1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 /* 58 * For bio-based dm. 59 * One of these is allocated per bio. 60 */ 61 struct dm_io { 62 struct mapped_device *md; 63 int error; 64 atomic_t io_count; 65 struct bio *bio; 66 unsigned long start_time; 67 spinlock_t endio_lock; 68 struct dm_stats_aux stats_aux; 69 }; 70 71 /* 72 * For request-based dm. 73 * One of these is allocated per request. 74 */ 75 struct dm_rq_target_io { 76 struct mapped_device *md; 77 struct dm_target *ti; 78 struct request *orig, clone; 79 int error; 80 union map_info info; 81 }; 82 83 /* 84 * For request-based dm - the bio clones we allocate are embedded in these 85 * structs. 86 * 87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 88 * the bioset is created - this means the bio has to come at the end of the 89 * struct. 90 */ 91 struct dm_rq_clone_bio_info { 92 struct bio *orig; 93 struct dm_rq_target_io *tio; 94 struct bio clone; 95 }; 96 97 union map_info *dm_get_rq_mapinfo(struct request *rq) 98 { 99 if (rq && rq->end_io_data) 100 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 101 return NULL; 102 } 103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 104 105 #define MINOR_ALLOCED ((void *)-1) 106 107 /* 108 * Bits for the md->flags field. 109 */ 110 #define DMF_BLOCK_IO_FOR_SUSPEND 0 111 #define DMF_SUSPENDED 1 112 #define DMF_FROZEN 2 113 #define DMF_FREEING 3 114 #define DMF_DELETING 4 115 #define DMF_NOFLUSH_SUSPENDING 5 116 #define DMF_MERGE_IS_OPTIONAL 6 117 #define DMF_DEFERRED_REMOVE 7 118 119 /* 120 * A dummy definition to make RCU happy. 121 * struct dm_table should never be dereferenced in this file. 122 */ 123 struct dm_table { 124 int undefined__; 125 }; 126 127 /* 128 * Work processed by per-device workqueue. 129 */ 130 struct mapped_device { 131 struct srcu_struct io_barrier; 132 struct mutex suspend_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 /* 137 * The current mapping. 138 * Use dm_get_live_table{_fast} or take suspend_lock for 139 * dereference. 140 */ 141 struct dm_table *map; 142 143 unsigned long flags; 144 145 struct request_queue *queue; 146 unsigned type; 147 /* Protect queue and type against concurrent access. */ 148 struct mutex type_lock; 149 150 struct target_type *immutable_target_type; 151 152 struct gendisk *disk; 153 char name[16]; 154 155 void *interface_ptr; 156 157 /* 158 * A list of ios that arrived while we were suspended. 159 */ 160 atomic_t pending[2]; 161 wait_queue_head_t wait; 162 struct work_struct work; 163 struct bio_list deferred; 164 spinlock_t deferred_lock; 165 166 /* 167 * Processing queue (flush) 168 */ 169 struct workqueue_struct *wq; 170 171 /* 172 * io objects are allocated from here. 173 */ 174 mempool_t *io_pool; 175 176 struct bio_set *bs; 177 178 /* 179 * Event handling. 180 */ 181 atomic_t event_nr; 182 wait_queue_head_t eventq; 183 atomic_t uevent_seq; 184 struct list_head uevent_list; 185 spinlock_t uevent_lock; /* Protect access to uevent_list */ 186 187 /* 188 * freeze/thaw support require holding onto a super block 189 */ 190 struct super_block *frozen_sb; 191 struct block_device *bdev; 192 193 /* forced geometry settings */ 194 struct hd_geometry geometry; 195 196 /* kobject and completion */ 197 struct dm_kobject_holder kobj_holder; 198 199 /* zero-length flush that will be cloned and submitted to targets */ 200 struct bio flush_bio; 201 202 struct dm_stats stats; 203 }; 204 205 /* 206 * For mempools pre-allocation at the table loading time. 207 */ 208 struct dm_md_mempools { 209 mempool_t *io_pool; 210 struct bio_set *bs; 211 }; 212 213 #define RESERVED_BIO_BASED_IOS 16 214 #define RESERVED_REQUEST_BASED_IOS 256 215 #define RESERVED_MAX_IOS 1024 216 static struct kmem_cache *_io_cache; 217 static struct kmem_cache *_rq_tio_cache; 218 219 /* 220 * Bio-based DM's mempools' reserved IOs set by the user. 221 */ 222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 223 224 /* 225 * Request-based DM's mempools' reserved IOs set by the user. 226 */ 227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 228 229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 230 unsigned def, unsigned max) 231 { 232 unsigned ios = ACCESS_ONCE(*reserved_ios); 233 unsigned modified_ios = 0; 234 235 if (!ios) 236 modified_ios = def; 237 else if (ios > max) 238 modified_ios = max; 239 240 if (modified_ios) { 241 (void)cmpxchg(reserved_ios, ios, modified_ios); 242 ios = modified_ios; 243 } 244 245 return ios; 246 } 247 248 unsigned dm_get_reserved_bio_based_ios(void) 249 { 250 return __dm_get_reserved_ios(&reserved_bio_based_ios, 251 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 252 } 253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 254 255 unsigned dm_get_reserved_rq_based_ios(void) 256 { 257 return __dm_get_reserved_ios(&reserved_rq_based_ios, 258 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 259 } 260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 261 262 static int __init local_init(void) 263 { 264 int r = -ENOMEM; 265 266 /* allocate a slab for the dm_ios */ 267 _io_cache = KMEM_CACHE(dm_io, 0); 268 if (!_io_cache) 269 return r; 270 271 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 272 if (!_rq_tio_cache) 273 goto out_free_io_cache; 274 275 r = dm_uevent_init(); 276 if (r) 277 goto out_free_rq_tio_cache; 278 279 _major = major; 280 r = register_blkdev(_major, _name); 281 if (r < 0) 282 goto out_uevent_exit; 283 284 if (!_major) 285 _major = r; 286 287 return 0; 288 289 out_uevent_exit: 290 dm_uevent_exit(); 291 out_free_rq_tio_cache: 292 kmem_cache_destroy(_rq_tio_cache); 293 out_free_io_cache: 294 kmem_cache_destroy(_io_cache); 295 296 return r; 297 } 298 299 static void local_exit(void) 300 { 301 flush_scheduled_work(); 302 303 kmem_cache_destroy(_rq_tio_cache); 304 kmem_cache_destroy(_io_cache); 305 unregister_blkdev(_major, _name); 306 dm_uevent_exit(); 307 308 _major = 0; 309 310 DMINFO("cleaned up"); 311 } 312 313 static int (*_inits[])(void) __initdata = { 314 local_init, 315 dm_target_init, 316 dm_linear_init, 317 dm_stripe_init, 318 dm_io_init, 319 dm_kcopyd_init, 320 dm_interface_init, 321 dm_statistics_init, 322 }; 323 324 static void (*_exits[])(void) = { 325 local_exit, 326 dm_target_exit, 327 dm_linear_exit, 328 dm_stripe_exit, 329 dm_io_exit, 330 dm_kcopyd_exit, 331 dm_interface_exit, 332 dm_statistics_exit, 333 }; 334 335 static int __init dm_init(void) 336 { 337 const int count = ARRAY_SIZE(_inits); 338 339 int r, i; 340 341 for (i = 0; i < count; i++) { 342 r = _inits[i](); 343 if (r) 344 goto bad; 345 } 346 347 return 0; 348 349 bad: 350 while (i--) 351 _exits[i](); 352 353 return r; 354 } 355 356 static void __exit dm_exit(void) 357 { 358 int i = ARRAY_SIZE(_exits); 359 360 while (i--) 361 _exits[i](); 362 363 /* 364 * Should be empty by this point. 365 */ 366 idr_destroy(&_minor_idr); 367 } 368 369 /* 370 * Block device functions 371 */ 372 int dm_deleting_md(struct mapped_device *md) 373 { 374 return test_bit(DMF_DELETING, &md->flags); 375 } 376 377 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 378 { 379 struct mapped_device *md; 380 381 spin_lock(&_minor_lock); 382 383 md = bdev->bd_disk->private_data; 384 if (!md) 385 goto out; 386 387 if (test_bit(DMF_FREEING, &md->flags) || 388 dm_deleting_md(md)) { 389 md = NULL; 390 goto out; 391 } 392 393 dm_get(md); 394 atomic_inc(&md->open_count); 395 396 out: 397 spin_unlock(&_minor_lock); 398 399 return md ? 0 : -ENXIO; 400 } 401 402 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 403 { 404 struct mapped_device *md = disk->private_data; 405 406 spin_lock(&_minor_lock); 407 408 if (atomic_dec_and_test(&md->open_count) && 409 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 410 schedule_work(&deferred_remove_work); 411 412 dm_put(md); 413 414 spin_unlock(&_minor_lock); 415 } 416 417 int dm_open_count(struct mapped_device *md) 418 { 419 return atomic_read(&md->open_count); 420 } 421 422 /* 423 * Guarantees nothing is using the device before it's deleted. 424 */ 425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 426 { 427 int r = 0; 428 429 spin_lock(&_minor_lock); 430 431 if (dm_open_count(md)) { 432 r = -EBUSY; 433 if (mark_deferred) 434 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 435 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 436 r = -EEXIST; 437 else 438 set_bit(DMF_DELETING, &md->flags); 439 440 spin_unlock(&_minor_lock); 441 442 return r; 443 } 444 445 int dm_cancel_deferred_remove(struct mapped_device *md) 446 { 447 int r = 0; 448 449 spin_lock(&_minor_lock); 450 451 if (test_bit(DMF_DELETING, &md->flags)) 452 r = -EBUSY; 453 else 454 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 455 456 spin_unlock(&_minor_lock); 457 458 return r; 459 } 460 461 static void do_deferred_remove(struct work_struct *w) 462 { 463 dm_deferred_remove(); 464 } 465 466 sector_t dm_get_size(struct mapped_device *md) 467 { 468 return get_capacity(md->disk); 469 } 470 471 struct dm_stats *dm_get_stats(struct mapped_device *md) 472 { 473 return &md->stats; 474 } 475 476 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 477 { 478 struct mapped_device *md = bdev->bd_disk->private_data; 479 480 return dm_get_geometry(md, geo); 481 } 482 483 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 484 unsigned int cmd, unsigned long arg) 485 { 486 struct mapped_device *md = bdev->bd_disk->private_data; 487 int srcu_idx; 488 struct dm_table *map; 489 struct dm_target *tgt; 490 int r = -ENOTTY; 491 492 retry: 493 map = dm_get_live_table(md, &srcu_idx); 494 495 if (!map || !dm_table_get_size(map)) 496 goto out; 497 498 /* We only support devices that have a single target */ 499 if (dm_table_get_num_targets(map) != 1) 500 goto out; 501 502 tgt = dm_table_get_target(map, 0); 503 504 if (dm_suspended_md(md)) { 505 r = -EAGAIN; 506 goto out; 507 } 508 509 if (tgt->type->ioctl) 510 r = tgt->type->ioctl(tgt, cmd, arg); 511 512 out: 513 dm_put_live_table(md, srcu_idx); 514 515 if (r == -ENOTCONN) { 516 msleep(10); 517 goto retry; 518 } 519 520 return r; 521 } 522 523 static struct dm_io *alloc_io(struct mapped_device *md) 524 { 525 return mempool_alloc(md->io_pool, GFP_NOIO); 526 } 527 528 static void free_io(struct mapped_device *md, struct dm_io *io) 529 { 530 mempool_free(io, md->io_pool); 531 } 532 533 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 534 { 535 bio_put(&tio->clone); 536 } 537 538 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 539 gfp_t gfp_mask) 540 { 541 return mempool_alloc(md->io_pool, gfp_mask); 542 } 543 544 static void free_rq_tio(struct dm_rq_target_io *tio) 545 { 546 mempool_free(tio, tio->md->io_pool); 547 } 548 549 static int md_in_flight(struct mapped_device *md) 550 { 551 return atomic_read(&md->pending[READ]) + 552 atomic_read(&md->pending[WRITE]); 553 } 554 555 static void start_io_acct(struct dm_io *io) 556 { 557 struct mapped_device *md = io->md; 558 struct bio *bio = io->bio; 559 int cpu; 560 int rw = bio_data_dir(bio); 561 562 io->start_time = jiffies; 563 564 cpu = part_stat_lock(); 565 part_round_stats(cpu, &dm_disk(md)->part0); 566 part_stat_unlock(); 567 atomic_set(&dm_disk(md)->part0.in_flight[rw], 568 atomic_inc_return(&md->pending[rw])); 569 570 if (unlikely(dm_stats_used(&md->stats))) 571 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 572 bio_sectors(bio), false, 0, &io->stats_aux); 573 } 574 575 static void end_io_acct(struct dm_io *io) 576 { 577 struct mapped_device *md = io->md; 578 struct bio *bio = io->bio; 579 unsigned long duration = jiffies - io->start_time; 580 int pending, cpu; 581 int rw = bio_data_dir(bio); 582 583 cpu = part_stat_lock(); 584 part_round_stats(cpu, &dm_disk(md)->part0); 585 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 586 part_stat_unlock(); 587 588 if (unlikely(dm_stats_used(&md->stats))) 589 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 590 bio_sectors(bio), true, duration, &io->stats_aux); 591 592 /* 593 * After this is decremented the bio must not be touched if it is 594 * a flush. 595 */ 596 pending = atomic_dec_return(&md->pending[rw]); 597 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 598 pending += atomic_read(&md->pending[rw^0x1]); 599 600 /* nudge anyone waiting on suspend queue */ 601 if (!pending) 602 wake_up(&md->wait); 603 } 604 605 /* 606 * Add the bio to the list of deferred io. 607 */ 608 static void queue_io(struct mapped_device *md, struct bio *bio) 609 { 610 unsigned long flags; 611 612 spin_lock_irqsave(&md->deferred_lock, flags); 613 bio_list_add(&md->deferred, bio); 614 spin_unlock_irqrestore(&md->deferred_lock, flags); 615 queue_work(md->wq, &md->work); 616 } 617 618 /* 619 * Everyone (including functions in this file), should use this 620 * function to access the md->map field, and make sure they call 621 * dm_put_live_table() when finished. 622 */ 623 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 624 { 625 *srcu_idx = srcu_read_lock(&md->io_barrier); 626 627 return srcu_dereference(md->map, &md->io_barrier); 628 } 629 630 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 631 { 632 srcu_read_unlock(&md->io_barrier, srcu_idx); 633 } 634 635 void dm_sync_table(struct mapped_device *md) 636 { 637 synchronize_srcu(&md->io_barrier); 638 synchronize_rcu_expedited(); 639 } 640 641 /* 642 * A fast alternative to dm_get_live_table/dm_put_live_table. 643 * The caller must not block between these two functions. 644 */ 645 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 646 { 647 rcu_read_lock(); 648 return rcu_dereference(md->map); 649 } 650 651 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 652 { 653 rcu_read_unlock(); 654 } 655 656 /* 657 * Get the geometry associated with a dm device 658 */ 659 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 660 { 661 *geo = md->geometry; 662 663 return 0; 664 } 665 666 /* 667 * Set the geometry of a device. 668 */ 669 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 670 { 671 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 672 673 if (geo->start > sz) { 674 DMWARN("Start sector is beyond the geometry limits."); 675 return -EINVAL; 676 } 677 678 md->geometry = *geo; 679 680 return 0; 681 } 682 683 /*----------------------------------------------------------------- 684 * CRUD START: 685 * A more elegant soln is in the works that uses the queue 686 * merge fn, unfortunately there are a couple of changes to 687 * the block layer that I want to make for this. So in the 688 * interests of getting something for people to use I give 689 * you this clearly demarcated crap. 690 *---------------------------------------------------------------*/ 691 692 static int __noflush_suspending(struct mapped_device *md) 693 { 694 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 695 } 696 697 /* 698 * Decrements the number of outstanding ios that a bio has been 699 * cloned into, completing the original io if necc. 700 */ 701 static void dec_pending(struct dm_io *io, int error) 702 { 703 unsigned long flags; 704 int io_error; 705 struct bio *bio; 706 struct mapped_device *md = io->md; 707 708 /* Push-back supersedes any I/O errors */ 709 if (unlikely(error)) { 710 spin_lock_irqsave(&io->endio_lock, flags); 711 if (!(io->error > 0 && __noflush_suspending(md))) 712 io->error = error; 713 spin_unlock_irqrestore(&io->endio_lock, flags); 714 } 715 716 if (atomic_dec_and_test(&io->io_count)) { 717 if (io->error == DM_ENDIO_REQUEUE) { 718 /* 719 * Target requested pushing back the I/O. 720 */ 721 spin_lock_irqsave(&md->deferred_lock, flags); 722 if (__noflush_suspending(md)) 723 bio_list_add_head(&md->deferred, io->bio); 724 else 725 /* noflush suspend was interrupted. */ 726 io->error = -EIO; 727 spin_unlock_irqrestore(&md->deferred_lock, flags); 728 } 729 730 io_error = io->error; 731 bio = io->bio; 732 end_io_acct(io); 733 free_io(md, io); 734 735 if (io_error == DM_ENDIO_REQUEUE) 736 return; 737 738 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 739 /* 740 * Preflush done for flush with data, reissue 741 * without REQ_FLUSH. 742 */ 743 bio->bi_rw &= ~REQ_FLUSH; 744 queue_io(md, bio); 745 } else { 746 /* done with normal IO or empty flush */ 747 trace_block_bio_complete(md->queue, bio, io_error); 748 bio_endio(bio, io_error); 749 } 750 } 751 } 752 753 static void clone_endio(struct bio *bio, int error) 754 { 755 int r = 0; 756 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 757 struct dm_io *io = tio->io; 758 struct mapped_device *md = tio->io->md; 759 dm_endio_fn endio = tio->ti->type->end_io; 760 761 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 762 error = -EIO; 763 764 if (endio) { 765 r = endio(tio->ti, bio, error); 766 if (r < 0 || r == DM_ENDIO_REQUEUE) 767 /* 768 * error and requeue request are handled 769 * in dec_pending(). 770 */ 771 error = r; 772 else if (r == DM_ENDIO_INCOMPLETE) 773 /* The target will handle the io */ 774 return; 775 else if (r) { 776 DMWARN("unimplemented target endio return value: %d", r); 777 BUG(); 778 } 779 } 780 781 free_tio(md, tio); 782 dec_pending(io, error); 783 } 784 785 /* 786 * Partial completion handling for request-based dm 787 */ 788 static void end_clone_bio(struct bio *clone, int error) 789 { 790 struct dm_rq_clone_bio_info *info = 791 container_of(clone, struct dm_rq_clone_bio_info, clone); 792 struct dm_rq_target_io *tio = info->tio; 793 struct bio *bio = info->orig; 794 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 795 796 bio_put(clone); 797 798 if (tio->error) 799 /* 800 * An error has already been detected on the request. 801 * Once error occurred, just let clone->end_io() handle 802 * the remainder. 803 */ 804 return; 805 else if (error) { 806 /* 807 * Don't notice the error to the upper layer yet. 808 * The error handling decision is made by the target driver, 809 * when the request is completed. 810 */ 811 tio->error = error; 812 return; 813 } 814 815 /* 816 * I/O for the bio successfully completed. 817 * Notice the data completion to the upper layer. 818 */ 819 820 /* 821 * bios are processed from the head of the list. 822 * So the completing bio should always be rq->bio. 823 * If it's not, something wrong is happening. 824 */ 825 if (tio->orig->bio != bio) 826 DMERR("bio completion is going in the middle of the request"); 827 828 /* 829 * Update the original request. 830 * Do not use blk_end_request() here, because it may complete 831 * the original request before the clone, and break the ordering. 832 */ 833 blk_update_request(tio->orig, 0, nr_bytes); 834 } 835 836 /* 837 * Don't touch any member of the md after calling this function because 838 * the md may be freed in dm_put() at the end of this function. 839 * Or do dm_get() before calling this function and dm_put() later. 840 */ 841 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 842 { 843 atomic_dec(&md->pending[rw]); 844 845 /* nudge anyone waiting on suspend queue */ 846 if (!md_in_flight(md)) 847 wake_up(&md->wait); 848 849 /* 850 * Run this off this callpath, as drivers could invoke end_io while 851 * inside their request_fn (and holding the queue lock). Calling 852 * back into ->request_fn() could deadlock attempting to grab the 853 * queue lock again. 854 */ 855 if (run_queue) 856 blk_run_queue_async(md->queue); 857 858 /* 859 * dm_put() must be at the end of this function. See the comment above 860 */ 861 dm_put(md); 862 } 863 864 static void free_rq_clone(struct request *clone) 865 { 866 struct dm_rq_target_io *tio = clone->end_io_data; 867 868 blk_rq_unprep_clone(clone); 869 free_rq_tio(tio); 870 } 871 872 /* 873 * Complete the clone and the original request. 874 * Must be called without queue lock. 875 */ 876 static void dm_end_request(struct request *clone, int error) 877 { 878 int rw = rq_data_dir(clone); 879 struct dm_rq_target_io *tio = clone->end_io_data; 880 struct mapped_device *md = tio->md; 881 struct request *rq = tio->orig; 882 883 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 884 rq->errors = clone->errors; 885 rq->resid_len = clone->resid_len; 886 887 if (rq->sense) 888 /* 889 * We are using the sense buffer of the original 890 * request. 891 * So setting the length of the sense data is enough. 892 */ 893 rq->sense_len = clone->sense_len; 894 } 895 896 free_rq_clone(clone); 897 blk_end_request_all(rq, error); 898 rq_completed(md, rw, true); 899 } 900 901 static void dm_unprep_request(struct request *rq) 902 { 903 struct request *clone = rq->special; 904 905 rq->special = NULL; 906 rq->cmd_flags &= ~REQ_DONTPREP; 907 908 free_rq_clone(clone); 909 } 910 911 /* 912 * Requeue the original request of a clone. 913 */ 914 void dm_requeue_unmapped_request(struct request *clone) 915 { 916 int rw = rq_data_dir(clone); 917 struct dm_rq_target_io *tio = clone->end_io_data; 918 struct mapped_device *md = tio->md; 919 struct request *rq = tio->orig; 920 struct request_queue *q = rq->q; 921 unsigned long flags; 922 923 dm_unprep_request(rq); 924 925 spin_lock_irqsave(q->queue_lock, flags); 926 blk_requeue_request(q, rq); 927 spin_unlock_irqrestore(q->queue_lock, flags); 928 929 rq_completed(md, rw, 0); 930 } 931 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 932 933 static void __stop_queue(struct request_queue *q) 934 { 935 blk_stop_queue(q); 936 } 937 938 static void stop_queue(struct request_queue *q) 939 { 940 unsigned long flags; 941 942 spin_lock_irqsave(q->queue_lock, flags); 943 __stop_queue(q); 944 spin_unlock_irqrestore(q->queue_lock, flags); 945 } 946 947 static void __start_queue(struct request_queue *q) 948 { 949 if (blk_queue_stopped(q)) 950 blk_start_queue(q); 951 } 952 953 static void start_queue(struct request_queue *q) 954 { 955 unsigned long flags; 956 957 spin_lock_irqsave(q->queue_lock, flags); 958 __start_queue(q); 959 spin_unlock_irqrestore(q->queue_lock, flags); 960 } 961 962 static void dm_done(struct request *clone, int error, bool mapped) 963 { 964 int r = error; 965 struct dm_rq_target_io *tio = clone->end_io_data; 966 dm_request_endio_fn rq_end_io = NULL; 967 968 if (tio->ti) { 969 rq_end_io = tio->ti->type->rq_end_io; 970 971 if (mapped && rq_end_io) 972 r = rq_end_io(tio->ti, clone, error, &tio->info); 973 } 974 975 if (r <= 0) 976 /* The target wants to complete the I/O */ 977 dm_end_request(clone, r); 978 else if (r == DM_ENDIO_INCOMPLETE) 979 /* The target will handle the I/O */ 980 return; 981 else if (r == DM_ENDIO_REQUEUE) 982 /* The target wants to requeue the I/O */ 983 dm_requeue_unmapped_request(clone); 984 else { 985 DMWARN("unimplemented target endio return value: %d", r); 986 BUG(); 987 } 988 } 989 990 /* 991 * Request completion handler for request-based dm 992 */ 993 static void dm_softirq_done(struct request *rq) 994 { 995 bool mapped = true; 996 struct request *clone = rq->completion_data; 997 struct dm_rq_target_io *tio = clone->end_io_data; 998 999 if (rq->cmd_flags & REQ_FAILED) 1000 mapped = false; 1001 1002 dm_done(clone, tio->error, mapped); 1003 } 1004 1005 /* 1006 * Complete the clone and the original request with the error status 1007 * through softirq context. 1008 */ 1009 static void dm_complete_request(struct request *clone, int error) 1010 { 1011 struct dm_rq_target_io *tio = clone->end_io_data; 1012 struct request *rq = tio->orig; 1013 1014 tio->error = error; 1015 rq->completion_data = clone; 1016 blk_complete_request(rq); 1017 } 1018 1019 /* 1020 * Complete the not-mapped clone and the original request with the error status 1021 * through softirq context. 1022 * Target's rq_end_io() function isn't called. 1023 * This may be used when the target's map_rq() function fails. 1024 */ 1025 void dm_kill_unmapped_request(struct request *clone, int error) 1026 { 1027 struct dm_rq_target_io *tio = clone->end_io_data; 1028 struct request *rq = tio->orig; 1029 1030 rq->cmd_flags |= REQ_FAILED; 1031 dm_complete_request(clone, error); 1032 } 1033 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 1034 1035 /* 1036 * Called with the queue lock held 1037 */ 1038 static void end_clone_request(struct request *clone, int error) 1039 { 1040 /* 1041 * For just cleaning up the information of the queue in which 1042 * the clone was dispatched. 1043 * The clone is *NOT* freed actually here because it is alloced from 1044 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 1045 */ 1046 __blk_put_request(clone->q, clone); 1047 1048 /* 1049 * Actual request completion is done in a softirq context which doesn't 1050 * hold the queue lock. Otherwise, deadlock could occur because: 1051 * - another request may be submitted by the upper level driver 1052 * of the stacking during the completion 1053 * - the submission which requires queue lock may be done 1054 * against this queue 1055 */ 1056 dm_complete_request(clone, error); 1057 } 1058 1059 /* 1060 * Return maximum size of I/O possible at the supplied sector up to the current 1061 * target boundary. 1062 */ 1063 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1064 { 1065 sector_t target_offset = dm_target_offset(ti, sector); 1066 1067 return ti->len - target_offset; 1068 } 1069 1070 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1071 { 1072 sector_t len = max_io_len_target_boundary(sector, ti); 1073 sector_t offset, max_len; 1074 1075 /* 1076 * Does the target need to split even further? 1077 */ 1078 if (ti->max_io_len) { 1079 offset = dm_target_offset(ti, sector); 1080 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1081 max_len = sector_div(offset, ti->max_io_len); 1082 else 1083 max_len = offset & (ti->max_io_len - 1); 1084 max_len = ti->max_io_len - max_len; 1085 1086 if (len > max_len) 1087 len = max_len; 1088 } 1089 1090 return len; 1091 } 1092 1093 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1094 { 1095 if (len > UINT_MAX) { 1096 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1097 (unsigned long long)len, UINT_MAX); 1098 ti->error = "Maximum size of target IO is too large"; 1099 return -EINVAL; 1100 } 1101 1102 ti->max_io_len = (uint32_t) len; 1103 1104 return 0; 1105 } 1106 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1107 1108 static void __map_bio(struct dm_target_io *tio) 1109 { 1110 int r; 1111 sector_t sector; 1112 struct mapped_device *md; 1113 struct bio *clone = &tio->clone; 1114 struct dm_target *ti = tio->ti; 1115 1116 clone->bi_end_io = clone_endio; 1117 1118 /* 1119 * Map the clone. If r == 0 we don't need to do 1120 * anything, the target has assumed ownership of 1121 * this io. 1122 */ 1123 atomic_inc(&tio->io->io_count); 1124 sector = clone->bi_iter.bi_sector; 1125 r = ti->type->map(ti, clone); 1126 if (r == DM_MAPIO_REMAPPED) { 1127 /* the bio has been remapped so dispatch it */ 1128 1129 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1130 tio->io->bio->bi_bdev->bd_dev, sector); 1131 1132 generic_make_request(clone); 1133 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1134 /* error the io and bail out, or requeue it if needed */ 1135 md = tio->io->md; 1136 dec_pending(tio->io, r); 1137 free_tio(md, tio); 1138 } else if (r) { 1139 DMWARN("unimplemented target map return value: %d", r); 1140 BUG(); 1141 } 1142 } 1143 1144 struct clone_info { 1145 struct mapped_device *md; 1146 struct dm_table *map; 1147 struct bio *bio; 1148 struct dm_io *io; 1149 sector_t sector; 1150 sector_t sector_count; 1151 }; 1152 1153 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1154 { 1155 bio->bi_iter.bi_sector = sector; 1156 bio->bi_iter.bi_size = to_bytes(len); 1157 } 1158 1159 /* 1160 * Creates a bio that consists of range of complete bvecs. 1161 */ 1162 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1163 sector_t sector, unsigned len) 1164 { 1165 struct bio *clone = &tio->clone; 1166 1167 __bio_clone_fast(clone, bio); 1168 1169 if (bio_integrity(bio)) 1170 bio_integrity_clone(clone, bio, GFP_NOIO); 1171 1172 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1173 clone->bi_iter.bi_size = to_bytes(len); 1174 1175 if (bio_integrity(bio)) 1176 bio_integrity_trim(clone, 0, len); 1177 } 1178 1179 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1180 struct dm_target *ti, int nr_iovecs, 1181 unsigned target_bio_nr) 1182 { 1183 struct dm_target_io *tio; 1184 struct bio *clone; 1185 1186 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1187 tio = container_of(clone, struct dm_target_io, clone); 1188 1189 tio->io = ci->io; 1190 tio->ti = ti; 1191 tio->target_bio_nr = target_bio_nr; 1192 1193 return tio; 1194 } 1195 1196 static void __clone_and_map_simple_bio(struct clone_info *ci, 1197 struct dm_target *ti, 1198 unsigned target_bio_nr, sector_t len) 1199 { 1200 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1201 struct bio *clone = &tio->clone; 1202 1203 /* 1204 * Discard requests require the bio's inline iovecs be initialized. 1205 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1206 * and discard, so no need for concern about wasted bvec allocations. 1207 */ 1208 __bio_clone_fast(clone, ci->bio); 1209 if (len) 1210 bio_setup_sector(clone, ci->sector, len); 1211 1212 __map_bio(tio); 1213 } 1214 1215 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1216 unsigned num_bios, sector_t len) 1217 { 1218 unsigned target_bio_nr; 1219 1220 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1221 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1222 } 1223 1224 static int __send_empty_flush(struct clone_info *ci) 1225 { 1226 unsigned target_nr = 0; 1227 struct dm_target *ti; 1228 1229 BUG_ON(bio_has_data(ci->bio)); 1230 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1231 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); 1232 1233 return 0; 1234 } 1235 1236 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1237 sector_t sector, unsigned len) 1238 { 1239 struct bio *bio = ci->bio; 1240 struct dm_target_io *tio; 1241 unsigned target_bio_nr; 1242 unsigned num_target_bios = 1; 1243 1244 /* 1245 * Does the target want to receive duplicate copies of the bio? 1246 */ 1247 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1248 num_target_bios = ti->num_write_bios(ti, bio); 1249 1250 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1251 tio = alloc_tio(ci, ti, 0, target_bio_nr); 1252 clone_bio(tio, bio, sector, len); 1253 __map_bio(tio); 1254 } 1255 } 1256 1257 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1258 1259 static unsigned get_num_discard_bios(struct dm_target *ti) 1260 { 1261 return ti->num_discard_bios; 1262 } 1263 1264 static unsigned get_num_write_same_bios(struct dm_target *ti) 1265 { 1266 return ti->num_write_same_bios; 1267 } 1268 1269 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1270 1271 static bool is_split_required_for_discard(struct dm_target *ti) 1272 { 1273 return ti->split_discard_bios; 1274 } 1275 1276 static int __send_changing_extent_only(struct clone_info *ci, 1277 get_num_bios_fn get_num_bios, 1278 is_split_required_fn is_split_required) 1279 { 1280 struct dm_target *ti; 1281 sector_t len; 1282 unsigned num_bios; 1283 1284 do { 1285 ti = dm_table_find_target(ci->map, ci->sector); 1286 if (!dm_target_is_valid(ti)) 1287 return -EIO; 1288 1289 /* 1290 * Even though the device advertised support for this type of 1291 * request, that does not mean every target supports it, and 1292 * reconfiguration might also have changed that since the 1293 * check was performed. 1294 */ 1295 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1296 if (!num_bios) 1297 return -EOPNOTSUPP; 1298 1299 if (is_split_required && !is_split_required(ti)) 1300 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1301 else 1302 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1303 1304 __send_duplicate_bios(ci, ti, num_bios, len); 1305 1306 ci->sector += len; 1307 } while (ci->sector_count -= len); 1308 1309 return 0; 1310 } 1311 1312 static int __send_discard(struct clone_info *ci) 1313 { 1314 return __send_changing_extent_only(ci, get_num_discard_bios, 1315 is_split_required_for_discard); 1316 } 1317 1318 static int __send_write_same(struct clone_info *ci) 1319 { 1320 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1321 } 1322 1323 /* 1324 * Select the correct strategy for processing a non-flush bio. 1325 */ 1326 static int __split_and_process_non_flush(struct clone_info *ci) 1327 { 1328 struct bio *bio = ci->bio; 1329 struct dm_target *ti; 1330 unsigned len; 1331 1332 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1333 return __send_discard(ci); 1334 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1335 return __send_write_same(ci); 1336 1337 ti = dm_table_find_target(ci->map, ci->sector); 1338 if (!dm_target_is_valid(ti)) 1339 return -EIO; 1340 1341 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1342 1343 __clone_and_map_data_bio(ci, ti, ci->sector, len); 1344 1345 ci->sector += len; 1346 ci->sector_count -= len; 1347 1348 return 0; 1349 } 1350 1351 /* 1352 * Entry point to split a bio into clones and submit them to the targets. 1353 */ 1354 static void __split_and_process_bio(struct mapped_device *md, 1355 struct dm_table *map, struct bio *bio) 1356 { 1357 struct clone_info ci; 1358 int error = 0; 1359 1360 if (unlikely(!map)) { 1361 bio_io_error(bio); 1362 return; 1363 } 1364 1365 ci.map = map; 1366 ci.md = md; 1367 ci.io = alloc_io(md); 1368 ci.io->error = 0; 1369 atomic_set(&ci.io->io_count, 1); 1370 ci.io->bio = bio; 1371 ci.io->md = md; 1372 spin_lock_init(&ci.io->endio_lock); 1373 ci.sector = bio->bi_iter.bi_sector; 1374 1375 start_io_acct(ci.io); 1376 1377 if (bio->bi_rw & REQ_FLUSH) { 1378 ci.bio = &ci.md->flush_bio; 1379 ci.sector_count = 0; 1380 error = __send_empty_flush(&ci); 1381 /* dec_pending submits any data associated with flush */ 1382 } else { 1383 ci.bio = bio; 1384 ci.sector_count = bio_sectors(bio); 1385 while (ci.sector_count && !error) 1386 error = __split_and_process_non_flush(&ci); 1387 } 1388 1389 /* drop the extra reference count */ 1390 dec_pending(ci.io, error); 1391 } 1392 /*----------------------------------------------------------------- 1393 * CRUD END 1394 *---------------------------------------------------------------*/ 1395 1396 static int dm_merge_bvec(struct request_queue *q, 1397 struct bvec_merge_data *bvm, 1398 struct bio_vec *biovec) 1399 { 1400 struct mapped_device *md = q->queuedata; 1401 struct dm_table *map = dm_get_live_table_fast(md); 1402 struct dm_target *ti; 1403 sector_t max_sectors; 1404 int max_size = 0; 1405 1406 if (unlikely(!map)) 1407 goto out; 1408 1409 ti = dm_table_find_target(map, bvm->bi_sector); 1410 if (!dm_target_is_valid(ti)) 1411 goto out; 1412 1413 /* 1414 * Find maximum amount of I/O that won't need splitting 1415 */ 1416 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1417 (sector_t) BIO_MAX_SECTORS); 1418 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1419 if (max_size < 0) 1420 max_size = 0; 1421 1422 /* 1423 * merge_bvec_fn() returns number of bytes 1424 * it can accept at this offset 1425 * max is precomputed maximal io size 1426 */ 1427 if (max_size && ti->type->merge) 1428 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1429 /* 1430 * If the target doesn't support merge method and some of the devices 1431 * provided their merge_bvec method (we know this by looking at 1432 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1433 * entries. So always set max_size to 0, and the code below allows 1434 * just one page. 1435 */ 1436 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1437 1438 max_size = 0; 1439 1440 out: 1441 dm_put_live_table_fast(md); 1442 /* 1443 * Always allow an entire first page 1444 */ 1445 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1446 max_size = biovec->bv_len; 1447 1448 return max_size; 1449 } 1450 1451 /* 1452 * The request function that just remaps the bio built up by 1453 * dm_merge_bvec. 1454 */ 1455 static void _dm_request(struct request_queue *q, struct bio *bio) 1456 { 1457 int rw = bio_data_dir(bio); 1458 struct mapped_device *md = q->queuedata; 1459 int cpu; 1460 int srcu_idx; 1461 struct dm_table *map; 1462 1463 map = dm_get_live_table(md, &srcu_idx); 1464 1465 cpu = part_stat_lock(); 1466 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1467 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1468 part_stat_unlock(); 1469 1470 /* if we're suspended, we have to queue this io for later */ 1471 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1472 dm_put_live_table(md, srcu_idx); 1473 1474 if (bio_rw(bio) != READA) 1475 queue_io(md, bio); 1476 else 1477 bio_io_error(bio); 1478 return; 1479 } 1480 1481 __split_and_process_bio(md, map, bio); 1482 dm_put_live_table(md, srcu_idx); 1483 return; 1484 } 1485 1486 int dm_request_based(struct mapped_device *md) 1487 { 1488 return blk_queue_stackable(md->queue); 1489 } 1490 1491 static void dm_request(struct request_queue *q, struct bio *bio) 1492 { 1493 struct mapped_device *md = q->queuedata; 1494 1495 if (dm_request_based(md)) 1496 blk_queue_bio(q, bio); 1497 else 1498 _dm_request(q, bio); 1499 } 1500 1501 void dm_dispatch_request(struct request *rq) 1502 { 1503 int r; 1504 1505 if (blk_queue_io_stat(rq->q)) 1506 rq->cmd_flags |= REQ_IO_STAT; 1507 1508 rq->start_time = jiffies; 1509 r = blk_insert_cloned_request(rq->q, rq); 1510 if (r) 1511 dm_complete_request(rq, r); 1512 } 1513 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1514 1515 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1516 void *data) 1517 { 1518 struct dm_rq_target_io *tio = data; 1519 struct dm_rq_clone_bio_info *info = 1520 container_of(bio, struct dm_rq_clone_bio_info, clone); 1521 1522 info->orig = bio_orig; 1523 info->tio = tio; 1524 bio->bi_end_io = end_clone_bio; 1525 1526 return 0; 1527 } 1528 1529 static int setup_clone(struct request *clone, struct request *rq, 1530 struct dm_rq_target_io *tio) 1531 { 1532 int r; 1533 1534 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1535 dm_rq_bio_constructor, tio); 1536 if (r) 1537 return r; 1538 1539 clone->cmd = rq->cmd; 1540 clone->cmd_len = rq->cmd_len; 1541 clone->sense = rq->sense; 1542 clone->buffer = rq->buffer; 1543 clone->end_io = end_clone_request; 1544 clone->end_io_data = tio; 1545 1546 return 0; 1547 } 1548 1549 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1550 gfp_t gfp_mask) 1551 { 1552 struct request *clone; 1553 struct dm_rq_target_io *tio; 1554 1555 tio = alloc_rq_tio(md, gfp_mask); 1556 if (!tio) 1557 return NULL; 1558 1559 tio->md = md; 1560 tio->ti = NULL; 1561 tio->orig = rq; 1562 tio->error = 0; 1563 memset(&tio->info, 0, sizeof(tio->info)); 1564 1565 clone = &tio->clone; 1566 if (setup_clone(clone, rq, tio)) { 1567 /* -ENOMEM */ 1568 free_rq_tio(tio); 1569 return NULL; 1570 } 1571 1572 return clone; 1573 } 1574 1575 /* 1576 * Called with the queue lock held. 1577 */ 1578 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1579 { 1580 struct mapped_device *md = q->queuedata; 1581 struct request *clone; 1582 1583 if (unlikely(rq->special)) { 1584 DMWARN("Already has something in rq->special."); 1585 return BLKPREP_KILL; 1586 } 1587 1588 clone = clone_rq(rq, md, GFP_ATOMIC); 1589 if (!clone) 1590 return BLKPREP_DEFER; 1591 1592 rq->special = clone; 1593 rq->cmd_flags |= REQ_DONTPREP; 1594 1595 return BLKPREP_OK; 1596 } 1597 1598 /* 1599 * Returns: 1600 * 0 : the request has been processed (not requeued) 1601 * !0 : the request has been requeued 1602 */ 1603 static int map_request(struct dm_target *ti, struct request *clone, 1604 struct mapped_device *md) 1605 { 1606 int r, requeued = 0; 1607 struct dm_rq_target_io *tio = clone->end_io_data; 1608 1609 tio->ti = ti; 1610 r = ti->type->map_rq(ti, clone, &tio->info); 1611 switch (r) { 1612 case DM_MAPIO_SUBMITTED: 1613 /* The target has taken the I/O to submit by itself later */ 1614 break; 1615 case DM_MAPIO_REMAPPED: 1616 /* The target has remapped the I/O so dispatch it */ 1617 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1618 blk_rq_pos(tio->orig)); 1619 dm_dispatch_request(clone); 1620 break; 1621 case DM_MAPIO_REQUEUE: 1622 /* The target wants to requeue the I/O */ 1623 dm_requeue_unmapped_request(clone); 1624 requeued = 1; 1625 break; 1626 default: 1627 if (r > 0) { 1628 DMWARN("unimplemented target map return value: %d", r); 1629 BUG(); 1630 } 1631 1632 /* The target wants to complete the I/O */ 1633 dm_kill_unmapped_request(clone, r); 1634 break; 1635 } 1636 1637 return requeued; 1638 } 1639 1640 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1641 { 1642 struct request *clone; 1643 1644 blk_start_request(orig); 1645 clone = orig->special; 1646 atomic_inc(&md->pending[rq_data_dir(clone)]); 1647 1648 /* 1649 * Hold the md reference here for the in-flight I/O. 1650 * We can't rely on the reference count by device opener, 1651 * because the device may be closed during the request completion 1652 * when all bios are completed. 1653 * See the comment in rq_completed() too. 1654 */ 1655 dm_get(md); 1656 1657 return clone; 1658 } 1659 1660 /* 1661 * q->request_fn for request-based dm. 1662 * Called with the queue lock held. 1663 */ 1664 static void dm_request_fn(struct request_queue *q) 1665 { 1666 struct mapped_device *md = q->queuedata; 1667 int srcu_idx; 1668 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1669 struct dm_target *ti; 1670 struct request *rq, *clone; 1671 sector_t pos; 1672 1673 /* 1674 * For suspend, check blk_queue_stopped() and increment 1675 * ->pending within a single queue_lock not to increment the 1676 * number of in-flight I/Os after the queue is stopped in 1677 * dm_suspend(). 1678 */ 1679 while (!blk_queue_stopped(q)) { 1680 rq = blk_peek_request(q); 1681 if (!rq) 1682 goto delay_and_out; 1683 1684 /* always use block 0 to find the target for flushes for now */ 1685 pos = 0; 1686 if (!(rq->cmd_flags & REQ_FLUSH)) 1687 pos = blk_rq_pos(rq); 1688 1689 ti = dm_table_find_target(map, pos); 1690 if (!dm_target_is_valid(ti)) { 1691 /* 1692 * Must perform setup, that dm_done() requires, 1693 * before calling dm_kill_unmapped_request 1694 */ 1695 DMERR_LIMIT("request attempted access beyond the end of device"); 1696 clone = dm_start_request(md, rq); 1697 dm_kill_unmapped_request(clone, -EIO); 1698 continue; 1699 } 1700 1701 if (ti->type->busy && ti->type->busy(ti)) 1702 goto delay_and_out; 1703 1704 clone = dm_start_request(md, rq); 1705 1706 spin_unlock(q->queue_lock); 1707 if (map_request(ti, clone, md)) 1708 goto requeued; 1709 1710 BUG_ON(!irqs_disabled()); 1711 spin_lock(q->queue_lock); 1712 } 1713 1714 goto out; 1715 1716 requeued: 1717 BUG_ON(!irqs_disabled()); 1718 spin_lock(q->queue_lock); 1719 1720 delay_and_out: 1721 blk_delay_queue(q, HZ / 10); 1722 out: 1723 dm_put_live_table(md, srcu_idx); 1724 } 1725 1726 int dm_underlying_device_busy(struct request_queue *q) 1727 { 1728 return blk_lld_busy(q); 1729 } 1730 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1731 1732 static int dm_lld_busy(struct request_queue *q) 1733 { 1734 int r; 1735 struct mapped_device *md = q->queuedata; 1736 struct dm_table *map = dm_get_live_table_fast(md); 1737 1738 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1739 r = 1; 1740 else 1741 r = dm_table_any_busy_target(map); 1742 1743 dm_put_live_table_fast(md); 1744 1745 return r; 1746 } 1747 1748 static int dm_any_congested(void *congested_data, int bdi_bits) 1749 { 1750 int r = bdi_bits; 1751 struct mapped_device *md = congested_data; 1752 struct dm_table *map; 1753 1754 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1755 map = dm_get_live_table_fast(md); 1756 if (map) { 1757 /* 1758 * Request-based dm cares about only own queue for 1759 * the query about congestion status of request_queue 1760 */ 1761 if (dm_request_based(md)) 1762 r = md->queue->backing_dev_info.state & 1763 bdi_bits; 1764 else 1765 r = dm_table_any_congested(map, bdi_bits); 1766 } 1767 dm_put_live_table_fast(md); 1768 } 1769 1770 return r; 1771 } 1772 1773 /*----------------------------------------------------------------- 1774 * An IDR is used to keep track of allocated minor numbers. 1775 *---------------------------------------------------------------*/ 1776 static void free_minor(int minor) 1777 { 1778 spin_lock(&_minor_lock); 1779 idr_remove(&_minor_idr, minor); 1780 spin_unlock(&_minor_lock); 1781 } 1782 1783 /* 1784 * See if the device with a specific minor # is free. 1785 */ 1786 static int specific_minor(int minor) 1787 { 1788 int r; 1789 1790 if (minor >= (1 << MINORBITS)) 1791 return -EINVAL; 1792 1793 idr_preload(GFP_KERNEL); 1794 spin_lock(&_minor_lock); 1795 1796 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1797 1798 spin_unlock(&_minor_lock); 1799 idr_preload_end(); 1800 if (r < 0) 1801 return r == -ENOSPC ? -EBUSY : r; 1802 return 0; 1803 } 1804 1805 static int next_free_minor(int *minor) 1806 { 1807 int r; 1808 1809 idr_preload(GFP_KERNEL); 1810 spin_lock(&_minor_lock); 1811 1812 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1813 1814 spin_unlock(&_minor_lock); 1815 idr_preload_end(); 1816 if (r < 0) 1817 return r; 1818 *minor = r; 1819 return 0; 1820 } 1821 1822 static const struct block_device_operations dm_blk_dops; 1823 1824 static void dm_wq_work(struct work_struct *work); 1825 1826 static void dm_init_md_queue(struct mapped_device *md) 1827 { 1828 /* 1829 * Request-based dm devices cannot be stacked on top of bio-based dm 1830 * devices. The type of this dm device has not been decided yet. 1831 * The type is decided at the first table loading time. 1832 * To prevent problematic device stacking, clear the queue flag 1833 * for request stacking support until then. 1834 * 1835 * This queue is new, so no concurrency on the queue_flags. 1836 */ 1837 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1838 1839 md->queue->queuedata = md; 1840 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1841 md->queue->backing_dev_info.congested_data = md; 1842 blk_queue_make_request(md->queue, dm_request); 1843 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1844 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1845 } 1846 1847 /* 1848 * Allocate and initialise a blank device with a given minor. 1849 */ 1850 static struct mapped_device *alloc_dev(int minor) 1851 { 1852 int r; 1853 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1854 void *old_md; 1855 1856 if (!md) { 1857 DMWARN("unable to allocate device, out of memory."); 1858 return NULL; 1859 } 1860 1861 if (!try_module_get(THIS_MODULE)) 1862 goto bad_module_get; 1863 1864 /* get a minor number for the dev */ 1865 if (minor == DM_ANY_MINOR) 1866 r = next_free_minor(&minor); 1867 else 1868 r = specific_minor(minor); 1869 if (r < 0) 1870 goto bad_minor; 1871 1872 r = init_srcu_struct(&md->io_barrier); 1873 if (r < 0) 1874 goto bad_io_barrier; 1875 1876 md->type = DM_TYPE_NONE; 1877 mutex_init(&md->suspend_lock); 1878 mutex_init(&md->type_lock); 1879 spin_lock_init(&md->deferred_lock); 1880 atomic_set(&md->holders, 1); 1881 atomic_set(&md->open_count, 0); 1882 atomic_set(&md->event_nr, 0); 1883 atomic_set(&md->uevent_seq, 0); 1884 INIT_LIST_HEAD(&md->uevent_list); 1885 spin_lock_init(&md->uevent_lock); 1886 1887 md->queue = blk_alloc_queue(GFP_KERNEL); 1888 if (!md->queue) 1889 goto bad_queue; 1890 1891 dm_init_md_queue(md); 1892 1893 md->disk = alloc_disk(1); 1894 if (!md->disk) 1895 goto bad_disk; 1896 1897 atomic_set(&md->pending[0], 0); 1898 atomic_set(&md->pending[1], 0); 1899 init_waitqueue_head(&md->wait); 1900 INIT_WORK(&md->work, dm_wq_work); 1901 init_waitqueue_head(&md->eventq); 1902 init_completion(&md->kobj_holder.completion); 1903 1904 md->disk->major = _major; 1905 md->disk->first_minor = minor; 1906 md->disk->fops = &dm_blk_dops; 1907 md->disk->queue = md->queue; 1908 md->disk->private_data = md; 1909 sprintf(md->disk->disk_name, "dm-%d", minor); 1910 add_disk(md->disk); 1911 format_dev_t(md->name, MKDEV(_major, minor)); 1912 1913 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1914 if (!md->wq) 1915 goto bad_thread; 1916 1917 md->bdev = bdget_disk(md->disk, 0); 1918 if (!md->bdev) 1919 goto bad_bdev; 1920 1921 bio_init(&md->flush_bio); 1922 md->flush_bio.bi_bdev = md->bdev; 1923 md->flush_bio.bi_rw = WRITE_FLUSH; 1924 1925 dm_stats_init(&md->stats); 1926 1927 /* Populate the mapping, nobody knows we exist yet */ 1928 spin_lock(&_minor_lock); 1929 old_md = idr_replace(&_minor_idr, md, minor); 1930 spin_unlock(&_minor_lock); 1931 1932 BUG_ON(old_md != MINOR_ALLOCED); 1933 1934 return md; 1935 1936 bad_bdev: 1937 destroy_workqueue(md->wq); 1938 bad_thread: 1939 del_gendisk(md->disk); 1940 put_disk(md->disk); 1941 bad_disk: 1942 blk_cleanup_queue(md->queue); 1943 bad_queue: 1944 cleanup_srcu_struct(&md->io_barrier); 1945 bad_io_barrier: 1946 free_minor(minor); 1947 bad_minor: 1948 module_put(THIS_MODULE); 1949 bad_module_get: 1950 kfree(md); 1951 return NULL; 1952 } 1953 1954 static void unlock_fs(struct mapped_device *md); 1955 1956 static void free_dev(struct mapped_device *md) 1957 { 1958 int minor = MINOR(disk_devt(md->disk)); 1959 1960 unlock_fs(md); 1961 bdput(md->bdev); 1962 destroy_workqueue(md->wq); 1963 if (md->io_pool) 1964 mempool_destroy(md->io_pool); 1965 if (md->bs) 1966 bioset_free(md->bs); 1967 blk_integrity_unregister(md->disk); 1968 del_gendisk(md->disk); 1969 cleanup_srcu_struct(&md->io_barrier); 1970 free_minor(minor); 1971 1972 spin_lock(&_minor_lock); 1973 md->disk->private_data = NULL; 1974 spin_unlock(&_minor_lock); 1975 1976 put_disk(md->disk); 1977 blk_cleanup_queue(md->queue); 1978 dm_stats_cleanup(&md->stats); 1979 module_put(THIS_MODULE); 1980 kfree(md); 1981 } 1982 1983 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1984 { 1985 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1986 1987 if (md->io_pool && md->bs) { 1988 /* The md already has necessary mempools. */ 1989 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1990 /* 1991 * Reload bioset because front_pad may have changed 1992 * because a different table was loaded. 1993 */ 1994 bioset_free(md->bs); 1995 md->bs = p->bs; 1996 p->bs = NULL; 1997 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 1998 /* 1999 * There's no need to reload with request-based dm 2000 * because the size of front_pad doesn't change. 2001 * Note for future: If you are to reload bioset, 2002 * prep-ed requests in the queue may refer 2003 * to bio from the old bioset, so you must walk 2004 * through the queue to unprep. 2005 */ 2006 } 2007 goto out; 2008 } 2009 2010 BUG_ON(!p || md->io_pool || md->bs); 2011 2012 md->io_pool = p->io_pool; 2013 p->io_pool = NULL; 2014 md->bs = p->bs; 2015 p->bs = NULL; 2016 2017 out: 2018 /* mempool bind completed, now no need any mempools in the table */ 2019 dm_table_free_md_mempools(t); 2020 } 2021 2022 /* 2023 * Bind a table to the device. 2024 */ 2025 static void event_callback(void *context) 2026 { 2027 unsigned long flags; 2028 LIST_HEAD(uevents); 2029 struct mapped_device *md = (struct mapped_device *) context; 2030 2031 spin_lock_irqsave(&md->uevent_lock, flags); 2032 list_splice_init(&md->uevent_list, &uevents); 2033 spin_unlock_irqrestore(&md->uevent_lock, flags); 2034 2035 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2036 2037 atomic_inc(&md->event_nr); 2038 wake_up(&md->eventq); 2039 } 2040 2041 /* 2042 * Protected by md->suspend_lock obtained by dm_swap_table(). 2043 */ 2044 static void __set_size(struct mapped_device *md, sector_t size) 2045 { 2046 set_capacity(md->disk, size); 2047 2048 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2049 } 2050 2051 /* 2052 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2053 * 2054 * If this function returns 0, then the device is either a non-dm 2055 * device without a merge_bvec_fn, or it is a dm device that is 2056 * able to split any bios it receives that are too big. 2057 */ 2058 int dm_queue_merge_is_compulsory(struct request_queue *q) 2059 { 2060 struct mapped_device *dev_md; 2061 2062 if (!q->merge_bvec_fn) 2063 return 0; 2064 2065 if (q->make_request_fn == dm_request) { 2066 dev_md = q->queuedata; 2067 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2068 return 0; 2069 } 2070 2071 return 1; 2072 } 2073 2074 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2075 struct dm_dev *dev, sector_t start, 2076 sector_t len, void *data) 2077 { 2078 struct block_device *bdev = dev->bdev; 2079 struct request_queue *q = bdev_get_queue(bdev); 2080 2081 return dm_queue_merge_is_compulsory(q); 2082 } 2083 2084 /* 2085 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2086 * on the properties of the underlying devices. 2087 */ 2088 static int dm_table_merge_is_optional(struct dm_table *table) 2089 { 2090 unsigned i = 0; 2091 struct dm_target *ti; 2092 2093 while (i < dm_table_get_num_targets(table)) { 2094 ti = dm_table_get_target(table, i++); 2095 2096 if (ti->type->iterate_devices && 2097 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2098 return 0; 2099 } 2100 2101 return 1; 2102 } 2103 2104 /* 2105 * Returns old map, which caller must destroy. 2106 */ 2107 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2108 struct queue_limits *limits) 2109 { 2110 struct dm_table *old_map; 2111 struct request_queue *q = md->queue; 2112 sector_t size; 2113 int merge_is_optional; 2114 2115 size = dm_table_get_size(t); 2116 2117 /* 2118 * Wipe any geometry if the size of the table changed. 2119 */ 2120 if (size != dm_get_size(md)) 2121 memset(&md->geometry, 0, sizeof(md->geometry)); 2122 2123 __set_size(md, size); 2124 2125 dm_table_event_callback(t, event_callback, md); 2126 2127 /* 2128 * The queue hasn't been stopped yet, if the old table type wasn't 2129 * for request-based during suspension. So stop it to prevent 2130 * I/O mapping before resume. 2131 * This must be done before setting the queue restrictions, 2132 * because request-based dm may be run just after the setting. 2133 */ 2134 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2135 stop_queue(q); 2136 2137 __bind_mempools(md, t); 2138 2139 merge_is_optional = dm_table_merge_is_optional(t); 2140 2141 old_map = md->map; 2142 rcu_assign_pointer(md->map, t); 2143 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2144 2145 dm_table_set_restrictions(t, q, limits); 2146 if (merge_is_optional) 2147 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2148 else 2149 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2150 dm_sync_table(md); 2151 2152 return old_map; 2153 } 2154 2155 /* 2156 * Returns unbound table for the caller to free. 2157 */ 2158 static struct dm_table *__unbind(struct mapped_device *md) 2159 { 2160 struct dm_table *map = md->map; 2161 2162 if (!map) 2163 return NULL; 2164 2165 dm_table_event_callback(map, NULL, NULL); 2166 RCU_INIT_POINTER(md->map, NULL); 2167 dm_sync_table(md); 2168 2169 return map; 2170 } 2171 2172 /* 2173 * Constructor for a new device. 2174 */ 2175 int dm_create(int minor, struct mapped_device **result) 2176 { 2177 struct mapped_device *md; 2178 2179 md = alloc_dev(minor); 2180 if (!md) 2181 return -ENXIO; 2182 2183 dm_sysfs_init(md); 2184 2185 *result = md; 2186 return 0; 2187 } 2188 2189 /* 2190 * Functions to manage md->type. 2191 * All are required to hold md->type_lock. 2192 */ 2193 void dm_lock_md_type(struct mapped_device *md) 2194 { 2195 mutex_lock(&md->type_lock); 2196 } 2197 2198 void dm_unlock_md_type(struct mapped_device *md) 2199 { 2200 mutex_unlock(&md->type_lock); 2201 } 2202 2203 void dm_set_md_type(struct mapped_device *md, unsigned type) 2204 { 2205 BUG_ON(!mutex_is_locked(&md->type_lock)); 2206 md->type = type; 2207 } 2208 2209 unsigned dm_get_md_type(struct mapped_device *md) 2210 { 2211 BUG_ON(!mutex_is_locked(&md->type_lock)); 2212 return md->type; 2213 } 2214 2215 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2216 { 2217 return md->immutable_target_type; 2218 } 2219 2220 /* 2221 * The queue_limits are only valid as long as you have a reference 2222 * count on 'md'. 2223 */ 2224 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2225 { 2226 BUG_ON(!atomic_read(&md->holders)); 2227 return &md->queue->limits; 2228 } 2229 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2230 2231 /* 2232 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2233 */ 2234 static int dm_init_request_based_queue(struct mapped_device *md) 2235 { 2236 struct request_queue *q = NULL; 2237 2238 if (md->queue->elevator) 2239 return 1; 2240 2241 /* Fully initialize the queue */ 2242 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2243 if (!q) 2244 return 0; 2245 2246 md->queue = q; 2247 dm_init_md_queue(md); 2248 blk_queue_softirq_done(md->queue, dm_softirq_done); 2249 blk_queue_prep_rq(md->queue, dm_prep_fn); 2250 blk_queue_lld_busy(md->queue, dm_lld_busy); 2251 2252 elv_register_queue(md->queue); 2253 2254 return 1; 2255 } 2256 2257 /* 2258 * Setup the DM device's queue based on md's type 2259 */ 2260 int dm_setup_md_queue(struct mapped_device *md) 2261 { 2262 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2263 !dm_init_request_based_queue(md)) { 2264 DMWARN("Cannot initialize queue for request-based mapped device"); 2265 return -EINVAL; 2266 } 2267 2268 return 0; 2269 } 2270 2271 static struct mapped_device *dm_find_md(dev_t dev) 2272 { 2273 struct mapped_device *md; 2274 unsigned minor = MINOR(dev); 2275 2276 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2277 return NULL; 2278 2279 spin_lock(&_minor_lock); 2280 2281 md = idr_find(&_minor_idr, minor); 2282 if (md && (md == MINOR_ALLOCED || 2283 (MINOR(disk_devt(dm_disk(md))) != minor) || 2284 dm_deleting_md(md) || 2285 test_bit(DMF_FREEING, &md->flags))) { 2286 md = NULL; 2287 goto out; 2288 } 2289 2290 out: 2291 spin_unlock(&_minor_lock); 2292 2293 return md; 2294 } 2295 2296 struct mapped_device *dm_get_md(dev_t dev) 2297 { 2298 struct mapped_device *md = dm_find_md(dev); 2299 2300 if (md) 2301 dm_get(md); 2302 2303 return md; 2304 } 2305 EXPORT_SYMBOL_GPL(dm_get_md); 2306 2307 void *dm_get_mdptr(struct mapped_device *md) 2308 { 2309 return md->interface_ptr; 2310 } 2311 2312 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2313 { 2314 md->interface_ptr = ptr; 2315 } 2316 2317 void dm_get(struct mapped_device *md) 2318 { 2319 atomic_inc(&md->holders); 2320 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2321 } 2322 2323 const char *dm_device_name(struct mapped_device *md) 2324 { 2325 return md->name; 2326 } 2327 EXPORT_SYMBOL_GPL(dm_device_name); 2328 2329 static void __dm_destroy(struct mapped_device *md, bool wait) 2330 { 2331 struct dm_table *map; 2332 int srcu_idx; 2333 2334 might_sleep(); 2335 2336 spin_lock(&_minor_lock); 2337 map = dm_get_live_table(md, &srcu_idx); 2338 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2339 set_bit(DMF_FREEING, &md->flags); 2340 spin_unlock(&_minor_lock); 2341 2342 if (!dm_suspended_md(md)) { 2343 dm_table_presuspend_targets(map); 2344 dm_table_postsuspend_targets(map); 2345 } 2346 2347 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2348 dm_put_live_table(md, srcu_idx); 2349 2350 /* 2351 * Rare, but there may be I/O requests still going to complete, 2352 * for example. Wait for all references to disappear. 2353 * No one should increment the reference count of the mapped_device, 2354 * after the mapped_device state becomes DMF_FREEING. 2355 */ 2356 if (wait) 2357 while (atomic_read(&md->holders)) 2358 msleep(1); 2359 else if (atomic_read(&md->holders)) 2360 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2361 dm_device_name(md), atomic_read(&md->holders)); 2362 2363 dm_sysfs_exit(md); 2364 dm_table_destroy(__unbind(md)); 2365 free_dev(md); 2366 } 2367 2368 void dm_destroy(struct mapped_device *md) 2369 { 2370 __dm_destroy(md, true); 2371 } 2372 2373 void dm_destroy_immediate(struct mapped_device *md) 2374 { 2375 __dm_destroy(md, false); 2376 } 2377 2378 void dm_put(struct mapped_device *md) 2379 { 2380 atomic_dec(&md->holders); 2381 } 2382 EXPORT_SYMBOL_GPL(dm_put); 2383 2384 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2385 { 2386 int r = 0; 2387 DECLARE_WAITQUEUE(wait, current); 2388 2389 add_wait_queue(&md->wait, &wait); 2390 2391 while (1) { 2392 set_current_state(interruptible); 2393 2394 if (!md_in_flight(md)) 2395 break; 2396 2397 if (interruptible == TASK_INTERRUPTIBLE && 2398 signal_pending(current)) { 2399 r = -EINTR; 2400 break; 2401 } 2402 2403 io_schedule(); 2404 } 2405 set_current_state(TASK_RUNNING); 2406 2407 remove_wait_queue(&md->wait, &wait); 2408 2409 return r; 2410 } 2411 2412 /* 2413 * Process the deferred bios 2414 */ 2415 static void dm_wq_work(struct work_struct *work) 2416 { 2417 struct mapped_device *md = container_of(work, struct mapped_device, 2418 work); 2419 struct bio *c; 2420 int srcu_idx; 2421 struct dm_table *map; 2422 2423 map = dm_get_live_table(md, &srcu_idx); 2424 2425 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2426 spin_lock_irq(&md->deferred_lock); 2427 c = bio_list_pop(&md->deferred); 2428 spin_unlock_irq(&md->deferred_lock); 2429 2430 if (!c) 2431 break; 2432 2433 if (dm_request_based(md)) 2434 generic_make_request(c); 2435 else 2436 __split_and_process_bio(md, map, c); 2437 } 2438 2439 dm_put_live_table(md, srcu_idx); 2440 } 2441 2442 static void dm_queue_flush(struct mapped_device *md) 2443 { 2444 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2445 smp_mb__after_clear_bit(); 2446 queue_work(md->wq, &md->work); 2447 } 2448 2449 /* 2450 * Swap in a new table, returning the old one for the caller to destroy. 2451 */ 2452 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2453 { 2454 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2455 struct queue_limits limits; 2456 int r; 2457 2458 mutex_lock(&md->suspend_lock); 2459 2460 /* device must be suspended */ 2461 if (!dm_suspended_md(md)) 2462 goto out; 2463 2464 /* 2465 * If the new table has no data devices, retain the existing limits. 2466 * This helps multipath with queue_if_no_path if all paths disappear, 2467 * then new I/O is queued based on these limits, and then some paths 2468 * reappear. 2469 */ 2470 if (dm_table_has_no_data_devices(table)) { 2471 live_map = dm_get_live_table_fast(md); 2472 if (live_map) 2473 limits = md->queue->limits; 2474 dm_put_live_table_fast(md); 2475 } 2476 2477 if (!live_map) { 2478 r = dm_calculate_queue_limits(table, &limits); 2479 if (r) { 2480 map = ERR_PTR(r); 2481 goto out; 2482 } 2483 } 2484 2485 map = __bind(md, table, &limits); 2486 2487 out: 2488 mutex_unlock(&md->suspend_lock); 2489 return map; 2490 } 2491 2492 /* 2493 * Functions to lock and unlock any filesystem running on the 2494 * device. 2495 */ 2496 static int lock_fs(struct mapped_device *md) 2497 { 2498 int r; 2499 2500 WARN_ON(md->frozen_sb); 2501 2502 md->frozen_sb = freeze_bdev(md->bdev); 2503 if (IS_ERR(md->frozen_sb)) { 2504 r = PTR_ERR(md->frozen_sb); 2505 md->frozen_sb = NULL; 2506 return r; 2507 } 2508 2509 set_bit(DMF_FROZEN, &md->flags); 2510 2511 return 0; 2512 } 2513 2514 static void unlock_fs(struct mapped_device *md) 2515 { 2516 if (!test_bit(DMF_FROZEN, &md->flags)) 2517 return; 2518 2519 thaw_bdev(md->bdev, md->frozen_sb); 2520 md->frozen_sb = NULL; 2521 clear_bit(DMF_FROZEN, &md->flags); 2522 } 2523 2524 /* 2525 * We need to be able to change a mapping table under a mounted 2526 * filesystem. For example we might want to move some data in 2527 * the background. Before the table can be swapped with 2528 * dm_bind_table, dm_suspend must be called to flush any in 2529 * flight bios and ensure that any further io gets deferred. 2530 */ 2531 /* 2532 * Suspend mechanism in request-based dm. 2533 * 2534 * 1. Flush all I/Os by lock_fs() if needed. 2535 * 2. Stop dispatching any I/O by stopping the request_queue. 2536 * 3. Wait for all in-flight I/Os to be completed or requeued. 2537 * 2538 * To abort suspend, start the request_queue. 2539 */ 2540 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2541 { 2542 struct dm_table *map = NULL; 2543 int r = 0; 2544 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2545 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2546 2547 mutex_lock(&md->suspend_lock); 2548 2549 if (dm_suspended_md(md)) { 2550 r = -EINVAL; 2551 goto out_unlock; 2552 } 2553 2554 map = md->map; 2555 2556 /* 2557 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2558 * This flag is cleared before dm_suspend returns. 2559 */ 2560 if (noflush) 2561 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2562 2563 /* This does not get reverted if there's an error later. */ 2564 dm_table_presuspend_targets(map); 2565 2566 /* 2567 * Flush I/O to the device. 2568 * Any I/O submitted after lock_fs() may not be flushed. 2569 * noflush takes precedence over do_lockfs. 2570 * (lock_fs() flushes I/Os and waits for them to complete.) 2571 */ 2572 if (!noflush && do_lockfs) { 2573 r = lock_fs(md); 2574 if (r) 2575 goto out_unlock; 2576 } 2577 2578 /* 2579 * Here we must make sure that no processes are submitting requests 2580 * to target drivers i.e. no one may be executing 2581 * __split_and_process_bio. This is called from dm_request and 2582 * dm_wq_work. 2583 * 2584 * To get all processes out of __split_and_process_bio in dm_request, 2585 * we take the write lock. To prevent any process from reentering 2586 * __split_and_process_bio from dm_request and quiesce the thread 2587 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2588 * flush_workqueue(md->wq). 2589 */ 2590 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2591 synchronize_srcu(&md->io_barrier); 2592 2593 /* 2594 * Stop md->queue before flushing md->wq in case request-based 2595 * dm defers requests to md->wq from md->queue. 2596 */ 2597 if (dm_request_based(md)) 2598 stop_queue(md->queue); 2599 2600 flush_workqueue(md->wq); 2601 2602 /* 2603 * At this point no more requests are entering target request routines. 2604 * We call dm_wait_for_completion to wait for all existing requests 2605 * to finish. 2606 */ 2607 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2608 2609 if (noflush) 2610 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2611 synchronize_srcu(&md->io_barrier); 2612 2613 /* were we interrupted ? */ 2614 if (r < 0) { 2615 dm_queue_flush(md); 2616 2617 if (dm_request_based(md)) 2618 start_queue(md->queue); 2619 2620 unlock_fs(md); 2621 goto out_unlock; /* pushback list is already flushed, so skip flush */ 2622 } 2623 2624 /* 2625 * If dm_wait_for_completion returned 0, the device is completely 2626 * quiescent now. There is no request-processing activity. All new 2627 * requests are being added to md->deferred list. 2628 */ 2629 2630 set_bit(DMF_SUSPENDED, &md->flags); 2631 2632 dm_table_postsuspend_targets(map); 2633 2634 out_unlock: 2635 mutex_unlock(&md->suspend_lock); 2636 return r; 2637 } 2638 2639 int dm_resume(struct mapped_device *md) 2640 { 2641 int r = -EINVAL; 2642 struct dm_table *map = NULL; 2643 2644 mutex_lock(&md->suspend_lock); 2645 if (!dm_suspended_md(md)) 2646 goto out; 2647 2648 map = md->map; 2649 if (!map || !dm_table_get_size(map)) 2650 goto out; 2651 2652 r = dm_table_resume_targets(map); 2653 if (r) 2654 goto out; 2655 2656 dm_queue_flush(md); 2657 2658 /* 2659 * Flushing deferred I/Os must be done after targets are resumed 2660 * so that mapping of targets can work correctly. 2661 * Request-based dm is queueing the deferred I/Os in its request_queue. 2662 */ 2663 if (dm_request_based(md)) 2664 start_queue(md->queue); 2665 2666 unlock_fs(md); 2667 2668 clear_bit(DMF_SUSPENDED, &md->flags); 2669 2670 r = 0; 2671 out: 2672 mutex_unlock(&md->suspend_lock); 2673 2674 return r; 2675 } 2676 2677 /* 2678 * Internal suspend/resume works like userspace-driven suspend. It waits 2679 * until all bios finish and prevents issuing new bios to the target drivers. 2680 * It may be used only from the kernel. 2681 * 2682 * Internal suspend holds md->suspend_lock, which prevents interaction with 2683 * userspace-driven suspend. 2684 */ 2685 2686 void dm_internal_suspend(struct mapped_device *md) 2687 { 2688 mutex_lock(&md->suspend_lock); 2689 if (dm_suspended_md(md)) 2690 return; 2691 2692 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2693 synchronize_srcu(&md->io_barrier); 2694 flush_workqueue(md->wq); 2695 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2696 } 2697 2698 void dm_internal_resume(struct mapped_device *md) 2699 { 2700 if (dm_suspended_md(md)) 2701 goto done; 2702 2703 dm_queue_flush(md); 2704 2705 done: 2706 mutex_unlock(&md->suspend_lock); 2707 } 2708 2709 /*----------------------------------------------------------------- 2710 * Event notification. 2711 *---------------------------------------------------------------*/ 2712 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2713 unsigned cookie) 2714 { 2715 char udev_cookie[DM_COOKIE_LENGTH]; 2716 char *envp[] = { udev_cookie, NULL }; 2717 2718 if (!cookie) 2719 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2720 else { 2721 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2722 DM_COOKIE_ENV_VAR_NAME, cookie); 2723 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2724 action, envp); 2725 } 2726 } 2727 2728 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2729 { 2730 return atomic_add_return(1, &md->uevent_seq); 2731 } 2732 2733 uint32_t dm_get_event_nr(struct mapped_device *md) 2734 { 2735 return atomic_read(&md->event_nr); 2736 } 2737 2738 int dm_wait_event(struct mapped_device *md, int event_nr) 2739 { 2740 return wait_event_interruptible(md->eventq, 2741 (event_nr != atomic_read(&md->event_nr))); 2742 } 2743 2744 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2745 { 2746 unsigned long flags; 2747 2748 spin_lock_irqsave(&md->uevent_lock, flags); 2749 list_add(elist, &md->uevent_list); 2750 spin_unlock_irqrestore(&md->uevent_lock, flags); 2751 } 2752 2753 /* 2754 * The gendisk is only valid as long as you have a reference 2755 * count on 'md'. 2756 */ 2757 struct gendisk *dm_disk(struct mapped_device *md) 2758 { 2759 return md->disk; 2760 } 2761 2762 struct kobject *dm_kobject(struct mapped_device *md) 2763 { 2764 return &md->kobj_holder.kobj; 2765 } 2766 2767 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2768 { 2769 struct mapped_device *md; 2770 2771 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2772 2773 if (test_bit(DMF_FREEING, &md->flags) || 2774 dm_deleting_md(md)) 2775 return NULL; 2776 2777 dm_get(md); 2778 return md; 2779 } 2780 2781 int dm_suspended_md(struct mapped_device *md) 2782 { 2783 return test_bit(DMF_SUSPENDED, &md->flags); 2784 } 2785 2786 int dm_test_deferred_remove_flag(struct mapped_device *md) 2787 { 2788 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2789 } 2790 2791 int dm_suspended(struct dm_target *ti) 2792 { 2793 return dm_suspended_md(dm_table_get_md(ti->table)); 2794 } 2795 EXPORT_SYMBOL_GPL(dm_suspended); 2796 2797 int dm_noflush_suspending(struct dm_target *ti) 2798 { 2799 return __noflush_suspending(dm_table_get_md(ti->table)); 2800 } 2801 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2802 2803 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2804 { 2805 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2806 struct kmem_cache *cachep; 2807 unsigned int pool_size; 2808 unsigned int front_pad; 2809 2810 if (!pools) 2811 return NULL; 2812 2813 if (type == DM_TYPE_BIO_BASED) { 2814 cachep = _io_cache; 2815 pool_size = dm_get_reserved_bio_based_ios(); 2816 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2817 } else if (type == DM_TYPE_REQUEST_BASED) { 2818 cachep = _rq_tio_cache; 2819 pool_size = dm_get_reserved_rq_based_ios(); 2820 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2821 /* per_bio_data_size is not used. See __bind_mempools(). */ 2822 WARN_ON(per_bio_data_size != 0); 2823 } else 2824 goto out; 2825 2826 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2827 if (!pools->io_pool) 2828 goto out; 2829 2830 pools->bs = bioset_create(pool_size, front_pad); 2831 if (!pools->bs) 2832 goto out; 2833 2834 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2835 goto out; 2836 2837 return pools; 2838 2839 out: 2840 dm_free_md_mempools(pools); 2841 2842 return NULL; 2843 } 2844 2845 void dm_free_md_mempools(struct dm_md_mempools *pools) 2846 { 2847 if (!pools) 2848 return; 2849 2850 if (pools->io_pool) 2851 mempool_destroy(pools->io_pool); 2852 2853 if (pools->bs) 2854 bioset_free(pools->bs); 2855 2856 kfree(pools); 2857 } 2858 2859 static const struct block_device_operations dm_blk_dops = { 2860 .open = dm_blk_open, 2861 .release = dm_blk_close, 2862 .ioctl = dm_blk_ioctl, 2863 .getgeo = dm_blk_getgeo, 2864 .owner = THIS_MODULE 2865 }; 2866 2867 /* 2868 * module hooks 2869 */ 2870 module_init(dm_init); 2871 module_exit(dm_exit); 2872 2873 module_param(major, uint, 0); 2874 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2875 2876 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2877 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2878 2879 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 2880 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 2881 2882 MODULE_DESCRIPTION(DM_NAME " driver"); 2883 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2884 MODULE_LICENSE("GPL"); 2885