1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static void start_io_acct(struct dm_io *io) 489 { 490 struct mapped_device *md = io->md; 491 struct bio *bio = io->orig_bio; 492 493 bio_start_io_acct_time(bio, io->start_time); 494 if (unlikely(dm_stats_used(&md->stats))) 495 dm_stats_account_io(&md->stats, bio_data_dir(bio), 496 bio->bi_iter.bi_sector, bio_sectors(bio), 497 false, 0, &io->stats_aux); 498 } 499 500 static void end_io_acct(struct mapped_device *md, struct bio *bio, 501 unsigned long start_time, struct dm_stats_aux *stats_aux) 502 { 503 unsigned long duration = jiffies - start_time; 504 505 bio_end_io_acct(bio, start_time); 506 507 if (unlikely(dm_stats_used(&md->stats))) 508 dm_stats_account_io(&md->stats, bio_data_dir(bio), 509 bio->bi_iter.bi_sector, bio_sectors(bio), 510 true, duration, stats_aux); 511 512 /* nudge anyone waiting on suspend queue */ 513 if (unlikely(wq_has_sleeper(&md->wait))) 514 wake_up(&md->wait); 515 } 516 517 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 518 { 519 struct dm_io *io; 520 struct dm_target_io *tio; 521 struct bio *clone; 522 523 clone = bio_alloc_bioset(NULL, 0, 0, GFP_NOIO, &md->io_bs); 524 525 tio = clone_to_tio(clone); 526 tio->inside_dm_io = true; 527 tio->io = NULL; 528 529 io = container_of(tio, struct dm_io, tio); 530 io->magic = DM_IO_MAGIC; 531 io->status = 0; 532 atomic_set(&io->io_count, 1); 533 io->orig_bio = bio; 534 io->md = md; 535 spin_lock_init(&io->endio_lock); 536 537 io->start_time = jiffies; 538 539 return io; 540 } 541 542 static void free_io(struct mapped_device *md, struct dm_io *io) 543 { 544 bio_put(&io->tio.clone); 545 } 546 547 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 548 unsigned target_bio_nr, gfp_t gfp_mask) 549 { 550 struct dm_target_io *tio; 551 552 if (!ci->io->tio.io) { 553 /* the dm_target_io embedded in ci->io is available */ 554 tio = &ci->io->tio; 555 } else { 556 struct bio *clone = bio_alloc_bioset(NULL, 0, 0, gfp_mask, 557 &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = clone_to_tio(clone); 562 tio->inside_dm_io = false; 563 } 564 565 tio->magic = DM_TIO_MAGIC; 566 tio->io = ci->io; 567 tio->ti = ti; 568 tio->target_bio_nr = target_bio_nr; 569 570 return tio; 571 } 572 573 static void free_tio(struct dm_target_io *tio) 574 { 575 if (tio->inside_dm_io) 576 return; 577 bio_put(&tio->clone); 578 } 579 580 /* 581 * Add the bio to the list of deferred io. 582 */ 583 static void queue_io(struct mapped_device *md, struct bio *bio) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave(&md->deferred_lock, flags); 588 bio_list_add(&md->deferred, bio); 589 spin_unlock_irqrestore(&md->deferred_lock, flags); 590 queue_work(md->wq, &md->work); 591 } 592 593 /* 594 * Everyone (including functions in this file), should use this 595 * function to access the md->map field, and make sure they call 596 * dm_put_live_table() when finished. 597 */ 598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 599 { 600 *srcu_idx = srcu_read_lock(&md->io_barrier); 601 602 return srcu_dereference(md->map, &md->io_barrier); 603 } 604 605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 606 { 607 srcu_read_unlock(&md->io_barrier, srcu_idx); 608 } 609 610 void dm_sync_table(struct mapped_device *md) 611 { 612 synchronize_srcu(&md->io_barrier); 613 synchronize_rcu_expedited(); 614 } 615 616 /* 617 * A fast alternative to dm_get_live_table/dm_put_live_table. 618 * The caller must not block between these two functions. 619 */ 620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 621 { 622 rcu_read_lock(); 623 return rcu_dereference(md->map); 624 } 625 626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 627 { 628 rcu_read_unlock(); 629 } 630 631 static char *_dm_claim_ptr = "I belong to device-mapper"; 632 633 /* 634 * Open a table device so we can use it as a map destination. 635 */ 636 static int open_table_device(struct table_device *td, dev_t dev, 637 struct mapped_device *md) 638 { 639 struct block_device *bdev; 640 u64 part_off; 641 int r; 642 643 BUG_ON(td->dm_dev.bdev); 644 645 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 646 if (IS_ERR(bdev)) 647 return PTR_ERR(bdev); 648 649 r = bd_link_disk_holder(bdev, dm_disk(md)); 650 if (r) { 651 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 652 return r; 653 } 654 655 td->dm_dev.bdev = bdev; 656 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 657 return 0; 658 } 659 660 /* 661 * Close a table device that we've been using. 662 */ 663 static void close_table_device(struct table_device *td, struct mapped_device *md) 664 { 665 if (!td->dm_dev.bdev) 666 return; 667 668 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 669 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 670 put_dax(td->dm_dev.dax_dev); 671 td->dm_dev.bdev = NULL; 672 td->dm_dev.dax_dev = NULL; 673 } 674 675 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 676 fmode_t mode) 677 { 678 struct table_device *td; 679 680 list_for_each_entry(td, l, list) 681 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 682 return td; 683 684 return NULL; 685 } 686 687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 688 struct dm_dev **result) 689 { 690 int r; 691 struct table_device *td; 692 693 mutex_lock(&md->table_devices_lock); 694 td = find_table_device(&md->table_devices, dev, mode); 695 if (!td) { 696 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 697 if (!td) { 698 mutex_unlock(&md->table_devices_lock); 699 return -ENOMEM; 700 } 701 702 td->dm_dev.mode = mode; 703 td->dm_dev.bdev = NULL; 704 705 if ((r = open_table_device(td, dev, md))) { 706 mutex_unlock(&md->table_devices_lock); 707 kfree(td); 708 return r; 709 } 710 711 format_dev_t(td->dm_dev.name, dev); 712 713 refcount_set(&td->count, 1); 714 list_add(&td->list, &md->table_devices); 715 } else { 716 refcount_inc(&td->count); 717 } 718 mutex_unlock(&md->table_devices_lock); 719 720 *result = &td->dm_dev; 721 return 0; 722 } 723 724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 725 { 726 struct table_device *td = container_of(d, struct table_device, dm_dev); 727 728 mutex_lock(&md->table_devices_lock); 729 if (refcount_dec_and_test(&td->count)) { 730 close_table_device(td, md); 731 list_del(&td->list); 732 kfree(td); 733 } 734 mutex_unlock(&md->table_devices_lock); 735 } 736 737 static void free_table_devices(struct list_head *devices) 738 { 739 struct list_head *tmp, *next; 740 741 list_for_each_safe(tmp, next, devices) { 742 struct table_device *td = list_entry(tmp, struct table_device, list); 743 744 DMWARN("dm_destroy: %s still exists with %d references", 745 td->dm_dev.name, refcount_read(&td->count)); 746 kfree(td); 747 } 748 } 749 750 /* 751 * Get the geometry associated with a dm device 752 */ 753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 754 { 755 *geo = md->geometry; 756 757 return 0; 758 } 759 760 /* 761 * Set the geometry of a device. 762 */ 763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 764 { 765 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 766 767 if (geo->start > sz) { 768 DMWARN("Start sector is beyond the geometry limits."); 769 return -EINVAL; 770 } 771 772 md->geometry = *geo; 773 774 return 0; 775 } 776 777 static int __noflush_suspending(struct mapped_device *md) 778 { 779 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 780 } 781 782 /* 783 * Decrements the number of outstanding ios that a bio has been 784 * cloned into, completing the original io if necc. 785 */ 786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 787 { 788 unsigned long flags; 789 blk_status_t io_error; 790 struct bio *bio; 791 struct mapped_device *md = io->md; 792 unsigned long start_time = 0; 793 struct dm_stats_aux stats_aux; 794 795 /* Push-back supersedes any I/O errors */ 796 if (unlikely(error)) { 797 spin_lock_irqsave(&io->endio_lock, flags); 798 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 799 io->status = error; 800 spin_unlock_irqrestore(&io->endio_lock, flags); 801 } 802 803 if (atomic_dec_and_test(&io->io_count)) { 804 bio = io->orig_bio; 805 if (io->status == BLK_STS_DM_REQUEUE) { 806 /* 807 * Target requested pushing back the I/O. 808 */ 809 spin_lock_irqsave(&md->deferred_lock, flags); 810 if (__noflush_suspending(md) && 811 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 812 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 813 bio_list_add_head(&md->deferred, bio); 814 } else { 815 /* 816 * noflush suspend was interrupted or this is 817 * a write to a zoned target. 818 */ 819 io->status = BLK_STS_IOERR; 820 } 821 spin_unlock_irqrestore(&md->deferred_lock, flags); 822 } 823 824 io_error = io->status; 825 start_time = io->start_time; 826 stats_aux = io->stats_aux; 827 free_io(md, io); 828 end_io_acct(md, bio, start_time, &stats_aux); 829 830 if (io_error == BLK_STS_DM_REQUEUE) 831 return; 832 833 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 834 /* 835 * Preflush done for flush with data, reissue 836 * without REQ_PREFLUSH. 837 */ 838 bio->bi_opf &= ~REQ_PREFLUSH; 839 queue_io(md, bio); 840 } else { 841 /* done with normal IO or empty flush */ 842 if (io_error) 843 bio->bi_status = io_error; 844 bio_endio(bio); 845 } 846 } 847 } 848 849 void disable_discard(struct mapped_device *md) 850 { 851 struct queue_limits *limits = dm_get_queue_limits(md); 852 853 /* device doesn't really support DISCARD, disable it */ 854 limits->max_discard_sectors = 0; 855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 856 } 857 858 void disable_write_same(struct mapped_device *md) 859 { 860 struct queue_limits *limits = dm_get_queue_limits(md); 861 862 /* device doesn't really support WRITE SAME, disable it */ 863 limits->max_write_same_sectors = 0; 864 } 865 866 void disable_write_zeroes(struct mapped_device *md) 867 { 868 struct queue_limits *limits = dm_get_queue_limits(md); 869 870 /* device doesn't really support WRITE ZEROES, disable it */ 871 limits->max_write_zeroes_sectors = 0; 872 } 873 874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 875 { 876 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 877 } 878 879 static void clone_endio(struct bio *bio) 880 { 881 blk_status_t error = bio->bi_status; 882 struct dm_target_io *tio = clone_to_tio(bio); 883 struct dm_io *io = tio->io; 884 struct mapped_device *md = tio->io->md; 885 dm_endio_fn endio = tio->ti->type->end_io; 886 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 887 888 if (unlikely(error == BLK_STS_TARGET)) { 889 if (bio_op(bio) == REQ_OP_DISCARD && 890 !q->limits.max_discard_sectors) 891 disable_discard(md); 892 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 893 !q->limits.max_write_same_sectors) 894 disable_write_same(md); 895 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 896 !q->limits.max_write_zeroes_sectors) 897 disable_write_zeroes(md); 898 } 899 900 if (blk_queue_is_zoned(q)) 901 dm_zone_endio(io, bio); 902 903 if (endio) { 904 int r = endio(tio->ti, bio, &error); 905 switch (r) { 906 case DM_ENDIO_REQUEUE: 907 /* 908 * Requeuing writes to a sequential zone of a zoned 909 * target will break the sequential write pattern: 910 * fail such IO. 911 */ 912 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 913 error = BLK_STS_IOERR; 914 else 915 error = BLK_STS_DM_REQUEUE; 916 fallthrough; 917 case DM_ENDIO_DONE: 918 break; 919 case DM_ENDIO_INCOMPLETE: 920 /* The target will handle the io */ 921 return; 922 default: 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(swap_bios_limit(tio->ti, bio))) { 929 struct mapped_device *md = io->md; 930 up(&md->swap_bios_semaphore); 931 } 932 933 free_tio(tio); 934 dm_io_dec_pending(io, error); 935 } 936 937 /* 938 * Return maximum size of I/O possible at the supplied sector up to the current 939 * target boundary. 940 */ 941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 942 sector_t target_offset) 943 { 944 return ti->len - target_offset; 945 } 946 947 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 948 { 949 sector_t target_offset = dm_target_offset(ti, sector); 950 sector_t len = max_io_len_target_boundary(ti, target_offset); 951 sector_t max_len; 952 953 /* 954 * Does the target need to split IO even further? 955 * - varied (per target) IO splitting is a tenet of DM; this 956 * explains why stacked chunk_sectors based splitting via 957 * blk_max_size_offset() isn't possible here. So pass in 958 * ti->max_io_len to override stacked chunk_sectors. 959 */ 960 if (ti->max_io_len) { 961 max_len = blk_max_size_offset(ti->table->md->queue, 962 target_offset, ti->max_io_len); 963 if (len > max_len) 964 len = max_len; 965 } 966 967 return len; 968 } 969 970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 971 { 972 if (len > UINT_MAX) { 973 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 974 (unsigned long long)len, UINT_MAX); 975 ti->error = "Maximum size of target IO is too large"; 976 return -EINVAL; 977 } 978 979 ti->max_io_len = (uint32_t) len; 980 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 984 985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 986 sector_t sector, int *srcu_idx) 987 __acquires(md->io_barrier) 988 { 989 struct dm_table *map; 990 struct dm_target *ti; 991 992 map = dm_get_live_table(md, srcu_idx); 993 if (!map) 994 return NULL; 995 996 ti = dm_table_find_target(map, sector); 997 if (!ti) 998 return NULL; 999 1000 return ti; 1001 } 1002 1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1004 long nr_pages, void **kaddr, pfn_t *pfn) 1005 { 1006 struct mapped_device *md = dax_get_private(dax_dev); 1007 sector_t sector = pgoff * PAGE_SECTORS; 1008 struct dm_target *ti; 1009 long len, ret = -EIO; 1010 int srcu_idx; 1011 1012 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1013 1014 if (!ti) 1015 goto out; 1016 if (!ti->type->direct_access) 1017 goto out; 1018 len = max_io_len(ti, sector) / PAGE_SECTORS; 1019 if (len < 1) 1020 goto out; 1021 nr_pages = min(len, nr_pages); 1022 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1023 1024 out: 1025 dm_put_live_table(md, srcu_idx); 1026 1027 return ret; 1028 } 1029 1030 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1031 size_t nr_pages) 1032 { 1033 struct mapped_device *md = dax_get_private(dax_dev); 1034 sector_t sector = pgoff * PAGE_SECTORS; 1035 struct dm_target *ti; 1036 int ret = -EIO; 1037 int srcu_idx; 1038 1039 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1040 1041 if (!ti) 1042 goto out; 1043 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1044 /* 1045 * ->zero_page_range() is mandatory dax operation. If we are 1046 * here, something is wrong. 1047 */ 1048 goto out; 1049 } 1050 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1051 out: 1052 dm_put_live_table(md, srcu_idx); 1053 1054 return ret; 1055 } 1056 1057 /* 1058 * A target may call dm_accept_partial_bio only from the map routine. It is 1059 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1060 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1061 * 1062 * dm_accept_partial_bio informs the dm that the target only wants to process 1063 * additional n_sectors sectors of the bio and the rest of the data should be 1064 * sent in a next bio. 1065 * 1066 * A diagram that explains the arithmetics: 1067 * +--------------------+---------------+-------+ 1068 * | 1 | 2 | 3 | 1069 * +--------------------+---------------+-------+ 1070 * 1071 * <-------------- *tio->len_ptr ---------------> 1072 * <------- bi_size -------> 1073 * <-- n_sectors --> 1074 * 1075 * Region 1 was already iterated over with bio_advance or similar function. 1076 * (it may be empty if the target doesn't use bio_advance) 1077 * Region 2 is the remaining bio size that the target wants to process. 1078 * (it may be empty if region 1 is non-empty, although there is no reason 1079 * to make it empty) 1080 * The target requires that region 3 is to be sent in the next bio. 1081 * 1082 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1083 * the partially processed part (the sum of regions 1+2) must be the same for all 1084 * copies of the bio. 1085 */ 1086 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1087 { 1088 struct dm_target_io *tio = clone_to_tio(bio); 1089 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1090 1091 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1092 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1093 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1094 BUG_ON(bi_size > *tio->len_ptr); 1095 BUG_ON(n_sectors > bi_size); 1096 1097 *tio->len_ptr -= bi_size - n_sectors; 1098 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1099 } 1100 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1101 1102 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1103 { 1104 mutex_lock(&md->swap_bios_lock); 1105 while (latch < md->swap_bios) { 1106 cond_resched(); 1107 down(&md->swap_bios_semaphore); 1108 md->swap_bios--; 1109 } 1110 while (latch > md->swap_bios) { 1111 cond_resched(); 1112 up(&md->swap_bios_semaphore); 1113 md->swap_bios++; 1114 } 1115 mutex_unlock(&md->swap_bios_lock); 1116 } 1117 1118 static void __map_bio(struct dm_target_io *tio) 1119 { 1120 int r; 1121 sector_t sector; 1122 struct bio *clone = &tio->clone; 1123 struct dm_io *io = tio->io; 1124 struct dm_target *ti = tio->ti; 1125 1126 clone->bi_end_io = clone_endio; 1127 1128 /* 1129 * Map the clone. If r == 0 we don't need to do 1130 * anything, the target has assumed ownership of 1131 * this io. 1132 */ 1133 dm_io_inc_pending(io); 1134 sector = clone->bi_iter.bi_sector; 1135 1136 if (unlikely(swap_bios_limit(ti, clone))) { 1137 struct mapped_device *md = io->md; 1138 int latch = get_swap_bios(); 1139 if (unlikely(latch != md->swap_bios)) 1140 __set_swap_bios_limit(md, latch); 1141 down(&md->swap_bios_semaphore); 1142 } 1143 1144 /* 1145 * Check if the IO needs a special mapping due to zone append emulation 1146 * on zoned target. In this case, dm_zone_map_bio() calls the target 1147 * map operation. 1148 */ 1149 if (dm_emulate_zone_append(io->md)) 1150 r = dm_zone_map_bio(tio); 1151 else 1152 r = ti->type->map(ti, clone); 1153 1154 switch (r) { 1155 case DM_MAPIO_SUBMITTED: 1156 break; 1157 case DM_MAPIO_REMAPPED: 1158 /* the bio has been remapped so dispatch it */ 1159 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1160 submit_bio_noacct(clone); 1161 break; 1162 case DM_MAPIO_KILL: 1163 if (unlikely(swap_bios_limit(ti, clone))) { 1164 struct mapped_device *md = io->md; 1165 up(&md->swap_bios_semaphore); 1166 } 1167 free_tio(tio); 1168 dm_io_dec_pending(io, BLK_STS_IOERR); 1169 break; 1170 case DM_MAPIO_REQUEUE: 1171 if (unlikely(swap_bios_limit(ti, clone))) { 1172 struct mapped_device *md = io->md; 1173 up(&md->swap_bios_semaphore); 1174 } 1175 free_tio(tio); 1176 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1177 break; 1178 default: 1179 DMWARN("unimplemented target map return value: %d", r); 1180 BUG(); 1181 } 1182 } 1183 1184 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1185 { 1186 bio->bi_iter.bi_sector = sector; 1187 bio->bi_iter.bi_size = to_bytes(len); 1188 } 1189 1190 /* 1191 * Creates a bio that consists of range of complete bvecs. 1192 */ 1193 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1194 sector_t sector, unsigned *len) 1195 { 1196 struct bio *bio = ci->bio, *clone; 1197 struct dm_target_io *tio; 1198 int r; 1199 1200 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1201 tio->len_ptr = len; 1202 1203 clone = &tio->clone; 1204 __bio_clone_fast(clone, bio); 1205 1206 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1207 if (r < 0) 1208 goto free_tio; 1209 1210 if (bio_integrity(bio)) { 1211 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1212 !dm_target_passes_integrity(tio->ti->type))) { 1213 DMWARN("%s: the target %s doesn't support integrity data.", 1214 dm_device_name(tio->io->md), 1215 tio->ti->type->name); 1216 r = -EIO; 1217 goto free_tio; 1218 } 1219 1220 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1221 if (r < 0) 1222 goto free_tio; 1223 } 1224 1225 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1226 clone->bi_iter.bi_size = to_bytes(*len); 1227 1228 if (bio_integrity(bio)) 1229 bio_integrity_trim(clone); 1230 1231 __map_bio(tio); 1232 return 0; 1233 free_tio: 1234 free_tio(tio); 1235 return r; 1236 } 1237 1238 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1239 struct dm_target *ti, unsigned num_bios) 1240 { 1241 struct dm_target_io *tio; 1242 int try; 1243 1244 if (!num_bios) 1245 return; 1246 1247 if (num_bios == 1) { 1248 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1249 bio_list_add(blist, &tio->clone); 1250 return; 1251 } 1252 1253 for (try = 0; try < 2; try++) { 1254 int bio_nr; 1255 struct bio *bio; 1256 1257 if (try) 1258 mutex_lock(&ci->io->md->table_devices_lock); 1259 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1260 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1261 if (!tio) 1262 break; 1263 1264 bio_list_add(blist, &tio->clone); 1265 } 1266 if (try) 1267 mutex_unlock(&ci->io->md->table_devices_lock); 1268 if (bio_nr == num_bios) 1269 return; 1270 1271 while ((bio = bio_list_pop(blist))) 1272 free_tio(clone_to_tio(bio)); 1273 } 1274 } 1275 1276 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1277 unsigned num_bios, unsigned *len) 1278 { 1279 struct bio_list blist = BIO_EMPTY_LIST; 1280 struct bio *clone; 1281 1282 alloc_multiple_bios(&blist, ci, ti, num_bios); 1283 1284 while ((clone = bio_list_pop(&blist))) { 1285 struct dm_target_io *tio = clone_to_tio(clone); 1286 1287 tio->len_ptr = len; 1288 1289 __bio_clone_fast(clone, ci->bio); 1290 if (len) 1291 bio_setup_sector(clone, ci->sector, *len); 1292 __map_bio(tio); 1293 } 1294 } 1295 1296 static int __send_empty_flush(struct clone_info *ci) 1297 { 1298 unsigned target_nr = 0; 1299 struct dm_target *ti; 1300 struct bio flush_bio; 1301 1302 /* 1303 * Use an on-stack bio for this, it's safe since we don't 1304 * need to reference it after submit. It's just used as 1305 * the basis for the clone(s). 1306 */ 1307 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1308 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1309 1310 ci->bio = &flush_bio; 1311 ci->sector_count = 0; 1312 1313 BUG_ON(bio_has_data(ci->bio)); 1314 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1315 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1316 1317 bio_uninit(ci->bio); 1318 return 0; 1319 } 1320 1321 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1322 unsigned num_bios) 1323 { 1324 unsigned len; 1325 1326 /* 1327 * Even though the device advertised support for this type of 1328 * request, that does not mean every target supports it, and 1329 * reconfiguration might also have changed that since the 1330 * check was performed. 1331 */ 1332 if (!num_bios) 1333 return -EOPNOTSUPP; 1334 1335 len = min_t(sector_t, ci->sector_count, 1336 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1337 1338 __send_duplicate_bios(ci, ti, num_bios, &len); 1339 1340 ci->sector += len; 1341 ci->sector_count -= len; 1342 1343 return 0; 1344 } 1345 1346 static bool is_abnormal_io(struct bio *bio) 1347 { 1348 bool r = false; 1349 1350 switch (bio_op(bio)) { 1351 case REQ_OP_DISCARD: 1352 case REQ_OP_SECURE_ERASE: 1353 case REQ_OP_WRITE_SAME: 1354 case REQ_OP_WRITE_ZEROES: 1355 r = true; 1356 break; 1357 } 1358 1359 return r; 1360 } 1361 1362 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1363 int *result) 1364 { 1365 struct bio *bio = ci->bio; 1366 unsigned num_bios = 0; 1367 1368 switch (bio_op(bio)) { 1369 case REQ_OP_DISCARD: 1370 num_bios = ti->num_discard_bios; 1371 break; 1372 case REQ_OP_SECURE_ERASE: 1373 num_bios = ti->num_secure_erase_bios; 1374 break; 1375 case REQ_OP_WRITE_SAME: 1376 num_bios = ti->num_write_same_bios; 1377 break; 1378 case REQ_OP_WRITE_ZEROES: 1379 num_bios = ti->num_write_zeroes_bios; 1380 break; 1381 default: 1382 return false; 1383 } 1384 1385 *result = __send_changing_extent_only(ci, ti, num_bios); 1386 return true; 1387 } 1388 1389 /* 1390 * Select the correct strategy for processing a non-flush bio. 1391 */ 1392 static int __split_and_process_non_flush(struct clone_info *ci) 1393 { 1394 struct dm_target *ti; 1395 unsigned len; 1396 int r; 1397 1398 ti = dm_table_find_target(ci->map, ci->sector); 1399 if (!ti) 1400 return -EIO; 1401 1402 if (__process_abnormal_io(ci, ti, &r)) 1403 return r; 1404 1405 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1406 1407 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1408 if (r < 0) 1409 return r; 1410 1411 ci->sector += len; 1412 ci->sector_count -= len; 1413 1414 return 0; 1415 } 1416 1417 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1418 struct dm_table *map, struct bio *bio) 1419 { 1420 ci->map = map; 1421 ci->io = alloc_io(md, bio); 1422 ci->sector = bio->bi_iter.bi_sector; 1423 } 1424 1425 /* 1426 * Entry point to split a bio into clones and submit them to the targets. 1427 */ 1428 static void __split_and_process_bio(struct mapped_device *md, 1429 struct dm_table *map, struct bio *bio) 1430 { 1431 struct clone_info ci; 1432 int error = 0; 1433 1434 init_clone_info(&ci, md, map, bio); 1435 1436 if (bio->bi_opf & REQ_PREFLUSH) { 1437 error = __send_empty_flush(&ci); 1438 /* dm_io_dec_pending submits any data associated with flush */ 1439 } else if (op_is_zone_mgmt(bio_op(bio))) { 1440 ci.bio = bio; 1441 ci.sector_count = 0; 1442 error = __split_and_process_non_flush(&ci); 1443 } else { 1444 ci.bio = bio; 1445 ci.sector_count = bio_sectors(bio); 1446 error = __split_and_process_non_flush(&ci); 1447 if (ci.sector_count && !error) { 1448 /* 1449 * Remainder must be passed to submit_bio_noacct() 1450 * so that it gets handled *after* bios already submitted 1451 * have been completely processed. 1452 * We take a clone of the original to store in 1453 * ci.io->orig_bio to be used by end_io_acct() and 1454 * for dec_pending to use for completion handling. 1455 */ 1456 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1457 GFP_NOIO, &md->queue->bio_split); 1458 ci.io->orig_bio = b; 1459 1460 bio_chain(b, bio); 1461 trace_block_split(b, bio->bi_iter.bi_sector); 1462 submit_bio_noacct(bio); 1463 } 1464 } 1465 start_io_acct(ci.io); 1466 1467 /* drop the extra reference count */ 1468 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1469 } 1470 1471 static void dm_submit_bio(struct bio *bio) 1472 { 1473 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1474 int srcu_idx; 1475 struct dm_table *map; 1476 1477 map = dm_get_live_table(md, &srcu_idx); 1478 if (unlikely(!map)) { 1479 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1480 dm_device_name(md)); 1481 bio_io_error(bio); 1482 goto out; 1483 } 1484 1485 /* If suspended, queue this IO for later */ 1486 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1487 if (bio->bi_opf & REQ_NOWAIT) 1488 bio_wouldblock_error(bio); 1489 else if (bio->bi_opf & REQ_RAHEAD) 1490 bio_io_error(bio); 1491 else 1492 queue_io(md, bio); 1493 goto out; 1494 } 1495 1496 /* 1497 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1498 * otherwise associated queue_limits won't be imposed. 1499 */ 1500 if (is_abnormal_io(bio)) 1501 blk_queue_split(&bio); 1502 1503 __split_and_process_bio(md, map, bio); 1504 out: 1505 dm_put_live_table(md, srcu_idx); 1506 } 1507 1508 /*----------------------------------------------------------------- 1509 * An IDR is used to keep track of allocated minor numbers. 1510 *---------------------------------------------------------------*/ 1511 static void free_minor(int minor) 1512 { 1513 spin_lock(&_minor_lock); 1514 idr_remove(&_minor_idr, minor); 1515 spin_unlock(&_minor_lock); 1516 } 1517 1518 /* 1519 * See if the device with a specific minor # is free. 1520 */ 1521 static int specific_minor(int minor) 1522 { 1523 int r; 1524 1525 if (minor >= (1 << MINORBITS)) 1526 return -EINVAL; 1527 1528 idr_preload(GFP_KERNEL); 1529 spin_lock(&_minor_lock); 1530 1531 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1532 1533 spin_unlock(&_minor_lock); 1534 idr_preload_end(); 1535 if (r < 0) 1536 return r == -ENOSPC ? -EBUSY : r; 1537 return 0; 1538 } 1539 1540 static int next_free_minor(int *minor) 1541 { 1542 int r; 1543 1544 idr_preload(GFP_KERNEL); 1545 spin_lock(&_minor_lock); 1546 1547 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1548 1549 spin_unlock(&_minor_lock); 1550 idr_preload_end(); 1551 if (r < 0) 1552 return r; 1553 *minor = r; 1554 return 0; 1555 } 1556 1557 static const struct block_device_operations dm_blk_dops; 1558 static const struct block_device_operations dm_rq_blk_dops; 1559 static const struct dax_operations dm_dax_ops; 1560 1561 static void dm_wq_work(struct work_struct *work); 1562 1563 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1564 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1565 { 1566 dm_destroy_crypto_profile(q->crypto_profile); 1567 } 1568 1569 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1570 1571 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1572 { 1573 } 1574 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1575 1576 static void cleanup_mapped_device(struct mapped_device *md) 1577 { 1578 if (md->wq) 1579 destroy_workqueue(md->wq); 1580 bioset_exit(&md->bs); 1581 bioset_exit(&md->io_bs); 1582 1583 if (md->dax_dev) { 1584 dax_remove_host(md->disk); 1585 kill_dax(md->dax_dev); 1586 put_dax(md->dax_dev); 1587 md->dax_dev = NULL; 1588 } 1589 1590 if (md->disk) { 1591 spin_lock(&_minor_lock); 1592 md->disk->private_data = NULL; 1593 spin_unlock(&_minor_lock); 1594 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1595 dm_sysfs_exit(md); 1596 del_gendisk(md->disk); 1597 } 1598 dm_queue_destroy_crypto_profile(md->queue); 1599 blk_cleanup_disk(md->disk); 1600 } 1601 1602 cleanup_srcu_struct(&md->io_barrier); 1603 1604 mutex_destroy(&md->suspend_lock); 1605 mutex_destroy(&md->type_lock); 1606 mutex_destroy(&md->table_devices_lock); 1607 mutex_destroy(&md->swap_bios_lock); 1608 1609 dm_mq_cleanup_mapped_device(md); 1610 dm_cleanup_zoned_dev(md); 1611 } 1612 1613 /* 1614 * Allocate and initialise a blank device with a given minor. 1615 */ 1616 static struct mapped_device *alloc_dev(int minor) 1617 { 1618 int r, numa_node_id = dm_get_numa_node(); 1619 struct mapped_device *md; 1620 void *old_md; 1621 1622 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1623 if (!md) { 1624 DMWARN("unable to allocate device, out of memory."); 1625 return NULL; 1626 } 1627 1628 if (!try_module_get(THIS_MODULE)) 1629 goto bad_module_get; 1630 1631 /* get a minor number for the dev */ 1632 if (minor == DM_ANY_MINOR) 1633 r = next_free_minor(&minor); 1634 else 1635 r = specific_minor(minor); 1636 if (r < 0) 1637 goto bad_minor; 1638 1639 r = init_srcu_struct(&md->io_barrier); 1640 if (r < 0) 1641 goto bad_io_barrier; 1642 1643 md->numa_node_id = numa_node_id; 1644 md->init_tio_pdu = false; 1645 md->type = DM_TYPE_NONE; 1646 mutex_init(&md->suspend_lock); 1647 mutex_init(&md->type_lock); 1648 mutex_init(&md->table_devices_lock); 1649 spin_lock_init(&md->deferred_lock); 1650 atomic_set(&md->holders, 1); 1651 atomic_set(&md->open_count, 0); 1652 atomic_set(&md->event_nr, 0); 1653 atomic_set(&md->uevent_seq, 0); 1654 INIT_LIST_HEAD(&md->uevent_list); 1655 INIT_LIST_HEAD(&md->table_devices); 1656 spin_lock_init(&md->uevent_lock); 1657 1658 /* 1659 * default to bio-based until DM table is loaded and md->type 1660 * established. If request-based table is loaded: blk-mq will 1661 * override accordingly. 1662 */ 1663 md->disk = blk_alloc_disk(md->numa_node_id); 1664 if (!md->disk) 1665 goto bad; 1666 md->queue = md->disk->queue; 1667 1668 init_waitqueue_head(&md->wait); 1669 INIT_WORK(&md->work, dm_wq_work); 1670 init_waitqueue_head(&md->eventq); 1671 init_completion(&md->kobj_holder.completion); 1672 1673 md->swap_bios = get_swap_bios(); 1674 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1675 mutex_init(&md->swap_bios_lock); 1676 1677 md->disk->major = _major; 1678 md->disk->first_minor = minor; 1679 md->disk->minors = 1; 1680 md->disk->flags |= GENHD_FL_NO_PART; 1681 md->disk->fops = &dm_blk_dops; 1682 md->disk->queue = md->queue; 1683 md->disk->private_data = md; 1684 sprintf(md->disk->disk_name, "dm-%d", minor); 1685 1686 if (IS_ENABLED(CONFIG_FS_DAX)) { 1687 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1688 if (IS_ERR(md->dax_dev)) { 1689 md->dax_dev = NULL; 1690 goto bad; 1691 } 1692 set_dax_nocache(md->dax_dev); 1693 set_dax_nomc(md->dax_dev); 1694 if (dax_add_host(md->dax_dev, md->disk)) 1695 goto bad; 1696 } 1697 1698 format_dev_t(md->name, MKDEV(_major, minor)); 1699 1700 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1701 if (!md->wq) 1702 goto bad; 1703 1704 dm_stats_init(&md->stats); 1705 1706 /* Populate the mapping, nobody knows we exist yet */ 1707 spin_lock(&_minor_lock); 1708 old_md = idr_replace(&_minor_idr, md, minor); 1709 spin_unlock(&_minor_lock); 1710 1711 BUG_ON(old_md != MINOR_ALLOCED); 1712 1713 return md; 1714 1715 bad: 1716 cleanup_mapped_device(md); 1717 bad_io_barrier: 1718 free_minor(minor); 1719 bad_minor: 1720 module_put(THIS_MODULE); 1721 bad_module_get: 1722 kvfree(md); 1723 return NULL; 1724 } 1725 1726 static void unlock_fs(struct mapped_device *md); 1727 1728 static void free_dev(struct mapped_device *md) 1729 { 1730 int minor = MINOR(disk_devt(md->disk)); 1731 1732 unlock_fs(md); 1733 1734 cleanup_mapped_device(md); 1735 1736 free_table_devices(&md->table_devices); 1737 dm_stats_cleanup(&md->stats); 1738 free_minor(minor); 1739 1740 module_put(THIS_MODULE); 1741 kvfree(md); 1742 } 1743 1744 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1745 { 1746 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1747 int ret = 0; 1748 1749 if (dm_table_bio_based(t)) { 1750 /* 1751 * The md may already have mempools that need changing. 1752 * If so, reload bioset because front_pad may have changed 1753 * because a different table was loaded. 1754 */ 1755 bioset_exit(&md->bs); 1756 bioset_exit(&md->io_bs); 1757 1758 } else if (bioset_initialized(&md->bs)) { 1759 /* 1760 * There's no need to reload with request-based dm 1761 * because the size of front_pad doesn't change. 1762 * Note for future: If you are to reload bioset, 1763 * prep-ed requests in the queue may refer 1764 * to bio from the old bioset, so you must walk 1765 * through the queue to unprep. 1766 */ 1767 goto out; 1768 } 1769 1770 BUG_ON(!p || 1771 bioset_initialized(&md->bs) || 1772 bioset_initialized(&md->io_bs)); 1773 1774 ret = bioset_init_from_src(&md->bs, &p->bs); 1775 if (ret) 1776 goto out; 1777 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1778 if (ret) 1779 bioset_exit(&md->bs); 1780 out: 1781 /* mempool bind completed, no longer need any mempools in the table */ 1782 dm_table_free_md_mempools(t); 1783 return ret; 1784 } 1785 1786 /* 1787 * Bind a table to the device. 1788 */ 1789 static void event_callback(void *context) 1790 { 1791 unsigned long flags; 1792 LIST_HEAD(uevents); 1793 struct mapped_device *md = (struct mapped_device *) context; 1794 1795 spin_lock_irqsave(&md->uevent_lock, flags); 1796 list_splice_init(&md->uevent_list, &uevents); 1797 spin_unlock_irqrestore(&md->uevent_lock, flags); 1798 1799 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1800 1801 atomic_inc(&md->event_nr); 1802 wake_up(&md->eventq); 1803 dm_issue_global_event(); 1804 } 1805 1806 /* 1807 * Returns old map, which caller must destroy. 1808 */ 1809 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1810 struct queue_limits *limits) 1811 { 1812 struct dm_table *old_map; 1813 struct request_queue *q = md->queue; 1814 bool request_based = dm_table_request_based(t); 1815 sector_t size; 1816 int ret; 1817 1818 lockdep_assert_held(&md->suspend_lock); 1819 1820 size = dm_table_get_size(t); 1821 1822 /* 1823 * Wipe any geometry if the size of the table changed. 1824 */ 1825 if (size != dm_get_size(md)) 1826 memset(&md->geometry, 0, sizeof(md->geometry)); 1827 1828 if (!get_capacity(md->disk)) 1829 set_capacity(md->disk, size); 1830 else 1831 set_capacity_and_notify(md->disk, size); 1832 1833 dm_table_event_callback(t, event_callback, md); 1834 1835 if (request_based) { 1836 /* 1837 * Leverage the fact that request-based DM targets are 1838 * immutable singletons - used to optimize dm_mq_queue_rq. 1839 */ 1840 md->immutable_target = dm_table_get_immutable_target(t); 1841 } 1842 1843 ret = __bind_mempools(md, t); 1844 if (ret) { 1845 old_map = ERR_PTR(ret); 1846 goto out; 1847 } 1848 1849 ret = dm_table_set_restrictions(t, q, limits); 1850 if (ret) { 1851 old_map = ERR_PTR(ret); 1852 goto out; 1853 } 1854 1855 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1856 rcu_assign_pointer(md->map, (void *)t); 1857 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1858 1859 if (old_map) 1860 dm_sync_table(md); 1861 1862 out: 1863 return old_map; 1864 } 1865 1866 /* 1867 * Returns unbound table for the caller to free. 1868 */ 1869 static struct dm_table *__unbind(struct mapped_device *md) 1870 { 1871 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1872 1873 if (!map) 1874 return NULL; 1875 1876 dm_table_event_callback(map, NULL, NULL); 1877 RCU_INIT_POINTER(md->map, NULL); 1878 dm_sync_table(md); 1879 1880 return map; 1881 } 1882 1883 /* 1884 * Constructor for a new device. 1885 */ 1886 int dm_create(int minor, struct mapped_device **result) 1887 { 1888 struct mapped_device *md; 1889 1890 md = alloc_dev(minor); 1891 if (!md) 1892 return -ENXIO; 1893 1894 dm_ima_reset_data(md); 1895 1896 *result = md; 1897 return 0; 1898 } 1899 1900 /* 1901 * Functions to manage md->type. 1902 * All are required to hold md->type_lock. 1903 */ 1904 void dm_lock_md_type(struct mapped_device *md) 1905 { 1906 mutex_lock(&md->type_lock); 1907 } 1908 1909 void dm_unlock_md_type(struct mapped_device *md) 1910 { 1911 mutex_unlock(&md->type_lock); 1912 } 1913 1914 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1915 { 1916 BUG_ON(!mutex_is_locked(&md->type_lock)); 1917 md->type = type; 1918 } 1919 1920 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1921 { 1922 return md->type; 1923 } 1924 1925 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1926 { 1927 return md->immutable_target_type; 1928 } 1929 1930 /* 1931 * The queue_limits are only valid as long as you have a reference 1932 * count on 'md'. 1933 */ 1934 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1935 { 1936 BUG_ON(!atomic_read(&md->holders)); 1937 return &md->queue->limits; 1938 } 1939 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1940 1941 /* 1942 * Setup the DM device's queue based on md's type 1943 */ 1944 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1945 { 1946 enum dm_queue_mode type = dm_table_get_type(t); 1947 struct queue_limits limits; 1948 int r; 1949 1950 switch (type) { 1951 case DM_TYPE_REQUEST_BASED: 1952 md->disk->fops = &dm_rq_blk_dops; 1953 r = dm_mq_init_request_queue(md, t); 1954 if (r) { 1955 DMERR("Cannot initialize queue for request-based dm mapped device"); 1956 return r; 1957 } 1958 break; 1959 case DM_TYPE_BIO_BASED: 1960 case DM_TYPE_DAX_BIO_BASED: 1961 break; 1962 case DM_TYPE_NONE: 1963 WARN_ON_ONCE(true); 1964 break; 1965 } 1966 1967 r = dm_calculate_queue_limits(t, &limits); 1968 if (r) { 1969 DMERR("Cannot calculate initial queue limits"); 1970 return r; 1971 } 1972 r = dm_table_set_restrictions(t, md->queue, &limits); 1973 if (r) 1974 return r; 1975 1976 r = add_disk(md->disk); 1977 if (r) 1978 return r; 1979 1980 r = dm_sysfs_init(md); 1981 if (r) { 1982 del_gendisk(md->disk); 1983 return r; 1984 } 1985 md->type = type; 1986 return 0; 1987 } 1988 1989 struct mapped_device *dm_get_md(dev_t dev) 1990 { 1991 struct mapped_device *md; 1992 unsigned minor = MINOR(dev); 1993 1994 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1995 return NULL; 1996 1997 spin_lock(&_minor_lock); 1998 1999 md = idr_find(&_minor_idr, minor); 2000 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2001 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2002 md = NULL; 2003 goto out; 2004 } 2005 dm_get(md); 2006 out: 2007 spin_unlock(&_minor_lock); 2008 2009 return md; 2010 } 2011 EXPORT_SYMBOL_GPL(dm_get_md); 2012 2013 void *dm_get_mdptr(struct mapped_device *md) 2014 { 2015 return md->interface_ptr; 2016 } 2017 2018 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2019 { 2020 md->interface_ptr = ptr; 2021 } 2022 2023 void dm_get(struct mapped_device *md) 2024 { 2025 atomic_inc(&md->holders); 2026 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2027 } 2028 2029 int dm_hold(struct mapped_device *md) 2030 { 2031 spin_lock(&_minor_lock); 2032 if (test_bit(DMF_FREEING, &md->flags)) { 2033 spin_unlock(&_minor_lock); 2034 return -EBUSY; 2035 } 2036 dm_get(md); 2037 spin_unlock(&_minor_lock); 2038 return 0; 2039 } 2040 EXPORT_SYMBOL_GPL(dm_hold); 2041 2042 const char *dm_device_name(struct mapped_device *md) 2043 { 2044 return md->name; 2045 } 2046 EXPORT_SYMBOL_GPL(dm_device_name); 2047 2048 static void __dm_destroy(struct mapped_device *md, bool wait) 2049 { 2050 struct dm_table *map; 2051 int srcu_idx; 2052 2053 might_sleep(); 2054 2055 spin_lock(&_minor_lock); 2056 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2057 set_bit(DMF_FREEING, &md->flags); 2058 spin_unlock(&_minor_lock); 2059 2060 blk_set_queue_dying(md->queue); 2061 2062 /* 2063 * Take suspend_lock so that presuspend and postsuspend methods 2064 * do not race with internal suspend. 2065 */ 2066 mutex_lock(&md->suspend_lock); 2067 map = dm_get_live_table(md, &srcu_idx); 2068 if (!dm_suspended_md(md)) { 2069 dm_table_presuspend_targets(map); 2070 set_bit(DMF_SUSPENDED, &md->flags); 2071 set_bit(DMF_POST_SUSPENDING, &md->flags); 2072 dm_table_postsuspend_targets(map); 2073 } 2074 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2075 dm_put_live_table(md, srcu_idx); 2076 mutex_unlock(&md->suspend_lock); 2077 2078 /* 2079 * Rare, but there may be I/O requests still going to complete, 2080 * for example. Wait for all references to disappear. 2081 * No one should increment the reference count of the mapped_device, 2082 * after the mapped_device state becomes DMF_FREEING. 2083 */ 2084 if (wait) 2085 while (atomic_read(&md->holders)) 2086 msleep(1); 2087 else if (atomic_read(&md->holders)) 2088 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2089 dm_device_name(md), atomic_read(&md->holders)); 2090 2091 dm_table_destroy(__unbind(md)); 2092 free_dev(md); 2093 } 2094 2095 void dm_destroy(struct mapped_device *md) 2096 { 2097 __dm_destroy(md, true); 2098 } 2099 2100 void dm_destroy_immediate(struct mapped_device *md) 2101 { 2102 __dm_destroy(md, false); 2103 } 2104 2105 void dm_put(struct mapped_device *md) 2106 { 2107 atomic_dec(&md->holders); 2108 } 2109 EXPORT_SYMBOL_GPL(dm_put); 2110 2111 static bool md_in_flight_bios(struct mapped_device *md) 2112 { 2113 int cpu; 2114 struct block_device *part = dm_disk(md)->part0; 2115 long sum = 0; 2116 2117 for_each_possible_cpu(cpu) { 2118 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2119 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2120 } 2121 2122 return sum != 0; 2123 } 2124 2125 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2126 { 2127 int r = 0; 2128 DEFINE_WAIT(wait); 2129 2130 while (true) { 2131 prepare_to_wait(&md->wait, &wait, task_state); 2132 2133 if (!md_in_flight_bios(md)) 2134 break; 2135 2136 if (signal_pending_state(task_state, current)) { 2137 r = -EINTR; 2138 break; 2139 } 2140 2141 io_schedule(); 2142 } 2143 finish_wait(&md->wait, &wait); 2144 2145 return r; 2146 } 2147 2148 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2149 { 2150 int r = 0; 2151 2152 if (!queue_is_mq(md->queue)) 2153 return dm_wait_for_bios_completion(md, task_state); 2154 2155 while (true) { 2156 if (!blk_mq_queue_inflight(md->queue)) 2157 break; 2158 2159 if (signal_pending_state(task_state, current)) { 2160 r = -EINTR; 2161 break; 2162 } 2163 2164 msleep(5); 2165 } 2166 2167 return r; 2168 } 2169 2170 /* 2171 * Process the deferred bios 2172 */ 2173 static void dm_wq_work(struct work_struct *work) 2174 { 2175 struct mapped_device *md = container_of(work, struct mapped_device, work); 2176 struct bio *bio; 2177 2178 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2179 spin_lock_irq(&md->deferred_lock); 2180 bio = bio_list_pop(&md->deferred); 2181 spin_unlock_irq(&md->deferred_lock); 2182 2183 if (!bio) 2184 break; 2185 2186 submit_bio_noacct(bio); 2187 } 2188 } 2189 2190 static void dm_queue_flush(struct mapped_device *md) 2191 { 2192 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2193 smp_mb__after_atomic(); 2194 queue_work(md->wq, &md->work); 2195 } 2196 2197 /* 2198 * Swap in a new table, returning the old one for the caller to destroy. 2199 */ 2200 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2201 { 2202 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2203 struct queue_limits limits; 2204 int r; 2205 2206 mutex_lock(&md->suspend_lock); 2207 2208 /* device must be suspended */ 2209 if (!dm_suspended_md(md)) 2210 goto out; 2211 2212 /* 2213 * If the new table has no data devices, retain the existing limits. 2214 * This helps multipath with queue_if_no_path if all paths disappear, 2215 * then new I/O is queued based on these limits, and then some paths 2216 * reappear. 2217 */ 2218 if (dm_table_has_no_data_devices(table)) { 2219 live_map = dm_get_live_table_fast(md); 2220 if (live_map) 2221 limits = md->queue->limits; 2222 dm_put_live_table_fast(md); 2223 } 2224 2225 if (!live_map) { 2226 r = dm_calculate_queue_limits(table, &limits); 2227 if (r) { 2228 map = ERR_PTR(r); 2229 goto out; 2230 } 2231 } 2232 2233 map = __bind(md, table, &limits); 2234 dm_issue_global_event(); 2235 2236 out: 2237 mutex_unlock(&md->suspend_lock); 2238 return map; 2239 } 2240 2241 /* 2242 * Functions to lock and unlock any filesystem running on the 2243 * device. 2244 */ 2245 static int lock_fs(struct mapped_device *md) 2246 { 2247 int r; 2248 2249 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2250 2251 r = freeze_bdev(md->disk->part0); 2252 if (!r) 2253 set_bit(DMF_FROZEN, &md->flags); 2254 return r; 2255 } 2256 2257 static void unlock_fs(struct mapped_device *md) 2258 { 2259 if (!test_bit(DMF_FROZEN, &md->flags)) 2260 return; 2261 thaw_bdev(md->disk->part0); 2262 clear_bit(DMF_FROZEN, &md->flags); 2263 } 2264 2265 /* 2266 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2267 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2268 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2269 * 2270 * If __dm_suspend returns 0, the device is completely quiescent 2271 * now. There is no request-processing activity. All new requests 2272 * are being added to md->deferred list. 2273 */ 2274 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2275 unsigned suspend_flags, unsigned int task_state, 2276 int dmf_suspended_flag) 2277 { 2278 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2279 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2280 int r; 2281 2282 lockdep_assert_held(&md->suspend_lock); 2283 2284 /* 2285 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2286 * This flag is cleared before dm_suspend returns. 2287 */ 2288 if (noflush) 2289 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2290 else 2291 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2292 2293 /* 2294 * This gets reverted if there's an error later and the targets 2295 * provide the .presuspend_undo hook. 2296 */ 2297 dm_table_presuspend_targets(map); 2298 2299 /* 2300 * Flush I/O to the device. 2301 * Any I/O submitted after lock_fs() may not be flushed. 2302 * noflush takes precedence over do_lockfs. 2303 * (lock_fs() flushes I/Os and waits for them to complete.) 2304 */ 2305 if (!noflush && do_lockfs) { 2306 r = lock_fs(md); 2307 if (r) { 2308 dm_table_presuspend_undo_targets(map); 2309 return r; 2310 } 2311 } 2312 2313 /* 2314 * Here we must make sure that no processes are submitting requests 2315 * to target drivers i.e. no one may be executing 2316 * __split_and_process_bio from dm_submit_bio. 2317 * 2318 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2319 * we take the write lock. To prevent any process from reentering 2320 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2321 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2322 * flush_workqueue(md->wq). 2323 */ 2324 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2325 if (map) 2326 synchronize_srcu(&md->io_barrier); 2327 2328 /* 2329 * Stop md->queue before flushing md->wq in case request-based 2330 * dm defers requests to md->wq from md->queue. 2331 */ 2332 if (dm_request_based(md)) 2333 dm_stop_queue(md->queue); 2334 2335 flush_workqueue(md->wq); 2336 2337 /* 2338 * At this point no more requests are entering target request routines. 2339 * We call dm_wait_for_completion to wait for all existing requests 2340 * to finish. 2341 */ 2342 r = dm_wait_for_completion(md, task_state); 2343 if (!r) 2344 set_bit(dmf_suspended_flag, &md->flags); 2345 2346 if (noflush) 2347 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2348 if (map) 2349 synchronize_srcu(&md->io_barrier); 2350 2351 /* were we interrupted ? */ 2352 if (r < 0) { 2353 dm_queue_flush(md); 2354 2355 if (dm_request_based(md)) 2356 dm_start_queue(md->queue); 2357 2358 unlock_fs(md); 2359 dm_table_presuspend_undo_targets(map); 2360 /* pushback list is already flushed, so skip flush */ 2361 } 2362 2363 return r; 2364 } 2365 2366 /* 2367 * We need to be able to change a mapping table under a mounted 2368 * filesystem. For example we might want to move some data in 2369 * the background. Before the table can be swapped with 2370 * dm_bind_table, dm_suspend must be called to flush any in 2371 * flight bios and ensure that any further io gets deferred. 2372 */ 2373 /* 2374 * Suspend mechanism in request-based dm. 2375 * 2376 * 1. Flush all I/Os by lock_fs() if needed. 2377 * 2. Stop dispatching any I/O by stopping the request_queue. 2378 * 3. Wait for all in-flight I/Os to be completed or requeued. 2379 * 2380 * To abort suspend, start the request_queue. 2381 */ 2382 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2383 { 2384 struct dm_table *map = NULL; 2385 int r = 0; 2386 2387 retry: 2388 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2389 2390 if (dm_suspended_md(md)) { 2391 r = -EINVAL; 2392 goto out_unlock; 2393 } 2394 2395 if (dm_suspended_internally_md(md)) { 2396 /* already internally suspended, wait for internal resume */ 2397 mutex_unlock(&md->suspend_lock); 2398 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2399 if (r) 2400 return r; 2401 goto retry; 2402 } 2403 2404 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2405 2406 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2407 if (r) 2408 goto out_unlock; 2409 2410 set_bit(DMF_POST_SUSPENDING, &md->flags); 2411 dm_table_postsuspend_targets(map); 2412 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2413 2414 out_unlock: 2415 mutex_unlock(&md->suspend_lock); 2416 return r; 2417 } 2418 2419 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2420 { 2421 if (map) { 2422 int r = dm_table_resume_targets(map); 2423 if (r) 2424 return r; 2425 } 2426 2427 dm_queue_flush(md); 2428 2429 /* 2430 * Flushing deferred I/Os must be done after targets are resumed 2431 * so that mapping of targets can work correctly. 2432 * Request-based dm is queueing the deferred I/Os in its request_queue. 2433 */ 2434 if (dm_request_based(md)) 2435 dm_start_queue(md->queue); 2436 2437 unlock_fs(md); 2438 2439 return 0; 2440 } 2441 2442 int dm_resume(struct mapped_device *md) 2443 { 2444 int r; 2445 struct dm_table *map = NULL; 2446 2447 retry: 2448 r = -EINVAL; 2449 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2450 2451 if (!dm_suspended_md(md)) 2452 goto out; 2453 2454 if (dm_suspended_internally_md(md)) { 2455 /* already internally suspended, wait for internal resume */ 2456 mutex_unlock(&md->suspend_lock); 2457 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2458 if (r) 2459 return r; 2460 goto retry; 2461 } 2462 2463 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2464 if (!map || !dm_table_get_size(map)) 2465 goto out; 2466 2467 r = __dm_resume(md, map); 2468 if (r) 2469 goto out; 2470 2471 clear_bit(DMF_SUSPENDED, &md->flags); 2472 out: 2473 mutex_unlock(&md->suspend_lock); 2474 2475 return r; 2476 } 2477 2478 /* 2479 * Internal suspend/resume works like userspace-driven suspend. It waits 2480 * until all bios finish and prevents issuing new bios to the target drivers. 2481 * It may be used only from the kernel. 2482 */ 2483 2484 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2485 { 2486 struct dm_table *map = NULL; 2487 2488 lockdep_assert_held(&md->suspend_lock); 2489 2490 if (md->internal_suspend_count++) 2491 return; /* nested internal suspend */ 2492 2493 if (dm_suspended_md(md)) { 2494 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2495 return; /* nest suspend */ 2496 } 2497 2498 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2499 2500 /* 2501 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2502 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2503 * would require changing .presuspend to return an error -- avoid this 2504 * until there is a need for more elaborate variants of internal suspend. 2505 */ 2506 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2507 DMF_SUSPENDED_INTERNALLY); 2508 2509 set_bit(DMF_POST_SUSPENDING, &md->flags); 2510 dm_table_postsuspend_targets(map); 2511 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2512 } 2513 2514 static void __dm_internal_resume(struct mapped_device *md) 2515 { 2516 BUG_ON(!md->internal_suspend_count); 2517 2518 if (--md->internal_suspend_count) 2519 return; /* resume from nested internal suspend */ 2520 2521 if (dm_suspended_md(md)) 2522 goto done; /* resume from nested suspend */ 2523 2524 /* 2525 * NOTE: existing callers don't need to call dm_table_resume_targets 2526 * (which may fail -- so best to avoid it for now by passing NULL map) 2527 */ 2528 (void) __dm_resume(md, NULL); 2529 2530 done: 2531 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2532 smp_mb__after_atomic(); 2533 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2534 } 2535 2536 void dm_internal_suspend_noflush(struct mapped_device *md) 2537 { 2538 mutex_lock(&md->suspend_lock); 2539 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2540 mutex_unlock(&md->suspend_lock); 2541 } 2542 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2543 2544 void dm_internal_resume(struct mapped_device *md) 2545 { 2546 mutex_lock(&md->suspend_lock); 2547 __dm_internal_resume(md); 2548 mutex_unlock(&md->suspend_lock); 2549 } 2550 EXPORT_SYMBOL_GPL(dm_internal_resume); 2551 2552 /* 2553 * Fast variants of internal suspend/resume hold md->suspend_lock, 2554 * which prevents interaction with userspace-driven suspend. 2555 */ 2556 2557 void dm_internal_suspend_fast(struct mapped_device *md) 2558 { 2559 mutex_lock(&md->suspend_lock); 2560 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2561 return; 2562 2563 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2564 synchronize_srcu(&md->io_barrier); 2565 flush_workqueue(md->wq); 2566 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2567 } 2568 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2569 2570 void dm_internal_resume_fast(struct mapped_device *md) 2571 { 2572 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2573 goto done; 2574 2575 dm_queue_flush(md); 2576 2577 done: 2578 mutex_unlock(&md->suspend_lock); 2579 } 2580 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2581 2582 /*----------------------------------------------------------------- 2583 * Event notification. 2584 *---------------------------------------------------------------*/ 2585 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2586 unsigned cookie) 2587 { 2588 int r; 2589 unsigned noio_flag; 2590 char udev_cookie[DM_COOKIE_LENGTH]; 2591 char *envp[] = { udev_cookie, NULL }; 2592 2593 noio_flag = memalloc_noio_save(); 2594 2595 if (!cookie) 2596 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2597 else { 2598 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2599 DM_COOKIE_ENV_VAR_NAME, cookie); 2600 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2601 action, envp); 2602 } 2603 2604 memalloc_noio_restore(noio_flag); 2605 2606 return r; 2607 } 2608 2609 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2610 { 2611 return atomic_add_return(1, &md->uevent_seq); 2612 } 2613 2614 uint32_t dm_get_event_nr(struct mapped_device *md) 2615 { 2616 return atomic_read(&md->event_nr); 2617 } 2618 2619 int dm_wait_event(struct mapped_device *md, int event_nr) 2620 { 2621 return wait_event_interruptible(md->eventq, 2622 (event_nr != atomic_read(&md->event_nr))); 2623 } 2624 2625 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2626 { 2627 unsigned long flags; 2628 2629 spin_lock_irqsave(&md->uevent_lock, flags); 2630 list_add(elist, &md->uevent_list); 2631 spin_unlock_irqrestore(&md->uevent_lock, flags); 2632 } 2633 2634 /* 2635 * The gendisk is only valid as long as you have a reference 2636 * count on 'md'. 2637 */ 2638 struct gendisk *dm_disk(struct mapped_device *md) 2639 { 2640 return md->disk; 2641 } 2642 EXPORT_SYMBOL_GPL(dm_disk); 2643 2644 struct kobject *dm_kobject(struct mapped_device *md) 2645 { 2646 return &md->kobj_holder.kobj; 2647 } 2648 2649 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2650 { 2651 struct mapped_device *md; 2652 2653 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2654 2655 spin_lock(&_minor_lock); 2656 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2657 md = NULL; 2658 goto out; 2659 } 2660 dm_get(md); 2661 out: 2662 spin_unlock(&_minor_lock); 2663 2664 return md; 2665 } 2666 2667 int dm_suspended_md(struct mapped_device *md) 2668 { 2669 return test_bit(DMF_SUSPENDED, &md->flags); 2670 } 2671 2672 static int dm_post_suspending_md(struct mapped_device *md) 2673 { 2674 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2675 } 2676 2677 int dm_suspended_internally_md(struct mapped_device *md) 2678 { 2679 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2680 } 2681 2682 int dm_test_deferred_remove_flag(struct mapped_device *md) 2683 { 2684 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2685 } 2686 2687 int dm_suspended(struct dm_target *ti) 2688 { 2689 return dm_suspended_md(ti->table->md); 2690 } 2691 EXPORT_SYMBOL_GPL(dm_suspended); 2692 2693 int dm_post_suspending(struct dm_target *ti) 2694 { 2695 return dm_post_suspending_md(ti->table->md); 2696 } 2697 EXPORT_SYMBOL_GPL(dm_post_suspending); 2698 2699 int dm_noflush_suspending(struct dm_target *ti) 2700 { 2701 return __noflush_suspending(ti->table->md); 2702 } 2703 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2704 2705 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2706 unsigned integrity, unsigned per_io_data_size, 2707 unsigned min_pool_size) 2708 { 2709 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2710 unsigned int pool_size = 0; 2711 unsigned int front_pad, io_front_pad; 2712 int ret; 2713 2714 if (!pools) 2715 return NULL; 2716 2717 switch (type) { 2718 case DM_TYPE_BIO_BASED: 2719 case DM_TYPE_DAX_BIO_BASED: 2720 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2721 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2722 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2723 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2724 if (ret) 2725 goto out; 2726 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2727 goto out; 2728 break; 2729 case DM_TYPE_REQUEST_BASED: 2730 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2731 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2732 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2733 break; 2734 default: 2735 BUG(); 2736 } 2737 2738 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2739 if (ret) 2740 goto out; 2741 2742 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2743 goto out; 2744 2745 return pools; 2746 2747 out: 2748 dm_free_md_mempools(pools); 2749 2750 return NULL; 2751 } 2752 2753 void dm_free_md_mempools(struct dm_md_mempools *pools) 2754 { 2755 if (!pools) 2756 return; 2757 2758 bioset_exit(&pools->bs); 2759 bioset_exit(&pools->io_bs); 2760 2761 kfree(pools); 2762 } 2763 2764 struct dm_pr { 2765 u64 old_key; 2766 u64 new_key; 2767 u32 flags; 2768 bool fail_early; 2769 }; 2770 2771 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2772 void *data) 2773 { 2774 struct mapped_device *md = bdev->bd_disk->private_data; 2775 struct dm_table *table; 2776 struct dm_target *ti; 2777 int ret = -ENOTTY, srcu_idx; 2778 2779 table = dm_get_live_table(md, &srcu_idx); 2780 if (!table || !dm_table_get_size(table)) 2781 goto out; 2782 2783 /* We only support devices that have a single target */ 2784 if (dm_table_get_num_targets(table) != 1) 2785 goto out; 2786 ti = dm_table_get_target(table, 0); 2787 2788 ret = -EINVAL; 2789 if (!ti->type->iterate_devices) 2790 goto out; 2791 2792 ret = ti->type->iterate_devices(ti, fn, data); 2793 out: 2794 dm_put_live_table(md, srcu_idx); 2795 return ret; 2796 } 2797 2798 /* 2799 * For register / unregister we need to manually call out to every path. 2800 */ 2801 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2802 sector_t start, sector_t len, void *data) 2803 { 2804 struct dm_pr *pr = data; 2805 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2806 2807 if (!ops || !ops->pr_register) 2808 return -EOPNOTSUPP; 2809 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2810 } 2811 2812 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2813 u32 flags) 2814 { 2815 struct dm_pr pr = { 2816 .old_key = old_key, 2817 .new_key = new_key, 2818 .flags = flags, 2819 .fail_early = true, 2820 }; 2821 int ret; 2822 2823 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2824 if (ret && new_key) { 2825 /* unregister all paths if we failed to register any path */ 2826 pr.old_key = new_key; 2827 pr.new_key = 0; 2828 pr.flags = 0; 2829 pr.fail_early = false; 2830 dm_call_pr(bdev, __dm_pr_register, &pr); 2831 } 2832 2833 return ret; 2834 } 2835 2836 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2837 u32 flags) 2838 { 2839 struct mapped_device *md = bdev->bd_disk->private_data; 2840 const struct pr_ops *ops; 2841 int r, srcu_idx; 2842 2843 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2844 if (r < 0) 2845 goto out; 2846 2847 ops = bdev->bd_disk->fops->pr_ops; 2848 if (ops && ops->pr_reserve) 2849 r = ops->pr_reserve(bdev, key, type, flags); 2850 else 2851 r = -EOPNOTSUPP; 2852 out: 2853 dm_unprepare_ioctl(md, srcu_idx); 2854 return r; 2855 } 2856 2857 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2858 { 2859 struct mapped_device *md = bdev->bd_disk->private_data; 2860 const struct pr_ops *ops; 2861 int r, srcu_idx; 2862 2863 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2864 if (r < 0) 2865 goto out; 2866 2867 ops = bdev->bd_disk->fops->pr_ops; 2868 if (ops && ops->pr_release) 2869 r = ops->pr_release(bdev, key, type); 2870 else 2871 r = -EOPNOTSUPP; 2872 out: 2873 dm_unprepare_ioctl(md, srcu_idx); 2874 return r; 2875 } 2876 2877 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2878 enum pr_type type, bool abort) 2879 { 2880 struct mapped_device *md = bdev->bd_disk->private_data; 2881 const struct pr_ops *ops; 2882 int r, srcu_idx; 2883 2884 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2885 if (r < 0) 2886 goto out; 2887 2888 ops = bdev->bd_disk->fops->pr_ops; 2889 if (ops && ops->pr_preempt) 2890 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2891 else 2892 r = -EOPNOTSUPP; 2893 out: 2894 dm_unprepare_ioctl(md, srcu_idx); 2895 return r; 2896 } 2897 2898 static int dm_pr_clear(struct block_device *bdev, u64 key) 2899 { 2900 struct mapped_device *md = bdev->bd_disk->private_data; 2901 const struct pr_ops *ops; 2902 int r, srcu_idx; 2903 2904 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2905 if (r < 0) 2906 goto out; 2907 2908 ops = bdev->bd_disk->fops->pr_ops; 2909 if (ops && ops->pr_clear) 2910 r = ops->pr_clear(bdev, key); 2911 else 2912 r = -EOPNOTSUPP; 2913 out: 2914 dm_unprepare_ioctl(md, srcu_idx); 2915 return r; 2916 } 2917 2918 static const struct pr_ops dm_pr_ops = { 2919 .pr_register = dm_pr_register, 2920 .pr_reserve = dm_pr_reserve, 2921 .pr_release = dm_pr_release, 2922 .pr_preempt = dm_pr_preempt, 2923 .pr_clear = dm_pr_clear, 2924 }; 2925 2926 static const struct block_device_operations dm_blk_dops = { 2927 .submit_bio = dm_submit_bio, 2928 .open = dm_blk_open, 2929 .release = dm_blk_close, 2930 .ioctl = dm_blk_ioctl, 2931 .getgeo = dm_blk_getgeo, 2932 .report_zones = dm_blk_report_zones, 2933 .pr_ops = &dm_pr_ops, 2934 .owner = THIS_MODULE 2935 }; 2936 2937 static const struct block_device_operations dm_rq_blk_dops = { 2938 .open = dm_blk_open, 2939 .release = dm_blk_close, 2940 .ioctl = dm_blk_ioctl, 2941 .getgeo = dm_blk_getgeo, 2942 .pr_ops = &dm_pr_ops, 2943 .owner = THIS_MODULE 2944 }; 2945 2946 static const struct dax_operations dm_dax_ops = { 2947 .direct_access = dm_dax_direct_access, 2948 .zero_page_range = dm_dax_zero_page_range, 2949 }; 2950 2951 /* 2952 * module hooks 2953 */ 2954 module_init(dm_init); 2955 module_exit(dm_exit); 2956 2957 module_param(major, uint, 0); 2958 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2959 2960 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2961 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2962 2963 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2964 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2965 2966 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2967 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2968 2969 MODULE_DESCRIPTION(DM_NAME " driver"); 2970 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2971 MODULE_LICENSE("GPL"); 2972