xref: /openbmc/linux/drivers/md/dm.c (revision 8eabf5d0a7bd9226d6cc25402dde67f372aae838)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 static const char *_name = DM_NAME;
44 
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47 
48 static DEFINE_IDR(_minor_idr);
49 
50 static DEFINE_SPINLOCK(_minor_lock);
51 
52 static void do_deferred_remove(struct work_struct *w);
53 
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 
56 static struct workqueue_struct *deferred_remove_workqueue;
57 
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 
61 void dm_issue_global_event(void)
62 {
63 	atomic_inc(&dm_global_event_nr);
64 	wake_up(&dm_global_eventq);
65 }
66 
67 /*
68  * One of these is allocated (on-stack) per original bio.
69  */
70 struct clone_info {
71 	struct dm_table *map;
72 	struct bio *bio;
73 	struct dm_io *io;
74 	sector_t sector;
75 	unsigned sector_count;
76 };
77 
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 
82 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
83 {
84 	return container_of(clone, struct dm_target_io, clone);
85 }
86 
87 void *dm_per_bio_data(struct bio *bio, size_t data_size)
88 {
89 	if (!clone_to_tio(bio)->inside_dm_io)
90 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
91 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
92 }
93 EXPORT_SYMBOL_GPL(dm_per_bio_data);
94 
95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
96 {
97 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
98 	if (io->magic == DM_IO_MAGIC)
99 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
100 	BUG_ON(io->magic != DM_TIO_MAGIC);
101 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
102 }
103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
104 
105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
106 {
107 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
108 }
109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
110 
111 #define MINOR_ALLOCED ((void *)-1)
112 
113 #define DM_NUMA_NODE NUMA_NO_NODE
114 static int dm_numa_node = DM_NUMA_NODE;
115 
116 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
117 static int swap_bios = DEFAULT_SWAP_BIOS;
118 static int get_swap_bios(void)
119 {
120 	int latch = READ_ONCE(swap_bios);
121 	if (unlikely(latch <= 0))
122 		latch = DEFAULT_SWAP_BIOS;
123 	return latch;
124 }
125 
126 /*
127  * For mempools pre-allocation at the table loading time.
128  */
129 struct dm_md_mempools {
130 	struct bio_set bs;
131 	struct bio_set io_bs;
132 };
133 
134 struct table_device {
135 	struct list_head list;
136 	refcount_t count;
137 	struct dm_dev dm_dev;
138 };
139 
140 /*
141  * Bio-based DM's mempools' reserved IOs set by the user.
142  */
143 #define RESERVED_BIO_BASED_IOS		16
144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
145 
146 static int __dm_get_module_param_int(int *module_param, int min, int max)
147 {
148 	int param = READ_ONCE(*module_param);
149 	int modified_param = 0;
150 	bool modified = true;
151 
152 	if (param < min)
153 		modified_param = min;
154 	else if (param > max)
155 		modified_param = max;
156 	else
157 		modified = false;
158 
159 	if (modified) {
160 		(void)cmpxchg(module_param, param, modified_param);
161 		param = modified_param;
162 	}
163 
164 	return param;
165 }
166 
167 unsigned __dm_get_module_param(unsigned *module_param,
168 			       unsigned def, unsigned max)
169 {
170 	unsigned param = READ_ONCE(*module_param);
171 	unsigned modified_param = 0;
172 
173 	if (!param)
174 		modified_param = def;
175 	else if (param > max)
176 		modified_param = max;
177 
178 	if (modified_param) {
179 		(void)cmpxchg(module_param, param, modified_param);
180 		param = modified_param;
181 	}
182 
183 	return param;
184 }
185 
186 unsigned dm_get_reserved_bio_based_ios(void)
187 {
188 	return __dm_get_module_param(&reserved_bio_based_ios,
189 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
190 }
191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
192 
193 static unsigned dm_get_numa_node(void)
194 {
195 	return __dm_get_module_param_int(&dm_numa_node,
196 					 DM_NUMA_NODE, num_online_nodes() - 1);
197 }
198 
199 static int __init local_init(void)
200 {
201 	int r;
202 
203 	r = dm_uevent_init();
204 	if (r)
205 		return r;
206 
207 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
208 	if (!deferred_remove_workqueue) {
209 		r = -ENOMEM;
210 		goto out_uevent_exit;
211 	}
212 
213 	_major = major;
214 	r = register_blkdev(_major, _name);
215 	if (r < 0)
216 		goto out_free_workqueue;
217 
218 	if (!_major)
219 		_major = r;
220 
221 	return 0;
222 
223 out_free_workqueue:
224 	destroy_workqueue(deferred_remove_workqueue);
225 out_uevent_exit:
226 	dm_uevent_exit();
227 
228 	return r;
229 }
230 
231 static void local_exit(void)
232 {
233 	flush_scheduled_work();
234 	destroy_workqueue(deferred_remove_workqueue);
235 
236 	unregister_blkdev(_major, _name);
237 	dm_uevent_exit();
238 
239 	_major = 0;
240 
241 	DMINFO("cleaned up");
242 }
243 
244 static int (*_inits[])(void) __initdata = {
245 	local_init,
246 	dm_target_init,
247 	dm_linear_init,
248 	dm_stripe_init,
249 	dm_io_init,
250 	dm_kcopyd_init,
251 	dm_interface_init,
252 	dm_statistics_init,
253 };
254 
255 static void (*_exits[])(void) = {
256 	local_exit,
257 	dm_target_exit,
258 	dm_linear_exit,
259 	dm_stripe_exit,
260 	dm_io_exit,
261 	dm_kcopyd_exit,
262 	dm_interface_exit,
263 	dm_statistics_exit,
264 };
265 
266 static int __init dm_init(void)
267 {
268 	const int count = ARRAY_SIZE(_inits);
269 	int r, i;
270 
271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
272 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
273 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
274 #endif
275 
276 	for (i = 0; i < count; i++) {
277 		r = _inits[i]();
278 		if (r)
279 			goto bad;
280 	}
281 
282 	return 0;
283 bad:
284 	while (i--)
285 		_exits[i]();
286 
287 	return r;
288 }
289 
290 static void __exit dm_exit(void)
291 {
292 	int i = ARRAY_SIZE(_exits);
293 
294 	while (i--)
295 		_exits[i]();
296 
297 	/*
298 	 * Should be empty by this point.
299 	 */
300 	idr_destroy(&_minor_idr);
301 }
302 
303 /*
304  * Block device functions
305  */
306 int dm_deleting_md(struct mapped_device *md)
307 {
308 	return test_bit(DMF_DELETING, &md->flags);
309 }
310 
311 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
312 {
313 	struct mapped_device *md;
314 
315 	spin_lock(&_minor_lock);
316 
317 	md = bdev->bd_disk->private_data;
318 	if (!md)
319 		goto out;
320 
321 	if (test_bit(DMF_FREEING, &md->flags) ||
322 	    dm_deleting_md(md)) {
323 		md = NULL;
324 		goto out;
325 	}
326 
327 	dm_get(md);
328 	atomic_inc(&md->open_count);
329 out:
330 	spin_unlock(&_minor_lock);
331 
332 	return md ? 0 : -ENXIO;
333 }
334 
335 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
336 {
337 	struct mapped_device *md;
338 
339 	spin_lock(&_minor_lock);
340 
341 	md = disk->private_data;
342 	if (WARN_ON(!md))
343 		goto out;
344 
345 	if (atomic_dec_and_test(&md->open_count) &&
346 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
347 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
348 
349 	dm_put(md);
350 out:
351 	spin_unlock(&_minor_lock);
352 }
353 
354 int dm_open_count(struct mapped_device *md)
355 {
356 	return atomic_read(&md->open_count);
357 }
358 
359 /*
360  * Guarantees nothing is using the device before it's deleted.
361  */
362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
363 {
364 	int r = 0;
365 
366 	spin_lock(&_minor_lock);
367 
368 	if (dm_open_count(md)) {
369 		r = -EBUSY;
370 		if (mark_deferred)
371 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
372 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
373 		r = -EEXIST;
374 	else
375 		set_bit(DMF_DELETING, &md->flags);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return r;
380 }
381 
382 int dm_cancel_deferred_remove(struct mapped_device *md)
383 {
384 	int r = 0;
385 
386 	spin_lock(&_minor_lock);
387 
388 	if (test_bit(DMF_DELETING, &md->flags))
389 		r = -EBUSY;
390 	else
391 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
392 
393 	spin_unlock(&_minor_lock);
394 
395 	return r;
396 }
397 
398 static void do_deferred_remove(struct work_struct *w)
399 {
400 	dm_deferred_remove();
401 }
402 
403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
404 {
405 	struct mapped_device *md = bdev->bd_disk->private_data;
406 
407 	return dm_get_geometry(md, geo);
408 }
409 
410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
411 			    struct block_device **bdev)
412 {
413 	struct dm_target *tgt;
414 	struct dm_table *map;
415 	int r;
416 
417 retry:
418 	r = -ENOTTY;
419 	map = dm_get_live_table(md, srcu_idx);
420 	if (!map || !dm_table_get_size(map))
421 		return r;
422 
423 	/* We only support devices that have a single target */
424 	if (dm_table_get_num_targets(map) != 1)
425 		return r;
426 
427 	tgt = dm_table_get_target(map, 0);
428 	if (!tgt->type->prepare_ioctl)
429 		return r;
430 
431 	if (dm_suspended_md(md))
432 		return -EAGAIN;
433 
434 	r = tgt->type->prepare_ioctl(tgt, bdev);
435 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
436 		dm_put_live_table(md, *srcu_idx);
437 		msleep(10);
438 		goto retry;
439 	}
440 
441 	return r;
442 }
443 
444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
445 {
446 	dm_put_live_table(md, srcu_idx);
447 }
448 
449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
450 			unsigned int cmd, unsigned long arg)
451 {
452 	struct mapped_device *md = bdev->bd_disk->private_data;
453 	int r, srcu_idx;
454 
455 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
456 	if (r < 0)
457 		goto out;
458 
459 	if (r > 0) {
460 		/*
461 		 * Target determined this ioctl is being issued against a
462 		 * subset of the parent bdev; require extra privileges.
463 		 */
464 		if (!capable(CAP_SYS_RAWIO)) {
465 			DMDEBUG_LIMIT(
466 	"%s: sending ioctl %x to DM device without required privilege.",
467 				current->comm, cmd);
468 			r = -ENOIOCTLCMD;
469 			goto out;
470 		}
471 	}
472 
473 	if (!bdev->bd_disk->fops->ioctl)
474 		r = -ENOTTY;
475 	else
476 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
477 out:
478 	dm_unprepare_ioctl(md, srcu_idx);
479 	return r;
480 }
481 
482 u64 dm_start_time_ns_from_clone(struct bio *bio)
483 {
484 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
485 }
486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
487 
488 static void start_io_acct(struct dm_io *io)
489 {
490 	struct mapped_device *md = io->md;
491 	struct bio *bio = io->orig_bio;
492 
493 	bio_start_io_acct_time(bio, io->start_time);
494 	if (unlikely(dm_stats_used(&md->stats)))
495 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
496 				    bio->bi_iter.bi_sector, bio_sectors(bio),
497 				    false, 0, &io->stats_aux);
498 }
499 
500 static void end_io_acct(struct mapped_device *md, struct bio *bio,
501 			unsigned long start_time, struct dm_stats_aux *stats_aux)
502 {
503 	unsigned long duration = jiffies - start_time;
504 
505 	bio_end_io_acct(bio, start_time);
506 
507 	if (unlikely(dm_stats_used(&md->stats)))
508 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
509 				    bio->bi_iter.bi_sector, bio_sectors(bio),
510 				    true, duration, stats_aux);
511 
512 	/* nudge anyone waiting on suspend queue */
513 	if (unlikely(wq_has_sleeper(&md->wait)))
514 		wake_up(&md->wait);
515 }
516 
517 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
518 {
519 	struct dm_io *io;
520 	struct dm_target_io *tio;
521 	struct bio *clone;
522 
523 	clone = bio_alloc_bioset(NULL, 0, 0, GFP_NOIO, &md->io_bs);
524 
525 	tio = clone_to_tio(clone);
526 	tio->inside_dm_io = true;
527 	tio->io = NULL;
528 
529 	io = container_of(tio, struct dm_io, tio);
530 	io->magic = DM_IO_MAGIC;
531 	io->status = 0;
532 	atomic_set(&io->io_count, 1);
533 	io->orig_bio = bio;
534 	io->md = md;
535 	spin_lock_init(&io->endio_lock);
536 
537 	io->start_time = jiffies;
538 
539 	return io;
540 }
541 
542 static void free_io(struct mapped_device *md, struct dm_io *io)
543 {
544 	bio_put(&io->tio.clone);
545 }
546 
547 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
548 				      unsigned target_bio_nr, gfp_t gfp_mask)
549 {
550 	struct dm_target_io *tio;
551 
552 	if (!ci->io->tio.io) {
553 		/* the dm_target_io embedded in ci->io is available */
554 		tio = &ci->io->tio;
555 	} else {
556 		struct bio *clone = bio_alloc_bioset(NULL, 0, 0, gfp_mask,
557 						     &ci->io->md->bs);
558 		if (!clone)
559 			return NULL;
560 
561 		tio = clone_to_tio(clone);
562 		tio->inside_dm_io = false;
563 	}
564 
565 	tio->magic = DM_TIO_MAGIC;
566 	tio->io = ci->io;
567 	tio->ti = ti;
568 	tio->target_bio_nr = target_bio_nr;
569 
570 	return tio;
571 }
572 
573 static void free_tio(struct dm_target_io *tio)
574 {
575 	if (tio->inside_dm_io)
576 		return;
577 	bio_put(&tio->clone);
578 }
579 
580 /*
581  * Add the bio to the list of deferred io.
582  */
583 static void queue_io(struct mapped_device *md, struct bio *bio)
584 {
585 	unsigned long flags;
586 
587 	spin_lock_irqsave(&md->deferred_lock, flags);
588 	bio_list_add(&md->deferred, bio);
589 	spin_unlock_irqrestore(&md->deferred_lock, flags);
590 	queue_work(md->wq, &md->work);
591 }
592 
593 /*
594  * Everyone (including functions in this file), should use this
595  * function to access the md->map field, and make sure they call
596  * dm_put_live_table() when finished.
597  */
598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
599 {
600 	*srcu_idx = srcu_read_lock(&md->io_barrier);
601 
602 	return srcu_dereference(md->map, &md->io_barrier);
603 }
604 
605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
606 {
607 	srcu_read_unlock(&md->io_barrier, srcu_idx);
608 }
609 
610 void dm_sync_table(struct mapped_device *md)
611 {
612 	synchronize_srcu(&md->io_barrier);
613 	synchronize_rcu_expedited();
614 }
615 
616 /*
617  * A fast alternative to dm_get_live_table/dm_put_live_table.
618  * The caller must not block between these two functions.
619  */
620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
621 {
622 	rcu_read_lock();
623 	return rcu_dereference(md->map);
624 }
625 
626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
627 {
628 	rcu_read_unlock();
629 }
630 
631 static char *_dm_claim_ptr = "I belong to device-mapper";
632 
633 /*
634  * Open a table device so we can use it as a map destination.
635  */
636 static int open_table_device(struct table_device *td, dev_t dev,
637 			     struct mapped_device *md)
638 {
639 	struct block_device *bdev;
640 	u64 part_off;
641 	int r;
642 
643 	BUG_ON(td->dm_dev.bdev);
644 
645 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
646 	if (IS_ERR(bdev))
647 		return PTR_ERR(bdev);
648 
649 	r = bd_link_disk_holder(bdev, dm_disk(md));
650 	if (r) {
651 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
652 		return r;
653 	}
654 
655 	td->dm_dev.bdev = bdev;
656 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
657 	return 0;
658 }
659 
660 /*
661  * Close a table device that we've been using.
662  */
663 static void close_table_device(struct table_device *td, struct mapped_device *md)
664 {
665 	if (!td->dm_dev.bdev)
666 		return;
667 
668 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
669 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
670 	put_dax(td->dm_dev.dax_dev);
671 	td->dm_dev.bdev = NULL;
672 	td->dm_dev.dax_dev = NULL;
673 }
674 
675 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
676 					      fmode_t mode)
677 {
678 	struct table_device *td;
679 
680 	list_for_each_entry(td, l, list)
681 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
682 			return td;
683 
684 	return NULL;
685 }
686 
687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
688 			struct dm_dev **result)
689 {
690 	int r;
691 	struct table_device *td;
692 
693 	mutex_lock(&md->table_devices_lock);
694 	td = find_table_device(&md->table_devices, dev, mode);
695 	if (!td) {
696 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
697 		if (!td) {
698 			mutex_unlock(&md->table_devices_lock);
699 			return -ENOMEM;
700 		}
701 
702 		td->dm_dev.mode = mode;
703 		td->dm_dev.bdev = NULL;
704 
705 		if ((r = open_table_device(td, dev, md))) {
706 			mutex_unlock(&md->table_devices_lock);
707 			kfree(td);
708 			return r;
709 		}
710 
711 		format_dev_t(td->dm_dev.name, dev);
712 
713 		refcount_set(&td->count, 1);
714 		list_add(&td->list, &md->table_devices);
715 	} else {
716 		refcount_inc(&td->count);
717 	}
718 	mutex_unlock(&md->table_devices_lock);
719 
720 	*result = &td->dm_dev;
721 	return 0;
722 }
723 
724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
725 {
726 	struct table_device *td = container_of(d, struct table_device, dm_dev);
727 
728 	mutex_lock(&md->table_devices_lock);
729 	if (refcount_dec_and_test(&td->count)) {
730 		close_table_device(td, md);
731 		list_del(&td->list);
732 		kfree(td);
733 	}
734 	mutex_unlock(&md->table_devices_lock);
735 }
736 
737 static void free_table_devices(struct list_head *devices)
738 {
739 	struct list_head *tmp, *next;
740 
741 	list_for_each_safe(tmp, next, devices) {
742 		struct table_device *td = list_entry(tmp, struct table_device, list);
743 
744 		DMWARN("dm_destroy: %s still exists with %d references",
745 		       td->dm_dev.name, refcount_read(&td->count));
746 		kfree(td);
747 	}
748 }
749 
750 /*
751  * Get the geometry associated with a dm device
752  */
753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
754 {
755 	*geo = md->geometry;
756 
757 	return 0;
758 }
759 
760 /*
761  * Set the geometry of a device.
762  */
763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
764 {
765 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
766 
767 	if (geo->start > sz) {
768 		DMWARN("Start sector is beyond the geometry limits.");
769 		return -EINVAL;
770 	}
771 
772 	md->geometry = *geo;
773 
774 	return 0;
775 }
776 
777 static int __noflush_suspending(struct mapped_device *md)
778 {
779 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
780 }
781 
782 /*
783  * Decrements the number of outstanding ios that a bio has been
784  * cloned into, completing the original io if necc.
785  */
786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
787 {
788 	unsigned long flags;
789 	blk_status_t io_error;
790 	struct bio *bio;
791 	struct mapped_device *md = io->md;
792 	unsigned long start_time = 0;
793 	struct dm_stats_aux stats_aux;
794 
795 	/* Push-back supersedes any I/O errors */
796 	if (unlikely(error)) {
797 		spin_lock_irqsave(&io->endio_lock, flags);
798 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
799 			io->status = error;
800 		spin_unlock_irqrestore(&io->endio_lock, flags);
801 	}
802 
803 	if (atomic_dec_and_test(&io->io_count)) {
804 		bio = io->orig_bio;
805 		if (io->status == BLK_STS_DM_REQUEUE) {
806 			/*
807 			 * Target requested pushing back the I/O.
808 			 */
809 			spin_lock_irqsave(&md->deferred_lock, flags);
810 			if (__noflush_suspending(md) &&
811 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
812 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
813 				bio_list_add_head(&md->deferred, bio);
814 			} else {
815 				/*
816 				 * noflush suspend was interrupted or this is
817 				 * a write to a zoned target.
818 				 */
819 				io->status = BLK_STS_IOERR;
820 			}
821 			spin_unlock_irqrestore(&md->deferred_lock, flags);
822 		}
823 
824 		io_error = io->status;
825 		start_time = io->start_time;
826 		stats_aux = io->stats_aux;
827 		free_io(md, io);
828 		end_io_acct(md, bio, start_time, &stats_aux);
829 
830 		if (io_error == BLK_STS_DM_REQUEUE)
831 			return;
832 
833 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
834 			/*
835 			 * Preflush done for flush with data, reissue
836 			 * without REQ_PREFLUSH.
837 			 */
838 			bio->bi_opf &= ~REQ_PREFLUSH;
839 			queue_io(md, bio);
840 		} else {
841 			/* done with normal IO or empty flush */
842 			if (io_error)
843 				bio->bi_status = io_error;
844 			bio_endio(bio);
845 		}
846 	}
847 }
848 
849 void disable_discard(struct mapped_device *md)
850 {
851 	struct queue_limits *limits = dm_get_queue_limits(md);
852 
853 	/* device doesn't really support DISCARD, disable it */
854 	limits->max_discard_sectors = 0;
855 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
856 }
857 
858 void disable_write_same(struct mapped_device *md)
859 {
860 	struct queue_limits *limits = dm_get_queue_limits(md);
861 
862 	/* device doesn't really support WRITE SAME, disable it */
863 	limits->max_write_same_sectors = 0;
864 }
865 
866 void disable_write_zeroes(struct mapped_device *md)
867 {
868 	struct queue_limits *limits = dm_get_queue_limits(md);
869 
870 	/* device doesn't really support WRITE ZEROES, disable it */
871 	limits->max_write_zeroes_sectors = 0;
872 }
873 
874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
875 {
876 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
877 }
878 
879 static void clone_endio(struct bio *bio)
880 {
881 	blk_status_t error = bio->bi_status;
882 	struct dm_target_io *tio = clone_to_tio(bio);
883 	struct dm_io *io = tio->io;
884 	struct mapped_device *md = tio->io->md;
885 	dm_endio_fn endio = tio->ti->type->end_io;
886 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
887 
888 	if (unlikely(error == BLK_STS_TARGET)) {
889 		if (bio_op(bio) == REQ_OP_DISCARD &&
890 		    !q->limits.max_discard_sectors)
891 			disable_discard(md);
892 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
893 			 !q->limits.max_write_same_sectors)
894 			disable_write_same(md);
895 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
896 			 !q->limits.max_write_zeroes_sectors)
897 			disable_write_zeroes(md);
898 	}
899 
900 	if (blk_queue_is_zoned(q))
901 		dm_zone_endio(io, bio);
902 
903 	if (endio) {
904 		int r = endio(tio->ti, bio, &error);
905 		switch (r) {
906 		case DM_ENDIO_REQUEUE:
907 			/*
908 			 * Requeuing writes to a sequential zone of a zoned
909 			 * target will break the sequential write pattern:
910 			 * fail such IO.
911 			 */
912 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
913 				error = BLK_STS_IOERR;
914 			else
915 				error = BLK_STS_DM_REQUEUE;
916 			fallthrough;
917 		case DM_ENDIO_DONE:
918 			break;
919 		case DM_ENDIO_INCOMPLETE:
920 			/* The target will handle the io */
921 			return;
922 		default:
923 			DMWARN("unimplemented target endio return value: %d", r);
924 			BUG();
925 		}
926 	}
927 
928 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
929 		struct mapped_device *md = io->md;
930 		up(&md->swap_bios_semaphore);
931 	}
932 
933 	free_tio(tio);
934 	dm_io_dec_pending(io, error);
935 }
936 
937 /*
938  * Return maximum size of I/O possible at the supplied sector up to the current
939  * target boundary.
940  */
941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
942 						  sector_t target_offset)
943 {
944 	return ti->len - target_offset;
945 }
946 
947 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
948 {
949 	sector_t target_offset = dm_target_offset(ti, sector);
950 	sector_t len = max_io_len_target_boundary(ti, target_offset);
951 	sector_t max_len;
952 
953 	/*
954 	 * Does the target need to split IO even further?
955 	 * - varied (per target) IO splitting is a tenet of DM; this
956 	 *   explains why stacked chunk_sectors based splitting via
957 	 *   blk_max_size_offset() isn't possible here. So pass in
958 	 *   ti->max_io_len to override stacked chunk_sectors.
959 	 */
960 	if (ti->max_io_len) {
961 		max_len = blk_max_size_offset(ti->table->md->queue,
962 					      target_offset, ti->max_io_len);
963 		if (len > max_len)
964 			len = max_len;
965 	}
966 
967 	return len;
968 }
969 
970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
971 {
972 	if (len > UINT_MAX) {
973 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
974 		      (unsigned long long)len, UINT_MAX);
975 		ti->error = "Maximum size of target IO is too large";
976 		return -EINVAL;
977 	}
978 
979 	ti->max_io_len = (uint32_t) len;
980 
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
984 
985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
986 						sector_t sector, int *srcu_idx)
987 	__acquires(md->io_barrier)
988 {
989 	struct dm_table *map;
990 	struct dm_target *ti;
991 
992 	map = dm_get_live_table(md, srcu_idx);
993 	if (!map)
994 		return NULL;
995 
996 	ti = dm_table_find_target(map, sector);
997 	if (!ti)
998 		return NULL;
999 
1000 	return ti;
1001 }
1002 
1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1004 				 long nr_pages, void **kaddr, pfn_t *pfn)
1005 {
1006 	struct mapped_device *md = dax_get_private(dax_dev);
1007 	sector_t sector = pgoff * PAGE_SECTORS;
1008 	struct dm_target *ti;
1009 	long len, ret = -EIO;
1010 	int srcu_idx;
1011 
1012 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1013 
1014 	if (!ti)
1015 		goto out;
1016 	if (!ti->type->direct_access)
1017 		goto out;
1018 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1019 	if (len < 1)
1020 		goto out;
1021 	nr_pages = min(len, nr_pages);
1022 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1023 
1024  out:
1025 	dm_put_live_table(md, srcu_idx);
1026 
1027 	return ret;
1028 }
1029 
1030 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1031 				  size_t nr_pages)
1032 {
1033 	struct mapped_device *md = dax_get_private(dax_dev);
1034 	sector_t sector = pgoff * PAGE_SECTORS;
1035 	struct dm_target *ti;
1036 	int ret = -EIO;
1037 	int srcu_idx;
1038 
1039 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1040 
1041 	if (!ti)
1042 		goto out;
1043 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1044 		/*
1045 		 * ->zero_page_range() is mandatory dax operation. If we are
1046 		 *  here, something is wrong.
1047 		 */
1048 		goto out;
1049 	}
1050 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1051  out:
1052 	dm_put_live_table(md, srcu_idx);
1053 
1054 	return ret;
1055 }
1056 
1057 /*
1058  * A target may call dm_accept_partial_bio only from the map routine.  It is
1059  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1060  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1061  *
1062  * dm_accept_partial_bio informs the dm that the target only wants to process
1063  * additional n_sectors sectors of the bio and the rest of the data should be
1064  * sent in a next bio.
1065  *
1066  * A diagram that explains the arithmetics:
1067  * +--------------------+---------------+-------+
1068  * |         1          |       2       |   3   |
1069  * +--------------------+---------------+-------+
1070  *
1071  * <-------------- *tio->len_ptr --------------->
1072  *                      <------- bi_size ------->
1073  *                      <-- n_sectors -->
1074  *
1075  * Region 1 was already iterated over with bio_advance or similar function.
1076  *	(it may be empty if the target doesn't use bio_advance)
1077  * Region 2 is the remaining bio size that the target wants to process.
1078  *	(it may be empty if region 1 is non-empty, although there is no reason
1079  *	 to make it empty)
1080  * The target requires that region 3 is to be sent in the next bio.
1081  *
1082  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1083  * the partially processed part (the sum of regions 1+2) must be the same for all
1084  * copies of the bio.
1085  */
1086 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1087 {
1088 	struct dm_target_io *tio = clone_to_tio(bio);
1089 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1090 
1091 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1092 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1093 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1094 	BUG_ON(bi_size > *tio->len_ptr);
1095 	BUG_ON(n_sectors > bi_size);
1096 
1097 	*tio->len_ptr -= bi_size - n_sectors;
1098 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1099 }
1100 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1101 
1102 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1103 {
1104 	mutex_lock(&md->swap_bios_lock);
1105 	while (latch < md->swap_bios) {
1106 		cond_resched();
1107 		down(&md->swap_bios_semaphore);
1108 		md->swap_bios--;
1109 	}
1110 	while (latch > md->swap_bios) {
1111 		cond_resched();
1112 		up(&md->swap_bios_semaphore);
1113 		md->swap_bios++;
1114 	}
1115 	mutex_unlock(&md->swap_bios_lock);
1116 }
1117 
1118 static void __map_bio(struct dm_target_io *tio)
1119 {
1120 	int r;
1121 	sector_t sector;
1122 	struct bio *clone = &tio->clone;
1123 	struct dm_io *io = tio->io;
1124 	struct dm_target *ti = tio->ti;
1125 
1126 	clone->bi_end_io = clone_endio;
1127 
1128 	/*
1129 	 * Map the clone.  If r == 0 we don't need to do
1130 	 * anything, the target has assumed ownership of
1131 	 * this io.
1132 	 */
1133 	dm_io_inc_pending(io);
1134 	sector = clone->bi_iter.bi_sector;
1135 
1136 	if (unlikely(swap_bios_limit(ti, clone))) {
1137 		struct mapped_device *md = io->md;
1138 		int latch = get_swap_bios();
1139 		if (unlikely(latch != md->swap_bios))
1140 			__set_swap_bios_limit(md, latch);
1141 		down(&md->swap_bios_semaphore);
1142 	}
1143 
1144 	/*
1145 	 * Check if the IO needs a special mapping due to zone append emulation
1146 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1147 	 * map operation.
1148 	 */
1149 	if (dm_emulate_zone_append(io->md))
1150 		r = dm_zone_map_bio(tio);
1151 	else
1152 		r = ti->type->map(ti, clone);
1153 
1154 	switch (r) {
1155 	case DM_MAPIO_SUBMITTED:
1156 		break;
1157 	case DM_MAPIO_REMAPPED:
1158 		/* the bio has been remapped so dispatch it */
1159 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1160 		submit_bio_noacct(clone);
1161 		break;
1162 	case DM_MAPIO_KILL:
1163 		if (unlikely(swap_bios_limit(ti, clone))) {
1164 			struct mapped_device *md = io->md;
1165 			up(&md->swap_bios_semaphore);
1166 		}
1167 		free_tio(tio);
1168 		dm_io_dec_pending(io, BLK_STS_IOERR);
1169 		break;
1170 	case DM_MAPIO_REQUEUE:
1171 		if (unlikely(swap_bios_limit(ti, clone))) {
1172 			struct mapped_device *md = io->md;
1173 			up(&md->swap_bios_semaphore);
1174 		}
1175 		free_tio(tio);
1176 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1177 		break;
1178 	default:
1179 		DMWARN("unimplemented target map return value: %d", r);
1180 		BUG();
1181 	}
1182 }
1183 
1184 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1185 {
1186 	bio->bi_iter.bi_sector = sector;
1187 	bio->bi_iter.bi_size = to_bytes(len);
1188 }
1189 
1190 /*
1191  * Creates a bio that consists of range of complete bvecs.
1192  */
1193 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1194 				    sector_t sector, unsigned *len)
1195 {
1196 	struct bio *bio = ci->bio, *clone;
1197 	struct dm_target_io *tio;
1198 	int r;
1199 
1200 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1201 	tio->len_ptr = len;
1202 
1203 	clone = &tio->clone;
1204 	__bio_clone_fast(clone, bio);
1205 
1206 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1207 	if (r < 0)
1208 		goto free_tio;
1209 
1210 	if (bio_integrity(bio)) {
1211 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1212 			     !dm_target_passes_integrity(tio->ti->type))) {
1213 			DMWARN("%s: the target %s doesn't support integrity data.",
1214 				dm_device_name(tio->io->md),
1215 				tio->ti->type->name);
1216 			r = -EIO;
1217 			goto free_tio;
1218 		}
1219 
1220 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1221 		if (r < 0)
1222 			goto free_tio;
1223 	}
1224 
1225 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1226 	clone->bi_iter.bi_size = to_bytes(*len);
1227 
1228 	if (bio_integrity(bio))
1229 		bio_integrity_trim(clone);
1230 
1231 	__map_bio(tio);
1232 	return 0;
1233 free_tio:
1234 	free_tio(tio);
1235 	return r;
1236 }
1237 
1238 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1239 				struct dm_target *ti, unsigned num_bios)
1240 {
1241 	struct dm_target_io *tio;
1242 	int try;
1243 
1244 	if (!num_bios)
1245 		return;
1246 
1247 	if (num_bios == 1) {
1248 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1249 		bio_list_add(blist, &tio->clone);
1250 		return;
1251 	}
1252 
1253 	for (try = 0; try < 2; try++) {
1254 		int bio_nr;
1255 		struct bio *bio;
1256 
1257 		if (try)
1258 			mutex_lock(&ci->io->md->table_devices_lock);
1259 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1260 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1261 			if (!tio)
1262 				break;
1263 
1264 			bio_list_add(blist, &tio->clone);
1265 		}
1266 		if (try)
1267 			mutex_unlock(&ci->io->md->table_devices_lock);
1268 		if (bio_nr == num_bios)
1269 			return;
1270 
1271 		while ((bio = bio_list_pop(blist)))
1272 			free_tio(clone_to_tio(bio));
1273 	}
1274 }
1275 
1276 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1277 				  unsigned num_bios, unsigned *len)
1278 {
1279 	struct bio_list blist = BIO_EMPTY_LIST;
1280 	struct bio *clone;
1281 
1282 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1283 
1284 	while ((clone = bio_list_pop(&blist))) {
1285 		struct dm_target_io *tio = clone_to_tio(clone);
1286 
1287 		tio->len_ptr = len;
1288 
1289 		__bio_clone_fast(clone, ci->bio);
1290 		if (len)
1291 			bio_setup_sector(clone, ci->sector, *len);
1292 		__map_bio(tio);
1293 	}
1294 }
1295 
1296 static int __send_empty_flush(struct clone_info *ci)
1297 {
1298 	unsigned target_nr = 0;
1299 	struct dm_target *ti;
1300 	struct bio flush_bio;
1301 
1302 	/*
1303 	 * Use an on-stack bio for this, it's safe since we don't
1304 	 * need to reference it after submit. It's just used as
1305 	 * the basis for the clone(s).
1306 	 */
1307 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1308 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1309 
1310 	ci->bio = &flush_bio;
1311 	ci->sector_count = 0;
1312 
1313 	BUG_ON(bio_has_data(ci->bio));
1314 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1315 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1316 
1317 	bio_uninit(ci->bio);
1318 	return 0;
1319 }
1320 
1321 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1322 				       unsigned num_bios)
1323 {
1324 	unsigned len;
1325 
1326 	/*
1327 	 * Even though the device advertised support for this type of
1328 	 * request, that does not mean every target supports it, and
1329 	 * reconfiguration might also have changed that since the
1330 	 * check was performed.
1331 	 */
1332 	if (!num_bios)
1333 		return -EOPNOTSUPP;
1334 
1335 	len = min_t(sector_t, ci->sector_count,
1336 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1337 
1338 	__send_duplicate_bios(ci, ti, num_bios, &len);
1339 
1340 	ci->sector += len;
1341 	ci->sector_count -= len;
1342 
1343 	return 0;
1344 }
1345 
1346 static bool is_abnormal_io(struct bio *bio)
1347 {
1348 	bool r = false;
1349 
1350 	switch (bio_op(bio)) {
1351 	case REQ_OP_DISCARD:
1352 	case REQ_OP_SECURE_ERASE:
1353 	case REQ_OP_WRITE_SAME:
1354 	case REQ_OP_WRITE_ZEROES:
1355 		r = true;
1356 		break;
1357 	}
1358 
1359 	return r;
1360 }
1361 
1362 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1363 				  int *result)
1364 {
1365 	struct bio *bio = ci->bio;
1366 	unsigned num_bios = 0;
1367 
1368 	switch (bio_op(bio)) {
1369 	case REQ_OP_DISCARD:
1370 		num_bios = ti->num_discard_bios;
1371 		break;
1372 	case REQ_OP_SECURE_ERASE:
1373 		num_bios = ti->num_secure_erase_bios;
1374 		break;
1375 	case REQ_OP_WRITE_SAME:
1376 		num_bios = ti->num_write_same_bios;
1377 		break;
1378 	case REQ_OP_WRITE_ZEROES:
1379 		num_bios = ti->num_write_zeroes_bios;
1380 		break;
1381 	default:
1382 		return false;
1383 	}
1384 
1385 	*result = __send_changing_extent_only(ci, ti, num_bios);
1386 	return true;
1387 }
1388 
1389 /*
1390  * Select the correct strategy for processing a non-flush bio.
1391  */
1392 static int __split_and_process_non_flush(struct clone_info *ci)
1393 {
1394 	struct dm_target *ti;
1395 	unsigned len;
1396 	int r;
1397 
1398 	ti = dm_table_find_target(ci->map, ci->sector);
1399 	if (!ti)
1400 		return -EIO;
1401 
1402 	if (__process_abnormal_io(ci, ti, &r))
1403 		return r;
1404 
1405 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1406 
1407 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1408 	if (r < 0)
1409 		return r;
1410 
1411 	ci->sector += len;
1412 	ci->sector_count -= len;
1413 
1414 	return 0;
1415 }
1416 
1417 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1418 			    struct dm_table *map, struct bio *bio)
1419 {
1420 	ci->map = map;
1421 	ci->io = alloc_io(md, bio);
1422 	ci->sector = bio->bi_iter.bi_sector;
1423 }
1424 
1425 /*
1426  * Entry point to split a bio into clones and submit them to the targets.
1427  */
1428 static void __split_and_process_bio(struct mapped_device *md,
1429 					struct dm_table *map, struct bio *bio)
1430 {
1431 	struct clone_info ci;
1432 	int error = 0;
1433 
1434 	init_clone_info(&ci, md, map, bio);
1435 
1436 	if (bio->bi_opf & REQ_PREFLUSH) {
1437 		error = __send_empty_flush(&ci);
1438 		/* dm_io_dec_pending submits any data associated with flush */
1439 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1440 		ci.bio = bio;
1441 		ci.sector_count = 0;
1442 		error = __split_and_process_non_flush(&ci);
1443 	} else {
1444 		ci.bio = bio;
1445 		ci.sector_count = bio_sectors(bio);
1446 		error = __split_and_process_non_flush(&ci);
1447 		if (ci.sector_count && !error) {
1448 			/*
1449 			 * Remainder must be passed to submit_bio_noacct()
1450 			 * so that it gets handled *after* bios already submitted
1451 			 * have been completely processed.
1452 			 * We take a clone of the original to store in
1453 			 * ci.io->orig_bio to be used by end_io_acct() and
1454 			 * for dec_pending to use for completion handling.
1455 			 */
1456 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1457 						  GFP_NOIO, &md->queue->bio_split);
1458 			ci.io->orig_bio = b;
1459 
1460 			bio_chain(b, bio);
1461 			trace_block_split(b, bio->bi_iter.bi_sector);
1462 			submit_bio_noacct(bio);
1463 		}
1464 	}
1465 	start_io_acct(ci.io);
1466 
1467 	/* drop the extra reference count */
1468 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1469 }
1470 
1471 static void dm_submit_bio(struct bio *bio)
1472 {
1473 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1474 	int srcu_idx;
1475 	struct dm_table *map;
1476 
1477 	map = dm_get_live_table(md, &srcu_idx);
1478 	if (unlikely(!map)) {
1479 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1480 			    dm_device_name(md));
1481 		bio_io_error(bio);
1482 		goto out;
1483 	}
1484 
1485 	/* If suspended, queue this IO for later */
1486 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1487 		if (bio->bi_opf & REQ_NOWAIT)
1488 			bio_wouldblock_error(bio);
1489 		else if (bio->bi_opf & REQ_RAHEAD)
1490 			bio_io_error(bio);
1491 		else
1492 			queue_io(md, bio);
1493 		goto out;
1494 	}
1495 
1496 	/*
1497 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1498 	 * otherwise associated queue_limits won't be imposed.
1499 	 */
1500 	if (is_abnormal_io(bio))
1501 		blk_queue_split(&bio);
1502 
1503 	__split_and_process_bio(md, map, bio);
1504 out:
1505 	dm_put_live_table(md, srcu_idx);
1506 }
1507 
1508 /*-----------------------------------------------------------------
1509  * An IDR is used to keep track of allocated minor numbers.
1510  *---------------------------------------------------------------*/
1511 static void free_minor(int minor)
1512 {
1513 	spin_lock(&_minor_lock);
1514 	idr_remove(&_minor_idr, minor);
1515 	spin_unlock(&_minor_lock);
1516 }
1517 
1518 /*
1519  * See if the device with a specific minor # is free.
1520  */
1521 static int specific_minor(int minor)
1522 {
1523 	int r;
1524 
1525 	if (minor >= (1 << MINORBITS))
1526 		return -EINVAL;
1527 
1528 	idr_preload(GFP_KERNEL);
1529 	spin_lock(&_minor_lock);
1530 
1531 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1532 
1533 	spin_unlock(&_minor_lock);
1534 	idr_preload_end();
1535 	if (r < 0)
1536 		return r == -ENOSPC ? -EBUSY : r;
1537 	return 0;
1538 }
1539 
1540 static int next_free_minor(int *minor)
1541 {
1542 	int r;
1543 
1544 	idr_preload(GFP_KERNEL);
1545 	spin_lock(&_minor_lock);
1546 
1547 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1548 
1549 	spin_unlock(&_minor_lock);
1550 	idr_preload_end();
1551 	if (r < 0)
1552 		return r;
1553 	*minor = r;
1554 	return 0;
1555 }
1556 
1557 static const struct block_device_operations dm_blk_dops;
1558 static const struct block_device_operations dm_rq_blk_dops;
1559 static const struct dax_operations dm_dax_ops;
1560 
1561 static void dm_wq_work(struct work_struct *work);
1562 
1563 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1564 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1565 {
1566 	dm_destroy_crypto_profile(q->crypto_profile);
1567 }
1568 
1569 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1570 
1571 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1572 {
1573 }
1574 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1575 
1576 static void cleanup_mapped_device(struct mapped_device *md)
1577 {
1578 	if (md->wq)
1579 		destroy_workqueue(md->wq);
1580 	bioset_exit(&md->bs);
1581 	bioset_exit(&md->io_bs);
1582 
1583 	if (md->dax_dev) {
1584 		dax_remove_host(md->disk);
1585 		kill_dax(md->dax_dev);
1586 		put_dax(md->dax_dev);
1587 		md->dax_dev = NULL;
1588 	}
1589 
1590 	if (md->disk) {
1591 		spin_lock(&_minor_lock);
1592 		md->disk->private_data = NULL;
1593 		spin_unlock(&_minor_lock);
1594 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1595 			dm_sysfs_exit(md);
1596 			del_gendisk(md->disk);
1597 		}
1598 		dm_queue_destroy_crypto_profile(md->queue);
1599 		blk_cleanup_disk(md->disk);
1600 	}
1601 
1602 	cleanup_srcu_struct(&md->io_barrier);
1603 
1604 	mutex_destroy(&md->suspend_lock);
1605 	mutex_destroy(&md->type_lock);
1606 	mutex_destroy(&md->table_devices_lock);
1607 	mutex_destroy(&md->swap_bios_lock);
1608 
1609 	dm_mq_cleanup_mapped_device(md);
1610 	dm_cleanup_zoned_dev(md);
1611 }
1612 
1613 /*
1614  * Allocate and initialise a blank device with a given minor.
1615  */
1616 static struct mapped_device *alloc_dev(int minor)
1617 {
1618 	int r, numa_node_id = dm_get_numa_node();
1619 	struct mapped_device *md;
1620 	void *old_md;
1621 
1622 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1623 	if (!md) {
1624 		DMWARN("unable to allocate device, out of memory.");
1625 		return NULL;
1626 	}
1627 
1628 	if (!try_module_get(THIS_MODULE))
1629 		goto bad_module_get;
1630 
1631 	/* get a minor number for the dev */
1632 	if (minor == DM_ANY_MINOR)
1633 		r = next_free_minor(&minor);
1634 	else
1635 		r = specific_minor(minor);
1636 	if (r < 0)
1637 		goto bad_minor;
1638 
1639 	r = init_srcu_struct(&md->io_barrier);
1640 	if (r < 0)
1641 		goto bad_io_barrier;
1642 
1643 	md->numa_node_id = numa_node_id;
1644 	md->init_tio_pdu = false;
1645 	md->type = DM_TYPE_NONE;
1646 	mutex_init(&md->suspend_lock);
1647 	mutex_init(&md->type_lock);
1648 	mutex_init(&md->table_devices_lock);
1649 	spin_lock_init(&md->deferred_lock);
1650 	atomic_set(&md->holders, 1);
1651 	atomic_set(&md->open_count, 0);
1652 	atomic_set(&md->event_nr, 0);
1653 	atomic_set(&md->uevent_seq, 0);
1654 	INIT_LIST_HEAD(&md->uevent_list);
1655 	INIT_LIST_HEAD(&md->table_devices);
1656 	spin_lock_init(&md->uevent_lock);
1657 
1658 	/*
1659 	 * default to bio-based until DM table is loaded and md->type
1660 	 * established. If request-based table is loaded: blk-mq will
1661 	 * override accordingly.
1662 	 */
1663 	md->disk = blk_alloc_disk(md->numa_node_id);
1664 	if (!md->disk)
1665 		goto bad;
1666 	md->queue = md->disk->queue;
1667 
1668 	init_waitqueue_head(&md->wait);
1669 	INIT_WORK(&md->work, dm_wq_work);
1670 	init_waitqueue_head(&md->eventq);
1671 	init_completion(&md->kobj_holder.completion);
1672 
1673 	md->swap_bios = get_swap_bios();
1674 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1675 	mutex_init(&md->swap_bios_lock);
1676 
1677 	md->disk->major = _major;
1678 	md->disk->first_minor = minor;
1679 	md->disk->minors = 1;
1680 	md->disk->flags |= GENHD_FL_NO_PART;
1681 	md->disk->fops = &dm_blk_dops;
1682 	md->disk->queue = md->queue;
1683 	md->disk->private_data = md;
1684 	sprintf(md->disk->disk_name, "dm-%d", minor);
1685 
1686 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1687 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1688 		if (IS_ERR(md->dax_dev)) {
1689 			md->dax_dev = NULL;
1690 			goto bad;
1691 		}
1692 		set_dax_nocache(md->dax_dev);
1693 		set_dax_nomc(md->dax_dev);
1694 		if (dax_add_host(md->dax_dev, md->disk))
1695 			goto bad;
1696 	}
1697 
1698 	format_dev_t(md->name, MKDEV(_major, minor));
1699 
1700 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1701 	if (!md->wq)
1702 		goto bad;
1703 
1704 	dm_stats_init(&md->stats);
1705 
1706 	/* Populate the mapping, nobody knows we exist yet */
1707 	spin_lock(&_minor_lock);
1708 	old_md = idr_replace(&_minor_idr, md, minor);
1709 	spin_unlock(&_minor_lock);
1710 
1711 	BUG_ON(old_md != MINOR_ALLOCED);
1712 
1713 	return md;
1714 
1715 bad:
1716 	cleanup_mapped_device(md);
1717 bad_io_barrier:
1718 	free_minor(minor);
1719 bad_minor:
1720 	module_put(THIS_MODULE);
1721 bad_module_get:
1722 	kvfree(md);
1723 	return NULL;
1724 }
1725 
1726 static void unlock_fs(struct mapped_device *md);
1727 
1728 static void free_dev(struct mapped_device *md)
1729 {
1730 	int minor = MINOR(disk_devt(md->disk));
1731 
1732 	unlock_fs(md);
1733 
1734 	cleanup_mapped_device(md);
1735 
1736 	free_table_devices(&md->table_devices);
1737 	dm_stats_cleanup(&md->stats);
1738 	free_minor(minor);
1739 
1740 	module_put(THIS_MODULE);
1741 	kvfree(md);
1742 }
1743 
1744 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1745 {
1746 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1747 	int ret = 0;
1748 
1749 	if (dm_table_bio_based(t)) {
1750 		/*
1751 		 * The md may already have mempools that need changing.
1752 		 * If so, reload bioset because front_pad may have changed
1753 		 * because a different table was loaded.
1754 		 */
1755 		bioset_exit(&md->bs);
1756 		bioset_exit(&md->io_bs);
1757 
1758 	} else if (bioset_initialized(&md->bs)) {
1759 		/*
1760 		 * There's no need to reload with request-based dm
1761 		 * because the size of front_pad doesn't change.
1762 		 * Note for future: If you are to reload bioset,
1763 		 * prep-ed requests in the queue may refer
1764 		 * to bio from the old bioset, so you must walk
1765 		 * through the queue to unprep.
1766 		 */
1767 		goto out;
1768 	}
1769 
1770 	BUG_ON(!p ||
1771 	       bioset_initialized(&md->bs) ||
1772 	       bioset_initialized(&md->io_bs));
1773 
1774 	ret = bioset_init_from_src(&md->bs, &p->bs);
1775 	if (ret)
1776 		goto out;
1777 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1778 	if (ret)
1779 		bioset_exit(&md->bs);
1780 out:
1781 	/* mempool bind completed, no longer need any mempools in the table */
1782 	dm_table_free_md_mempools(t);
1783 	return ret;
1784 }
1785 
1786 /*
1787  * Bind a table to the device.
1788  */
1789 static void event_callback(void *context)
1790 {
1791 	unsigned long flags;
1792 	LIST_HEAD(uevents);
1793 	struct mapped_device *md = (struct mapped_device *) context;
1794 
1795 	spin_lock_irqsave(&md->uevent_lock, flags);
1796 	list_splice_init(&md->uevent_list, &uevents);
1797 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1798 
1799 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1800 
1801 	atomic_inc(&md->event_nr);
1802 	wake_up(&md->eventq);
1803 	dm_issue_global_event();
1804 }
1805 
1806 /*
1807  * Returns old map, which caller must destroy.
1808  */
1809 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1810 			       struct queue_limits *limits)
1811 {
1812 	struct dm_table *old_map;
1813 	struct request_queue *q = md->queue;
1814 	bool request_based = dm_table_request_based(t);
1815 	sector_t size;
1816 	int ret;
1817 
1818 	lockdep_assert_held(&md->suspend_lock);
1819 
1820 	size = dm_table_get_size(t);
1821 
1822 	/*
1823 	 * Wipe any geometry if the size of the table changed.
1824 	 */
1825 	if (size != dm_get_size(md))
1826 		memset(&md->geometry, 0, sizeof(md->geometry));
1827 
1828 	if (!get_capacity(md->disk))
1829 		set_capacity(md->disk, size);
1830 	else
1831 		set_capacity_and_notify(md->disk, size);
1832 
1833 	dm_table_event_callback(t, event_callback, md);
1834 
1835 	if (request_based) {
1836 		/*
1837 		 * Leverage the fact that request-based DM targets are
1838 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1839 		 */
1840 		md->immutable_target = dm_table_get_immutable_target(t);
1841 	}
1842 
1843 	ret = __bind_mempools(md, t);
1844 	if (ret) {
1845 		old_map = ERR_PTR(ret);
1846 		goto out;
1847 	}
1848 
1849 	ret = dm_table_set_restrictions(t, q, limits);
1850 	if (ret) {
1851 		old_map = ERR_PTR(ret);
1852 		goto out;
1853 	}
1854 
1855 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1856 	rcu_assign_pointer(md->map, (void *)t);
1857 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1858 
1859 	if (old_map)
1860 		dm_sync_table(md);
1861 
1862 out:
1863 	return old_map;
1864 }
1865 
1866 /*
1867  * Returns unbound table for the caller to free.
1868  */
1869 static struct dm_table *__unbind(struct mapped_device *md)
1870 {
1871 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1872 
1873 	if (!map)
1874 		return NULL;
1875 
1876 	dm_table_event_callback(map, NULL, NULL);
1877 	RCU_INIT_POINTER(md->map, NULL);
1878 	dm_sync_table(md);
1879 
1880 	return map;
1881 }
1882 
1883 /*
1884  * Constructor for a new device.
1885  */
1886 int dm_create(int minor, struct mapped_device **result)
1887 {
1888 	struct mapped_device *md;
1889 
1890 	md = alloc_dev(minor);
1891 	if (!md)
1892 		return -ENXIO;
1893 
1894 	dm_ima_reset_data(md);
1895 
1896 	*result = md;
1897 	return 0;
1898 }
1899 
1900 /*
1901  * Functions to manage md->type.
1902  * All are required to hold md->type_lock.
1903  */
1904 void dm_lock_md_type(struct mapped_device *md)
1905 {
1906 	mutex_lock(&md->type_lock);
1907 }
1908 
1909 void dm_unlock_md_type(struct mapped_device *md)
1910 {
1911 	mutex_unlock(&md->type_lock);
1912 }
1913 
1914 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1915 {
1916 	BUG_ON(!mutex_is_locked(&md->type_lock));
1917 	md->type = type;
1918 }
1919 
1920 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1921 {
1922 	return md->type;
1923 }
1924 
1925 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1926 {
1927 	return md->immutable_target_type;
1928 }
1929 
1930 /*
1931  * The queue_limits are only valid as long as you have a reference
1932  * count on 'md'.
1933  */
1934 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1935 {
1936 	BUG_ON(!atomic_read(&md->holders));
1937 	return &md->queue->limits;
1938 }
1939 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1940 
1941 /*
1942  * Setup the DM device's queue based on md's type
1943  */
1944 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1945 {
1946 	enum dm_queue_mode type = dm_table_get_type(t);
1947 	struct queue_limits limits;
1948 	int r;
1949 
1950 	switch (type) {
1951 	case DM_TYPE_REQUEST_BASED:
1952 		md->disk->fops = &dm_rq_blk_dops;
1953 		r = dm_mq_init_request_queue(md, t);
1954 		if (r) {
1955 			DMERR("Cannot initialize queue for request-based dm mapped device");
1956 			return r;
1957 		}
1958 		break;
1959 	case DM_TYPE_BIO_BASED:
1960 	case DM_TYPE_DAX_BIO_BASED:
1961 		break;
1962 	case DM_TYPE_NONE:
1963 		WARN_ON_ONCE(true);
1964 		break;
1965 	}
1966 
1967 	r = dm_calculate_queue_limits(t, &limits);
1968 	if (r) {
1969 		DMERR("Cannot calculate initial queue limits");
1970 		return r;
1971 	}
1972 	r = dm_table_set_restrictions(t, md->queue, &limits);
1973 	if (r)
1974 		return r;
1975 
1976 	r = add_disk(md->disk);
1977 	if (r)
1978 		return r;
1979 
1980 	r = dm_sysfs_init(md);
1981 	if (r) {
1982 		del_gendisk(md->disk);
1983 		return r;
1984 	}
1985 	md->type = type;
1986 	return 0;
1987 }
1988 
1989 struct mapped_device *dm_get_md(dev_t dev)
1990 {
1991 	struct mapped_device *md;
1992 	unsigned minor = MINOR(dev);
1993 
1994 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1995 		return NULL;
1996 
1997 	spin_lock(&_minor_lock);
1998 
1999 	md = idr_find(&_minor_idr, minor);
2000 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2001 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2002 		md = NULL;
2003 		goto out;
2004 	}
2005 	dm_get(md);
2006 out:
2007 	spin_unlock(&_minor_lock);
2008 
2009 	return md;
2010 }
2011 EXPORT_SYMBOL_GPL(dm_get_md);
2012 
2013 void *dm_get_mdptr(struct mapped_device *md)
2014 {
2015 	return md->interface_ptr;
2016 }
2017 
2018 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2019 {
2020 	md->interface_ptr = ptr;
2021 }
2022 
2023 void dm_get(struct mapped_device *md)
2024 {
2025 	atomic_inc(&md->holders);
2026 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2027 }
2028 
2029 int dm_hold(struct mapped_device *md)
2030 {
2031 	spin_lock(&_minor_lock);
2032 	if (test_bit(DMF_FREEING, &md->flags)) {
2033 		spin_unlock(&_minor_lock);
2034 		return -EBUSY;
2035 	}
2036 	dm_get(md);
2037 	spin_unlock(&_minor_lock);
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(dm_hold);
2041 
2042 const char *dm_device_name(struct mapped_device *md)
2043 {
2044 	return md->name;
2045 }
2046 EXPORT_SYMBOL_GPL(dm_device_name);
2047 
2048 static void __dm_destroy(struct mapped_device *md, bool wait)
2049 {
2050 	struct dm_table *map;
2051 	int srcu_idx;
2052 
2053 	might_sleep();
2054 
2055 	spin_lock(&_minor_lock);
2056 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2057 	set_bit(DMF_FREEING, &md->flags);
2058 	spin_unlock(&_minor_lock);
2059 
2060 	blk_set_queue_dying(md->queue);
2061 
2062 	/*
2063 	 * Take suspend_lock so that presuspend and postsuspend methods
2064 	 * do not race with internal suspend.
2065 	 */
2066 	mutex_lock(&md->suspend_lock);
2067 	map = dm_get_live_table(md, &srcu_idx);
2068 	if (!dm_suspended_md(md)) {
2069 		dm_table_presuspend_targets(map);
2070 		set_bit(DMF_SUSPENDED, &md->flags);
2071 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2072 		dm_table_postsuspend_targets(map);
2073 	}
2074 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2075 	dm_put_live_table(md, srcu_idx);
2076 	mutex_unlock(&md->suspend_lock);
2077 
2078 	/*
2079 	 * Rare, but there may be I/O requests still going to complete,
2080 	 * for example.  Wait for all references to disappear.
2081 	 * No one should increment the reference count of the mapped_device,
2082 	 * after the mapped_device state becomes DMF_FREEING.
2083 	 */
2084 	if (wait)
2085 		while (atomic_read(&md->holders))
2086 			msleep(1);
2087 	else if (atomic_read(&md->holders))
2088 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2089 		       dm_device_name(md), atomic_read(&md->holders));
2090 
2091 	dm_table_destroy(__unbind(md));
2092 	free_dev(md);
2093 }
2094 
2095 void dm_destroy(struct mapped_device *md)
2096 {
2097 	__dm_destroy(md, true);
2098 }
2099 
2100 void dm_destroy_immediate(struct mapped_device *md)
2101 {
2102 	__dm_destroy(md, false);
2103 }
2104 
2105 void dm_put(struct mapped_device *md)
2106 {
2107 	atomic_dec(&md->holders);
2108 }
2109 EXPORT_SYMBOL_GPL(dm_put);
2110 
2111 static bool md_in_flight_bios(struct mapped_device *md)
2112 {
2113 	int cpu;
2114 	struct block_device *part = dm_disk(md)->part0;
2115 	long sum = 0;
2116 
2117 	for_each_possible_cpu(cpu) {
2118 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2119 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2120 	}
2121 
2122 	return sum != 0;
2123 }
2124 
2125 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2126 {
2127 	int r = 0;
2128 	DEFINE_WAIT(wait);
2129 
2130 	while (true) {
2131 		prepare_to_wait(&md->wait, &wait, task_state);
2132 
2133 		if (!md_in_flight_bios(md))
2134 			break;
2135 
2136 		if (signal_pending_state(task_state, current)) {
2137 			r = -EINTR;
2138 			break;
2139 		}
2140 
2141 		io_schedule();
2142 	}
2143 	finish_wait(&md->wait, &wait);
2144 
2145 	return r;
2146 }
2147 
2148 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2149 {
2150 	int r = 0;
2151 
2152 	if (!queue_is_mq(md->queue))
2153 		return dm_wait_for_bios_completion(md, task_state);
2154 
2155 	while (true) {
2156 		if (!blk_mq_queue_inflight(md->queue))
2157 			break;
2158 
2159 		if (signal_pending_state(task_state, current)) {
2160 			r = -EINTR;
2161 			break;
2162 		}
2163 
2164 		msleep(5);
2165 	}
2166 
2167 	return r;
2168 }
2169 
2170 /*
2171  * Process the deferred bios
2172  */
2173 static void dm_wq_work(struct work_struct *work)
2174 {
2175 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2176 	struct bio *bio;
2177 
2178 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2179 		spin_lock_irq(&md->deferred_lock);
2180 		bio = bio_list_pop(&md->deferred);
2181 		spin_unlock_irq(&md->deferred_lock);
2182 
2183 		if (!bio)
2184 			break;
2185 
2186 		submit_bio_noacct(bio);
2187 	}
2188 }
2189 
2190 static void dm_queue_flush(struct mapped_device *md)
2191 {
2192 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2193 	smp_mb__after_atomic();
2194 	queue_work(md->wq, &md->work);
2195 }
2196 
2197 /*
2198  * Swap in a new table, returning the old one for the caller to destroy.
2199  */
2200 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2201 {
2202 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2203 	struct queue_limits limits;
2204 	int r;
2205 
2206 	mutex_lock(&md->suspend_lock);
2207 
2208 	/* device must be suspended */
2209 	if (!dm_suspended_md(md))
2210 		goto out;
2211 
2212 	/*
2213 	 * If the new table has no data devices, retain the existing limits.
2214 	 * This helps multipath with queue_if_no_path if all paths disappear,
2215 	 * then new I/O is queued based on these limits, and then some paths
2216 	 * reappear.
2217 	 */
2218 	if (dm_table_has_no_data_devices(table)) {
2219 		live_map = dm_get_live_table_fast(md);
2220 		if (live_map)
2221 			limits = md->queue->limits;
2222 		dm_put_live_table_fast(md);
2223 	}
2224 
2225 	if (!live_map) {
2226 		r = dm_calculate_queue_limits(table, &limits);
2227 		if (r) {
2228 			map = ERR_PTR(r);
2229 			goto out;
2230 		}
2231 	}
2232 
2233 	map = __bind(md, table, &limits);
2234 	dm_issue_global_event();
2235 
2236 out:
2237 	mutex_unlock(&md->suspend_lock);
2238 	return map;
2239 }
2240 
2241 /*
2242  * Functions to lock and unlock any filesystem running on the
2243  * device.
2244  */
2245 static int lock_fs(struct mapped_device *md)
2246 {
2247 	int r;
2248 
2249 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2250 
2251 	r = freeze_bdev(md->disk->part0);
2252 	if (!r)
2253 		set_bit(DMF_FROZEN, &md->flags);
2254 	return r;
2255 }
2256 
2257 static void unlock_fs(struct mapped_device *md)
2258 {
2259 	if (!test_bit(DMF_FROZEN, &md->flags))
2260 		return;
2261 	thaw_bdev(md->disk->part0);
2262 	clear_bit(DMF_FROZEN, &md->flags);
2263 }
2264 
2265 /*
2266  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2267  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2268  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2269  *
2270  * If __dm_suspend returns 0, the device is completely quiescent
2271  * now. There is no request-processing activity. All new requests
2272  * are being added to md->deferred list.
2273  */
2274 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2275 			unsigned suspend_flags, unsigned int task_state,
2276 			int dmf_suspended_flag)
2277 {
2278 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2279 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2280 	int r;
2281 
2282 	lockdep_assert_held(&md->suspend_lock);
2283 
2284 	/*
2285 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2286 	 * This flag is cleared before dm_suspend returns.
2287 	 */
2288 	if (noflush)
2289 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2290 	else
2291 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2292 
2293 	/*
2294 	 * This gets reverted if there's an error later and the targets
2295 	 * provide the .presuspend_undo hook.
2296 	 */
2297 	dm_table_presuspend_targets(map);
2298 
2299 	/*
2300 	 * Flush I/O to the device.
2301 	 * Any I/O submitted after lock_fs() may not be flushed.
2302 	 * noflush takes precedence over do_lockfs.
2303 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2304 	 */
2305 	if (!noflush && do_lockfs) {
2306 		r = lock_fs(md);
2307 		if (r) {
2308 			dm_table_presuspend_undo_targets(map);
2309 			return r;
2310 		}
2311 	}
2312 
2313 	/*
2314 	 * Here we must make sure that no processes are submitting requests
2315 	 * to target drivers i.e. no one may be executing
2316 	 * __split_and_process_bio from dm_submit_bio.
2317 	 *
2318 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2319 	 * we take the write lock. To prevent any process from reentering
2320 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2321 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2322 	 * flush_workqueue(md->wq).
2323 	 */
2324 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2325 	if (map)
2326 		synchronize_srcu(&md->io_barrier);
2327 
2328 	/*
2329 	 * Stop md->queue before flushing md->wq in case request-based
2330 	 * dm defers requests to md->wq from md->queue.
2331 	 */
2332 	if (dm_request_based(md))
2333 		dm_stop_queue(md->queue);
2334 
2335 	flush_workqueue(md->wq);
2336 
2337 	/*
2338 	 * At this point no more requests are entering target request routines.
2339 	 * We call dm_wait_for_completion to wait for all existing requests
2340 	 * to finish.
2341 	 */
2342 	r = dm_wait_for_completion(md, task_state);
2343 	if (!r)
2344 		set_bit(dmf_suspended_flag, &md->flags);
2345 
2346 	if (noflush)
2347 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2348 	if (map)
2349 		synchronize_srcu(&md->io_barrier);
2350 
2351 	/* were we interrupted ? */
2352 	if (r < 0) {
2353 		dm_queue_flush(md);
2354 
2355 		if (dm_request_based(md))
2356 			dm_start_queue(md->queue);
2357 
2358 		unlock_fs(md);
2359 		dm_table_presuspend_undo_targets(map);
2360 		/* pushback list is already flushed, so skip flush */
2361 	}
2362 
2363 	return r;
2364 }
2365 
2366 /*
2367  * We need to be able to change a mapping table under a mounted
2368  * filesystem.  For example we might want to move some data in
2369  * the background.  Before the table can be swapped with
2370  * dm_bind_table, dm_suspend must be called to flush any in
2371  * flight bios and ensure that any further io gets deferred.
2372  */
2373 /*
2374  * Suspend mechanism in request-based dm.
2375  *
2376  * 1. Flush all I/Os by lock_fs() if needed.
2377  * 2. Stop dispatching any I/O by stopping the request_queue.
2378  * 3. Wait for all in-flight I/Os to be completed or requeued.
2379  *
2380  * To abort suspend, start the request_queue.
2381  */
2382 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2383 {
2384 	struct dm_table *map = NULL;
2385 	int r = 0;
2386 
2387 retry:
2388 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2389 
2390 	if (dm_suspended_md(md)) {
2391 		r = -EINVAL;
2392 		goto out_unlock;
2393 	}
2394 
2395 	if (dm_suspended_internally_md(md)) {
2396 		/* already internally suspended, wait for internal resume */
2397 		mutex_unlock(&md->suspend_lock);
2398 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2399 		if (r)
2400 			return r;
2401 		goto retry;
2402 	}
2403 
2404 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2405 
2406 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2407 	if (r)
2408 		goto out_unlock;
2409 
2410 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2411 	dm_table_postsuspend_targets(map);
2412 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2413 
2414 out_unlock:
2415 	mutex_unlock(&md->suspend_lock);
2416 	return r;
2417 }
2418 
2419 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2420 {
2421 	if (map) {
2422 		int r = dm_table_resume_targets(map);
2423 		if (r)
2424 			return r;
2425 	}
2426 
2427 	dm_queue_flush(md);
2428 
2429 	/*
2430 	 * Flushing deferred I/Os must be done after targets are resumed
2431 	 * so that mapping of targets can work correctly.
2432 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2433 	 */
2434 	if (dm_request_based(md))
2435 		dm_start_queue(md->queue);
2436 
2437 	unlock_fs(md);
2438 
2439 	return 0;
2440 }
2441 
2442 int dm_resume(struct mapped_device *md)
2443 {
2444 	int r;
2445 	struct dm_table *map = NULL;
2446 
2447 retry:
2448 	r = -EINVAL;
2449 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2450 
2451 	if (!dm_suspended_md(md))
2452 		goto out;
2453 
2454 	if (dm_suspended_internally_md(md)) {
2455 		/* already internally suspended, wait for internal resume */
2456 		mutex_unlock(&md->suspend_lock);
2457 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2458 		if (r)
2459 			return r;
2460 		goto retry;
2461 	}
2462 
2463 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2464 	if (!map || !dm_table_get_size(map))
2465 		goto out;
2466 
2467 	r = __dm_resume(md, map);
2468 	if (r)
2469 		goto out;
2470 
2471 	clear_bit(DMF_SUSPENDED, &md->flags);
2472 out:
2473 	mutex_unlock(&md->suspend_lock);
2474 
2475 	return r;
2476 }
2477 
2478 /*
2479  * Internal suspend/resume works like userspace-driven suspend. It waits
2480  * until all bios finish and prevents issuing new bios to the target drivers.
2481  * It may be used only from the kernel.
2482  */
2483 
2484 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2485 {
2486 	struct dm_table *map = NULL;
2487 
2488 	lockdep_assert_held(&md->suspend_lock);
2489 
2490 	if (md->internal_suspend_count++)
2491 		return; /* nested internal suspend */
2492 
2493 	if (dm_suspended_md(md)) {
2494 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2495 		return; /* nest suspend */
2496 	}
2497 
2498 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2499 
2500 	/*
2501 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2502 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2503 	 * would require changing .presuspend to return an error -- avoid this
2504 	 * until there is a need for more elaborate variants of internal suspend.
2505 	 */
2506 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2507 			    DMF_SUSPENDED_INTERNALLY);
2508 
2509 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2510 	dm_table_postsuspend_targets(map);
2511 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2512 }
2513 
2514 static void __dm_internal_resume(struct mapped_device *md)
2515 {
2516 	BUG_ON(!md->internal_suspend_count);
2517 
2518 	if (--md->internal_suspend_count)
2519 		return; /* resume from nested internal suspend */
2520 
2521 	if (dm_suspended_md(md))
2522 		goto done; /* resume from nested suspend */
2523 
2524 	/*
2525 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2526 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2527 	 */
2528 	(void) __dm_resume(md, NULL);
2529 
2530 done:
2531 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2532 	smp_mb__after_atomic();
2533 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2534 }
2535 
2536 void dm_internal_suspend_noflush(struct mapped_device *md)
2537 {
2538 	mutex_lock(&md->suspend_lock);
2539 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2540 	mutex_unlock(&md->suspend_lock);
2541 }
2542 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2543 
2544 void dm_internal_resume(struct mapped_device *md)
2545 {
2546 	mutex_lock(&md->suspend_lock);
2547 	__dm_internal_resume(md);
2548 	mutex_unlock(&md->suspend_lock);
2549 }
2550 EXPORT_SYMBOL_GPL(dm_internal_resume);
2551 
2552 /*
2553  * Fast variants of internal suspend/resume hold md->suspend_lock,
2554  * which prevents interaction with userspace-driven suspend.
2555  */
2556 
2557 void dm_internal_suspend_fast(struct mapped_device *md)
2558 {
2559 	mutex_lock(&md->suspend_lock);
2560 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2561 		return;
2562 
2563 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2564 	synchronize_srcu(&md->io_barrier);
2565 	flush_workqueue(md->wq);
2566 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2567 }
2568 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2569 
2570 void dm_internal_resume_fast(struct mapped_device *md)
2571 {
2572 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2573 		goto done;
2574 
2575 	dm_queue_flush(md);
2576 
2577 done:
2578 	mutex_unlock(&md->suspend_lock);
2579 }
2580 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2581 
2582 /*-----------------------------------------------------------------
2583  * Event notification.
2584  *---------------------------------------------------------------*/
2585 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2586 		       unsigned cookie)
2587 {
2588 	int r;
2589 	unsigned noio_flag;
2590 	char udev_cookie[DM_COOKIE_LENGTH];
2591 	char *envp[] = { udev_cookie, NULL };
2592 
2593 	noio_flag = memalloc_noio_save();
2594 
2595 	if (!cookie)
2596 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2597 	else {
2598 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2599 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2600 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2601 				       action, envp);
2602 	}
2603 
2604 	memalloc_noio_restore(noio_flag);
2605 
2606 	return r;
2607 }
2608 
2609 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2610 {
2611 	return atomic_add_return(1, &md->uevent_seq);
2612 }
2613 
2614 uint32_t dm_get_event_nr(struct mapped_device *md)
2615 {
2616 	return atomic_read(&md->event_nr);
2617 }
2618 
2619 int dm_wait_event(struct mapped_device *md, int event_nr)
2620 {
2621 	return wait_event_interruptible(md->eventq,
2622 			(event_nr != atomic_read(&md->event_nr)));
2623 }
2624 
2625 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2626 {
2627 	unsigned long flags;
2628 
2629 	spin_lock_irqsave(&md->uevent_lock, flags);
2630 	list_add(elist, &md->uevent_list);
2631 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2632 }
2633 
2634 /*
2635  * The gendisk is only valid as long as you have a reference
2636  * count on 'md'.
2637  */
2638 struct gendisk *dm_disk(struct mapped_device *md)
2639 {
2640 	return md->disk;
2641 }
2642 EXPORT_SYMBOL_GPL(dm_disk);
2643 
2644 struct kobject *dm_kobject(struct mapped_device *md)
2645 {
2646 	return &md->kobj_holder.kobj;
2647 }
2648 
2649 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2650 {
2651 	struct mapped_device *md;
2652 
2653 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2654 
2655 	spin_lock(&_minor_lock);
2656 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2657 		md = NULL;
2658 		goto out;
2659 	}
2660 	dm_get(md);
2661 out:
2662 	spin_unlock(&_minor_lock);
2663 
2664 	return md;
2665 }
2666 
2667 int dm_suspended_md(struct mapped_device *md)
2668 {
2669 	return test_bit(DMF_SUSPENDED, &md->flags);
2670 }
2671 
2672 static int dm_post_suspending_md(struct mapped_device *md)
2673 {
2674 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2675 }
2676 
2677 int dm_suspended_internally_md(struct mapped_device *md)
2678 {
2679 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2680 }
2681 
2682 int dm_test_deferred_remove_flag(struct mapped_device *md)
2683 {
2684 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2685 }
2686 
2687 int dm_suspended(struct dm_target *ti)
2688 {
2689 	return dm_suspended_md(ti->table->md);
2690 }
2691 EXPORT_SYMBOL_GPL(dm_suspended);
2692 
2693 int dm_post_suspending(struct dm_target *ti)
2694 {
2695 	return dm_post_suspending_md(ti->table->md);
2696 }
2697 EXPORT_SYMBOL_GPL(dm_post_suspending);
2698 
2699 int dm_noflush_suspending(struct dm_target *ti)
2700 {
2701 	return __noflush_suspending(ti->table->md);
2702 }
2703 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2704 
2705 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2706 					    unsigned integrity, unsigned per_io_data_size,
2707 					    unsigned min_pool_size)
2708 {
2709 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2710 	unsigned int pool_size = 0;
2711 	unsigned int front_pad, io_front_pad;
2712 	int ret;
2713 
2714 	if (!pools)
2715 		return NULL;
2716 
2717 	switch (type) {
2718 	case DM_TYPE_BIO_BASED:
2719 	case DM_TYPE_DAX_BIO_BASED:
2720 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2721 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2722 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2723 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2724 		if (ret)
2725 			goto out;
2726 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2727 			goto out;
2728 		break;
2729 	case DM_TYPE_REQUEST_BASED:
2730 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2731 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2732 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2733 		break;
2734 	default:
2735 		BUG();
2736 	}
2737 
2738 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2739 	if (ret)
2740 		goto out;
2741 
2742 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2743 		goto out;
2744 
2745 	return pools;
2746 
2747 out:
2748 	dm_free_md_mempools(pools);
2749 
2750 	return NULL;
2751 }
2752 
2753 void dm_free_md_mempools(struct dm_md_mempools *pools)
2754 {
2755 	if (!pools)
2756 		return;
2757 
2758 	bioset_exit(&pools->bs);
2759 	bioset_exit(&pools->io_bs);
2760 
2761 	kfree(pools);
2762 }
2763 
2764 struct dm_pr {
2765 	u64	old_key;
2766 	u64	new_key;
2767 	u32	flags;
2768 	bool	fail_early;
2769 };
2770 
2771 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2772 		      void *data)
2773 {
2774 	struct mapped_device *md = bdev->bd_disk->private_data;
2775 	struct dm_table *table;
2776 	struct dm_target *ti;
2777 	int ret = -ENOTTY, srcu_idx;
2778 
2779 	table = dm_get_live_table(md, &srcu_idx);
2780 	if (!table || !dm_table_get_size(table))
2781 		goto out;
2782 
2783 	/* We only support devices that have a single target */
2784 	if (dm_table_get_num_targets(table) != 1)
2785 		goto out;
2786 	ti = dm_table_get_target(table, 0);
2787 
2788 	ret = -EINVAL;
2789 	if (!ti->type->iterate_devices)
2790 		goto out;
2791 
2792 	ret = ti->type->iterate_devices(ti, fn, data);
2793 out:
2794 	dm_put_live_table(md, srcu_idx);
2795 	return ret;
2796 }
2797 
2798 /*
2799  * For register / unregister we need to manually call out to every path.
2800  */
2801 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2802 			    sector_t start, sector_t len, void *data)
2803 {
2804 	struct dm_pr *pr = data;
2805 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2806 
2807 	if (!ops || !ops->pr_register)
2808 		return -EOPNOTSUPP;
2809 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2810 }
2811 
2812 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2813 			  u32 flags)
2814 {
2815 	struct dm_pr pr = {
2816 		.old_key	= old_key,
2817 		.new_key	= new_key,
2818 		.flags		= flags,
2819 		.fail_early	= true,
2820 	};
2821 	int ret;
2822 
2823 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2824 	if (ret && new_key) {
2825 		/* unregister all paths if we failed to register any path */
2826 		pr.old_key = new_key;
2827 		pr.new_key = 0;
2828 		pr.flags = 0;
2829 		pr.fail_early = false;
2830 		dm_call_pr(bdev, __dm_pr_register, &pr);
2831 	}
2832 
2833 	return ret;
2834 }
2835 
2836 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2837 			 u32 flags)
2838 {
2839 	struct mapped_device *md = bdev->bd_disk->private_data;
2840 	const struct pr_ops *ops;
2841 	int r, srcu_idx;
2842 
2843 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2844 	if (r < 0)
2845 		goto out;
2846 
2847 	ops = bdev->bd_disk->fops->pr_ops;
2848 	if (ops && ops->pr_reserve)
2849 		r = ops->pr_reserve(bdev, key, type, flags);
2850 	else
2851 		r = -EOPNOTSUPP;
2852 out:
2853 	dm_unprepare_ioctl(md, srcu_idx);
2854 	return r;
2855 }
2856 
2857 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2858 {
2859 	struct mapped_device *md = bdev->bd_disk->private_data;
2860 	const struct pr_ops *ops;
2861 	int r, srcu_idx;
2862 
2863 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2864 	if (r < 0)
2865 		goto out;
2866 
2867 	ops = bdev->bd_disk->fops->pr_ops;
2868 	if (ops && ops->pr_release)
2869 		r = ops->pr_release(bdev, key, type);
2870 	else
2871 		r = -EOPNOTSUPP;
2872 out:
2873 	dm_unprepare_ioctl(md, srcu_idx);
2874 	return r;
2875 }
2876 
2877 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2878 			 enum pr_type type, bool abort)
2879 {
2880 	struct mapped_device *md = bdev->bd_disk->private_data;
2881 	const struct pr_ops *ops;
2882 	int r, srcu_idx;
2883 
2884 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2885 	if (r < 0)
2886 		goto out;
2887 
2888 	ops = bdev->bd_disk->fops->pr_ops;
2889 	if (ops && ops->pr_preempt)
2890 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2891 	else
2892 		r = -EOPNOTSUPP;
2893 out:
2894 	dm_unprepare_ioctl(md, srcu_idx);
2895 	return r;
2896 }
2897 
2898 static int dm_pr_clear(struct block_device *bdev, u64 key)
2899 {
2900 	struct mapped_device *md = bdev->bd_disk->private_data;
2901 	const struct pr_ops *ops;
2902 	int r, srcu_idx;
2903 
2904 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2905 	if (r < 0)
2906 		goto out;
2907 
2908 	ops = bdev->bd_disk->fops->pr_ops;
2909 	if (ops && ops->pr_clear)
2910 		r = ops->pr_clear(bdev, key);
2911 	else
2912 		r = -EOPNOTSUPP;
2913 out:
2914 	dm_unprepare_ioctl(md, srcu_idx);
2915 	return r;
2916 }
2917 
2918 static const struct pr_ops dm_pr_ops = {
2919 	.pr_register	= dm_pr_register,
2920 	.pr_reserve	= dm_pr_reserve,
2921 	.pr_release	= dm_pr_release,
2922 	.pr_preempt	= dm_pr_preempt,
2923 	.pr_clear	= dm_pr_clear,
2924 };
2925 
2926 static const struct block_device_operations dm_blk_dops = {
2927 	.submit_bio = dm_submit_bio,
2928 	.open = dm_blk_open,
2929 	.release = dm_blk_close,
2930 	.ioctl = dm_blk_ioctl,
2931 	.getgeo = dm_blk_getgeo,
2932 	.report_zones = dm_blk_report_zones,
2933 	.pr_ops = &dm_pr_ops,
2934 	.owner = THIS_MODULE
2935 };
2936 
2937 static const struct block_device_operations dm_rq_blk_dops = {
2938 	.open = dm_blk_open,
2939 	.release = dm_blk_close,
2940 	.ioctl = dm_blk_ioctl,
2941 	.getgeo = dm_blk_getgeo,
2942 	.pr_ops = &dm_pr_ops,
2943 	.owner = THIS_MODULE
2944 };
2945 
2946 static const struct dax_operations dm_dax_ops = {
2947 	.direct_access = dm_dax_direct_access,
2948 	.zero_page_range = dm_dax_zero_page_range,
2949 };
2950 
2951 /*
2952  * module hooks
2953  */
2954 module_init(dm_init);
2955 module_exit(dm_exit);
2956 
2957 module_param(major, uint, 0);
2958 MODULE_PARM_DESC(major, "The major number of the device mapper");
2959 
2960 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2961 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2962 
2963 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2964 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2965 
2966 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
2967 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
2968 
2969 MODULE_DESCRIPTION(DM_NAME " driver");
2970 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2971 MODULE_LICENSE("GPL");
2972