xref: /openbmc/linux/drivers/md/dm.c (revision 93e6442c76a0d26ad028c5df9b4a1e3096d9c36b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
24 #include <linux/wait.h>
25 #include <linux/pr.h>
26 
27 #define DM_MSG_PREFIX "core"
28 
29 #ifdef CONFIG_PRINTK
30 /*
31  * ratelimit state to be used in DMXXX_LIMIT().
32  */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 		       DEFAULT_RATELIMIT_INTERVAL,
35 		       DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38 
39 /*
40  * Cookies are numeric values sent with CHANGE and REMOVE
41  * uevents while resuming, removing or renaming the device.
42  */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45 
46 static const char *_name = DM_NAME;
47 
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50 
51 static DEFINE_IDR(_minor_idr);
52 
53 static DEFINE_SPINLOCK(_minor_lock);
54 
55 static void do_deferred_remove(struct work_struct *w);
56 
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 
59 static struct workqueue_struct *deferred_remove_workqueue;
60 
61 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
62 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
63 
64 /*
65  * One of these is allocated per bio.
66  */
67 struct dm_io {
68 	struct mapped_device *md;
69 	blk_status_t status;
70 	atomic_t io_count;
71 	struct bio *bio;
72 	unsigned long start_time;
73 	spinlock_t endio_lock;
74 	struct dm_stats_aux stats_aux;
75 };
76 
77 #define MINOR_ALLOCED ((void *)-1)
78 
79 /*
80  * Bits for the md->flags field.
81  */
82 #define DMF_BLOCK_IO_FOR_SUSPEND 0
83 #define DMF_SUSPENDED 1
84 #define DMF_FROZEN 2
85 #define DMF_FREEING 3
86 #define DMF_DELETING 4
87 #define DMF_NOFLUSH_SUSPENDING 5
88 #define DMF_DEFERRED_REMOVE 6
89 #define DMF_SUSPENDED_INTERNALLY 7
90 
91 #define DM_NUMA_NODE NUMA_NO_NODE
92 static int dm_numa_node = DM_NUMA_NODE;
93 
94 /*
95  * For mempools pre-allocation at the table loading time.
96  */
97 struct dm_md_mempools {
98 	mempool_t *io_pool;
99 	struct bio_set *bs;
100 };
101 
102 struct table_device {
103 	struct list_head list;
104 	atomic_t count;
105 	struct dm_dev dm_dev;
106 };
107 
108 static struct kmem_cache *_io_cache;
109 static struct kmem_cache *_rq_tio_cache;
110 static struct kmem_cache *_rq_cache;
111 
112 /*
113  * Bio-based DM's mempools' reserved IOs set by the user.
114  */
115 #define RESERVED_BIO_BASED_IOS		16
116 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
117 
118 static int __dm_get_module_param_int(int *module_param, int min, int max)
119 {
120 	int param = ACCESS_ONCE(*module_param);
121 	int modified_param = 0;
122 	bool modified = true;
123 
124 	if (param < min)
125 		modified_param = min;
126 	else if (param > max)
127 		modified_param = max;
128 	else
129 		modified = false;
130 
131 	if (modified) {
132 		(void)cmpxchg(module_param, param, modified_param);
133 		param = modified_param;
134 	}
135 
136 	return param;
137 }
138 
139 unsigned __dm_get_module_param(unsigned *module_param,
140 			       unsigned def, unsigned max)
141 {
142 	unsigned param = ACCESS_ONCE(*module_param);
143 	unsigned modified_param = 0;
144 
145 	if (!param)
146 		modified_param = def;
147 	else if (param > max)
148 		modified_param = max;
149 
150 	if (modified_param) {
151 		(void)cmpxchg(module_param, param, modified_param);
152 		param = modified_param;
153 	}
154 
155 	return param;
156 }
157 
158 unsigned dm_get_reserved_bio_based_ios(void)
159 {
160 	return __dm_get_module_param(&reserved_bio_based_ios,
161 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
162 }
163 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
164 
165 static unsigned dm_get_numa_node(void)
166 {
167 	return __dm_get_module_param_int(&dm_numa_node,
168 					 DM_NUMA_NODE, num_online_nodes() - 1);
169 }
170 
171 static int __init local_init(void)
172 {
173 	int r = -ENOMEM;
174 
175 	/* allocate a slab for the dm_ios */
176 	_io_cache = KMEM_CACHE(dm_io, 0);
177 	if (!_io_cache)
178 		return r;
179 
180 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
181 	if (!_rq_tio_cache)
182 		goto out_free_io_cache;
183 
184 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
185 				      __alignof__(struct request), 0, NULL);
186 	if (!_rq_cache)
187 		goto out_free_rq_tio_cache;
188 
189 	r = dm_uevent_init();
190 	if (r)
191 		goto out_free_rq_cache;
192 
193 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
194 	if (!deferred_remove_workqueue) {
195 		r = -ENOMEM;
196 		goto out_uevent_exit;
197 	}
198 
199 	_major = major;
200 	r = register_blkdev(_major, _name);
201 	if (r < 0)
202 		goto out_free_workqueue;
203 
204 	if (!_major)
205 		_major = r;
206 
207 	return 0;
208 
209 out_free_workqueue:
210 	destroy_workqueue(deferred_remove_workqueue);
211 out_uevent_exit:
212 	dm_uevent_exit();
213 out_free_rq_cache:
214 	kmem_cache_destroy(_rq_cache);
215 out_free_rq_tio_cache:
216 	kmem_cache_destroy(_rq_tio_cache);
217 out_free_io_cache:
218 	kmem_cache_destroy(_io_cache);
219 
220 	return r;
221 }
222 
223 static void local_exit(void)
224 {
225 	flush_scheduled_work();
226 	destroy_workqueue(deferred_remove_workqueue);
227 
228 	kmem_cache_destroy(_rq_cache);
229 	kmem_cache_destroy(_rq_tio_cache);
230 	kmem_cache_destroy(_io_cache);
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_io_init,
245 	dm_kcopyd_init,
246 	dm_interface_init,
247 	dm_statistics_init,
248 };
249 
250 static void (*_exits[])(void) = {
251 	local_exit,
252 	dm_target_exit,
253 	dm_linear_exit,
254 	dm_stripe_exit,
255 	dm_io_exit,
256 	dm_kcopyd_exit,
257 	dm_interface_exit,
258 	dm_statistics_exit,
259 };
260 
261 static int __init dm_init(void)
262 {
263 	const int count = ARRAY_SIZE(_inits);
264 
265 	int r, i;
266 
267 	for (i = 0; i < count; i++) {
268 		r = _inits[i]();
269 		if (r)
270 			goto bad;
271 	}
272 
273 	return 0;
274 
275       bad:
276 	while (i--)
277 		_exits[i]();
278 
279 	return r;
280 }
281 
282 static void __exit dm_exit(void)
283 {
284 	int i = ARRAY_SIZE(_exits);
285 
286 	while (i--)
287 		_exits[i]();
288 
289 	/*
290 	 * Should be empty by this point.
291 	 */
292 	idr_destroy(&_minor_idr);
293 }
294 
295 /*
296  * Block device functions
297  */
298 int dm_deleting_md(struct mapped_device *md)
299 {
300 	return test_bit(DMF_DELETING, &md->flags);
301 }
302 
303 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
304 {
305 	struct mapped_device *md;
306 
307 	spin_lock(&_minor_lock);
308 
309 	md = bdev->bd_disk->private_data;
310 	if (!md)
311 		goto out;
312 
313 	if (test_bit(DMF_FREEING, &md->flags) ||
314 	    dm_deleting_md(md)) {
315 		md = NULL;
316 		goto out;
317 	}
318 
319 	dm_get(md);
320 	atomic_inc(&md->open_count);
321 out:
322 	spin_unlock(&_minor_lock);
323 
324 	return md ? 0 : -ENXIO;
325 }
326 
327 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
328 {
329 	struct mapped_device *md;
330 
331 	spin_lock(&_minor_lock);
332 
333 	md = disk->private_data;
334 	if (WARN_ON(!md))
335 		goto out;
336 
337 	if (atomic_dec_and_test(&md->open_count) &&
338 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
339 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
340 
341 	dm_put(md);
342 out:
343 	spin_unlock(&_minor_lock);
344 }
345 
346 int dm_open_count(struct mapped_device *md)
347 {
348 	return atomic_read(&md->open_count);
349 }
350 
351 /*
352  * Guarantees nothing is using the device before it's deleted.
353  */
354 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
355 {
356 	int r = 0;
357 
358 	spin_lock(&_minor_lock);
359 
360 	if (dm_open_count(md)) {
361 		r = -EBUSY;
362 		if (mark_deferred)
363 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
364 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
365 		r = -EEXIST;
366 	else
367 		set_bit(DMF_DELETING, &md->flags);
368 
369 	spin_unlock(&_minor_lock);
370 
371 	return r;
372 }
373 
374 int dm_cancel_deferred_remove(struct mapped_device *md)
375 {
376 	int r = 0;
377 
378 	spin_lock(&_minor_lock);
379 
380 	if (test_bit(DMF_DELETING, &md->flags))
381 		r = -EBUSY;
382 	else
383 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 static void do_deferred_remove(struct work_struct *w)
391 {
392 	dm_deferred_remove();
393 }
394 
395 sector_t dm_get_size(struct mapped_device *md)
396 {
397 	return get_capacity(md->disk);
398 }
399 
400 struct request_queue *dm_get_md_queue(struct mapped_device *md)
401 {
402 	return md->queue;
403 }
404 
405 struct dm_stats *dm_get_stats(struct mapped_device *md)
406 {
407 	return &md->stats;
408 }
409 
410 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
411 {
412 	struct mapped_device *md = bdev->bd_disk->private_data;
413 
414 	return dm_get_geometry(md, geo);
415 }
416 
417 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
418 				  struct block_device **bdev,
419 				  fmode_t *mode)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int srcu_idx, r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, &srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		goto out;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		goto out;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		goto out;
438 
439 	if (dm_suspended_md(md)) {
440 		r = -EAGAIN;
441 		goto out;
442 	}
443 
444 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
445 	if (r < 0)
446 		goto out;
447 
448 	bdgrab(*bdev);
449 	dm_put_live_table(md, srcu_idx);
450 	return r;
451 
452 out:
453 	dm_put_live_table(md, srcu_idx);
454 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
455 		msleep(10);
456 		goto retry;
457 	}
458 	return r;
459 }
460 
461 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
462 			unsigned int cmd, unsigned long arg)
463 {
464 	struct mapped_device *md = bdev->bd_disk->private_data;
465 	int r;
466 
467 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
468 	if (r < 0)
469 		return r;
470 
471 	if (r > 0) {
472 		/*
473 		 * Target determined this ioctl is being issued against a
474 		 * subset of the parent bdev; require extra privileges.
475 		 */
476 		if (!capable(CAP_SYS_RAWIO)) {
477 			DMWARN_LIMIT(
478 	"%s: sending ioctl %x to DM device without required privilege.",
479 				current->comm, cmd);
480 			r = -ENOIOCTLCMD;
481 			goto out;
482 		}
483 	}
484 
485 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
486 out:
487 	bdput(bdev);
488 	return r;
489 }
490 
491 static struct dm_io *alloc_io(struct mapped_device *md)
492 {
493 	return mempool_alloc(md->io_pool, GFP_NOIO);
494 }
495 
496 static void free_io(struct mapped_device *md, struct dm_io *io)
497 {
498 	mempool_free(io, md->io_pool);
499 }
500 
501 static void free_tio(struct dm_target_io *tio)
502 {
503 	bio_put(&tio->clone);
504 }
505 
506 int md_in_flight(struct mapped_device *md)
507 {
508 	return atomic_read(&md->pending[READ]) +
509 	       atomic_read(&md->pending[WRITE]);
510 }
511 
512 static void start_io_acct(struct dm_io *io)
513 {
514 	struct mapped_device *md = io->md;
515 	struct bio *bio = io->bio;
516 	int cpu;
517 	int rw = bio_data_dir(bio);
518 
519 	io->start_time = jiffies;
520 
521 	cpu = part_stat_lock();
522 	part_round_stats(cpu, &dm_disk(md)->part0);
523 	part_stat_unlock();
524 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
525 		atomic_inc_return(&md->pending[rw]));
526 
527 	if (unlikely(dm_stats_used(&md->stats)))
528 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 				    bio->bi_iter.bi_sector, bio_sectors(bio),
530 				    false, 0, &io->stats_aux);
531 }
532 
533 static void end_io_acct(struct dm_io *io)
534 {
535 	struct mapped_device *md = io->md;
536 	struct bio *bio = io->bio;
537 	unsigned long duration = jiffies - io->start_time;
538 	int pending;
539 	int rw = bio_data_dir(bio);
540 
541 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
542 
543 	if (unlikely(dm_stats_used(&md->stats)))
544 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
545 				    bio->bi_iter.bi_sector, bio_sectors(bio),
546 				    true, duration, &io->stats_aux);
547 
548 	/*
549 	 * After this is decremented the bio must not be touched if it is
550 	 * a flush.
551 	 */
552 	pending = atomic_dec_return(&md->pending[rw]);
553 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
554 	pending += atomic_read(&md->pending[rw^0x1]);
555 
556 	/* nudge anyone waiting on suspend queue */
557 	if (!pending)
558 		wake_up(&md->wait);
559 }
560 
561 /*
562  * Add the bio to the list of deferred io.
563  */
564 static void queue_io(struct mapped_device *md, struct bio *bio)
565 {
566 	unsigned long flags;
567 
568 	spin_lock_irqsave(&md->deferred_lock, flags);
569 	bio_list_add(&md->deferred, bio);
570 	spin_unlock_irqrestore(&md->deferred_lock, flags);
571 	queue_work(md->wq, &md->work);
572 }
573 
574 /*
575  * Everyone (including functions in this file), should use this
576  * function to access the md->map field, and make sure they call
577  * dm_put_live_table() when finished.
578  */
579 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
580 {
581 	*srcu_idx = srcu_read_lock(&md->io_barrier);
582 
583 	return srcu_dereference(md->map, &md->io_barrier);
584 }
585 
586 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
587 {
588 	srcu_read_unlock(&md->io_barrier, srcu_idx);
589 }
590 
591 void dm_sync_table(struct mapped_device *md)
592 {
593 	synchronize_srcu(&md->io_barrier);
594 	synchronize_rcu_expedited();
595 }
596 
597 /*
598  * A fast alternative to dm_get_live_table/dm_put_live_table.
599  * The caller must not block between these two functions.
600  */
601 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
602 {
603 	rcu_read_lock();
604 	return rcu_dereference(md->map);
605 }
606 
607 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
608 {
609 	rcu_read_unlock();
610 }
611 
612 /*
613  * Open a table device so we can use it as a map destination.
614  */
615 static int open_table_device(struct table_device *td, dev_t dev,
616 			     struct mapped_device *md)
617 {
618 	static char *_claim_ptr = "I belong to device-mapper";
619 	struct block_device *bdev;
620 
621 	int r;
622 
623 	BUG_ON(td->dm_dev.bdev);
624 
625 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
626 	if (IS_ERR(bdev))
627 		return PTR_ERR(bdev);
628 
629 	r = bd_link_disk_holder(bdev, dm_disk(md));
630 	if (r) {
631 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
632 		return r;
633 	}
634 
635 	td->dm_dev.bdev = bdev;
636 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
637 	return 0;
638 }
639 
640 /*
641  * Close a table device that we've been using.
642  */
643 static void close_table_device(struct table_device *td, struct mapped_device *md)
644 {
645 	if (!td->dm_dev.bdev)
646 		return;
647 
648 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
649 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
650 	put_dax(td->dm_dev.dax_dev);
651 	td->dm_dev.bdev = NULL;
652 	td->dm_dev.dax_dev = NULL;
653 }
654 
655 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
656 					      fmode_t mode) {
657 	struct table_device *td;
658 
659 	list_for_each_entry(td, l, list)
660 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
661 			return td;
662 
663 	return NULL;
664 }
665 
666 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
667 			struct dm_dev **result) {
668 	int r;
669 	struct table_device *td;
670 
671 	mutex_lock(&md->table_devices_lock);
672 	td = find_table_device(&md->table_devices, dev, mode);
673 	if (!td) {
674 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
675 		if (!td) {
676 			mutex_unlock(&md->table_devices_lock);
677 			return -ENOMEM;
678 		}
679 
680 		td->dm_dev.mode = mode;
681 		td->dm_dev.bdev = NULL;
682 
683 		if ((r = open_table_device(td, dev, md))) {
684 			mutex_unlock(&md->table_devices_lock);
685 			kfree(td);
686 			return r;
687 		}
688 
689 		format_dev_t(td->dm_dev.name, dev);
690 
691 		atomic_set(&td->count, 0);
692 		list_add(&td->list, &md->table_devices);
693 	}
694 	atomic_inc(&td->count);
695 	mutex_unlock(&md->table_devices_lock);
696 
697 	*result = &td->dm_dev;
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(dm_get_table_device);
701 
702 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
703 {
704 	struct table_device *td = container_of(d, struct table_device, dm_dev);
705 
706 	mutex_lock(&md->table_devices_lock);
707 	if (atomic_dec_and_test(&td->count)) {
708 		close_table_device(td, md);
709 		list_del(&td->list);
710 		kfree(td);
711 	}
712 	mutex_unlock(&md->table_devices_lock);
713 }
714 EXPORT_SYMBOL(dm_put_table_device);
715 
716 static void free_table_devices(struct list_head *devices)
717 {
718 	struct list_head *tmp, *next;
719 
720 	list_for_each_safe(tmp, next, devices) {
721 		struct table_device *td = list_entry(tmp, struct table_device, list);
722 
723 		DMWARN("dm_destroy: %s still exists with %d references",
724 		       td->dm_dev.name, atomic_read(&td->count));
725 		kfree(td);
726 	}
727 }
728 
729 /*
730  * Get the geometry associated with a dm device
731  */
732 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
733 {
734 	*geo = md->geometry;
735 
736 	return 0;
737 }
738 
739 /*
740  * Set the geometry of a device.
741  */
742 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
743 {
744 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
745 
746 	if (geo->start > sz) {
747 		DMWARN("Start sector is beyond the geometry limits.");
748 		return -EINVAL;
749 	}
750 
751 	md->geometry = *geo;
752 
753 	return 0;
754 }
755 
756 /*-----------------------------------------------------------------
757  * CRUD START:
758  *   A more elegant soln is in the works that uses the queue
759  *   merge fn, unfortunately there are a couple of changes to
760  *   the block layer that I want to make for this.  So in the
761  *   interests of getting something for people to use I give
762  *   you this clearly demarcated crap.
763  *---------------------------------------------------------------*/
764 
765 static int __noflush_suspending(struct mapped_device *md)
766 {
767 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
768 }
769 
770 /*
771  * Decrements the number of outstanding ios that a bio has been
772  * cloned into, completing the original io if necc.
773  */
774 static void dec_pending(struct dm_io *io, blk_status_t error)
775 {
776 	unsigned long flags;
777 	blk_status_t io_error;
778 	struct bio *bio;
779 	struct mapped_device *md = io->md;
780 
781 	/* Push-back supersedes any I/O errors */
782 	if (unlikely(error)) {
783 		spin_lock_irqsave(&io->endio_lock, flags);
784 		if (!(io->status == BLK_STS_DM_REQUEUE &&
785 				__noflush_suspending(md)))
786 			io->status = error;
787 		spin_unlock_irqrestore(&io->endio_lock, flags);
788 	}
789 
790 	if (atomic_dec_and_test(&io->io_count)) {
791 		if (io->status == BLK_STS_DM_REQUEUE) {
792 			/*
793 			 * Target requested pushing back the I/O.
794 			 */
795 			spin_lock_irqsave(&md->deferred_lock, flags);
796 			if (__noflush_suspending(md))
797 				bio_list_add_head(&md->deferred, io->bio);
798 			else
799 				/* noflush suspend was interrupted. */
800 				io->status = BLK_STS_IOERR;
801 			spin_unlock_irqrestore(&md->deferred_lock, flags);
802 		}
803 
804 		io_error = io->status;
805 		bio = io->bio;
806 		end_io_acct(io);
807 		free_io(md, io);
808 
809 		if (io_error == BLK_STS_DM_REQUEUE)
810 			return;
811 
812 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
813 			/*
814 			 * Preflush done for flush with data, reissue
815 			 * without REQ_PREFLUSH.
816 			 */
817 			bio->bi_opf &= ~REQ_PREFLUSH;
818 			queue_io(md, bio);
819 		} else {
820 			/* done with normal IO or empty flush */
821 			bio->bi_status = io_error;
822 			bio_endio(bio);
823 		}
824 	}
825 }
826 
827 void disable_write_same(struct mapped_device *md)
828 {
829 	struct queue_limits *limits = dm_get_queue_limits(md);
830 
831 	/* device doesn't really support WRITE SAME, disable it */
832 	limits->max_write_same_sectors = 0;
833 }
834 
835 void disable_write_zeroes(struct mapped_device *md)
836 {
837 	struct queue_limits *limits = dm_get_queue_limits(md);
838 
839 	/* device doesn't really support WRITE ZEROES, disable it */
840 	limits->max_write_zeroes_sectors = 0;
841 }
842 
843 static void clone_endio(struct bio *bio)
844 {
845 	blk_status_t error = bio->bi_status;
846 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
847 	struct dm_io *io = tio->io;
848 	struct mapped_device *md = tio->io->md;
849 	dm_endio_fn endio = tio->ti->type->end_io;
850 
851 	if (unlikely(error == BLK_STS_TARGET)) {
852 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
853 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
854 			disable_write_same(md);
855 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
856 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
857 			disable_write_zeroes(md);
858 	}
859 
860 	if (endio) {
861 		int r = endio(tio->ti, bio, &error);
862 		switch (r) {
863 		case DM_ENDIO_REQUEUE:
864 			error = BLK_STS_DM_REQUEUE;
865 			/*FALLTHRU*/
866 		case DM_ENDIO_DONE:
867 			break;
868 		case DM_ENDIO_INCOMPLETE:
869 			/* The target will handle the io */
870 			return;
871 		default:
872 			DMWARN("unimplemented target endio return value: %d", r);
873 			BUG();
874 		}
875 	}
876 
877 	free_tio(tio);
878 	dec_pending(io, error);
879 }
880 
881 /*
882  * Return maximum size of I/O possible at the supplied sector up to the current
883  * target boundary.
884  */
885 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
886 {
887 	sector_t target_offset = dm_target_offset(ti, sector);
888 
889 	return ti->len - target_offset;
890 }
891 
892 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
893 {
894 	sector_t len = max_io_len_target_boundary(sector, ti);
895 	sector_t offset, max_len;
896 
897 	/*
898 	 * Does the target need to split even further?
899 	 */
900 	if (ti->max_io_len) {
901 		offset = dm_target_offset(ti, sector);
902 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
903 			max_len = sector_div(offset, ti->max_io_len);
904 		else
905 			max_len = offset & (ti->max_io_len - 1);
906 		max_len = ti->max_io_len - max_len;
907 
908 		if (len > max_len)
909 			len = max_len;
910 	}
911 
912 	return len;
913 }
914 
915 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
916 {
917 	if (len > UINT_MAX) {
918 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
919 		      (unsigned long long)len, UINT_MAX);
920 		ti->error = "Maximum size of target IO is too large";
921 		return -EINVAL;
922 	}
923 
924 	ti->max_io_len = (uint32_t) len;
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
929 
930 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
931 		sector_t sector, int *srcu_idx)
932 {
933 	struct dm_table *map;
934 	struct dm_target *ti;
935 
936 	map = dm_get_live_table(md, srcu_idx);
937 	if (!map)
938 		return NULL;
939 
940 	ti = dm_table_find_target(map, sector);
941 	if (!dm_target_is_valid(ti))
942 		return NULL;
943 
944 	return ti;
945 }
946 
947 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
948 		long nr_pages, void **kaddr, pfn_t *pfn)
949 {
950 	struct mapped_device *md = dax_get_private(dax_dev);
951 	sector_t sector = pgoff * PAGE_SECTORS;
952 	struct dm_target *ti;
953 	long len, ret = -EIO;
954 	int srcu_idx;
955 
956 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
957 
958 	if (!ti)
959 		goto out;
960 	if (!ti->type->direct_access)
961 		goto out;
962 	len = max_io_len(sector, ti) / PAGE_SECTORS;
963 	if (len < 1)
964 		goto out;
965 	nr_pages = min(len, nr_pages);
966 	if (ti->type->direct_access)
967 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
968 
969  out:
970 	dm_put_live_table(md, srcu_idx);
971 
972 	return ret;
973 }
974 
975 /*
976  * A target may call dm_accept_partial_bio only from the map routine.  It is
977  * allowed for all bio types except REQ_PREFLUSH.
978  *
979  * dm_accept_partial_bio informs the dm that the target only wants to process
980  * additional n_sectors sectors of the bio and the rest of the data should be
981  * sent in a next bio.
982  *
983  * A diagram that explains the arithmetics:
984  * +--------------------+---------------+-------+
985  * |         1          |       2       |   3   |
986  * +--------------------+---------------+-------+
987  *
988  * <-------------- *tio->len_ptr --------------->
989  *                      <------- bi_size ------->
990  *                      <-- n_sectors -->
991  *
992  * Region 1 was already iterated over with bio_advance or similar function.
993  *	(it may be empty if the target doesn't use bio_advance)
994  * Region 2 is the remaining bio size that the target wants to process.
995  *	(it may be empty if region 1 is non-empty, although there is no reason
996  *	 to make it empty)
997  * The target requires that region 3 is to be sent in the next bio.
998  *
999  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1000  * the partially processed part (the sum of regions 1+2) must be the same for all
1001  * copies of the bio.
1002  */
1003 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1004 {
1005 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1006 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1007 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1008 	BUG_ON(bi_size > *tio->len_ptr);
1009 	BUG_ON(n_sectors > bi_size);
1010 	*tio->len_ptr -= bi_size - n_sectors;
1011 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1012 }
1013 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1014 
1015 /*
1016  * Flush current->bio_list when the target map method blocks.
1017  * This fixes deadlocks in snapshot and possibly in other targets.
1018  */
1019 struct dm_offload {
1020 	struct blk_plug plug;
1021 	struct blk_plug_cb cb;
1022 };
1023 
1024 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1025 {
1026 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1027 	struct bio_list list;
1028 	struct bio *bio;
1029 	int i;
1030 
1031 	INIT_LIST_HEAD(&o->cb.list);
1032 
1033 	if (unlikely(!current->bio_list))
1034 		return;
1035 
1036 	for (i = 0; i < 2; i++) {
1037 		list = current->bio_list[i];
1038 		bio_list_init(&current->bio_list[i]);
1039 
1040 		while ((bio = bio_list_pop(&list))) {
1041 			struct bio_set *bs = bio->bi_pool;
1042 			if (unlikely(!bs) || bs == fs_bio_set ||
1043 			    !bs->rescue_workqueue) {
1044 				bio_list_add(&current->bio_list[i], bio);
1045 				continue;
1046 			}
1047 
1048 			spin_lock(&bs->rescue_lock);
1049 			bio_list_add(&bs->rescue_list, bio);
1050 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1051 			spin_unlock(&bs->rescue_lock);
1052 		}
1053 	}
1054 }
1055 
1056 static void dm_offload_start(struct dm_offload *o)
1057 {
1058 	blk_start_plug(&o->plug);
1059 	o->cb.callback = flush_current_bio_list;
1060 	list_add(&o->cb.list, &current->plug->cb_list);
1061 }
1062 
1063 static void dm_offload_end(struct dm_offload *o)
1064 {
1065 	list_del(&o->cb.list);
1066 	blk_finish_plug(&o->plug);
1067 }
1068 
1069 static void __map_bio(struct dm_target_io *tio)
1070 {
1071 	int r;
1072 	sector_t sector;
1073 	struct dm_offload o;
1074 	struct bio *clone = &tio->clone;
1075 	struct dm_target *ti = tio->ti;
1076 
1077 	clone->bi_end_io = clone_endio;
1078 
1079 	/*
1080 	 * Map the clone.  If r == 0 we don't need to do
1081 	 * anything, the target has assumed ownership of
1082 	 * this io.
1083 	 */
1084 	atomic_inc(&tio->io->io_count);
1085 	sector = clone->bi_iter.bi_sector;
1086 
1087 	dm_offload_start(&o);
1088 	r = ti->type->map(ti, clone);
1089 	dm_offload_end(&o);
1090 
1091 	switch (r) {
1092 	case DM_MAPIO_SUBMITTED:
1093 		break;
1094 	case DM_MAPIO_REMAPPED:
1095 		/* the bio has been remapped so dispatch it */
1096 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1097 				      tio->io->bio->bi_bdev->bd_dev, sector);
1098 		generic_make_request(clone);
1099 		break;
1100 	case DM_MAPIO_KILL:
1101 		dec_pending(tio->io, BLK_STS_IOERR);
1102 		free_tio(tio);
1103 		break;
1104 	case DM_MAPIO_REQUEUE:
1105 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1106 		free_tio(tio);
1107 		break;
1108 	default:
1109 		DMWARN("unimplemented target map return value: %d", r);
1110 		BUG();
1111 	}
1112 }
1113 
1114 struct clone_info {
1115 	struct mapped_device *md;
1116 	struct dm_table *map;
1117 	struct bio *bio;
1118 	struct dm_io *io;
1119 	sector_t sector;
1120 	unsigned sector_count;
1121 };
1122 
1123 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1124 {
1125 	bio->bi_iter.bi_sector = sector;
1126 	bio->bi_iter.bi_size = to_bytes(len);
1127 }
1128 
1129 /*
1130  * Creates a bio that consists of range of complete bvecs.
1131  */
1132 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1133 		     sector_t sector, unsigned len)
1134 {
1135 	struct bio *clone = &tio->clone;
1136 
1137 	__bio_clone_fast(clone, bio);
1138 
1139 	if (unlikely(bio_integrity(bio) != NULL)) {
1140 		int r;
1141 
1142 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1143 			     !dm_target_passes_integrity(tio->ti->type))) {
1144 			DMWARN("%s: the target %s doesn't support integrity data.",
1145 				dm_device_name(tio->io->md),
1146 				tio->ti->type->name);
1147 			return -EIO;
1148 		}
1149 
1150 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1151 		if (r < 0)
1152 			return r;
1153 	}
1154 
1155 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1156 	clone->bi_iter.bi_size = to_bytes(len);
1157 
1158 	if (unlikely(bio_integrity(bio) != NULL))
1159 		bio_integrity_trim(clone, 0, len);
1160 
1161 	return 0;
1162 }
1163 
1164 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1165 				      struct dm_target *ti,
1166 				      unsigned target_bio_nr)
1167 {
1168 	struct dm_target_io *tio;
1169 	struct bio *clone;
1170 
1171 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1172 	tio = container_of(clone, struct dm_target_io, clone);
1173 
1174 	tio->io = ci->io;
1175 	tio->ti = ti;
1176 	tio->target_bio_nr = target_bio_nr;
1177 
1178 	return tio;
1179 }
1180 
1181 static void __clone_and_map_simple_bio(struct clone_info *ci,
1182 				       struct dm_target *ti,
1183 				       unsigned target_bio_nr, unsigned *len)
1184 {
1185 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1186 	struct bio *clone = &tio->clone;
1187 
1188 	tio->len_ptr = len;
1189 
1190 	__bio_clone_fast(clone, ci->bio);
1191 	if (len)
1192 		bio_setup_sector(clone, ci->sector, *len);
1193 
1194 	__map_bio(tio);
1195 }
1196 
1197 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1198 				  unsigned num_bios, unsigned *len)
1199 {
1200 	unsigned target_bio_nr;
1201 
1202 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1203 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1204 }
1205 
1206 static int __send_empty_flush(struct clone_info *ci)
1207 {
1208 	unsigned target_nr = 0;
1209 	struct dm_target *ti;
1210 
1211 	BUG_ON(bio_has_data(ci->bio));
1212 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1213 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1214 
1215 	return 0;
1216 }
1217 
1218 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1219 				     sector_t sector, unsigned *len)
1220 {
1221 	struct bio *bio = ci->bio;
1222 	struct dm_target_io *tio;
1223 	unsigned target_bio_nr;
1224 	unsigned num_target_bios = 1;
1225 	int r = 0;
1226 
1227 	/*
1228 	 * Does the target want to receive duplicate copies of the bio?
1229 	 */
1230 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1231 		num_target_bios = ti->num_write_bios(ti, bio);
1232 
1233 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1234 		tio = alloc_tio(ci, ti, target_bio_nr);
1235 		tio->len_ptr = len;
1236 		r = clone_bio(tio, bio, sector, *len);
1237 		if (r < 0) {
1238 			free_tio(tio);
1239 			break;
1240 		}
1241 		__map_bio(tio);
1242 	}
1243 
1244 	return r;
1245 }
1246 
1247 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1248 
1249 static unsigned get_num_discard_bios(struct dm_target *ti)
1250 {
1251 	return ti->num_discard_bios;
1252 }
1253 
1254 static unsigned get_num_write_same_bios(struct dm_target *ti)
1255 {
1256 	return ti->num_write_same_bios;
1257 }
1258 
1259 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1260 {
1261 	return ti->num_write_zeroes_bios;
1262 }
1263 
1264 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1265 
1266 static bool is_split_required_for_discard(struct dm_target *ti)
1267 {
1268 	return ti->split_discard_bios;
1269 }
1270 
1271 static int __send_changing_extent_only(struct clone_info *ci,
1272 				       get_num_bios_fn get_num_bios,
1273 				       is_split_required_fn is_split_required)
1274 {
1275 	struct dm_target *ti;
1276 	unsigned len;
1277 	unsigned num_bios;
1278 
1279 	do {
1280 		ti = dm_table_find_target(ci->map, ci->sector);
1281 		if (!dm_target_is_valid(ti))
1282 			return -EIO;
1283 
1284 		/*
1285 		 * Even though the device advertised support for this type of
1286 		 * request, that does not mean every target supports it, and
1287 		 * reconfiguration might also have changed that since the
1288 		 * check was performed.
1289 		 */
1290 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1291 		if (!num_bios)
1292 			return -EOPNOTSUPP;
1293 
1294 		if (is_split_required && !is_split_required(ti))
1295 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1296 		else
1297 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1298 
1299 		__send_duplicate_bios(ci, ti, num_bios, &len);
1300 
1301 		ci->sector += len;
1302 	} while (ci->sector_count -= len);
1303 
1304 	return 0;
1305 }
1306 
1307 static int __send_discard(struct clone_info *ci)
1308 {
1309 	return __send_changing_extent_only(ci, get_num_discard_bios,
1310 					   is_split_required_for_discard);
1311 }
1312 
1313 static int __send_write_same(struct clone_info *ci)
1314 {
1315 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1316 }
1317 
1318 static int __send_write_zeroes(struct clone_info *ci)
1319 {
1320 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1321 }
1322 
1323 /*
1324  * Select the correct strategy for processing a non-flush bio.
1325  */
1326 static int __split_and_process_non_flush(struct clone_info *ci)
1327 {
1328 	struct bio *bio = ci->bio;
1329 	struct dm_target *ti;
1330 	unsigned len;
1331 	int r;
1332 
1333 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1334 		return __send_discard(ci);
1335 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1336 		return __send_write_same(ci);
1337 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1338 		return __send_write_zeroes(ci);
1339 
1340 	ti = dm_table_find_target(ci->map, ci->sector);
1341 	if (!dm_target_is_valid(ti))
1342 		return -EIO;
1343 
1344 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1345 
1346 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1347 	if (r < 0)
1348 		return r;
1349 
1350 	ci->sector += len;
1351 	ci->sector_count -= len;
1352 
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Entry point to split a bio into clones and submit them to the targets.
1358  */
1359 static void __split_and_process_bio(struct mapped_device *md,
1360 				    struct dm_table *map, struct bio *bio)
1361 {
1362 	struct clone_info ci;
1363 	int error = 0;
1364 
1365 	if (unlikely(!map)) {
1366 		bio_io_error(bio);
1367 		return;
1368 	}
1369 
1370 	ci.map = map;
1371 	ci.md = md;
1372 	ci.io = alloc_io(md);
1373 	ci.io->status = 0;
1374 	atomic_set(&ci.io->io_count, 1);
1375 	ci.io->bio = bio;
1376 	ci.io->md = md;
1377 	spin_lock_init(&ci.io->endio_lock);
1378 	ci.sector = bio->bi_iter.bi_sector;
1379 
1380 	start_io_acct(ci.io);
1381 
1382 	if (bio->bi_opf & REQ_PREFLUSH) {
1383 		ci.bio = &ci.md->flush_bio;
1384 		ci.sector_count = 0;
1385 		error = __send_empty_flush(&ci);
1386 		/* dec_pending submits any data associated with flush */
1387 	} else {
1388 		ci.bio = bio;
1389 		ci.sector_count = bio_sectors(bio);
1390 		while (ci.sector_count && !error)
1391 			error = __split_and_process_non_flush(&ci);
1392 	}
1393 
1394 	/* drop the extra reference count */
1395 	dec_pending(ci.io, error);
1396 }
1397 /*-----------------------------------------------------------------
1398  * CRUD END
1399  *---------------------------------------------------------------*/
1400 
1401 /*
1402  * The request function that just remaps the bio built up by
1403  * dm_merge_bvec.
1404  */
1405 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1406 {
1407 	int rw = bio_data_dir(bio);
1408 	struct mapped_device *md = q->queuedata;
1409 	int srcu_idx;
1410 	struct dm_table *map;
1411 
1412 	map = dm_get_live_table(md, &srcu_idx);
1413 
1414 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1415 
1416 	/* if we're suspended, we have to queue this io for later */
1417 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1418 		dm_put_live_table(md, srcu_idx);
1419 
1420 		if (!(bio->bi_opf & REQ_RAHEAD))
1421 			queue_io(md, bio);
1422 		else
1423 			bio_io_error(bio);
1424 		return BLK_QC_T_NONE;
1425 	}
1426 
1427 	__split_and_process_bio(md, map, bio);
1428 	dm_put_live_table(md, srcu_idx);
1429 	return BLK_QC_T_NONE;
1430 }
1431 
1432 static int dm_any_congested(void *congested_data, int bdi_bits)
1433 {
1434 	int r = bdi_bits;
1435 	struct mapped_device *md = congested_data;
1436 	struct dm_table *map;
1437 
1438 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1439 		if (dm_request_based(md)) {
1440 			/*
1441 			 * With request-based DM we only need to check the
1442 			 * top-level queue for congestion.
1443 			 */
1444 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1445 		} else {
1446 			map = dm_get_live_table_fast(md);
1447 			if (map)
1448 				r = dm_table_any_congested(map, bdi_bits);
1449 			dm_put_live_table_fast(md);
1450 		}
1451 	}
1452 
1453 	return r;
1454 }
1455 
1456 /*-----------------------------------------------------------------
1457  * An IDR is used to keep track of allocated minor numbers.
1458  *---------------------------------------------------------------*/
1459 static void free_minor(int minor)
1460 {
1461 	spin_lock(&_minor_lock);
1462 	idr_remove(&_minor_idr, minor);
1463 	spin_unlock(&_minor_lock);
1464 }
1465 
1466 /*
1467  * See if the device with a specific minor # is free.
1468  */
1469 static int specific_minor(int minor)
1470 {
1471 	int r;
1472 
1473 	if (minor >= (1 << MINORBITS))
1474 		return -EINVAL;
1475 
1476 	idr_preload(GFP_KERNEL);
1477 	spin_lock(&_minor_lock);
1478 
1479 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1480 
1481 	spin_unlock(&_minor_lock);
1482 	idr_preload_end();
1483 	if (r < 0)
1484 		return r == -ENOSPC ? -EBUSY : r;
1485 	return 0;
1486 }
1487 
1488 static int next_free_minor(int *minor)
1489 {
1490 	int r;
1491 
1492 	idr_preload(GFP_KERNEL);
1493 	spin_lock(&_minor_lock);
1494 
1495 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1496 
1497 	spin_unlock(&_minor_lock);
1498 	idr_preload_end();
1499 	if (r < 0)
1500 		return r;
1501 	*minor = r;
1502 	return 0;
1503 }
1504 
1505 static const struct block_device_operations dm_blk_dops;
1506 static const struct dax_operations dm_dax_ops;
1507 
1508 static void dm_wq_work(struct work_struct *work);
1509 
1510 void dm_init_md_queue(struct mapped_device *md)
1511 {
1512 	/*
1513 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1514 	 * devices.  The type of this dm device may not have been decided yet.
1515 	 * The type is decided at the first table loading time.
1516 	 * To prevent problematic device stacking, clear the queue flag
1517 	 * for request stacking support until then.
1518 	 *
1519 	 * This queue is new, so no concurrency on the queue_flags.
1520 	 */
1521 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1522 
1523 	/*
1524 	 * Initialize data that will only be used by a non-blk-mq DM queue
1525 	 * - must do so here (in alloc_dev callchain) before queue is used
1526 	 */
1527 	md->queue->queuedata = md;
1528 	md->queue->backing_dev_info->congested_data = md;
1529 }
1530 
1531 void dm_init_normal_md_queue(struct mapped_device *md)
1532 {
1533 	md->use_blk_mq = false;
1534 	dm_init_md_queue(md);
1535 
1536 	/*
1537 	 * Initialize aspects of queue that aren't relevant for blk-mq
1538 	 */
1539 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1540 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1541 }
1542 
1543 static void cleanup_mapped_device(struct mapped_device *md)
1544 {
1545 	if (md->wq)
1546 		destroy_workqueue(md->wq);
1547 	if (md->kworker_task)
1548 		kthread_stop(md->kworker_task);
1549 	mempool_destroy(md->io_pool);
1550 	if (md->bs)
1551 		bioset_free(md->bs);
1552 
1553 	if (md->dax_dev) {
1554 		kill_dax(md->dax_dev);
1555 		put_dax(md->dax_dev);
1556 		md->dax_dev = NULL;
1557 	}
1558 
1559 	if (md->disk) {
1560 		spin_lock(&_minor_lock);
1561 		md->disk->private_data = NULL;
1562 		spin_unlock(&_minor_lock);
1563 		del_gendisk(md->disk);
1564 		put_disk(md->disk);
1565 	}
1566 
1567 	if (md->queue)
1568 		blk_cleanup_queue(md->queue);
1569 
1570 	cleanup_srcu_struct(&md->io_barrier);
1571 
1572 	if (md->bdev) {
1573 		bdput(md->bdev);
1574 		md->bdev = NULL;
1575 	}
1576 
1577 	dm_mq_cleanup_mapped_device(md);
1578 }
1579 
1580 /*
1581  * Allocate and initialise a blank device with a given minor.
1582  */
1583 static struct mapped_device *alloc_dev(int minor)
1584 {
1585 	int r, numa_node_id = dm_get_numa_node();
1586 	struct dax_device *dax_dev;
1587 	struct mapped_device *md;
1588 	void *old_md;
1589 
1590 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1591 	if (!md) {
1592 		DMWARN("unable to allocate device, out of memory.");
1593 		return NULL;
1594 	}
1595 
1596 	if (!try_module_get(THIS_MODULE))
1597 		goto bad_module_get;
1598 
1599 	/* get a minor number for the dev */
1600 	if (minor == DM_ANY_MINOR)
1601 		r = next_free_minor(&minor);
1602 	else
1603 		r = specific_minor(minor);
1604 	if (r < 0)
1605 		goto bad_minor;
1606 
1607 	r = init_srcu_struct(&md->io_barrier);
1608 	if (r < 0)
1609 		goto bad_io_barrier;
1610 
1611 	md->numa_node_id = numa_node_id;
1612 	md->use_blk_mq = dm_use_blk_mq_default();
1613 	md->init_tio_pdu = false;
1614 	md->type = DM_TYPE_NONE;
1615 	mutex_init(&md->suspend_lock);
1616 	mutex_init(&md->type_lock);
1617 	mutex_init(&md->table_devices_lock);
1618 	spin_lock_init(&md->deferred_lock);
1619 	atomic_set(&md->holders, 1);
1620 	atomic_set(&md->open_count, 0);
1621 	atomic_set(&md->event_nr, 0);
1622 	atomic_set(&md->uevent_seq, 0);
1623 	INIT_LIST_HEAD(&md->uevent_list);
1624 	INIT_LIST_HEAD(&md->table_devices);
1625 	spin_lock_init(&md->uevent_lock);
1626 
1627 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1628 	if (!md->queue)
1629 		goto bad;
1630 
1631 	dm_init_md_queue(md);
1632 
1633 	md->disk = alloc_disk_node(1, numa_node_id);
1634 	if (!md->disk)
1635 		goto bad;
1636 
1637 	atomic_set(&md->pending[0], 0);
1638 	atomic_set(&md->pending[1], 0);
1639 	init_waitqueue_head(&md->wait);
1640 	INIT_WORK(&md->work, dm_wq_work);
1641 	init_waitqueue_head(&md->eventq);
1642 	init_completion(&md->kobj_holder.completion);
1643 	md->kworker_task = NULL;
1644 
1645 	md->disk->major = _major;
1646 	md->disk->first_minor = minor;
1647 	md->disk->fops = &dm_blk_dops;
1648 	md->disk->queue = md->queue;
1649 	md->disk->private_data = md;
1650 	sprintf(md->disk->disk_name, "dm-%d", minor);
1651 
1652 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1653 	if (!dax_dev)
1654 		goto bad;
1655 	md->dax_dev = dax_dev;
1656 
1657 	add_disk(md->disk);
1658 	format_dev_t(md->name, MKDEV(_major, minor));
1659 
1660 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1661 	if (!md->wq)
1662 		goto bad;
1663 
1664 	md->bdev = bdget_disk(md->disk, 0);
1665 	if (!md->bdev)
1666 		goto bad;
1667 
1668 	bio_init(&md->flush_bio, NULL, 0);
1669 	md->flush_bio.bi_bdev = md->bdev;
1670 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1671 
1672 	dm_stats_init(&md->stats);
1673 
1674 	/* Populate the mapping, nobody knows we exist yet */
1675 	spin_lock(&_minor_lock);
1676 	old_md = idr_replace(&_minor_idr, md, minor);
1677 	spin_unlock(&_minor_lock);
1678 
1679 	BUG_ON(old_md != MINOR_ALLOCED);
1680 
1681 	return md;
1682 
1683 bad:
1684 	cleanup_mapped_device(md);
1685 bad_io_barrier:
1686 	free_minor(minor);
1687 bad_minor:
1688 	module_put(THIS_MODULE);
1689 bad_module_get:
1690 	kfree(md);
1691 	return NULL;
1692 }
1693 
1694 static void unlock_fs(struct mapped_device *md);
1695 
1696 static void free_dev(struct mapped_device *md)
1697 {
1698 	int minor = MINOR(disk_devt(md->disk));
1699 
1700 	unlock_fs(md);
1701 
1702 	cleanup_mapped_device(md);
1703 
1704 	free_table_devices(&md->table_devices);
1705 	dm_stats_cleanup(&md->stats);
1706 	free_minor(minor);
1707 
1708 	module_put(THIS_MODULE);
1709 	kfree(md);
1710 }
1711 
1712 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1713 {
1714 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1715 
1716 	if (md->bs) {
1717 		/* The md already has necessary mempools. */
1718 		if (dm_table_bio_based(t)) {
1719 			/*
1720 			 * Reload bioset because front_pad may have changed
1721 			 * because a different table was loaded.
1722 			 */
1723 			bioset_free(md->bs);
1724 			md->bs = p->bs;
1725 			p->bs = NULL;
1726 		}
1727 		/*
1728 		 * There's no need to reload with request-based dm
1729 		 * because the size of front_pad doesn't change.
1730 		 * Note for future: If you are to reload bioset,
1731 		 * prep-ed requests in the queue may refer
1732 		 * to bio from the old bioset, so you must walk
1733 		 * through the queue to unprep.
1734 		 */
1735 		goto out;
1736 	}
1737 
1738 	BUG_ON(!p || md->io_pool || md->bs);
1739 
1740 	md->io_pool = p->io_pool;
1741 	p->io_pool = NULL;
1742 	md->bs = p->bs;
1743 	p->bs = NULL;
1744 
1745 out:
1746 	/* mempool bind completed, no longer need any mempools in the table */
1747 	dm_table_free_md_mempools(t);
1748 }
1749 
1750 /*
1751  * Bind a table to the device.
1752  */
1753 static void event_callback(void *context)
1754 {
1755 	unsigned long flags;
1756 	LIST_HEAD(uevents);
1757 	struct mapped_device *md = (struct mapped_device *) context;
1758 
1759 	spin_lock_irqsave(&md->uevent_lock, flags);
1760 	list_splice_init(&md->uevent_list, &uevents);
1761 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1762 
1763 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1764 
1765 	atomic_inc(&md->event_nr);
1766 	atomic_inc(&dm_global_event_nr);
1767 	wake_up(&md->eventq);
1768 	wake_up(&dm_global_eventq);
1769 }
1770 
1771 /*
1772  * Protected by md->suspend_lock obtained by dm_swap_table().
1773  */
1774 static void __set_size(struct mapped_device *md, sector_t size)
1775 {
1776 	lockdep_assert_held(&md->suspend_lock);
1777 
1778 	set_capacity(md->disk, size);
1779 
1780 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1781 }
1782 
1783 /*
1784  * Returns old map, which caller must destroy.
1785  */
1786 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1787 			       struct queue_limits *limits)
1788 {
1789 	struct dm_table *old_map;
1790 	struct request_queue *q = md->queue;
1791 	sector_t size;
1792 
1793 	lockdep_assert_held(&md->suspend_lock);
1794 
1795 	size = dm_table_get_size(t);
1796 
1797 	/*
1798 	 * Wipe any geometry if the size of the table changed.
1799 	 */
1800 	if (size != dm_get_size(md))
1801 		memset(&md->geometry, 0, sizeof(md->geometry));
1802 
1803 	__set_size(md, size);
1804 
1805 	dm_table_event_callback(t, event_callback, md);
1806 
1807 	/*
1808 	 * The queue hasn't been stopped yet, if the old table type wasn't
1809 	 * for request-based during suspension.  So stop it to prevent
1810 	 * I/O mapping before resume.
1811 	 * This must be done before setting the queue restrictions,
1812 	 * because request-based dm may be run just after the setting.
1813 	 */
1814 	if (dm_table_request_based(t)) {
1815 		dm_stop_queue(q);
1816 		/*
1817 		 * Leverage the fact that request-based DM targets are
1818 		 * immutable singletons and establish md->immutable_target
1819 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1820 		 */
1821 		md->immutable_target = dm_table_get_immutable_target(t);
1822 	}
1823 
1824 	__bind_mempools(md, t);
1825 
1826 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1827 	rcu_assign_pointer(md->map, (void *)t);
1828 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1829 
1830 	dm_table_set_restrictions(t, q, limits);
1831 	if (old_map)
1832 		dm_sync_table(md);
1833 
1834 	return old_map;
1835 }
1836 
1837 /*
1838  * Returns unbound table for the caller to free.
1839  */
1840 static struct dm_table *__unbind(struct mapped_device *md)
1841 {
1842 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1843 
1844 	if (!map)
1845 		return NULL;
1846 
1847 	dm_table_event_callback(map, NULL, NULL);
1848 	RCU_INIT_POINTER(md->map, NULL);
1849 	dm_sync_table(md);
1850 
1851 	return map;
1852 }
1853 
1854 /*
1855  * Constructor for a new device.
1856  */
1857 int dm_create(int minor, struct mapped_device **result)
1858 {
1859 	struct mapped_device *md;
1860 
1861 	md = alloc_dev(minor);
1862 	if (!md)
1863 		return -ENXIO;
1864 
1865 	dm_sysfs_init(md);
1866 
1867 	*result = md;
1868 	return 0;
1869 }
1870 
1871 /*
1872  * Functions to manage md->type.
1873  * All are required to hold md->type_lock.
1874  */
1875 void dm_lock_md_type(struct mapped_device *md)
1876 {
1877 	mutex_lock(&md->type_lock);
1878 }
1879 
1880 void dm_unlock_md_type(struct mapped_device *md)
1881 {
1882 	mutex_unlock(&md->type_lock);
1883 }
1884 
1885 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1886 {
1887 	BUG_ON(!mutex_is_locked(&md->type_lock));
1888 	md->type = type;
1889 }
1890 
1891 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1892 {
1893 	return md->type;
1894 }
1895 
1896 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1897 {
1898 	return md->immutable_target_type;
1899 }
1900 
1901 /*
1902  * The queue_limits are only valid as long as you have a reference
1903  * count on 'md'.
1904  */
1905 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1906 {
1907 	BUG_ON(!atomic_read(&md->holders));
1908 	return &md->queue->limits;
1909 }
1910 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1911 
1912 /*
1913  * Setup the DM device's queue based on md's type
1914  */
1915 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1916 {
1917 	int r;
1918 	enum dm_queue_mode type = dm_get_md_type(md);
1919 
1920 	switch (type) {
1921 	case DM_TYPE_REQUEST_BASED:
1922 		r = dm_old_init_request_queue(md, t);
1923 		if (r) {
1924 			DMERR("Cannot initialize queue for request-based mapped device");
1925 			return r;
1926 		}
1927 		break;
1928 	case DM_TYPE_MQ_REQUEST_BASED:
1929 		r = dm_mq_init_request_queue(md, t);
1930 		if (r) {
1931 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1932 			return r;
1933 		}
1934 		break;
1935 	case DM_TYPE_BIO_BASED:
1936 	case DM_TYPE_DAX_BIO_BASED:
1937 		dm_init_normal_md_queue(md);
1938 		blk_queue_make_request(md->queue, dm_make_request);
1939 		/*
1940 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1941 		 * since it won't be used (saves 1 process per bio-based DM device).
1942 		 */
1943 		bioset_free(md->queue->bio_split);
1944 		md->queue->bio_split = NULL;
1945 
1946 		if (type == DM_TYPE_DAX_BIO_BASED)
1947 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1948 		break;
1949 	case DM_TYPE_NONE:
1950 		WARN_ON_ONCE(true);
1951 		break;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 struct mapped_device *dm_get_md(dev_t dev)
1958 {
1959 	struct mapped_device *md;
1960 	unsigned minor = MINOR(dev);
1961 
1962 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1963 		return NULL;
1964 
1965 	spin_lock(&_minor_lock);
1966 
1967 	md = idr_find(&_minor_idr, minor);
1968 	if (md) {
1969 		if ((md == MINOR_ALLOCED ||
1970 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1971 		     dm_deleting_md(md) ||
1972 		     test_bit(DMF_FREEING, &md->flags))) {
1973 			md = NULL;
1974 			goto out;
1975 		}
1976 		dm_get(md);
1977 	}
1978 
1979 out:
1980 	spin_unlock(&_minor_lock);
1981 
1982 	return md;
1983 }
1984 EXPORT_SYMBOL_GPL(dm_get_md);
1985 
1986 void *dm_get_mdptr(struct mapped_device *md)
1987 {
1988 	return md->interface_ptr;
1989 }
1990 
1991 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1992 {
1993 	md->interface_ptr = ptr;
1994 }
1995 
1996 void dm_get(struct mapped_device *md)
1997 {
1998 	atomic_inc(&md->holders);
1999 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2000 }
2001 
2002 int dm_hold(struct mapped_device *md)
2003 {
2004 	spin_lock(&_minor_lock);
2005 	if (test_bit(DMF_FREEING, &md->flags)) {
2006 		spin_unlock(&_minor_lock);
2007 		return -EBUSY;
2008 	}
2009 	dm_get(md);
2010 	spin_unlock(&_minor_lock);
2011 	return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(dm_hold);
2014 
2015 const char *dm_device_name(struct mapped_device *md)
2016 {
2017 	return md->name;
2018 }
2019 EXPORT_SYMBOL_GPL(dm_device_name);
2020 
2021 static void __dm_destroy(struct mapped_device *md, bool wait)
2022 {
2023 	struct request_queue *q = dm_get_md_queue(md);
2024 	struct dm_table *map;
2025 	int srcu_idx;
2026 
2027 	might_sleep();
2028 
2029 	spin_lock(&_minor_lock);
2030 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2031 	set_bit(DMF_FREEING, &md->flags);
2032 	spin_unlock(&_minor_lock);
2033 
2034 	blk_set_queue_dying(q);
2035 
2036 	if (dm_request_based(md) && md->kworker_task)
2037 		kthread_flush_worker(&md->kworker);
2038 
2039 	/*
2040 	 * Take suspend_lock so that presuspend and postsuspend methods
2041 	 * do not race with internal suspend.
2042 	 */
2043 	mutex_lock(&md->suspend_lock);
2044 	map = dm_get_live_table(md, &srcu_idx);
2045 	if (!dm_suspended_md(md)) {
2046 		dm_table_presuspend_targets(map);
2047 		dm_table_postsuspend_targets(map);
2048 	}
2049 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2050 	dm_put_live_table(md, srcu_idx);
2051 	mutex_unlock(&md->suspend_lock);
2052 
2053 	/*
2054 	 * Rare, but there may be I/O requests still going to complete,
2055 	 * for example.  Wait for all references to disappear.
2056 	 * No one should increment the reference count of the mapped_device,
2057 	 * after the mapped_device state becomes DMF_FREEING.
2058 	 */
2059 	if (wait)
2060 		while (atomic_read(&md->holders))
2061 			msleep(1);
2062 	else if (atomic_read(&md->holders))
2063 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2064 		       dm_device_name(md), atomic_read(&md->holders));
2065 
2066 	dm_sysfs_exit(md);
2067 	dm_table_destroy(__unbind(md));
2068 	free_dev(md);
2069 }
2070 
2071 void dm_destroy(struct mapped_device *md)
2072 {
2073 	__dm_destroy(md, true);
2074 }
2075 
2076 void dm_destroy_immediate(struct mapped_device *md)
2077 {
2078 	__dm_destroy(md, false);
2079 }
2080 
2081 void dm_put(struct mapped_device *md)
2082 {
2083 	atomic_dec(&md->holders);
2084 }
2085 EXPORT_SYMBOL_GPL(dm_put);
2086 
2087 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2088 {
2089 	int r = 0;
2090 	DEFINE_WAIT(wait);
2091 
2092 	while (1) {
2093 		prepare_to_wait(&md->wait, &wait, task_state);
2094 
2095 		if (!md_in_flight(md))
2096 			break;
2097 
2098 		if (signal_pending_state(task_state, current)) {
2099 			r = -EINTR;
2100 			break;
2101 		}
2102 
2103 		io_schedule();
2104 	}
2105 	finish_wait(&md->wait, &wait);
2106 
2107 	return r;
2108 }
2109 
2110 /*
2111  * Process the deferred bios
2112  */
2113 static void dm_wq_work(struct work_struct *work)
2114 {
2115 	struct mapped_device *md = container_of(work, struct mapped_device,
2116 						work);
2117 	struct bio *c;
2118 	int srcu_idx;
2119 	struct dm_table *map;
2120 
2121 	map = dm_get_live_table(md, &srcu_idx);
2122 
2123 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2124 		spin_lock_irq(&md->deferred_lock);
2125 		c = bio_list_pop(&md->deferred);
2126 		spin_unlock_irq(&md->deferred_lock);
2127 
2128 		if (!c)
2129 			break;
2130 
2131 		if (dm_request_based(md))
2132 			generic_make_request(c);
2133 		else
2134 			__split_and_process_bio(md, map, c);
2135 	}
2136 
2137 	dm_put_live_table(md, srcu_idx);
2138 }
2139 
2140 static void dm_queue_flush(struct mapped_device *md)
2141 {
2142 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2143 	smp_mb__after_atomic();
2144 	queue_work(md->wq, &md->work);
2145 }
2146 
2147 /*
2148  * Swap in a new table, returning the old one for the caller to destroy.
2149  */
2150 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2151 {
2152 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2153 	struct queue_limits limits;
2154 	int r;
2155 
2156 	mutex_lock(&md->suspend_lock);
2157 
2158 	/* device must be suspended */
2159 	if (!dm_suspended_md(md))
2160 		goto out;
2161 
2162 	/*
2163 	 * If the new table has no data devices, retain the existing limits.
2164 	 * This helps multipath with queue_if_no_path if all paths disappear,
2165 	 * then new I/O is queued based on these limits, and then some paths
2166 	 * reappear.
2167 	 */
2168 	if (dm_table_has_no_data_devices(table)) {
2169 		live_map = dm_get_live_table_fast(md);
2170 		if (live_map)
2171 			limits = md->queue->limits;
2172 		dm_put_live_table_fast(md);
2173 	}
2174 
2175 	if (!live_map) {
2176 		r = dm_calculate_queue_limits(table, &limits);
2177 		if (r) {
2178 			map = ERR_PTR(r);
2179 			goto out;
2180 		}
2181 	}
2182 
2183 	map = __bind(md, table, &limits);
2184 
2185 out:
2186 	mutex_unlock(&md->suspend_lock);
2187 	return map;
2188 }
2189 
2190 /*
2191  * Functions to lock and unlock any filesystem running on the
2192  * device.
2193  */
2194 static int lock_fs(struct mapped_device *md)
2195 {
2196 	int r;
2197 
2198 	WARN_ON(md->frozen_sb);
2199 
2200 	md->frozen_sb = freeze_bdev(md->bdev);
2201 	if (IS_ERR(md->frozen_sb)) {
2202 		r = PTR_ERR(md->frozen_sb);
2203 		md->frozen_sb = NULL;
2204 		return r;
2205 	}
2206 
2207 	set_bit(DMF_FROZEN, &md->flags);
2208 
2209 	return 0;
2210 }
2211 
2212 static void unlock_fs(struct mapped_device *md)
2213 {
2214 	if (!test_bit(DMF_FROZEN, &md->flags))
2215 		return;
2216 
2217 	thaw_bdev(md->bdev, md->frozen_sb);
2218 	md->frozen_sb = NULL;
2219 	clear_bit(DMF_FROZEN, &md->flags);
2220 }
2221 
2222 /*
2223  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2224  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2225  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2226  *
2227  * If __dm_suspend returns 0, the device is completely quiescent
2228  * now. There is no request-processing activity. All new requests
2229  * are being added to md->deferred list.
2230  */
2231 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2232 			unsigned suspend_flags, long task_state,
2233 			int dmf_suspended_flag)
2234 {
2235 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2236 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2237 	int r;
2238 
2239 	lockdep_assert_held(&md->suspend_lock);
2240 
2241 	/*
2242 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2243 	 * This flag is cleared before dm_suspend returns.
2244 	 */
2245 	if (noflush)
2246 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2247 	else
2248 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2249 
2250 	/*
2251 	 * This gets reverted if there's an error later and the targets
2252 	 * provide the .presuspend_undo hook.
2253 	 */
2254 	dm_table_presuspend_targets(map);
2255 
2256 	/*
2257 	 * Flush I/O to the device.
2258 	 * Any I/O submitted after lock_fs() may not be flushed.
2259 	 * noflush takes precedence over do_lockfs.
2260 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2261 	 */
2262 	if (!noflush && do_lockfs) {
2263 		r = lock_fs(md);
2264 		if (r) {
2265 			dm_table_presuspend_undo_targets(map);
2266 			return r;
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * Here we must make sure that no processes are submitting requests
2272 	 * to target drivers i.e. no one may be executing
2273 	 * __split_and_process_bio. This is called from dm_request and
2274 	 * dm_wq_work.
2275 	 *
2276 	 * To get all processes out of __split_and_process_bio in dm_request,
2277 	 * we take the write lock. To prevent any process from reentering
2278 	 * __split_and_process_bio from dm_request and quiesce the thread
2279 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2280 	 * flush_workqueue(md->wq).
2281 	 */
2282 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2283 	if (map)
2284 		synchronize_srcu(&md->io_barrier);
2285 
2286 	/*
2287 	 * Stop md->queue before flushing md->wq in case request-based
2288 	 * dm defers requests to md->wq from md->queue.
2289 	 */
2290 	if (dm_request_based(md)) {
2291 		dm_stop_queue(md->queue);
2292 		if (md->kworker_task)
2293 			kthread_flush_worker(&md->kworker);
2294 	}
2295 
2296 	flush_workqueue(md->wq);
2297 
2298 	/*
2299 	 * At this point no more requests are entering target request routines.
2300 	 * We call dm_wait_for_completion to wait for all existing requests
2301 	 * to finish.
2302 	 */
2303 	r = dm_wait_for_completion(md, task_state);
2304 	if (!r)
2305 		set_bit(dmf_suspended_flag, &md->flags);
2306 
2307 	if (noflush)
2308 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2309 	if (map)
2310 		synchronize_srcu(&md->io_barrier);
2311 
2312 	/* were we interrupted ? */
2313 	if (r < 0) {
2314 		dm_queue_flush(md);
2315 
2316 		if (dm_request_based(md))
2317 			dm_start_queue(md->queue);
2318 
2319 		unlock_fs(md);
2320 		dm_table_presuspend_undo_targets(map);
2321 		/* pushback list is already flushed, so skip flush */
2322 	}
2323 
2324 	return r;
2325 }
2326 
2327 /*
2328  * We need to be able to change a mapping table under a mounted
2329  * filesystem.  For example we might want to move some data in
2330  * the background.  Before the table can be swapped with
2331  * dm_bind_table, dm_suspend must be called to flush any in
2332  * flight bios and ensure that any further io gets deferred.
2333  */
2334 /*
2335  * Suspend mechanism in request-based dm.
2336  *
2337  * 1. Flush all I/Os by lock_fs() if needed.
2338  * 2. Stop dispatching any I/O by stopping the request_queue.
2339  * 3. Wait for all in-flight I/Os to be completed or requeued.
2340  *
2341  * To abort suspend, start the request_queue.
2342  */
2343 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2344 {
2345 	struct dm_table *map = NULL;
2346 	int r = 0;
2347 
2348 retry:
2349 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2350 
2351 	if (dm_suspended_md(md)) {
2352 		r = -EINVAL;
2353 		goto out_unlock;
2354 	}
2355 
2356 	if (dm_suspended_internally_md(md)) {
2357 		/* already internally suspended, wait for internal resume */
2358 		mutex_unlock(&md->suspend_lock);
2359 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2360 		if (r)
2361 			return r;
2362 		goto retry;
2363 	}
2364 
2365 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2366 
2367 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2368 	if (r)
2369 		goto out_unlock;
2370 
2371 	dm_table_postsuspend_targets(map);
2372 
2373 out_unlock:
2374 	mutex_unlock(&md->suspend_lock);
2375 	return r;
2376 }
2377 
2378 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2379 {
2380 	if (map) {
2381 		int r = dm_table_resume_targets(map);
2382 		if (r)
2383 			return r;
2384 	}
2385 
2386 	dm_queue_flush(md);
2387 
2388 	/*
2389 	 * Flushing deferred I/Os must be done after targets are resumed
2390 	 * so that mapping of targets can work correctly.
2391 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2392 	 */
2393 	if (dm_request_based(md))
2394 		dm_start_queue(md->queue);
2395 
2396 	unlock_fs(md);
2397 
2398 	return 0;
2399 }
2400 
2401 int dm_resume(struct mapped_device *md)
2402 {
2403 	int r;
2404 	struct dm_table *map = NULL;
2405 
2406 retry:
2407 	r = -EINVAL;
2408 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2409 
2410 	if (!dm_suspended_md(md))
2411 		goto out;
2412 
2413 	if (dm_suspended_internally_md(md)) {
2414 		/* already internally suspended, wait for internal resume */
2415 		mutex_unlock(&md->suspend_lock);
2416 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2417 		if (r)
2418 			return r;
2419 		goto retry;
2420 	}
2421 
2422 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2423 	if (!map || !dm_table_get_size(map))
2424 		goto out;
2425 
2426 	r = __dm_resume(md, map);
2427 	if (r)
2428 		goto out;
2429 
2430 	clear_bit(DMF_SUSPENDED, &md->flags);
2431 out:
2432 	mutex_unlock(&md->suspend_lock);
2433 
2434 	return r;
2435 }
2436 
2437 /*
2438  * Internal suspend/resume works like userspace-driven suspend. It waits
2439  * until all bios finish and prevents issuing new bios to the target drivers.
2440  * It may be used only from the kernel.
2441  */
2442 
2443 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2444 {
2445 	struct dm_table *map = NULL;
2446 
2447 	lockdep_assert_held(&md->suspend_lock);
2448 
2449 	if (md->internal_suspend_count++)
2450 		return; /* nested internal suspend */
2451 
2452 	if (dm_suspended_md(md)) {
2453 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2454 		return; /* nest suspend */
2455 	}
2456 
2457 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2458 
2459 	/*
2460 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2461 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2462 	 * would require changing .presuspend to return an error -- avoid this
2463 	 * until there is a need for more elaborate variants of internal suspend.
2464 	 */
2465 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2466 			    DMF_SUSPENDED_INTERNALLY);
2467 
2468 	dm_table_postsuspend_targets(map);
2469 }
2470 
2471 static void __dm_internal_resume(struct mapped_device *md)
2472 {
2473 	BUG_ON(!md->internal_suspend_count);
2474 
2475 	if (--md->internal_suspend_count)
2476 		return; /* resume from nested internal suspend */
2477 
2478 	if (dm_suspended_md(md))
2479 		goto done; /* resume from nested suspend */
2480 
2481 	/*
2482 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2483 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2484 	 */
2485 	(void) __dm_resume(md, NULL);
2486 
2487 done:
2488 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2489 	smp_mb__after_atomic();
2490 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2491 }
2492 
2493 void dm_internal_suspend_noflush(struct mapped_device *md)
2494 {
2495 	mutex_lock(&md->suspend_lock);
2496 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2497 	mutex_unlock(&md->suspend_lock);
2498 }
2499 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2500 
2501 void dm_internal_resume(struct mapped_device *md)
2502 {
2503 	mutex_lock(&md->suspend_lock);
2504 	__dm_internal_resume(md);
2505 	mutex_unlock(&md->suspend_lock);
2506 }
2507 EXPORT_SYMBOL_GPL(dm_internal_resume);
2508 
2509 /*
2510  * Fast variants of internal suspend/resume hold md->suspend_lock,
2511  * which prevents interaction with userspace-driven suspend.
2512  */
2513 
2514 void dm_internal_suspend_fast(struct mapped_device *md)
2515 {
2516 	mutex_lock(&md->suspend_lock);
2517 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2518 		return;
2519 
2520 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2521 	synchronize_srcu(&md->io_barrier);
2522 	flush_workqueue(md->wq);
2523 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2524 }
2525 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2526 
2527 void dm_internal_resume_fast(struct mapped_device *md)
2528 {
2529 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2530 		goto done;
2531 
2532 	dm_queue_flush(md);
2533 
2534 done:
2535 	mutex_unlock(&md->suspend_lock);
2536 }
2537 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2538 
2539 /*-----------------------------------------------------------------
2540  * Event notification.
2541  *---------------------------------------------------------------*/
2542 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2543 		       unsigned cookie)
2544 {
2545 	char udev_cookie[DM_COOKIE_LENGTH];
2546 	char *envp[] = { udev_cookie, NULL };
2547 
2548 	if (!cookie)
2549 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2550 	else {
2551 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2552 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2553 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2554 					  action, envp);
2555 	}
2556 }
2557 
2558 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2559 {
2560 	return atomic_add_return(1, &md->uevent_seq);
2561 }
2562 
2563 uint32_t dm_get_event_nr(struct mapped_device *md)
2564 {
2565 	return atomic_read(&md->event_nr);
2566 }
2567 
2568 int dm_wait_event(struct mapped_device *md, int event_nr)
2569 {
2570 	return wait_event_interruptible(md->eventq,
2571 			(event_nr != atomic_read(&md->event_nr)));
2572 }
2573 
2574 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2575 {
2576 	unsigned long flags;
2577 
2578 	spin_lock_irqsave(&md->uevent_lock, flags);
2579 	list_add(elist, &md->uevent_list);
2580 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2581 }
2582 
2583 /*
2584  * The gendisk is only valid as long as you have a reference
2585  * count on 'md'.
2586  */
2587 struct gendisk *dm_disk(struct mapped_device *md)
2588 {
2589 	return md->disk;
2590 }
2591 EXPORT_SYMBOL_GPL(dm_disk);
2592 
2593 struct kobject *dm_kobject(struct mapped_device *md)
2594 {
2595 	return &md->kobj_holder.kobj;
2596 }
2597 
2598 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2599 {
2600 	struct mapped_device *md;
2601 
2602 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2603 
2604 	if (test_bit(DMF_FREEING, &md->flags) ||
2605 	    dm_deleting_md(md))
2606 		return NULL;
2607 
2608 	dm_get(md);
2609 	return md;
2610 }
2611 
2612 int dm_suspended_md(struct mapped_device *md)
2613 {
2614 	return test_bit(DMF_SUSPENDED, &md->flags);
2615 }
2616 
2617 int dm_suspended_internally_md(struct mapped_device *md)
2618 {
2619 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2620 }
2621 
2622 int dm_test_deferred_remove_flag(struct mapped_device *md)
2623 {
2624 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2625 }
2626 
2627 int dm_suspended(struct dm_target *ti)
2628 {
2629 	return dm_suspended_md(dm_table_get_md(ti->table));
2630 }
2631 EXPORT_SYMBOL_GPL(dm_suspended);
2632 
2633 int dm_noflush_suspending(struct dm_target *ti)
2634 {
2635 	return __noflush_suspending(dm_table_get_md(ti->table));
2636 }
2637 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2638 
2639 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2640 					    unsigned integrity, unsigned per_io_data_size)
2641 {
2642 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2643 	unsigned int pool_size = 0;
2644 	unsigned int front_pad;
2645 
2646 	if (!pools)
2647 		return NULL;
2648 
2649 	switch (type) {
2650 	case DM_TYPE_BIO_BASED:
2651 	case DM_TYPE_DAX_BIO_BASED:
2652 		pool_size = dm_get_reserved_bio_based_ios();
2653 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2654 
2655 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2656 		if (!pools->io_pool)
2657 			goto out;
2658 		break;
2659 	case DM_TYPE_REQUEST_BASED:
2660 	case DM_TYPE_MQ_REQUEST_BASED:
2661 		pool_size = dm_get_reserved_rq_based_ios();
2662 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2663 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2664 		break;
2665 	default:
2666 		BUG();
2667 	}
2668 
2669 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2670 	if (!pools->bs)
2671 		goto out;
2672 
2673 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2674 		goto out;
2675 
2676 	return pools;
2677 
2678 out:
2679 	dm_free_md_mempools(pools);
2680 
2681 	return NULL;
2682 }
2683 
2684 void dm_free_md_mempools(struct dm_md_mempools *pools)
2685 {
2686 	if (!pools)
2687 		return;
2688 
2689 	mempool_destroy(pools->io_pool);
2690 
2691 	if (pools->bs)
2692 		bioset_free(pools->bs);
2693 
2694 	kfree(pools);
2695 }
2696 
2697 struct dm_pr {
2698 	u64	old_key;
2699 	u64	new_key;
2700 	u32	flags;
2701 	bool	fail_early;
2702 };
2703 
2704 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2705 		      void *data)
2706 {
2707 	struct mapped_device *md = bdev->bd_disk->private_data;
2708 	struct dm_table *table;
2709 	struct dm_target *ti;
2710 	int ret = -ENOTTY, srcu_idx;
2711 
2712 	table = dm_get_live_table(md, &srcu_idx);
2713 	if (!table || !dm_table_get_size(table))
2714 		goto out;
2715 
2716 	/* We only support devices that have a single target */
2717 	if (dm_table_get_num_targets(table) != 1)
2718 		goto out;
2719 	ti = dm_table_get_target(table, 0);
2720 
2721 	ret = -EINVAL;
2722 	if (!ti->type->iterate_devices)
2723 		goto out;
2724 
2725 	ret = ti->type->iterate_devices(ti, fn, data);
2726 out:
2727 	dm_put_live_table(md, srcu_idx);
2728 	return ret;
2729 }
2730 
2731 /*
2732  * For register / unregister we need to manually call out to every path.
2733  */
2734 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2735 			    sector_t start, sector_t len, void *data)
2736 {
2737 	struct dm_pr *pr = data;
2738 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2739 
2740 	if (!ops || !ops->pr_register)
2741 		return -EOPNOTSUPP;
2742 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2743 }
2744 
2745 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2746 			  u32 flags)
2747 {
2748 	struct dm_pr pr = {
2749 		.old_key	= old_key,
2750 		.new_key	= new_key,
2751 		.flags		= flags,
2752 		.fail_early	= true,
2753 	};
2754 	int ret;
2755 
2756 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2757 	if (ret && new_key) {
2758 		/* unregister all paths if we failed to register any path */
2759 		pr.old_key = new_key;
2760 		pr.new_key = 0;
2761 		pr.flags = 0;
2762 		pr.fail_early = false;
2763 		dm_call_pr(bdev, __dm_pr_register, &pr);
2764 	}
2765 
2766 	return ret;
2767 }
2768 
2769 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2770 			 u32 flags)
2771 {
2772 	struct mapped_device *md = bdev->bd_disk->private_data;
2773 	const struct pr_ops *ops;
2774 	fmode_t mode;
2775 	int r;
2776 
2777 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2778 	if (r < 0)
2779 		return r;
2780 
2781 	ops = bdev->bd_disk->fops->pr_ops;
2782 	if (ops && ops->pr_reserve)
2783 		r = ops->pr_reserve(bdev, key, type, flags);
2784 	else
2785 		r = -EOPNOTSUPP;
2786 
2787 	bdput(bdev);
2788 	return r;
2789 }
2790 
2791 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2792 {
2793 	struct mapped_device *md = bdev->bd_disk->private_data;
2794 	const struct pr_ops *ops;
2795 	fmode_t mode;
2796 	int r;
2797 
2798 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2799 	if (r < 0)
2800 		return r;
2801 
2802 	ops = bdev->bd_disk->fops->pr_ops;
2803 	if (ops && ops->pr_release)
2804 		r = ops->pr_release(bdev, key, type);
2805 	else
2806 		r = -EOPNOTSUPP;
2807 
2808 	bdput(bdev);
2809 	return r;
2810 }
2811 
2812 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2813 			 enum pr_type type, bool abort)
2814 {
2815 	struct mapped_device *md = bdev->bd_disk->private_data;
2816 	const struct pr_ops *ops;
2817 	fmode_t mode;
2818 	int r;
2819 
2820 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2821 	if (r < 0)
2822 		return r;
2823 
2824 	ops = bdev->bd_disk->fops->pr_ops;
2825 	if (ops && ops->pr_preempt)
2826 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2827 	else
2828 		r = -EOPNOTSUPP;
2829 
2830 	bdput(bdev);
2831 	return r;
2832 }
2833 
2834 static int dm_pr_clear(struct block_device *bdev, u64 key)
2835 {
2836 	struct mapped_device *md = bdev->bd_disk->private_data;
2837 	const struct pr_ops *ops;
2838 	fmode_t mode;
2839 	int r;
2840 
2841 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2842 	if (r < 0)
2843 		return r;
2844 
2845 	ops = bdev->bd_disk->fops->pr_ops;
2846 	if (ops && ops->pr_clear)
2847 		r = ops->pr_clear(bdev, key);
2848 	else
2849 		r = -EOPNOTSUPP;
2850 
2851 	bdput(bdev);
2852 	return r;
2853 }
2854 
2855 static const struct pr_ops dm_pr_ops = {
2856 	.pr_register	= dm_pr_register,
2857 	.pr_reserve	= dm_pr_reserve,
2858 	.pr_release	= dm_pr_release,
2859 	.pr_preempt	= dm_pr_preempt,
2860 	.pr_clear	= dm_pr_clear,
2861 };
2862 
2863 static const struct block_device_operations dm_blk_dops = {
2864 	.open = dm_blk_open,
2865 	.release = dm_blk_close,
2866 	.ioctl = dm_blk_ioctl,
2867 	.getgeo = dm_blk_getgeo,
2868 	.pr_ops = &dm_pr_ops,
2869 	.owner = THIS_MODULE
2870 };
2871 
2872 static const struct dax_operations dm_dax_ops = {
2873 	.direct_access = dm_dax_direct_access,
2874 };
2875 
2876 /*
2877  * module hooks
2878  */
2879 module_init(dm_init);
2880 module_exit(dm_exit);
2881 
2882 module_param(major, uint, 0);
2883 MODULE_PARM_DESC(major, "The major number of the device mapper");
2884 
2885 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2886 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2887 
2888 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2889 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2890 
2891 MODULE_DESCRIPTION(DM_NAME " driver");
2892 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2893 MODULE_LICENSE("GPL");
2894