1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static void dm_io_acct(struct dm_io *io, bool end) 496 { 497 struct dm_stats_aux *stats_aux = &io->stats_aux; 498 unsigned long start_time = io->start_time; 499 struct mapped_device *md = io->md; 500 struct bio *bio = io->orig_bio; 501 unsigned int sectors; 502 503 /* 504 * If REQ_PREFLUSH set, don't account payload, it will be 505 * submitted (and accounted) after this flush completes. 506 */ 507 if (bio_is_flush_with_data(bio)) 508 sectors = 0; 509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 510 sectors = bio_sectors(bio); 511 else 512 sectors = io->sectors; 513 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors, 518 start_time); 519 520 if (static_branch_unlikely(&stats_enabled) && 521 unlikely(dm_stats_used(&md->stats))) { 522 sector_t sector; 523 524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 525 sector = bio->bi_iter.bi_sector; 526 else 527 sector = bio_end_sector(bio) - io->sector_offset; 528 529 dm_stats_account_io(&md->stats, bio_data_dir(bio), 530 sector, sectors, 531 end, start_time, stats_aux); 532 } 533 } 534 535 static void __dm_start_io_acct(struct dm_io *io) 536 { 537 dm_io_acct(io, false); 538 } 539 540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 541 { 542 /* 543 * Ensure IO accounting is only ever started once. 544 */ 545 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 546 return; 547 548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 550 dm_io_set_flag(io, DM_IO_ACCOUNTED); 551 } else { 552 unsigned long flags; 553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 554 spin_lock_irqsave(&io->lock, flags); 555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 556 spin_unlock_irqrestore(&io->lock, flags); 557 return; 558 } 559 dm_io_set_flag(io, DM_IO_ACCOUNTED); 560 spin_unlock_irqrestore(&io->lock, flags); 561 } 562 563 __dm_start_io_acct(io); 564 } 565 566 static void dm_end_io_acct(struct dm_io *io) 567 { 568 dm_io_acct(io, true); 569 } 570 571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 572 { 573 struct dm_io *io; 574 struct dm_target_io *tio; 575 struct bio *clone; 576 577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 578 tio = clone_to_tio(clone); 579 tio->flags = 0; 580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 581 tio->io = NULL; 582 583 io = container_of(tio, struct dm_io, tio); 584 io->magic = DM_IO_MAGIC; 585 io->status = BLK_STS_OK; 586 587 /* one ref is for submission, the other is for completion */ 588 atomic_set(&io->io_count, 2); 589 this_cpu_inc(*md->pending_io); 590 io->orig_bio = bio; 591 io->md = md; 592 spin_lock_init(&io->lock); 593 io->start_time = jiffies; 594 io->flags = 0; 595 596 if (static_branch_unlikely(&stats_enabled)) 597 dm_stats_record_start(&md->stats, &io->stats_aux); 598 599 return io; 600 } 601 602 static void free_io(struct dm_io *io) 603 { 604 bio_put(&io->tio.clone); 605 } 606 607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 609 { 610 struct mapped_device *md = ci->io->md; 611 struct dm_target_io *tio; 612 struct bio *clone; 613 614 if (!ci->io->tio.io) { 615 /* the dm_target_io embedded in ci->io is available */ 616 tio = &ci->io->tio; 617 /* alloc_io() already initialized embedded clone */ 618 clone = &tio->clone; 619 } else { 620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 621 &md->mempools->bs); 622 if (!clone) 623 return NULL; 624 625 /* REQ_DM_POLL_LIST shouldn't be inherited */ 626 clone->bi_opf &= ~REQ_DM_POLL_LIST; 627 628 tio = clone_to_tio(clone); 629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 630 } 631 632 tio->magic = DM_TIO_MAGIC; 633 tio->io = ci->io; 634 tio->ti = ti; 635 tio->target_bio_nr = target_bio_nr; 636 tio->len_ptr = len; 637 tio->old_sector = 0; 638 639 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 640 clone->bi_bdev = md->disk->part0; 641 if (unlikely(ti->needs_bio_set_dev)) 642 bio_set_dev(clone, md->disk->part0); 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, blk_opf_t bio_opf) 715 { 716 if (bio_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 blk_opf_t bio_opf) 724 { 725 if (bio_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static struct table_device *open_table_device(struct mapped_device *md, 737 dev_t dev, blk_mode_t mode) 738 { 739 struct table_device *td; 740 struct block_device *bdev; 741 u64 part_off; 742 int r; 743 744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 745 if (!td) 746 return ERR_PTR(-ENOMEM); 747 refcount_set(&td->count, 1); 748 749 bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL); 750 if (IS_ERR(bdev)) { 751 r = PTR_ERR(bdev); 752 goto out_free_td; 753 } 754 755 /* 756 * We can be called before the dm disk is added. In that case we can't 757 * register the holder relation here. It will be done once add_disk was 758 * called. 759 */ 760 if (md->disk->slave_dir) { 761 r = bd_link_disk_holder(bdev, md->disk); 762 if (r) 763 goto out_blkdev_put; 764 } 765 766 td->dm_dev.mode = mode; 767 td->dm_dev.bdev = bdev; 768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 769 format_dev_t(td->dm_dev.name, dev); 770 list_add(&td->list, &md->table_devices); 771 return td; 772 773 out_blkdev_put: 774 blkdev_put(bdev, _dm_claim_ptr); 775 out_free_td: 776 kfree(td); 777 return ERR_PTR(r); 778 } 779 780 /* 781 * Close a table device that we've been using. 782 */ 783 static void close_table_device(struct table_device *td, struct mapped_device *md) 784 { 785 if (md->disk->slave_dir) 786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 787 blkdev_put(td->dm_dev.bdev, _dm_claim_ptr); 788 put_dax(td->dm_dev.dax_dev); 789 list_del(&td->list); 790 kfree(td); 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 blk_mode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 806 struct dm_dev **result) 807 { 808 struct table_device *td; 809 810 mutex_lock(&md->table_devices_lock); 811 td = find_table_device(&md->table_devices, dev, mode); 812 if (!td) { 813 td = open_table_device(md, dev, mode); 814 if (IS_ERR(td)) { 815 mutex_unlock(&md->table_devices_lock); 816 return PTR_ERR(td); 817 } 818 } else { 819 refcount_inc(&td->count); 820 } 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) 833 close_table_device(td, md); 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 /* 838 * Get the geometry associated with a dm device 839 */ 840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 841 { 842 *geo = md->geometry; 843 844 return 0; 845 } 846 847 /* 848 * Set the geometry of a device. 849 */ 850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 851 { 852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 853 854 if (geo->start > sz) { 855 DMERR("Start sector is beyond the geometry limits."); 856 return -EINVAL; 857 } 858 859 md->geometry = *geo; 860 861 return 0; 862 } 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 870 { 871 struct mapped_device *md = io->md; 872 873 if (first_stage) { 874 struct dm_io *next = md->requeue_list; 875 876 md->requeue_list = io; 877 io->next = next; 878 } else { 879 bio_list_add_head(&md->deferred, io->orig_bio); 880 } 881 } 882 883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 884 { 885 if (first_stage) 886 queue_work(md->wq, &md->requeue_work); 887 else 888 queue_work(md->wq, &md->work); 889 } 890 891 /* 892 * Return true if the dm_io's original bio is requeued. 893 * io->status is updated with error if requeue disallowed. 894 */ 895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 896 { 897 struct bio *bio = io->orig_bio; 898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 900 (bio->bi_opf & REQ_POLLED)); 901 struct mapped_device *md = io->md; 902 bool requeued = false; 903 904 if (handle_requeue || handle_polled_eagain) { 905 unsigned long flags; 906 907 if (bio->bi_opf & REQ_POLLED) { 908 /* 909 * Upper layer won't help us poll split bio 910 * (io->orig_bio may only reflect a subset of the 911 * pre-split original) so clear REQ_POLLED. 912 */ 913 bio_clear_polled(bio); 914 } 915 916 /* 917 * Target requested pushing back the I/O or 918 * polled IO hit BLK_STS_AGAIN. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if ((__noflush_suspending(md) && 922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 923 handle_polled_eagain || first_stage) { 924 dm_requeue_add_io(io, first_stage); 925 requeued = true; 926 } else { 927 /* 928 * noflush suspend was interrupted or this is 929 * a write to a zoned target. 930 */ 931 io->status = BLK_STS_IOERR; 932 } 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 if (requeued) 937 dm_kick_requeue(md, first_stage); 938 939 return requeued; 940 } 941 942 static void __dm_io_complete(struct dm_io *io, bool first_stage) 943 { 944 struct bio *bio = io->orig_bio; 945 struct mapped_device *md = io->md; 946 blk_status_t io_error; 947 bool requeued; 948 949 requeued = dm_handle_requeue(io, first_stage); 950 if (requeued && first_stage) 951 return; 952 953 io_error = io->status; 954 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 955 dm_end_io_acct(io); 956 else if (!io_error) { 957 /* 958 * Must handle target that DM_MAPIO_SUBMITTED only to 959 * then bio_endio() rather than dm_submit_bio_remap() 960 */ 961 __dm_start_io_acct(io); 962 dm_end_io_acct(io); 963 } 964 free_io(io); 965 smp_wmb(); 966 this_cpu_dec(*md->pending_io); 967 968 /* nudge anyone waiting on suspend queue */ 969 if (unlikely(wq_has_sleeper(&md->wait))) 970 wake_up(&md->wait); 971 972 /* Return early if the original bio was requeued */ 973 if (requeued) 974 return; 975 976 if (bio_is_flush_with_data(bio)) { 977 /* 978 * Preflush done for flush with data, reissue 979 * without REQ_PREFLUSH. 980 */ 981 bio->bi_opf &= ~REQ_PREFLUSH; 982 queue_io(md, bio); 983 } else { 984 /* done with normal IO or empty flush */ 985 if (io_error) 986 bio->bi_status = io_error; 987 bio_endio(bio); 988 } 989 } 990 991 static void dm_wq_requeue_work(struct work_struct *work) 992 { 993 struct mapped_device *md = container_of(work, struct mapped_device, 994 requeue_work); 995 unsigned long flags; 996 struct dm_io *io; 997 998 /* reuse deferred lock to simplify dm_handle_requeue */ 999 spin_lock_irqsave(&md->deferred_lock, flags); 1000 io = md->requeue_list; 1001 md->requeue_list = NULL; 1002 spin_unlock_irqrestore(&md->deferred_lock, flags); 1003 1004 while (io) { 1005 struct dm_io *next = io->next; 1006 1007 dm_io_rewind(io, &md->disk->bio_split); 1008 1009 io->next = NULL; 1010 __dm_io_complete(io, false); 1011 io = next; 1012 cond_resched(); 1013 } 1014 } 1015 1016 /* 1017 * Two staged requeue: 1018 * 1019 * 1) io->orig_bio points to the real original bio, and the part mapped to 1020 * this io must be requeued, instead of other parts of the original bio. 1021 * 1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1023 */ 1024 static void dm_io_complete(struct dm_io *io) 1025 { 1026 bool first_requeue; 1027 1028 /* 1029 * Only dm_io that has been split needs two stage requeue, otherwise 1030 * we may run into long bio clone chain during suspend and OOM could 1031 * be triggered. 1032 * 1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1034 * also aren't handled via the first stage requeue. 1035 */ 1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1037 first_requeue = true; 1038 else 1039 first_requeue = false; 1040 1041 __dm_io_complete(io, first_requeue); 1042 } 1043 1044 /* 1045 * Decrements the number of outstanding ios that a bio has been 1046 * cloned into, completing the original io if necc. 1047 */ 1048 static inline void __dm_io_dec_pending(struct dm_io *io) 1049 { 1050 if (atomic_dec_and_test(&io->io_count)) 1051 dm_io_complete(io); 1052 } 1053 1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1055 { 1056 unsigned long flags; 1057 1058 /* Push-back supersedes any I/O errors */ 1059 spin_lock_irqsave(&io->lock, flags); 1060 if (!(io->status == BLK_STS_DM_REQUEUE && 1061 __noflush_suspending(io->md))) { 1062 io->status = error; 1063 } 1064 spin_unlock_irqrestore(&io->lock, flags); 1065 } 1066 1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1068 { 1069 if (unlikely(error)) 1070 dm_io_set_error(io, error); 1071 1072 __dm_io_dec_pending(io); 1073 } 1074 1075 /* 1076 * The queue_limits are only valid as long as you have a reference 1077 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1078 */ 1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1080 { 1081 return &md->queue->limits; 1082 } 1083 1084 void disable_discard(struct mapped_device *md) 1085 { 1086 struct queue_limits *limits = dm_get_queue_limits(md); 1087 1088 /* device doesn't really support DISCARD, disable it */ 1089 limits->max_discard_sectors = 0; 1090 } 1091 1092 void disable_write_zeroes(struct mapped_device *md) 1093 { 1094 struct queue_limits *limits = dm_get_queue_limits(md); 1095 1096 /* device doesn't really support WRITE ZEROES, disable it */ 1097 limits->max_write_zeroes_sectors = 0; 1098 } 1099 1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1101 { 1102 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1103 } 1104 1105 static void clone_endio(struct bio *bio) 1106 { 1107 blk_status_t error = bio->bi_status; 1108 struct dm_target_io *tio = clone_to_tio(bio); 1109 struct dm_target *ti = tio->ti; 1110 dm_endio_fn endio = ti->type->end_io; 1111 struct dm_io *io = tio->io; 1112 struct mapped_device *md = io->md; 1113 1114 if (unlikely(error == BLK_STS_TARGET)) { 1115 if (bio_op(bio) == REQ_OP_DISCARD && 1116 !bdev_max_discard_sectors(bio->bi_bdev)) 1117 disable_discard(md); 1118 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1119 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1120 disable_write_zeroes(md); 1121 } 1122 1123 if (static_branch_unlikely(&zoned_enabled) && 1124 unlikely(bdev_is_zoned(bio->bi_bdev))) 1125 dm_zone_endio(io, bio); 1126 1127 if (endio) { 1128 int r = endio(ti, bio, &error); 1129 1130 switch (r) { 1131 case DM_ENDIO_REQUEUE: 1132 if (static_branch_unlikely(&zoned_enabled)) { 1133 /* 1134 * Requeuing writes to a sequential zone of a zoned 1135 * target will break the sequential write pattern: 1136 * fail such IO. 1137 */ 1138 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1139 error = BLK_STS_IOERR; 1140 else 1141 error = BLK_STS_DM_REQUEUE; 1142 } else 1143 error = BLK_STS_DM_REQUEUE; 1144 fallthrough; 1145 case DM_ENDIO_DONE: 1146 break; 1147 case DM_ENDIO_INCOMPLETE: 1148 /* The target will handle the io */ 1149 return; 1150 default: 1151 DMCRIT("unimplemented target endio return value: %d", r); 1152 BUG(); 1153 } 1154 } 1155 1156 if (static_branch_unlikely(&swap_bios_enabled) && 1157 unlikely(swap_bios_limit(ti, bio))) 1158 up(&md->swap_bios_semaphore); 1159 1160 free_tio(bio); 1161 dm_io_dec_pending(io, error); 1162 } 1163 1164 /* 1165 * Return maximum size of I/O possible at the supplied sector up to the current 1166 * target boundary. 1167 */ 1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1169 sector_t target_offset) 1170 { 1171 return ti->len - target_offset; 1172 } 1173 1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1175 unsigned int max_granularity, 1176 unsigned int max_sectors) 1177 { 1178 sector_t target_offset = dm_target_offset(ti, sector); 1179 sector_t len = max_io_len_target_boundary(ti, target_offset); 1180 1181 /* 1182 * Does the target need to split IO even further? 1183 * - varied (per target) IO splitting is a tenet of DM; this 1184 * explains why stacked chunk_sectors based splitting via 1185 * bio_split_to_limits() isn't possible here. 1186 */ 1187 if (!max_granularity) 1188 return len; 1189 return min_t(sector_t, len, 1190 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1191 blk_chunk_sectors_left(target_offset, max_granularity))); 1192 } 1193 1194 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1195 { 1196 return __max_io_len(ti, sector, ti->max_io_len, 0); 1197 } 1198 1199 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1200 { 1201 if (len > UINT_MAX) { 1202 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1203 (unsigned long long)len, UINT_MAX); 1204 ti->error = "Maximum size of target IO is too large"; 1205 return -EINVAL; 1206 } 1207 1208 ti->max_io_len = (uint32_t) len; 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1213 1214 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1215 sector_t sector, int *srcu_idx) 1216 __acquires(md->io_barrier) 1217 { 1218 struct dm_table *map; 1219 struct dm_target *ti; 1220 1221 map = dm_get_live_table(md, srcu_idx); 1222 if (!map) 1223 return NULL; 1224 1225 ti = dm_table_find_target(map, sector); 1226 if (!ti) 1227 return NULL; 1228 1229 return ti; 1230 } 1231 1232 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1233 long nr_pages, enum dax_access_mode mode, void **kaddr, 1234 pfn_t *pfn) 1235 { 1236 struct mapped_device *md = dax_get_private(dax_dev); 1237 sector_t sector = pgoff * PAGE_SECTORS; 1238 struct dm_target *ti; 1239 long len, ret = -EIO; 1240 int srcu_idx; 1241 1242 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1243 1244 if (!ti) 1245 goto out; 1246 if (!ti->type->direct_access) 1247 goto out; 1248 len = max_io_len(ti, sector) / PAGE_SECTORS; 1249 if (len < 1) 1250 goto out; 1251 nr_pages = min(len, nr_pages); 1252 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1253 1254 out: 1255 dm_put_live_table(md, srcu_idx); 1256 1257 return ret; 1258 } 1259 1260 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1261 size_t nr_pages) 1262 { 1263 struct mapped_device *md = dax_get_private(dax_dev); 1264 sector_t sector = pgoff * PAGE_SECTORS; 1265 struct dm_target *ti; 1266 int ret = -EIO; 1267 int srcu_idx; 1268 1269 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1270 1271 if (!ti) 1272 goto out; 1273 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1274 /* 1275 * ->zero_page_range() is mandatory dax operation. If we are 1276 * here, something is wrong. 1277 */ 1278 goto out; 1279 } 1280 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1281 out: 1282 dm_put_live_table(md, srcu_idx); 1283 1284 return ret; 1285 } 1286 1287 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1288 void *addr, size_t bytes, struct iov_iter *i) 1289 { 1290 struct mapped_device *md = dax_get_private(dax_dev); 1291 sector_t sector = pgoff * PAGE_SECTORS; 1292 struct dm_target *ti; 1293 int srcu_idx; 1294 long ret = 0; 1295 1296 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1297 if (!ti || !ti->type->dax_recovery_write) 1298 goto out; 1299 1300 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1301 out: 1302 dm_put_live_table(md, srcu_idx); 1303 return ret; 1304 } 1305 1306 /* 1307 * A target may call dm_accept_partial_bio only from the map routine. It is 1308 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1309 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1310 * __send_duplicate_bios(). 1311 * 1312 * dm_accept_partial_bio informs the dm that the target only wants to process 1313 * additional n_sectors sectors of the bio and the rest of the data should be 1314 * sent in a next bio. 1315 * 1316 * A diagram that explains the arithmetics: 1317 * +--------------------+---------------+-------+ 1318 * | 1 | 2 | 3 | 1319 * +--------------------+---------------+-------+ 1320 * 1321 * <-------------- *tio->len_ptr ---------------> 1322 * <----- bio_sectors -----> 1323 * <-- n_sectors --> 1324 * 1325 * Region 1 was already iterated over with bio_advance or similar function. 1326 * (it may be empty if the target doesn't use bio_advance) 1327 * Region 2 is the remaining bio size that the target wants to process. 1328 * (it may be empty if region 1 is non-empty, although there is no reason 1329 * to make it empty) 1330 * The target requires that region 3 is to be sent in the next bio. 1331 * 1332 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1333 * the partially processed part (the sum of regions 1+2) must be the same for all 1334 * copies of the bio. 1335 */ 1336 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1337 { 1338 struct dm_target_io *tio = clone_to_tio(bio); 1339 struct dm_io *io = tio->io; 1340 unsigned int bio_sectors = bio_sectors(bio); 1341 1342 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1343 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1344 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1345 BUG_ON(bio_sectors > *tio->len_ptr); 1346 BUG_ON(n_sectors > bio_sectors); 1347 1348 *tio->len_ptr -= bio_sectors - n_sectors; 1349 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1350 1351 /* 1352 * __split_and_process_bio() may have already saved mapped part 1353 * for accounting but it is being reduced so update accordingly. 1354 */ 1355 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1356 io->sectors = n_sectors; 1357 io->sector_offset = bio_sectors(io->orig_bio); 1358 } 1359 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1360 1361 /* 1362 * @clone: clone bio that DM core passed to target's .map function 1363 * @tgt_clone: clone of @clone bio that target needs submitted 1364 * 1365 * Targets should use this interface to submit bios they take 1366 * ownership of when returning DM_MAPIO_SUBMITTED. 1367 * 1368 * Target should also enable ti->accounts_remapped_io 1369 */ 1370 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1371 { 1372 struct dm_target_io *tio = clone_to_tio(clone); 1373 struct dm_io *io = tio->io; 1374 1375 /* establish bio that will get submitted */ 1376 if (!tgt_clone) 1377 tgt_clone = clone; 1378 1379 /* 1380 * Account io->origin_bio to DM dev on behalf of target 1381 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1382 */ 1383 dm_start_io_acct(io, clone); 1384 1385 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1386 tio->old_sector); 1387 submit_bio_noacct(tgt_clone); 1388 } 1389 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1390 1391 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1392 { 1393 mutex_lock(&md->swap_bios_lock); 1394 while (latch < md->swap_bios) { 1395 cond_resched(); 1396 down(&md->swap_bios_semaphore); 1397 md->swap_bios--; 1398 } 1399 while (latch > md->swap_bios) { 1400 cond_resched(); 1401 up(&md->swap_bios_semaphore); 1402 md->swap_bios++; 1403 } 1404 mutex_unlock(&md->swap_bios_lock); 1405 } 1406 1407 static void __map_bio(struct bio *clone) 1408 { 1409 struct dm_target_io *tio = clone_to_tio(clone); 1410 struct dm_target *ti = tio->ti; 1411 struct dm_io *io = tio->io; 1412 struct mapped_device *md = io->md; 1413 int r; 1414 1415 clone->bi_end_io = clone_endio; 1416 1417 /* 1418 * Map the clone. 1419 */ 1420 tio->old_sector = clone->bi_iter.bi_sector; 1421 1422 if (static_branch_unlikely(&swap_bios_enabled) && 1423 unlikely(swap_bios_limit(ti, clone))) { 1424 int latch = get_swap_bios(); 1425 1426 if (unlikely(latch != md->swap_bios)) 1427 __set_swap_bios_limit(md, latch); 1428 down(&md->swap_bios_semaphore); 1429 } 1430 1431 if (static_branch_unlikely(&zoned_enabled)) { 1432 /* 1433 * Check if the IO needs a special mapping due to zone append 1434 * emulation on zoned target. In this case, dm_zone_map_bio() 1435 * calls the target map operation. 1436 */ 1437 if (unlikely(dm_emulate_zone_append(md))) 1438 r = dm_zone_map_bio(tio); 1439 else 1440 r = ti->type->map(ti, clone); 1441 } else 1442 r = ti->type->map(ti, clone); 1443 1444 switch (r) { 1445 case DM_MAPIO_SUBMITTED: 1446 /* target has assumed ownership of this io */ 1447 if (!ti->accounts_remapped_io) 1448 dm_start_io_acct(io, clone); 1449 break; 1450 case DM_MAPIO_REMAPPED: 1451 dm_submit_bio_remap(clone, NULL); 1452 break; 1453 case DM_MAPIO_KILL: 1454 case DM_MAPIO_REQUEUE: 1455 if (static_branch_unlikely(&swap_bios_enabled) && 1456 unlikely(swap_bios_limit(ti, clone))) 1457 up(&md->swap_bios_semaphore); 1458 free_tio(clone); 1459 if (r == DM_MAPIO_KILL) 1460 dm_io_dec_pending(io, BLK_STS_IOERR); 1461 else 1462 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1463 break; 1464 default: 1465 DMCRIT("unimplemented target map return value: %d", r); 1466 BUG(); 1467 } 1468 } 1469 1470 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1471 { 1472 struct dm_io *io = ci->io; 1473 1474 if (ci->sector_count > len) { 1475 /* 1476 * Split needed, save the mapped part for accounting. 1477 * NOTE: dm_accept_partial_bio() will update accordingly. 1478 */ 1479 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1480 io->sectors = len; 1481 io->sector_offset = bio_sectors(ci->bio); 1482 } 1483 } 1484 1485 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1486 struct dm_target *ti, unsigned int num_bios, 1487 unsigned *len) 1488 { 1489 struct bio *bio; 1490 int try; 1491 1492 for (try = 0; try < 2; try++) { 1493 int bio_nr; 1494 1495 if (try) 1496 mutex_lock(&ci->io->md->table_devices_lock); 1497 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1498 bio = alloc_tio(ci, ti, bio_nr, len, 1499 try ? GFP_NOIO : GFP_NOWAIT); 1500 if (!bio) 1501 break; 1502 1503 bio_list_add(blist, bio); 1504 } 1505 if (try) 1506 mutex_unlock(&ci->io->md->table_devices_lock); 1507 if (bio_nr == num_bios) 1508 return; 1509 1510 while ((bio = bio_list_pop(blist))) 1511 free_tio(bio); 1512 } 1513 } 1514 1515 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1516 unsigned int num_bios, unsigned int *len) 1517 { 1518 struct bio_list blist = BIO_EMPTY_LIST; 1519 struct bio *clone; 1520 unsigned int ret = 0; 1521 1522 switch (num_bios) { 1523 case 0: 1524 break; 1525 case 1: 1526 if (len) 1527 setup_split_accounting(ci, *len); 1528 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1529 __map_bio(clone); 1530 ret = 1; 1531 break; 1532 default: 1533 if (len) 1534 setup_split_accounting(ci, *len); 1535 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1536 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1537 while ((clone = bio_list_pop(&blist))) { 1538 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1539 __map_bio(clone); 1540 ret += 1; 1541 } 1542 break; 1543 } 1544 1545 return ret; 1546 } 1547 1548 static void __send_empty_flush(struct clone_info *ci) 1549 { 1550 struct dm_table *t = ci->map; 1551 struct bio flush_bio; 1552 1553 /* 1554 * Use an on-stack bio for this, it's safe since we don't 1555 * need to reference it after submit. It's just used as 1556 * the basis for the clone(s). 1557 */ 1558 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1559 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1560 1561 ci->bio = &flush_bio; 1562 ci->sector_count = 0; 1563 ci->io->tio.clone.bi_iter.bi_size = 0; 1564 1565 for (unsigned int i = 0; i < t->num_targets; i++) { 1566 unsigned int bios; 1567 struct dm_target *ti = dm_table_get_target(t, i); 1568 1569 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1570 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1571 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1572 } 1573 1574 /* 1575 * alloc_io() takes one extra reference for submission, so the 1576 * reference won't reach 0 without the following subtraction 1577 */ 1578 atomic_sub(1, &ci->io->io_count); 1579 1580 bio_uninit(ci->bio); 1581 } 1582 1583 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1584 unsigned int num_bios, 1585 unsigned int max_granularity, 1586 unsigned int max_sectors) 1587 { 1588 unsigned int len, bios; 1589 1590 len = min_t(sector_t, ci->sector_count, 1591 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1592 1593 atomic_add(num_bios, &ci->io->io_count); 1594 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1595 /* 1596 * alloc_io() takes one extra reference for submission, so the 1597 * reference won't reach 0 without the following (+1) subtraction 1598 */ 1599 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1600 1601 ci->sector += len; 1602 ci->sector_count -= len; 1603 } 1604 1605 static bool is_abnormal_io(struct bio *bio) 1606 { 1607 enum req_op op = bio_op(bio); 1608 1609 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1610 switch (op) { 1611 case REQ_OP_DISCARD: 1612 case REQ_OP_SECURE_ERASE: 1613 case REQ_OP_WRITE_ZEROES: 1614 return true; 1615 default: 1616 break; 1617 } 1618 } 1619 1620 return false; 1621 } 1622 1623 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1624 struct dm_target *ti) 1625 { 1626 unsigned int num_bios = 0; 1627 unsigned int max_granularity = 0; 1628 unsigned int max_sectors = 0; 1629 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1630 1631 switch (bio_op(ci->bio)) { 1632 case REQ_OP_DISCARD: 1633 num_bios = ti->num_discard_bios; 1634 max_sectors = limits->max_discard_sectors; 1635 if (ti->max_discard_granularity) 1636 max_granularity = max_sectors; 1637 break; 1638 case REQ_OP_SECURE_ERASE: 1639 num_bios = ti->num_secure_erase_bios; 1640 max_sectors = limits->max_secure_erase_sectors; 1641 if (ti->max_secure_erase_granularity) 1642 max_granularity = max_sectors; 1643 break; 1644 case REQ_OP_WRITE_ZEROES: 1645 num_bios = ti->num_write_zeroes_bios; 1646 max_sectors = limits->max_write_zeroes_sectors; 1647 if (ti->max_write_zeroes_granularity) 1648 max_granularity = max_sectors; 1649 break; 1650 default: 1651 break; 1652 } 1653 1654 /* 1655 * Even though the device advertised support for this type of 1656 * request, that does not mean every target supports it, and 1657 * reconfiguration might also have changed that since the 1658 * check was performed. 1659 */ 1660 if (unlikely(!num_bios)) 1661 return BLK_STS_NOTSUPP; 1662 1663 __send_changing_extent_only(ci, ti, num_bios, 1664 max_granularity, max_sectors); 1665 return BLK_STS_OK; 1666 } 1667 1668 /* 1669 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1670 * associated with this bio, and this bio's bi_private needs to be 1671 * stored in dm_io->data before the reuse. 1672 * 1673 * bio->bi_private is owned by fs or upper layer, so block layer won't 1674 * touch it after splitting. Meantime it won't be changed by anyone after 1675 * bio is submitted. So this reuse is safe. 1676 */ 1677 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1678 { 1679 return (struct dm_io **)&bio->bi_private; 1680 } 1681 1682 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1683 { 1684 struct dm_io **head = dm_poll_list_head(bio); 1685 1686 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1687 bio->bi_opf |= REQ_DM_POLL_LIST; 1688 /* 1689 * Save .bi_private into dm_io, so that we can reuse 1690 * .bi_private as dm_io list head for storing dm_io list 1691 */ 1692 io->data = bio->bi_private; 1693 1694 /* tell block layer to poll for completion */ 1695 bio->bi_cookie = ~BLK_QC_T_NONE; 1696 1697 io->next = NULL; 1698 } else { 1699 /* 1700 * bio recursed due to split, reuse original poll list, 1701 * and save bio->bi_private too. 1702 */ 1703 io->data = (*head)->data; 1704 io->next = *head; 1705 } 1706 1707 *head = io; 1708 } 1709 1710 /* 1711 * Select the correct strategy for processing a non-flush bio. 1712 */ 1713 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1714 { 1715 struct bio *clone; 1716 struct dm_target *ti; 1717 unsigned int len; 1718 1719 ti = dm_table_find_target(ci->map, ci->sector); 1720 if (unlikely(!ti)) 1721 return BLK_STS_IOERR; 1722 1723 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1724 unlikely(!dm_target_supports_nowait(ti->type))) 1725 return BLK_STS_NOTSUPP; 1726 1727 if (unlikely(ci->is_abnormal_io)) 1728 return __process_abnormal_io(ci, ti); 1729 1730 /* 1731 * Only support bio polling for normal IO, and the target io is 1732 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1733 */ 1734 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1735 1736 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1737 setup_split_accounting(ci, len); 1738 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1739 __map_bio(clone); 1740 1741 ci->sector += len; 1742 ci->sector_count -= len; 1743 1744 return BLK_STS_OK; 1745 } 1746 1747 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1748 struct dm_table *map, struct bio *bio, bool is_abnormal) 1749 { 1750 ci->map = map; 1751 ci->io = alloc_io(md, bio); 1752 ci->bio = bio; 1753 ci->is_abnormal_io = is_abnormal; 1754 ci->submit_as_polled = false; 1755 ci->sector = bio->bi_iter.bi_sector; 1756 ci->sector_count = bio_sectors(bio); 1757 1758 /* Shouldn't happen but sector_count was being set to 0 so... */ 1759 if (static_branch_unlikely(&zoned_enabled) && 1760 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1761 ci->sector_count = 0; 1762 } 1763 1764 /* 1765 * Entry point to split a bio into clones and submit them to the targets. 1766 */ 1767 static void dm_split_and_process_bio(struct mapped_device *md, 1768 struct dm_table *map, struct bio *bio) 1769 { 1770 struct clone_info ci; 1771 struct dm_io *io; 1772 blk_status_t error = BLK_STS_OK; 1773 bool is_abnormal; 1774 1775 is_abnormal = is_abnormal_io(bio); 1776 if (unlikely(is_abnormal)) { 1777 /* 1778 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1779 * otherwise associated queue_limits won't be imposed. 1780 */ 1781 bio = bio_split_to_limits(bio); 1782 if (!bio) 1783 return; 1784 } 1785 1786 init_clone_info(&ci, md, map, bio, is_abnormal); 1787 io = ci.io; 1788 1789 if (bio->bi_opf & REQ_PREFLUSH) { 1790 __send_empty_flush(&ci); 1791 /* dm_io_complete submits any data associated with flush */ 1792 goto out; 1793 } 1794 1795 error = __split_and_process_bio(&ci); 1796 if (error || !ci.sector_count) 1797 goto out; 1798 /* 1799 * Remainder must be passed to submit_bio_noacct() so it gets handled 1800 * *after* bios already submitted have been completely processed. 1801 */ 1802 bio_trim(bio, io->sectors, ci.sector_count); 1803 trace_block_split(bio, bio->bi_iter.bi_sector); 1804 bio_inc_remaining(bio); 1805 submit_bio_noacct(bio); 1806 out: 1807 /* 1808 * Drop the extra reference count for non-POLLED bio, and hold one 1809 * reference for POLLED bio, which will be released in dm_poll_bio 1810 * 1811 * Add every dm_io instance into the dm_io list head which is stored 1812 * in bio->bi_private, so that dm_poll_bio can poll them all. 1813 */ 1814 if (error || !ci.submit_as_polled) { 1815 /* 1816 * In case of submission failure, the extra reference for 1817 * submitting io isn't consumed yet 1818 */ 1819 if (error) 1820 atomic_dec(&io->io_count); 1821 dm_io_dec_pending(io, error); 1822 } else 1823 dm_queue_poll_io(bio, io); 1824 } 1825 1826 static void dm_submit_bio(struct bio *bio) 1827 { 1828 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1829 int srcu_idx; 1830 struct dm_table *map; 1831 blk_opf_t bio_opf = bio->bi_opf; 1832 1833 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1834 1835 /* If suspended, or map not yet available, queue this IO for later */ 1836 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1837 unlikely(!map)) { 1838 if (bio->bi_opf & REQ_NOWAIT) 1839 bio_wouldblock_error(bio); 1840 else if (bio->bi_opf & REQ_RAHEAD) 1841 bio_io_error(bio); 1842 else 1843 queue_io(md, bio); 1844 goto out; 1845 } 1846 1847 dm_split_and_process_bio(md, map, bio); 1848 out: 1849 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1850 } 1851 1852 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1853 unsigned int flags) 1854 { 1855 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1856 1857 /* don't poll if the mapped io is done */ 1858 if (atomic_read(&io->io_count) > 1) 1859 bio_poll(&io->tio.clone, iob, flags); 1860 1861 /* bio_poll holds the last reference */ 1862 return atomic_read(&io->io_count) == 1; 1863 } 1864 1865 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1866 unsigned int flags) 1867 { 1868 struct dm_io **head = dm_poll_list_head(bio); 1869 struct dm_io *list = *head; 1870 struct dm_io *tmp = NULL; 1871 struct dm_io *curr, *next; 1872 1873 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1874 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1875 return 0; 1876 1877 WARN_ON_ONCE(!list); 1878 1879 /* 1880 * Restore .bi_private before possibly completing dm_io. 1881 * 1882 * bio_poll() is only possible once @bio has been completely 1883 * submitted via submit_bio_noacct()'s depth-first submission. 1884 * So there is no dm_queue_poll_io() race associated with 1885 * clearing REQ_DM_POLL_LIST here. 1886 */ 1887 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1888 bio->bi_private = list->data; 1889 1890 for (curr = list, next = curr->next; curr; curr = next, next = 1891 curr ? curr->next : NULL) { 1892 if (dm_poll_dm_io(curr, iob, flags)) { 1893 /* 1894 * clone_endio() has already occurred, so no 1895 * error handling is needed here. 1896 */ 1897 __dm_io_dec_pending(curr); 1898 } else { 1899 curr->next = tmp; 1900 tmp = curr; 1901 } 1902 } 1903 1904 /* Not done? */ 1905 if (tmp) { 1906 bio->bi_opf |= REQ_DM_POLL_LIST; 1907 /* Reset bio->bi_private to dm_io list head */ 1908 *head = tmp; 1909 return 0; 1910 } 1911 return 1; 1912 } 1913 1914 /* 1915 *--------------------------------------------------------------- 1916 * An IDR is used to keep track of allocated minor numbers. 1917 *--------------------------------------------------------------- 1918 */ 1919 static void free_minor(int minor) 1920 { 1921 spin_lock(&_minor_lock); 1922 idr_remove(&_minor_idr, minor); 1923 spin_unlock(&_minor_lock); 1924 } 1925 1926 /* 1927 * See if the device with a specific minor # is free. 1928 */ 1929 static int specific_minor(int minor) 1930 { 1931 int r; 1932 1933 if (minor >= (1 << MINORBITS)) 1934 return -EINVAL; 1935 1936 idr_preload(GFP_KERNEL); 1937 spin_lock(&_minor_lock); 1938 1939 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1940 1941 spin_unlock(&_minor_lock); 1942 idr_preload_end(); 1943 if (r < 0) 1944 return r == -ENOSPC ? -EBUSY : r; 1945 return 0; 1946 } 1947 1948 static int next_free_minor(int *minor) 1949 { 1950 int r; 1951 1952 idr_preload(GFP_KERNEL); 1953 spin_lock(&_minor_lock); 1954 1955 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1956 1957 spin_unlock(&_minor_lock); 1958 idr_preload_end(); 1959 if (r < 0) 1960 return r; 1961 *minor = r; 1962 return 0; 1963 } 1964 1965 static const struct block_device_operations dm_blk_dops; 1966 static const struct block_device_operations dm_rq_blk_dops; 1967 static const struct dax_operations dm_dax_ops; 1968 1969 static void dm_wq_work(struct work_struct *work); 1970 1971 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1972 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1973 { 1974 dm_destroy_crypto_profile(q->crypto_profile); 1975 } 1976 1977 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1978 1979 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1980 { 1981 } 1982 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1983 1984 static void cleanup_mapped_device(struct mapped_device *md) 1985 { 1986 if (md->wq) 1987 destroy_workqueue(md->wq); 1988 dm_free_md_mempools(md->mempools); 1989 1990 if (md->dax_dev) { 1991 dax_remove_host(md->disk); 1992 kill_dax(md->dax_dev); 1993 put_dax(md->dax_dev); 1994 md->dax_dev = NULL; 1995 } 1996 1997 dm_cleanup_zoned_dev(md); 1998 if (md->disk) { 1999 spin_lock(&_minor_lock); 2000 md->disk->private_data = NULL; 2001 spin_unlock(&_minor_lock); 2002 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2003 struct table_device *td; 2004 2005 dm_sysfs_exit(md); 2006 list_for_each_entry(td, &md->table_devices, list) { 2007 bd_unlink_disk_holder(td->dm_dev.bdev, 2008 md->disk); 2009 } 2010 2011 /* 2012 * Hold lock to make sure del_gendisk() won't concurrent 2013 * with open/close_table_device(). 2014 */ 2015 mutex_lock(&md->table_devices_lock); 2016 del_gendisk(md->disk); 2017 mutex_unlock(&md->table_devices_lock); 2018 } 2019 dm_queue_destroy_crypto_profile(md->queue); 2020 put_disk(md->disk); 2021 } 2022 2023 if (md->pending_io) { 2024 free_percpu(md->pending_io); 2025 md->pending_io = NULL; 2026 } 2027 2028 cleanup_srcu_struct(&md->io_barrier); 2029 2030 mutex_destroy(&md->suspend_lock); 2031 mutex_destroy(&md->type_lock); 2032 mutex_destroy(&md->table_devices_lock); 2033 mutex_destroy(&md->swap_bios_lock); 2034 2035 dm_mq_cleanup_mapped_device(md); 2036 } 2037 2038 /* 2039 * Allocate and initialise a blank device with a given minor. 2040 */ 2041 static struct mapped_device *alloc_dev(int minor) 2042 { 2043 int r, numa_node_id = dm_get_numa_node(); 2044 struct mapped_device *md; 2045 void *old_md; 2046 2047 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2048 if (!md) { 2049 DMERR("unable to allocate device, out of memory."); 2050 return NULL; 2051 } 2052 2053 if (!try_module_get(THIS_MODULE)) 2054 goto bad_module_get; 2055 2056 /* get a minor number for the dev */ 2057 if (minor == DM_ANY_MINOR) 2058 r = next_free_minor(&minor); 2059 else 2060 r = specific_minor(minor); 2061 if (r < 0) 2062 goto bad_minor; 2063 2064 r = init_srcu_struct(&md->io_barrier); 2065 if (r < 0) 2066 goto bad_io_barrier; 2067 2068 md->numa_node_id = numa_node_id; 2069 md->init_tio_pdu = false; 2070 md->type = DM_TYPE_NONE; 2071 mutex_init(&md->suspend_lock); 2072 mutex_init(&md->type_lock); 2073 mutex_init(&md->table_devices_lock); 2074 spin_lock_init(&md->deferred_lock); 2075 atomic_set(&md->holders, 1); 2076 atomic_set(&md->open_count, 0); 2077 atomic_set(&md->event_nr, 0); 2078 atomic_set(&md->uevent_seq, 0); 2079 INIT_LIST_HEAD(&md->uevent_list); 2080 INIT_LIST_HEAD(&md->table_devices); 2081 spin_lock_init(&md->uevent_lock); 2082 2083 /* 2084 * default to bio-based until DM table is loaded and md->type 2085 * established. If request-based table is loaded: blk-mq will 2086 * override accordingly. 2087 */ 2088 md->disk = blk_alloc_disk(md->numa_node_id); 2089 if (!md->disk) 2090 goto bad; 2091 md->queue = md->disk->queue; 2092 2093 init_waitqueue_head(&md->wait); 2094 INIT_WORK(&md->work, dm_wq_work); 2095 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2096 init_waitqueue_head(&md->eventq); 2097 init_completion(&md->kobj_holder.completion); 2098 2099 md->requeue_list = NULL; 2100 md->swap_bios = get_swap_bios(); 2101 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2102 mutex_init(&md->swap_bios_lock); 2103 2104 md->disk->major = _major; 2105 md->disk->first_minor = minor; 2106 md->disk->minors = 1; 2107 md->disk->flags |= GENHD_FL_NO_PART; 2108 md->disk->fops = &dm_blk_dops; 2109 md->disk->private_data = md; 2110 sprintf(md->disk->disk_name, "dm-%d", minor); 2111 2112 if (IS_ENABLED(CONFIG_FS_DAX)) { 2113 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2114 if (IS_ERR(md->dax_dev)) { 2115 md->dax_dev = NULL; 2116 goto bad; 2117 } 2118 set_dax_nocache(md->dax_dev); 2119 set_dax_nomc(md->dax_dev); 2120 if (dax_add_host(md->dax_dev, md->disk)) 2121 goto bad; 2122 } 2123 2124 format_dev_t(md->name, MKDEV(_major, minor)); 2125 2126 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2127 if (!md->wq) 2128 goto bad; 2129 2130 md->pending_io = alloc_percpu(unsigned long); 2131 if (!md->pending_io) 2132 goto bad; 2133 2134 r = dm_stats_init(&md->stats); 2135 if (r < 0) 2136 goto bad; 2137 2138 /* Populate the mapping, nobody knows we exist yet */ 2139 spin_lock(&_minor_lock); 2140 old_md = idr_replace(&_minor_idr, md, minor); 2141 spin_unlock(&_minor_lock); 2142 2143 BUG_ON(old_md != MINOR_ALLOCED); 2144 2145 return md; 2146 2147 bad: 2148 cleanup_mapped_device(md); 2149 bad_io_barrier: 2150 free_minor(minor); 2151 bad_minor: 2152 module_put(THIS_MODULE); 2153 bad_module_get: 2154 kvfree(md); 2155 return NULL; 2156 } 2157 2158 static void unlock_fs(struct mapped_device *md); 2159 2160 static void free_dev(struct mapped_device *md) 2161 { 2162 int minor = MINOR(disk_devt(md->disk)); 2163 2164 unlock_fs(md); 2165 2166 cleanup_mapped_device(md); 2167 2168 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2169 dm_stats_cleanup(&md->stats); 2170 free_minor(minor); 2171 2172 module_put(THIS_MODULE); 2173 kvfree(md); 2174 } 2175 2176 /* 2177 * Bind a table to the device. 2178 */ 2179 static void event_callback(void *context) 2180 { 2181 unsigned long flags; 2182 LIST_HEAD(uevents); 2183 struct mapped_device *md = context; 2184 2185 spin_lock_irqsave(&md->uevent_lock, flags); 2186 list_splice_init(&md->uevent_list, &uevents); 2187 spin_unlock_irqrestore(&md->uevent_lock, flags); 2188 2189 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2190 2191 atomic_inc(&md->event_nr); 2192 wake_up(&md->eventq); 2193 dm_issue_global_event(); 2194 } 2195 2196 /* 2197 * Returns old map, which caller must destroy. 2198 */ 2199 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2200 struct queue_limits *limits) 2201 { 2202 struct dm_table *old_map; 2203 sector_t size; 2204 int ret; 2205 2206 lockdep_assert_held(&md->suspend_lock); 2207 2208 size = dm_table_get_size(t); 2209 2210 /* 2211 * Wipe any geometry if the size of the table changed. 2212 */ 2213 if (size != dm_get_size(md)) 2214 memset(&md->geometry, 0, sizeof(md->geometry)); 2215 2216 set_capacity(md->disk, size); 2217 2218 dm_table_event_callback(t, event_callback, md); 2219 2220 if (dm_table_request_based(t)) { 2221 /* 2222 * Leverage the fact that request-based DM targets are 2223 * immutable singletons - used to optimize dm_mq_queue_rq. 2224 */ 2225 md->immutable_target = dm_table_get_immutable_target(t); 2226 2227 /* 2228 * There is no need to reload with request-based dm because the 2229 * size of front_pad doesn't change. 2230 * 2231 * Note for future: If you are to reload bioset, prep-ed 2232 * requests in the queue may refer to bio from the old bioset, 2233 * so you must walk through the queue to unprep. 2234 */ 2235 if (!md->mempools) { 2236 md->mempools = t->mempools; 2237 t->mempools = NULL; 2238 } 2239 } else { 2240 /* 2241 * The md may already have mempools that need changing. 2242 * If so, reload bioset because front_pad may have changed 2243 * because a different table was loaded. 2244 */ 2245 dm_free_md_mempools(md->mempools); 2246 md->mempools = t->mempools; 2247 t->mempools = NULL; 2248 } 2249 2250 ret = dm_table_set_restrictions(t, md->queue, limits); 2251 if (ret) { 2252 old_map = ERR_PTR(ret); 2253 goto out; 2254 } 2255 2256 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2257 rcu_assign_pointer(md->map, (void *)t); 2258 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2259 2260 if (old_map) 2261 dm_sync_table(md); 2262 out: 2263 return old_map; 2264 } 2265 2266 /* 2267 * Returns unbound table for the caller to free. 2268 */ 2269 static struct dm_table *__unbind(struct mapped_device *md) 2270 { 2271 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2272 2273 if (!map) 2274 return NULL; 2275 2276 dm_table_event_callback(map, NULL, NULL); 2277 RCU_INIT_POINTER(md->map, NULL); 2278 dm_sync_table(md); 2279 2280 return map; 2281 } 2282 2283 /* 2284 * Constructor for a new device. 2285 */ 2286 int dm_create(int minor, struct mapped_device **result) 2287 { 2288 struct mapped_device *md; 2289 2290 md = alloc_dev(minor); 2291 if (!md) 2292 return -ENXIO; 2293 2294 dm_ima_reset_data(md); 2295 2296 *result = md; 2297 return 0; 2298 } 2299 2300 /* 2301 * Functions to manage md->type. 2302 * All are required to hold md->type_lock. 2303 */ 2304 void dm_lock_md_type(struct mapped_device *md) 2305 { 2306 mutex_lock(&md->type_lock); 2307 } 2308 2309 void dm_unlock_md_type(struct mapped_device *md) 2310 { 2311 mutex_unlock(&md->type_lock); 2312 } 2313 2314 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2315 { 2316 BUG_ON(!mutex_is_locked(&md->type_lock)); 2317 md->type = type; 2318 } 2319 2320 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2321 { 2322 return md->type; 2323 } 2324 2325 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2326 { 2327 return md->immutable_target_type; 2328 } 2329 2330 /* 2331 * Setup the DM device's queue based on md's type 2332 */ 2333 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2334 { 2335 enum dm_queue_mode type = dm_table_get_type(t); 2336 struct queue_limits limits; 2337 struct table_device *td; 2338 int r; 2339 2340 switch (type) { 2341 case DM_TYPE_REQUEST_BASED: 2342 md->disk->fops = &dm_rq_blk_dops; 2343 r = dm_mq_init_request_queue(md, t); 2344 if (r) { 2345 DMERR("Cannot initialize queue for request-based dm mapped device"); 2346 return r; 2347 } 2348 break; 2349 case DM_TYPE_BIO_BASED: 2350 case DM_TYPE_DAX_BIO_BASED: 2351 break; 2352 case DM_TYPE_NONE: 2353 WARN_ON_ONCE(true); 2354 break; 2355 } 2356 2357 r = dm_calculate_queue_limits(t, &limits); 2358 if (r) { 2359 DMERR("Cannot calculate initial queue limits"); 2360 return r; 2361 } 2362 r = dm_table_set_restrictions(t, md->queue, &limits); 2363 if (r) 2364 return r; 2365 2366 /* 2367 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2368 * with open_table_device() and close_table_device(). 2369 */ 2370 mutex_lock(&md->table_devices_lock); 2371 r = add_disk(md->disk); 2372 mutex_unlock(&md->table_devices_lock); 2373 if (r) 2374 return r; 2375 2376 /* 2377 * Register the holder relationship for devices added before the disk 2378 * was live. 2379 */ 2380 list_for_each_entry(td, &md->table_devices, list) { 2381 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2382 if (r) 2383 goto out_undo_holders; 2384 } 2385 2386 r = dm_sysfs_init(md); 2387 if (r) 2388 goto out_undo_holders; 2389 2390 md->type = type; 2391 return 0; 2392 2393 out_undo_holders: 2394 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2395 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2396 mutex_lock(&md->table_devices_lock); 2397 del_gendisk(md->disk); 2398 mutex_unlock(&md->table_devices_lock); 2399 return r; 2400 } 2401 2402 struct mapped_device *dm_get_md(dev_t dev) 2403 { 2404 struct mapped_device *md; 2405 unsigned int minor = MINOR(dev); 2406 2407 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2408 return NULL; 2409 2410 spin_lock(&_minor_lock); 2411 2412 md = idr_find(&_minor_idr, minor); 2413 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2414 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2415 md = NULL; 2416 goto out; 2417 } 2418 dm_get(md); 2419 out: 2420 spin_unlock(&_minor_lock); 2421 2422 return md; 2423 } 2424 EXPORT_SYMBOL_GPL(dm_get_md); 2425 2426 void *dm_get_mdptr(struct mapped_device *md) 2427 { 2428 return md->interface_ptr; 2429 } 2430 2431 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2432 { 2433 md->interface_ptr = ptr; 2434 } 2435 2436 void dm_get(struct mapped_device *md) 2437 { 2438 atomic_inc(&md->holders); 2439 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2440 } 2441 2442 int dm_hold(struct mapped_device *md) 2443 { 2444 spin_lock(&_minor_lock); 2445 if (test_bit(DMF_FREEING, &md->flags)) { 2446 spin_unlock(&_minor_lock); 2447 return -EBUSY; 2448 } 2449 dm_get(md); 2450 spin_unlock(&_minor_lock); 2451 return 0; 2452 } 2453 EXPORT_SYMBOL_GPL(dm_hold); 2454 2455 const char *dm_device_name(struct mapped_device *md) 2456 { 2457 return md->name; 2458 } 2459 EXPORT_SYMBOL_GPL(dm_device_name); 2460 2461 static void __dm_destroy(struct mapped_device *md, bool wait) 2462 { 2463 struct dm_table *map; 2464 int srcu_idx; 2465 2466 might_sleep(); 2467 2468 spin_lock(&_minor_lock); 2469 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2470 set_bit(DMF_FREEING, &md->flags); 2471 spin_unlock(&_minor_lock); 2472 2473 blk_mark_disk_dead(md->disk); 2474 2475 /* 2476 * Take suspend_lock so that presuspend and postsuspend methods 2477 * do not race with internal suspend. 2478 */ 2479 mutex_lock(&md->suspend_lock); 2480 map = dm_get_live_table(md, &srcu_idx); 2481 if (!dm_suspended_md(md)) { 2482 dm_table_presuspend_targets(map); 2483 set_bit(DMF_SUSPENDED, &md->flags); 2484 set_bit(DMF_POST_SUSPENDING, &md->flags); 2485 dm_table_postsuspend_targets(map); 2486 } 2487 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2488 dm_put_live_table(md, srcu_idx); 2489 mutex_unlock(&md->suspend_lock); 2490 2491 /* 2492 * Rare, but there may be I/O requests still going to complete, 2493 * for example. Wait for all references to disappear. 2494 * No one should increment the reference count of the mapped_device, 2495 * after the mapped_device state becomes DMF_FREEING. 2496 */ 2497 if (wait) 2498 while (atomic_read(&md->holders)) 2499 fsleep(1000); 2500 else if (atomic_read(&md->holders)) 2501 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2502 dm_device_name(md), atomic_read(&md->holders)); 2503 2504 dm_table_destroy(__unbind(md)); 2505 free_dev(md); 2506 } 2507 2508 void dm_destroy(struct mapped_device *md) 2509 { 2510 __dm_destroy(md, true); 2511 } 2512 2513 void dm_destroy_immediate(struct mapped_device *md) 2514 { 2515 __dm_destroy(md, false); 2516 } 2517 2518 void dm_put(struct mapped_device *md) 2519 { 2520 atomic_dec(&md->holders); 2521 } 2522 EXPORT_SYMBOL_GPL(dm_put); 2523 2524 static bool dm_in_flight_bios(struct mapped_device *md) 2525 { 2526 int cpu; 2527 unsigned long sum = 0; 2528 2529 for_each_possible_cpu(cpu) 2530 sum += *per_cpu_ptr(md->pending_io, cpu); 2531 2532 return sum != 0; 2533 } 2534 2535 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2536 { 2537 int r = 0; 2538 DEFINE_WAIT(wait); 2539 2540 while (true) { 2541 prepare_to_wait(&md->wait, &wait, task_state); 2542 2543 if (!dm_in_flight_bios(md)) 2544 break; 2545 2546 if (signal_pending_state(task_state, current)) { 2547 r = -EINTR; 2548 break; 2549 } 2550 2551 io_schedule(); 2552 } 2553 finish_wait(&md->wait, &wait); 2554 2555 smp_rmb(); 2556 2557 return r; 2558 } 2559 2560 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2561 { 2562 int r = 0; 2563 2564 if (!queue_is_mq(md->queue)) 2565 return dm_wait_for_bios_completion(md, task_state); 2566 2567 while (true) { 2568 if (!blk_mq_queue_inflight(md->queue)) 2569 break; 2570 2571 if (signal_pending_state(task_state, current)) { 2572 r = -EINTR; 2573 break; 2574 } 2575 2576 fsleep(5000); 2577 } 2578 2579 return r; 2580 } 2581 2582 /* 2583 * Process the deferred bios 2584 */ 2585 static void dm_wq_work(struct work_struct *work) 2586 { 2587 struct mapped_device *md = container_of(work, struct mapped_device, work); 2588 struct bio *bio; 2589 2590 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2591 spin_lock_irq(&md->deferred_lock); 2592 bio = bio_list_pop(&md->deferred); 2593 spin_unlock_irq(&md->deferred_lock); 2594 2595 if (!bio) 2596 break; 2597 2598 submit_bio_noacct(bio); 2599 cond_resched(); 2600 } 2601 } 2602 2603 static void dm_queue_flush(struct mapped_device *md) 2604 { 2605 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2606 smp_mb__after_atomic(); 2607 queue_work(md->wq, &md->work); 2608 } 2609 2610 /* 2611 * Swap in a new table, returning the old one for the caller to destroy. 2612 */ 2613 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2614 { 2615 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2616 struct queue_limits limits; 2617 int r; 2618 2619 mutex_lock(&md->suspend_lock); 2620 2621 /* device must be suspended */ 2622 if (!dm_suspended_md(md)) 2623 goto out; 2624 2625 /* 2626 * If the new table has no data devices, retain the existing limits. 2627 * This helps multipath with queue_if_no_path if all paths disappear, 2628 * then new I/O is queued based on these limits, and then some paths 2629 * reappear. 2630 */ 2631 if (dm_table_has_no_data_devices(table)) { 2632 live_map = dm_get_live_table_fast(md); 2633 if (live_map) 2634 limits = md->queue->limits; 2635 dm_put_live_table_fast(md); 2636 } 2637 2638 if (!live_map) { 2639 r = dm_calculate_queue_limits(table, &limits); 2640 if (r) { 2641 map = ERR_PTR(r); 2642 goto out; 2643 } 2644 } 2645 2646 map = __bind(md, table, &limits); 2647 dm_issue_global_event(); 2648 2649 out: 2650 mutex_unlock(&md->suspend_lock); 2651 return map; 2652 } 2653 2654 /* 2655 * Functions to lock and unlock any filesystem running on the 2656 * device. 2657 */ 2658 static int lock_fs(struct mapped_device *md) 2659 { 2660 int r; 2661 2662 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2663 2664 r = freeze_bdev(md->disk->part0); 2665 if (!r) 2666 set_bit(DMF_FROZEN, &md->flags); 2667 return r; 2668 } 2669 2670 static void unlock_fs(struct mapped_device *md) 2671 { 2672 if (!test_bit(DMF_FROZEN, &md->flags)) 2673 return; 2674 thaw_bdev(md->disk->part0); 2675 clear_bit(DMF_FROZEN, &md->flags); 2676 } 2677 2678 /* 2679 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2680 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2681 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2682 * 2683 * If __dm_suspend returns 0, the device is completely quiescent 2684 * now. There is no request-processing activity. All new requests 2685 * are being added to md->deferred list. 2686 */ 2687 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2688 unsigned int suspend_flags, unsigned int task_state, 2689 int dmf_suspended_flag) 2690 { 2691 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2692 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2693 int r; 2694 2695 lockdep_assert_held(&md->suspend_lock); 2696 2697 /* 2698 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2699 * This flag is cleared before dm_suspend returns. 2700 */ 2701 if (noflush) 2702 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2703 else 2704 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2705 2706 /* 2707 * This gets reverted if there's an error later and the targets 2708 * provide the .presuspend_undo hook. 2709 */ 2710 dm_table_presuspend_targets(map); 2711 2712 /* 2713 * Flush I/O to the device. 2714 * Any I/O submitted after lock_fs() may not be flushed. 2715 * noflush takes precedence over do_lockfs. 2716 * (lock_fs() flushes I/Os and waits for them to complete.) 2717 */ 2718 if (!noflush && do_lockfs) { 2719 r = lock_fs(md); 2720 if (r) { 2721 dm_table_presuspend_undo_targets(map); 2722 return r; 2723 } 2724 } 2725 2726 /* 2727 * Here we must make sure that no processes are submitting requests 2728 * to target drivers i.e. no one may be executing 2729 * dm_split_and_process_bio from dm_submit_bio. 2730 * 2731 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2732 * we take the write lock. To prevent any process from reentering 2733 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2734 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2735 * flush_workqueue(md->wq). 2736 */ 2737 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2738 if (map) 2739 synchronize_srcu(&md->io_barrier); 2740 2741 /* 2742 * Stop md->queue before flushing md->wq in case request-based 2743 * dm defers requests to md->wq from md->queue. 2744 */ 2745 if (dm_request_based(md)) 2746 dm_stop_queue(md->queue); 2747 2748 flush_workqueue(md->wq); 2749 2750 /* 2751 * At this point no more requests are entering target request routines. 2752 * We call dm_wait_for_completion to wait for all existing requests 2753 * to finish. 2754 */ 2755 r = dm_wait_for_completion(md, task_state); 2756 if (!r) 2757 set_bit(dmf_suspended_flag, &md->flags); 2758 2759 if (noflush) 2760 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2761 if (map) 2762 synchronize_srcu(&md->io_barrier); 2763 2764 /* were we interrupted ? */ 2765 if (r < 0) { 2766 dm_queue_flush(md); 2767 2768 if (dm_request_based(md)) 2769 dm_start_queue(md->queue); 2770 2771 unlock_fs(md); 2772 dm_table_presuspend_undo_targets(map); 2773 /* pushback list is already flushed, so skip flush */ 2774 } 2775 2776 return r; 2777 } 2778 2779 /* 2780 * We need to be able to change a mapping table under a mounted 2781 * filesystem. For example we might want to move some data in 2782 * the background. Before the table can be swapped with 2783 * dm_bind_table, dm_suspend must be called to flush any in 2784 * flight bios and ensure that any further io gets deferred. 2785 */ 2786 /* 2787 * Suspend mechanism in request-based dm. 2788 * 2789 * 1. Flush all I/Os by lock_fs() if needed. 2790 * 2. Stop dispatching any I/O by stopping the request_queue. 2791 * 3. Wait for all in-flight I/Os to be completed or requeued. 2792 * 2793 * To abort suspend, start the request_queue. 2794 */ 2795 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2796 { 2797 struct dm_table *map = NULL; 2798 int r = 0; 2799 2800 retry: 2801 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2802 2803 if (dm_suspended_md(md)) { 2804 r = -EINVAL; 2805 goto out_unlock; 2806 } 2807 2808 if (dm_suspended_internally_md(md)) { 2809 /* already internally suspended, wait for internal resume */ 2810 mutex_unlock(&md->suspend_lock); 2811 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2812 if (r) 2813 return r; 2814 goto retry; 2815 } 2816 2817 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2818 if (!map) { 2819 /* avoid deadlock with fs/namespace.c:do_mount() */ 2820 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2821 } 2822 2823 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2824 if (r) 2825 goto out_unlock; 2826 2827 set_bit(DMF_POST_SUSPENDING, &md->flags); 2828 dm_table_postsuspend_targets(map); 2829 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2830 2831 out_unlock: 2832 mutex_unlock(&md->suspend_lock); 2833 return r; 2834 } 2835 2836 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2837 { 2838 if (map) { 2839 int r = dm_table_resume_targets(map); 2840 2841 if (r) 2842 return r; 2843 } 2844 2845 dm_queue_flush(md); 2846 2847 /* 2848 * Flushing deferred I/Os must be done after targets are resumed 2849 * so that mapping of targets can work correctly. 2850 * Request-based dm is queueing the deferred I/Os in its request_queue. 2851 */ 2852 if (dm_request_based(md)) 2853 dm_start_queue(md->queue); 2854 2855 unlock_fs(md); 2856 2857 return 0; 2858 } 2859 2860 int dm_resume(struct mapped_device *md) 2861 { 2862 int r; 2863 struct dm_table *map = NULL; 2864 2865 retry: 2866 r = -EINVAL; 2867 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2868 2869 if (!dm_suspended_md(md)) 2870 goto out; 2871 2872 if (dm_suspended_internally_md(md)) { 2873 /* already internally suspended, wait for internal resume */ 2874 mutex_unlock(&md->suspend_lock); 2875 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2876 if (r) 2877 return r; 2878 goto retry; 2879 } 2880 2881 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2882 if (!map || !dm_table_get_size(map)) 2883 goto out; 2884 2885 r = __dm_resume(md, map); 2886 if (r) 2887 goto out; 2888 2889 clear_bit(DMF_SUSPENDED, &md->flags); 2890 out: 2891 mutex_unlock(&md->suspend_lock); 2892 2893 return r; 2894 } 2895 2896 /* 2897 * Internal suspend/resume works like userspace-driven suspend. It waits 2898 * until all bios finish and prevents issuing new bios to the target drivers. 2899 * It may be used only from the kernel. 2900 */ 2901 2902 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2903 { 2904 struct dm_table *map = NULL; 2905 2906 lockdep_assert_held(&md->suspend_lock); 2907 2908 if (md->internal_suspend_count++) 2909 return; /* nested internal suspend */ 2910 2911 if (dm_suspended_md(md)) { 2912 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2913 return; /* nest suspend */ 2914 } 2915 2916 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2917 2918 /* 2919 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2920 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2921 * would require changing .presuspend to return an error -- avoid this 2922 * until there is a need for more elaborate variants of internal suspend. 2923 */ 2924 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2925 DMF_SUSPENDED_INTERNALLY); 2926 2927 set_bit(DMF_POST_SUSPENDING, &md->flags); 2928 dm_table_postsuspend_targets(map); 2929 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2930 } 2931 2932 static void __dm_internal_resume(struct mapped_device *md) 2933 { 2934 BUG_ON(!md->internal_suspend_count); 2935 2936 if (--md->internal_suspend_count) 2937 return; /* resume from nested internal suspend */ 2938 2939 if (dm_suspended_md(md)) 2940 goto done; /* resume from nested suspend */ 2941 2942 /* 2943 * NOTE: existing callers don't need to call dm_table_resume_targets 2944 * (which may fail -- so best to avoid it for now by passing NULL map) 2945 */ 2946 (void) __dm_resume(md, NULL); 2947 2948 done: 2949 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2950 smp_mb__after_atomic(); 2951 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2952 } 2953 2954 void dm_internal_suspend_noflush(struct mapped_device *md) 2955 { 2956 mutex_lock(&md->suspend_lock); 2957 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2958 mutex_unlock(&md->suspend_lock); 2959 } 2960 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2961 2962 void dm_internal_resume(struct mapped_device *md) 2963 { 2964 mutex_lock(&md->suspend_lock); 2965 __dm_internal_resume(md); 2966 mutex_unlock(&md->suspend_lock); 2967 } 2968 EXPORT_SYMBOL_GPL(dm_internal_resume); 2969 2970 /* 2971 * Fast variants of internal suspend/resume hold md->suspend_lock, 2972 * which prevents interaction with userspace-driven suspend. 2973 */ 2974 2975 void dm_internal_suspend_fast(struct mapped_device *md) 2976 { 2977 mutex_lock(&md->suspend_lock); 2978 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2979 return; 2980 2981 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2982 synchronize_srcu(&md->io_barrier); 2983 flush_workqueue(md->wq); 2984 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2985 } 2986 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2987 2988 void dm_internal_resume_fast(struct mapped_device *md) 2989 { 2990 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2991 goto done; 2992 2993 dm_queue_flush(md); 2994 2995 done: 2996 mutex_unlock(&md->suspend_lock); 2997 } 2998 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2999 3000 /* 3001 *--------------------------------------------------------------- 3002 * Event notification. 3003 *--------------------------------------------------------------- 3004 */ 3005 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3006 unsigned int cookie, bool need_resize_uevent) 3007 { 3008 int r; 3009 unsigned int noio_flag; 3010 char udev_cookie[DM_COOKIE_LENGTH]; 3011 char *envp[3] = { NULL, NULL, NULL }; 3012 char **envpp = envp; 3013 if (cookie) { 3014 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3015 DM_COOKIE_ENV_VAR_NAME, cookie); 3016 *envpp++ = udev_cookie; 3017 } 3018 if (need_resize_uevent) { 3019 *envpp++ = "RESIZE=1"; 3020 } 3021 3022 noio_flag = memalloc_noio_save(); 3023 3024 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3025 3026 memalloc_noio_restore(noio_flag); 3027 3028 return r; 3029 } 3030 3031 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3032 { 3033 return atomic_add_return(1, &md->uevent_seq); 3034 } 3035 3036 uint32_t dm_get_event_nr(struct mapped_device *md) 3037 { 3038 return atomic_read(&md->event_nr); 3039 } 3040 3041 int dm_wait_event(struct mapped_device *md, int event_nr) 3042 { 3043 return wait_event_interruptible(md->eventq, 3044 (event_nr != atomic_read(&md->event_nr))); 3045 } 3046 3047 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3048 { 3049 unsigned long flags; 3050 3051 spin_lock_irqsave(&md->uevent_lock, flags); 3052 list_add(elist, &md->uevent_list); 3053 spin_unlock_irqrestore(&md->uevent_lock, flags); 3054 } 3055 3056 /* 3057 * The gendisk is only valid as long as you have a reference 3058 * count on 'md'. 3059 */ 3060 struct gendisk *dm_disk(struct mapped_device *md) 3061 { 3062 return md->disk; 3063 } 3064 EXPORT_SYMBOL_GPL(dm_disk); 3065 3066 struct kobject *dm_kobject(struct mapped_device *md) 3067 { 3068 return &md->kobj_holder.kobj; 3069 } 3070 3071 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3072 { 3073 struct mapped_device *md; 3074 3075 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3076 3077 spin_lock(&_minor_lock); 3078 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3079 md = NULL; 3080 goto out; 3081 } 3082 dm_get(md); 3083 out: 3084 spin_unlock(&_minor_lock); 3085 3086 return md; 3087 } 3088 3089 int dm_suspended_md(struct mapped_device *md) 3090 { 3091 return test_bit(DMF_SUSPENDED, &md->flags); 3092 } 3093 3094 static int dm_post_suspending_md(struct mapped_device *md) 3095 { 3096 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3097 } 3098 3099 int dm_suspended_internally_md(struct mapped_device *md) 3100 { 3101 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3102 } 3103 3104 int dm_test_deferred_remove_flag(struct mapped_device *md) 3105 { 3106 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3107 } 3108 3109 int dm_suspended(struct dm_target *ti) 3110 { 3111 return dm_suspended_md(ti->table->md); 3112 } 3113 EXPORT_SYMBOL_GPL(dm_suspended); 3114 3115 int dm_post_suspending(struct dm_target *ti) 3116 { 3117 return dm_post_suspending_md(ti->table->md); 3118 } 3119 EXPORT_SYMBOL_GPL(dm_post_suspending); 3120 3121 int dm_noflush_suspending(struct dm_target *ti) 3122 { 3123 return __noflush_suspending(ti->table->md); 3124 } 3125 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3126 3127 void dm_free_md_mempools(struct dm_md_mempools *pools) 3128 { 3129 if (!pools) 3130 return; 3131 3132 bioset_exit(&pools->bs); 3133 bioset_exit(&pools->io_bs); 3134 3135 kfree(pools); 3136 } 3137 3138 struct dm_pr { 3139 u64 old_key; 3140 u64 new_key; 3141 u32 flags; 3142 bool abort; 3143 bool fail_early; 3144 int ret; 3145 enum pr_type type; 3146 }; 3147 3148 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3149 struct dm_pr *pr) 3150 { 3151 struct mapped_device *md = bdev->bd_disk->private_data; 3152 struct dm_table *table; 3153 struct dm_target *ti; 3154 int ret = -ENOTTY, srcu_idx; 3155 3156 table = dm_get_live_table(md, &srcu_idx); 3157 if (!table || !dm_table_get_size(table)) 3158 goto out; 3159 3160 /* We only support devices that have a single target */ 3161 if (table->num_targets != 1) 3162 goto out; 3163 ti = dm_table_get_target(table, 0); 3164 3165 if (dm_suspended_md(md)) { 3166 ret = -EAGAIN; 3167 goto out; 3168 } 3169 3170 ret = -EINVAL; 3171 if (!ti->type->iterate_devices) 3172 goto out; 3173 3174 ti->type->iterate_devices(ti, fn, pr); 3175 ret = 0; 3176 out: 3177 dm_put_live_table(md, srcu_idx); 3178 return ret; 3179 } 3180 3181 /* 3182 * For register / unregister we need to manually call out to every path. 3183 */ 3184 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3185 sector_t start, sector_t len, void *data) 3186 { 3187 struct dm_pr *pr = data; 3188 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3189 int ret; 3190 3191 if (!ops || !ops->pr_register) { 3192 pr->ret = -EOPNOTSUPP; 3193 return -1; 3194 } 3195 3196 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3197 if (!ret) 3198 return 0; 3199 3200 if (!pr->ret) 3201 pr->ret = ret; 3202 3203 if (pr->fail_early) 3204 return -1; 3205 3206 return 0; 3207 } 3208 3209 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3210 u32 flags) 3211 { 3212 struct dm_pr pr = { 3213 .old_key = old_key, 3214 .new_key = new_key, 3215 .flags = flags, 3216 .fail_early = true, 3217 .ret = 0, 3218 }; 3219 int ret; 3220 3221 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3222 if (ret) { 3223 /* Didn't even get to register a path */ 3224 return ret; 3225 } 3226 3227 if (!pr.ret) 3228 return 0; 3229 ret = pr.ret; 3230 3231 if (!new_key) 3232 return ret; 3233 3234 /* unregister all paths if we failed to register any path */ 3235 pr.old_key = new_key; 3236 pr.new_key = 0; 3237 pr.flags = 0; 3238 pr.fail_early = false; 3239 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3240 return ret; 3241 } 3242 3243 3244 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3245 sector_t start, sector_t len, void *data) 3246 { 3247 struct dm_pr *pr = data; 3248 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3249 3250 if (!ops || !ops->pr_reserve) { 3251 pr->ret = -EOPNOTSUPP; 3252 return -1; 3253 } 3254 3255 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3256 if (!pr->ret) 3257 return -1; 3258 3259 return 0; 3260 } 3261 3262 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3263 u32 flags) 3264 { 3265 struct dm_pr pr = { 3266 .old_key = key, 3267 .flags = flags, 3268 .type = type, 3269 .fail_early = false, 3270 .ret = 0, 3271 }; 3272 int ret; 3273 3274 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3275 if (ret) 3276 return ret; 3277 3278 return pr.ret; 3279 } 3280 3281 /* 3282 * If there is a non-All Registrants type of reservation, the release must be 3283 * sent down the holding path. For the cases where there is no reservation or 3284 * the path is not the holder the device will also return success, so we must 3285 * try each path to make sure we got the correct path. 3286 */ 3287 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3288 sector_t start, sector_t len, void *data) 3289 { 3290 struct dm_pr *pr = data; 3291 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3292 3293 if (!ops || !ops->pr_release) { 3294 pr->ret = -EOPNOTSUPP; 3295 return -1; 3296 } 3297 3298 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3299 if (pr->ret) 3300 return -1; 3301 3302 return 0; 3303 } 3304 3305 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3306 { 3307 struct dm_pr pr = { 3308 .old_key = key, 3309 .type = type, 3310 .fail_early = false, 3311 }; 3312 int ret; 3313 3314 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3315 if (ret) 3316 return ret; 3317 3318 return pr.ret; 3319 } 3320 3321 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3322 sector_t start, sector_t len, void *data) 3323 { 3324 struct dm_pr *pr = data; 3325 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3326 3327 if (!ops || !ops->pr_preempt) { 3328 pr->ret = -EOPNOTSUPP; 3329 return -1; 3330 } 3331 3332 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3333 pr->abort); 3334 if (!pr->ret) 3335 return -1; 3336 3337 return 0; 3338 } 3339 3340 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3341 enum pr_type type, bool abort) 3342 { 3343 struct dm_pr pr = { 3344 .new_key = new_key, 3345 .old_key = old_key, 3346 .type = type, 3347 .fail_early = false, 3348 }; 3349 int ret; 3350 3351 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3352 if (ret) 3353 return ret; 3354 3355 return pr.ret; 3356 } 3357 3358 static int dm_pr_clear(struct block_device *bdev, u64 key) 3359 { 3360 struct mapped_device *md = bdev->bd_disk->private_data; 3361 const struct pr_ops *ops; 3362 int r, srcu_idx; 3363 3364 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3365 if (r < 0) 3366 goto out; 3367 3368 ops = bdev->bd_disk->fops->pr_ops; 3369 if (ops && ops->pr_clear) 3370 r = ops->pr_clear(bdev, key); 3371 else 3372 r = -EOPNOTSUPP; 3373 out: 3374 dm_unprepare_ioctl(md, srcu_idx); 3375 return r; 3376 } 3377 3378 static const struct pr_ops dm_pr_ops = { 3379 .pr_register = dm_pr_register, 3380 .pr_reserve = dm_pr_reserve, 3381 .pr_release = dm_pr_release, 3382 .pr_preempt = dm_pr_preempt, 3383 .pr_clear = dm_pr_clear, 3384 }; 3385 3386 static const struct block_device_operations dm_blk_dops = { 3387 .submit_bio = dm_submit_bio, 3388 .poll_bio = dm_poll_bio, 3389 .open = dm_blk_open, 3390 .release = dm_blk_close, 3391 .ioctl = dm_blk_ioctl, 3392 .getgeo = dm_blk_getgeo, 3393 .report_zones = dm_blk_report_zones, 3394 .pr_ops = &dm_pr_ops, 3395 .owner = THIS_MODULE 3396 }; 3397 3398 static const struct block_device_operations dm_rq_blk_dops = { 3399 .open = dm_blk_open, 3400 .release = dm_blk_close, 3401 .ioctl = dm_blk_ioctl, 3402 .getgeo = dm_blk_getgeo, 3403 .pr_ops = &dm_pr_ops, 3404 .owner = THIS_MODULE 3405 }; 3406 3407 static const struct dax_operations dm_dax_ops = { 3408 .direct_access = dm_dax_direct_access, 3409 .zero_page_range = dm_dax_zero_page_range, 3410 .recovery_write = dm_dax_recovery_write, 3411 }; 3412 3413 /* 3414 * module hooks 3415 */ 3416 module_init(dm_init); 3417 module_exit(dm_exit); 3418 3419 module_param(major, uint, 0); 3420 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3421 3422 module_param(reserved_bio_based_ios, uint, 0644); 3423 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3424 3425 module_param(dm_numa_node, int, 0644); 3426 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3427 3428 module_param(swap_bios, int, 0644); 3429 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3430 3431 MODULE_DESCRIPTION(DM_NAME " driver"); 3432 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3433 MODULE_LICENSE("GPL"); 3434