1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static void start_io_acct(struct dm_io *io) 489 { 490 struct mapped_device *md = io->md; 491 struct bio *bio = io->orig_bio; 492 493 bio_start_io_acct_time(bio, io->start_time); 494 if (unlikely(dm_stats_used(&md->stats))) 495 dm_stats_account_io(&md->stats, bio_data_dir(bio), 496 bio->bi_iter.bi_sector, bio_sectors(bio), 497 false, 0, &io->stats_aux); 498 } 499 500 static void end_io_acct(struct mapped_device *md, struct bio *bio, 501 unsigned long start_time, struct dm_stats_aux *stats_aux) 502 { 503 unsigned long duration = jiffies - start_time; 504 505 bio_end_io_acct(bio, start_time); 506 507 if (unlikely(dm_stats_used(&md->stats))) 508 dm_stats_account_io(&md->stats, bio_data_dir(bio), 509 bio->bi_iter.bi_sector, bio_sectors(bio), 510 true, duration, stats_aux); 511 } 512 513 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 514 { 515 struct dm_io *io; 516 struct dm_target_io *tio; 517 struct bio *clone; 518 519 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 520 521 tio = clone_to_tio(clone); 522 tio->inside_dm_io = true; 523 tio->io = NULL; 524 525 io = container_of(tio, struct dm_io, tio); 526 io->magic = DM_IO_MAGIC; 527 io->status = 0; 528 atomic_set(&io->io_count, 1); 529 this_cpu_inc(*md->pending_io); 530 io->orig_bio = bio; 531 io->md = md; 532 spin_lock_init(&io->endio_lock); 533 534 io->start_time = jiffies; 535 536 return io; 537 } 538 539 static void free_io(struct mapped_device *md, struct dm_io *io) 540 { 541 bio_put(&io->tio.clone); 542 } 543 544 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 545 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 546 { 547 struct dm_target_io *tio; 548 549 if (!ci->io->tio.io) { 550 /* the dm_target_io embedded in ci->io is available */ 551 tio = &ci->io->tio; 552 } else { 553 struct bio *clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 554 gfp_mask, &ci->io->md->bs); 555 if (!clone) 556 return NULL; 557 558 tio = clone_to_tio(clone); 559 tio->inside_dm_io = false; 560 } 561 562 tio->magic = DM_TIO_MAGIC; 563 tio->io = ci->io; 564 tio->ti = ti; 565 tio->target_bio_nr = target_bio_nr; 566 tio->len_ptr = len; 567 568 return &tio->clone; 569 } 570 571 static void free_tio(struct bio *clone) 572 { 573 if (clone_to_tio(clone)->inside_dm_io) 574 return; 575 bio_put(clone); 576 } 577 578 /* 579 * Add the bio to the list of deferred io. 580 */ 581 static void queue_io(struct mapped_device *md, struct bio *bio) 582 { 583 unsigned long flags; 584 585 spin_lock_irqsave(&md->deferred_lock, flags); 586 bio_list_add(&md->deferred, bio); 587 spin_unlock_irqrestore(&md->deferred_lock, flags); 588 queue_work(md->wq, &md->work); 589 } 590 591 /* 592 * Everyone (including functions in this file), should use this 593 * function to access the md->map field, and make sure they call 594 * dm_put_live_table() when finished. 595 */ 596 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 597 { 598 *srcu_idx = srcu_read_lock(&md->io_barrier); 599 600 return srcu_dereference(md->map, &md->io_barrier); 601 } 602 603 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 604 { 605 srcu_read_unlock(&md->io_barrier, srcu_idx); 606 } 607 608 void dm_sync_table(struct mapped_device *md) 609 { 610 synchronize_srcu(&md->io_barrier); 611 synchronize_rcu_expedited(); 612 } 613 614 /* 615 * A fast alternative to dm_get_live_table/dm_put_live_table. 616 * The caller must not block between these two functions. 617 */ 618 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 619 { 620 rcu_read_lock(); 621 return rcu_dereference(md->map); 622 } 623 624 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 625 { 626 rcu_read_unlock(); 627 } 628 629 static char *_dm_claim_ptr = "I belong to device-mapper"; 630 631 /* 632 * Open a table device so we can use it as a map destination. 633 */ 634 static int open_table_device(struct table_device *td, dev_t dev, 635 struct mapped_device *md) 636 { 637 struct block_device *bdev; 638 u64 part_off; 639 int r; 640 641 BUG_ON(td->dm_dev.bdev); 642 643 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 644 if (IS_ERR(bdev)) 645 return PTR_ERR(bdev); 646 647 r = bd_link_disk_holder(bdev, dm_disk(md)); 648 if (r) { 649 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 650 return r; 651 } 652 653 td->dm_dev.bdev = bdev; 654 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 655 return 0; 656 } 657 658 /* 659 * Close a table device that we've been using. 660 */ 661 static void close_table_device(struct table_device *td, struct mapped_device *md) 662 { 663 if (!td->dm_dev.bdev) 664 return; 665 666 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 667 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 668 put_dax(td->dm_dev.dax_dev); 669 td->dm_dev.bdev = NULL; 670 td->dm_dev.dax_dev = NULL; 671 } 672 673 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 674 fmode_t mode) 675 { 676 struct table_device *td; 677 678 list_for_each_entry(td, l, list) 679 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 680 return td; 681 682 return NULL; 683 } 684 685 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 686 struct dm_dev **result) 687 { 688 int r; 689 struct table_device *td; 690 691 mutex_lock(&md->table_devices_lock); 692 td = find_table_device(&md->table_devices, dev, mode); 693 if (!td) { 694 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 695 if (!td) { 696 mutex_unlock(&md->table_devices_lock); 697 return -ENOMEM; 698 } 699 700 td->dm_dev.mode = mode; 701 td->dm_dev.bdev = NULL; 702 703 if ((r = open_table_device(td, dev, md))) { 704 mutex_unlock(&md->table_devices_lock); 705 kfree(td); 706 return r; 707 } 708 709 format_dev_t(td->dm_dev.name, dev); 710 711 refcount_set(&td->count, 1); 712 list_add(&td->list, &md->table_devices); 713 } else { 714 refcount_inc(&td->count); 715 } 716 mutex_unlock(&md->table_devices_lock); 717 718 *result = &td->dm_dev; 719 return 0; 720 } 721 722 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 723 { 724 struct table_device *td = container_of(d, struct table_device, dm_dev); 725 726 mutex_lock(&md->table_devices_lock); 727 if (refcount_dec_and_test(&td->count)) { 728 close_table_device(td, md); 729 list_del(&td->list); 730 kfree(td); 731 } 732 mutex_unlock(&md->table_devices_lock); 733 } 734 735 static void free_table_devices(struct list_head *devices) 736 { 737 struct list_head *tmp, *next; 738 739 list_for_each_safe(tmp, next, devices) { 740 struct table_device *td = list_entry(tmp, struct table_device, list); 741 742 DMWARN("dm_destroy: %s still exists with %d references", 743 td->dm_dev.name, refcount_read(&td->count)); 744 kfree(td); 745 } 746 } 747 748 /* 749 * Get the geometry associated with a dm device 750 */ 751 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 752 { 753 *geo = md->geometry; 754 755 return 0; 756 } 757 758 /* 759 * Set the geometry of a device. 760 */ 761 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 762 { 763 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 764 765 if (geo->start > sz) { 766 DMWARN("Start sector is beyond the geometry limits."); 767 return -EINVAL; 768 } 769 770 md->geometry = *geo; 771 772 return 0; 773 } 774 775 static int __noflush_suspending(struct mapped_device *md) 776 { 777 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 778 } 779 780 /* 781 * Decrements the number of outstanding ios that a bio has been 782 * cloned into, completing the original io if necc. 783 */ 784 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 785 { 786 unsigned long flags; 787 blk_status_t io_error; 788 struct bio *bio; 789 struct mapped_device *md = io->md; 790 unsigned long start_time = 0; 791 struct dm_stats_aux stats_aux; 792 793 /* Push-back supersedes any I/O errors */ 794 if (unlikely(error)) { 795 spin_lock_irqsave(&io->endio_lock, flags); 796 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 797 io->status = error; 798 spin_unlock_irqrestore(&io->endio_lock, flags); 799 } 800 801 if (atomic_dec_and_test(&io->io_count)) { 802 bio = io->orig_bio; 803 if (io->status == BLK_STS_DM_REQUEUE) { 804 /* 805 * Target requested pushing back the I/O. 806 */ 807 spin_lock_irqsave(&md->deferred_lock, flags); 808 if (__noflush_suspending(md) && 809 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 810 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 811 bio_list_add_head(&md->deferred, bio); 812 } else { 813 /* 814 * noflush suspend was interrupted or this is 815 * a write to a zoned target. 816 */ 817 io->status = BLK_STS_IOERR; 818 } 819 spin_unlock_irqrestore(&md->deferred_lock, flags); 820 } 821 822 io_error = io->status; 823 start_time = io->start_time; 824 stats_aux = io->stats_aux; 825 free_io(md, io); 826 end_io_acct(md, bio, start_time, &stats_aux); 827 smp_wmb(); 828 this_cpu_dec(*md->pending_io); 829 830 /* nudge anyone waiting on suspend queue */ 831 if (unlikely(wq_has_sleeper(&md->wait))) 832 wake_up(&md->wait); 833 834 if (io_error == BLK_STS_DM_REQUEUE) 835 return; 836 837 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 838 /* 839 * Preflush done for flush with data, reissue 840 * without REQ_PREFLUSH. 841 */ 842 bio->bi_opf &= ~REQ_PREFLUSH; 843 queue_io(md, bio); 844 } else { 845 /* done with normal IO or empty flush */ 846 if (io_error) 847 bio->bi_status = io_error; 848 bio_endio(bio); 849 } 850 } 851 } 852 853 void disable_discard(struct mapped_device *md) 854 { 855 struct queue_limits *limits = dm_get_queue_limits(md); 856 857 /* device doesn't really support DISCARD, disable it */ 858 limits->max_discard_sectors = 0; 859 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 860 } 861 862 void disable_write_same(struct mapped_device *md) 863 { 864 struct queue_limits *limits = dm_get_queue_limits(md); 865 866 /* device doesn't really support WRITE SAME, disable it */ 867 limits->max_write_same_sectors = 0; 868 } 869 870 void disable_write_zeroes(struct mapped_device *md) 871 { 872 struct queue_limits *limits = dm_get_queue_limits(md); 873 874 /* device doesn't really support WRITE ZEROES, disable it */ 875 limits->max_write_zeroes_sectors = 0; 876 } 877 878 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 879 { 880 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 881 } 882 883 static void clone_endio(struct bio *bio) 884 { 885 blk_status_t error = bio->bi_status; 886 struct dm_target_io *tio = clone_to_tio(bio); 887 struct dm_io *io = tio->io; 888 struct mapped_device *md = tio->io->md; 889 dm_endio_fn endio = tio->ti->type->end_io; 890 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 891 892 if (unlikely(error == BLK_STS_TARGET)) { 893 if (bio_op(bio) == REQ_OP_DISCARD && 894 !q->limits.max_discard_sectors) 895 disable_discard(md); 896 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 897 !q->limits.max_write_same_sectors) 898 disable_write_same(md); 899 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 900 !q->limits.max_write_zeroes_sectors) 901 disable_write_zeroes(md); 902 } 903 904 if (blk_queue_is_zoned(q)) 905 dm_zone_endio(io, bio); 906 907 if (endio) { 908 int r = endio(tio->ti, bio, &error); 909 switch (r) { 910 case DM_ENDIO_REQUEUE: 911 /* 912 * Requeuing writes to a sequential zone of a zoned 913 * target will break the sequential write pattern: 914 * fail such IO. 915 */ 916 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 917 error = BLK_STS_IOERR; 918 else 919 error = BLK_STS_DM_REQUEUE; 920 fallthrough; 921 case DM_ENDIO_DONE: 922 break; 923 case DM_ENDIO_INCOMPLETE: 924 /* The target will handle the io */ 925 return; 926 default: 927 DMWARN("unimplemented target endio return value: %d", r); 928 BUG(); 929 } 930 } 931 932 if (unlikely(swap_bios_limit(tio->ti, bio))) { 933 struct mapped_device *md = io->md; 934 up(&md->swap_bios_semaphore); 935 } 936 937 free_tio(bio); 938 dm_io_dec_pending(io, error); 939 } 940 941 /* 942 * Return maximum size of I/O possible at the supplied sector up to the current 943 * target boundary. 944 */ 945 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 946 sector_t target_offset) 947 { 948 return ti->len - target_offset; 949 } 950 951 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 952 { 953 sector_t target_offset = dm_target_offset(ti, sector); 954 sector_t len = max_io_len_target_boundary(ti, target_offset); 955 sector_t max_len; 956 957 /* 958 * Does the target need to split IO even further? 959 * - varied (per target) IO splitting is a tenet of DM; this 960 * explains why stacked chunk_sectors based splitting via 961 * blk_max_size_offset() isn't possible here. So pass in 962 * ti->max_io_len to override stacked chunk_sectors. 963 */ 964 if (ti->max_io_len) { 965 max_len = blk_max_size_offset(ti->table->md->queue, 966 target_offset, ti->max_io_len); 967 if (len > max_len) 968 len = max_len; 969 } 970 971 return len; 972 } 973 974 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 975 { 976 if (len > UINT_MAX) { 977 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 978 (unsigned long long)len, UINT_MAX); 979 ti->error = "Maximum size of target IO is too large"; 980 return -EINVAL; 981 } 982 983 ti->max_io_len = (uint32_t) len; 984 985 return 0; 986 } 987 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 988 989 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 990 sector_t sector, int *srcu_idx) 991 __acquires(md->io_barrier) 992 { 993 struct dm_table *map; 994 struct dm_target *ti; 995 996 map = dm_get_live_table(md, srcu_idx); 997 if (!map) 998 return NULL; 999 1000 ti = dm_table_find_target(map, sector); 1001 if (!ti) 1002 return NULL; 1003 1004 return ti; 1005 } 1006 1007 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1008 long nr_pages, void **kaddr, pfn_t *pfn) 1009 { 1010 struct mapped_device *md = dax_get_private(dax_dev); 1011 sector_t sector = pgoff * PAGE_SECTORS; 1012 struct dm_target *ti; 1013 long len, ret = -EIO; 1014 int srcu_idx; 1015 1016 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1017 1018 if (!ti) 1019 goto out; 1020 if (!ti->type->direct_access) 1021 goto out; 1022 len = max_io_len(ti, sector) / PAGE_SECTORS; 1023 if (len < 1) 1024 goto out; 1025 nr_pages = min(len, nr_pages); 1026 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1027 1028 out: 1029 dm_put_live_table(md, srcu_idx); 1030 1031 return ret; 1032 } 1033 1034 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1035 size_t nr_pages) 1036 { 1037 struct mapped_device *md = dax_get_private(dax_dev); 1038 sector_t sector = pgoff * PAGE_SECTORS; 1039 struct dm_target *ti; 1040 int ret = -EIO; 1041 int srcu_idx; 1042 1043 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1044 1045 if (!ti) 1046 goto out; 1047 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1048 /* 1049 * ->zero_page_range() is mandatory dax operation. If we are 1050 * here, something is wrong. 1051 */ 1052 goto out; 1053 } 1054 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1055 out: 1056 dm_put_live_table(md, srcu_idx); 1057 1058 return ret; 1059 } 1060 1061 /* 1062 * A target may call dm_accept_partial_bio only from the map routine. It is 1063 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1064 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1065 * 1066 * dm_accept_partial_bio informs the dm that the target only wants to process 1067 * additional n_sectors sectors of the bio and the rest of the data should be 1068 * sent in a next bio. 1069 * 1070 * A diagram that explains the arithmetics: 1071 * +--------------------+---------------+-------+ 1072 * | 1 | 2 | 3 | 1073 * +--------------------+---------------+-------+ 1074 * 1075 * <-------------- *tio->len_ptr ---------------> 1076 * <------- bi_size -------> 1077 * <-- n_sectors --> 1078 * 1079 * Region 1 was already iterated over with bio_advance or similar function. 1080 * (it may be empty if the target doesn't use bio_advance) 1081 * Region 2 is the remaining bio size that the target wants to process. 1082 * (it may be empty if region 1 is non-empty, although there is no reason 1083 * to make it empty) 1084 * The target requires that region 3 is to be sent in the next bio. 1085 * 1086 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1087 * the partially processed part (the sum of regions 1+2) must be the same for all 1088 * copies of the bio. 1089 */ 1090 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1091 { 1092 struct dm_target_io *tio = clone_to_tio(bio); 1093 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1094 1095 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1096 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1097 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1098 BUG_ON(bi_size > *tio->len_ptr); 1099 BUG_ON(n_sectors > bi_size); 1100 1101 *tio->len_ptr -= bi_size - n_sectors; 1102 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1103 } 1104 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1105 1106 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1107 { 1108 mutex_lock(&md->swap_bios_lock); 1109 while (latch < md->swap_bios) { 1110 cond_resched(); 1111 down(&md->swap_bios_semaphore); 1112 md->swap_bios--; 1113 } 1114 while (latch > md->swap_bios) { 1115 cond_resched(); 1116 up(&md->swap_bios_semaphore); 1117 md->swap_bios++; 1118 } 1119 mutex_unlock(&md->swap_bios_lock); 1120 } 1121 1122 static void __map_bio(struct bio *clone) 1123 { 1124 struct dm_target_io *tio = clone_to_tio(clone); 1125 int r; 1126 sector_t sector; 1127 struct dm_io *io = tio->io; 1128 struct dm_target *ti = tio->ti; 1129 1130 clone->bi_end_io = clone_endio; 1131 1132 /* 1133 * Map the clone. If r == 0 we don't need to do 1134 * anything, the target has assumed ownership of 1135 * this io. 1136 */ 1137 dm_io_inc_pending(io); 1138 sector = clone->bi_iter.bi_sector; 1139 1140 if (unlikely(swap_bios_limit(ti, clone))) { 1141 struct mapped_device *md = io->md; 1142 int latch = get_swap_bios(); 1143 if (unlikely(latch != md->swap_bios)) 1144 __set_swap_bios_limit(md, latch); 1145 down(&md->swap_bios_semaphore); 1146 } 1147 1148 /* 1149 * Check if the IO needs a special mapping due to zone append emulation 1150 * on zoned target. In this case, dm_zone_map_bio() calls the target 1151 * map operation. 1152 */ 1153 if (dm_emulate_zone_append(io->md)) 1154 r = dm_zone_map_bio(tio); 1155 else 1156 r = ti->type->map(ti, clone); 1157 1158 switch (r) { 1159 case DM_MAPIO_SUBMITTED: 1160 break; 1161 case DM_MAPIO_REMAPPED: 1162 /* the bio has been remapped so dispatch it */ 1163 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1164 submit_bio_noacct(clone); 1165 break; 1166 case DM_MAPIO_KILL: 1167 if (unlikely(swap_bios_limit(ti, clone))) { 1168 struct mapped_device *md = io->md; 1169 up(&md->swap_bios_semaphore); 1170 } 1171 free_tio(clone); 1172 dm_io_dec_pending(io, BLK_STS_IOERR); 1173 break; 1174 case DM_MAPIO_REQUEUE: 1175 if (unlikely(swap_bios_limit(ti, clone))) { 1176 struct mapped_device *md = io->md; 1177 up(&md->swap_bios_semaphore); 1178 } 1179 free_tio(clone); 1180 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1181 break; 1182 default: 1183 DMWARN("unimplemented target map return value: %d", r); 1184 BUG(); 1185 } 1186 } 1187 1188 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1189 { 1190 bio->bi_iter.bi_sector = sector; 1191 bio->bi_iter.bi_size = to_bytes(len); 1192 } 1193 1194 /* 1195 * Creates a bio that consists of range of complete bvecs. 1196 */ 1197 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1198 sector_t sector, unsigned *len) 1199 { 1200 struct bio *bio = ci->bio, *clone; 1201 1202 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1203 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1204 clone->bi_iter.bi_size = to_bytes(*len); 1205 1206 if (bio_integrity(bio)) 1207 bio_integrity_trim(clone); 1208 1209 __map_bio(clone); 1210 return 0; 1211 } 1212 1213 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1214 struct dm_target *ti, unsigned num_bios, 1215 unsigned *len) 1216 { 1217 struct bio *bio; 1218 int try; 1219 1220 for (try = 0; try < 2; try++) { 1221 int bio_nr; 1222 1223 if (try) 1224 mutex_lock(&ci->io->md->table_devices_lock); 1225 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1226 bio = alloc_tio(ci, ti, bio_nr, len, 1227 try ? GFP_NOIO : GFP_NOWAIT); 1228 if (!bio) 1229 break; 1230 1231 bio_list_add(blist, bio); 1232 } 1233 if (try) 1234 mutex_unlock(&ci->io->md->table_devices_lock); 1235 if (bio_nr == num_bios) 1236 return; 1237 1238 while ((bio = bio_list_pop(blist))) 1239 free_tio(bio); 1240 } 1241 } 1242 1243 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1244 unsigned num_bios, unsigned *len) 1245 { 1246 struct bio_list blist = BIO_EMPTY_LIST; 1247 struct bio *clone; 1248 1249 switch (num_bios) { 1250 case 0: 1251 break; 1252 case 1: 1253 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1254 if (len) 1255 bio_setup_sector(clone, ci->sector, *len); 1256 __map_bio(clone); 1257 break; 1258 default: 1259 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1260 while ((clone = bio_list_pop(&blist))) { 1261 if (len) 1262 bio_setup_sector(clone, ci->sector, *len); 1263 __map_bio(clone); 1264 } 1265 break; 1266 } 1267 } 1268 1269 static int __send_empty_flush(struct clone_info *ci) 1270 { 1271 unsigned target_nr = 0; 1272 struct dm_target *ti; 1273 struct bio flush_bio; 1274 1275 /* 1276 * Use an on-stack bio for this, it's safe since we don't 1277 * need to reference it after submit. It's just used as 1278 * the basis for the clone(s). 1279 */ 1280 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1281 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1282 1283 ci->bio = &flush_bio; 1284 ci->sector_count = 0; 1285 1286 BUG_ON(bio_has_data(ci->bio)); 1287 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1288 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1289 1290 bio_uninit(ci->bio); 1291 return 0; 1292 } 1293 1294 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1295 unsigned num_bios) 1296 { 1297 unsigned len; 1298 1299 /* 1300 * Even though the device advertised support for this type of 1301 * request, that does not mean every target supports it, and 1302 * reconfiguration might also have changed that since the 1303 * check was performed. 1304 */ 1305 if (!num_bios) 1306 return -EOPNOTSUPP; 1307 1308 len = min_t(sector_t, ci->sector_count, 1309 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1310 1311 __send_duplicate_bios(ci, ti, num_bios, &len); 1312 1313 ci->sector += len; 1314 ci->sector_count -= len; 1315 1316 return 0; 1317 } 1318 1319 static bool is_abnormal_io(struct bio *bio) 1320 { 1321 bool r = false; 1322 1323 switch (bio_op(bio)) { 1324 case REQ_OP_DISCARD: 1325 case REQ_OP_SECURE_ERASE: 1326 case REQ_OP_WRITE_SAME: 1327 case REQ_OP_WRITE_ZEROES: 1328 r = true; 1329 break; 1330 } 1331 1332 return r; 1333 } 1334 1335 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1336 int *result) 1337 { 1338 struct bio *bio = ci->bio; 1339 unsigned num_bios = 0; 1340 1341 switch (bio_op(bio)) { 1342 case REQ_OP_DISCARD: 1343 num_bios = ti->num_discard_bios; 1344 break; 1345 case REQ_OP_SECURE_ERASE: 1346 num_bios = ti->num_secure_erase_bios; 1347 break; 1348 case REQ_OP_WRITE_SAME: 1349 num_bios = ti->num_write_same_bios; 1350 break; 1351 case REQ_OP_WRITE_ZEROES: 1352 num_bios = ti->num_write_zeroes_bios; 1353 break; 1354 default: 1355 return false; 1356 } 1357 1358 *result = __send_changing_extent_only(ci, ti, num_bios); 1359 return true; 1360 } 1361 1362 /* 1363 * Select the correct strategy for processing a non-flush bio. 1364 */ 1365 static int __split_and_process_non_flush(struct clone_info *ci) 1366 { 1367 struct dm_target *ti; 1368 unsigned len; 1369 int r; 1370 1371 ti = dm_table_find_target(ci->map, ci->sector); 1372 if (!ti) 1373 return -EIO; 1374 1375 if (__process_abnormal_io(ci, ti, &r)) 1376 return r; 1377 1378 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1379 1380 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1381 if (r < 0) 1382 return r; 1383 1384 ci->sector += len; 1385 ci->sector_count -= len; 1386 1387 return 0; 1388 } 1389 1390 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1391 struct dm_table *map, struct bio *bio) 1392 { 1393 ci->map = map; 1394 ci->io = alloc_io(md, bio); 1395 ci->sector = bio->bi_iter.bi_sector; 1396 } 1397 1398 /* 1399 * Entry point to split a bio into clones and submit them to the targets. 1400 */ 1401 static void __split_and_process_bio(struct mapped_device *md, 1402 struct dm_table *map, struct bio *bio) 1403 { 1404 struct clone_info ci; 1405 int error = 0; 1406 1407 init_clone_info(&ci, md, map, bio); 1408 1409 if (bio->bi_opf & REQ_PREFLUSH) { 1410 error = __send_empty_flush(&ci); 1411 /* dm_io_dec_pending submits any data associated with flush */ 1412 } else if (op_is_zone_mgmt(bio_op(bio))) { 1413 ci.bio = bio; 1414 ci.sector_count = 0; 1415 error = __split_and_process_non_flush(&ci); 1416 } else { 1417 ci.bio = bio; 1418 ci.sector_count = bio_sectors(bio); 1419 error = __split_and_process_non_flush(&ci); 1420 if (ci.sector_count && !error) { 1421 /* 1422 * Remainder must be passed to submit_bio_noacct() 1423 * so that it gets handled *after* bios already submitted 1424 * have been completely processed. 1425 * We take a clone of the original to store in 1426 * ci.io->orig_bio to be used by end_io_acct() and 1427 * for dec_pending to use for completion handling. 1428 */ 1429 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1430 GFP_NOIO, &md->queue->bio_split); 1431 ci.io->orig_bio = b; 1432 1433 bio_chain(b, bio); 1434 trace_block_split(b, bio->bi_iter.bi_sector); 1435 submit_bio_noacct(bio); 1436 } 1437 } 1438 start_io_acct(ci.io); 1439 1440 /* drop the extra reference count */ 1441 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1442 } 1443 1444 static void dm_submit_bio(struct bio *bio) 1445 { 1446 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1447 int srcu_idx; 1448 struct dm_table *map; 1449 1450 map = dm_get_live_table(md, &srcu_idx); 1451 if (unlikely(!map)) { 1452 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1453 dm_device_name(md)); 1454 bio_io_error(bio); 1455 goto out; 1456 } 1457 1458 /* If suspended, queue this IO for later */ 1459 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1460 if (bio->bi_opf & REQ_NOWAIT) 1461 bio_wouldblock_error(bio); 1462 else if (bio->bi_opf & REQ_RAHEAD) 1463 bio_io_error(bio); 1464 else 1465 queue_io(md, bio); 1466 goto out; 1467 } 1468 1469 /* 1470 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1471 * otherwise associated queue_limits won't be imposed. 1472 */ 1473 if (is_abnormal_io(bio)) 1474 blk_queue_split(&bio); 1475 1476 __split_and_process_bio(md, map, bio); 1477 out: 1478 dm_put_live_table(md, srcu_idx); 1479 } 1480 1481 /*----------------------------------------------------------------- 1482 * An IDR is used to keep track of allocated minor numbers. 1483 *---------------------------------------------------------------*/ 1484 static void free_minor(int minor) 1485 { 1486 spin_lock(&_minor_lock); 1487 idr_remove(&_minor_idr, minor); 1488 spin_unlock(&_minor_lock); 1489 } 1490 1491 /* 1492 * See if the device with a specific minor # is free. 1493 */ 1494 static int specific_minor(int minor) 1495 { 1496 int r; 1497 1498 if (minor >= (1 << MINORBITS)) 1499 return -EINVAL; 1500 1501 idr_preload(GFP_KERNEL); 1502 spin_lock(&_minor_lock); 1503 1504 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1505 1506 spin_unlock(&_minor_lock); 1507 idr_preload_end(); 1508 if (r < 0) 1509 return r == -ENOSPC ? -EBUSY : r; 1510 return 0; 1511 } 1512 1513 static int next_free_minor(int *minor) 1514 { 1515 int r; 1516 1517 idr_preload(GFP_KERNEL); 1518 spin_lock(&_minor_lock); 1519 1520 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1521 1522 spin_unlock(&_minor_lock); 1523 idr_preload_end(); 1524 if (r < 0) 1525 return r; 1526 *minor = r; 1527 return 0; 1528 } 1529 1530 static const struct block_device_operations dm_blk_dops; 1531 static const struct block_device_operations dm_rq_blk_dops; 1532 static const struct dax_operations dm_dax_ops; 1533 1534 static void dm_wq_work(struct work_struct *work); 1535 1536 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1537 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1538 { 1539 dm_destroy_crypto_profile(q->crypto_profile); 1540 } 1541 1542 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1543 1544 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1545 { 1546 } 1547 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1548 1549 static void cleanup_mapped_device(struct mapped_device *md) 1550 { 1551 if (md->wq) 1552 destroy_workqueue(md->wq); 1553 bioset_exit(&md->bs); 1554 bioset_exit(&md->io_bs); 1555 1556 if (md->dax_dev) { 1557 dax_remove_host(md->disk); 1558 kill_dax(md->dax_dev); 1559 put_dax(md->dax_dev); 1560 md->dax_dev = NULL; 1561 } 1562 1563 if (md->disk) { 1564 spin_lock(&_minor_lock); 1565 md->disk->private_data = NULL; 1566 spin_unlock(&_minor_lock); 1567 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1568 dm_sysfs_exit(md); 1569 del_gendisk(md->disk); 1570 } 1571 dm_queue_destroy_crypto_profile(md->queue); 1572 blk_cleanup_disk(md->disk); 1573 } 1574 1575 if (md->pending_io) { 1576 free_percpu(md->pending_io); 1577 md->pending_io = NULL; 1578 } 1579 1580 cleanup_srcu_struct(&md->io_barrier); 1581 1582 mutex_destroy(&md->suspend_lock); 1583 mutex_destroy(&md->type_lock); 1584 mutex_destroy(&md->table_devices_lock); 1585 mutex_destroy(&md->swap_bios_lock); 1586 1587 dm_mq_cleanup_mapped_device(md); 1588 dm_cleanup_zoned_dev(md); 1589 } 1590 1591 /* 1592 * Allocate and initialise a blank device with a given minor. 1593 */ 1594 static struct mapped_device *alloc_dev(int minor) 1595 { 1596 int r, numa_node_id = dm_get_numa_node(); 1597 struct mapped_device *md; 1598 void *old_md; 1599 1600 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1601 if (!md) { 1602 DMWARN("unable to allocate device, out of memory."); 1603 return NULL; 1604 } 1605 1606 if (!try_module_get(THIS_MODULE)) 1607 goto bad_module_get; 1608 1609 /* get a minor number for the dev */ 1610 if (minor == DM_ANY_MINOR) 1611 r = next_free_minor(&minor); 1612 else 1613 r = specific_minor(minor); 1614 if (r < 0) 1615 goto bad_minor; 1616 1617 r = init_srcu_struct(&md->io_barrier); 1618 if (r < 0) 1619 goto bad_io_barrier; 1620 1621 md->numa_node_id = numa_node_id; 1622 md->init_tio_pdu = false; 1623 md->type = DM_TYPE_NONE; 1624 mutex_init(&md->suspend_lock); 1625 mutex_init(&md->type_lock); 1626 mutex_init(&md->table_devices_lock); 1627 spin_lock_init(&md->deferred_lock); 1628 atomic_set(&md->holders, 1); 1629 atomic_set(&md->open_count, 0); 1630 atomic_set(&md->event_nr, 0); 1631 atomic_set(&md->uevent_seq, 0); 1632 INIT_LIST_HEAD(&md->uevent_list); 1633 INIT_LIST_HEAD(&md->table_devices); 1634 spin_lock_init(&md->uevent_lock); 1635 1636 /* 1637 * default to bio-based until DM table is loaded and md->type 1638 * established. If request-based table is loaded: blk-mq will 1639 * override accordingly. 1640 */ 1641 md->disk = blk_alloc_disk(md->numa_node_id); 1642 if (!md->disk) 1643 goto bad; 1644 md->queue = md->disk->queue; 1645 1646 init_waitqueue_head(&md->wait); 1647 INIT_WORK(&md->work, dm_wq_work); 1648 init_waitqueue_head(&md->eventq); 1649 init_completion(&md->kobj_holder.completion); 1650 1651 md->swap_bios = get_swap_bios(); 1652 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1653 mutex_init(&md->swap_bios_lock); 1654 1655 md->disk->major = _major; 1656 md->disk->first_minor = minor; 1657 md->disk->minors = 1; 1658 md->disk->flags |= GENHD_FL_NO_PART; 1659 md->disk->fops = &dm_blk_dops; 1660 md->disk->queue = md->queue; 1661 md->disk->private_data = md; 1662 sprintf(md->disk->disk_name, "dm-%d", minor); 1663 1664 if (IS_ENABLED(CONFIG_FS_DAX)) { 1665 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1666 if (IS_ERR(md->dax_dev)) { 1667 md->dax_dev = NULL; 1668 goto bad; 1669 } 1670 set_dax_nocache(md->dax_dev); 1671 set_dax_nomc(md->dax_dev); 1672 if (dax_add_host(md->dax_dev, md->disk)) 1673 goto bad; 1674 } 1675 1676 format_dev_t(md->name, MKDEV(_major, minor)); 1677 1678 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1679 if (!md->wq) 1680 goto bad; 1681 1682 md->pending_io = alloc_percpu(unsigned long); 1683 if (!md->pending_io) 1684 goto bad; 1685 1686 dm_stats_init(&md->stats); 1687 1688 /* Populate the mapping, nobody knows we exist yet */ 1689 spin_lock(&_minor_lock); 1690 old_md = idr_replace(&_minor_idr, md, minor); 1691 spin_unlock(&_minor_lock); 1692 1693 BUG_ON(old_md != MINOR_ALLOCED); 1694 1695 return md; 1696 1697 bad: 1698 cleanup_mapped_device(md); 1699 bad_io_barrier: 1700 free_minor(minor); 1701 bad_minor: 1702 module_put(THIS_MODULE); 1703 bad_module_get: 1704 kvfree(md); 1705 return NULL; 1706 } 1707 1708 static void unlock_fs(struct mapped_device *md); 1709 1710 static void free_dev(struct mapped_device *md) 1711 { 1712 int minor = MINOR(disk_devt(md->disk)); 1713 1714 unlock_fs(md); 1715 1716 cleanup_mapped_device(md); 1717 1718 free_table_devices(&md->table_devices); 1719 dm_stats_cleanup(&md->stats); 1720 free_minor(minor); 1721 1722 module_put(THIS_MODULE); 1723 kvfree(md); 1724 } 1725 1726 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1727 { 1728 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1729 int ret = 0; 1730 1731 if (dm_table_bio_based(t)) { 1732 /* 1733 * The md may already have mempools that need changing. 1734 * If so, reload bioset because front_pad may have changed 1735 * because a different table was loaded. 1736 */ 1737 bioset_exit(&md->bs); 1738 bioset_exit(&md->io_bs); 1739 1740 } else if (bioset_initialized(&md->bs)) { 1741 /* 1742 * There's no need to reload with request-based dm 1743 * because the size of front_pad doesn't change. 1744 * Note for future: If you are to reload bioset, 1745 * prep-ed requests in the queue may refer 1746 * to bio from the old bioset, so you must walk 1747 * through the queue to unprep. 1748 */ 1749 goto out; 1750 } 1751 1752 BUG_ON(!p || 1753 bioset_initialized(&md->bs) || 1754 bioset_initialized(&md->io_bs)); 1755 1756 ret = bioset_init_from_src(&md->bs, &p->bs); 1757 if (ret) 1758 goto out; 1759 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1760 if (ret) 1761 bioset_exit(&md->bs); 1762 out: 1763 /* mempool bind completed, no longer need any mempools in the table */ 1764 dm_table_free_md_mempools(t); 1765 return ret; 1766 } 1767 1768 /* 1769 * Bind a table to the device. 1770 */ 1771 static void event_callback(void *context) 1772 { 1773 unsigned long flags; 1774 LIST_HEAD(uevents); 1775 struct mapped_device *md = (struct mapped_device *) context; 1776 1777 spin_lock_irqsave(&md->uevent_lock, flags); 1778 list_splice_init(&md->uevent_list, &uevents); 1779 spin_unlock_irqrestore(&md->uevent_lock, flags); 1780 1781 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1782 1783 atomic_inc(&md->event_nr); 1784 wake_up(&md->eventq); 1785 dm_issue_global_event(); 1786 } 1787 1788 /* 1789 * Returns old map, which caller must destroy. 1790 */ 1791 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1792 struct queue_limits *limits) 1793 { 1794 struct dm_table *old_map; 1795 struct request_queue *q = md->queue; 1796 bool request_based = dm_table_request_based(t); 1797 sector_t size; 1798 int ret; 1799 1800 lockdep_assert_held(&md->suspend_lock); 1801 1802 size = dm_table_get_size(t); 1803 1804 /* 1805 * Wipe any geometry if the size of the table changed. 1806 */ 1807 if (size != dm_get_size(md)) 1808 memset(&md->geometry, 0, sizeof(md->geometry)); 1809 1810 if (!get_capacity(md->disk)) 1811 set_capacity(md->disk, size); 1812 else 1813 set_capacity_and_notify(md->disk, size); 1814 1815 dm_table_event_callback(t, event_callback, md); 1816 1817 if (request_based) { 1818 /* 1819 * Leverage the fact that request-based DM targets are 1820 * immutable singletons - used to optimize dm_mq_queue_rq. 1821 */ 1822 md->immutable_target = dm_table_get_immutable_target(t); 1823 } 1824 1825 ret = __bind_mempools(md, t); 1826 if (ret) { 1827 old_map = ERR_PTR(ret); 1828 goto out; 1829 } 1830 1831 ret = dm_table_set_restrictions(t, q, limits); 1832 if (ret) { 1833 old_map = ERR_PTR(ret); 1834 goto out; 1835 } 1836 1837 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1838 rcu_assign_pointer(md->map, (void *)t); 1839 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1840 1841 if (old_map) 1842 dm_sync_table(md); 1843 1844 out: 1845 return old_map; 1846 } 1847 1848 /* 1849 * Returns unbound table for the caller to free. 1850 */ 1851 static struct dm_table *__unbind(struct mapped_device *md) 1852 { 1853 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1854 1855 if (!map) 1856 return NULL; 1857 1858 dm_table_event_callback(map, NULL, NULL); 1859 RCU_INIT_POINTER(md->map, NULL); 1860 dm_sync_table(md); 1861 1862 return map; 1863 } 1864 1865 /* 1866 * Constructor for a new device. 1867 */ 1868 int dm_create(int minor, struct mapped_device **result) 1869 { 1870 struct mapped_device *md; 1871 1872 md = alloc_dev(minor); 1873 if (!md) 1874 return -ENXIO; 1875 1876 dm_ima_reset_data(md); 1877 1878 *result = md; 1879 return 0; 1880 } 1881 1882 /* 1883 * Functions to manage md->type. 1884 * All are required to hold md->type_lock. 1885 */ 1886 void dm_lock_md_type(struct mapped_device *md) 1887 { 1888 mutex_lock(&md->type_lock); 1889 } 1890 1891 void dm_unlock_md_type(struct mapped_device *md) 1892 { 1893 mutex_unlock(&md->type_lock); 1894 } 1895 1896 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1897 { 1898 BUG_ON(!mutex_is_locked(&md->type_lock)); 1899 md->type = type; 1900 } 1901 1902 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1903 { 1904 return md->type; 1905 } 1906 1907 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1908 { 1909 return md->immutable_target_type; 1910 } 1911 1912 /* 1913 * The queue_limits are only valid as long as you have a reference 1914 * count on 'md'. 1915 */ 1916 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1917 { 1918 BUG_ON(!atomic_read(&md->holders)); 1919 return &md->queue->limits; 1920 } 1921 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1922 1923 /* 1924 * Setup the DM device's queue based on md's type 1925 */ 1926 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1927 { 1928 enum dm_queue_mode type = dm_table_get_type(t); 1929 struct queue_limits limits; 1930 int r; 1931 1932 switch (type) { 1933 case DM_TYPE_REQUEST_BASED: 1934 md->disk->fops = &dm_rq_blk_dops; 1935 r = dm_mq_init_request_queue(md, t); 1936 if (r) { 1937 DMERR("Cannot initialize queue for request-based dm mapped device"); 1938 return r; 1939 } 1940 break; 1941 case DM_TYPE_BIO_BASED: 1942 case DM_TYPE_DAX_BIO_BASED: 1943 break; 1944 case DM_TYPE_NONE: 1945 WARN_ON_ONCE(true); 1946 break; 1947 } 1948 1949 r = dm_calculate_queue_limits(t, &limits); 1950 if (r) { 1951 DMERR("Cannot calculate initial queue limits"); 1952 return r; 1953 } 1954 r = dm_table_set_restrictions(t, md->queue, &limits); 1955 if (r) 1956 return r; 1957 1958 r = add_disk(md->disk); 1959 if (r) 1960 return r; 1961 1962 r = dm_sysfs_init(md); 1963 if (r) { 1964 del_gendisk(md->disk); 1965 return r; 1966 } 1967 md->type = type; 1968 return 0; 1969 } 1970 1971 struct mapped_device *dm_get_md(dev_t dev) 1972 { 1973 struct mapped_device *md; 1974 unsigned minor = MINOR(dev); 1975 1976 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1977 return NULL; 1978 1979 spin_lock(&_minor_lock); 1980 1981 md = idr_find(&_minor_idr, minor); 1982 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 1983 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 1984 md = NULL; 1985 goto out; 1986 } 1987 dm_get(md); 1988 out: 1989 spin_unlock(&_minor_lock); 1990 1991 return md; 1992 } 1993 EXPORT_SYMBOL_GPL(dm_get_md); 1994 1995 void *dm_get_mdptr(struct mapped_device *md) 1996 { 1997 return md->interface_ptr; 1998 } 1999 2000 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2001 { 2002 md->interface_ptr = ptr; 2003 } 2004 2005 void dm_get(struct mapped_device *md) 2006 { 2007 atomic_inc(&md->holders); 2008 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2009 } 2010 2011 int dm_hold(struct mapped_device *md) 2012 { 2013 spin_lock(&_minor_lock); 2014 if (test_bit(DMF_FREEING, &md->flags)) { 2015 spin_unlock(&_minor_lock); 2016 return -EBUSY; 2017 } 2018 dm_get(md); 2019 spin_unlock(&_minor_lock); 2020 return 0; 2021 } 2022 EXPORT_SYMBOL_GPL(dm_hold); 2023 2024 const char *dm_device_name(struct mapped_device *md) 2025 { 2026 return md->name; 2027 } 2028 EXPORT_SYMBOL_GPL(dm_device_name); 2029 2030 static void __dm_destroy(struct mapped_device *md, bool wait) 2031 { 2032 struct dm_table *map; 2033 int srcu_idx; 2034 2035 might_sleep(); 2036 2037 spin_lock(&_minor_lock); 2038 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2039 set_bit(DMF_FREEING, &md->flags); 2040 spin_unlock(&_minor_lock); 2041 2042 blk_set_queue_dying(md->queue); 2043 2044 /* 2045 * Take suspend_lock so that presuspend and postsuspend methods 2046 * do not race with internal suspend. 2047 */ 2048 mutex_lock(&md->suspend_lock); 2049 map = dm_get_live_table(md, &srcu_idx); 2050 if (!dm_suspended_md(md)) { 2051 dm_table_presuspend_targets(map); 2052 set_bit(DMF_SUSPENDED, &md->flags); 2053 set_bit(DMF_POST_SUSPENDING, &md->flags); 2054 dm_table_postsuspend_targets(map); 2055 } 2056 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2057 dm_put_live_table(md, srcu_idx); 2058 mutex_unlock(&md->suspend_lock); 2059 2060 /* 2061 * Rare, but there may be I/O requests still going to complete, 2062 * for example. Wait for all references to disappear. 2063 * No one should increment the reference count of the mapped_device, 2064 * after the mapped_device state becomes DMF_FREEING. 2065 */ 2066 if (wait) 2067 while (atomic_read(&md->holders)) 2068 msleep(1); 2069 else if (atomic_read(&md->holders)) 2070 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2071 dm_device_name(md), atomic_read(&md->holders)); 2072 2073 dm_table_destroy(__unbind(md)); 2074 free_dev(md); 2075 } 2076 2077 void dm_destroy(struct mapped_device *md) 2078 { 2079 __dm_destroy(md, true); 2080 } 2081 2082 void dm_destroy_immediate(struct mapped_device *md) 2083 { 2084 __dm_destroy(md, false); 2085 } 2086 2087 void dm_put(struct mapped_device *md) 2088 { 2089 atomic_dec(&md->holders); 2090 } 2091 EXPORT_SYMBOL_GPL(dm_put); 2092 2093 static bool dm_in_flight_bios(struct mapped_device *md) 2094 { 2095 int cpu; 2096 unsigned long sum = 0; 2097 2098 for_each_possible_cpu(cpu) 2099 sum += *per_cpu_ptr(md->pending_io, cpu); 2100 2101 return sum != 0; 2102 } 2103 2104 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2105 { 2106 int r = 0; 2107 DEFINE_WAIT(wait); 2108 2109 while (true) { 2110 prepare_to_wait(&md->wait, &wait, task_state); 2111 2112 if (!dm_in_flight_bios(md)) 2113 break; 2114 2115 if (signal_pending_state(task_state, current)) { 2116 r = -EINTR; 2117 break; 2118 } 2119 2120 io_schedule(); 2121 } 2122 finish_wait(&md->wait, &wait); 2123 2124 smp_rmb(); 2125 2126 return r; 2127 } 2128 2129 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2130 { 2131 int r = 0; 2132 2133 if (!queue_is_mq(md->queue)) 2134 return dm_wait_for_bios_completion(md, task_state); 2135 2136 while (true) { 2137 if (!blk_mq_queue_inflight(md->queue)) 2138 break; 2139 2140 if (signal_pending_state(task_state, current)) { 2141 r = -EINTR; 2142 break; 2143 } 2144 2145 msleep(5); 2146 } 2147 2148 return r; 2149 } 2150 2151 /* 2152 * Process the deferred bios 2153 */ 2154 static void dm_wq_work(struct work_struct *work) 2155 { 2156 struct mapped_device *md = container_of(work, struct mapped_device, work); 2157 struct bio *bio; 2158 2159 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2160 spin_lock_irq(&md->deferred_lock); 2161 bio = bio_list_pop(&md->deferred); 2162 spin_unlock_irq(&md->deferred_lock); 2163 2164 if (!bio) 2165 break; 2166 2167 submit_bio_noacct(bio); 2168 } 2169 } 2170 2171 static void dm_queue_flush(struct mapped_device *md) 2172 { 2173 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2174 smp_mb__after_atomic(); 2175 queue_work(md->wq, &md->work); 2176 } 2177 2178 /* 2179 * Swap in a new table, returning the old one for the caller to destroy. 2180 */ 2181 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2182 { 2183 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2184 struct queue_limits limits; 2185 int r; 2186 2187 mutex_lock(&md->suspend_lock); 2188 2189 /* device must be suspended */ 2190 if (!dm_suspended_md(md)) 2191 goto out; 2192 2193 /* 2194 * If the new table has no data devices, retain the existing limits. 2195 * This helps multipath with queue_if_no_path if all paths disappear, 2196 * then new I/O is queued based on these limits, and then some paths 2197 * reappear. 2198 */ 2199 if (dm_table_has_no_data_devices(table)) { 2200 live_map = dm_get_live_table_fast(md); 2201 if (live_map) 2202 limits = md->queue->limits; 2203 dm_put_live_table_fast(md); 2204 } 2205 2206 if (!live_map) { 2207 r = dm_calculate_queue_limits(table, &limits); 2208 if (r) { 2209 map = ERR_PTR(r); 2210 goto out; 2211 } 2212 } 2213 2214 map = __bind(md, table, &limits); 2215 dm_issue_global_event(); 2216 2217 out: 2218 mutex_unlock(&md->suspend_lock); 2219 return map; 2220 } 2221 2222 /* 2223 * Functions to lock and unlock any filesystem running on the 2224 * device. 2225 */ 2226 static int lock_fs(struct mapped_device *md) 2227 { 2228 int r; 2229 2230 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2231 2232 r = freeze_bdev(md->disk->part0); 2233 if (!r) 2234 set_bit(DMF_FROZEN, &md->flags); 2235 return r; 2236 } 2237 2238 static void unlock_fs(struct mapped_device *md) 2239 { 2240 if (!test_bit(DMF_FROZEN, &md->flags)) 2241 return; 2242 thaw_bdev(md->disk->part0); 2243 clear_bit(DMF_FROZEN, &md->flags); 2244 } 2245 2246 /* 2247 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2248 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2249 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2250 * 2251 * If __dm_suspend returns 0, the device is completely quiescent 2252 * now. There is no request-processing activity. All new requests 2253 * are being added to md->deferred list. 2254 */ 2255 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2256 unsigned suspend_flags, unsigned int task_state, 2257 int dmf_suspended_flag) 2258 { 2259 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2260 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2261 int r; 2262 2263 lockdep_assert_held(&md->suspend_lock); 2264 2265 /* 2266 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2267 * This flag is cleared before dm_suspend returns. 2268 */ 2269 if (noflush) 2270 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2271 else 2272 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2273 2274 /* 2275 * This gets reverted if there's an error later and the targets 2276 * provide the .presuspend_undo hook. 2277 */ 2278 dm_table_presuspend_targets(map); 2279 2280 /* 2281 * Flush I/O to the device. 2282 * Any I/O submitted after lock_fs() may not be flushed. 2283 * noflush takes precedence over do_lockfs. 2284 * (lock_fs() flushes I/Os and waits for them to complete.) 2285 */ 2286 if (!noflush && do_lockfs) { 2287 r = lock_fs(md); 2288 if (r) { 2289 dm_table_presuspend_undo_targets(map); 2290 return r; 2291 } 2292 } 2293 2294 /* 2295 * Here we must make sure that no processes are submitting requests 2296 * to target drivers i.e. no one may be executing 2297 * __split_and_process_bio from dm_submit_bio. 2298 * 2299 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2300 * we take the write lock. To prevent any process from reentering 2301 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2302 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2303 * flush_workqueue(md->wq). 2304 */ 2305 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2306 if (map) 2307 synchronize_srcu(&md->io_barrier); 2308 2309 /* 2310 * Stop md->queue before flushing md->wq in case request-based 2311 * dm defers requests to md->wq from md->queue. 2312 */ 2313 if (dm_request_based(md)) 2314 dm_stop_queue(md->queue); 2315 2316 flush_workqueue(md->wq); 2317 2318 /* 2319 * At this point no more requests are entering target request routines. 2320 * We call dm_wait_for_completion to wait for all existing requests 2321 * to finish. 2322 */ 2323 r = dm_wait_for_completion(md, task_state); 2324 if (!r) 2325 set_bit(dmf_suspended_flag, &md->flags); 2326 2327 if (noflush) 2328 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2329 if (map) 2330 synchronize_srcu(&md->io_barrier); 2331 2332 /* were we interrupted ? */ 2333 if (r < 0) { 2334 dm_queue_flush(md); 2335 2336 if (dm_request_based(md)) 2337 dm_start_queue(md->queue); 2338 2339 unlock_fs(md); 2340 dm_table_presuspend_undo_targets(map); 2341 /* pushback list is already flushed, so skip flush */ 2342 } 2343 2344 return r; 2345 } 2346 2347 /* 2348 * We need to be able to change a mapping table under a mounted 2349 * filesystem. For example we might want to move some data in 2350 * the background. Before the table can be swapped with 2351 * dm_bind_table, dm_suspend must be called to flush any in 2352 * flight bios and ensure that any further io gets deferred. 2353 */ 2354 /* 2355 * Suspend mechanism in request-based dm. 2356 * 2357 * 1. Flush all I/Os by lock_fs() if needed. 2358 * 2. Stop dispatching any I/O by stopping the request_queue. 2359 * 3. Wait for all in-flight I/Os to be completed or requeued. 2360 * 2361 * To abort suspend, start the request_queue. 2362 */ 2363 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2364 { 2365 struct dm_table *map = NULL; 2366 int r = 0; 2367 2368 retry: 2369 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2370 2371 if (dm_suspended_md(md)) { 2372 r = -EINVAL; 2373 goto out_unlock; 2374 } 2375 2376 if (dm_suspended_internally_md(md)) { 2377 /* already internally suspended, wait for internal resume */ 2378 mutex_unlock(&md->suspend_lock); 2379 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2380 if (r) 2381 return r; 2382 goto retry; 2383 } 2384 2385 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2386 2387 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2388 if (r) 2389 goto out_unlock; 2390 2391 set_bit(DMF_POST_SUSPENDING, &md->flags); 2392 dm_table_postsuspend_targets(map); 2393 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2394 2395 out_unlock: 2396 mutex_unlock(&md->suspend_lock); 2397 return r; 2398 } 2399 2400 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2401 { 2402 if (map) { 2403 int r = dm_table_resume_targets(map); 2404 if (r) 2405 return r; 2406 } 2407 2408 dm_queue_flush(md); 2409 2410 /* 2411 * Flushing deferred I/Os must be done after targets are resumed 2412 * so that mapping of targets can work correctly. 2413 * Request-based dm is queueing the deferred I/Os in its request_queue. 2414 */ 2415 if (dm_request_based(md)) 2416 dm_start_queue(md->queue); 2417 2418 unlock_fs(md); 2419 2420 return 0; 2421 } 2422 2423 int dm_resume(struct mapped_device *md) 2424 { 2425 int r; 2426 struct dm_table *map = NULL; 2427 2428 retry: 2429 r = -EINVAL; 2430 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2431 2432 if (!dm_suspended_md(md)) 2433 goto out; 2434 2435 if (dm_suspended_internally_md(md)) { 2436 /* already internally suspended, wait for internal resume */ 2437 mutex_unlock(&md->suspend_lock); 2438 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2439 if (r) 2440 return r; 2441 goto retry; 2442 } 2443 2444 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2445 if (!map || !dm_table_get_size(map)) 2446 goto out; 2447 2448 r = __dm_resume(md, map); 2449 if (r) 2450 goto out; 2451 2452 clear_bit(DMF_SUSPENDED, &md->flags); 2453 out: 2454 mutex_unlock(&md->suspend_lock); 2455 2456 return r; 2457 } 2458 2459 /* 2460 * Internal suspend/resume works like userspace-driven suspend. It waits 2461 * until all bios finish and prevents issuing new bios to the target drivers. 2462 * It may be used only from the kernel. 2463 */ 2464 2465 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2466 { 2467 struct dm_table *map = NULL; 2468 2469 lockdep_assert_held(&md->suspend_lock); 2470 2471 if (md->internal_suspend_count++) 2472 return; /* nested internal suspend */ 2473 2474 if (dm_suspended_md(md)) { 2475 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2476 return; /* nest suspend */ 2477 } 2478 2479 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2480 2481 /* 2482 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2483 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2484 * would require changing .presuspend to return an error -- avoid this 2485 * until there is a need for more elaborate variants of internal suspend. 2486 */ 2487 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2488 DMF_SUSPENDED_INTERNALLY); 2489 2490 set_bit(DMF_POST_SUSPENDING, &md->flags); 2491 dm_table_postsuspend_targets(map); 2492 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2493 } 2494 2495 static void __dm_internal_resume(struct mapped_device *md) 2496 { 2497 BUG_ON(!md->internal_suspend_count); 2498 2499 if (--md->internal_suspend_count) 2500 return; /* resume from nested internal suspend */ 2501 2502 if (dm_suspended_md(md)) 2503 goto done; /* resume from nested suspend */ 2504 2505 /* 2506 * NOTE: existing callers don't need to call dm_table_resume_targets 2507 * (which may fail -- so best to avoid it for now by passing NULL map) 2508 */ 2509 (void) __dm_resume(md, NULL); 2510 2511 done: 2512 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2513 smp_mb__after_atomic(); 2514 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2515 } 2516 2517 void dm_internal_suspend_noflush(struct mapped_device *md) 2518 { 2519 mutex_lock(&md->suspend_lock); 2520 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2521 mutex_unlock(&md->suspend_lock); 2522 } 2523 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2524 2525 void dm_internal_resume(struct mapped_device *md) 2526 { 2527 mutex_lock(&md->suspend_lock); 2528 __dm_internal_resume(md); 2529 mutex_unlock(&md->suspend_lock); 2530 } 2531 EXPORT_SYMBOL_GPL(dm_internal_resume); 2532 2533 /* 2534 * Fast variants of internal suspend/resume hold md->suspend_lock, 2535 * which prevents interaction with userspace-driven suspend. 2536 */ 2537 2538 void dm_internal_suspend_fast(struct mapped_device *md) 2539 { 2540 mutex_lock(&md->suspend_lock); 2541 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2542 return; 2543 2544 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2545 synchronize_srcu(&md->io_barrier); 2546 flush_workqueue(md->wq); 2547 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2548 } 2549 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2550 2551 void dm_internal_resume_fast(struct mapped_device *md) 2552 { 2553 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2554 goto done; 2555 2556 dm_queue_flush(md); 2557 2558 done: 2559 mutex_unlock(&md->suspend_lock); 2560 } 2561 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2562 2563 /*----------------------------------------------------------------- 2564 * Event notification. 2565 *---------------------------------------------------------------*/ 2566 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2567 unsigned cookie) 2568 { 2569 int r; 2570 unsigned noio_flag; 2571 char udev_cookie[DM_COOKIE_LENGTH]; 2572 char *envp[] = { udev_cookie, NULL }; 2573 2574 noio_flag = memalloc_noio_save(); 2575 2576 if (!cookie) 2577 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2578 else { 2579 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2580 DM_COOKIE_ENV_VAR_NAME, cookie); 2581 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2582 action, envp); 2583 } 2584 2585 memalloc_noio_restore(noio_flag); 2586 2587 return r; 2588 } 2589 2590 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2591 { 2592 return atomic_add_return(1, &md->uevent_seq); 2593 } 2594 2595 uint32_t dm_get_event_nr(struct mapped_device *md) 2596 { 2597 return atomic_read(&md->event_nr); 2598 } 2599 2600 int dm_wait_event(struct mapped_device *md, int event_nr) 2601 { 2602 return wait_event_interruptible(md->eventq, 2603 (event_nr != atomic_read(&md->event_nr))); 2604 } 2605 2606 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2607 { 2608 unsigned long flags; 2609 2610 spin_lock_irqsave(&md->uevent_lock, flags); 2611 list_add(elist, &md->uevent_list); 2612 spin_unlock_irqrestore(&md->uevent_lock, flags); 2613 } 2614 2615 /* 2616 * The gendisk is only valid as long as you have a reference 2617 * count on 'md'. 2618 */ 2619 struct gendisk *dm_disk(struct mapped_device *md) 2620 { 2621 return md->disk; 2622 } 2623 EXPORT_SYMBOL_GPL(dm_disk); 2624 2625 struct kobject *dm_kobject(struct mapped_device *md) 2626 { 2627 return &md->kobj_holder.kobj; 2628 } 2629 2630 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2631 { 2632 struct mapped_device *md; 2633 2634 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2635 2636 spin_lock(&_minor_lock); 2637 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2638 md = NULL; 2639 goto out; 2640 } 2641 dm_get(md); 2642 out: 2643 spin_unlock(&_minor_lock); 2644 2645 return md; 2646 } 2647 2648 int dm_suspended_md(struct mapped_device *md) 2649 { 2650 return test_bit(DMF_SUSPENDED, &md->flags); 2651 } 2652 2653 static int dm_post_suspending_md(struct mapped_device *md) 2654 { 2655 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2656 } 2657 2658 int dm_suspended_internally_md(struct mapped_device *md) 2659 { 2660 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2661 } 2662 2663 int dm_test_deferred_remove_flag(struct mapped_device *md) 2664 { 2665 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2666 } 2667 2668 int dm_suspended(struct dm_target *ti) 2669 { 2670 return dm_suspended_md(ti->table->md); 2671 } 2672 EXPORT_SYMBOL_GPL(dm_suspended); 2673 2674 int dm_post_suspending(struct dm_target *ti) 2675 { 2676 return dm_post_suspending_md(ti->table->md); 2677 } 2678 EXPORT_SYMBOL_GPL(dm_post_suspending); 2679 2680 int dm_noflush_suspending(struct dm_target *ti) 2681 { 2682 return __noflush_suspending(ti->table->md); 2683 } 2684 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2685 2686 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2687 unsigned integrity, unsigned per_io_data_size, 2688 unsigned min_pool_size) 2689 { 2690 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2691 unsigned int pool_size = 0; 2692 unsigned int front_pad, io_front_pad; 2693 int ret; 2694 2695 if (!pools) 2696 return NULL; 2697 2698 switch (type) { 2699 case DM_TYPE_BIO_BASED: 2700 case DM_TYPE_DAX_BIO_BASED: 2701 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2702 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2703 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2704 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2705 if (ret) 2706 goto out; 2707 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2708 goto out; 2709 break; 2710 case DM_TYPE_REQUEST_BASED: 2711 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2712 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2713 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2714 break; 2715 default: 2716 BUG(); 2717 } 2718 2719 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2720 if (ret) 2721 goto out; 2722 2723 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2724 goto out; 2725 2726 return pools; 2727 2728 out: 2729 dm_free_md_mempools(pools); 2730 2731 return NULL; 2732 } 2733 2734 void dm_free_md_mempools(struct dm_md_mempools *pools) 2735 { 2736 if (!pools) 2737 return; 2738 2739 bioset_exit(&pools->bs); 2740 bioset_exit(&pools->io_bs); 2741 2742 kfree(pools); 2743 } 2744 2745 struct dm_pr { 2746 u64 old_key; 2747 u64 new_key; 2748 u32 flags; 2749 bool fail_early; 2750 }; 2751 2752 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2753 void *data) 2754 { 2755 struct mapped_device *md = bdev->bd_disk->private_data; 2756 struct dm_table *table; 2757 struct dm_target *ti; 2758 int ret = -ENOTTY, srcu_idx; 2759 2760 table = dm_get_live_table(md, &srcu_idx); 2761 if (!table || !dm_table_get_size(table)) 2762 goto out; 2763 2764 /* We only support devices that have a single target */ 2765 if (dm_table_get_num_targets(table) != 1) 2766 goto out; 2767 ti = dm_table_get_target(table, 0); 2768 2769 ret = -EINVAL; 2770 if (!ti->type->iterate_devices) 2771 goto out; 2772 2773 ret = ti->type->iterate_devices(ti, fn, data); 2774 out: 2775 dm_put_live_table(md, srcu_idx); 2776 return ret; 2777 } 2778 2779 /* 2780 * For register / unregister we need to manually call out to every path. 2781 */ 2782 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2783 sector_t start, sector_t len, void *data) 2784 { 2785 struct dm_pr *pr = data; 2786 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2787 2788 if (!ops || !ops->pr_register) 2789 return -EOPNOTSUPP; 2790 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2791 } 2792 2793 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2794 u32 flags) 2795 { 2796 struct dm_pr pr = { 2797 .old_key = old_key, 2798 .new_key = new_key, 2799 .flags = flags, 2800 .fail_early = true, 2801 }; 2802 int ret; 2803 2804 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2805 if (ret && new_key) { 2806 /* unregister all paths if we failed to register any path */ 2807 pr.old_key = new_key; 2808 pr.new_key = 0; 2809 pr.flags = 0; 2810 pr.fail_early = false; 2811 dm_call_pr(bdev, __dm_pr_register, &pr); 2812 } 2813 2814 return ret; 2815 } 2816 2817 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2818 u32 flags) 2819 { 2820 struct mapped_device *md = bdev->bd_disk->private_data; 2821 const struct pr_ops *ops; 2822 int r, srcu_idx; 2823 2824 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2825 if (r < 0) 2826 goto out; 2827 2828 ops = bdev->bd_disk->fops->pr_ops; 2829 if (ops && ops->pr_reserve) 2830 r = ops->pr_reserve(bdev, key, type, flags); 2831 else 2832 r = -EOPNOTSUPP; 2833 out: 2834 dm_unprepare_ioctl(md, srcu_idx); 2835 return r; 2836 } 2837 2838 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2839 { 2840 struct mapped_device *md = bdev->bd_disk->private_data; 2841 const struct pr_ops *ops; 2842 int r, srcu_idx; 2843 2844 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2845 if (r < 0) 2846 goto out; 2847 2848 ops = bdev->bd_disk->fops->pr_ops; 2849 if (ops && ops->pr_release) 2850 r = ops->pr_release(bdev, key, type); 2851 else 2852 r = -EOPNOTSUPP; 2853 out: 2854 dm_unprepare_ioctl(md, srcu_idx); 2855 return r; 2856 } 2857 2858 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2859 enum pr_type type, bool abort) 2860 { 2861 struct mapped_device *md = bdev->bd_disk->private_data; 2862 const struct pr_ops *ops; 2863 int r, srcu_idx; 2864 2865 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2866 if (r < 0) 2867 goto out; 2868 2869 ops = bdev->bd_disk->fops->pr_ops; 2870 if (ops && ops->pr_preempt) 2871 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2872 else 2873 r = -EOPNOTSUPP; 2874 out: 2875 dm_unprepare_ioctl(md, srcu_idx); 2876 return r; 2877 } 2878 2879 static int dm_pr_clear(struct block_device *bdev, u64 key) 2880 { 2881 struct mapped_device *md = bdev->bd_disk->private_data; 2882 const struct pr_ops *ops; 2883 int r, srcu_idx; 2884 2885 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2886 if (r < 0) 2887 goto out; 2888 2889 ops = bdev->bd_disk->fops->pr_ops; 2890 if (ops && ops->pr_clear) 2891 r = ops->pr_clear(bdev, key); 2892 else 2893 r = -EOPNOTSUPP; 2894 out: 2895 dm_unprepare_ioctl(md, srcu_idx); 2896 return r; 2897 } 2898 2899 static const struct pr_ops dm_pr_ops = { 2900 .pr_register = dm_pr_register, 2901 .pr_reserve = dm_pr_reserve, 2902 .pr_release = dm_pr_release, 2903 .pr_preempt = dm_pr_preempt, 2904 .pr_clear = dm_pr_clear, 2905 }; 2906 2907 static const struct block_device_operations dm_blk_dops = { 2908 .submit_bio = dm_submit_bio, 2909 .open = dm_blk_open, 2910 .release = dm_blk_close, 2911 .ioctl = dm_blk_ioctl, 2912 .getgeo = dm_blk_getgeo, 2913 .report_zones = dm_blk_report_zones, 2914 .pr_ops = &dm_pr_ops, 2915 .owner = THIS_MODULE 2916 }; 2917 2918 static const struct block_device_operations dm_rq_blk_dops = { 2919 .open = dm_blk_open, 2920 .release = dm_blk_close, 2921 .ioctl = dm_blk_ioctl, 2922 .getgeo = dm_blk_getgeo, 2923 .pr_ops = &dm_pr_ops, 2924 .owner = THIS_MODULE 2925 }; 2926 2927 static const struct dax_operations dm_dax_ops = { 2928 .direct_access = dm_dax_direct_access, 2929 .zero_page_range = dm_dax_zero_page_range, 2930 }; 2931 2932 /* 2933 * module hooks 2934 */ 2935 module_init(dm_init); 2936 module_exit(dm_exit); 2937 2938 module_param(major, uint, 0); 2939 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2940 2941 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2942 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2943 2944 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2945 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2946 2947 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2948 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2949 2950 MODULE_DESCRIPTION(DM_NAME " driver"); 2951 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2952 MODULE_LICENSE("GPL"); 2953