1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 /* 29 * Cookies are numeric values sent with CHANGE and REMOVE 30 * uevents while resuming, removing or renaming the device. 31 */ 32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 33 #define DM_COOKIE_LENGTH 24 34 35 static const char *_name = DM_NAME; 36 37 static unsigned int major = 0; 38 static unsigned int _major = 0; 39 40 static DEFINE_SPINLOCK(_minor_lock); 41 /* 42 * For bio-based dm. 43 * One of these is allocated per bio. 44 */ 45 struct dm_io { 46 struct mapped_device *md; 47 int error; 48 atomic_t io_count; 49 struct bio *bio; 50 unsigned long start_time; 51 spinlock_t endio_lock; 52 }; 53 54 /* 55 * For bio-based dm. 56 * One of these is allocated per target within a bio. Hopefully 57 * this will be simplified out one day. 58 */ 59 struct dm_target_io { 60 struct dm_io *io; 61 struct dm_target *ti; 62 union map_info info; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm. 79 * One of these is allocated per bio. 80 */ 81 struct dm_rq_clone_bio_info { 82 struct bio *orig; 83 struct dm_rq_target_io *tio; 84 }; 85 86 union map_info *dm_get_mapinfo(struct bio *bio) 87 { 88 if (bio && bio->bi_private) 89 return &((struct dm_target_io *)bio->bi_private)->info; 90 return NULL; 91 } 92 93 union map_info *dm_get_rq_mapinfo(struct request *rq) 94 { 95 if (rq && rq->end_io_data) 96 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 97 return NULL; 98 } 99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 100 101 #define MINOR_ALLOCED ((void *)-1) 102 103 /* 104 * Bits for the md->flags field. 105 */ 106 #define DMF_BLOCK_IO_FOR_SUSPEND 0 107 #define DMF_SUSPENDED 1 108 #define DMF_FROZEN 2 109 #define DMF_FREEING 3 110 #define DMF_DELETING 4 111 #define DMF_NOFLUSH_SUSPENDING 5 112 113 /* 114 * Work processed by per-device workqueue. 115 */ 116 struct mapped_device { 117 struct rw_semaphore io_lock; 118 struct mutex suspend_lock; 119 rwlock_t map_lock; 120 atomic_t holders; 121 atomic_t open_count; 122 123 unsigned long flags; 124 125 struct request_queue *queue; 126 unsigned type; 127 /* Protect queue and type against concurrent access. */ 128 struct mutex type_lock; 129 130 struct gendisk *disk; 131 char name[16]; 132 133 void *interface_ptr; 134 135 /* 136 * A list of ios that arrived while we were suspended. 137 */ 138 atomic_t pending[2]; 139 wait_queue_head_t wait; 140 struct work_struct work; 141 struct bio_list deferred; 142 spinlock_t deferred_lock; 143 144 /* 145 * Processing queue (flush) 146 */ 147 struct workqueue_struct *wq; 148 149 /* 150 * The current mapping. 151 */ 152 struct dm_table *map; 153 154 /* 155 * io objects are allocated from here. 156 */ 157 mempool_t *io_pool; 158 mempool_t *tio_pool; 159 160 struct bio_set *bs; 161 162 /* 163 * Event handling. 164 */ 165 atomic_t event_nr; 166 wait_queue_head_t eventq; 167 atomic_t uevent_seq; 168 struct list_head uevent_list; 169 spinlock_t uevent_lock; /* Protect access to uevent_list */ 170 171 /* 172 * freeze/thaw support require holding onto a super block 173 */ 174 struct super_block *frozen_sb; 175 struct block_device *bdev; 176 177 /* forced geometry settings */ 178 struct hd_geometry geometry; 179 180 /* For saving the address of __make_request for request based dm */ 181 make_request_fn *saved_make_request_fn; 182 183 /* sysfs handle */ 184 struct kobject kobj; 185 186 /* zero-length flush that will be cloned and submitted to targets */ 187 struct bio flush_bio; 188 }; 189 190 /* 191 * For mempools pre-allocation at the table loading time. 192 */ 193 struct dm_md_mempools { 194 mempool_t *io_pool; 195 mempool_t *tio_pool; 196 struct bio_set *bs; 197 }; 198 199 #define MIN_IOS 256 200 static struct kmem_cache *_io_cache; 201 static struct kmem_cache *_tio_cache; 202 static struct kmem_cache *_rq_tio_cache; 203 static struct kmem_cache *_rq_bio_info_cache; 204 205 static int __init local_init(void) 206 { 207 int r = -ENOMEM; 208 209 /* allocate a slab for the dm_ios */ 210 _io_cache = KMEM_CACHE(dm_io, 0); 211 if (!_io_cache) 212 return r; 213 214 /* allocate a slab for the target ios */ 215 _tio_cache = KMEM_CACHE(dm_target_io, 0); 216 if (!_tio_cache) 217 goto out_free_io_cache; 218 219 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 220 if (!_rq_tio_cache) 221 goto out_free_tio_cache; 222 223 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 224 if (!_rq_bio_info_cache) 225 goto out_free_rq_tio_cache; 226 227 r = dm_uevent_init(); 228 if (r) 229 goto out_free_rq_bio_info_cache; 230 231 _major = major; 232 r = register_blkdev(_major, _name); 233 if (r < 0) 234 goto out_uevent_exit; 235 236 if (!_major) 237 _major = r; 238 239 return 0; 240 241 out_uevent_exit: 242 dm_uevent_exit(); 243 out_free_rq_bio_info_cache: 244 kmem_cache_destroy(_rq_bio_info_cache); 245 out_free_rq_tio_cache: 246 kmem_cache_destroy(_rq_tio_cache); 247 out_free_tio_cache: 248 kmem_cache_destroy(_tio_cache); 249 out_free_io_cache: 250 kmem_cache_destroy(_io_cache); 251 252 return r; 253 } 254 255 static void local_exit(void) 256 { 257 kmem_cache_destroy(_rq_bio_info_cache); 258 kmem_cache_destroy(_rq_tio_cache); 259 kmem_cache_destroy(_tio_cache); 260 kmem_cache_destroy(_io_cache); 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 }; 278 279 static void (*_exits[])(void) = { 280 local_exit, 281 dm_target_exit, 282 dm_linear_exit, 283 dm_stripe_exit, 284 dm_io_exit, 285 dm_kcopyd_exit, 286 dm_interface_exit, 287 }; 288 289 static int __init dm_init(void) 290 { 291 const int count = ARRAY_SIZE(_inits); 292 293 int r, i; 294 295 for (i = 0; i < count; i++) { 296 r = _inits[i](); 297 if (r) 298 goto bad; 299 } 300 301 return 0; 302 303 bad: 304 while (i--) 305 _exits[i](); 306 307 return r; 308 } 309 310 static void __exit dm_exit(void) 311 { 312 int i = ARRAY_SIZE(_exits); 313 314 while (i--) 315 _exits[i](); 316 } 317 318 /* 319 * Block device functions 320 */ 321 int dm_deleting_md(struct mapped_device *md) 322 { 323 return test_bit(DMF_DELETING, &md->flags); 324 } 325 326 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 327 { 328 struct mapped_device *md; 329 330 spin_lock(&_minor_lock); 331 332 md = bdev->bd_disk->private_data; 333 if (!md) 334 goto out; 335 336 if (test_bit(DMF_FREEING, &md->flags) || 337 dm_deleting_md(md)) { 338 md = NULL; 339 goto out; 340 } 341 342 dm_get(md); 343 atomic_inc(&md->open_count); 344 345 out: 346 spin_unlock(&_minor_lock); 347 348 return md ? 0 : -ENXIO; 349 } 350 351 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 352 { 353 struct mapped_device *md = disk->private_data; 354 355 spin_lock(&_minor_lock); 356 357 atomic_dec(&md->open_count); 358 dm_put(md); 359 360 spin_unlock(&_minor_lock); 361 362 return 0; 363 } 364 365 int dm_open_count(struct mapped_device *md) 366 { 367 return atomic_read(&md->open_count); 368 } 369 370 /* 371 * Guarantees nothing is using the device before it's deleted. 372 */ 373 int dm_lock_for_deletion(struct mapped_device *md) 374 { 375 int r = 0; 376 377 spin_lock(&_minor_lock); 378 379 if (dm_open_count(md)) 380 r = -EBUSY; 381 else 382 set_bit(DMF_DELETING, &md->flags); 383 384 spin_unlock(&_minor_lock); 385 386 return r; 387 } 388 389 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 390 { 391 struct mapped_device *md = bdev->bd_disk->private_data; 392 393 return dm_get_geometry(md, geo); 394 } 395 396 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 397 unsigned int cmd, unsigned long arg) 398 { 399 struct mapped_device *md = bdev->bd_disk->private_data; 400 struct dm_table *map = dm_get_live_table(md); 401 struct dm_target *tgt; 402 int r = -ENOTTY; 403 404 if (!map || !dm_table_get_size(map)) 405 goto out; 406 407 /* We only support devices that have a single target */ 408 if (dm_table_get_num_targets(map) != 1) 409 goto out; 410 411 tgt = dm_table_get_target(map, 0); 412 413 if (dm_suspended_md(md)) { 414 r = -EAGAIN; 415 goto out; 416 } 417 418 if (tgt->type->ioctl) 419 r = tgt->type->ioctl(tgt, cmd, arg); 420 421 out: 422 dm_table_put(map); 423 424 return r; 425 } 426 427 static struct dm_io *alloc_io(struct mapped_device *md) 428 { 429 return mempool_alloc(md->io_pool, GFP_NOIO); 430 } 431 432 static void free_io(struct mapped_device *md, struct dm_io *io) 433 { 434 mempool_free(io, md->io_pool); 435 } 436 437 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 438 { 439 mempool_free(tio, md->tio_pool); 440 } 441 442 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 443 gfp_t gfp_mask) 444 { 445 return mempool_alloc(md->tio_pool, gfp_mask); 446 } 447 448 static void free_rq_tio(struct dm_rq_target_io *tio) 449 { 450 mempool_free(tio, tio->md->tio_pool); 451 } 452 453 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 454 { 455 return mempool_alloc(md->io_pool, GFP_ATOMIC); 456 } 457 458 static void free_bio_info(struct dm_rq_clone_bio_info *info) 459 { 460 mempool_free(info, info->tio->md->io_pool); 461 } 462 463 static int md_in_flight(struct mapped_device *md) 464 { 465 return atomic_read(&md->pending[READ]) + 466 atomic_read(&md->pending[WRITE]); 467 } 468 469 static void start_io_acct(struct dm_io *io) 470 { 471 struct mapped_device *md = io->md; 472 int cpu; 473 int rw = bio_data_dir(io->bio); 474 475 io->start_time = jiffies; 476 477 cpu = part_stat_lock(); 478 part_round_stats(cpu, &dm_disk(md)->part0); 479 part_stat_unlock(); 480 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]); 481 } 482 483 static void end_io_acct(struct dm_io *io) 484 { 485 struct mapped_device *md = io->md; 486 struct bio *bio = io->bio; 487 unsigned long duration = jiffies - io->start_time; 488 int pending, cpu; 489 int rw = bio_data_dir(bio); 490 491 cpu = part_stat_lock(); 492 part_round_stats(cpu, &dm_disk(md)->part0); 493 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 494 part_stat_unlock(); 495 496 /* 497 * After this is decremented the bio must not be touched if it is 498 * a flush. 499 */ 500 dm_disk(md)->part0.in_flight[rw] = pending = 501 atomic_dec_return(&md->pending[rw]); 502 pending += atomic_read(&md->pending[rw^0x1]); 503 504 /* nudge anyone waiting on suspend queue */ 505 if (!pending) 506 wake_up(&md->wait); 507 } 508 509 /* 510 * Add the bio to the list of deferred io. 511 */ 512 static void queue_io(struct mapped_device *md, struct bio *bio) 513 { 514 unsigned long flags; 515 516 spin_lock_irqsave(&md->deferred_lock, flags); 517 bio_list_add(&md->deferred, bio); 518 spin_unlock_irqrestore(&md->deferred_lock, flags); 519 queue_work(md->wq, &md->work); 520 } 521 522 /* 523 * Everyone (including functions in this file), should use this 524 * function to access the md->map field, and make sure they call 525 * dm_table_put() when finished. 526 */ 527 struct dm_table *dm_get_live_table(struct mapped_device *md) 528 { 529 struct dm_table *t; 530 unsigned long flags; 531 532 read_lock_irqsave(&md->map_lock, flags); 533 t = md->map; 534 if (t) 535 dm_table_get(t); 536 read_unlock_irqrestore(&md->map_lock, flags); 537 538 return t; 539 } 540 541 /* 542 * Get the geometry associated with a dm device 543 */ 544 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 545 { 546 *geo = md->geometry; 547 548 return 0; 549 } 550 551 /* 552 * Set the geometry of a device. 553 */ 554 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 555 { 556 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 557 558 if (geo->start > sz) { 559 DMWARN("Start sector is beyond the geometry limits."); 560 return -EINVAL; 561 } 562 563 md->geometry = *geo; 564 565 return 0; 566 } 567 568 /*----------------------------------------------------------------- 569 * CRUD START: 570 * A more elegant soln is in the works that uses the queue 571 * merge fn, unfortunately there are a couple of changes to 572 * the block layer that I want to make for this. So in the 573 * interests of getting something for people to use I give 574 * you this clearly demarcated crap. 575 *---------------------------------------------------------------*/ 576 577 static int __noflush_suspending(struct mapped_device *md) 578 { 579 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 580 } 581 582 /* 583 * Decrements the number of outstanding ios that a bio has been 584 * cloned into, completing the original io if necc. 585 */ 586 static void dec_pending(struct dm_io *io, int error) 587 { 588 unsigned long flags; 589 int io_error; 590 struct bio *bio; 591 struct mapped_device *md = io->md; 592 593 /* Push-back supersedes any I/O errors */ 594 if (unlikely(error)) { 595 spin_lock_irqsave(&io->endio_lock, flags); 596 if (!(io->error > 0 && __noflush_suspending(md))) 597 io->error = error; 598 spin_unlock_irqrestore(&io->endio_lock, flags); 599 } 600 601 if (atomic_dec_and_test(&io->io_count)) { 602 if (io->error == DM_ENDIO_REQUEUE) { 603 /* 604 * Target requested pushing back the I/O. 605 */ 606 spin_lock_irqsave(&md->deferred_lock, flags); 607 if (__noflush_suspending(md)) 608 bio_list_add_head(&md->deferred, io->bio); 609 else 610 /* noflush suspend was interrupted. */ 611 io->error = -EIO; 612 spin_unlock_irqrestore(&md->deferred_lock, flags); 613 } 614 615 io_error = io->error; 616 bio = io->bio; 617 end_io_acct(io); 618 free_io(md, io); 619 620 if (io_error == DM_ENDIO_REQUEUE) 621 return; 622 623 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 624 /* 625 * Preflush done for flush with data, reissue 626 * without REQ_FLUSH. 627 */ 628 bio->bi_rw &= ~REQ_FLUSH; 629 queue_io(md, bio); 630 } else { 631 /* done with normal IO or empty flush */ 632 trace_block_bio_complete(md->queue, bio, io_error); 633 bio_endio(bio, io_error); 634 } 635 } 636 } 637 638 static void clone_endio(struct bio *bio, int error) 639 { 640 int r = 0; 641 struct dm_target_io *tio = bio->bi_private; 642 struct dm_io *io = tio->io; 643 struct mapped_device *md = tio->io->md; 644 dm_endio_fn endio = tio->ti->type->end_io; 645 646 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 647 error = -EIO; 648 649 if (endio) { 650 r = endio(tio->ti, bio, error, &tio->info); 651 if (r < 0 || r == DM_ENDIO_REQUEUE) 652 /* 653 * error and requeue request are handled 654 * in dec_pending(). 655 */ 656 error = r; 657 else if (r == DM_ENDIO_INCOMPLETE) 658 /* The target will handle the io */ 659 return; 660 else if (r) { 661 DMWARN("unimplemented target endio return value: %d", r); 662 BUG(); 663 } 664 } 665 666 /* 667 * Store md for cleanup instead of tio which is about to get freed. 668 */ 669 bio->bi_private = md->bs; 670 671 free_tio(md, tio); 672 bio_put(bio); 673 dec_pending(io, error); 674 } 675 676 /* 677 * Partial completion handling for request-based dm 678 */ 679 static void end_clone_bio(struct bio *clone, int error) 680 { 681 struct dm_rq_clone_bio_info *info = clone->bi_private; 682 struct dm_rq_target_io *tio = info->tio; 683 struct bio *bio = info->orig; 684 unsigned int nr_bytes = info->orig->bi_size; 685 686 bio_put(clone); 687 688 if (tio->error) 689 /* 690 * An error has already been detected on the request. 691 * Once error occurred, just let clone->end_io() handle 692 * the remainder. 693 */ 694 return; 695 else if (error) { 696 /* 697 * Don't notice the error to the upper layer yet. 698 * The error handling decision is made by the target driver, 699 * when the request is completed. 700 */ 701 tio->error = error; 702 return; 703 } 704 705 /* 706 * I/O for the bio successfully completed. 707 * Notice the data completion to the upper layer. 708 */ 709 710 /* 711 * bios are processed from the head of the list. 712 * So the completing bio should always be rq->bio. 713 * If it's not, something wrong is happening. 714 */ 715 if (tio->orig->bio != bio) 716 DMERR("bio completion is going in the middle of the request"); 717 718 /* 719 * Update the original request. 720 * Do not use blk_end_request() here, because it may complete 721 * the original request before the clone, and break the ordering. 722 */ 723 blk_update_request(tio->orig, 0, nr_bytes); 724 } 725 726 /* 727 * Don't touch any member of the md after calling this function because 728 * the md may be freed in dm_put() at the end of this function. 729 * Or do dm_get() before calling this function and dm_put() later. 730 */ 731 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 732 { 733 atomic_dec(&md->pending[rw]); 734 735 /* nudge anyone waiting on suspend queue */ 736 if (!md_in_flight(md)) 737 wake_up(&md->wait); 738 739 if (run_queue) 740 blk_run_queue(md->queue); 741 742 /* 743 * dm_put() must be at the end of this function. See the comment above 744 */ 745 dm_put(md); 746 } 747 748 static void free_rq_clone(struct request *clone) 749 { 750 struct dm_rq_target_io *tio = clone->end_io_data; 751 752 blk_rq_unprep_clone(clone); 753 free_rq_tio(tio); 754 } 755 756 /* 757 * Complete the clone and the original request. 758 * Must be called without queue lock. 759 */ 760 static void dm_end_request(struct request *clone, int error) 761 { 762 int rw = rq_data_dir(clone); 763 struct dm_rq_target_io *tio = clone->end_io_data; 764 struct mapped_device *md = tio->md; 765 struct request *rq = tio->orig; 766 767 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 768 rq->errors = clone->errors; 769 rq->resid_len = clone->resid_len; 770 771 if (rq->sense) 772 /* 773 * We are using the sense buffer of the original 774 * request. 775 * So setting the length of the sense data is enough. 776 */ 777 rq->sense_len = clone->sense_len; 778 } 779 780 free_rq_clone(clone); 781 blk_end_request_all(rq, error); 782 rq_completed(md, rw, true); 783 } 784 785 static void dm_unprep_request(struct request *rq) 786 { 787 struct request *clone = rq->special; 788 789 rq->special = NULL; 790 rq->cmd_flags &= ~REQ_DONTPREP; 791 792 free_rq_clone(clone); 793 } 794 795 /* 796 * Requeue the original request of a clone. 797 */ 798 void dm_requeue_unmapped_request(struct request *clone) 799 { 800 int rw = rq_data_dir(clone); 801 struct dm_rq_target_io *tio = clone->end_io_data; 802 struct mapped_device *md = tio->md; 803 struct request *rq = tio->orig; 804 struct request_queue *q = rq->q; 805 unsigned long flags; 806 807 dm_unprep_request(rq); 808 809 spin_lock_irqsave(q->queue_lock, flags); 810 if (elv_queue_empty(q)) 811 blk_plug_device(q); 812 blk_requeue_request(q, rq); 813 spin_unlock_irqrestore(q->queue_lock, flags); 814 815 rq_completed(md, rw, 0); 816 } 817 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 818 819 static void __stop_queue(struct request_queue *q) 820 { 821 blk_stop_queue(q); 822 } 823 824 static void stop_queue(struct request_queue *q) 825 { 826 unsigned long flags; 827 828 spin_lock_irqsave(q->queue_lock, flags); 829 __stop_queue(q); 830 spin_unlock_irqrestore(q->queue_lock, flags); 831 } 832 833 static void __start_queue(struct request_queue *q) 834 { 835 if (blk_queue_stopped(q)) 836 blk_start_queue(q); 837 } 838 839 static void start_queue(struct request_queue *q) 840 { 841 unsigned long flags; 842 843 spin_lock_irqsave(q->queue_lock, flags); 844 __start_queue(q); 845 spin_unlock_irqrestore(q->queue_lock, flags); 846 } 847 848 static void dm_done(struct request *clone, int error, bool mapped) 849 { 850 int r = error; 851 struct dm_rq_target_io *tio = clone->end_io_data; 852 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 853 854 if (mapped && rq_end_io) 855 r = rq_end_io(tio->ti, clone, error, &tio->info); 856 857 if (r <= 0) 858 /* The target wants to complete the I/O */ 859 dm_end_request(clone, r); 860 else if (r == DM_ENDIO_INCOMPLETE) 861 /* The target will handle the I/O */ 862 return; 863 else if (r == DM_ENDIO_REQUEUE) 864 /* The target wants to requeue the I/O */ 865 dm_requeue_unmapped_request(clone); 866 else { 867 DMWARN("unimplemented target endio return value: %d", r); 868 BUG(); 869 } 870 } 871 872 /* 873 * Request completion handler for request-based dm 874 */ 875 static void dm_softirq_done(struct request *rq) 876 { 877 bool mapped = true; 878 struct request *clone = rq->completion_data; 879 struct dm_rq_target_io *tio = clone->end_io_data; 880 881 if (rq->cmd_flags & REQ_FAILED) 882 mapped = false; 883 884 dm_done(clone, tio->error, mapped); 885 } 886 887 /* 888 * Complete the clone and the original request with the error status 889 * through softirq context. 890 */ 891 static void dm_complete_request(struct request *clone, int error) 892 { 893 struct dm_rq_target_io *tio = clone->end_io_data; 894 struct request *rq = tio->orig; 895 896 tio->error = error; 897 rq->completion_data = clone; 898 blk_complete_request(rq); 899 } 900 901 /* 902 * Complete the not-mapped clone and the original request with the error status 903 * through softirq context. 904 * Target's rq_end_io() function isn't called. 905 * This may be used when the target's map_rq() function fails. 906 */ 907 void dm_kill_unmapped_request(struct request *clone, int error) 908 { 909 struct dm_rq_target_io *tio = clone->end_io_data; 910 struct request *rq = tio->orig; 911 912 rq->cmd_flags |= REQ_FAILED; 913 dm_complete_request(clone, error); 914 } 915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 916 917 /* 918 * Called with the queue lock held 919 */ 920 static void end_clone_request(struct request *clone, int error) 921 { 922 /* 923 * For just cleaning up the information of the queue in which 924 * the clone was dispatched. 925 * The clone is *NOT* freed actually here because it is alloced from 926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 927 */ 928 __blk_put_request(clone->q, clone); 929 930 /* 931 * Actual request completion is done in a softirq context which doesn't 932 * hold the queue lock. Otherwise, deadlock could occur because: 933 * - another request may be submitted by the upper level driver 934 * of the stacking during the completion 935 * - the submission which requires queue lock may be done 936 * against this queue 937 */ 938 dm_complete_request(clone, error); 939 } 940 941 /* 942 * Return maximum size of I/O possible at the supplied sector up to the current 943 * target boundary. 944 */ 945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 946 { 947 sector_t target_offset = dm_target_offset(ti, sector); 948 949 return ti->len - target_offset; 950 } 951 952 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 953 { 954 sector_t len = max_io_len_target_boundary(sector, ti); 955 956 /* 957 * Does the target need to split even further ? 958 */ 959 if (ti->split_io) { 960 sector_t boundary; 961 sector_t offset = dm_target_offset(ti, sector); 962 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 963 - offset; 964 if (len > boundary) 965 len = boundary; 966 } 967 968 return len; 969 } 970 971 static void __map_bio(struct dm_target *ti, struct bio *clone, 972 struct dm_target_io *tio) 973 { 974 int r; 975 sector_t sector; 976 struct mapped_device *md; 977 978 clone->bi_end_io = clone_endio; 979 clone->bi_private = tio; 980 981 /* 982 * Map the clone. If r == 0 we don't need to do 983 * anything, the target has assumed ownership of 984 * this io. 985 */ 986 atomic_inc(&tio->io->io_count); 987 sector = clone->bi_sector; 988 r = ti->type->map(ti, clone, &tio->info); 989 if (r == DM_MAPIO_REMAPPED) { 990 /* the bio has been remapped so dispatch it */ 991 992 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 993 tio->io->bio->bi_bdev->bd_dev, sector); 994 995 generic_make_request(clone); 996 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 997 /* error the io and bail out, or requeue it if needed */ 998 md = tio->io->md; 999 dec_pending(tio->io, r); 1000 /* 1001 * Store bio_set for cleanup. 1002 */ 1003 clone->bi_private = md->bs; 1004 bio_put(clone); 1005 free_tio(md, tio); 1006 } else if (r) { 1007 DMWARN("unimplemented target map return value: %d", r); 1008 BUG(); 1009 } 1010 } 1011 1012 struct clone_info { 1013 struct mapped_device *md; 1014 struct dm_table *map; 1015 struct bio *bio; 1016 struct dm_io *io; 1017 sector_t sector; 1018 sector_t sector_count; 1019 unsigned short idx; 1020 }; 1021 1022 static void dm_bio_destructor(struct bio *bio) 1023 { 1024 struct bio_set *bs = bio->bi_private; 1025 1026 bio_free(bio, bs); 1027 } 1028 1029 /* 1030 * Creates a little bio that just does part of a bvec. 1031 */ 1032 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1033 unsigned short idx, unsigned int offset, 1034 unsigned int len, struct bio_set *bs) 1035 { 1036 struct bio *clone; 1037 struct bio_vec *bv = bio->bi_io_vec + idx; 1038 1039 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1040 clone->bi_destructor = dm_bio_destructor; 1041 *clone->bi_io_vec = *bv; 1042 1043 clone->bi_sector = sector; 1044 clone->bi_bdev = bio->bi_bdev; 1045 clone->bi_rw = bio->bi_rw; 1046 clone->bi_vcnt = 1; 1047 clone->bi_size = to_bytes(len); 1048 clone->bi_io_vec->bv_offset = offset; 1049 clone->bi_io_vec->bv_len = clone->bi_size; 1050 clone->bi_flags |= 1 << BIO_CLONED; 1051 1052 if (bio_integrity(bio)) { 1053 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1054 bio_integrity_trim(clone, 1055 bio_sector_offset(bio, idx, offset), len); 1056 } 1057 1058 return clone; 1059 } 1060 1061 /* 1062 * Creates a bio that consists of range of complete bvecs. 1063 */ 1064 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1065 unsigned short idx, unsigned short bv_count, 1066 unsigned int len, struct bio_set *bs) 1067 { 1068 struct bio *clone; 1069 1070 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1071 __bio_clone(clone, bio); 1072 clone->bi_destructor = dm_bio_destructor; 1073 clone->bi_sector = sector; 1074 clone->bi_idx = idx; 1075 clone->bi_vcnt = idx + bv_count; 1076 clone->bi_size = to_bytes(len); 1077 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1078 1079 if (bio_integrity(bio)) { 1080 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1081 1082 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1083 bio_integrity_trim(clone, 1084 bio_sector_offset(bio, idx, 0), len); 1085 } 1086 1087 return clone; 1088 } 1089 1090 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1091 struct dm_target *ti) 1092 { 1093 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1094 1095 tio->io = ci->io; 1096 tio->ti = ti; 1097 memset(&tio->info, 0, sizeof(tio->info)); 1098 1099 return tio; 1100 } 1101 1102 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1103 unsigned request_nr, sector_t len) 1104 { 1105 struct dm_target_io *tio = alloc_tio(ci, ti); 1106 struct bio *clone; 1107 1108 tio->info.target_request_nr = request_nr; 1109 1110 /* 1111 * Discard requests require the bio's inline iovecs be initialized. 1112 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1113 * and discard, so no need for concern about wasted bvec allocations. 1114 */ 1115 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1116 __bio_clone(clone, ci->bio); 1117 clone->bi_destructor = dm_bio_destructor; 1118 if (len) { 1119 clone->bi_sector = ci->sector; 1120 clone->bi_size = to_bytes(len); 1121 } 1122 1123 __map_bio(ti, clone, tio); 1124 } 1125 1126 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1127 unsigned num_requests, sector_t len) 1128 { 1129 unsigned request_nr; 1130 1131 for (request_nr = 0; request_nr < num_requests; request_nr++) 1132 __issue_target_request(ci, ti, request_nr, len); 1133 } 1134 1135 static int __clone_and_map_empty_flush(struct clone_info *ci) 1136 { 1137 unsigned target_nr = 0; 1138 struct dm_target *ti; 1139 1140 BUG_ON(bio_has_data(ci->bio)); 1141 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1142 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1143 1144 return 0; 1145 } 1146 1147 /* 1148 * Perform all io with a single clone. 1149 */ 1150 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1151 { 1152 struct bio *clone, *bio = ci->bio; 1153 struct dm_target_io *tio; 1154 1155 tio = alloc_tio(ci, ti); 1156 clone = clone_bio(bio, ci->sector, ci->idx, 1157 bio->bi_vcnt - ci->idx, ci->sector_count, 1158 ci->md->bs); 1159 __map_bio(ti, clone, tio); 1160 ci->sector_count = 0; 1161 } 1162 1163 static int __clone_and_map_discard(struct clone_info *ci) 1164 { 1165 struct dm_target *ti; 1166 sector_t len; 1167 1168 do { 1169 ti = dm_table_find_target(ci->map, ci->sector); 1170 if (!dm_target_is_valid(ti)) 1171 return -EIO; 1172 1173 /* 1174 * Even though the device advertised discard support, 1175 * reconfiguration might have changed that since the 1176 * check was performed. 1177 */ 1178 if (!ti->num_discard_requests) 1179 return -EOPNOTSUPP; 1180 1181 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1182 1183 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1184 1185 ci->sector += len; 1186 } while (ci->sector_count -= len); 1187 1188 return 0; 1189 } 1190 1191 static int __clone_and_map(struct clone_info *ci) 1192 { 1193 struct bio *clone, *bio = ci->bio; 1194 struct dm_target *ti; 1195 sector_t len = 0, max; 1196 struct dm_target_io *tio; 1197 1198 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1199 return __clone_and_map_discard(ci); 1200 1201 ti = dm_table_find_target(ci->map, ci->sector); 1202 if (!dm_target_is_valid(ti)) 1203 return -EIO; 1204 1205 max = max_io_len(ci->sector, ti); 1206 1207 if (ci->sector_count <= max) { 1208 /* 1209 * Optimise for the simple case where we can do all of 1210 * the remaining io with a single clone. 1211 */ 1212 __clone_and_map_simple(ci, ti); 1213 1214 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1215 /* 1216 * There are some bvecs that don't span targets. 1217 * Do as many of these as possible. 1218 */ 1219 int i; 1220 sector_t remaining = max; 1221 sector_t bv_len; 1222 1223 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1224 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1225 1226 if (bv_len > remaining) 1227 break; 1228 1229 remaining -= bv_len; 1230 len += bv_len; 1231 } 1232 1233 tio = alloc_tio(ci, ti); 1234 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1235 ci->md->bs); 1236 __map_bio(ti, clone, tio); 1237 1238 ci->sector += len; 1239 ci->sector_count -= len; 1240 ci->idx = i; 1241 1242 } else { 1243 /* 1244 * Handle a bvec that must be split between two or more targets. 1245 */ 1246 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1247 sector_t remaining = to_sector(bv->bv_len); 1248 unsigned int offset = 0; 1249 1250 do { 1251 if (offset) { 1252 ti = dm_table_find_target(ci->map, ci->sector); 1253 if (!dm_target_is_valid(ti)) 1254 return -EIO; 1255 1256 max = max_io_len(ci->sector, ti); 1257 } 1258 1259 len = min(remaining, max); 1260 1261 tio = alloc_tio(ci, ti); 1262 clone = split_bvec(bio, ci->sector, ci->idx, 1263 bv->bv_offset + offset, len, 1264 ci->md->bs); 1265 1266 __map_bio(ti, clone, tio); 1267 1268 ci->sector += len; 1269 ci->sector_count -= len; 1270 offset += to_bytes(len); 1271 } while (remaining -= len); 1272 1273 ci->idx++; 1274 } 1275 1276 return 0; 1277 } 1278 1279 /* 1280 * Split the bio into several clones and submit it to targets. 1281 */ 1282 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1283 { 1284 struct clone_info ci; 1285 int error = 0; 1286 1287 ci.map = dm_get_live_table(md); 1288 if (unlikely(!ci.map)) { 1289 bio_io_error(bio); 1290 return; 1291 } 1292 1293 ci.md = md; 1294 ci.io = alloc_io(md); 1295 ci.io->error = 0; 1296 atomic_set(&ci.io->io_count, 1); 1297 ci.io->bio = bio; 1298 ci.io->md = md; 1299 spin_lock_init(&ci.io->endio_lock); 1300 ci.sector = bio->bi_sector; 1301 ci.idx = bio->bi_idx; 1302 1303 start_io_acct(ci.io); 1304 if (bio->bi_rw & REQ_FLUSH) { 1305 ci.bio = &ci.md->flush_bio; 1306 ci.sector_count = 0; 1307 error = __clone_and_map_empty_flush(&ci); 1308 /* dec_pending submits any data associated with flush */ 1309 } else { 1310 ci.bio = bio; 1311 ci.sector_count = bio_sectors(bio); 1312 while (ci.sector_count && !error) 1313 error = __clone_and_map(&ci); 1314 } 1315 1316 /* drop the extra reference count */ 1317 dec_pending(ci.io, error); 1318 dm_table_put(ci.map); 1319 } 1320 /*----------------------------------------------------------------- 1321 * CRUD END 1322 *---------------------------------------------------------------*/ 1323 1324 static int dm_merge_bvec(struct request_queue *q, 1325 struct bvec_merge_data *bvm, 1326 struct bio_vec *biovec) 1327 { 1328 struct mapped_device *md = q->queuedata; 1329 struct dm_table *map = dm_get_live_table(md); 1330 struct dm_target *ti; 1331 sector_t max_sectors; 1332 int max_size = 0; 1333 1334 if (unlikely(!map)) 1335 goto out; 1336 1337 ti = dm_table_find_target(map, bvm->bi_sector); 1338 if (!dm_target_is_valid(ti)) 1339 goto out_table; 1340 1341 /* 1342 * Find maximum amount of I/O that won't need splitting 1343 */ 1344 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1345 (sector_t) BIO_MAX_SECTORS); 1346 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1347 if (max_size < 0) 1348 max_size = 0; 1349 1350 /* 1351 * merge_bvec_fn() returns number of bytes 1352 * it can accept at this offset 1353 * max is precomputed maximal io size 1354 */ 1355 if (max_size && ti->type->merge) 1356 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1357 /* 1358 * If the target doesn't support merge method and some of the devices 1359 * provided their merge_bvec method (we know this by looking at 1360 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1361 * entries. So always set max_size to 0, and the code below allows 1362 * just one page. 1363 */ 1364 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1365 1366 max_size = 0; 1367 1368 out_table: 1369 dm_table_put(map); 1370 1371 out: 1372 /* 1373 * Always allow an entire first page 1374 */ 1375 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1376 max_size = biovec->bv_len; 1377 1378 return max_size; 1379 } 1380 1381 /* 1382 * The request function that just remaps the bio built up by 1383 * dm_merge_bvec. 1384 */ 1385 static int _dm_request(struct request_queue *q, struct bio *bio) 1386 { 1387 int rw = bio_data_dir(bio); 1388 struct mapped_device *md = q->queuedata; 1389 int cpu; 1390 1391 down_read(&md->io_lock); 1392 1393 cpu = part_stat_lock(); 1394 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1395 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1396 part_stat_unlock(); 1397 1398 /* if we're suspended, we have to queue this io for later */ 1399 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1400 up_read(&md->io_lock); 1401 1402 if (bio_rw(bio) != READA) 1403 queue_io(md, bio); 1404 else 1405 bio_io_error(bio); 1406 return 0; 1407 } 1408 1409 __split_and_process_bio(md, bio); 1410 up_read(&md->io_lock); 1411 return 0; 1412 } 1413 1414 static int dm_make_request(struct request_queue *q, struct bio *bio) 1415 { 1416 struct mapped_device *md = q->queuedata; 1417 1418 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1419 } 1420 1421 static int dm_request_based(struct mapped_device *md) 1422 { 1423 return blk_queue_stackable(md->queue); 1424 } 1425 1426 static int dm_request(struct request_queue *q, struct bio *bio) 1427 { 1428 struct mapped_device *md = q->queuedata; 1429 1430 if (dm_request_based(md)) 1431 return dm_make_request(q, bio); 1432 1433 return _dm_request(q, bio); 1434 } 1435 1436 void dm_dispatch_request(struct request *rq) 1437 { 1438 int r; 1439 1440 if (blk_queue_io_stat(rq->q)) 1441 rq->cmd_flags |= REQ_IO_STAT; 1442 1443 rq->start_time = jiffies; 1444 r = blk_insert_cloned_request(rq->q, rq); 1445 if (r) 1446 dm_complete_request(rq, r); 1447 } 1448 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1449 1450 static void dm_rq_bio_destructor(struct bio *bio) 1451 { 1452 struct dm_rq_clone_bio_info *info = bio->bi_private; 1453 struct mapped_device *md = info->tio->md; 1454 1455 free_bio_info(info); 1456 bio_free(bio, md->bs); 1457 } 1458 1459 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1460 void *data) 1461 { 1462 struct dm_rq_target_io *tio = data; 1463 struct mapped_device *md = tio->md; 1464 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1465 1466 if (!info) 1467 return -ENOMEM; 1468 1469 info->orig = bio_orig; 1470 info->tio = tio; 1471 bio->bi_end_io = end_clone_bio; 1472 bio->bi_private = info; 1473 bio->bi_destructor = dm_rq_bio_destructor; 1474 1475 return 0; 1476 } 1477 1478 static int setup_clone(struct request *clone, struct request *rq, 1479 struct dm_rq_target_io *tio) 1480 { 1481 int r; 1482 1483 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1484 dm_rq_bio_constructor, tio); 1485 if (r) 1486 return r; 1487 1488 clone->cmd = rq->cmd; 1489 clone->cmd_len = rq->cmd_len; 1490 clone->sense = rq->sense; 1491 clone->buffer = rq->buffer; 1492 clone->end_io = end_clone_request; 1493 clone->end_io_data = tio; 1494 1495 return 0; 1496 } 1497 1498 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1499 gfp_t gfp_mask) 1500 { 1501 struct request *clone; 1502 struct dm_rq_target_io *tio; 1503 1504 tio = alloc_rq_tio(md, gfp_mask); 1505 if (!tio) 1506 return NULL; 1507 1508 tio->md = md; 1509 tio->ti = NULL; 1510 tio->orig = rq; 1511 tio->error = 0; 1512 memset(&tio->info, 0, sizeof(tio->info)); 1513 1514 clone = &tio->clone; 1515 if (setup_clone(clone, rq, tio)) { 1516 /* -ENOMEM */ 1517 free_rq_tio(tio); 1518 return NULL; 1519 } 1520 1521 return clone; 1522 } 1523 1524 /* 1525 * Called with the queue lock held. 1526 */ 1527 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1528 { 1529 struct mapped_device *md = q->queuedata; 1530 struct request *clone; 1531 1532 if (unlikely(rq->special)) { 1533 DMWARN("Already has something in rq->special."); 1534 return BLKPREP_KILL; 1535 } 1536 1537 clone = clone_rq(rq, md, GFP_ATOMIC); 1538 if (!clone) 1539 return BLKPREP_DEFER; 1540 1541 rq->special = clone; 1542 rq->cmd_flags |= REQ_DONTPREP; 1543 1544 return BLKPREP_OK; 1545 } 1546 1547 /* 1548 * Returns: 1549 * 0 : the request has been processed (not requeued) 1550 * !0 : the request has been requeued 1551 */ 1552 static int map_request(struct dm_target *ti, struct request *clone, 1553 struct mapped_device *md) 1554 { 1555 int r, requeued = 0; 1556 struct dm_rq_target_io *tio = clone->end_io_data; 1557 1558 /* 1559 * Hold the md reference here for the in-flight I/O. 1560 * We can't rely on the reference count by device opener, 1561 * because the device may be closed during the request completion 1562 * when all bios are completed. 1563 * See the comment in rq_completed() too. 1564 */ 1565 dm_get(md); 1566 1567 tio->ti = ti; 1568 r = ti->type->map_rq(ti, clone, &tio->info); 1569 switch (r) { 1570 case DM_MAPIO_SUBMITTED: 1571 /* The target has taken the I/O to submit by itself later */ 1572 break; 1573 case DM_MAPIO_REMAPPED: 1574 /* The target has remapped the I/O so dispatch it */ 1575 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1576 blk_rq_pos(tio->orig)); 1577 dm_dispatch_request(clone); 1578 break; 1579 case DM_MAPIO_REQUEUE: 1580 /* The target wants to requeue the I/O */ 1581 dm_requeue_unmapped_request(clone); 1582 requeued = 1; 1583 break; 1584 default: 1585 if (r > 0) { 1586 DMWARN("unimplemented target map return value: %d", r); 1587 BUG(); 1588 } 1589 1590 /* The target wants to complete the I/O */ 1591 dm_kill_unmapped_request(clone, r); 1592 break; 1593 } 1594 1595 return requeued; 1596 } 1597 1598 /* 1599 * q->request_fn for request-based dm. 1600 * Called with the queue lock held. 1601 */ 1602 static void dm_request_fn(struct request_queue *q) 1603 { 1604 struct mapped_device *md = q->queuedata; 1605 struct dm_table *map = dm_get_live_table(md); 1606 struct dm_target *ti; 1607 struct request *rq, *clone; 1608 sector_t pos; 1609 1610 /* 1611 * For suspend, check blk_queue_stopped() and increment 1612 * ->pending within a single queue_lock not to increment the 1613 * number of in-flight I/Os after the queue is stopped in 1614 * dm_suspend(). 1615 */ 1616 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) { 1617 rq = blk_peek_request(q); 1618 if (!rq) 1619 goto plug_and_out; 1620 1621 /* always use block 0 to find the target for flushes for now */ 1622 pos = 0; 1623 if (!(rq->cmd_flags & REQ_FLUSH)) 1624 pos = blk_rq_pos(rq); 1625 1626 ti = dm_table_find_target(map, pos); 1627 BUG_ON(!dm_target_is_valid(ti)); 1628 1629 if (ti->type->busy && ti->type->busy(ti)) 1630 goto plug_and_out; 1631 1632 blk_start_request(rq); 1633 clone = rq->special; 1634 atomic_inc(&md->pending[rq_data_dir(clone)]); 1635 1636 spin_unlock(q->queue_lock); 1637 if (map_request(ti, clone, md)) 1638 goto requeued; 1639 1640 spin_lock_irq(q->queue_lock); 1641 } 1642 1643 goto out; 1644 1645 requeued: 1646 spin_lock_irq(q->queue_lock); 1647 1648 plug_and_out: 1649 if (!elv_queue_empty(q)) 1650 /* Some requests still remain, retry later */ 1651 blk_plug_device(q); 1652 1653 out: 1654 dm_table_put(map); 1655 1656 return; 1657 } 1658 1659 int dm_underlying_device_busy(struct request_queue *q) 1660 { 1661 return blk_lld_busy(q); 1662 } 1663 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1664 1665 static int dm_lld_busy(struct request_queue *q) 1666 { 1667 int r; 1668 struct mapped_device *md = q->queuedata; 1669 struct dm_table *map = dm_get_live_table(md); 1670 1671 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1672 r = 1; 1673 else 1674 r = dm_table_any_busy_target(map); 1675 1676 dm_table_put(map); 1677 1678 return r; 1679 } 1680 1681 static void dm_unplug_all(struct request_queue *q) 1682 { 1683 struct mapped_device *md = q->queuedata; 1684 struct dm_table *map = dm_get_live_table(md); 1685 1686 if (map) { 1687 if (dm_request_based(md)) 1688 generic_unplug_device(q); 1689 1690 dm_table_unplug_all(map); 1691 dm_table_put(map); 1692 } 1693 } 1694 1695 static int dm_any_congested(void *congested_data, int bdi_bits) 1696 { 1697 int r = bdi_bits; 1698 struct mapped_device *md = congested_data; 1699 struct dm_table *map; 1700 1701 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1702 map = dm_get_live_table(md); 1703 if (map) { 1704 /* 1705 * Request-based dm cares about only own queue for 1706 * the query about congestion status of request_queue 1707 */ 1708 if (dm_request_based(md)) 1709 r = md->queue->backing_dev_info.state & 1710 bdi_bits; 1711 else 1712 r = dm_table_any_congested(map, bdi_bits); 1713 1714 dm_table_put(map); 1715 } 1716 } 1717 1718 return r; 1719 } 1720 1721 /*----------------------------------------------------------------- 1722 * An IDR is used to keep track of allocated minor numbers. 1723 *---------------------------------------------------------------*/ 1724 static DEFINE_IDR(_minor_idr); 1725 1726 static void free_minor(int minor) 1727 { 1728 spin_lock(&_minor_lock); 1729 idr_remove(&_minor_idr, minor); 1730 spin_unlock(&_minor_lock); 1731 } 1732 1733 /* 1734 * See if the device with a specific minor # is free. 1735 */ 1736 static int specific_minor(int minor) 1737 { 1738 int r, m; 1739 1740 if (minor >= (1 << MINORBITS)) 1741 return -EINVAL; 1742 1743 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1744 if (!r) 1745 return -ENOMEM; 1746 1747 spin_lock(&_minor_lock); 1748 1749 if (idr_find(&_minor_idr, minor)) { 1750 r = -EBUSY; 1751 goto out; 1752 } 1753 1754 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1755 if (r) 1756 goto out; 1757 1758 if (m != minor) { 1759 idr_remove(&_minor_idr, m); 1760 r = -EBUSY; 1761 goto out; 1762 } 1763 1764 out: 1765 spin_unlock(&_minor_lock); 1766 return r; 1767 } 1768 1769 static int next_free_minor(int *minor) 1770 { 1771 int r, m; 1772 1773 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1774 if (!r) 1775 return -ENOMEM; 1776 1777 spin_lock(&_minor_lock); 1778 1779 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1780 if (r) 1781 goto out; 1782 1783 if (m >= (1 << MINORBITS)) { 1784 idr_remove(&_minor_idr, m); 1785 r = -ENOSPC; 1786 goto out; 1787 } 1788 1789 *minor = m; 1790 1791 out: 1792 spin_unlock(&_minor_lock); 1793 return r; 1794 } 1795 1796 static const struct block_device_operations dm_blk_dops; 1797 1798 static void dm_wq_work(struct work_struct *work); 1799 1800 static void dm_init_md_queue(struct mapped_device *md) 1801 { 1802 /* 1803 * Request-based dm devices cannot be stacked on top of bio-based dm 1804 * devices. The type of this dm device has not been decided yet. 1805 * The type is decided at the first table loading time. 1806 * To prevent problematic device stacking, clear the queue flag 1807 * for request stacking support until then. 1808 * 1809 * This queue is new, so no concurrency on the queue_flags. 1810 */ 1811 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1812 1813 md->queue->queuedata = md; 1814 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1815 md->queue->backing_dev_info.congested_data = md; 1816 blk_queue_make_request(md->queue, dm_request); 1817 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1818 md->queue->unplug_fn = dm_unplug_all; 1819 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1820 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA); 1821 } 1822 1823 /* 1824 * Allocate and initialise a blank device with a given minor. 1825 */ 1826 static struct mapped_device *alloc_dev(int minor) 1827 { 1828 int r; 1829 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1830 void *old_md; 1831 1832 if (!md) { 1833 DMWARN("unable to allocate device, out of memory."); 1834 return NULL; 1835 } 1836 1837 if (!try_module_get(THIS_MODULE)) 1838 goto bad_module_get; 1839 1840 /* get a minor number for the dev */ 1841 if (minor == DM_ANY_MINOR) 1842 r = next_free_minor(&minor); 1843 else 1844 r = specific_minor(minor); 1845 if (r < 0) 1846 goto bad_minor; 1847 1848 md->type = DM_TYPE_NONE; 1849 init_rwsem(&md->io_lock); 1850 mutex_init(&md->suspend_lock); 1851 mutex_init(&md->type_lock); 1852 spin_lock_init(&md->deferred_lock); 1853 rwlock_init(&md->map_lock); 1854 atomic_set(&md->holders, 1); 1855 atomic_set(&md->open_count, 0); 1856 atomic_set(&md->event_nr, 0); 1857 atomic_set(&md->uevent_seq, 0); 1858 INIT_LIST_HEAD(&md->uevent_list); 1859 spin_lock_init(&md->uevent_lock); 1860 1861 md->queue = blk_alloc_queue(GFP_KERNEL); 1862 if (!md->queue) 1863 goto bad_queue; 1864 1865 dm_init_md_queue(md); 1866 1867 md->disk = alloc_disk(1); 1868 if (!md->disk) 1869 goto bad_disk; 1870 1871 atomic_set(&md->pending[0], 0); 1872 atomic_set(&md->pending[1], 0); 1873 init_waitqueue_head(&md->wait); 1874 INIT_WORK(&md->work, dm_wq_work); 1875 init_waitqueue_head(&md->eventq); 1876 1877 md->disk->major = _major; 1878 md->disk->first_minor = minor; 1879 md->disk->fops = &dm_blk_dops; 1880 md->disk->queue = md->queue; 1881 md->disk->private_data = md; 1882 sprintf(md->disk->disk_name, "dm-%d", minor); 1883 add_disk(md->disk); 1884 format_dev_t(md->name, MKDEV(_major, minor)); 1885 1886 md->wq = alloc_workqueue("kdmflush", 1887 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1888 if (!md->wq) 1889 goto bad_thread; 1890 1891 md->bdev = bdget_disk(md->disk, 0); 1892 if (!md->bdev) 1893 goto bad_bdev; 1894 1895 bio_init(&md->flush_bio); 1896 md->flush_bio.bi_bdev = md->bdev; 1897 md->flush_bio.bi_rw = WRITE_FLUSH; 1898 1899 /* Populate the mapping, nobody knows we exist yet */ 1900 spin_lock(&_minor_lock); 1901 old_md = idr_replace(&_minor_idr, md, minor); 1902 spin_unlock(&_minor_lock); 1903 1904 BUG_ON(old_md != MINOR_ALLOCED); 1905 1906 return md; 1907 1908 bad_bdev: 1909 destroy_workqueue(md->wq); 1910 bad_thread: 1911 del_gendisk(md->disk); 1912 put_disk(md->disk); 1913 bad_disk: 1914 blk_cleanup_queue(md->queue); 1915 bad_queue: 1916 free_minor(minor); 1917 bad_minor: 1918 module_put(THIS_MODULE); 1919 bad_module_get: 1920 kfree(md); 1921 return NULL; 1922 } 1923 1924 static void unlock_fs(struct mapped_device *md); 1925 1926 static void free_dev(struct mapped_device *md) 1927 { 1928 int minor = MINOR(disk_devt(md->disk)); 1929 1930 unlock_fs(md); 1931 bdput(md->bdev); 1932 destroy_workqueue(md->wq); 1933 if (md->tio_pool) 1934 mempool_destroy(md->tio_pool); 1935 if (md->io_pool) 1936 mempool_destroy(md->io_pool); 1937 if (md->bs) 1938 bioset_free(md->bs); 1939 blk_integrity_unregister(md->disk); 1940 del_gendisk(md->disk); 1941 free_minor(minor); 1942 1943 spin_lock(&_minor_lock); 1944 md->disk->private_data = NULL; 1945 spin_unlock(&_minor_lock); 1946 1947 put_disk(md->disk); 1948 blk_cleanup_queue(md->queue); 1949 module_put(THIS_MODULE); 1950 kfree(md); 1951 } 1952 1953 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1954 { 1955 struct dm_md_mempools *p; 1956 1957 if (md->io_pool && md->tio_pool && md->bs) 1958 /* the md already has necessary mempools */ 1959 goto out; 1960 1961 p = dm_table_get_md_mempools(t); 1962 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1963 1964 md->io_pool = p->io_pool; 1965 p->io_pool = NULL; 1966 md->tio_pool = p->tio_pool; 1967 p->tio_pool = NULL; 1968 md->bs = p->bs; 1969 p->bs = NULL; 1970 1971 out: 1972 /* mempool bind completed, now no need any mempools in the table */ 1973 dm_table_free_md_mempools(t); 1974 } 1975 1976 /* 1977 * Bind a table to the device. 1978 */ 1979 static void event_callback(void *context) 1980 { 1981 unsigned long flags; 1982 LIST_HEAD(uevents); 1983 struct mapped_device *md = (struct mapped_device *) context; 1984 1985 spin_lock_irqsave(&md->uevent_lock, flags); 1986 list_splice_init(&md->uevent_list, &uevents); 1987 spin_unlock_irqrestore(&md->uevent_lock, flags); 1988 1989 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1990 1991 atomic_inc(&md->event_nr); 1992 wake_up(&md->eventq); 1993 } 1994 1995 /* 1996 * Protected by md->suspend_lock obtained by dm_swap_table(). 1997 */ 1998 static void __set_size(struct mapped_device *md, sector_t size) 1999 { 2000 set_capacity(md->disk, size); 2001 2002 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2003 } 2004 2005 /* 2006 * Returns old map, which caller must destroy. 2007 */ 2008 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2009 struct queue_limits *limits) 2010 { 2011 struct dm_table *old_map; 2012 struct request_queue *q = md->queue; 2013 sector_t size; 2014 unsigned long flags; 2015 2016 size = dm_table_get_size(t); 2017 2018 /* 2019 * Wipe any geometry if the size of the table changed. 2020 */ 2021 if (size != get_capacity(md->disk)) 2022 memset(&md->geometry, 0, sizeof(md->geometry)); 2023 2024 __set_size(md, size); 2025 2026 dm_table_event_callback(t, event_callback, md); 2027 2028 /* 2029 * The queue hasn't been stopped yet, if the old table type wasn't 2030 * for request-based during suspension. So stop it to prevent 2031 * I/O mapping before resume. 2032 * This must be done before setting the queue restrictions, 2033 * because request-based dm may be run just after the setting. 2034 */ 2035 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2036 stop_queue(q); 2037 2038 __bind_mempools(md, t); 2039 2040 write_lock_irqsave(&md->map_lock, flags); 2041 old_map = md->map; 2042 md->map = t; 2043 dm_table_set_restrictions(t, q, limits); 2044 write_unlock_irqrestore(&md->map_lock, flags); 2045 2046 return old_map; 2047 } 2048 2049 /* 2050 * Returns unbound table for the caller to free. 2051 */ 2052 static struct dm_table *__unbind(struct mapped_device *md) 2053 { 2054 struct dm_table *map = md->map; 2055 unsigned long flags; 2056 2057 if (!map) 2058 return NULL; 2059 2060 dm_table_event_callback(map, NULL, NULL); 2061 write_lock_irqsave(&md->map_lock, flags); 2062 md->map = NULL; 2063 write_unlock_irqrestore(&md->map_lock, flags); 2064 2065 return map; 2066 } 2067 2068 /* 2069 * Constructor for a new device. 2070 */ 2071 int dm_create(int minor, struct mapped_device **result) 2072 { 2073 struct mapped_device *md; 2074 2075 md = alloc_dev(minor); 2076 if (!md) 2077 return -ENXIO; 2078 2079 dm_sysfs_init(md); 2080 2081 *result = md; 2082 return 0; 2083 } 2084 2085 /* 2086 * Functions to manage md->type. 2087 * All are required to hold md->type_lock. 2088 */ 2089 void dm_lock_md_type(struct mapped_device *md) 2090 { 2091 mutex_lock(&md->type_lock); 2092 } 2093 2094 void dm_unlock_md_type(struct mapped_device *md) 2095 { 2096 mutex_unlock(&md->type_lock); 2097 } 2098 2099 void dm_set_md_type(struct mapped_device *md, unsigned type) 2100 { 2101 md->type = type; 2102 } 2103 2104 unsigned dm_get_md_type(struct mapped_device *md) 2105 { 2106 return md->type; 2107 } 2108 2109 /* 2110 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2111 */ 2112 static int dm_init_request_based_queue(struct mapped_device *md) 2113 { 2114 struct request_queue *q = NULL; 2115 2116 if (md->queue->elevator) 2117 return 1; 2118 2119 /* Fully initialize the queue */ 2120 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2121 if (!q) 2122 return 0; 2123 2124 md->queue = q; 2125 md->saved_make_request_fn = md->queue->make_request_fn; 2126 dm_init_md_queue(md); 2127 blk_queue_softirq_done(md->queue, dm_softirq_done); 2128 blk_queue_prep_rq(md->queue, dm_prep_fn); 2129 blk_queue_lld_busy(md->queue, dm_lld_busy); 2130 2131 elv_register_queue(md->queue); 2132 2133 return 1; 2134 } 2135 2136 /* 2137 * Setup the DM device's queue based on md's type 2138 */ 2139 int dm_setup_md_queue(struct mapped_device *md) 2140 { 2141 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2142 !dm_init_request_based_queue(md)) { 2143 DMWARN("Cannot initialize queue for request-based mapped device"); 2144 return -EINVAL; 2145 } 2146 2147 return 0; 2148 } 2149 2150 static struct mapped_device *dm_find_md(dev_t dev) 2151 { 2152 struct mapped_device *md; 2153 unsigned minor = MINOR(dev); 2154 2155 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2156 return NULL; 2157 2158 spin_lock(&_minor_lock); 2159 2160 md = idr_find(&_minor_idr, minor); 2161 if (md && (md == MINOR_ALLOCED || 2162 (MINOR(disk_devt(dm_disk(md))) != minor) || 2163 dm_deleting_md(md) || 2164 test_bit(DMF_FREEING, &md->flags))) { 2165 md = NULL; 2166 goto out; 2167 } 2168 2169 out: 2170 spin_unlock(&_minor_lock); 2171 2172 return md; 2173 } 2174 2175 struct mapped_device *dm_get_md(dev_t dev) 2176 { 2177 struct mapped_device *md = dm_find_md(dev); 2178 2179 if (md) 2180 dm_get(md); 2181 2182 return md; 2183 } 2184 2185 void *dm_get_mdptr(struct mapped_device *md) 2186 { 2187 return md->interface_ptr; 2188 } 2189 2190 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2191 { 2192 md->interface_ptr = ptr; 2193 } 2194 2195 void dm_get(struct mapped_device *md) 2196 { 2197 atomic_inc(&md->holders); 2198 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2199 } 2200 2201 const char *dm_device_name(struct mapped_device *md) 2202 { 2203 return md->name; 2204 } 2205 EXPORT_SYMBOL_GPL(dm_device_name); 2206 2207 static void __dm_destroy(struct mapped_device *md, bool wait) 2208 { 2209 struct dm_table *map; 2210 2211 might_sleep(); 2212 2213 spin_lock(&_minor_lock); 2214 map = dm_get_live_table(md); 2215 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2216 set_bit(DMF_FREEING, &md->flags); 2217 spin_unlock(&_minor_lock); 2218 2219 if (!dm_suspended_md(md)) { 2220 dm_table_presuspend_targets(map); 2221 dm_table_postsuspend_targets(map); 2222 } 2223 2224 /* 2225 * Rare, but there may be I/O requests still going to complete, 2226 * for example. Wait for all references to disappear. 2227 * No one should increment the reference count of the mapped_device, 2228 * after the mapped_device state becomes DMF_FREEING. 2229 */ 2230 if (wait) 2231 while (atomic_read(&md->holders)) 2232 msleep(1); 2233 else if (atomic_read(&md->holders)) 2234 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2235 dm_device_name(md), atomic_read(&md->holders)); 2236 2237 dm_sysfs_exit(md); 2238 dm_table_put(map); 2239 dm_table_destroy(__unbind(md)); 2240 free_dev(md); 2241 } 2242 2243 void dm_destroy(struct mapped_device *md) 2244 { 2245 __dm_destroy(md, true); 2246 } 2247 2248 void dm_destroy_immediate(struct mapped_device *md) 2249 { 2250 __dm_destroy(md, false); 2251 } 2252 2253 void dm_put(struct mapped_device *md) 2254 { 2255 atomic_dec(&md->holders); 2256 } 2257 EXPORT_SYMBOL_GPL(dm_put); 2258 2259 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2260 { 2261 int r = 0; 2262 DECLARE_WAITQUEUE(wait, current); 2263 2264 dm_unplug_all(md->queue); 2265 2266 add_wait_queue(&md->wait, &wait); 2267 2268 while (1) { 2269 set_current_state(interruptible); 2270 2271 smp_mb(); 2272 if (!md_in_flight(md)) 2273 break; 2274 2275 if (interruptible == TASK_INTERRUPTIBLE && 2276 signal_pending(current)) { 2277 r = -EINTR; 2278 break; 2279 } 2280 2281 io_schedule(); 2282 } 2283 set_current_state(TASK_RUNNING); 2284 2285 remove_wait_queue(&md->wait, &wait); 2286 2287 return r; 2288 } 2289 2290 /* 2291 * Process the deferred bios 2292 */ 2293 static void dm_wq_work(struct work_struct *work) 2294 { 2295 struct mapped_device *md = container_of(work, struct mapped_device, 2296 work); 2297 struct bio *c; 2298 2299 down_read(&md->io_lock); 2300 2301 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2302 spin_lock_irq(&md->deferred_lock); 2303 c = bio_list_pop(&md->deferred); 2304 spin_unlock_irq(&md->deferred_lock); 2305 2306 if (!c) 2307 break; 2308 2309 up_read(&md->io_lock); 2310 2311 if (dm_request_based(md)) 2312 generic_make_request(c); 2313 else 2314 __split_and_process_bio(md, c); 2315 2316 down_read(&md->io_lock); 2317 } 2318 2319 up_read(&md->io_lock); 2320 } 2321 2322 static void dm_queue_flush(struct mapped_device *md) 2323 { 2324 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2325 smp_mb__after_clear_bit(); 2326 queue_work(md->wq, &md->work); 2327 } 2328 2329 /* 2330 * Swap in a new table, returning the old one for the caller to destroy. 2331 */ 2332 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2333 { 2334 struct dm_table *map = ERR_PTR(-EINVAL); 2335 struct queue_limits limits; 2336 int r; 2337 2338 mutex_lock(&md->suspend_lock); 2339 2340 /* device must be suspended */ 2341 if (!dm_suspended_md(md)) 2342 goto out; 2343 2344 r = dm_calculate_queue_limits(table, &limits); 2345 if (r) { 2346 map = ERR_PTR(r); 2347 goto out; 2348 } 2349 2350 map = __bind(md, table, &limits); 2351 2352 out: 2353 mutex_unlock(&md->suspend_lock); 2354 return map; 2355 } 2356 2357 /* 2358 * Functions to lock and unlock any filesystem running on the 2359 * device. 2360 */ 2361 static int lock_fs(struct mapped_device *md) 2362 { 2363 int r; 2364 2365 WARN_ON(md->frozen_sb); 2366 2367 md->frozen_sb = freeze_bdev(md->bdev); 2368 if (IS_ERR(md->frozen_sb)) { 2369 r = PTR_ERR(md->frozen_sb); 2370 md->frozen_sb = NULL; 2371 return r; 2372 } 2373 2374 set_bit(DMF_FROZEN, &md->flags); 2375 2376 return 0; 2377 } 2378 2379 static void unlock_fs(struct mapped_device *md) 2380 { 2381 if (!test_bit(DMF_FROZEN, &md->flags)) 2382 return; 2383 2384 thaw_bdev(md->bdev, md->frozen_sb); 2385 md->frozen_sb = NULL; 2386 clear_bit(DMF_FROZEN, &md->flags); 2387 } 2388 2389 /* 2390 * We need to be able to change a mapping table under a mounted 2391 * filesystem. For example we might want to move some data in 2392 * the background. Before the table can be swapped with 2393 * dm_bind_table, dm_suspend must be called to flush any in 2394 * flight bios and ensure that any further io gets deferred. 2395 */ 2396 /* 2397 * Suspend mechanism in request-based dm. 2398 * 2399 * 1. Flush all I/Os by lock_fs() if needed. 2400 * 2. Stop dispatching any I/O by stopping the request_queue. 2401 * 3. Wait for all in-flight I/Os to be completed or requeued. 2402 * 2403 * To abort suspend, start the request_queue. 2404 */ 2405 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2406 { 2407 struct dm_table *map = NULL; 2408 int r = 0; 2409 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2410 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2411 2412 mutex_lock(&md->suspend_lock); 2413 2414 if (dm_suspended_md(md)) { 2415 r = -EINVAL; 2416 goto out_unlock; 2417 } 2418 2419 map = dm_get_live_table(md); 2420 2421 /* 2422 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2423 * This flag is cleared before dm_suspend returns. 2424 */ 2425 if (noflush) 2426 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2427 2428 /* This does not get reverted if there's an error later. */ 2429 dm_table_presuspend_targets(map); 2430 2431 /* 2432 * Flush I/O to the device. 2433 * Any I/O submitted after lock_fs() may not be flushed. 2434 * noflush takes precedence over do_lockfs. 2435 * (lock_fs() flushes I/Os and waits for them to complete.) 2436 */ 2437 if (!noflush && do_lockfs) { 2438 r = lock_fs(md); 2439 if (r) 2440 goto out; 2441 } 2442 2443 /* 2444 * Here we must make sure that no processes are submitting requests 2445 * to target drivers i.e. no one may be executing 2446 * __split_and_process_bio. This is called from dm_request and 2447 * dm_wq_work. 2448 * 2449 * To get all processes out of __split_and_process_bio in dm_request, 2450 * we take the write lock. To prevent any process from reentering 2451 * __split_and_process_bio from dm_request and quiesce the thread 2452 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2453 * flush_workqueue(md->wq). 2454 */ 2455 down_write(&md->io_lock); 2456 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2457 up_write(&md->io_lock); 2458 2459 /* 2460 * Stop md->queue before flushing md->wq in case request-based 2461 * dm defers requests to md->wq from md->queue. 2462 */ 2463 if (dm_request_based(md)) 2464 stop_queue(md->queue); 2465 2466 flush_workqueue(md->wq); 2467 2468 /* 2469 * At this point no more requests are entering target request routines. 2470 * We call dm_wait_for_completion to wait for all existing requests 2471 * to finish. 2472 */ 2473 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2474 2475 down_write(&md->io_lock); 2476 if (noflush) 2477 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2478 up_write(&md->io_lock); 2479 2480 /* were we interrupted ? */ 2481 if (r < 0) { 2482 dm_queue_flush(md); 2483 2484 if (dm_request_based(md)) 2485 start_queue(md->queue); 2486 2487 unlock_fs(md); 2488 goto out; /* pushback list is already flushed, so skip flush */ 2489 } 2490 2491 /* 2492 * If dm_wait_for_completion returned 0, the device is completely 2493 * quiescent now. There is no request-processing activity. All new 2494 * requests are being added to md->deferred list. 2495 */ 2496 2497 set_bit(DMF_SUSPENDED, &md->flags); 2498 2499 dm_table_postsuspend_targets(map); 2500 2501 out: 2502 dm_table_put(map); 2503 2504 out_unlock: 2505 mutex_unlock(&md->suspend_lock); 2506 return r; 2507 } 2508 2509 int dm_resume(struct mapped_device *md) 2510 { 2511 int r = -EINVAL; 2512 struct dm_table *map = NULL; 2513 2514 mutex_lock(&md->suspend_lock); 2515 if (!dm_suspended_md(md)) 2516 goto out; 2517 2518 map = dm_get_live_table(md); 2519 if (!map || !dm_table_get_size(map)) 2520 goto out; 2521 2522 r = dm_table_resume_targets(map); 2523 if (r) 2524 goto out; 2525 2526 dm_queue_flush(md); 2527 2528 /* 2529 * Flushing deferred I/Os must be done after targets are resumed 2530 * so that mapping of targets can work correctly. 2531 * Request-based dm is queueing the deferred I/Os in its request_queue. 2532 */ 2533 if (dm_request_based(md)) 2534 start_queue(md->queue); 2535 2536 unlock_fs(md); 2537 2538 clear_bit(DMF_SUSPENDED, &md->flags); 2539 2540 dm_table_unplug_all(map); 2541 r = 0; 2542 out: 2543 dm_table_put(map); 2544 mutex_unlock(&md->suspend_lock); 2545 2546 return r; 2547 } 2548 2549 /*----------------------------------------------------------------- 2550 * Event notification. 2551 *---------------------------------------------------------------*/ 2552 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2553 unsigned cookie) 2554 { 2555 char udev_cookie[DM_COOKIE_LENGTH]; 2556 char *envp[] = { udev_cookie, NULL }; 2557 2558 if (!cookie) 2559 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2560 else { 2561 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2562 DM_COOKIE_ENV_VAR_NAME, cookie); 2563 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2564 action, envp); 2565 } 2566 } 2567 2568 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2569 { 2570 return atomic_add_return(1, &md->uevent_seq); 2571 } 2572 2573 uint32_t dm_get_event_nr(struct mapped_device *md) 2574 { 2575 return atomic_read(&md->event_nr); 2576 } 2577 2578 int dm_wait_event(struct mapped_device *md, int event_nr) 2579 { 2580 return wait_event_interruptible(md->eventq, 2581 (event_nr != atomic_read(&md->event_nr))); 2582 } 2583 2584 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2585 { 2586 unsigned long flags; 2587 2588 spin_lock_irqsave(&md->uevent_lock, flags); 2589 list_add(elist, &md->uevent_list); 2590 spin_unlock_irqrestore(&md->uevent_lock, flags); 2591 } 2592 2593 /* 2594 * The gendisk is only valid as long as you have a reference 2595 * count on 'md'. 2596 */ 2597 struct gendisk *dm_disk(struct mapped_device *md) 2598 { 2599 return md->disk; 2600 } 2601 2602 struct kobject *dm_kobject(struct mapped_device *md) 2603 { 2604 return &md->kobj; 2605 } 2606 2607 /* 2608 * struct mapped_device should not be exported outside of dm.c 2609 * so use this check to verify that kobj is part of md structure 2610 */ 2611 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2612 { 2613 struct mapped_device *md; 2614 2615 md = container_of(kobj, struct mapped_device, kobj); 2616 if (&md->kobj != kobj) 2617 return NULL; 2618 2619 if (test_bit(DMF_FREEING, &md->flags) || 2620 dm_deleting_md(md)) 2621 return NULL; 2622 2623 dm_get(md); 2624 return md; 2625 } 2626 2627 int dm_suspended_md(struct mapped_device *md) 2628 { 2629 return test_bit(DMF_SUSPENDED, &md->flags); 2630 } 2631 2632 int dm_suspended(struct dm_target *ti) 2633 { 2634 return dm_suspended_md(dm_table_get_md(ti->table)); 2635 } 2636 EXPORT_SYMBOL_GPL(dm_suspended); 2637 2638 int dm_noflush_suspending(struct dm_target *ti) 2639 { 2640 return __noflush_suspending(dm_table_get_md(ti->table)); 2641 } 2642 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2643 2644 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type) 2645 { 2646 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2647 2648 if (!pools) 2649 return NULL; 2650 2651 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2652 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2653 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2654 if (!pools->io_pool) 2655 goto free_pools_and_out; 2656 2657 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2658 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2659 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2660 if (!pools->tio_pool) 2661 goto free_io_pool_and_out; 2662 2663 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2664 bioset_create(16, 0) : bioset_create(MIN_IOS, 0); 2665 if (!pools->bs) 2666 goto free_tio_pool_and_out; 2667 2668 return pools; 2669 2670 free_tio_pool_and_out: 2671 mempool_destroy(pools->tio_pool); 2672 2673 free_io_pool_and_out: 2674 mempool_destroy(pools->io_pool); 2675 2676 free_pools_and_out: 2677 kfree(pools); 2678 2679 return NULL; 2680 } 2681 2682 void dm_free_md_mempools(struct dm_md_mempools *pools) 2683 { 2684 if (!pools) 2685 return; 2686 2687 if (pools->io_pool) 2688 mempool_destroy(pools->io_pool); 2689 2690 if (pools->tio_pool) 2691 mempool_destroy(pools->tio_pool); 2692 2693 if (pools->bs) 2694 bioset_free(pools->bs); 2695 2696 kfree(pools); 2697 } 2698 2699 static const struct block_device_operations dm_blk_dops = { 2700 .open = dm_blk_open, 2701 .release = dm_blk_close, 2702 .ioctl = dm_blk_ioctl, 2703 .getgeo = dm_blk_getgeo, 2704 .owner = THIS_MODULE 2705 }; 2706 2707 EXPORT_SYMBOL(dm_get_mapinfo); 2708 2709 /* 2710 * module hooks 2711 */ 2712 module_init(dm_init); 2713 module_exit(dm_exit); 2714 2715 module_param(major, uint, 0); 2716 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2717 MODULE_DESCRIPTION(DM_NAME " driver"); 2718 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2719 MODULE_LICENSE("GPL"); 2720