r = -ENOSPC;
908 		goto out;
909 	}
910 
911 	*minor = m;
912 
913 out:
914 	spin_unlock(&_minor_lock);
915 	return r;
916 }
917 
918 static struct block_device_operations dm_blk_dops;
919 
920 /*
921  * Allocate and initialise a blank device with a given minor.
922  */
923 static struct mapped_device *alloc_dev(int minor)
924 {
925 	int r;
926 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
927 	void *old_md;
928 
929 	if (!md) {
930 		DMWARN("unable to allocate device, out of memory.");
931 		return NULL;
932 	}
933 
934 	if (!try_module_get(THIS_MODULE))
935 		goto bad0;
936 
937 	/* get a minor number for the dev */
938 	if (minor == DM_ANY_MINOR)
939 		r = next_free_minor(md, &minor);
940 	else
941 		r = specific_minor(md, minor);
942 	if (r < 0)
943 		goto bad1;
944 
945 	memset(md, 0, sizeof(*md));
946 	init_rwsem(&md->io_lock);
947 	init_MUTEX(&md->suspend_lock);
948 	rwlock_init(&md->map_lock);
949 	atomic_set(&md->holders, 1);
950 	atomic_set(&md->open_count, 0);
951 	atomic_set(&md->event_nr, 0);
952 
953 	md->queue = blk_alloc_queue(GFP_KERNEL);
954 	if (!md->queue)
955 		goto bad1_free_minor;
956 
957 	md->queue->queuedata = md;
958 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
959 	md->queue->backing_dev_info.congested_data = md;
960 	blk_queue_make_request(md->queue, dm_request);
961 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
962 	md->queue->unplug_fn = dm_unplug_all;
963 	md->queue->issue_flush_fn = dm_flush_all;
964 
965 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
966 	if (!md->io_pool)
967 		goto bad2;
968 
969 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
970 	if (!md->tio_pool)
971 		goto bad3;
972 
973 	md->bs = bioset_create(16, 16, 4);
974 	if (!md->bs)
975 		goto bad_no_bioset;
976 
977 	md->disk = alloc_disk(1);
978 	if (!md->disk)
979 		goto bad4;
980 
981 	atomic_set(&md->pending, 0);
982 	init_waitqueue_head(&md->wait);
983 	init_waitqueue_head(&md->eventq);
984 
985 	md->disk->major = _major;
986 	md->disk->first_minor = minor;
987 	md->disk->fops = &dm_blk_dops;
988 	md->disk->queue = md->queue;
989 	md->disk->private_data = md;
990 	sprintf(md->disk->disk_name, "dm-%d", minor);
991 	add_disk(md->disk);
992 	format_dev_t(md->name, MKDEV(_major, minor));
993 
994 	/* Populate the mapping, nobody knows we exist yet */
995 	spin_lock(&_minor_lock);
996 	old_md = idr_replace(&_minor_idr, md, minor);
997 	spin_unlock(&_minor_lock);
998 
999 	BUG_ON(old_md != MINOR_ALLOCED);
1000 
1001 	return md;
1002 
1003  bad4:
1004 	bioset_free(md->bs);
1005  bad_no_bioset:
1006 	mempool_destroy(md->tio_pool);
1007  bad3:
1008 	mempool_destroy(md->io_pool);
1009  bad2:
1010 	blk_cleanup_queue(md->queue);
1011  bad1_free_minor:
1012 	free_minor(minor);
1013  bad1:
1014 	module_put(THIS_MODULE);
1015  bad0:
1016 	kfree(md);
1017 	return NULL;
1018 }
1019 
1020 static void free_dev(struct mapped_device *md)
1021 {
1022 	int minor = md->disk->first_minor;
1023 
1024 	if (md->suspended_bdev) {
1025 		thaw_bdev(md->suspended_bdev, NULL);
1026 		bdput(md->suspended_bdev);
1027 	}
1028 	mempool_destroy(md->tio_pool);
1029 	mempool_destroy(md->io_pool);
1030 	bioset_free(md->bs);
1031 	del_gendisk(md->disk);
1032 	free_minor(minor);
1033 
1034 	spin_lock(&_minor_lock);
1035 	md->disk->private_data = NULL;
1036 	spin_unlock(&_minor_lock);
1037 
1038 	put_disk(md->disk);
1039 	blk_cleanup_queue(md->queue);
1040 	module_put(THIS_MODULE);
1041 	kfree(md);
1042 }
1043 
1044 /*
1045  * Bind a table to the device.
1046  */
1047 static void event_callback(void *context)
1048 {
1049 	struct mapped_device *md = (struct mapped_device *) context;
1050 
1051 	atomic_inc(&md->event_nr);
1052 	wake_up(&md->eventq);
1053 }
1054 
1055 static void __set_size(struct mapped_device *md, sector_t size)
1056 {
1057 	set_capacity(md->disk, size);
1058 
1059 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1060 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1061 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1062 }
1063 
1064 static int __bind(struct mapped_device *md, struct dm_table *t)
1065 {
1066 	request_queue_t *q = md->queue;
1067 	sector_t size;
1068 
1069 	size = dm_table_get_size(t);
1070 
1071 	/*
1072 	 * Wipe any geometry if the size of the table changed.
1073 	 */
1074 	if (size != get_capacity(md->disk))
1075 		memset(&md->geometry, 0, sizeof(md->geometry));
1076 
1077 	__set_size(md, size);
1078 	if (size == 0)
1079 		return 0;
1080 
1081 	dm_table_get(t);
1082 	dm_table_event_callback(t, event_callback, md);
1083 
1084 	write_lock(&md->map_lock);
1085 	md->map = t;
1086 	dm_table_set_restrictions(t, q);
1087 	write_unlock(&md->map_lock);
1088 
1089 	return 0;
1090 }
1091 
1092 static void __unbind(struct mapped_device *md)
1093 {
1094 	struct dm_table *map = md->map;
1095 
1096 	if (!map)
1097 		return;
1098 
1099 	dm_table_event_callback(map, NULL, NULL);
1100 	write_lock(&md->map_lock);
1101 	md->map = NULL;
1102 	write_unlock(&md->map_lock);
1103 	dm_table_put(map);
1104 }
1105 
1106 /*
1107  * Constructor for a new device.
1108  */
1109 int dm_create(int minor, struct mapped_device **result)
1110 {
1111 	struct mapped_device *md;
1112 
1113 	md = alloc_dev(minor);
1114 	if (!md)
1115 		return -ENXIO;
1116 
1117 	*result = md;
1118 	return 0;
1119 }
1120 
1121 static struct mapped_device *dm_find_md(dev_t dev)
1122 {
1123 	struct mapped_device *md;
1124 	unsigned minor = MINOR(dev);
1125 
1126 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1127 		return NULL;
1128 
1129 	spin_lock(&_minor_lock);
1130 
1131 	md = idr_find(&_minor_idr, minor);
1132 	if (md && (md == MINOR_ALLOCED ||
1133 		   (dm_disk(md)->first_minor != minor) ||
1134 		   test_bit(DMF_FREEING, &md->flags))) {
1135 		md = NULL;
1136 		goto out;
1137 	}
1138 
1139 out:
1140 	spin_unlock(&_minor_lock);
1141 
1142 	return md;
1143 }
1144 
1145 struct mapped_device *dm_get_md(dev_t dev)
1146 {
1147 	struct mapped_device *md = dm_find_md(dev);
1148 
1149 	if (md)
1150 		dm_get(md);
1151 
1152 	return md;
1153 }
1154 
1155 void *dm_get_mdptr(struct mapped_device *md)
1156 {
1157 	return md->interface_ptr;
1158 }
1159 
1160 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1161 {
1162 	md->interface_ptr = ptr;
1163 }
1164 
1165 void dm_get(struct mapped_device *md)
1166 {
1167 	atomic_inc(&md->holders);
1168 }
1169 
1170 const char *dm_device_name(struct mapped_device *md)
1171 {
1172 	return md->name;
1173 }
1174 EXPORT_SYMBOL_GPL(dm_device_name);
1175 
1176 void dm_put(struct mapped_device *md)
1177 {
1178 	struct dm_table *map;
1179 
1180 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1181 
1182 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1183 		map = dm_get_table(md);
1184 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1185 		set_bit(DMF_FREEING, &md->flags);
1186 		spin_unlock(&_minor_lock);
1187 		if (!dm_suspended(md)) {
1188 			dm_table_presuspend_targets(map);
1189 			dm_table_postsuspend_targets(map);
1190 		}
1191 		__unbind(md);
1192 		dm_table_put(map);
1193 		free_dev(md);
1194 	}
1195 }
1196 
1197 /*
1198  * Process the deferred bios
1199  */
1200 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1201 {
1202 	struct bio *n;
1203 
1204 	while (c) {
1205 		n = c->bi_next;
1206 		c->bi_next = NULL;
1207 		__split_bio(md, c);
1208 		c = n;
1209 	}
1210 }
1211 
1212 /*
1213  * Swap in a new table (destroying old one).
1214  */
1215 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1216 {
1217 	int r = -EINVAL;
1218 
1219 	down(&md->suspend_lock);
1220 
1221 	/* device must be suspended */
1222 	if (!dm_suspended(md))
1223 		goto out;
1224 
1225 	__unbind(md);
1226 	r = __bind(md, table);
1227 
1228 out:
1229 	up(&md->suspend_lock);
1230 	return r;
1231 }
1232 
1233 /*
1234  * Functions to lock and unlock any filesystem running on the
1235  * device.
1236  */
1237 static int lock_fs(struct mapped_device *md)
1238 {
1239 	int r;
1240 
1241 	WARN_ON(md->frozen_sb);
1242 
1243 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1244 	if (IS_ERR(md->frozen_sb)) {
1245 		r = PTR_ERR(md->frozen_sb);
1246 		md->frozen_sb = NULL;
1247 		return r;
1248 	}
1249 
1250 	set_bit(DMF_FROZEN, &md->flags);
1251 
1252 	/* don't bdput right now, we don't want the bdev
1253 	 * to go away while it is locked.
1254 	 */
1255 	return 0;
1256 }
1257 
1258 static void unlock_fs(struct mapped_device *md)
1259 {
1260 	if (!test_bit(DMF_FROZEN, &md->flags))
1261 		return;
1262 
1263 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1264 	md->frozen_sb = NULL;
1265 	clear_bit(DMF_FROZEN, &md->flags);
1266 }
1267 
1268 /*
1269  * We need to be able to change a mapping table under a mounted
1270  * filesystem.  For example we might want to move some data in
1271  * the background.  Before the table can be swapped with
1272  * dm_bind_table, dm_suspend must be called to flush any in
1273  * flight bios and ensure that any further io gets deferred.
1274  */
1275 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1276 {
1277 	struct dm_table *map = NULL;
1278 	DECLARE_WAITQUEUE(wait, current);
1279 	struct bio *def;
1280 	int r = -EINVAL;
1281 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1282 
1283 	down(&md->suspend_lock);
1284 
1285 	if (dm_suspended(md))
1286 		goto out_unlock;
1287 
1288 	map = dm_get_table(md);
1289 
1290 	/* This does not get reverted if there's an error later. */
1291 	dm_table_presuspend_targets(map);
1292 
1293 	md->suspended_bdev = bdget_disk(md->disk, 0);
1294 	if (!md->suspended_bdev) {
1295 		DMWARN("bdget failed in dm_suspend");
1296 		r = -ENOMEM;
1297 		goto out;
1298 	}
1299 
1300 	/* Flush I/O to the device. */
1301 	if (do_lockfs) {
1302 		r = lock_fs(md);
1303 		if (r)
1304 			goto out;
1305 	}
1306 
1307 	/*
1308 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1309 	 */
1310 	down_write(&md->io_lock);
1311 	set_bit(DMF_BLOCK_IO, &md->flags);
1312 
1313 	add_wait_queue(&md->wait, &wait);
1314 	up_write(&md->io_lock);
1315 
1316 	/* unplug */
1317 	if (map)
1318 		dm_table_unplug_all(map);
1319 
1320 	/*
1321 	 * Then we wait for the already mapped ios to
1322 	 * complete.
1323 	 */
1324 	while (1) {
1325 		set_current_state(TASK_INTERRUPTIBLE);
1326 
1327 		if (!atomic_read(&md->pending) || signal_pending(current))
1328 			break;
1329 
1330 		io_schedule();
1331 	}
1332 	set_current_state(TASK_RUNNING);
1333 
1334 	down_write(&md->io_lock);
1335 	remove_wait_queue(&md->wait, &wait);
1336 
1337 	/* were we interrupted ? */
1338 	r = -EINTR;
1339 	if (atomic_read(&md->pending)) {
1340 		clear_bit(DMF_BLOCK_IO, &md->flags);
1341 		def = bio_list_get(&md->deferred);
1342 		__flush_deferred_io(md, def);
1343 		up_write(&md->io_lock);
1344 		unlock_fs(md);
1345 		goto out;
1346 	}
1347 	up_write(&md->io_lock);
1348 
1349 	dm_table_postsuspend_targets(map);
1350 
1351 	set_bit(DMF_SUSPENDED, &md->flags);
1352 
1353 	r = 0;
1354 
1355 out:
1356 	if (r && md->suspended_bdev) {
1357 		bdput(md->suspended_bdev);
1358 		md->suspended_bdev = NULL;
1359 	}
1360 
1361 	dm_table_put(map);
1362 
1363 out_unlock:
1364 	up(&md->suspend_lock);
1365 	return r;
1366 }
1367 
1368 int dm_resume(struct mapped_device *md)
1369 {
1370 	int r = -EINVAL;
1371 	struct bio *def;
1372 	struct dm_table *map = NULL;
1373 
1374 	down(&md->suspend_lock);
1375 	if (!dm_suspended(md))
1376 		goto out;
1377 
1378 	map = dm_get_table(md);
1379 	if (!map || !dm_table_get_size(map))
1380 		goto out;
1381 
1382 	r = dm_table_resume_targets(map);
1383 	if (r)
1384 		goto out;
1385 
1386 	down_write(&md->io_lock);
1387 	clear_bit(DMF_BLOCK_IO, &md->flags);
1388 
1389 	def = bio_list_get(&md->deferred);
1390 	__flush_deferred_io(md, def);
1391 	up_write(&md->io_lock);
1392 
1393 	unlock_fs(md);
1394 
1395 	bdput(md->suspended_bdev);
1396 	md->suspended_bdev = NULL;
1397 
1398 	clear_bit(DMF_SUSPENDED, &md->flags);
1399 
1400 	dm_table_unplug_all(map);
1401 
1402 	kobject_uevent(&md->disk->kobj, KOBJ_CHANGE);
1403 
1404 	r = 0;
1405 
1406 out:
1407 	dm_table_put(map);
1408 	up(&md->suspend_lock);
1409 
1410 	return r;
1411 }
1412 
1413 /*-----------------------------------------------------------------
1414  * Event notification.
1415  *---------------------------------------------------------------*/
1416 uint32_t dm_get_event_nr(struct mapped_device *md)
1417 {
1418 	return atomic_read(&md->event_nr);
1419 }
1420 
1421 int dm_wait_event(struct mapped_device *md, int event_nr)
1422 {
1423 	return wait_event_interruptible(md->eventq,
1424 			(event_nr != atomic_read(&md->event_nr)));
1425 }
1426 
1427 /*
1428  * The gendisk is only valid as long as you have a reference
1429  * count on 'md'.
1430  */
1431 struct gendisk *dm_disk(struct mapped_device *md)
1432 {
1433 	return md->disk;
1434 }
1435 
1436 int dm_suspended(struct mapped_device *md)
1437 {
1438 	return test_bit(DMF_SUSPENDED, &md->flags);
1439 }
1440 
1441 static struct block_device_operations dm_blk_dops = {
1442 	.open = dm_blk_open,
1443 	.release = dm_blk_close,
1444 	.ioctl = dm_blk_ioctl,
1445 	.getgeo = dm_blk_getgeo,
1446 	.owner = THIS_MODULE
1447 };
1448 
1449 EXPORT_SYMBOL(dm_get_mapinfo);
1450 
1451 /*
1452  * module hooks
1453  */
1454 module_init(dm_init);
1455 module_exit(dm_exit);
1456 
1457 module_param(major, uint, 0);
1458 MODULE_PARM_DESC(major, "The major number of the device mapper");
1459 MODULE_DESCRIPTION(DM_NAME " driver");
1460 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1461 MODULE_LICENSE("GPL");
1462