xref: /openbmc/linux/drivers/md/dm.c (revision 9cdb8520049629271ad411ac91ab1bea3e1cfa2b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 /*
58  * For bio-based dm.
59  * One of these is allocated per bio.
60  */
61 struct dm_io {
62 	struct mapped_device *md;
63 	int error;
64 	atomic_t io_count;
65 	struct bio *bio;
66 	unsigned long start_time;
67 	spinlock_t endio_lock;
68 	struct dm_stats_aux stats_aux;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per request.
74  */
75 struct dm_rq_target_io {
76 	struct mapped_device *md;
77 	struct dm_target *ti;
78 	struct request *orig, clone;
79 	int error;
80 	union map_info info;
81 };
82 
83 /*
84  * For request-based dm - the bio clones we allocate are embedded in these
85  * structs.
86  *
87  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
88  * the bioset is created - this means the bio has to come at the end of the
89  * struct.
90  */
91 struct dm_rq_clone_bio_info {
92 	struct bio *orig;
93 	struct dm_rq_target_io *tio;
94 	struct bio clone;
95 };
96 
97 union map_info *dm_get_rq_mapinfo(struct request *rq)
98 {
99 	if (rq && rq->end_io_data)
100 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
101 	return NULL;
102 }
103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
104 
105 #define MINOR_ALLOCED ((void *)-1)
106 
107 /*
108  * Bits for the md->flags field.
109  */
110 #define DMF_BLOCK_IO_FOR_SUSPEND 0
111 #define DMF_SUSPENDED 1
112 #define DMF_FROZEN 2
113 #define DMF_FREEING 3
114 #define DMF_DELETING 4
115 #define DMF_NOFLUSH_SUSPENDING 5
116 #define DMF_MERGE_IS_OPTIONAL 6
117 #define DMF_DEFERRED_REMOVE 7
118 
119 /*
120  * A dummy definition to make RCU happy.
121  * struct dm_table should never be dereferenced in this file.
122  */
123 struct dm_table {
124 	int undefined__;
125 };
126 
127 /*
128  * Work processed by per-device workqueue.
129  */
130 struct mapped_device {
131 	struct srcu_struct io_barrier;
132 	struct mutex suspend_lock;
133 	atomic_t holders;
134 	atomic_t open_count;
135 
136 	/*
137 	 * The current mapping.
138 	 * Use dm_get_live_table{_fast} or take suspend_lock for
139 	 * dereference.
140 	 */
141 	struct dm_table *map;
142 
143 	unsigned long flags;
144 
145 	struct request_queue *queue;
146 	unsigned type;
147 	/* Protect queue and type against concurrent access. */
148 	struct mutex type_lock;
149 
150 	struct target_type *immutable_target_type;
151 
152 	struct gendisk *disk;
153 	char name[16];
154 
155 	void *interface_ptr;
156 
157 	/*
158 	 * A list of ios that arrived while we were suspended.
159 	 */
160 	atomic_t pending[2];
161 	wait_queue_head_t wait;
162 	struct work_struct work;
163 	struct bio_list deferred;
164 	spinlock_t deferred_lock;
165 
166 	/*
167 	 * Processing queue (flush)
168 	 */
169 	struct workqueue_struct *wq;
170 
171 	/*
172 	 * io objects are allocated from here.
173 	 */
174 	mempool_t *io_pool;
175 
176 	struct bio_set *bs;
177 
178 	/*
179 	 * Event handling.
180 	 */
181 	atomic_t event_nr;
182 	wait_queue_head_t eventq;
183 	atomic_t uevent_seq;
184 	struct list_head uevent_list;
185 	spinlock_t uevent_lock; /* Protect access to uevent_list */
186 
187 	/*
188 	 * freeze/thaw support require holding onto a super block
189 	 */
190 	struct super_block *frozen_sb;
191 	struct block_device *bdev;
192 
193 	/* forced geometry settings */
194 	struct hd_geometry geometry;
195 
196 	/* kobject and completion */
197 	struct dm_kobject_holder kobj_holder;
198 
199 	/* zero-length flush that will be cloned and submitted to targets */
200 	struct bio flush_bio;
201 
202 	struct dm_stats stats;
203 };
204 
205 /*
206  * For mempools pre-allocation at the table loading time.
207  */
208 struct dm_md_mempools {
209 	mempool_t *io_pool;
210 	struct bio_set *bs;
211 };
212 
213 #define RESERVED_BIO_BASED_IOS		16
214 #define RESERVED_REQUEST_BASED_IOS	256
215 #define RESERVED_MAX_IOS		1024
216 static struct kmem_cache *_io_cache;
217 static struct kmem_cache *_rq_tio_cache;
218 
219 /*
220  * Bio-based DM's mempools' reserved IOs set by the user.
221  */
222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
223 
224 /*
225  * Request-based DM's mempools' reserved IOs set by the user.
226  */
227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
228 
229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
230 				      unsigned def, unsigned max)
231 {
232 	unsigned ios = ACCESS_ONCE(*reserved_ios);
233 	unsigned modified_ios = 0;
234 
235 	if (!ios)
236 		modified_ios = def;
237 	else if (ios > max)
238 		modified_ios = max;
239 
240 	if (modified_ios) {
241 		(void)cmpxchg(reserved_ios, ios, modified_ios);
242 		ios = modified_ios;
243 	}
244 
245 	return ios;
246 }
247 
248 unsigned dm_get_reserved_bio_based_ios(void)
249 {
250 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
251 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
252 }
253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
254 
255 unsigned dm_get_reserved_rq_based_ios(void)
256 {
257 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
258 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
259 }
260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
261 
262 static int __init local_init(void)
263 {
264 	int r = -ENOMEM;
265 
266 	/* allocate a slab for the dm_ios */
267 	_io_cache = KMEM_CACHE(dm_io, 0);
268 	if (!_io_cache)
269 		return r;
270 
271 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
272 	if (!_rq_tio_cache)
273 		goto out_free_io_cache;
274 
275 	r = dm_uevent_init();
276 	if (r)
277 		goto out_free_rq_tio_cache;
278 
279 	_major = major;
280 	r = register_blkdev(_major, _name);
281 	if (r < 0)
282 		goto out_uevent_exit;
283 
284 	if (!_major)
285 		_major = r;
286 
287 	return 0;
288 
289 out_uevent_exit:
290 	dm_uevent_exit();
291 out_free_rq_tio_cache:
292 	kmem_cache_destroy(_rq_tio_cache);
293 out_free_io_cache:
294 	kmem_cache_destroy(_io_cache);
295 
296 	return r;
297 }
298 
299 static void local_exit(void)
300 {
301 	flush_scheduled_work();
302 
303 	kmem_cache_destroy(_rq_tio_cache);
304 	kmem_cache_destroy(_io_cache);
305 	unregister_blkdev(_major, _name);
306 	dm_uevent_exit();
307 
308 	_major = 0;
309 
310 	DMINFO("cleaned up");
311 }
312 
313 static int (*_inits[])(void) __initdata = {
314 	local_init,
315 	dm_target_init,
316 	dm_linear_init,
317 	dm_stripe_init,
318 	dm_io_init,
319 	dm_kcopyd_init,
320 	dm_interface_init,
321 	dm_statistics_init,
322 };
323 
324 static void (*_exits[])(void) = {
325 	local_exit,
326 	dm_target_exit,
327 	dm_linear_exit,
328 	dm_stripe_exit,
329 	dm_io_exit,
330 	dm_kcopyd_exit,
331 	dm_interface_exit,
332 	dm_statistics_exit,
333 };
334 
335 static int __init dm_init(void)
336 {
337 	const int count = ARRAY_SIZE(_inits);
338 
339 	int r, i;
340 
341 	for (i = 0; i < count; i++) {
342 		r = _inits[i]();
343 		if (r)
344 			goto bad;
345 	}
346 
347 	return 0;
348 
349       bad:
350 	while (i--)
351 		_exits[i]();
352 
353 	return r;
354 }
355 
356 static void __exit dm_exit(void)
357 {
358 	int i = ARRAY_SIZE(_exits);
359 
360 	while (i--)
361 		_exits[i]();
362 
363 	/*
364 	 * Should be empty by this point.
365 	 */
366 	idr_destroy(&_minor_idr);
367 }
368 
369 /*
370  * Block device functions
371  */
372 int dm_deleting_md(struct mapped_device *md)
373 {
374 	return test_bit(DMF_DELETING, &md->flags);
375 }
376 
377 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
378 {
379 	struct mapped_device *md;
380 
381 	spin_lock(&_minor_lock);
382 
383 	md = bdev->bd_disk->private_data;
384 	if (!md)
385 		goto out;
386 
387 	if (test_bit(DMF_FREEING, &md->flags) ||
388 	    dm_deleting_md(md)) {
389 		md = NULL;
390 		goto out;
391 	}
392 
393 	dm_get(md);
394 	atomic_inc(&md->open_count);
395 
396 out:
397 	spin_unlock(&_minor_lock);
398 
399 	return md ? 0 : -ENXIO;
400 }
401 
402 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
403 {
404 	struct mapped_device *md = disk->private_data;
405 
406 	spin_lock(&_minor_lock);
407 
408 	if (atomic_dec_and_test(&md->open_count) &&
409 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
410 		schedule_work(&deferred_remove_work);
411 
412 	dm_put(md);
413 
414 	spin_unlock(&_minor_lock);
415 }
416 
417 int dm_open_count(struct mapped_device *md)
418 {
419 	return atomic_read(&md->open_count);
420 }
421 
422 /*
423  * Guarantees nothing is using the device before it's deleted.
424  */
425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
426 {
427 	int r = 0;
428 
429 	spin_lock(&_minor_lock);
430 
431 	if (dm_open_count(md)) {
432 		r = -EBUSY;
433 		if (mark_deferred)
434 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
435 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
436 		r = -EEXIST;
437 	else
438 		set_bit(DMF_DELETING, &md->flags);
439 
440 	spin_unlock(&_minor_lock);
441 
442 	return r;
443 }
444 
445 int dm_cancel_deferred_remove(struct mapped_device *md)
446 {
447 	int r = 0;
448 
449 	spin_lock(&_minor_lock);
450 
451 	if (test_bit(DMF_DELETING, &md->flags))
452 		r = -EBUSY;
453 	else
454 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
455 
456 	spin_unlock(&_minor_lock);
457 
458 	return r;
459 }
460 
461 static void do_deferred_remove(struct work_struct *w)
462 {
463 	dm_deferred_remove();
464 }
465 
466 sector_t dm_get_size(struct mapped_device *md)
467 {
468 	return get_capacity(md->disk);
469 }
470 
471 struct dm_stats *dm_get_stats(struct mapped_device *md)
472 {
473 	return &md->stats;
474 }
475 
476 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
477 {
478 	struct mapped_device *md = bdev->bd_disk->private_data;
479 
480 	return dm_get_geometry(md, geo);
481 }
482 
483 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
484 			unsigned int cmd, unsigned long arg)
485 {
486 	struct mapped_device *md = bdev->bd_disk->private_data;
487 	int srcu_idx;
488 	struct dm_table *map;
489 	struct dm_target *tgt;
490 	int r = -ENOTTY;
491 
492 retry:
493 	map = dm_get_live_table(md, &srcu_idx);
494 
495 	if (!map || !dm_table_get_size(map))
496 		goto out;
497 
498 	/* We only support devices that have a single target */
499 	if (dm_table_get_num_targets(map) != 1)
500 		goto out;
501 
502 	tgt = dm_table_get_target(map, 0);
503 
504 	if (dm_suspended_md(md)) {
505 		r = -EAGAIN;
506 		goto out;
507 	}
508 
509 	if (tgt->type->ioctl)
510 		r = tgt->type->ioctl(tgt, cmd, arg);
511 
512 out:
513 	dm_put_live_table(md, srcu_idx);
514 
515 	if (r == -ENOTCONN) {
516 		msleep(10);
517 		goto retry;
518 	}
519 
520 	return r;
521 }
522 
523 static struct dm_io *alloc_io(struct mapped_device *md)
524 {
525 	return mempool_alloc(md->io_pool, GFP_NOIO);
526 }
527 
528 static void free_io(struct mapped_device *md, struct dm_io *io)
529 {
530 	mempool_free(io, md->io_pool);
531 }
532 
533 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
534 {
535 	bio_put(&tio->clone);
536 }
537 
538 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
539 					    gfp_t gfp_mask)
540 {
541 	return mempool_alloc(md->io_pool, gfp_mask);
542 }
543 
544 static void free_rq_tio(struct dm_rq_target_io *tio)
545 {
546 	mempool_free(tio, tio->md->io_pool);
547 }
548 
549 static int md_in_flight(struct mapped_device *md)
550 {
551 	return atomic_read(&md->pending[READ]) +
552 	       atomic_read(&md->pending[WRITE]);
553 }
554 
555 static void start_io_acct(struct dm_io *io)
556 {
557 	struct mapped_device *md = io->md;
558 	struct bio *bio = io->bio;
559 	int cpu;
560 	int rw = bio_data_dir(bio);
561 
562 	io->start_time = jiffies;
563 
564 	cpu = part_stat_lock();
565 	part_round_stats(cpu, &dm_disk(md)->part0);
566 	part_stat_unlock();
567 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
568 		atomic_inc_return(&md->pending[rw]));
569 
570 	if (unlikely(dm_stats_used(&md->stats)))
571 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
572 				    bio_sectors(bio), false, 0, &io->stats_aux);
573 }
574 
575 static void end_io_acct(struct dm_io *io)
576 {
577 	struct mapped_device *md = io->md;
578 	struct bio *bio = io->bio;
579 	unsigned long duration = jiffies - io->start_time;
580 	int pending, cpu;
581 	int rw = bio_data_dir(bio);
582 
583 	cpu = part_stat_lock();
584 	part_round_stats(cpu, &dm_disk(md)->part0);
585 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
586 	part_stat_unlock();
587 
588 	if (unlikely(dm_stats_used(&md->stats)))
589 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
590 				    bio_sectors(bio), true, duration, &io->stats_aux);
591 
592 	/*
593 	 * After this is decremented the bio must not be touched if it is
594 	 * a flush.
595 	 */
596 	pending = atomic_dec_return(&md->pending[rw]);
597 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
598 	pending += atomic_read(&md->pending[rw^0x1]);
599 
600 	/* nudge anyone waiting on suspend queue */
601 	if (!pending)
602 		wake_up(&md->wait);
603 }
604 
605 /*
606  * Add the bio to the list of deferred io.
607  */
608 static void queue_io(struct mapped_device *md, struct bio *bio)
609 {
610 	unsigned long flags;
611 
612 	spin_lock_irqsave(&md->deferred_lock, flags);
613 	bio_list_add(&md->deferred, bio);
614 	spin_unlock_irqrestore(&md->deferred_lock, flags);
615 	queue_work(md->wq, &md->work);
616 }
617 
618 /*
619  * Everyone (including functions in this file), should use this
620  * function to access the md->map field, and make sure they call
621  * dm_put_live_table() when finished.
622  */
623 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
624 {
625 	*srcu_idx = srcu_read_lock(&md->io_barrier);
626 
627 	return srcu_dereference(md->map, &md->io_barrier);
628 }
629 
630 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
631 {
632 	srcu_read_unlock(&md->io_barrier, srcu_idx);
633 }
634 
635 void dm_sync_table(struct mapped_device *md)
636 {
637 	synchronize_srcu(&md->io_barrier);
638 	synchronize_rcu_expedited();
639 }
640 
641 /*
642  * A fast alternative to dm_get_live_table/dm_put_live_table.
643  * The caller must not block between these two functions.
644  */
645 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
646 {
647 	rcu_read_lock();
648 	return rcu_dereference(md->map);
649 }
650 
651 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
652 {
653 	rcu_read_unlock();
654 }
655 
656 /*
657  * Get the geometry associated with a dm device
658  */
659 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
660 {
661 	*geo = md->geometry;
662 
663 	return 0;
664 }
665 
666 /*
667  * Set the geometry of a device.
668  */
669 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
670 {
671 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
672 
673 	if (geo->start > sz) {
674 		DMWARN("Start sector is beyond the geometry limits.");
675 		return -EINVAL;
676 	}
677 
678 	md->geometry = *geo;
679 
680 	return 0;
681 }
682 
683 /*-----------------------------------------------------------------
684  * CRUD START:
685  *   A more elegant soln is in the works that uses the queue
686  *   merge fn, unfortunately there are a couple of changes to
687  *   the block layer that I want to make for this.  So in the
688  *   interests of getting something for people to use I give
689  *   you this clearly demarcated crap.
690  *---------------------------------------------------------------*/
691 
692 static int __noflush_suspending(struct mapped_device *md)
693 {
694 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
695 }
696 
697 /*
698  * Decrements the number of outstanding ios that a bio has been
699  * cloned into, completing the original io if necc.
700  */
701 static void dec_pending(struct dm_io *io, int error)
702 {
703 	unsigned long flags;
704 	int io_error;
705 	struct bio *bio;
706 	struct mapped_device *md = io->md;
707 
708 	/* Push-back supersedes any I/O errors */
709 	if (unlikely(error)) {
710 		spin_lock_irqsave(&io->endio_lock, flags);
711 		if (!(io->error > 0 && __noflush_suspending(md)))
712 			io->error = error;
713 		spin_unlock_irqrestore(&io->endio_lock, flags);
714 	}
715 
716 	if (atomic_dec_and_test(&io->io_count)) {
717 		if (io->error == DM_ENDIO_REQUEUE) {
718 			/*
719 			 * Target requested pushing back the I/O.
720 			 */
721 			spin_lock_irqsave(&md->deferred_lock, flags);
722 			if (__noflush_suspending(md))
723 				bio_list_add_head(&md->deferred, io->bio);
724 			else
725 				/* noflush suspend was interrupted. */
726 				io->error = -EIO;
727 			spin_unlock_irqrestore(&md->deferred_lock, flags);
728 		}
729 
730 		io_error = io->error;
731 		bio = io->bio;
732 		end_io_acct(io);
733 		free_io(md, io);
734 
735 		if (io_error == DM_ENDIO_REQUEUE)
736 			return;
737 
738 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
739 			/*
740 			 * Preflush done for flush with data, reissue
741 			 * without REQ_FLUSH.
742 			 */
743 			bio->bi_rw &= ~REQ_FLUSH;
744 			queue_io(md, bio);
745 		} else {
746 			/* done with normal IO or empty flush */
747 			trace_block_bio_complete(md->queue, bio, io_error);
748 			bio_endio(bio, io_error);
749 		}
750 	}
751 }
752 
753 static void clone_endio(struct bio *bio, int error)
754 {
755 	int r = 0;
756 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
757 	struct dm_io *io = tio->io;
758 	struct mapped_device *md = tio->io->md;
759 	dm_endio_fn endio = tio->ti->type->end_io;
760 
761 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
762 		error = -EIO;
763 
764 	if (endio) {
765 		r = endio(tio->ti, bio, error);
766 		if (r < 0 || r == DM_ENDIO_REQUEUE)
767 			/*
768 			 * error and requeue request are handled
769 			 * in dec_pending().
770 			 */
771 			error = r;
772 		else if (r == DM_ENDIO_INCOMPLETE)
773 			/* The target will handle the io */
774 			return;
775 		else if (r) {
776 			DMWARN("unimplemented target endio return value: %d", r);
777 			BUG();
778 		}
779 	}
780 
781 	free_tio(md, tio);
782 	dec_pending(io, error);
783 }
784 
785 /*
786  * Partial completion handling for request-based dm
787  */
788 static void end_clone_bio(struct bio *clone, int error)
789 {
790 	struct dm_rq_clone_bio_info *info =
791 		container_of(clone, struct dm_rq_clone_bio_info, clone);
792 	struct dm_rq_target_io *tio = info->tio;
793 	struct bio *bio = info->orig;
794 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
795 
796 	bio_put(clone);
797 
798 	if (tio->error)
799 		/*
800 		 * An error has already been detected on the request.
801 		 * Once error occurred, just let clone->end_io() handle
802 		 * the remainder.
803 		 */
804 		return;
805 	else if (error) {
806 		/*
807 		 * Don't notice the error to the upper layer yet.
808 		 * The error handling decision is made by the target driver,
809 		 * when the request is completed.
810 		 */
811 		tio->error = error;
812 		return;
813 	}
814 
815 	/*
816 	 * I/O for the bio successfully completed.
817 	 * Notice the data completion to the upper layer.
818 	 */
819 
820 	/*
821 	 * bios are processed from the head of the list.
822 	 * So the completing bio should always be rq->bio.
823 	 * If it's not, something wrong is happening.
824 	 */
825 	if (tio->orig->bio != bio)
826 		DMERR("bio completion is going in the middle of the request");
827 
828 	/*
829 	 * Update the original request.
830 	 * Do not use blk_end_request() here, because it may complete
831 	 * the original request before the clone, and break the ordering.
832 	 */
833 	blk_update_request(tio->orig, 0, nr_bytes);
834 }
835 
836 /*
837  * Don't touch any member of the md after calling this function because
838  * the md may be freed in dm_put() at the end of this function.
839  * Or do dm_get() before calling this function and dm_put() later.
840  */
841 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
842 {
843 	atomic_dec(&md->pending[rw]);
844 
845 	/* nudge anyone waiting on suspend queue */
846 	if (!md_in_flight(md))
847 		wake_up(&md->wait);
848 
849 	/*
850 	 * Run this off this callpath, as drivers could invoke end_io while
851 	 * inside their request_fn (and holding the queue lock). Calling
852 	 * back into ->request_fn() could deadlock attempting to grab the
853 	 * queue lock again.
854 	 */
855 	if (run_queue)
856 		blk_run_queue_async(md->queue);
857 
858 	/*
859 	 * dm_put() must be at the end of this function. See the comment above
860 	 */
861 	dm_put(md);
862 }
863 
864 static void free_rq_clone(struct request *clone)
865 {
866 	struct dm_rq_target_io *tio = clone->end_io_data;
867 
868 	blk_rq_unprep_clone(clone);
869 	free_rq_tio(tio);
870 }
871 
872 /*
873  * Complete the clone and the original request.
874  * Must be called without queue lock.
875  */
876 static void dm_end_request(struct request *clone, int error)
877 {
878 	int rw = rq_data_dir(clone);
879 	struct dm_rq_target_io *tio = clone->end_io_data;
880 	struct mapped_device *md = tio->md;
881 	struct request *rq = tio->orig;
882 
883 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
884 		rq->errors = clone->errors;
885 		rq->resid_len = clone->resid_len;
886 
887 		if (rq->sense)
888 			/*
889 			 * We are using the sense buffer of the original
890 			 * request.
891 			 * So setting the length of the sense data is enough.
892 			 */
893 			rq->sense_len = clone->sense_len;
894 	}
895 
896 	free_rq_clone(clone);
897 	blk_end_request_all(rq, error);
898 	rq_completed(md, rw, true);
899 }
900 
901 static void dm_unprep_request(struct request *rq)
902 {
903 	struct request *clone = rq->special;
904 
905 	rq->special = NULL;
906 	rq->cmd_flags &= ~REQ_DONTPREP;
907 
908 	free_rq_clone(clone);
909 }
910 
911 /*
912  * Requeue the original request of a clone.
913  */
914 void dm_requeue_unmapped_request(struct request *clone)
915 {
916 	int rw = rq_data_dir(clone);
917 	struct dm_rq_target_io *tio = clone->end_io_data;
918 	struct mapped_device *md = tio->md;
919 	struct request *rq = tio->orig;
920 	struct request_queue *q = rq->q;
921 	unsigned long flags;
922 
923 	dm_unprep_request(rq);
924 
925 	spin_lock_irqsave(q->queue_lock, flags);
926 	blk_requeue_request(q, rq);
927 	spin_unlock_irqrestore(q->queue_lock, flags);
928 
929 	rq_completed(md, rw, 0);
930 }
931 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
932 
933 static void __stop_queue(struct request_queue *q)
934 {
935 	blk_stop_queue(q);
936 }
937 
938 static void stop_queue(struct request_queue *q)
939 {
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(q->queue_lock, flags);
943 	__stop_queue(q);
944 	spin_unlock_irqrestore(q->queue_lock, flags);
945 }
946 
947 static void __start_queue(struct request_queue *q)
948 {
949 	if (blk_queue_stopped(q))
950 		blk_start_queue(q);
951 }
952 
953 static void start_queue(struct request_queue *q)
954 {
955 	unsigned long flags;
956 
957 	spin_lock_irqsave(q->queue_lock, flags);
958 	__start_queue(q);
959 	spin_unlock_irqrestore(q->queue_lock, flags);
960 }
961 
962 static void dm_done(struct request *clone, int error, bool mapped)
963 {
964 	int r = error;
965 	struct dm_rq_target_io *tio = clone->end_io_data;
966 	dm_request_endio_fn rq_end_io = NULL;
967 
968 	if (tio->ti) {
969 		rq_end_io = tio->ti->type->rq_end_io;
970 
971 		if (mapped && rq_end_io)
972 			r = rq_end_io(tio->ti, clone, error, &tio->info);
973 	}
974 
975 	if (r <= 0)
976 		/* The target wants to complete the I/O */
977 		dm_end_request(clone, r);
978 	else if (r == DM_ENDIO_INCOMPLETE)
979 		/* The target will handle the I/O */
980 		return;
981 	else if (r == DM_ENDIO_REQUEUE)
982 		/* The target wants to requeue the I/O */
983 		dm_requeue_unmapped_request(clone);
984 	else {
985 		DMWARN("unimplemented target endio return value: %d", r);
986 		BUG();
987 	}
988 }
989 
990 /*
991  * Request completion handler for request-based dm
992  */
993 static void dm_softirq_done(struct request *rq)
994 {
995 	bool mapped = true;
996 	struct request *clone = rq->completion_data;
997 	struct dm_rq_target_io *tio = clone->end_io_data;
998 
999 	if (rq->cmd_flags & REQ_FAILED)
1000 		mapped = false;
1001 
1002 	dm_done(clone, tio->error, mapped);
1003 }
1004 
1005 /*
1006  * Complete the clone and the original request with the error status
1007  * through softirq context.
1008  */
1009 static void dm_complete_request(struct request *clone, int error)
1010 {
1011 	struct dm_rq_target_io *tio = clone->end_io_data;
1012 	struct request *rq = tio->orig;
1013 
1014 	tio->error = error;
1015 	rq->completion_data = clone;
1016 	blk_complete_request(rq);
1017 }
1018 
1019 /*
1020  * Complete the not-mapped clone and the original request with the error status
1021  * through softirq context.
1022  * Target's rq_end_io() function isn't called.
1023  * This may be used when the target's map_rq() function fails.
1024  */
1025 void dm_kill_unmapped_request(struct request *clone, int error)
1026 {
1027 	struct dm_rq_target_io *tio = clone->end_io_data;
1028 	struct request *rq = tio->orig;
1029 
1030 	rq->cmd_flags |= REQ_FAILED;
1031 	dm_complete_request(clone, error);
1032 }
1033 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1034 
1035 /*
1036  * Called with the queue lock held
1037  */
1038 static void end_clone_request(struct request *clone, int error)
1039 {
1040 	/*
1041 	 * For just cleaning up the information of the queue in which
1042 	 * the clone was dispatched.
1043 	 * The clone is *NOT* freed actually here because it is alloced from
1044 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1045 	 */
1046 	__blk_put_request(clone->q, clone);
1047 
1048 	/*
1049 	 * Actual request completion is done in a softirq context which doesn't
1050 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1051 	 *     - another request may be submitted by the upper level driver
1052 	 *       of the stacking during the completion
1053 	 *     - the submission which requires queue lock may be done
1054 	 *       against this queue
1055 	 */
1056 	dm_complete_request(clone, error);
1057 }
1058 
1059 /*
1060  * Return maximum size of I/O possible at the supplied sector up to the current
1061  * target boundary.
1062  */
1063 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1064 {
1065 	sector_t target_offset = dm_target_offset(ti, sector);
1066 
1067 	return ti->len - target_offset;
1068 }
1069 
1070 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1071 {
1072 	sector_t len = max_io_len_target_boundary(sector, ti);
1073 	sector_t offset, max_len;
1074 
1075 	/*
1076 	 * Does the target need to split even further?
1077 	 */
1078 	if (ti->max_io_len) {
1079 		offset = dm_target_offset(ti, sector);
1080 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1081 			max_len = sector_div(offset, ti->max_io_len);
1082 		else
1083 			max_len = offset & (ti->max_io_len - 1);
1084 		max_len = ti->max_io_len - max_len;
1085 
1086 		if (len > max_len)
1087 			len = max_len;
1088 	}
1089 
1090 	return len;
1091 }
1092 
1093 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1094 {
1095 	if (len > UINT_MAX) {
1096 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1097 		      (unsigned long long)len, UINT_MAX);
1098 		ti->error = "Maximum size of target IO is too large";
1099 		return -EINVAL;
1100 	}
1101 
1102 	ti->max_io_len = (uint32_t) len;
1103 
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1107 
1108 static void __map_bio(struct dm_target_io *tio)
1109 {
1110 	int r;
1111 	sector_t sector;
1112 	struct mapped_device *md;
1113 	struct bio *clone = &tio->clone;
1114 	struct dm_target *ti = tio->ti;
1115 
1116 	clone->bi_end_io = clone_endio;
1117 
1118 	/*
1119 	 * Map the clone.  If r == 0 we don't need to do
1120 	 * anything, the target has assumed ownership of
1121 	 * this io.
1122 	 */
1123 	atomic_inc(&tio->io->io_count);
1124 	sector = clone->bi_iter.bi_sector;
1125 	r = ti->type->map(ti, clone);
1126 	if (r == DM_MAPIO_REMAPPED) {
1127 		/* the bio has been remapped so dispatch it */
1128 
1129 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1130 				      tio->io->bio->bi_bdev->bd_dev, sector);
1131 
1132 		generic_make_request(clone);
1133 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1134 		/* error the io and bail out, or requeue it if needed */
1135 		md = tio->io->md;
1136 		dec_pending(tio->io, r);
1137 		free_tio(md, tio);
1138 	} else if (r) {
1139 		DMWARN("unimplemented target map return value: %d", r);
1140 		BUG();
1141 	}
1142 }
1143 
1144 struct clone_info {
1145 	struct mapped_device *md;
1146 	struct dm_table *map;
1147 	struct bio *bio;
1148 	struct dm_io *io;
1149 	sector_t sector;
1150 	sector_t sector_count;
1151 };
1152 
1153 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1154 {
1155 	bio->bi_iter.bi_sector = sector;
1156 	bio->bi_iter.bi_size = to_bytes(len);
1157 }
1158 
1159 /*
1160  * Creates a bio that consists of range of complete bvecs.
1161  */
1162 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1163 		      sector_t sector, unsigned len)
1164 {
1165 	struct bio *clone = &tio->clone;
1166 
1167 	__bio_clone_fast(clone, bio);
1168 
1169 	if (bio_integrity(bio))
1170 		bio_integrity_clone(clone, bio, GFP_NOIO);
1171 
1172 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1173 	clone->bi_iter.bi_size = to_bytes(len);
1174 
1175 	if (bio_integrity(bio))
1176 		bio_integrity_trim(clone, 0, len);
1177 }
1178 
1179 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1180 				      struct dm_target *ti, int nr_iovecs,
1181 				      unsigned target_bio_nr)
1182 {
1183 	struct dm_target_io *tio;
1184 	struct bio *clone;
1185 
1186 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1187 	tio = container_of(clone, struct dm_target_io, clone);
1188 
1189 	tio->io = ci->io;
1190 	tio->ti = ti;
1191 	tio->target_bio_nr = target_bio_nr;
1192 
1193 	return tio;
1194 }
1195 
1196 static void __clone_and_map_simple_bio(struct clone_info *ci,
1197 				       struct dm_target *ti,
1198 				       unsigned target_bio_nr, sector_t len)
1199 {
1200 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1201 	struct bio *clone = &tio->clone;
1202 
1203 	/*
1204 	 * Discard requests require the bio's inline iovecs be initialized.
1205 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1206 	 * and discard, so no need for concern about wasted bvec allocations.
1207 	 */
1208 	 __bio_clone_fast(clone, ci->bio);
1209 	if (len)
1210 		bio_setup_sector(clone, ci->sector, len);
1211 
1212 	__map_bio(tio);
1213 }
1214 
1215 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1216 				  unsigned num_bios, sector_t len)
1217 {
1218 	unsigned target_bio_nr;
1219 
1220 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1221 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1222 }
1223 
1224 static int __send_empty_flush(struct clone_info *ci)
1225 {
1226 	unsigned target_nr = 0;
1227 	struct dm_target *ti;
1228 
1229 	BUG_ON(bio_has_data(ci->bio));
1230 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1231 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1232 
1233 	return 0;
1234 }
1235 
1236 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1237 				     sector_t sector, unsigned len)
1238 {
1239 	struct bio *bio = ci->bio;
1240 	struct dm_target_io *tio;
1241 	unsigned target_bio_nr;
1242 	unsigned num_target_bios = 1;
1243 
1244 	/*
1245 	 * Does the target want to receive duplicate copies of the bio?
1246 	 */
1247 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1248 		num_target_bios = ti->num_write_bios(ti, bio);
1249 
1250 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1251 		tio = alloc_tio(ci, ti, 0, target_bio_nr);
1252 		clone_bio(tio, bio, sector, len);
1253 		__map_bio(tio);
1254 	}
1255 }
1256 
1257 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1258 
1259 static unsigned get_num_discard_bios(struct dm_target *ti)
1260 {
1261 	return ti->num_discard_bios;
1262 }
1263 
1264 static unsigned get_num_write_same_bios(struct dm_target *ti)
1265 {
1266 	return ti->num_write_same_bios;
1267 }
1268 
1269 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1270 
1271 static bool is_split_required_for_discard(struct dm_target *ti)
1272 {
1273 	return ti->split_discard_bios;
1274 }
1275 
1276 static int __send_changing_extent_only(struct clone_info *ci,
1277 				       get_num_bios_fn get_num_bios,
1278 				       is_split_required_fn is_split_required)
1279 {
1280 	struct dm_target *ti;
1281 	sector_t len;
1282 	unsigned num_bios;
1283 
1284 	do {
1285 		ti = dm_table_find_target(ci->map, ci->sector);
1286 		if (!dm_target_is_valid(ti))
1287 			return -EIO;
1288 
1289 		/*
1290 		 * Even though the device advertised support for this type of
1291 		 * request, that does not mean every target supports it, and
1292 		 * reconfiguration might also have changed that since the
1293 		 * check was performed.
1294 		 */
1295 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1296 		if (!num_bios)
1297 			return -EOPNOTSUPP;
1298 
1299 		if (is_split_required && !is_split_required(ti))
1300 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1301 		else
1302 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1303 
1304 		__send_duplicate_bios(ci, ti, num_bios, len);
1305 
1306 		ci->sector += len;
1307 	} while (ci->sector_count -= len);
1308 
1309 	return 0;
1310 }
1311 
1312 static int __send_discard(struct clone_info *ci)
1313 {
1314 	return __send_changing_extent_only(ci, get_num_discard_bios,
1315 					   is_split_required_for_discard);
1316 }
1317 
1318 static int __send_write_same(struct clone_info *ci)
1319 {
1320 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1321 }
1322 
1323 /*
1324  * Select the correct strategy for processing a non-flush bio.
1325  */
1326 static int __split_and_process_non_flush(struct clone_info *ci)
1327 {
1328 	struct bio *bio = ci->bio;
1329 	struct dm_target *ti;
1330 	unsigned len;
1331 
1332 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1333 		return __send_discard(ci);
1334 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1335 		return __send_write_same(ci);
1336 
1337 	ti = dm_table_find_target(ci->map, ci->sector);
1338 	if (!dm_target_is_valid(ti))
1339 		return -EIO;
1340 
1341 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1342 
1343 	__clone_and_map_data_bio(ci, ti, ci->sector, len);
1344 
1345 	ci->sector += len;
1346 	ci->sector_count -= len;
1347 
1348 	return 0;
1349 }
1350 
1351 /*
1352  * Entry point to split a bio into clones and submit them to the targets.
1353  */
1354 static void __split_and_process_bio(struct mapped_device *md,
1355 				    struct dm_table *map, struct bio *bio)
1356 {
1357 	struct clone_info ci;
1358 	int error = 0;
1359 
1360 	if (unlikely(!map)) {
1361 		bio_io_error(bio);
1362 		return;
1363 	}
1364 
1365 	ci.map = map;
1366 	ci.md = md;
1367 	ci.io = alloc_io(md);
1368 	ci.io->error = 0;
1369 	atomic_set(&ci.io->io_count, 1);
1370 	ci.io->bio = bio;
1371 	ci.io->md = md;
1372 	spin_lock_init(&ci.io->endio_lock);
1373 	ci.sector = bio->bi_iter.bi_sector;
1374 
1375 	start_io_acct(ci.io);
1376 
1377 	if (bio->bi_rw & REQ_FLUSH) {
1378 		ci.bio = &ci.md->flush_bio;
1379 		ci.sector_count = 0;
1380 		error = __send_empty_flush(&ci);
1381 		/* dec_pending submits any data associated with flush */
1382 	} else {
1383 		ci.bio = bio;
1384 		ci.sector_count = bio_sectors(bio);
1385 		while (ci.sector_count && !error)
1386 			error = __split_and_process_non_flush(&ci);
1387 	}
1388 
1389 	/* drop the extra reference count */
1390 	dec_pending(ci.io, error);
1391 }
1392 /*-----------------------------------------------------------------
1393  * CRUD END
1394  *---------------------------------------------------------------*/
1395 
1396 static int dm_merge_bvec(struct request_queue *q,
1397 			 struct bvec_merge_data *bvm,
1398 			 struct bio_vec *biovec)
1399 {
1400 	struct mapped_device *md = q->queuedata;
1401 	struct dm_table *map = dm_get_live_table_fast(md);
1402 	struct dm_target *ti;
1403 	sector_t max_sectors;
1404 	int max_size = 0;
1405 
1406 	if (unlikely(!map))
1407 		goto out;
1408 
1409 	ti = dm_table_find_target(map, bvm->bi_sector);
1410 	if (!dm_target_is_valid(ti))
1411 		goto out;
1412 
1413 	/*
1414 	 * Find maximum amount of I/O that won't need splitting
1415 	 */
1416 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1417 			  (sector_t) BIO_MAX_SECTORS);
1418 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1419 	if (max_size < 0)
1420 		max_size = 0;
1421 
1422 	/*
1423 	 * merge_bvec_fn() returns number of bytes
1424 	 * it can accept at this offset
1425 	 * max is precomputed maximal io size
1426 	 */
1427 	if (max_size && ti->type->merge)
1428 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1429 	/*
1430 	 * If the target doesn't support merge method and some of the devices
1431 	 * provided their merge_bvec method (we know this by looking at
1432 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1433 	 * entries.  So always set max_size to 0, and the code below allows
1434 	 * just one page.
1435 	 */
1436 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1437 
1438 		max_size = 0;
1439 
1440 out:
1441 	dm_put_live_table_fast(md);
1442 	/*
1443 	 * Always allow an entire first page
1444 	 */
1445 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1446 		max_size = biovec->bv_len;
1447 
1448 	return max_size;
1449 }
1450 
1451 /*
1452  * The request function that just remaps the bio built up by
1453  * dm_merge_bvec.
1454  */
1455 static void _dm_request(struct request_queue *q, struct bio *bio)
1456 {
1457 	int rw = bio_data_dir(bio);
1458 	struct mapped_device *md = q->queuedata;
1459 	int cpu;
1460 	int srcu_idx;
1461 	struct dm_table *map;
1462 
1463 	map = dm_get_live_table(md, &srcu_idx);
1464 
1465 	cpu = part_stat_lock();
1466 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1467 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1468 	part_stat_unlock();
1469 
1470 	/* if we're suspended, we have to queue this io for later */
1471 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1472 		dm_put_live_table(md, srcu_idx);
1473 
1474 		if (bio_rw(bio) != READA)
1475 			queue_io(md, bio);
1476 		else
1477 			bio_io_error(bio);
1478 		return;
1479 	}
1480 
1481 	__split_and_process_bio(md, map, bio);
1482 	dm_put_live_table(md, srcu_idx);
1483 	return;
1484 }
1485 
1486 int dm_request_based(struct mapped_device *md)
1487 {
1488 	return blk_queue_stackable(md->queue);
1489 }
1490 
1491 static void dm_request(struct request_queue *q, struct bio *bio)
1492 {
1493 	struct mapped_device *md = q->queuedata;
1494 
1495 	if (dm_request_based(md))
1496 		blk_queue_bio(q, bio);
1497 	else
1498 		_dm_request(q, bio);
1499 }
1500 
1501 void dm_dispatch_request(struct request *rq)
1502 {
1503 	int r;
1504 
1505 	if (blk_queue_io_stat(rq->q))
1506 		rq->cmd_flags |= REQ_IO_STAT;
1507 
1508 	rq->start_time = jiffies;
1509 	r = blk_insert_cloned_request(rq->q, rq);
1510 	if (r)
1511 		dm_complete_request(rq, r);
1512 }
1513 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1514 
1515 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1516 				 void *data)
1517 {
1518 	struct dm_rq_target_io *tio = data;
1519 	struct dm_rq_clone_bio_info *info =
1520 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1521 
1522 	info->orig = bio_orig;
1523 	info->tio = tio;
1524 	bio->bi_end_io = end_clone_bio;
1525 
1526 	return 0;
1527 }
1528 
1529 static int setup_clone(struct request *clone, struct request *rq,
1530 		       struct dm_rq_target_io *tio)
1531 {
1532 	int r;
1533 
1534 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1535 			      dm_rq_bio_constructor, tio);
1536 	if (r)
1537 		return r;
1538 
1539 	clone->cmd = rq->cmd;
1540 	clone->cmd_len = rq->cmd_len;
1541 	clone->sense = rq->sense;
1542 	clone->buffer = rq->buffer;
1543 	clone->end_io = end_clone_request;
1544 	clone->end_io_data = tio;
1545 
1546 	return 0;
1547 }
1548 
1549 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1550 				gfp_t gfp_mask)
1551 {
1552 	struct request *clone;
1553 	struct dm_rq_target_io *tio;
1554 
1555 	tio = alloc_rq_tio(md, gfp_mask);
1556 	if (!tio)
1557 		return NULL;
1558 
1559 	tio->md = md;
1560 	tio->ti = NULL;
1561 	tio->orig = rq;
1562 	tio->error = 0;
1563 	memset(&tio->info, 0, sizeof(tio->info));
1564 
1565 	clone = &tio->clone;
1566 	if (setup_clone(clone, rq, tio)) {
1567 		/* -ENOMEM */
1568 		free_rq_tio(tio);
1569 		return NULL;
1570 	}
1571 
1572 	return clone;
1573 }
1574 
1575 /*
1576  * Called with the queue lock held.
1577  */
1578 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1579 {
1580 	struct mapped_device *md = q->queuedata;
1581 	struct request *clone;
1582 
1583 	if (unlikely(rq->special)) {
1584 		DMWARN("Already has something in rq->special.");
1585 		return BLKPREP_KILL;
1586 	}
1587 
1588 	clone = clone_rq(rq, md, GFP_ATOMIC);
1589 	if (!clone)
1590 		return BLKPREP_DEFER;
1591 
1592 	rq->special = clone;
1593 	rq->cmd_flags |= REQ_DONTPREP;
1594 
1595 	return BLKPREP_OK;
1596 }
1597 
1598 /*
1599  * Returns:
1600  * 0  : the request has been processed (not requeued)
1601  * !0 : the request has been requeued
1602  */
1603 static int map_request(struct dm_target *ti, struct request *clone,
1604 		       struct mapped_device *md)
1605 {
1606 	int r, requeued = 0;
1607 	struct dm_rq_target_io *tio = clone->end_io_data;
1608 
1609 	tio->ti = ti;
1610 	r = ti->type->map_rq(ti, clone, &tio->info);
1611 	switch (r) {
1612 	case DM_MAPIO_SUBMITTED:
1613 		/* The target has taken the I/O to submit by itself later */
1614 		break;
1615 	case DM_MAPIO_REMAPPED:
1616 		/* The target has remapped the I/O so dispatch it */
1617 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1618 				     blk_rq_pos(tio->orig));
1619 		dm_dispatch_request(clone);
1620 		break;
1621 	case DM_MAPIO_REQUEUE:
1622 		/* The target wants to requeue the I/O */
1623 		dm_requeue_unmapped_request(clone);
1624 		requeued = 1;
1625 		break;
1626 	default:
1627 		if (r > 0) {
1628 			DMWARN("unimplemented target map return value: %d", r);
1629 			BUG();
1630 		}
1631 
1632 		/* The target wants to complete the I/O */
1633 		dm_kill_unmapped_request(clone, r);
1634 		break;
1635 	}
1636 
1637 	return requeued;
1638 }
1639 
1640 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1641 {
1642 	struct request *clone;
1643 
1644 	blk_start_request(orig);
1645 	clone = orig->special;
1646 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1647 
1648 	/*
1649 	 * Hold the md reference here for the in-flight I/O.
1650 	 * We can't rely on the reference count by device opener,
1651 	 * because the device may be closed during the request completion
1652 	 * when all bios are completed.
1653 	 * See the comment in rq_completed() too.
1654 	 */
1655 	dm_get(md);
1656 
1657 	return clone;
1658 }
1659 
1660 /*
1661  * q->request_fn for request-based dm.
1662  * Called with the queue lock held.
1663  */
1664 static void dm_request_fn(struct request_queue *q)
1665 {
1666 	struct mapped_device *md = q->queuedata;
1667 	int srcu_idx;
1668 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1669 	struct dm_target *ti;
1670 	struct request *rq, *clone;
1671 	sector_t pos;
1672 
1673 	/*
1674 	 * For suspend, check blk_queue_stopped() and increment
1675 	 * ->pending within a single queue_lock not to increment the
1676 	 * number of in-flight I/Os after the queue is stopped in
1677 	 * dm_suspend().
1678 	 */
1679 	while (!blk_queue_stopped(q)) {
1680 		rq = blk_peek_request(q);
1681 		if (!rq)
1682 			goto delay_and_out;
1683 
1684 		/* always use block 0 to find the target for flushes for now */
1685 		pos = 0;
1686 		if (!(rq->cmd_flags & REQ_FLUSH))
1687 			pos = blk_rq_pos(rq);
1688 
1689 		ti = dm_table_find_target(map, pos);
1690 		if (!dm_target_is_valid(ti)) {
1691 			/*
1692 			 * Must perform setup, that dm_done() requires,
1693 			 * before calling dm_kill_unmapped_request
1694 			 */
1695 			DMERR_LIMIT("request attempted access beyond the end of device");
1696 			clone = dm_start_request(md, rq);
1697 			dm_kill_unmapped_request(clone, -EIO);
1698 			continue;
1699 		}
1700 
1701 		if (ti->type->busy && ti->type->busy(ti))
1702 			goto delay_and_out;
1703 
1704 		clone = dm_start_request(md, rq);
1705 
1706 		spin_unlock(q->queue_lock);
1707 		if (map_request(ti, clone, md))
1708 			goto requeued;
1709 
1710 		BUG_ON(!irqs_disabled());
1711 		spin_lock(q->queue_lock);
1712 	}
1713 
1714 	goto out;
1715 
1716 requeued:
1717 	BUG_ON(!irqs_disabled());
1718 	spin_lock(q->queue_lock);
1719 
1720 delay_and_out:
1721 	blk_delay_queue(q, HZ / 10);
1722 out:
1723 	dm_put_live_table(md, srcu_idx);
1724 }
1725 
1726 int dm_underlying_device_busy(struct request_queue *q)
1727 {
1728 	return blk_lld_busy(q);
1729 }
1730 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1731 
1732 static int dm_lld_busy(struct request_queue *q)
1733 {
1734 	int r;
1735 	struct mapped_device *md = q->queuedata;
1736 	struct dm_table *map = dm_get_live_table_fast(md);
1737 
1738 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1739 		r = 1;
1740 	else
1741 		r = dm_table_any_busy_target(map);
1742 
1743 	dm_put_live_table_fast(md);
1744 
1745 	return r;
1746 }
1747 
1748 static int dm_any_congested(void *congested_data, int bdi_bits)
1749 {
1750 	int r = bdi_bits;
1751 	struct mapped_device *md = congested_data;
1752 	struct dm_table *map;
1753 
1754 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1755 		map = dm_get_live_table_fast(md);
1756 		if (map) {
1757 			/*
1758 			 * Request-based dm cares about only own queue for
1759 			 * the query about congestion status of request_queue
1760 			 */
1761 			if (dm_request_based(md))
1762 				r = md->queue->backing_dev_info.state &
1763 				    bdi_bits;
1764 			else
1765 				r = dm_table_any_congested(map, bdi_bits);
1766 		}
1767 		dm_put_live_table_fast(md);
1768 	}
1769 
1770 	return r;
1771 }
1772 
1773 /*-----------------------------------------------------------------
1774  * An IDR is used to keep track of allocated minor numbers.
1775  *---------------------------------------------------------------*/
1776 static void free_minor(int minor)
1777 {
1778 	spin_lock(&_minor_lock);
1779 	idr_remove(&_minor_idr, minor);
1780 	spin_unlock(&_minor_lock);
1781 }
1782 
1783 /*
1784  * See if the device with a specific minor # is free.
1785  */
1786 static int specific_minor(int minor)
1787 {
1788 	int r;
1789 
1790 	if (minor >= (1 << MINORBITS))
1791 		return -EINVAL;
1792 
1793 	idr_preload(GFP_KERNEL);
1794 	spin_lock(&_minor_lock);
1795 
1796 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1797 
1798 	spin_unlock(&_minor_lock);
1799 	idr_preload_end();
1800 	if (r < 0)
1801 		return r == -ENOSPC ? -EBUSY : r;
1802 	return 0;
1803 }
1804 
1805 static int next_free_minor(int *minor)
1806 {
1807 	int r;
1808 
1809 	idr_preload(GFP_KERNEL);
1810 	spin_lock(&_minor_lock);
1811 
1812 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1813 
1814 	spin_unlock(&_minor_lock);
1815 	idr_preload_end();
1816 	if (r < 0)
1817 		return r;
1818 	*minor = r;
1819 	return 0;
1820 }
1821 
1822 static const struct block_device_operations dm_blk_dops;
1823 
1824 static void dm_wq_work(struct work_struct *work);
1825 
1826 static void dm_init_md_queue(struct mapped_device *md)
1827 {
1828 	/*
1829 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1830 	 * devices.  The type of this dm device has not been decided yet.
1831 	 * The type is decided at the first table loading time.
1832 	 * To prevent problematic device stacking, clear the queue flag
1833 	 * for request stacking support until then.
1834 	 *
1835 	 * This queue is new, so no concurrency on the queue_flags.
1836 	 */
1837 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1838 
1839 	md->queue->queuedata = md;
1840 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1841 	md->queue->backing_dev_info.congested_data = md;
1842 	blk_queue_make_request(md->queue, dm_request);
1843 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1844 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1845 }
1846 
1847 /*
1848  * Allocate and initialise a blank device with a given minor.
1849  */
1850 static struct mapped_device *alloc_dev(int minor)
1851 {
1852 	int r;
1853 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1854 	void *old_md;
1855 
1856 	if (!md) {
1857 		DMWARN("unable to allocate device, out of memory.");
1858 		return NULL;
1859 	}
1860 
1861 	if (!try_module_get(THIS_MODULE))
1862 		goto bad_module_get;
1863 
1864 	/* get a minor number for the dev */
1865 	if (minor == DM_ANY_MINOR)
1866 		r = next_free_minor(&minor);
1867 	else
1868 		r = specific_minor(minor);
1869 	if (r < 0)
1870 		goto bad_minor;
1871 
1872 	r = init_srcu_struct(&md->io_barrier);
1873 	if (r < 0)
1874 		goto bad_io_barrier;
1875 
1876 	md->type = DM_TYPE_NONE;
1877 	mutex_init(&md->suspend_lock);
1878 	mutex_init(&md->type_lock);
1879 	spin_lock_init(&md->deferred_lock);
1880 	atomic_set(&md->holders, 1);
1881 	atomic_set(&md->open_count, 0);
1882 	atomic_set(&md->event_nr, 0);
1883 	atomic_set(&md->uevent_seq, 0);
1884 	INIT_LIST_HEAD(&md->uevent_list);
1885 	spin_lock_init(&md->uevent_lock);
1886 
1887 	md->queue = blk_alloc_queue(GFP_KERNEL);
1888 	if (!md->queue)
1889 		goto bad_queue;
1890 
1891 	dm_init_md_queue(md);
1892 
1893 	md->disk = alloc_disk(1);
1894 	if (!md->disk)
1895 		goto bad_disk;
1896 
1897 	atomic_set(&md->pending[0], 0);
1898 	atomic_set(&md->pending[1], 0);
1899 	init_waitqueue_head(&md->wait);
1900 	INIT_WORK(&md->work, dm_wq_work);
1901 	init_waitqueue_head(&md->eventq);
1902 	init_completion(&md->kobj_holder.completion);
1903 
1904 	md->disk->major = _major;
1905 	md->disk->first_minor = minor;
1906 	md->disk->fops = &dm_blk_dops;
1907 	md->disk->queue = md->queue;
1908 	md->disk->private_data = md;
1909 	sprintf(md->disk->disk_name, "dm-%d", minor);
1910 	add_disk(md->disk);
1911 	format_dev_t(md->name, MKDEV(_major, minor));
1912 
1913 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1914 	if (!md->wq)
1915 		goto bad_thread;
1916 
1917 	md->bdev = bdget_disk(md->disk, 0);
1918 	if (!md->bdev)
1919 		goto bad_bdev;
1920 
1921 	bio_init(&md->flush_bio);
1922 	md->flush_bio.bi_bdev = md->bdev;
1923 	md->flush_bio.bi_rw = WRITE_FLUSH;
1924 
1925 	dm_stats_init(&md->stats);
1926 
1927 	/* Populate the mapping, nobody knows we exist yet */
1928 	spin_lock(&_minor_lock);
1929 	old_md = idr_replace(&_minor_idr, md, minor);
1930 	spin_unlock(&_minor_lock);
1931 
1932 	BUG_ON(old_md != MINOR_ALLOCED);
1933 
1934 	return md;
1935 
1936 bad_bdev:
1937 	destroy_workqueue(md->wq);
1938 bad_thread:
1939 	del_gendisk(md->disk);
1940 	put_disk(md->disk);
1941 bad_disk:
1942 	blk_cleanup_queue(md->queue);
1943 bad_queue:
1944 	cleanup_srcu_struct(&md->io_barrier);
1945 bad_io_barrier:
1946 	free_minor(minor);
1947 bad_minor:
1948 	module_put(THIS_MODULE);
1949 bad_module_get:
1950 	kfree(md);
1951 	return NULL;
1952 }
1953 
1954 static void unlock_fs(struct mapped_device *md);
1955 
1956 static void free_dev(struct mapped_device *md)
1957 {
1958 	int minor = MINOR(disk_devt(md->disk));
1959 
1960 	unlock_fs(md);
1961 	bdput(md->bdev);
1962 	destroy_workqueue(md->wq);
1963 	if (md->io_pool)
1964 		mempool_destroy(md->io_pool);
1965 	if (md->bs)
1966 		bioset_free(md->bs);
1967 	blk_integrity_unregister(md->disk);
1968 	del_gendisk(md->disk);
1969 	cleanup_srcu_struct(&md->io_barrier);
1970 	free_minor(minor);
1971 
1972 	spin_lock(&_minor_lock);
1973 	md->disk->private_data = NULL;
1974 	spin_unlock(&_minor_lock);
1975 
1976 	put_disk(md->disk);
1977 	blk_cleanup_queue(md->queue);
1978 	dm_stats_cleanup(&md->stats);
1979 	module_put(THIS_MODULE);
1980 	kfree(md);
1981 }
1982 
1983 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1984 {
1985 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1986 
1987 	if (md->io_pool && md->bs) {
1988 		/* The md already has necessary mempools. */
1989 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1990 			/*
1991 			 * Reload bioset because front_pad may have changed
1992 			 * because a different table was loaded.
1993 			 */
1994 			bioset_free(md->bs);
1995 			md->bs = p->bs;
1996 			p->bs = NULL;
1997 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1998 			/*
1999 			 * There's no need to reload with request-based dm
2000 			 * because the size of front_pad doesn't change.
2001 			 * Note for future: If you are to reload bioset,
2002 			 * prep-ed requests in the queue may refer
2003 			 * to bio from the old bioset, so you must walk
2004 			 * through the queue to unprep.
2005 			 */
2006 		}
2007 		goto out;
2008 	}
2009 
2010 	BUG_ON(!p || md->io_pool || md->bs);
2011 
2012 	md->io_pool = p->io_pool;
2013 	p->io_pool = NULL;
2014 	md->bs = p->bs;
2015 	p->bs = NULL;
2016 
2017 out:
2018 	/* mempool bind completed, now no need any mempools in the table */
2019 	dm_table_free_md_mempools(t);
2020 }
2021 
2022 /*
2023  * Bind a table to the device.
2024  */
2025 static void event_callback(void *context)
2026 {
2027 	unsigned long flags;
2028 	LIST_HEAD(uevents);
2029 	struct mapped_device *md = (struct mapped_device *) context;
2030 
2031 	spin_lock_irqsave(&md->uevent_lock, flags);
2032 	list_splice_init(&md->uevent_list, &uevents);
2033 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2034 
2035 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2036 
2037 	atomic_inc(&md->event_nr);
2038 	wake_up(&md->eventq);
2039 }
2040 
2041 /*
2042  * Protected by md->suspend_lock obtained by dm_swap_table().
2043  */
2044 static void __set_size(struct mapped_device *md, sector_t size)
2045 {
2046 	set_capacity(md->disk, size);
2047 
2048 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2049 }
2050 
2051 /*
2052  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2053  *
2054  * If this function returns 0, then the device is either a non-dm
2055  * device without a merge_bvec_fn, or it is a dm device that is
2056  * able to split any bios it receives that are too big.
2057  */
2058 int dm_queue_merge_is_compulsory(struct request_queue *q)
2059 {
2060 	struct mapped_device *dev_md;
2061 
2062 	if (!q->merge_bvec_fn)
2063 		return 0;
2064 
2065 	if (q->make_request_fn == dm_request) {
2066 		dev_md = q->queuedata;
2067 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2068 			return 0;
2069 	}
2070 
2071 	return 1;
2072 }
2073 
2074 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2075 					 struct dm_dev *dev, sector_t start,
2076 					 sector_t len, void *data)
2077 {
2078 	struct block_device *bdev = dev->bdev;
2079 	struct request_queue *q = bdev_get_queue(bdev);
2080 
2081 	return dm_queue_merge_is_compulsory(q);
2082 }
2083 
2084 /*
2085  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2086  * on the properties of the underlying devices.
2087  */
2088 static int dm_table_merge_is_optional(struct dm_table *table)
2089 {
2090 	unsigned i = 0;
2091 	struct dm_target *ti;
2092 
2093 	while (i < dm_table_get_num_targets(table)) {
2094 		ti = dm_table_get_target(table, i++);
2095 
2096 		if (ti->type->iterate_devices &&
2097 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2098 			return 0;
2099 	}
2100 
2101 	return 1;
2102 }
2103 
2104 /*
2105  * Returns old map, which caller must destroy.
2106  */
2107 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2108 			       struct queue_limits *limits)
2109 {
2110 	struct dm_table *old_map;
2111 	struct request_queue *q = md->queue;
2112 	sector_t size;
2113 	int merge_is_optional;
2114 
2115 	size = dm_table_get_size(t);
2116 
2117 	/*
2118 	 * Wipe any geometry if the size of the table changed.
2119 	 */
2120 	if (size != dm_get_size(md))
2121 		memset(&md->geometry, 0, sizeof(md->geometry));
2122 
2123 	__set_size(md, size);
2124 
2125 	dm_table_event_callback(t, event_callback, md);
2126 
2127 	/*
2128 	 * The queue hasn't been stopped yet, if the old table type wasn't
2129 	 * for request-based during suspension.  So stop it to prevent
2130 	 * I/O mapping before resume.
2131 	 * This must be done before setting the queue restrictions,
2132 	 * because request-based dm may be run just after the setting.
2133 	 */
2134 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2135 		stop_queue(q);
2136 
2137 	__bind_mempools(md, t);
2138 
2139 	merge_is_optional = dm_table_merge_is_optional(t);
2140 
2141 	old_map = md->map;
2142 	rcu_assign_pointer(md->map, t);
2143 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2144 
2145 	dm_table_set_restrictions(t, q, limits);
2146 	if (merge_is_optional)
2147 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2148 	else
2149 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2150 	dm_sync_table(md);
2151 
2152 	return old_map;
2153 }
2154 
2155 /*
2156  * Returns unbound table for the caller to free.
2157  */
2158 static struct dm_table *__unbind(struct mapped_device *md)
2159 {
2160 	struct dm_table *map = md->map;
2161 
2162 	if (!map)
2163 		return NULL;
2164 
2165 	dm_table_event_callback(map, NULL, NULL);
2166 	RCU_INIT_POINTER(md->map, NULL);
2167 	dm_sync_table(md);
2168 
2169 	return map;
2170 }
2171 
2172 /*
2173  * Constructor for a new device.
2174  */
2175 int dm_create(int minor, struct mapped_device **result)
2176 {
2177 	struct mapped_device *md;
2178 
2179 	md = alloc_dev(minor);
2180 	if (!md)
2181 		return -ENXIO;
2182 
2183 	dm_sysfs_init(md);
2184 
2185 	*result = md;
2186 	return 0;
2187 }
2188 
2189 /*
2190  * Functions to manage md->type.
2191  * All are required to hold md->type_lock.
2192  */
2193 void dm_lock_md_type(struct mapped_device *md)
2194 {
2195 	mutex_lock(&md->type_lock);
2196 }
2197 
2198 void dm_unlock_md_type(struct mapped_device *md)
2199 {
2200 	mutex_unlock(&md->type_lock);
2201 }
2202 
2203 void dm_set_md_type(struct mapped_device *md, unsigned type)
2204 {
2205 	BUG_ON(!mutex_is_locked(&md->type_lock));
2206 	md->type = type;
2207 }
2208 
2209 unsigned dm_get_md_type(struct mapped_device *md)
2210 {
2211 	BUG_ON(!mutex_is_locked(&md->type_lock));
2212 	return md->type;
2213 }
2214 
2215 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2216 {
2217 	return md->immutable_target_type;
2218 }
2219 
2220 /*
2221  * The queue_limits are only valid as long as you have a reference
2222  * count on 'md'.
2223  */
2224 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2225 {
2226 	BUG_ON(!atomic_read(&md->holders));
2227 	return &md->queue->limits;
2228 }
2229 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2230 
2231 /*
2232  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2233  */
2234 static int dm_init_request_based_queue(struct mapped_device *md)
2235 {
2236 	struct request_queue *q = NULL;
2237 
2238 	if (md->queue->elevator)
2239 		return 1;
2240 
2241 	/* Fully initialize the queue */
2242 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2243 	if (!q)
2244 		return 0;
2245 
2246 	md->queue = q;
2247 	dm_init_md_queue(md);
2248 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2249 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2250 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2251 
2252 	elv_register_queue(md->queue);
2253 
2254 	return 1;
2255 }
2256 
2257 /*
2258  * Setup the DM device's queue based on md's type
2259  */
2260 int dm_setup_md_queue(struct mapped_device *md)
2261 {
2262 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2263 	    !dm_init_request_based_queue(md)) {
2264 		DMWARN("Cannot initialize queue for request-based mapped device");
2265 		return -EINVAL;
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static struct mapped_device *dm_find_md(dev_t dev)
2272 {
2273 	struct mapped_device *md;
2274 	unsigned minor = MINOR(dev);
2275 
2276 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2277 		return NULL;
2278 
2279 	spin_lock(&_minor_lock);
2280 
2281 	md = idr_find(&_minor_idr, minor);
2282 	if (md && (md == MINOR_ALLOCED ||
2283 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2284 		   dm_deleting_md(md) ||
2285 		   test_bit(DMF_FREEING, &md->flags))) {
2286 		md = NULL;
2287 		goto out;
2288 	}
2289 
2290 out:
2291 	spin_unlock(&_minor_lock);
2292 
2293 	return md;
2294 }
2295 
2296 struct mapped_device *dm_get_md(dev_t dev)
2297 {
2298 	struct mapped_device *md = dm_find_md(dev);
2299 
2300 	if (md)
2301 		dm_get(md);
2302 
2303 	return md;
2304 }
2305 EXPORT_SYMBOL_GPL(dm_get_md);
2306 
2307 void *dm_get_mdptr(struct mapped_device *md)
2308 {
2309 	return md->interface_ptr;
2310 }
2311 
2312 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2313 {
2314 	md->interface_ptr = ptr;
2315 }
2316 
2317 void dm_get(struct mapped_device *md)
2318 {
2319 	atomic_inc(&md->holders);
2320 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2321 }
2322 
2323 const char *dm_device_name(struct mapped_device *md)
2324 {
2325 	return md->name;
2326 }
2327 EXPORT_SYMBOL_GPL(dm_device_name);
2328 
2329 static void __dm_destroy(struct mapped_device *md, bool wait)
2330 {
2331 	struct dm_table *map;
2332 	int srcu_idx;
2333 
2334 	might_sleep();
2335 
2336 	spin_lock(&_minor_lock);
2337 	map = dm_get_live_table(md, &srcu_idx);
2338 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2339 	set_bit(DMF_FREEING, &md->flags);
2340 	spin_unlock(&_minor_lock);
2341 
2342 	if (!dm_suspended_md(md)) {
2343 		dm_table_presuspend_targets(map);
2344 		dm_table_postsuspend_targets(map);
2345 	}
2346 
2347 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2348 	dm_put_live_table(md, srcu_idx);
2349 
2350 	/*
2351 	 * Rare, but there may be I/O requests still going to complete,
2352 	 * for example.  Wait for all references to disappear.
2353 	 * No one should increment the reference count of the mapped_device,
2354 	 * after the mapped_device state becomes DMF_FREEING.
2355 	 */
2356 	if (wait)
2357 		while (atomic_read(&md->holders))
2358 			msleep(1);
2359 	else if (atomic_read(&md->holders))
2360 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2361 		       dm_device_name(md), atomic_read(&md->holders));
2362 
2363 	dm_sysfs_exit(md);
2364 	dm_table_destroy(__unbind(md));
2365 	free_dev(md);
2366 }
2367 
2368 void dm_destroy(struct mapped_device *md)
2369 {
2370 	__dm_destroy(md, true);
2371 }
2372 
2373 void dm_destroy_immediate(struct mapped_device *md)
2374 {
2375 	__dm_destroy(md, false);
2376 }
2377 
2378 void dm_put(struct mapped_device *md)
2379 {
2380 	atomic_dec(&md->holders);
2381 }
2382 EXPORT_SYMBOL_GPL(dm_put);
2383 
2384 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2385 {
2386 	int r = 0;
2387 	DECLARE_WAITQUEUE(wait, current);
2388 
2389 	add_wait_queue(&md->wait, &wait);
2390 
2391 	while (1) {
2392 		set_current_state(interruptible);
2393 
2394 		if (!md_in_flight(md))
2395 			break;
2396 
2397 		if (interruptible == TASK_INTERRUPTIBLE &&
2398 		    signal_pending(current)) {
2399 			r = -EINTR;
2400 			break;
2401 		}
2402 
2403 		io_schedule();
2404 	}
2405 	set_current_state(TASK_RUNNING);
2406 
2407 	remove_wait_queue(&md->wait, &wait);
2408 
2409 	return r;
2410 }
2411 
2412 /*
2413  * Process the deferred bios
2414  */
2415 static void dm_wq_work(struct work_struct *work)
2416 {
2417 	struct mapped_device *md = container_of(work, struct mapped_device,
2418 						work);
2419 	struct bio *c;
2420 	int srcu_idx;
2421 	struct dm_table *map;
2422 
2423 	map = dm_get_live_table(md, &srcu_idx);
2424 
2425 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2426 		spin_lock_irq(&md->deferred_lock);
2427 		c = bio_list_pop(&md->deferred);
2428 		spin_unlock_irq(&md->deferred_lock);
2429 
2430 		if (!c)
2431 			break;
2432 
2433 		if (dm_request_based(md))
2434 			generic_make_request(c);
2435 		else
2436 			__split_and_process_bio(md, map, c);
2437 	}
2438 
2439 	dm_put_live_table(md, srcu_idx);
2440 }
2441 
2442 static void dm_queue_flush(struct mapped_device *md)
2443 {
2444 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2445 	smp_mb__after_clear_bit();
2446 	queue_work(md->wq, &md->work);
2447 }
2448 
2449 /*
2450  * Swap in a new table, returning the old one for the caller to destroy.
2451  */
2452 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2453 {
2454 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2455 	struct queue_limits limits;
2456 	int r;
2457 
2458 	mutex_lock(&md->suspend_lock);
2459 
2460 	/* device must be suspended */
2461 	if (!dm_suspended_md(md))
2462 		goto out;
2463 
2464 	/*
2465 	 * If the new table has no data devices, retain the existing limits.
2466 	 * This helps multipath with queue_if_no_path if all paths disappear,
2467 	 * then new I/O is queued based on these limits, and then some paths
2468 	 * reappear.
2469 	 */
2470 	if (dm_table_has_no_data_devices(table)) {
2471 		live_map = dm_get_live_table_fast(md);
2472 		if (live_map)
2473 			limits = md->queue->limits;
2474 		dm_put_live_table_fast(md);
2475 	}
2476 
2477 	if (!live_map) {
2478 		r = dm_calculate_queue_limits(table, &limits);
2479 		if (r) {
2480 			map = ERR_PTR(r);
2481 			goto out;
2482 		}
2483 	}
2484 
2485 	map = __bind(md, table, &limits);
2486 
2487 out:
2488 	mutex_unlock(&md->suspend_lock);
2489 	return map;
2490 }
2491 
2492 /*
2493  * Functions to lock and unlock any filesystem running on the
2494  * device.
2495  */
2496 static int lock_fs(struct mapped_device *md)
2497 {
2498 	int r;
2499 
2500 	WARN_ON(md->frozen_sb);
2501 
2502 	md->frozen_sb = freeze_bdev(md->bdev);
2503 	if (IS_ERR(md->frozen_sb)) {
2504 		r = PTR_ERR(md->frozen_sb);
2505 		md->frozen_sb = NULL;
2506 		return r;
2507 	}
2508 
2509 	set_bit(DMF_FROZEN, &md->flags);
2510 
2511 	return 0;
2512 }
2513 
2514 static void unlock_fs(struct mapped_device *md)
2515 {
2516 	if (!test_bit(DMF_FROZEN, &md->flags))
2517 		return;
2518 
2519 	thaw_bdev(md->bdev, md->frozen_sb);
2520 	md->frozen_sb = NULL;
2521 	clear_bit(DMF_FROZEN, &md->flags);
2522 }
2523 
2524 /*
2525  * We need to be able to change a mapping table under a mounted
2526  * filesystem.  For example we might want to move some data in
2527  * the background.  Before the table can be swapped with
2528  * dm_bind_table, dm_suspend must be called to flush any in
2529  * flight bios and ensure that any further io gets deferred.
2530  */
2531 /*
2532  * Suspend mechanism in request-based dm.
2533  *
2534  * 1. Flush all I/Os by lock_fs() if needed.
2535  * 2. Stop dispatching any I/O by stopping the request_queue.
2536  * 3. Wait for all in-flight I/Os to be completed or requeued.
2537  *
2538  * To abort suspend, start the request_queue.
2539  */
2540 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2541 {
2542 	struct dm_table *map = NULL;
2543 	int r = 0;
2544 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2545 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2546 
2547 	mutex_lock(&md->suspend_lock);
2548 
2549 	if (dm_suspended_md(md)) {
2550 		r = -EINVAL;
2551 		goto out_unlock;
2552 	}
2553 
2554 	map = md->map;
2555 
2556 	/*
2557 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2558 	 * This flag is cleared before dm_suspend returns.
2559 	 */
2560 	if (noflush)
2561 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2562 
2563 	/* This does not get reverted if there's an error later. */
2564 	dm_table_presuspend_targets(map);
2565 
2566 	/*
2567 	 * Flush I/O to the device.
2568 	 * Any I/O submitted after lock_fs() may not be flushed.
2569 	 * noflush takes precedence over do_lockfs.
2570 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2571 	 */
2572 	if (!noflush && do_lockfs) {
2573 		r = lock_fs(md);
2574 		if (r)
2575 			goto out_unlock;
2576 	}
2577 
2578 	/*
2579 	 * Here we must make sure that no processes are submitting requests
2580 	 * to target drivers i.e. no one may be executing
2581 	 * __split_and_process_bio. This is called from dm_request and
2582 	 * dm_wq_work.
2583 	 *
2584 	 * To get all processes out of __split_and_process_bio in dm_request,
2585 	 * we take the write lock. To prevent any process from reentering
2586 	 * __split_and_process_bio from dm_request and quiesce the thread
2587 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2588 	 * flush_workqueue(md->wq).
2589 	 */
2590 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2591 	synchronize_srcu(&md->io_barrier);
2592 
2593 	/*
2594 	 * Stop md->queue before flushing md->wq in case request-based
2595 	 * dm defers requests to md->wq from md->queue.
2596 	 */
2597 	if (dm_request_based(md))
2598 		stop_queue(md->queue);
2599 
2600 	flush_workqueue(md->wq);
2601 
2602 	/*
2603 	 * At this point no more requests are entering target request routines.
2604 	 * We call dm_wait_for_completion to wait for all existing requests
2605 	 * to finish.
2606 	 */
2607 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2608 
2609 	if (noflush)
2610 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2611 	synchronize_srcu(&md->io_barrier);
2612 
2613 	/* were we interrupted ? */
2614 	if (r < 0) {
2615 		dm_queue_flush(md);
2616 
2617 		if (dm_request_based(md))
2618 			start_queue(md->queue);
2619 
2620 		unlock_fs(md);
2621 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2622 	}
2623 
2624 	/*
2625 	 * If dm_wait_for_completion returned 0, the device is completely
2626 	 * quiescent now. There is no request-processing activity. All new
2627 	 * requests are being added to md->deferred list.
2628 	 */
2629 
2630 	set_bit(DMF_SUSPENDED, &md->flags);
2631 
2632 	dm_table_postsuspend_targets(map);
2633 
2634 out_unlock:
2635 	mutex_unlock(&md->suspend_lock);
2636 	return r;
2637 }
2638 
2639 int dm_resume(struct mapped_device *md)
2640 {
2641 	int r = -EINVAL;
2642 	struct dm_table *map = NULL;
2643 
2644 	mutex_lock(&md->suspend_lock);
2645 	if (!dm_suspended_md(md))
2646 		goto out;
2647 
2648 	map = md->map;
2649 	if (!map || !dm_table_get_size(map))
2650 		goto out;
2651 
2652 	r = dm_table_resume_targets(map);
2653 	if (r)
2654 		goto out;
2655 
2656 	dm_queue_flush(md);
2657 
2658 	/*
2659 	 * Flushing deferred I/Os must be done after targets are resumed
2660 	 * so that mapping of targets can work correctly.
2661 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2662 	 */
2663 	if (dm_request_based(md))
2664 		start_queue(md->queue);
2665 
2666 	unlock_fs(md);
2667 
2668 	clear_bit(DMF_SUSPENDED, &md->flags);
2669 
2670 	r = 0;
2671 out:
2672 	mutex_unlock(&md->suspend_lock);
2673 
2674 	return r;
2675 }
2676 
2677 /*
2678  * Internal suspend/resume works like userspace-driven suspend. It waits
2679  * until all bios finish and prevents issuing new bios to the target drivers.
2680  * It may be used only from the kernel.
2681  *
2682  * Internal suspend holds md->suspend_lock, which prevents interaction with
2683  * userspace-driven suspend.
2684  */
2685 
2686 void dm_internal_suspend(struct mapped_device *md)
2687 {
2688 	mutex_lock(&md->suspend_lock);
2689 	if (dm_suspended_md(md))
2690 		return;
2691 
2692 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2693 	synchronize_srcu(&md->io_barrier);
2694 	flush_workqueue(md->wq);
2695 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2696 }
2697 
2698 void dm_internal_resume(struct mapped_device *md)
2699 {
2700 	if (dm_suspended_md(md))
2701 		goto done;
2702 
2703 	dm_queue_flush(md);
2704 
2705 done:
2706 	mutex_unlock(&md->suspend_lock);
2707 }
2708 
2709 /*-----------------------------------------------------------------
2710  * Event notification.
2711  *---------------------------------------------------------------*/
2712 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2713 		       unsigned cookie)
2714 {
2715 	char udev_cookie[DM_COOKIE_LENGTH];
2716 	char *envp[] = { udev_cookie, NULL };
2717 
2718 	if (!cookie)
2719 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2720 	else {
2721 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2722 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2723 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2724 					  action, envp);
2725 	}
2726 }
2727 
2728 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2729 {
2730 	return atomic_add_return(1, &md->uevent_seq);
2731 }
2732 
2733 uint32_t dm_get_event_nr(struct mapped_device *md)
2734 {
2735 	return atomic_read(&md->event_nr);
2736 }
2737 
2738 int dm_wait_event(struct mapped_device *md, int event_nr)
2739 {
2740 	return wait_event_interruptible(md->eventq,
2741 			(event_nr != atomic_read(&md->event_nr)));
2742 }
2743 
2744 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2745 {
2746 	unsigned long flags;
2747 
2748 	spin_lock_irqsave(&md->uevent_lock, flags);
2749 	list_add(elist, &md->uevent_list);
2750 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2751 }
2752 
2753 /*
2754  * The gendisk is only valid as long as you have a reference
2755  * count on 'md'.
2756  */
2757 struct gendisk *dm_disk(struct mapped_device *md)
2758 {
2759 	return md->disk;
2760 }
2761 
2762 struct kobject *dm_kobject(struct mapped_device *md)
2763 {
2764 	return &md->kobj_holder.kobj;
2765 }
2766 
2767 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2768 {
2769 	struct mapped_device *md;
2770 
2771 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2772 
2773 	if (test_bit(DMF_FREEING, &md->flags) ||
2774 	    dm_deleting_md(md))
2775 		return NULL;
2776 
2777 	dm_get(md);
2778 	return md;
2779 }
2780 
2781 int dm_suspended_md(struct mapped_device *md)
2782 {
2783 	return test_bit(DMF_SUSPENDED, &md->flags);
2784 }
2785 
2786 int dm_test_deferred_remove_flag(struct mapped_device *md)
2787 {
2788 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2789 }
2790 
2791 int dm_suspended(struct dm_target *ti)
2792 {
2793 	return dm_suspended_md(dm_table_get_md(ti->table));
2794 }
2795 EXPORT_SYMBOL_GPL(dm_suspended);
2796 
2797 int dm_noflush_suspending(struct dm_target *ti)
2798 {
2799 	return __noflush_suspending(dm_table_get_md(ti->table));
2800 }
2801 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2802 
2803 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2804 {
2805 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2806 	struct kmem_cache *cachep;
2807 	unsigned int pool_size;
2808 	unsigned int front_pad;
2809 
2810 	if (!pools)
2811 		return NULL;
2812 
2813 	if (type == DM_TYPE_BIO_BASED) {
2814 		cachep = _io_cache;
2815 		pool_size = dm_get_reserved_bio_based_ios();
2816 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2817 	} else if (type == DM_TYPE_REQUEST_BASED) {
2818 		cachep = _rq_tio_cache;
2819 		pool_size = dm_get_reserved_rq_based_ios();
2820 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2821 		/* per_bio_data_size is not used. See __bind_mempools(). */
2822 		WARN_ON(per_bio_data_size != 0);
2823 	} else
2824 		goto out;
2825 
2826 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2827 	if (!pools->io_pool)
2828 		goto out;
2829 
2830 	pools->bs = bioset_create(pool_size, front_pad);
2831 	if (!pools->bs)
2832 		goto out;
2833 
2834 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2835 		goto out;
2836 
2837 	return pools;
2838 
2839 out:
2840 	dm_free_md_mempools(pools);
2841 
2842 	return NULL;
2843 }
2844 
2845 void dm_free_md_mempools(struct dm_md_mempools *pools)
2846 {
2847 	if (!pools)
2848 		return;
2849 
2850 	if (pools->io_pool)
2851 		mempool_destroy(pools->io_pool);
2852 
2853 	if (pools->bs)
2854 		bioset_free(pools->bs);
2855 
2856 	kfree(pools);
2857 }
2858 
2859 static const struct block_device_operations dm_blk_dops = {
2860 	.open = dm_blk_open,
2861 	.release = dm_blk_close,
2862 	.ioctl = dm_blk_ioctl,
2863 	.getgeo = dm_blk_getgeo,
2864 	.owner = THIS_MODULE
2865 };
2866 
2867 /*
2868  * module hooks
2869  */
2870 module_init(dm_init);
2871 module_exit(dm_exit);
2872 
2873 module_param(major, uint, 0);
2874 MODULE_PARM_DESC(major, "The major number of the device mapper");
2875 
2876 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2877 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2878 
2879 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
2880 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
2881 
2882 MODULE_DESCRIPTION(DM_NAME " driver");
2883 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2884 MODULE_LICENSE("GPL");
2885