xref: /openbmc/linux/drivers/md/dm.c (revision 94818742316e27d01506240cf8b07d69844d31af)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per request.
79  */
80 struct dm_rq_target_io {
81 	struct mapped_device *md;
82 	struct dm_target *ti;
83 	struct request *orig, clone;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm - the bio clones we allocate are embedded in these
90  * structs.
91  *
92  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93  * the bioset is created - this means the bio has to come at the end of the
94  * struct.
95  */
96 struct dm_rq_clone_bio_info {
97 	struct bio *orig;
98 	struct dm_rq_target_io *tio;
99 	struct bio clone;
100 };
101 
102 union map_info *dm_get_mapinfo(struct bio *bio)
103 {
104 	if (bio && bio->bi_private)
105 		return &((struct dm_target_io *)bio->bi_private)->info;
106 	return NULL;
107 }
108 
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 	if (rq && rq->end_io_data)
112 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 	return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116 
117 #define MINOR_ALLOCED ((void *)-1)
118 
119 /*
120  * Bits for the md->flags field.
121  */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_MERGE_IS_OPTIONAL 6
129 
130 /*
131  * Work processed by per-device workqueue.
132  */
133 struct mapped_device {
134 	struct rw_semaphore io_lock;
135 	struct mutex suspend_lock;
136 	rwlock_t map_lock;
137 	atomic_t holders;
138 	atomic_t open_count;
139 
140 	unsigned long flags;
141 
142 	struct request_queue *queue;
143 	unsigned type;
144 	/* Protect queue and type against concurrent access. */
145 	struct mutex type_lock;
146 
147 	struct target_type *immutable_target_type;
148 
149 	struct gendisk *disk;
150 	char name[16];
151 
152 	void *interface_ptr;
153 
154 	/*
155 	 * A list of ios that arrived while we were suspended.
156 	 */
157 	atomic_t pending[2];
158 	wait_queue_head_t wait;
159 	struct work_struct work;
160 	struct bio_list deferred;
161 	spinlock_t deferred_lock;
162 
163 	/*
164 	 * Processing queue (flush)
165 	 */
166 	struct workqueue_struct *wq;
167 
168 	/*
169 	 * The current mapping.
170 	 */
171 	struct dm_table *map;
172 
173 	/*
174 	 * io objects are allocated from here.
175 	 */
176 	mempool_t *io_pool;
177 	mempool_t *tio_pool;
178 
179 	struct bio_set *bs;
180 
181 	/*
182 	 * Event handling.
183 	 */
184 	atomic_t event_nr;
185 	wait_queue_head_t eventq;
186 	atomic_t uevent_seq;
187 	struct list_head uevent_list;
188 	spinlock_t uevent_lock; /* Protect access to uevent_list */
189 
190 	/*
191 	 * freeze/thaw support require holding onto a super block
192 	 */
193 	struct super_block *frozen_sb;
194 	struct block_device *bdev;
195 
196 	/* forced geometry settings */
197 	struct hd_geometry geometry;
198 
199 	/* sysfs handle */
200 	struct kobject kobj;
201 
202 	/* zero-length flush that will be cloned and submitted to targets */
203 	struct bio flush_bio;
204 };
205 
206 /*
207  * For mempools pre-allocation at the table loading time.
208  */
209 struct dm_md_mempools {
210 	mempool_t *io_pool;
211 	mempool_t *tio_pool;
212 	struct bio_set *bs;
213 };
214 
215 #define MIN_IOS 256
216 static struct kmem_cache *_io_cache;
217 static struct kmem_cache *_tio_cache;
218 static struct kmem_cache *_rq_tio_cache;
219 
220 /*
221  * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
222  * still used for _io_cache, I'm leaving this for a later cleanup
223  */
224 static struct kmem_cache *_rq_bio_info_cache;
225 
226 static int __init local_init(void)
227 {
228 	int r = -ENOMEM;
229 
230 	/* allocate a slab for the dm_ios */
231 	_io_cache = KMEM_CACHE(dm_io, 0);
232 	if (!_io_cache)
233 		return r;
234 
235 	/* allocate a slab for the target ios */
236 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
237 	if (!_tio_cache)
238 		goto out_free_io_cache;
239 
240 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
241 	if (!_rq_tio_cache)
242 		goto out_free_tio_cache;
243 
244 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
245 	if (!_rq_bio_info_cache)
246 		goto out_free_rq_tio_cache;
247 
248 	r = dm_uevent_init();
249 	if (r)
250 		goto out_free_rq_bio_info_cache;
251 
252 	_major = major;
253 	r = register_blkdev(_major, _name);
254 	if (r < 0)
255 		goto out_uevent_exit;
256 
257 	if (!_major)
258 		_major = r;
259 
260 	return 0;
261 
262 out_uevent_exit:
263 	dm_uevent_exit();
264 out_free_rq_bio_info_cache:
265 	kmem_cache_destroy(_rq_bio_info_cache);
266 out_free_rq_tio_cache:
267 	kmem_cache_destroy(_rq_tio_cache);
268 out_free_tio_cache:
269 	kmem_cache_destroy(_tio_cache);
270 out_free_io_cache:
271 	kmem_cache_destroy(_io_cache);
272 
273 	return r;
274 }
275 
276 static void local_exit(void)
277 {
278 	kmem_cache_destroy(_rq_bio_info_cache);
279 	kmem_cache_destroy(_rq_tio_cache);
280 	kmem_cache_destroy(_tio_cache);
281 	kmem_cache_destroy(_io_cache);
282 	unregister_blkdev(_major, _name);
283 	dm_uevent_exit();
284 
285 	_major = 0;
286 
287 	DMINFO("cleaned up");
288 }
289 
290 static int (*_inits[])(void) __initdata = {
291 	local_init,
292 	dm_target_init,
293 	dm_linear_init,
294 	dm_stripe_init,
295 	dm_io_init,
296 	dm_kcopyd_init,
297 	dm_interface_init,
298 };
299 
300 static void (*_exits[])(void) = {
301 	local_exit,
302 	dm_target_exit,
303 	dm_linear_exit,
304 	dm_stripe_exit,
305 	dm_io_exit,
306 	dm_kcopyd_exit,
307 	dm_interface_exit,
308 };
309 
310 static int __init dm_init(void)
311 {
312 	const int count = ARRAY_SIZE(_inits);
313 
314 	int r, i;
315 
316 	for (i = 0; i < count; i++) {
317 		r = _inits[i]();
318 		if (r)
319 			goto bad;
320 	}
321 
322 	return 0;
323 
324       bad:
325 	while (i--)
326 		_exits[i]();
327 
328 	return r;
329 }
330 
331 static void __exit dm_exit(void)
332 {
333 	int i = ARRAY_SIZE(_exits);
334 
335 	while (i--)
336 		_exits[i]();
337 
338 	/*
339 	 * Should be empty by this point.
340 	 */
341 	idr_remove_all(&_minor_idr);
342 	idr_destroy(&_minor_idr);
343 }
344 
345 /*
346  * Block device functions
347  */
348 int dm_deleting_md(struct mapped_device *md)
349 {
350 	return test_bit(DMF_DELETING, &md->flags);
351 }
352 
353 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = bdev->bd_disk->private_data;
360 	if (!md)
361 		goto out;
362 
363 	if (test_bit(DMF_FREEING, &md->flags) ||
364 	    dm_deleting_md(md)) {
365 		md = NULL;
366 		goto out;
367 	}
368 
369 	dm_get(md);
370 	atomic_inc(&md->open_count);
371 
372 out:
373 	spin_unlock(&_minor_lock);
374 
375 	return md ? 0 : -ENXIO;
376 }
377 
378 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
379 {
380 	struct mapped_device *md = disk->private_data;
381 
382 	spin_lock(&_minor_lock);
383 
384 	atomic_dec(&md->open_count);
385 	dm_put(md);
386 
387 	spin_unlock(&_minor_lock);
388 
389 	return 0;
390 }
391 
392 int dm_open_count(struct mapped_device *md)
393 {
394 	return atomic_read(&md->open_count);
395 }
396 
397 /*
398  * Guarantees nothing is using the device before it's deleted.
399  */
400 int dm_lock_for_deletion(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (dm_open_count(md))
407 		r = -EBUSY;
408 	else
409 		set_bit(DMF_DELETING, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
417 {
418 	struct mapped_device *md = bdev->bd_disk->private_data;
419 
420 	return dm_get_geometry(md, geo);
421 }
422 
423 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
424 			unsigned int cmd, unsigned long arg)
425 {
426 	struct mapped_device *md = bdev->bd_disk->private_data;
427 	struct dm_table *map = dm_get_live_table(md);
428 	struct dm_target *tgt;
429 	int r = -ENOTTY;
430 
431 	if (!map || !dm_table_get_size(map))
432 		goto out;
433 
434 	/* We only support devices that have a single target */
435 	if (dm_table_get_num_targets(map) != 1)
436 		goto out;
437 
438 	tgt = dm_table_get_target(map, 0);
439 
440 	if (dm_suspended_md(md)) {
441 		r = -EAGAIN;
442 		goto out;
443 	}
444 
445 	if (tgt->type->ioctl)
446 		r = tgt->type->ioctl(tgt, cmd, arg);
447 
448 out:
449 	dm_table_put(map);
450 
451 	return r;
452 }
453 
454 static struct dm_io *alloc_io(struct mapped_device *md)
455 {
456 	return mempool_alloc(md->io_pool, GFP_NOIO);
457 }
458 
459 static void free_io(struct mapped_device *md, struct dm_io *io)
460 {
461 	mempool_free(io, md->io_pool);
462 }
463 
464 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
465 {
466 	mempool_free(tio, md->tio_pool);
467 }
468 
469 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
470 					    gfp_t gfp_mask)
471 {
472 	return mempool_alloc(md->tio_pool, gfp_mask);
473 }
474 
475 static void free_rq_tio(struct dm_rq_target_io *tio)
476 {
477 	mempool_free(tio, tio->md->tio_pool);
478 }
479 
480 static int md_in_flight(struct mapped_device *md)
481 {
482 	return atomic_read(&md->pending[READ]) +
483 	       atomic_read(&md->pending[WRITE]);
484 }
485 
486 static void start_io_acct(struct dm_io *io)
487 {
488 	struct mapped_device *md = io->md;
489 	int cpu;
490 	int rw = bio_data_dir(io->bio);
491 
492 	io->start_time = jiffies;
493 
494 	cpu = part_stat_lock();
495 	part_round_stats(cpu, &dm_disk(md)->part0);
496 	part_stat_unlock();
497 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 		atomic_inc_return(&md->pending[rw]));
499 }
500 
501 static void end_io_acct(struct dm_io *io)
502 {
503 	struct mapped_device *md = io->md;
504 	struct bio *bio = io->bio;
505 	unsigned long duration = jiffies - io->start_time;
506 	int pending, cpu;
507 	int rw = bio_data_dir(bio);
508 
509 	cpu = part_stat_lock();
510 	part_round_stats(cpu, &dm_disk(md)->part0);
511 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 	part_stat_unlock();
513 
514 	/*
515 	 * After this is decremented the bio must not be touched if it is
516 	 * a flush.
517 	 */
518 	pending = atomic_dec_return(&md->pending[rw]);
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 	pending += atomic_read(&md->pending[rw^0x1]);
521 
522 	/* nudge anyone waiting on suspend queue */
523 	if (!pending)
524 		wake_up(&md->wait);
525 }
526 
527 /*
528  * Add the bio to the list of deferred io.
529  */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&md->deferred_lock, flags);
535 	bio_list_add(&md->deferred, bio);
536 	spin_unlock_irqrestore(&md->deferred_lock, flags);
537 	queue_work(md->wq, &md->work);
538 }
539 
540 /*
541  * Everyone (including functions in this file), should use this
542  * function to access the md->map field, and make sure they call
543  * dm_table_put() when finished.
544  */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 	struct dm_table *t;
548 	unsigned long flags;
549 
550 	read_lock_irqsave(&md->map_lock, flags);
551 	t = md->map;
552 	if (t)
553 		dm_table_get(t);
554 	read_unlock_irqrestore(&md->map_lock, flags);
555 
556 	return t;
557 }
558 
559 /*
560  * Get the geometry associated with a dm device
561  */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 	*geo = md->geometry;
565 
566 	return 0;
567 }
568 
569 /*
570  * Set the geometry of a device.
571  */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 
576 	if (geo->start > sz) {
577 		DMWARN("Start sector is beyond the geometry limits.");
578 		return -EINVAL;
579 	}
580 
581 	md->geometry = *geo;
582 
583 	return 0;
584 }
585 
586 /*-----------------------------------------------------------------
587  * CRUD START:
588  *   A more elegant soln is in the works that uses the queue
589  *   merge fn, unfortunately there are a couple of changes to
590  *   the block layer that I want to make for this.  So in the
591  *   interests of getting something for people to use I give
592  *   you this clearly demarcated crap.
593  *---------------------------------------------------------------*/
594 
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599 
600 /*
601  * Decrements the number of outstanding ios that a bio has been
602  * cloned into, completing the original io if necc.
603  */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 	unsigned long flags;
607 	int io_error;
608 	struct bio *bio;
609 	struct mapped_device *md = io->md;
610 
611 	/* Push-back supersedes any I/O errors */
612 	if (unlikely(error)) {
613 		spin_lock_irqsave(&io->endio_lock, flags);
614 		if (!(io->error > 0 && __noflush_suspending(md)))
615 			io->error = error;
616 		spin_unlock_irqrestore(&io->endio_lock, flags);
617 	}
618 
619 	if (atomic_dec_and_test(&io->io_count)) {
620 		if (io->error == DM_ENDIO_REQUEUE) {
621 			/*
622 			 * Target requested pushing back the I/O.
623 			 */
624 			spin_lock_irqsave(&md->deferred_lock, flags);
625 			if (__noflush_suspending(md))
626 				bio_list_add_head(&md->deferred, io->bio);
627 			else
628 				/* noflush suspend was interrupted. */
629 				io->error = -EIO;
630 			spin_unlock_irqrestore(&md->deferred_lock, flags);
631 		}
632 
633 		io_error = io->error;
634 		bio = io->bio;
635 		end_io_acct(io);
636 		free_io(md, io);
637 
638 		if (io_error == DM_ENDIO_REQUEUE)
639 			return;
640 
641 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 			/*
643 			 * Preflush done for flush with data, reissue
644 			 * without REQ_FLUSH.
645 			 */
646 			bio->bi_rw &= ~REQ_FLUSH;
647 			queue_io(md, bio);
648 		} else {
649 			/* done with normal IO or empty flush */
650 			trace_block_bio_complete(md->queue, bio, io_error);
651 			bio_endio(bio, io_error);
652 		}
653 	}
654 }
655 
656 static void clone_endio(struct bio *bio, int error)
657 {
658 	int r = 0;
659 	struct dm_target_io *tio = bio->bi_private;
660 	struct dm_io *io = tio->io;
661 	struct mapped_device *md = tio->io->md;
662 	dm_endio_fn endio = tio->ti->type->end_io;
663 
664 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 		error = -EIO;
666 
667 	if (endio) {
668 		r = endio(tio->ti, bio, error, &tio->info);
669 		if (r < 0 || r == DM_ENDIO_REQUEUE)
670 			/*
671 			 * error and requeue request are handled
672 			 * in dec_pending().
673 			 */
674 			error = r;
675 		else if (r == DM_ENDIO_INCOMPLETE)
676 			/* The target will handle the io */
677 			return;
678 		else if (r) {
679 			DMWARN("unimplemented target endio return value: %d", r);
680 			BUG();
681 		}
682 	}
683 
684 	free_tio(md, tio);
685 	bio_put(bio);
686 	dec_pending(io, error);
687 }
688 
689 /*
690  * Partial completion handling for request-based dm
691  */
692 static void end_clone_bio(struct bio *clone, int error)
693 {
694 	struct dm_rq_clone_bio_info *info = clone->bi_private;
695 	struct dm_rq_target_io *tio = info->tio;
696 	struct bio *bio = info->orig;
697 	unsigned int nr_bytes = info->orig->bi_size;
698 
699 	bio_put(clone);
700 
701 	if (tio->error)
702 		/*
703 		 * An error has already been detected on the request.
704 		 * Once error occurred, just let clone->end_io() handle
705 		 * the remainder.
706 		 */
707 		return;
708 	else if (error) {
709 		/*
710 		 * Don't notice the error to the upper layer yet.
711 		 * The error handling decision is made by the target driver,
712 		 * when the request is completed.
713 		 */
714 		tio->error = error;
715 		return;
716 	}
717 
718 	/*
719 	 * I/O for the bio successfully completed.
720 	 * Notice the data completion to the upper layer.
721 	 */
722 
723 	/*
724 	 * bios are processed from the head of the list.
725 	 * So the completing bio should always be rq->bio.
726 	 * If it's not, something wrong is happening.
727 	 */
728 	if (tio->orig->bio != bio)
729 		DMERR("bio completion is going in the middle of the request");
730 
731 	/*
732 	 * Update the original request.
733 	 * Do not use blk_end_request() here, because it may complete
734 	 * the original request before the clone, and break the ordering.
735 	 */
736 	blk_update_request(tio->orig, 0, nr_bytes);
737 }
738 
739 /*
740  * Don't touch any member of the md after calling this function because
741  * the md may be freed in dm_put() at the end of this function.
742  * Or do dm_get() before calling this function and dm_put() later.
743  */
744 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
745 {
746 	atomic_dec(&md->pending[rw]);
747 
748 	/* nudge anyone waiting on suspend queue */
749 	if (!md_in_flight(md))
750 		wake_up(&md->wait);
751 
752 	if (run_queue)
753 		blk_run_queue(md->queue);
754 
755 	/*
756 	 * dm_put() must be at the end of this function. See the comment above
757 	 */
758 	dm_put(md);
759 }
760 
761 static void free_rq_clone(struct request *clone)
762 {
763 	struct dm_rq_target_io *tio = clone->end_io_data;
764 
765 	blk_rq_unprep_clone(clone);
766 	free_rq_tio(tio);
767 }
768 
769 /*
770  * Complete the clone and the original request.
771  * Must be called without queue lock.
772  */
773 static void dm_end_request(struct request *clone, int error)
774 {
775 	int rw = rq_data_dir(clone);
776 	struct dm_rq_target_io *tio = clone->end_io_data;
777 	struct mapped_device *md = tio->md;
778 	struct request *rq = tio->orig;
779 
780 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
781 		rq->errors = clone->errors;
782 		rq->resid_len = clone->resid_len;
783 
784 		if (rq->sense)
785 			/*
786 			 * We are using the sense buffer of the original
787 			 * request.
788 			 * So setting the length of the sense data is enough.
789 			 */
790 			rq->sense_len = clone->sense_len;
791 	}
792 
793 	free_rq_clone(clone);
794 	blk_end_request_all(rq, error);
795 	rq_completed(md, rw, true);
796 }
797 
798 static void dm_unprep_request(struct request *rq)
799 {
800 	struct request *clone = rq->special;
801 
802 	rq->special = NULL;
803 	rq->cmd_flags &= ~REQ_DONTPREP;
804 
805 	free_rq_clone(clone);
806 }
807 
808 /*
809  * Requeue the original request of a clone.
810  */
811 void dm_requeue_unmapped_request(struct request *clone)
812 {
813 	int rw = rq_data_dir(clone);
814 	struct dm_rq_target_io *tio = clone->end_io_data;
815 	struct mapped_device *md = tio->md;
816 	struct request *rq = tio->orig;
817 	struct request_queue *q = rq->q;
818 	unsigned long flags;
819 
820 	dm_unprep_request(rq);
821 
822 	spin_lock_irqsave(q->queue_lock, flags);
823 	blk_requeue_request(q, rq);
824 	spin_unlock_irqrestore(q->queue_lock, flags);
825 
826 	rq_completed(md, rw, 0);
827 }
828 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
829 
830 static void __stop_queue(struct request_queue *q)
831 {
832 	blk_stop_queue(q);
833 }
834 
835 static void stop_queue(struct request_queue *q)
836 {
837 	unsigned long flags;
838 
839 	spin_lock_irqsave(q->queue_lock, flags);
840 	__stop_queue(q);
841 	spin_unlock_irqrestore(q->queue_lock, flags);
842 }
843 
844 static void __start_queue(struct request_queue *q)
845 {
846 	if (blk_queue_stopped(q))
847 		blk_start_queue(q);
848 }
849 
850 static void start_queue(struct request_queue *q)
851 {
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(q->queue_lock, flags);
855 	__start_queue(q);
856 	spin_unlock_irqrestore(q->queue_lock, flags);
857 }
858 
859 static void dm_done(struct request *clone, int error, bool mapped)
860 {
861 	int r = error;
862 	struct dm_rq_target_io *tio = clone->end_io_data;
863 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
864 
865 	if (mapped && rq_end_io)
866 		r = rq_end_io(tio->ti, clone, error, &tio->info);
867 
868 	if (r <= 0)
869 		/* The target wants to complete the I/O */
870 		dm_end_request(clone, r);
871 	else if (r == DM_ENDIO_INCOMPLETE)
872 		/* The target will handle the I/O */
873 		return;
874 	else if (r == DM_ENDIO_REQUEUE)
875 		/* The target wants to requeue the I/O */
876 		dm_requeue_unmapped_request(clone);
877 	else {
878 		DMWARN("unimplemented target endio return value: %d", r);
879 		BUG();
880 	}
881 }
882 
883 /*
884  * Request completion handler for request-based dm
885  */
886 static void dm_softirq_done(struct request *rq)
887 {
888 	bool mapped = true;
889 	struct request *clone = rq->completion_data;
890 	struct dm_rq_target_io *tio = clone->end_io_data;
891 
892 	if (rq->cmd_flags & REQ_FAILED)
893 		mapped = false;
894 
895 	dm_done(clone, tio->error, mapped);
896 }
897 
898 /*
899  * Complete the clone and the original request with the error status
900  * through softirq context.
901  */
902 static void dm_complete_request(struct request *clone, int error)
903 {
904 	struct dm_rq_target_io *tio = clone->end_io_data;
905 	struct request *rq = tio->orig;
906 
907 	tio->error = error;
908 	rq->completion_data = clone;
909 	blk_complete_request(rq);
910 }
911 
912 /*
913  * Complete the not-mapped clone and the original request with the error status
914  * through softirq context.
915  * Target's rq_end_io() function isn't called.
916  * This may be used when the target's map_rq() function fails.
917  */
918 void dm_kill_unmapped_request(struct request *clone, int error)
919 {
920 	struct dm_rq_target_io *tio = clone->end_io_data;
921 	struct request *rq = tio->orig;
922 
923 	rq->cmd_flags |= REQ_FAILED;
924 	dm_complete_request(clone, error);
925 }
926 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
927 
928 /*
929  * Called with the queue lock held
930  */
931 static void end_clone_request(struct request *clone, int error)
932 {
933 	/*
934 	 * For just cleaning up the information of the queue in which
935 	 * the clone was dispatched.
936 	 * The clone is *NOT* freed actually here because it is alloced from
937 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
938 	 */
939 	__blk_put_request(clone->q, clone);
940 
941 	/*
942 	 * Actual request completion is done in a softirq context which doesn't
943 	 * hold the queue lock.  Otherwise, deadlock could occur because:
944 	 *     - another request may be submitted by the upper level driver
945 	 *       of the stacking during the completion
946 	 *     - the submission which requires queue lock may be done
947 	 *       against this queue
948 	 */
949 	dm_complete_request(clone, error);
950 }
951 
952 /*
953  * Return maximum size of I/O possible at the supplied sector up to the current
954  * target boundary.
955  */
956 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
957 {
958 	sector_t target_offset = dm_target_offset(ti, sector);
959 
960 	return ti->len - target_offset;
961 }
962 
963 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
964 {
965 	sector_t len = max_io_len_target_boundary(sector, ti);
966 	sector_t offset, max_len;
967 
968 	/*
969 	 * Does the target need to split even further?
970 	 */
971 	if (ti->max_io_len) {
972 		offset = dm_target_offset(ti, sector);
973 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
974 			max_len = sector_div(offset, ti->max_io_len);
975 		else
976 			max_len = offset & (ti->max_io_len - 1);
977 		max_len = ti->max_io_len - max_len;
978 
979 		if (len > max_len)
980 			len = max_len;
981 	}
982 
983 	return len;
984 }
985 
986 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
987 {
988 	if (len > UINT_MAX) {
989 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
990 		      (unsigned long long)len, UINT_MAX);
991 		ti->error = "Maximum size of target IO is too large";
992 		return -EINVAL;
993 	}
994 
995 	ti->max_io_len = (uint32_t) len;
996 
997 	return 0;
998 }
999 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1000 
1001 static void __map_bio(struct dm_target *ti, struct bio *clone,
1002 		      struct dm_target_io *tio)
1003 {
1004 	int r;
1005 	sector_t sector;
1006 	struct mapped_device *md;
1007 
1008 	clone->bi_end_io = clone_endio;
1009 	clone->bi_private = tio;
1010 
1011 	/*
1012 	 * Map the clone.  If r == 0 we don't need to do
1013 	 * anything, the target has assumed ownership of
1014 	 * this io.
1015 	 */
1016 	atomic_inc(&tio->io->io_count);
1017 	sector = clone->bi_sector;
1018 	r = ti->type->map(ti, clone, &tio->info);
1019 	if (r == DM_MAPIO_REMAPPED) {
1020 		/* the bio has been remapped so dispatch it */
1021 
1022 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1023 				      tio->io->bio->bi_bdev->bd_dev, sector);
1024 
1025 		generic_make_request(clone);
1026 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1027 		/* error the io and bail out, or requeue it if needed */
1028 		md = tio->io->md;
1029 		dec_pending(tio->io, r);
1030 		bio_put(clone);
1031 		free_tio(md, tio);
1032 	} else if (r) {
1033 		DMWARN("unimplemented target map return value: %d", r);
1034 		BUG();
1035 	}
1036 }
1037 
1038 struct clone_info {
1039 	struct mapped_device *md;
1040 	struct dm_table *map;
1041 	struct bio *bio;
1042 	struct dm_io *io;
1043 	sector_t sector;
1044 	sector_t sector_count;
1045 	unsigned short idx;
1046 };
1047 
1048 /*
1049  * Creates a little bio that just does part of a bvec.
1050  */
1051 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1052 			      unsigned short idx, unsigned int offset,
1053 			      unsigned int len, struct bio_set *bs)
1054 {
1055 	struct bio *clone;
1056 	struct bio_vec *bv = bio->bi_io_vec + idx;
1057 
1058 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1059 	*clone->bi_io_vec = *bv;
1060 
1061 	clone->bi_sector = sector;
1062 	clone->bi_bdev = bio->bi_bdev;
1063 	clone->bi_rw = bio->bi_rw;
1064 	clone->bi_vcnt = 1;
1065 	clone->bi_size = to_bytes(len);
1066 	clone->bi_io_vec->bv_offset = offset;
1067 	clone->bi_io_vec->bv_len = clone->bi_size;
1068 	clone->bi_flags |= 1 << BIO_CLONED;
1069 
1070 	if (bio_integrity(bio)) {
1071 		bio_integrity_clone(clone, bio, GFP_NOIO);
1072 		bio_integrity_trim(clone,
1073 				   bio_sector_offset(bio, idx, offset), len);
1074 	}
1075 
1076 	return clone;
1077 }
1078 
1079 /*
1080  * Creates a bio that consists of range of complete bvecs.
1081  */
1082 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1083 			     unsigned short idx, unsigned short bv_count,
1084 			     unsigned int len, struct bio_set *bs)
1085 {
1086 	struct bio *clone;
1087 
1088 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1089 	__bio_clone(clone, bio);
1090 	clone->bi_sector = sector;
1091 	clone->bi_idx = idx;
1092 	clone->bi_vcnt = idx + bv_count;
1093 	clone->bi_size = to_bytes(len);
1094 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1095 
1096 	if (bio_integrity(bio)) {
1097 		bio_integrity_clone(clone, bio, GFP_NOIO);
1098 
1099 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1100 			bio_integrity_trim(clone,
1101 					   bio_sector_offset(bio, idx, 0), len);
1102 	}
1103 
1104 	return clone;
1105 }
1106 
1107 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108 				      struct dm_target *ti)
1109 {
1110 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1111 
1112 	tio->io = ci->io;
1113 	tio->ti = ti;
1114 	memset(&tio->info, 0, sizeof(tio->info));
1115 
1116 	return tio;
1117 }
1118 
1119 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1120 				   unsigned request_nr, sector_t len)
1121 {
1122 	struct dm_target_io *tio = alloc_tio(ci, ti);
1123 	struct bio *clone;
1124 
1125 	tio->info.target_request_nr = request_nr;
1126 
1127 	/*
1128 	 * Discard requests require the bio's inline iovecs be initialized.
1129 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1130 	 * and discard, so no need for concern about wasted bvec allocations.
1131 	 */
1132 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1133 	__bio_clone(clone, ci->bio);
1134 	if (len) {
1135 		clone->bi_sector = ci->sector;
1136 		clone->bi_size = to_bytes(len);
1137 	}
1138 
1139 	__map_bio(ti, clone, tio);
1140 }
1141 
1142 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1143 				    unsigned num_requests, sector_t len)
1144 {
1145 	unsigned request_nr;
1146 
1147 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1148 		__issue_target_request(ci, ti, request_nr, len);
1149 }
1150 
1151 static int __clone_and_map_empty_flush(struct clone_info *ci)
1152 {
1153 	unsigned target_nr = 0;
1154 	struct dm_target *ti;
1155 
1156 	BUG_ON(bio_has_data(ci->bio));
1157 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1158 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Perform all io with a single clone.
1165  */
1166 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1167 {
1168 	struct bio *clone, *bio = ci->bio;
1169 	struct dm_target_io *tio;
1170 
1171 	tio = alloc_tio(ci, ti);
1172 	clone = clone_bio(bio, ci->sector, ci->idx,
1173 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1174 			  ci->md->bs);
1175 	__map_bio(ti, clone, tio);
1176 	ci->sector_count = 0;
1177 }
1178 
1179 static int __clone_and_map_discard(struct clone_info *ci)
1180 {
1181 	struct dm_target *ti;
1182 	sector_t len;
1183 
1184 	do {
1185 		ti = dm_table_find_target(ci->map, ci->sector);
1186 		if (!dm_target_is_valid(ti))
1187 			return -EIO;
1188 
1189 		/*
1190 		 * Even though the device advertised discard support,
1191 		 * that does not mean every target supports it, and
1192 		 * reconfiguration might also have changed that since the
1193 		 * check was performed.
1194 		 */
1195 		if (!ti->num_discard_requests)
1196 			return -EOPNOTSUPP;
1197 
1198 		if (!ti->split_discard_requests)
1199 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1200 		else
1201 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1202 
1203 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1204 
1205 		ci->sector += len;
1206 	} while (ci->sector_count -= len);
1207 
1208 	return 0;
1209 }
1210 
1211 static int __clone_and_map(struct clone_info *ci)
1212 {
1213 	struct bio *clone, *bio = ci->bio;
1214 	struct dm_target *ti;
1215 	sector_t len = 0, max;
1216 	struct dm_target_io *tio;
1217 
1218 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1219 		return __clone_and_map_discard(ci);
1220 
1221 	ti = dm_table_find_target(ci->map, ci->sector);
1222 	if (!dm_target_is_valid(ti))
1223 		return -EIO;
1224 
1225 	max = max_io_len(ci->sector, ti);
1226 
1227 	if (ci->sector_count <= max) {
1228 		/*
1229 		 * Optimise for the simple case where we can do all of
1230 		 * the remaining io with a single clone.
1231 		 */
1232 		__clone_and_map_simple(ci, ti);
1233 
1234 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1235 		/*
1236 		 * There are some bvecs that don't span targets.
1237 		 * Do as many of these as possible.
1238 		 */
1239 		int i;
1240 		sector_t remaining = max;
1241 		sector_t bv_len;
1242 
1243 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1244 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1245 
1246 			if (bv_len > remaining)
1247 				break;
1248 
1249 			remaining -= bv_len;
1250 			len += bv_len;
1251 		}
1252 
1253 		tio = alloc_tio(ci, ti);
1254 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1255 				  ci->md->bs);
1256 		__map_bio(ti, clone, tio);
1257 
1258 		ci->sector += len;
1259 		ci->sector_count -= len;
1260 		ci->idx = i;
1261 
1262 	} else {
1263 		/*
1264 		 * Handle a bvec that must be split between two or more targets.
1265 		 */
1266 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1267 		sector_t remaining = to_sector(bv->bv_len);
1268 		unsigned int offset = 0;
1269 
1270 		do {
1271 			if (offset) {
1272 				ti = dm_table_find_target(ci->map, ci->sector);
1273 				if (!dm_target_is_valid(ti))
1274 					return -EIO;
1275 
1276 				max = max_io_len(ci->sector, ti);
1277 			}
1278 
1279 			len = min(remaining, max);
1280 
1281 			tio = alloc_tio(ci, ti);
1282 			clone = split_bvec(bio, ci->sector, ci->idx,
1283 					   bv->bv_offset + offset, len,
1284 					   ci->md->bs);
1285 
1286 			__map_bio(ti, clone, tio);
1287 
1288 			ci->sector += len;
1289 			ci->sector_count -= len;
1290 			offset += to_bytes(len);
1291 		} while (remaining -= len);
1292 
1293 		ci->idx++;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * Split the bio into several clones and submit it to targets.
1301  */
1302 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1303 {
1304 	struct clone_info ci;
1305 	int error = 0;
1306 
1307 	ci.map = dm_get_live_table(md);
1308 	if (unlikely(!ci.map)) {
1309 		bio_io_error(bio);
1310 		return;
1311 	}
1312 
1313 	ci.md = md;
1314 	ci.io = alloc_io(md);
1315 	ci.io->error = 0;
1316 	atomic_set(&ci.io->io_count, 1);
1317 	ci.io->bio = bio;
1318 	ci.io->md = md;
1319 	spin_lock_init(&ci.io->endio_lock);
1320 	ci.sector = bio->bi_sector;
1321 	ci.idx = bio->bi_idx;
1322 
1323 	start_io_acct(ci.io);
1324 	if (bio->bi_rw & REQ_FLUSH) {
1325 		ci.bio = &ci.md->flush_bio;
1326 		ci.sector_count = 0;
1327 		error = __clone_and_map_empty_flush(&ci);
1328 		/* dec_pending submits any data associated with flush */
1329 	} else {
1330 		ci.bio = bio;
1331 		ci.sector_count = bio_sectors(bio);
1332 		while (ci.sector_count && !error)
1333 			error = __clone_and_map(&ci);
1334 	}
1335 
1336 	/* drop the extra reference count */
1337 	dec_pending(ci.io, error);
1338 	dm_table_put(ci.map);
1339 }
1340 /*-----------------------------------------------------------------
1341  * CRUD END
1342  *---------------------------------------------------------------*/
1343 
1344 static int dm_merge_bvec(struct request_queue *q,
1345 			 struct bvec_merge_data *bvm,
1346 			 struct bio_vec *biovec)
1347 {
1348 	struct mapped_device *md = q->queuedata;
1349 	struct dm_table *map = dm_get_live_table(md);
1350 	struct dm_target *ti;
1351 	sector_t max_sectors;
1352 	int max_size = 0;
1353 
1354 	if (unlikely(!map))
1355 		goto out;
1356 
1357 	ti = dm_table_find_target(map, bvm->bi_sector);
1358 	if (!dm_target_is_valid(ti))
1359 		goto out_table;
1360 
1361 	/*
1362 	 * Find maximum amount of I/O that won't need splitting
1363 	 */
1364 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1365 			  (sector_t) BIO_MAX_SECTORS);
1366 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1367 	if (max_size < 0)
1368 		max_size = 0;
1369 
1370 	/*
1371 	 * merge_bvec_fn() returns number of bytes
1372 	 * it can accept at this offset
1373 	 * max is precomputed maximal io size
1374 	 */
1375 	if (max_size && ti->type->merge)
1376 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1377 	/*
1378 	 * If the target doesn't support merge method and some of the devices
1379 	 * provided their merge_bvec method (we know this by looking at
1380 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1381 	 * entries.  So always set max_size to 0, and the code below allows
1382 	 * just one page.
1383 	 */
1384 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1385 
1386 		max_size = 0;
1387 
1388 out_table:
1389 	dm_table_put(map);
1390 
1391 out:
1392 	/*
1393 	 * Always allow an entire first page
1394 	 */
1395 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1396 		max_size = biovec->bv_len;
1397 
1398 	return max_size;
1399 }
1400 
1401 /*
1402  * The request function that just remaps the bio built up by
1403  * dm_merge_bvec.
1404  */
1405 static void _dm_request(struct request_queue *q, struct bio *bio)
1406 {
1407 	int rw = bio_data_dir(bio);
1408 	struct mapped_device *md = q->queuedata;
1409 	int cpu;
1410 
1411 	down_read(&md->io_lock);
1412 
1413 	cpu = part_stat_lock();
1414 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1415 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1416 	part_stat_unlock();
1417 
1418 	/* if we're suspended, we have to queue this io for later */
1419 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1420 		up_read(&md->io_lock);
1421 
1422 		if (bio_rw(bio) != READA)
1423 			queue_io(md, bio);
1424 		else
1425 			bio_io_error(bio);
1426 		return;
1427 	}
1428 
1429 	__split_and_process_bio(md, bio);
1430 	up_read(&md->io_lock);
1431 	return;
1432 }
1433 
1434 static int dm_request_based(struct mapped_device *md)
1435 {
1436 	return blk_queue_stackable(md->queue);
1437 }
1438 
1439 static void dm_request(struct request_queue *q, struct bio *bio)
1440 {
1441 	struct mapped_device *md = q->queuedata;
1442 
1443 	if (dm_request_based(md))
1444 		blk_queue_bio(q, bio);
1445 	else
1446 		_dm_request(q, bio);
1447 }
1448 
1449 void dm_dispatch_request(struct request *rq)
1450 {
1451 	int r;
1452 
1453 	if (blk_queue_io_stat(rq->q))
1454 		rq->cmd_flags |= REQ_IO_STAT;
1455 
1456 	rq->start_time = jiffies;
1457 	r = blk_insert_cloned_request(rq->q, rq);
1458 	if (r)
1459 		dm_complete_request(rq, r);
1460 }
1461 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1462 
1463 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1464 				 void *data)
1465 {
1466 	struct dm_rq_target_io *tio = data;
1467 	struct dm_rq_clone_bio_info *info =
1468 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1469 
1470 	info->orig = bio_orig;
1471 	info->tio = tio;
1472 	bio->bi_end_io = end_clone_bio;
1473 	bio->bi_private = info;
1474 
1475 	return 0;
1476 }
1477 
1478 static int setup_clone(struct request *clone, struct request *rq,
1479 		       struct dm_rq_target_io *tio)
1480 {
1481 	int r;
1482 
1483 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1484 			      dm_rq_bio_constructor, tio);
1485 	if (r)
1486 		return r;
1487 
1488 	clone->cmd = rq->cmd;
1489 	clone->cmd_len = rq->cmd_len;
1490 	clone->sense = rq->sense;
1491 	clone->buffer = rq->buffer;
1492 	clone->end_io = end_clone_request;
1493 	clone->end_io_data = tio;
1494 
1495 	return 0;
1496 }
1497 
1498 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1499 				gfp_t gfp_mask)
1500 {
1501 	struct request *clone;
1502 	struct dm_rq_target_io *tio;
1503 
1504 	tio = alloc_rq_tio(md, gfp_mask);
1505 	if (!tio)
1506 		return NULL;
1507 
1508 	tio->md = md;
1509 	tio->ti = NULL;
1510 	tio->orig = rq;
1511 	tio->error = 0;
1512 	memset(&tio->info, 0, sizeof(tio->info));
1513 
1514 	clone = &tio->clone;
1515 	if (setup_clone(clone, rq, tio)) {
1516 		/* -ENOMEM */
1517 		free_rq_tio(tio);
1518 		return NULL;
1519 	}
1520 
1521 	return clone;
1522 }
1523 
1524 /*
1525  * Called with the queue lock held.
1526  */
1527 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1528 {
1529 	struct mapped_device *md = q->queuedata;
1530 	struct request *clone;
1531 
1532 	if (unlikely(rq->special)) {
1533 		DMWARN("Already has something in rq->special.");
1534 		return BLKPREP_KILL;
1535 	}
1536 
1537 	clone = clone_rq(rq, md, GFP_ATOMIC);
1538 	if (!clone)
1539 		return BLKPREP_DEFER;
1540 
1541 	rq->special = clone;
1542 	rq->cmd_flags |= REQ_DONTPREP;
1543 
1544 	return BLKPREP_OK;
1545 }
1546 
1547 /*
1548  * Returns:
1549  * 0  : the request has been processed (not requeued)
1550  * !0 : the request has been requeued
1551  */
1552 static int map_request(struct dm_target *ti, struct request *clone,
1553 		       struct mapped_device *md)
1554 {
1555 	int r, requeued = 0;
1556 	struct dm_rq_target_io *tio = clone->end_io_data;
1557 
1558 	/*
1559 	 * Hold the md reference here for the in-flight I/O.
1560 	 * We can't rely on the reference count by device opener,
1561 	 * because the device may be closed during the request completion
1562 	 * when all bios are completed.
1563 	 * See the comment in rq_completed() too.
1564 	 */
1565 	dm_get(md);
1566 
1567 	tio->ti = ti;
1568 	r = ti->type->map_rq(ti, clone, &tio->info);
1569 	switch (r) {
1570 	case DM_MAPIO_SUBMITTED:
1571 		/* The target has taken the I/O to submit by itself later */
1572 		break;
1573 	case DM_MAPIO_REMAPPED:
1574 		/* The target has remapped the I/O so dispatch it */
1575 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1576 				     blk_rq_pos(tio->orig));
1577 		dm_dispatch_request(clone);
1578 		break;
1579 	case DM_MAPIO_REQUEUE:
1580 		/* The target wants to requeue the I/O */
1581 		dm_requeue_unmapped_request(clone);
1582 		requeued = 1;
1583 		break;
1584 	default:
1585 		if (r > 0) {
1586 			DMWARN("unimplemented target map return value: %d", r);
1587 			BUG();
1588 		}
1589 
1590 		/* The target wants to complete the I/O */
1591 		dm_kill_unmapped_request(clone, r);
1592 		break;
1593 	}
1594 
1595 	return requeued;
1596 }
1597 
1598 /*
1599  * q->request_fn for request-based dm.
1600  * Called with the queue lock held.
1601  */
1602 static void dm_request_fn(struct request_queue *q)
1603 {
1604 	struct mapped_device *md = q->queuedata;
1605 	struct dm_table *map = dm_get_live_table(md);
1606 	struct dm_target *ti;
1607 	struct request *rq, *clone;
1608 	sector_t pos;
1609 
1610 	/*
1611 	 * For suspend, check blk_queue_stopped() and increment
1612 	 * ->pending within a single queue_lock not to increment the
1613 	 * number of in-flight I/Os after the queue is stopped in
1614 	 * dm_suspend().
1615 	 */
1616 	while (!blk_queue_stopped(q)) {
1617 		rq = blk_peek_request(q);
1618 		if (!rq)
1619 			goto delay_and_out;
1620 
1621 		/* always use block 0 to find the target for flushes for now */
1622 		pos = 0;
1623 		if (!(rq->cmd_flags & REQ_FLUSH))
1624 			pos = blk_rq_pos(rq);
1625 
1626 		ti = dm_table_find_target(map, pos);
1627 		BUG_ON(!dm_target_is_valid(ti));
1628 
1629 		if (ti->type->busy && ti->type->busy(ti))
1630 			goto delay_and_out;
1631 
1632 		blk_start_request(rq);
1633 		clone = rq->special;
1634 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1635 
1636 		spin_unlock(q->queue_lock);
1637 		if (map_request(ti, clone, md))
1638 			goto requeued;
1639 
1640 		BUG_ON(!irqs_disabled());
1641 		spin_lock(q->queue_lock);
1642 	}
1643 
1644 	goto out;
1645 
1646 requeued:
1647 	BUG_ON(!irqs_disabled());
1648 	spin_lock(q->queue_lock);
1649 
1650 delay_and_out:
1651 	blk_delay_queue(q, HZ / 10);
1652 out:
1653 	dm_table_put(map);
1654 
1655 	return;
1656 }
1657 
1658 int dm_underlying_device_busy(struct request_queue *q)
1659 {
1660 	return blk_lld_busy(q);
1661 }
1662 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1663 
1664 static int dm_lld_busy(struct request_queue *q)
1665 {
1666 	int r;
1667 	struct mapped_device *md = q->queuedata;
1668 	struct dm_table *map = dm_get_live_table(md);
1669 
1670 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1671 		r = 1;
1672 	else
1673 		r = dm_table_any_busy_target(map);
1674 
1675 	dm_table_put(map);
1676 
1677 	return r;
1678 }
1679 
1680 static int dm_any_congested(void *congested_data, int bdi_bits)
1681 {
1682 	int r = bdi_bits;
1683 	struct mapped_device *md = congested_data;
1684 	struct dm_table *map;
1685 
1686 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1687 		map = dm_get_live_table(md);
1688 		if (map) {
1689 			/*
1690 			 * Request-based dm cares about only own queue for
1691 			 * the query about congestion status of request_queue
1692 			 */
1693 			if (dm_request_based(md))
1694 				r = md->queue->backing_dev_info.state &
1695 				    bdi_bits;
1696 			else
1697 				r = dm_table_any_congested(map, bdi_bits);
1698 
1699 			dm_table_put(map);
1700 		}
1701 	}
1702 
1703 	return r;
1704 }
1705 
1706 /*-----------------------------------------------------------------
1707  * An IDR is used to keep track of allocated minor numbers.
1708  *---------------------------------------------------------------*/
1709 static void free_minor(int minor)
1710 {
1711 	spin_lock(&_minor_lock);
1712 	idr_remove(&_minor_idr, minor);
1713 	spin_unlock(&_minor_lock);
1714 }
1715 
1716 /*
1717  * See if the device with a specific minor # is free.
1718  */
1719 static int specific_minor(int minor)
1720 {
1721 	int r, m;
1722 
1723 	if (minor >= (1 << MINORBITS))
1724 		return -EINVAL;
1725 
1726 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1727 	if (!r)
1728 		return -ENOMEM;
1729 
1730 	spin_lock(&_minor_lock);
1731 
1732 	if (idr_find(&_minor_idr, minor)) {
1733 		r = -EBUSY;
1734 		goto out;
1735 	}
1736 
1737 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1738 	if (r)
1739 		goto out;
1740 
1741 	if (m != minor) {
1742 		idr_remove(&_minor_idr, m);
1743 		r = -EBUSY;
1744 		goto out;
1745 	}
1746 
1747 out:
1748 	spin_unlock(&_minor_lock);
1749 	return r;
1750 }
1751 
1752 static int next_free_minor(int *minor)
1753 {
1754 	int r, m;
1755 
1756 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1757 	if (!r)
1758 		return -ENOMEM;
1759 
1760 	spin_lock(&_minor_lock);
1761 
1762 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1763 	if (r)
1764 		goto out;
1765 
1766 	if (m >= (1 << MINORBITS)) {
1767 		idr_remove(&_minor_idr, m);
1768 		r = -ENOSPC;
1769 		goto out;
1770 	}
1771 
1772 	*minor = m;
1773 
1774 out:
1775 	spin_unlock(&_minor_lock);
1776 	return r;
1777 }
1778 
1779 static const struct block_device_operations dm_blk_dops;
1780 
1781 static void dm_wq_work(struct work_struct *work);
1782 
1783 static void dm_init_md_queue(struct mapped_device *md)
1784 {
1785 	/*
1786 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1787 	 * devices.  The type of this dm device has not been decided yet.
1788 	 * The type is decided at the first table loading time.
1789 	 * To prevent problematic device stacking, clear the queue flag
1790 	 * for request stacking support until then.
1791 	 *
1792 	 * This queue is new, so no concurrency on the queue_flags.
1793 	 */
1794 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1795 
1796 	md->queue->queuedata = md;
1797 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1798 	md->queue->backing_dev_info.congested_data = md;
1799 	blk_queue_make_request(md->queue, dm_request);
1800 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1801 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1802 }
1803 
1804 /*
1805  * Allocate and initialise a blank device with a given minor.
1806  */
1807 static struct mapped_device *alloc_dev(int minor)
1808 {
1809 	int r;
1810 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1811 	void *old_md;
1812 
1813 	if (!md) {
1814 		DMWARN("unable to allocate device, out of memory.");
1815 		return NULL;
1816 	}
1817 
1818 	if (!try_module_get(THIS_MODULE))
1819 		goto bad_module_get;
1820 
1821 	/* get a minor number for the dev */
1822 	if (minor == DM_ANY_MINOR)
1823 		r = next_free_minor(&minor);
1824 	else
1825 		r = specific_minor(minor);
1826 	if (r < 0)
1827 		goto bad_minor;
1828 
1829 	md->type = DM_TYPE_NONE;
1830 	init_rwsem(&md->io_lock);
1831 	mutex_init(&md->suspend_lock);
1832 	mutex_init(&md->type_lock);
1833 	spin_lock_init(&md->deferred_lock);
1834 	rwlock_init(&md->map_lock);
1835 	atomic_set(&md->holders, 1);
1836 	atomic_set(&md->open_count, 0);
1837 	atomic_set(&md->event_nr, 0);
1838 	atomic_set(&md->uevent_seq, 0);
1839 	INIT_LIST_HEAD(&md->uevent_list);
1840 	spin_lock_init(&md->uevent_lock);
1841 
1842 	md->queue = blk_alloc_queue(GFP_KERNEL);
1843 	if (!md->queue)
1844 		goto bad_queue;
1845 
1846 	dm_init_md_queue(md);
1847 
1848 	md->disk = alloc_disk(1);
1849 	if (!md->disk)
1850 		goto bad_disk;
1851 
1852 	atomic_set(&md->pending[0], 0);
1853 	atomic_set(&md->pending[1], 0);
1854 	init_waitqueue_head(&md->wait);
1855 	INIT_WORK(&md->work, dm_wq_work);
1856 	init_waitqueue_head(&md->eventq);
1857 
1858 	md->disk->major = _major;
1859 	md->disk->first_minor = minor;
1860 	md->disk->fops = &dm_blk_dops;
1861 	md->disk->queue = md->queue;
1862 	md->disk->private_data = md;
1863 	sprintf(md->disk->disk_name, "dm-%d", minor);
1864 	add_disk(md->disk);
1865 	format_dev_t(md->name, MKDEV(_major, minor));
1866 
1867 	md->wq = alloc_workqueue("kdmflush",
1868 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1869 	if (!md->wq)
1870 		goto bad_thread;
1871 
1872 	md->bdev = bdget_disk(md->disk, 0);
1873 	if (!md->bdev)
1874 		goto bad_bdev;
1875 
1876 	bio_init(&md->flush_bio);
1877 	md->flush_bio.bi_bdev = md->bdev;
1878 	md->flush_bio.bi_rw = WRITE_FLUSH;
1879 
1880 	/* Populate the mapping, nobody knows we exist yet */
1881 	spin_lock(&_minor_lock);
1882 	old_md = idr_replace(&_minor_idr, md, minor);
1883 	spin_unlock(&_minor_lock);
1884 
1885 	BUG_ON(old_md != MINOR_ALLOCED);
1886 
1887 	return md;
1888 
1889 bad_bdev:
1890 	destroy_workqueue(md->wq);
1891 bad_thread:
1892 	del_gendisk(md->disk);
1893 	put_disk(md->disk);
1894 bad_disk:
1895 	blk_cleanup_queue(md->queue);
1896 bad_queue:
1897 	free_minor(minor);
1898 bad_minor:
1899 	module_put(THIS_MODULE);
1900 bad_module_get:
1901 	kfree(md);
1902 	return NULL;
1903 }
1904 
1905 static void unlock_fs(struct mapped_device *md);
1906 
1907 static void free_dev(struct mapped_device *md)
1908 {
1909 	int minor = MINOR(disk_devt(md->disk));
1910 
1911 	unlock_fs(md);
1912 	bdput(md->bdev);
1913 	destroy_workqueue(md->wq);
1914 	if (md->tio_pool)
1915 		mempool_destroy(md->tio_pool);
1916 	if (md->io_pool)
1917 		mempool_destroy(md->io_pool);
1918 	if (md->bs)
1919 		bioset_free(md->bs);
1920 	blk_integrity_unregister(md->disk);
1921 	del_gendisk(md->disk);
1922 	free_minor(minor);
1923 
1924 	spin_lock(&_minor_lock);
1925 	md->disk->private_data = NULL;
1926 	spin_unlock(&_minor_lock);
1927 
1928 	put_disk(md->disk);
1929 	blk_cleanup_queue(md->queue);
1930 	module_put(THIS_MODULE);
1931 	kfree(md);
1932 }
1933 
1934 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1935 {
1936 	struct dm_md_mempools *p;
1937 
1938 	if (md->io_pool && md->tio_pool && md->bs)
1939 		/* the md already has necessary mempools */
1940 		goto out;
1941 
1942 	p = dm_table_get_md_mempools(t);
1943 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1944 
1945 	md->io_pool = p->io_pool;
1946 	p->io_pool = NULL;
1947 	md->tio_pool = p->tio_pool;
1948 	p->tio_pool = NULL;
1949 	md->bs = p->bs;
1950 	p->bs = NULL;
1951 
1952 out:
1953 	/* mempool bind completed, now no need any mempools in the table */
1954 	dm_table_free_md_mempools(t);
1955 }
1956 
1957 /*
1958  * Bind a table to the device.
1959  */
1960 static void event_callback(void *context)
1961 {
1962 	unsigned long flags;
1963 	LIST_HEAD(uevents);
1964 	struct mapped_device *md = (struct mapped_device *) context;
1965 
1966 	spin_lock_irqsave(&md->uevent_lock, flags);
1967 	list_splice_init(&md->uevent_list, &uevents);
1968 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1969 
1970 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1971 
1972 	atomic_inc(&md->event_nr);
1973 	wake_up(&md->eventq);
1974 }
1975 
1976 /*
1977  * Protected by md->suspend_lock obtained by dm_swap_table().
1978  */
1979 static void __set_size(struct mapped_device *md, sector_t size)
1980 {
1981 	set_capacity(md->disk, size);
1982 
1983 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1984 }
1985 
1986 /*
1987  * Return 1 if the queue has a compulsory merge_bvec_fn function.
1988  *
1989  * If this function returns 0, then the device is either a non-dm
1990  * device without a merge_bvec_fn, or it is a dm device that is
1991  * able to split any bios it receives that are too big.
1992  */
1993 int dm_queue_merge_is_compulsory(struct request_queue *q)
1994 {
1995 	struct mapped_device *dev_md;
1996 
1997 	if (!q->merge_bvec_fn)
1998 		return 0;
1999 
2000 	if (q->make_request_fn == dm_request) {
2001 		dev_md = q->queuedata;
2002 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2003 			return 0;
2004 	}
2005 
2006 	return 1;
2007 }
2008 
2009 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2010 					 struct dm_dev *dev, sector_t start,
2011 					 sector_t len, void *data)
2012 {
2013 	struct block_device *bdev = dev->bdev;
2014 	struct request_queue *q = bdev_get_queue(bdev);
2015 
2016 	return dm_queue_merge_is_compulsory(q);
2017 }
2018 
2019 /*
2020  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2021  * on the properties of the underlying devices.
2022  */
2023 static int dm_table_merge_is_optional(struct dm_table *table)
2024 {
2025 	unsigned i = 0;
2026 	struct dm_target *ti;
2027 
2028 	while (i < dm_table_get_num_targets(table)) {
2029 		ti = dm_table_get_target(table, i++);
2030 
2031 		if (ti->type->iterate_devices &&
2032 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2033 			return 0;
2034 	}
2035 
2036 	return 1;
2037 }
2038 
2039 /*
2040  * Returns old map, which caller must destroy.
2041  */
2042 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2043 			       struct queue_limits *limits)
2044 {
2045 	struct dm_table *old_map;
2046 	struct request_queue *q = md->queue;
2047 	sector_t size;
2048 	unsigned long flags;
2049 	int merge_is_optional;
2050 
2051 	size = dm_table_get_size(t);
2052 
2053 	/*
2054 	 * Wipe any geometry if the size of the table changed.
2055 	 */
2056 	if (size != get_capacity(md->disk))
2057 		memset(&md->geometry, 0, sizeof(md->geometry));
2058 
2059 	__set_size(md, size);
2060 
2061 	dm_table_event_callback(t, event_callback, md);
2062 
2063 	/*
2064 	 * The queue hasn't been stopped yet, if the old table type wasn't
2065 	 * for request-based during suspension.  So stop it to prevent
2066 	 * I/O mapping before resume.
2067 	 * This must be done before setting the queue restrictions,
2068 	 * because request-based dm may be run just after the setting.
2069 	 */
2070 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2071 		stop_queue(q);
2072 
2073 	__bind_mempools(md, t);
2074 
2075 	merge_is_optional = dm_table_merge_is_optional(t);
2076 
2077 	write_lock_irqsave(&md->map_lock, flags);
2078 	old_map = md->map;
2079 	md->map = t;
2080 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2081 
2082 	dm_table_set_restrictions(t, q, limits);
2083 	if (merge_is_optional)
2084 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2085 	else
2086 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2087 	write_unlock_irqrestore(&md->map_lock, flags);
2088 
2089 	return old_map;
2090 }
2091 
2092 /*
2093  * Returns unbound table for the caller to free.
2094  */
2095 static struct dm_table *__unbind(struct mapped_device *md)
2096 {
2097 	struct dm_table *map = md->map;
2098 	unsigned long flags;
2099 
2100 	if (!map)
2101 		return NULL;
2102 
2103 	dm_table_event_callback(map, NULL, NULL);
2104 	write_lock_irqsave(&md->map_lock, flags);
2105 	md->map = NULL;
2106 	write_unlock_irqrestore(&md->map_lock, flags);
2107 
2108 	return map;
2109 }
2110 
2111 /*
2112  * Constructor for a new device.
2113  */
2114 int dm_create(int minor, struct mapped_device **result)
2115 {
2116 	struct mapped_device *md;
2117 
2118 	md = alloc_dev(minor);
2119 	if (!md)
2120 		return -ENXIO;
2121 
2122 	dm_sysfs_init(md);
2123 
2124 	*result = md;
2125 	return 0;
2126 }
2127 
2128 /*
2129  * Functions to manage md->type.
2130  * All are required to hold md->type_lock.
2131  */
2132 void dm_lock_md_type(struct mapped_device *md)
2133 {
2134 	mutex_lock(&md->type_lock);
2135 }
2136 
2137 void dm_unlock_md_type(struct mapped_device *md)
2138 {
2139 	mutex_unlock(&md->type_lock);
2140 }
2141 
2142 void dm_set_md_type(struct mapped_device *md, unsigned type)
2143 {
2144 	md->type = type;
2145 }
2146 
2147 unsigned dm_get_md_type(struct mapped_device *md)
2148 {
2149 	return md->type;
2150 }
2151 
2152 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2153 {
2154 	return md->immutable_target_type;
2155 }
2156 
2157 /*
2158  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2159  */
2160 static int dm_init_request_based_queue(struct mapped_device *md)
2161 {
2162 	struct request_queue *q = NULL;
2163 
2164 	if (md->queue->elevator)
2165 		return 1;
2166 
2167 	/* Fully initialize the queue */
2168 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2169 	if (!q)
2170 		return 0;
2171 
2172 	md->queue = q;
2173 	dm_init_md_queue(md);
2174 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2175 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2176 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2177 
2178 	elv_register_queue(md->queue);
2179 
2180 	return 1;
2181 }
2182 
2183 /*
2184  * Setup the DM device's queue based on md's type
2185  */
2186 int dm_setup_md_queue(struct mapped_device *md)
2187 {
2188 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2189 	    !dm_init_request_based_queue(md)) {
2190 		DMWARN("Cannot initialize queue for request-based mapped device");
2191 		return -EINVAL;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static struct mapped_device *dm_find_md(dev_t dev)
2198 {
2199 	struct mapped_device *md;
2200 	unsigned minor = MINOR(dev);
2201 
2202 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2203 		return NULL;
2204 
2205 	spin_lock(&_minor_lock);
2206 
2207 	md = idr_find(&_minor_idr, minor);
2208 	if (md && (md == MINOR_ALLOCED ||
2209 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2210 		   dm_deleting_md(md) ||
2211 		   test_bit(DMF_FREEING, &md->flags))) {
2212 		md = NULL;
2213 		goto out;
2214 	}
2215 
2216 out:
2217 	spin_unlock(&_minor_lock);
2218 
2219 	return md;
2220 }
2221 
2222 struct mapped_device *dm_get_md(dev_t dev)
2223 {
2224 	struct mapped_device *md = dm_find_md(dev);
2225 
2226 	if (md)
2227 		dm_get(md);
2228 
2229 	return md;
2230 }
2231 EXPORT_SYMBOL_GPL(dm_get_md);
2232 
2233 void *dm_get_mdptr(struct mapped_device *md)
2234 {
2235 	return md->interface_ptr;
2236 }
2237 
2238 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2239 {
2240 	md->interface_ptr = ptr;
2241 }
2242 
2243 void dm_get(struct mapped_device *md)
2244 {
2245 	atomic_inc(&md->holders);
2246 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2247 }
2248 
2249 const char *dm_device_name(struct mapped_device *md)
2250 {
2251 	return md->name;
2252 }
2253 EXPORT_SYMBOL_GPL(dm_device_name);
2254 
2255 static void __dm_destroy(struct mapped_device *md, bool wait)
2256 {
2257 	struct dm_table *map;
2258 
2259 	might_sleep();
2260 
2261 	spin_lock(&_minor_lock);
2262 	map = dm_get_live_table(md);
2263 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2264 	set_bit(DMF_FREEING, &md->flags);
2265 	spin_unlock(&_minor_lock);
2266 
2267 	if (!dm_suspended_md(md)) {
2268 		dm_table_presuspend_targets(map);
2269 		dm_table_postsuspend_targets(map);
2270 	}
2271 
2272 	/*
2273 	 * Rare, but there may be I/O requests still going to complete,
2274 	 * for example.  Wait for all references to disappear.
2275 	 * No one should increment the reference count of the mapped_device,
2276 	 * after the mapped_device state becomes DMF_FREEING.
2277 	 */
2278 	if (wait)
2279 		while (atomic_read(&md->holders))
2280 			msleep(1);
2281 	else if (atomic_read(&md->holders))
2282 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2283 		       dm_device_name(md), atomic_read(&md->holders));
2284 
2285 	dm_sysfs_exit(md);
2286 	dm_table_put(map);
2287 	dm_table_destroy(__unbind(md));
2288 	free_dev(md);
2289 }
2290 
2291 void dm_destroy(struct mapped_device *md)
2292 {
2293 	__dm_destroy(md, true);
2294 }
2295 
2296 void dm_destroy_immediate(struct mapped_device *md)
2297 {
2298 	__dm_destroy(md, false);
2299 }
2300 
2301 void dm_put(struct mapped_device *md)
2302 {
2303 	atomic_dec(&md->holders);
2304 }
2305 EXPORT_SYMBOL_GPL(dm_put);
2306 
2307 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2308 {
2309 	int r = 0;
2310 	DECLARE_WAITQUEUE(wait, current);
2311 
2312 	add_wait_queue(&md->wait, &wait);
2313 
2314 	while (1) {
2315 		set_current_state(interruptible);
2316 
2317 		if (!md_in_flight(md))
2318 			break;
2319 
2320 		if (interruptible == TASK_INTERRUPTIBLE &&
2321 		    signal_pending(current)) {
2322 			r = -EINTR;
2323 			break;
2324 		}
2325 
2326 		io_schedule();
2327 	}
2328 	set_current_state(TASK_RUNNING);
2329 
2330 	remove_wait_queue(&md->wait, &wait);
2331 
2332 	return r;
2333 }
2334 
2335 /*
2336  * Process the deferred bios
2337  */
2338 static void dm_wq_work(struct work_struct *work)
2339 {
2340 	struct mapped_device *md = container_of(work, struct mapped_device,
2341 						work);
2342 	struct bio *c;
2343 
2344 	down_read(&md->io_lock);
2345 
2346 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2347 		spin_lock_irq(&md->deferred_lock);
2348 		c = bio_list_pop(&md->deferred);
2349 		spin_unlock_irq(&md->deferred_lock);
2350 
2351 		if (!c)
2352 			break;
2353 
2354 		up_read(&md->io_lock);
2355 
2356 		if (dm_request_based(md))
2357 			generic_make_request(c);
2358 		else
2359 			__split_and_process_bio(md, c);
2360 
2361 		down_read(&md->io_lock);
2362 	}
2363 
2364 	up_read(&md->io_lock);
2365 }
2366 
2367 static void dm_queue_flush(struct mapped_device *md)
2368 {
2369 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2370 	smp_mb__after_clear_bit();
2371 	queue_work(md->wq, &md->work);
2372 }
2373 
2374 /*
2375  * Swap in a new table, returning the old one for the caller to destroy.
2376  */
2377 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2378 {
2379 	struct dm_table *map = ERR_PTR(-EINVAL);
2380 	struct queue_limits limits;
2381 	int r;
2382 
2383 	mutex_lock(&md->suspend_lock);
2384 
2385 	/* device must be suspended */
2386 	if (!dm_suspended_md(md))
2387 		goto out;
2388 
2389 	r = dm_calculate_queue_limits(table, &limits);
2390 	if (r) {
2391 		map = ERR_PTR(r);
2392 		goto out;
2393 	}
2394 
2395 	map = __bind(md, table, &limits);
2396 
2397 out:
2398 	mutex_unlock(&md->suspend_lock);
2399 	return map;
2400 }
2401 
2402 /*
2403  * Functions to lock and unlock any filesystem running on the
2404  * device.
2405  */
2406 static int lock_fs(struct mapped_device *md)
2407 {
2408 	int r;
2409 
2410 	WARN_ON(md->frozen_sb);
2411 
2412 	md->frozen_sb = freeze_bdev(md->bdev);
2413 	if (IS_ERR(md->frozen_sb)) {
2414 		r = PTR_ERR(md->frozen_sb);
2415 		md->frozen_sb = NULL;
2416 		return r;
2417 	}
2418 
2419 	set_bit(DMF_FROZEN, &md->flags);
2420 
2421 	return 0;
2422 }
2423 
2424 static void unlock_fs(struct mapped_device *md)
2425 {
2426 	if (!test_bit(DMF_FROZEN, &md->flags))
2427 		return;
2428 
2429 	thaw_bdev(md->bdev, md->frozen_sb);
2430 	md->frozen_sb = NULL;
2431 	clear_bit(DMF_FROZEN, &md->flags);
2432 }
2433 
2434 /*
2435  * We need to be able to change a mapping table under a mounted
2436  * filesystem.  For example we might want to move some data in
2437  * the background.  Before the table can be swapped with
2438  * dm_bind_table, dm_suspend must be called to flush any in
2439  * flight bios and ensure that any further io gets deferred.
2440  */
2441 /*
2442  * Suspend mechanism in request-based dm.
2443  *
2444  * 1. Flush all I/Os by lock_fs() if needed.
2445  * 2. Stop dispatching any I/O by stopping the request_queue.
2446  * 3. Wait for all in-flight I/Os to be completed or requeued.
2447  *
2448  * To abort suspend, start the request_queue.
2449  */
2450 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2451 {
2452 	struct dm_table *map = NULL;
2453 	int r = 0;
2454 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2455 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2456 
2457 	mutex_lock(&md->suspend_lock);
2458 
2459 	if (dm_suspended_md(md)) {
2460 		r = -EINVAL;
2461 		goto out_unlock;
2462 	}
2463 
2464 	map = dm_get_live_table(md);
2465 
2466 	/*
2467 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2468 	 * This flag is cleared before dm_suspend returns.
2469 	 */
2470 	if (noflush)
2471 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2472 
2473 	/* This does not get reverted if there's an error later. */
2474 	dm_table_presuspend_targets(map);
2475 
2476 	/*
2477 	 * Flush I/O to the device.
2478 	 * Any I/O submitted after lock_fs() may not be flushed.
2479 	 * noflush takes precedence over do_lockfs.
2480 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2481 	 */
2482 	if (!noflush && do_lockfs) {
2483 		r = lock_fs(md);
2484 		if (r)
2485 			goto out;
2486 	}
2487 
2488 	/*
2489 	 * Here we must make sure that no processes are submitting requests
2490 	 * to target drivers i.e. no one may be executing
2491 	 * __split_and_process_bio. This is called from dm_request and
2492 	 * dm_wq_work.
2493 	 *
2494 	 * To get all processes out of __split_and_process_bio in dm_request,
2495 	 * we take the write lock. To prevent any process from reentering
2496 	 * __split_and_process_bio from dm_request and quiesce the thread
2497 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2498 	 * flush_workqueue(md->wq).
2499 	 */
2500 	down_write(&md->io_lock);
2501 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2502 	up_write(&md->io_lock);
2503 
2504 	/*
2505 	 * Stop md->queue before flushing md->wq in case request-based
2506 	 * dm defers requests to md->wq from md->queue.
2507 	 */
2508 	if (dm_request_based(md))
2509 		stop_queue(md->queue);
2510 
2511 	flush_workqueue(md->wq);
2512 
2513 	/*
2514 	 * At this point no more requests are entering target request routines.
2515 	 * We call dm_wait_for_completion to wait for all existing requests
2516 	 * to finish.
2517 	 */
2518 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2519 
2520 	down_write(&md->io_lock);
2521 	if (noflush)
2522 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2523 	up_write(&md->io_lock);
2524 
2525 	/* were we interrupted ? */
2526 	if (r < 0) {
2527 		dm_queue_flush(md);
2528 
2529 		if (dm_request_based(md))
2530 			start_queue(md->queue);
2531 
2532 		unlock_fs(md);
2533 		goto out; /* pushback list is already flushed, so skip flush */
2534 	}
2535 
2536 	/*
2537 	 * If dm_wait_for_completion returned 0, the device is completely
2538 	 * quiescent now. There is no request-processing activity. All new
2539 	 * requests are being added to md->deferred list.
2540 	 */
2541 
2542 	set_bit(DMF_SUSPENDED, &md->flags);
2543 
2544 	dm_table_postsuspend_targets(map);
2545 
2546 out:
2547 	dm_table_put(map);
2548 
2549 out_unlock:
2550 	mutex_unlock(&md->suspend_lock);
2551 	return r;
2552 }
2553 
2554 int dm_resume(struct mapped_device *md)
2555 {
2556 	int r = -EINVAL;
2557 	struct dm_table *map = NULL;
2558 
2559 	mutex_lock(&md->suspend_lock);
2560 	if (!dm_suspended_md(md))
2561 		goto out;
2562 
2563 	map = dm_get_live_table(md);
2564 	if (!map || !dm_table_get_size(map))
2565 		goto out;
2566 
2567 	r = dm_table_resume_targets(map);
2568 	if (r)
2569 		goto out;
2570 
2571 	dm_queue_flush(md);
2572 
2573 	/*
2574 	 * Flushing deferred I/Os must be done after targets are resumed
2575 	 * so that mapping of targets can work correctly.
2576 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2577 	 */
2578 	if (dm_request_based(md))
2579 		start_queue(md->queue);
2580 
2581 	unlock_fs(md);
2582 
2583 	clear_bit(DMF_SUSPENDED, &md->flags);
2584 
2585 	r = 0;
2586 out:
2587 	dm_table_put(map);
2588 	mutex_unlock(&md->suspend_lock);
2589 
2590 	return r;
2591 }
2592 
2593 /*-----------------------------------------------------------------
2594  * Event notification.
2595  *---------------------------------------------------------------*/
2596 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2597 		       unsigned cookie)
2598 {
2599 	char udev_cookie[DM_COOKIE_LENGTH];
2600 	char *envp[] = { udev_cookie, NULL };
2601 
2602 	if (!cookie)
2603 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2604 	else {
2605 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2606 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2607 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2608 					  action, envp);
2609 	}
2610 }
2611 
2612 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2613 {
2614 	return atomic_add_return(1, &md->uevent_seq);
2615 }
2616 
2617 uint32_t dm_get_event_nr(struct mapped_device *md)
2618 {
2619 	return atomic_read(&md->event_nr);
2620 }
2621 
2622 int dm_wait_event(struct mapped_device *md, int event_nr)
2623 {
2624 	return wait_event_interruptible(md->eventq,
2625 			(event_nr != atomic_read(&md->event_nr)));
2626 }
2627 
2628 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2629 {
2630 	unsigned long flags;
2631 
2632 	spin_lock_irqsave(&md->uevent_lock, flags);
2633 	list_add(elist, &md->uevent_list);
2634 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2635 }
2636 
2637 /*
2638  * The gendisk is only valid as long as you have a reference
2639  * count on 'md'.
2640  */
2641 struct gendisk *dm_disk(struct mapped_device *md)
2642 {
2643 	return md->disk;
2644 }
2645 
2646 struct kobject *dm_kobject(struct mapped_device *md)
2647 {
2648 	return &md->kobj;
2649 }
2650 
2651 /*
2652  * struct mapped_device should not be exported outside of dm.c
2653  * so use this check to verify that kobj is part of md structure
2654  */
2655 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2656 {
2657 	struct mapped_device *md;
2658 
2659 	md = container_of(kobj, struct mapped_device, kobj);
2660 	if (&md->kobj != kobj)
2661 		return NULL;
2662 
2663 	if (test_bit(DMF_FREEING, &md->flags) ||
2664 	    dm_deleting_md(md))
2665 		return NULL;
2666 
2667 	dm_get(md);
2668 	return md;
2669 }
2670 
2671 int dm_suspended_md(struct mapped_device *md)
2672 {
2673 	return test_bit(DMF_SUSPENDED, &md->flags);
2674 }
2675 
2676 int dm_suspended(struct dm_target *ti)
2677 {
2678 	return dm_suspended_md(dm_table_get_md(ti->table));
2679 }
2680 EXPORT_SYMBOL_GPL(dm_suspended);
2681 
2682 int dm_noflush_suspending(struct dm_target *ti)
2683 {
2684 	return __noflush_suspending(dm_table_get_md(ti->table));
2685 }
2686 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2687 
2688 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2689 {
2690 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2691 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2692 
2693 	if (!pools)
2694 		return NULL;
2695 
2696 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2697 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2698 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2699 	if (!pools->io_pool)
2700 		goto free_pools_and_out;
2701 
2702 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2703 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2704 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2705 	if (!pools->tio_pool)
2706 		goto free_io_pool_and_out;
2707 
2708 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2709 		bioset_create(pool_size, 0) :
2710 		bioset_create(pool_size,
2711 			      offsetof(struct dm_rq_clone_bio_info, clone));
2712 	if (!pools->bs)
2713 		goto free_tio_pool_and_out;
2714 
2715 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 		goto free_bioset_and_out;
2717 
2718 	return pools;
2719 
2720 free_bioset_and_out:
2721 	bioset_free(pools->bs);
2722 
2723 free_tio_pool_and_out:
2724 	mempool_destroy(pools->tio_pool);
2725 
2726 free_io_pool_and_out:
2727 	mempool_destroy(pools->io_pool);
2728 
2729 free_pools_and_out:
2730 	kfree(pools);
2731 
2732 	return NULL;
2733 }
2734 
2735 void dm_free_md_mempools(struct dm_md_mempools *pools)
2736 {
2737 	if (!pools)
2738 		return;
2739 
2740 	if (pools->io_pool)
2741 		mempool_destroy(pools->io_pool);
2742 
2743 	if (pools->tio_pool)
2744 		mempool_destroy(pools->tio_pool);
2745 
2746 	if (pools->bs)
2747 		bioset_free(pools->bs);
2748 
2749 	kfree(pools);
2750 }
2751 
2752 static const struct block_device_operations dm_blk_dops = {
2753 	.open = dm_blk_open,
2754 	.release = dm_blk_close,
2755 	.ioctl = dm_blk_ioctl,
2756 	.getgeo = dm_blk_getgeo,
2757 	.owner = THIS_MODULE
2758 };
2759 
2760 EXPORT_SYMBOL(dm_get_mapinfo);
2761 
2762 /*
2763  * module hooks
2764  */
2765 module_init(dm_init);
2766 module_exit(dm_exit);
2767 
2768 module_param(major, uint, 0);
2769 MODULE_PARM_DESC(major, "The major number of the device mapper");
2770 MODULE_DESCRIPTION(DM_NAME " driver");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");
2773