1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static bool bio_is_flush_with_data(struct bio *bio) 489 { 490 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 491 } 492 493 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio, 494 unsigned long start_time, struct dm_stats_aux *stats_aux) 495 { 496 bool is_flush_with_data; 497 unsigned int bi_size; 498 499 /* If REQ_PREFLUSH set save any payload but do not account it */ 500 is_flush_with_data = bio_is_flush_with_data(bio); 501 if (is_flush_with_data) { 502 bi_size = bio->bi_iter.bi_size; 503 bio->bi_iter.bi_size = 0; 504 } 505 506 if (!end) 507 bio_start_io_acct_time(bio, start_time); 508 else 509 bio_end_io_acct(bio, start_time); 510 511 if (unlikely(dm_stats_used(&md->stats))) 512 dm_stats_account_io(&md->stats, bio_data_dir(bio), 513 bio->bi_iter.bi_sector, bio_sectors(bio), 514 end, start_time, stats_aux); 515 516 /* Restore bio's payload so it does get accounted upon requeue */ 517 if (is_flush_with_data) 518 bio->bi_iter.bi_size = bi_size; 519 } 520 521 static void start_io_acct(struct dm_io *io) 522 { 523 dm_io_acct(false, io->md, io->orig_bio, io->start_time, &io->stats_aux); 524 } 525 526 static void end_io_acct(struct mapped_device *md, struct bio *bio, 527 unsigned long start_time, struct dm_stats_aux *stats_aux) 528 { 529 dm_io_acct(true, md, bio, start_time, stats_aux); 530 } 531 532 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 533 { 534 struct dm_io *io; 535 struct dm_target_io *tio; 536 struct bio *clone; 537 538 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 539 540 tio = clone_to_tio(clone); 541 tio->inside_dm_io = true; 542 tio->io = NULL; 543 544 io = container_of(tio, struct dm_io, tio); 545 io->magic = DM_IO_MAGIC; 546 io->status = 0; 547 atomic_set(&io->io_count, 1); 548 this_cpu_inc(*md->pending_io); 549 io->orig_bio = bio; 550 io->md = md; 551 spin_lock_init(&io->endio_lock); 552 553 io->start_time = jiffies; 554 555 return io; 556 } 557 558 static void free_io(struct mapped_device *md, struct dm_io *io) 559 { 560 bio_put(&io->tio.clone); 561 } 562 563 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 564 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 565 { 566 struct dm_target_io *tio; 567 568 if (!ci->io->tio.io) { 569 /* the dm_target_io embedded in ci->io is available */ 570 tio = &ci->io->tio; 571 } else { 572 struct bio *clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 573 gfp_mask, &ci->io->md->bs); 574 if (!clone) 575 return NULL; 576 577 tio = clone_to_tio(clone); 578 tio->inside_dm_io = false; 579 } 580 581 tio->magic = DM_TIO_MAGIC; 582 tio->io = ci->io; 583 tio->ti = ti; 584 tio->target_bio_nr = target_bio_nr; 585 tio->len_ptr = len; 586 587 return &tio->clone; 588 } 589 590 static void free_tio(struct bio *clone) 591 { 592 if (clone_to_tio(clone)->inside_dm_io) 593 return; 594 bio_put(clone); 595 } 596 597 /* 598 * Add the bio to the list of deferred io. 599 */ 600 static void queue_io(struct mapped_device *md, struct bio *bio) 601 { 602 unsigned long flags; 603 604 spin_lock_irqsave(&md->deferred_lock, flags); 605 bio_list_add(&md->deferred, bio); 606 spin_unlock_irqrestore(&md->deferred_lock, flags); 607 queue_work(md->wq, &md->work); 608 } 609 610 /* 611 * Everyone (including functions in this file), should use this 612 * function to access the md->map field, and make sure they call 613 * dm_put_live_table() when finished. 614 */ 615 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 616 { 617 *srcu_idx = srcu_read_lock(&md->io_barrier); 618 619 return srcu_dereference(md->map, &md->io_barrier); 620 } 621 622 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 623 { 624 srcu_read_unlock(&md->io_barrier, srcu_idx); 625 } 626 627 void dm_sync_table(struct mapped_device *md) 628 { 629 synchronize_srcu(&md->io_barrier); 630 synchronize_rcu_expedited(); 631 } 632 633 /* 634 * A fast alternative to dm_get_live_table/dm_put_live_table. 635 * The caller must not block between these two functions. 636 */ 637 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 638 { 639 rcu_read_lock(); 640 return rcu_dereference(md->map); 641 } 642 643 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 644 { 645 rcu_read_unlock(); 646 } 647 648 static char *_dm_claim_ptr = "I belong to device-mapper"; 649 650 /* 651 * Open a table device so we can use it as a map destination. 652 */ 653 static int open_table_device(struct table_device *td, dev_t dev, 654 struct mapped_device *md) 655 { 656 struct block_device *bdev; 657 u64 part_off; 658 int r; 659 660 BUG_ON(td->dm_dev.bdev); 661 662 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 663 if (IS_ERR(bdev)) 664 return PTR_ERR(bdev); 665 666 r = bd_link_disk_holder(bdev, dm_disk(md)); 667 if (r) { 668 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 669 return r; 670 } 671 672 td->dm_dev.bdev = bdev; 673 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 674 return 0; 675 } 676 677 /* 678 * Close a table device that we've been using. 679 */ 680 static void close_table_device(struct table_device *td, struct mapped_device *md) 681 { 682 if (!td->dm_dev.bdev) 683 return; 684 685 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 686 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 687 put_dax(td->dm_dev.dax_dev); 688 td->dm_dev.bdev = NULL; 689 td->dm_dev.dax_dev = NULL; 690 } 691 692 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 693 fmode_t mode) 694 { 695 struct table_device *td; 696 697 list_for_each_entry(td, l, list) 698 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 699 return td; 700 701 return NULL; 702 } 703 704 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 705 struct dm_dev **result) 706 { 707 int r; 708 struct table_device *td; 709 710 mutex_lock(&md->table_devices_lock); 711 td = find_table_device(&md->table_devices, dev, mode); 712 if (!td) { 713 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 714 if (!td) { 715 mutex_unlock(&md->table_devices_lock); 716 return -ENOMEM; 717 } 718 719 td->dm_dev.mode = mode; 720 td->dm_dev.bdev = NULL; 721 722 if ((r = open_table_device(td, dev, md))) { 723 mutex_unlock(&md->table_devices_lock); 724 kfree(td); 725 return r; 726 } 727 728 format_dev_t(td->dm_dev.name, dev); 729 730 refcount_set(&td->count, 1); 731 list_add(&td->list, &md->table_devices); 732 } else { 733 refcount_inc(&td->count); 734 } 735 mutex_unlock(&md->table_devices_lock); 736 737 *result = &td->dm_dev; 738 return 0; 739 } 740 741 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 742 { 743 struct table_device *td = container_of(d, struct table_device, dm_dev); 744 745 mutex_lock(&md->table_devices_lock); 746 if (refcount_dec_and_test(&td->count)) { 747 close_table_device(td, md); 748 list_del(&td->list); 749 kfree(td); 750 } 751 mutex_unlock(&md->table_devices_lock); 752 } 753 754 static void free_table_devices(struct list_head *devices) 755 { 756 struct list_head *tmp, *next; 757 758 list_for_each_safe(tmp, next, devices) { 759 struct table_device *td = list_entry(tmp, struct table_device, list); 760 761 DMWARN("dm_destroy: %s still exists with %d references", 762 td->dm_dev.name, refcount_read(&td->count)); 763 kfree(td); 764 } 765 } 766 767 /* 768 * Get the geometry associated with a dm device 769 */ 770 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 771 { 772 *geo = md->geometry; 773 774 return 0; 775 } 776 777 /* 778 * Set the geometry of a device. 779 */ 780 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 781 { 782 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 783 784 if (geo->start > sz) { 785 DMWARN("Start sector is beyond the geometry limits."); 786 return -EINVAL; 787 } 788 789 md->geometry = *geo; 790 791 return 0; 792 } 793 794 static int __noflush_suspending(struct mapped_device *md) 795 { 796 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 797 } 798 799 /* 800 * Decrements the number of outstanding ios that a bio has been 801 * cloned into, completing the original io if necc. 802 */ 803 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 804 { 805 unsigned long flags; 806 blk_status_t io_error; 807 struct bio *bio; 808 struct mapped_device *md = io->md; 809 unsigned long start_time = 0; 810 struct dm_stats_aux stats_aux; 811 812 /* Push-back supersedes any I/O errors */ 813 if (unlikely(error)) { 814 spin_lock_irqsave(&io->endio_lock, flags); 815 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 816 io->status = error; 817 spin_unlock_irqrestore(&io->endio_lock, flags); 818 } 819 820 if (atomic_dec_and_test(&io->io_count)) { 821 bio = io->orig_bio; 822 if (io->status == BLK_STS_DM_REQUEUE) { 823 /* 824 * Target requested pushing back the I/O. 825 */ 826 spin_lock_irqsave(&md->deferred_lock, flags); 827 if (__noflush_suspending(md) && 828 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 829 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 830 bio_list_add_head(&md->deferred, bio); 831 } else { 832 /* 833 * noflush suspend was interrupted or this is 834 * a write to a zoned target. 835 */ 836 io->status = BLK_STS_IOERR; 837 } 838 spin_unlock_irqrestore(&md->deferred_lock, flags); 839 } 840 841 io_error = io->status; 842 start_time = io->start_time; 843 stats_aux = io->stats_aux; 844 free_io(md, io); 845 end_io_acct(md, bio, start_time, &stats_aux); 846 smp_wmb(); 847 this_cpu_dec(*md->pending_io); 848 849 /* nudge anyone waiting on suspend queue */ 850 if (unlikely(wq_has_sleeper(&md->wait))) 851 wake_up(&md->wait); 852 853 if (io_error == BLK_STS_DM_REQUEUE) 854 return; 855 856 if (bio_is_flush_with_data(bio)) { 857 /* 858 * Preflush done for flush with data, reissue 859 * without REQ_PREFLUSH. 860 */ 861 bio->bi_opf &= ~REQ_PREFLUSH; 862 queue_io(md, bio); 863 } else { 864 /* done with normal IO or empty flush */ 865 if (io_error) 866 bio->bi_status = io_error; 867 bio_endio(bio); 868 } 869 } 870 } 871 872 void disable_discard(struct mapped_device *md) 873 { 874 struct queue_limits *limits = dm_get_queue_limits(md); 875 876 /* device doesn't really support DISCARD, disable it */ 877 limits->max_discard_sectors = 0; 878 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 879 } 880 881 void disable_write_same(struct mapped_device *md) 882 { 883 struct queue_limits *limits = dm_get_queue_limits(md); 884 885 /* device doesn't really support WRITE SAME, disable it */ 886 limits->max_write_same_sectors = 0; 887 } 888 889 void disable_write_zeroes(struct mapped_device *md) 890 { 891 struct queue_limits *limits = dm_get_queue_limits(md); 892 893 /* device doesn't really support WRITE ZEROES, disable it */ 894 limits->max_write_zeroes_sectors = 0; 895 } 896 897 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 898 { 899 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 900 } 901 902 static void clone_endio(struct bio *bio) 903 { 904 blk_status_t error = bio->bi_status; 905 struct dm_target_io *tio = clone_to_tio(bio); 906 struct dm_io *io = tio->io; 907 struct mapped_device *md = tio->io->md; 908 dm_endio_fn endio = tio->ti->type->end_io; 909 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 910 911 if (unlikely(error == BLK_STS_TARGET)) { 912 if (bio_op(bio) == REQ_OP_DISCARD && 913 !q->limits.max_discard_sectors) 914 disable_discard(md); 915 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 916 !q->limits.max_write_same_sectors) 917 disable_write_same(md); 918 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 919 !q->limits.max_write_zeroes_sectors) 920 disable_write_zeroes(md); 921 } 922 923 if (blk_queue_is_zoned(q)) 924 dm_zone_endio(io, bio); 925 926 if (endio) { 927 int r = endio(tio->ti, bio, &error); 928 switch (r) { 929 case DM_ENDIO_REQUEUE: 930 /* 931 * Requeuing writes to a sequential zone of a zoned 932 * target will break the sequential write pattern: 933 * fail such IO. 934 */ 935 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 936 error = BLK_STS_IOERR; 937 else 938 error = BLK_STS_DM_REQUEUE; 939 fallthrough; 940 case DM_ENDIO_DONE: 941 break; 942 case DM_ENDIO_INCOMPLETE: 943 /* The target will handle the io */ 944 return; 945 default: 946 DMWARN("unimplemented target endio return value: %d", r); 947 BUG(); 948 } 949 } 950 951 if (unlikely(swap_bios_limit(tio->ti, bio))) { 952 struct mapped_device *md = io->md; 953 up(&md->swap_bios_semaphore); 954 } 955 956 free_tio(bio); 957 dm_io_dec_pending(io, error); 958 } 959 960 /* 961 * Return maximum size of I/O possible at the supplied sector up to the current 962 * target boundary. 963 */ 964 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 965 sector_t target_offset) 966 { 967 return ti->len - target_offset; 968 } 969 970 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 971 { 972 sector_t target_offset = dm_target_offset(ti, sector); 973 sector_t len = max_io_len_target_boundary(ti, target_offset); 974 sector_t max_len; 975 976 /* 977 * Does the target need to split IO even further? 978 * - varied (per target) IO splitting is a tenet of DM; this 979 * explains why stacked chunk_sectors based splitting via 980 * blk_max_size_offset() isn't possible here. So pass in 981 * ti->max_io_len to override stacked chunk_sectors. 982 */ 983 if (ti->max_io_len) { 984 max_len = blk_max_size_offset(ti->table->md->queue, 985 target_offset, ti->max_io_len); 986 if (len > max_len) 987 len = max_len; 988 } 989 990 return len; 991 } 992 993 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 994 { 995 if (len > UINT_MAX) { 996 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 997 (unsigned long long)len, UINT_MAX); 998 ti->error = "Maximum size of target IO is too large"; 999 return -EINVAL; 1000 } 1001 1002 ti->max_io_len = (uint32_t) len; 1003 1004 return 0; 1005 } 1006 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1007 1008 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1009 sector_t sector, int *srcu_idx) 1010 __acquires(md->io_barrier) 1011 { 1012 struct dm_table *map; 1013 struct dm_target *ti; 1014 1015 map = dm_get_live_table(md, srcu_idx); 1016 if (!map) 1017 return NULL; 1018 1019 ti = dm_table_find_target(map, sector); 1020 if (!ti) 1021 return NULL; 1022 1023 return ti; 1024 } 1025 1026 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1027 long nr_pages, void **kaddr, pfn_t *pfn) 1028 { 1029 struct mapped_device *md = dax_get_private(dax_dev); 1030 sector_t sector = pgoff * PAGE_SECTORS; 1031 struct dm_target *ti; 1032 long len, ret = -EIO; 1033 int srcu_idx; 1034 1035 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1036 1037 if (!ti) 1038 goto out; 1039 if (!ti->type->direct_access) 1040 goto out; 1041 len = max_io_len(ti, sector) / PAGE_SECTORS; 1042 if (len < 1) 1043 goto out; 1044 nr_pages = min(len, nr_pages); 1045 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1046 1047 out: 1048 dm_put_live_table(md, srcu_idx); 1049 1050 return ret; 1051 } 1052 1053 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1054 size_t nr_pages) 1055 { 1056 struct mapped_device *md = dax_get_private(dax_dev); 1057 sector_t sector = pgoff * PAGE_SECTORS; 1058 struct dm_target *ti; 1059 int ret = -EIO; 1060 int srcu_idx; 1061 1062 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1063 1064 if (!ti) 1065 goto out; 1066 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1067 /* 1068 * ->zero_page_range() is mandatory dax operation. If we are 1069 * here, something is wrong. 1070 */ 1071 goto out; 1072 } 1073 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1074 out: 1075 dm_put_live_table(md, srcu_idx); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * A target may call dm_accept_partial_bio only from the map routine. It is 1082 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1083 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1084 * 1085 * dm_accept_partial_bio informs the dm that the target only wants to process 1086 * additional n_sectors sectors of the bio and the rest of the data should be 1087 * sent in a next bio. 1088 * 1089 * A diagram that explains the arithmetics: 1090 * +--------------------+---------------+-------+ 1091 * | 1 | 2 | 3 | 1092 * +--------------------+---------------+-------+ 1093 * 1094 * <-------------- *tio->len_ptr ---------------> 1095 * <------- bi_size -------> 1096 * <-- n_sectors --> 1097 * 1098 * Region 1 was already iterated over with bio_advance or similar function. 1099 * (it may be empty if the target doesn't use bio_advance) 1100 * Region 2 is the remaining bio size that the target wants to process. 1101 * (it may be empty if region 1 is non-empty, although there is no reason 1102 * to make it empty) 1103 * The target requires that region 3 is to be sent in the next bio. 1104 * 1105 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1106 * the partially processed part (the sum of regions 1+2) must be the same for all 1107 * copies of the bio. 1108 */ 1109 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1110 { 1111 struct dm_target_io *tio = clone_to_tio(bio); 1112 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1113 1114 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1115 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1116 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1117 BUG_ON(bi_size > *tio->len_ptr); 1118 BUG_ON(n_sectors > bi_size); 1119 1120 *tio->len_ptr -= bi_size - n_sectors; 1121 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1122 } 1123 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1124 1125 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1126 { 1127 mutex_lock(&md->swap_bios_lock); 1128 while (latch < md->swap_bios) { 1129 cond_resched(); 1130 down(&md->swap_bios_semaphore); 1131 md->swap_bios--; 1132 } 1133 while (latch > md->swap_bios) { 1134 cond_resched(); 1135 up(&md->swap_bios_semaphore); 1136 md->swap_bios++; 1137 } 1138 mutex_unlock(&md->swap_bios_lock); 1139 } 1140 1141 static void __map_bio(struct bio *clone) 1142 { 1143 struct dm_target_io *tio = clone_to_tio(clone); 1144 int r; 1145 sector_t sector; 1146 struct dm_io *io = tio->io; 1147 struct dm_target *ti = tio->ti; 1148 1149 clone->bi_end_io = clone_endio; 1150 1151 /* 1152 * Map the clone. If r == 0 we don't need to do 1153 * anything, the target has assumed ownership of 1154 * this io. 1155 */ 1156 dm_io_inc_pending(io); 1157 sector = clone->bi_iter.bi_sector; 1158 1159 if (unlikely(swap_bios_limit(ti, clone))) { 1160 struct mapped_device *md = io->md; 1161 int latch = get_swap_bios(); 1162 if (unlikely(latch != md->swap_bios)) 1163 __set_swap_bios_limit(md, latch); 1164 down(&md->swap_bios_semaphore); 1165 } 1166 1167 /* 1168 * Check if the IO needs a special mapping due to zone append emulation 1169 * on zoned target. In this case, dm_zone_map_bio() calls the target 1170 * map operation. 1171 */ 1172 if (dm_emulate_zone_append(io->md)) 1173 r = dm_zone_map_bio(tio); 1174 else 1175 r = ti->type->map(ti, clone); 1176 1177 switch (r) { 1178 case DM_MAPIO_SUBMITTED: 1179 break; 1180 case DM_MAPIO_REMAPPED: 1181 /* the bio has been remapped so dispatch it */ 1182 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1183 submit_bio_noacct(clone); 1184 break; 1185 case DM_MAPIO_KILL: 1186 if (unlikely(swap_bios_limit(ti, clone))) { 1187 struct mapped_device *md = io->md; 1188 up(&md->swap_bios_semaphore); 1189 } 1190 free_tio(clone); 1191 dm_io_dec_pending(io, BLK_STS_IOERR); 1192 break; 1193 case DM_MAPIO_REQUEUE: 1194 if (unlikely(swap_bios_limit(ti, clone))) { 1195 struct mapped_device *md = io->md; 1196 up(&md->swap_bios_semaphore); 1197 } 1198 free_tio(clone); 1199 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1200 break; 1201 default: 1202 DMWARN("unimplemented target map return value: %d", r); 1203 BUG(); 1204 } 1205 } 1206 1207 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1208 { 1209 bio->bi_iter.bi_sector = sector; 1210 bio->bi_iter.bi_size = to_bytes(len); 1211 } 1212 1213 /* 1214 * Creates a bio that consists of range of complete bvecs. 1215 */ 1216 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1217 sector_t sector, unsigned *len) 1218 { 1219 struct bio *bio = ci->bio, *clone; 1220 1221 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1222 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1223 clone->bi_iter.bi_size = to_bytes(*len); 1224 1225 if (bio_integrity(bio)) 1226 bio_integrity_trim(clone); 1227 1228 __map_bio(clone); 1229 return 0; 1230 } 1231 1232 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1233 struct dm_target *ti, unsigned num_bios, 1234 unsigned *len) 1235 { 1236 struct bio *bio; 1237 int try; 1238 1239 for (try = 0; try < 2; try++) { 1240 int bio_nr; 1241 1242 if (try) 1243 mutex_lock(&ci->io->md->table_devices_lock); 1244 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1245 bio = alloc_tio(ci, ti, bio_nr, len, 1246 try ? GFP_NOIO : GFP_NOWAIT); 1247 if (!bio) 1248 break; 1249 1250 bio_list_add(blist, bio); 1251 } 1252 if (try) 1253 mutex_unlock(&ci->io->md->table_devices_lock); 1254 if (bio_nr == num_bios) 1255 return; 1256 1257 while ((bio = bio_list_pop(blist))) 1258 free_tio(bio); 1259 } 1260 } 1261 1262 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1263 unsigned num_bios, unsigned *len) 1264 { 1265 struct bio_list blist = BIO_EMPTY_LIST; 1266 struct bio *clone; 1267 1268 switch (num_bios) { 1269 case 0: 1270 break; 1271 case 1: 1272 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1273 if (len) 1274 bio_setup_sector(clone, ci->sector, *len); 1275 __map_bio(clone); 1276 break; 1277 default: 1278 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1279 while ((clone = bio_list_pop(&blist))) { 1280 if (len) 1281 bio_setup_sector(clone, ci->sector, *len); 1282 __map_bio(clone); 1283 } 1284 break; 1285 } 1286 } 1287 1288 static int __send_empty_flush(struct clone_info *ci) 1289 { 1290 unsigned target_nr = 0; 1291 struct dm_target *ti; 1292 struct bio flush_bio; 1293 1294 /* 1295 * Use an on-stack bio for this, it's safe since we don't 1296 * need to reference it after submit. It's just used as 1297 * the basis for the clone(s). 1298 */ 1299 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1300 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1301 1302 ci->bio = &flush_bio; 1303 ci->sector_count = 0; 1304 1305 BUG_ON(bio_has_data(ci->bio)); 1306 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1307 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1308 1309 bio_uninit(ci->bio); 1310 return 0; 1311 } 1312 1313 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1314 unsigned num_bios) 1315 { 1316 unsigned len; 1317 1318 /* 1319 * Even though the device advertised support for this type of 1320 * request, that does not mean every target supports it, and 1321 * reconfiguration might also have changed that since the 1322 * check was performed. 1323 */ 1324 if (!num_bios) 1325 return -EOPNOTSUPP; 1326 1327 len = min_t(sector_t, ci->sector_count, 1328 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1329 1330 __send_duplicate_bios(ci, ti, num_bios, &len); 1331 1332 ci->sector += len; 1333 ci->sector_count -= len; 1334 1335 return 0; 1336 } 1337 1338 static bool is_abnormal_io(struct bio *bio) 1339 { 1340 bool r = false; 1341 1342 switch (bio_op(bio)) { 1343 case REQ_OP_DISCARD: 1344 case REQ_OP_SECURE_ERASE: 1345 case REQ_OP_WRITE_SAME: 1346 case REQ_OP_WRITE_ZEROES: 1347 r = true; 1348 break; 1349 } 1350 1351 return r; 1352 } 1353 1354 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1355 int *result) 1356 { 1357 struct bio *bio = ci->bio; 1358 unsigned num_bios = 0; 1359 1360 switch (bio_op(bio)) { 1361 case REQ_OP_DISCARD: 1362 num_bios = ti->num_discard_bios; 1363 break; 1364 case REQ_OP_SECURE_ERASE: 1365 num_bios = ti->num_secure_erase_bios; 1366 break; 1367 case REQ_OP_WRITE_SAME: 1368 num_bios = ti->num_write_same_bios; 1369 break; 1370 case REQ_OP_WRITE_ZEROES: 1371 num_bios = ti->num_write_zeroes_bios; 1372 break; 1373 default: 1374 return false; 1375 } 1376 1377 *result = __send_changing_extent_only(ci, ti, num_bios); 1378 return true; 1379 } 1380 1381 /* 1382 * Select the correct strategy for processing a non-flush bio. 1383 */ 1384 static int __split_and_process_non_flush(struct clone_info *ci) 1385 { 1386 struct dm_target *ti; 1387 unsigned len; 1388 int r; 1389 1390 ti = dm_table_find_target(ci->map, ci->sector); 1391 if (!ti) 1392 return -EIO; 1393 1394 if (__process_abnormal_io(ci, ti, &r)) 1395 return r; 1396 1397 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1398 1399 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1400 if (r < 0) 1401 return r; 1402 1403 ci->sector += len; 1404 ci->sector_count -= len; 1405 1406 return 0; 1407 } 1408 1409 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1410 struct dm_table *map, struct bio *bio) 1411 { 1412 ci->map = map; 1413 ci->io = alloc_io(md, bio); 1414 ci->sector = bio->bi_iter.bi_sector; 1415 } 1416 1417 /* 1418 * Entry point to split a bio into clones and submit them to the targets. 1419 */ 1420 static void __split_and_process_bio(struct mapped_device *md, 1421 struct dm_table *map, struct bio *bio) 1422 { 1423 struct clone_info ci; 1424 int error = 0; 1425 1426 init_clone_info(&ci, md, map, bio); 1427 1428 if (bio->bi_opf & REQ_PREFLUSH) { 1429 error = __send_empty_flush(&ci); 1430 /* dm_io_dec_pending submits any data associated with flush */ 1431 } else if (op_is_zone_mgmt(bio_op(bio))) { 1432 ci.bio = bio; 1433 ci.sector_count = 0; 1434 error = __split_and_process_non_flush(&ci); 1435 } else { 1436 ci.bio = bio; 1437 ci.sector_count = bio_sectors(bio); 1438 error = __split_and_process_non_flush(&ci); 1439 if (ci.sector_count && !error) { 1440 /* 1441 * Remainder must be passed to submit_bio_noacct() 1442 * so that it gets handled *after* bios already submitted 1443 * have been completely processed. 1444 * We take a clone of the original to store in 1445 * ci.io->orig_bio to be used by end_io_acct() and 1446 * for dec_pending to use for completion handling. 1447 */ 1448 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1449 GFP_NOIO, &md->queue->bio_split); 1450 ci.io->orig_bio = b; 1451 1452 bio_chain(b, bio); 1453 trace_block_split(b, bio->bi_iter.bi_sector); 1454 submit_bio_noacct(bio); 1455 } 1456 } 1457 start_io_acct(ci.io); 1458 1459 /* drop the extra reference count */ 1460 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1461 } 1462 1463 static void dm_submit_bio(struct bio *bio) 1464 { 1465 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1466 int srcu_idx; 1467 struct dm_table *map; 1468 1469 map = dm_get_live_table(md, &srcu_idx); 1470 if (unlikely(!map)) { 1471 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1472 dm_device_name(md)); 1473 bio_io_error(bio); 1474 goto out; 1475 } 1476 1477 /* If suspended, queue this IO for later */ 1478 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1479 if (bio->bi_opf & REQ_NOWAIT) 1480 bio_wouldblock_error(bio); 1481 else if (bio->bi_opf & REQ_RAHEAD) 1482 bio_io_error(bio); 1483 else 1484 queue_io(md, bio); 1485 goto out; 1486 } 1487 1488 /* 1489 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1490 * otherwise associated queue_limits won't be imposed. 1491 */ 1492 if (is_abnormal_io(bio)) 1493 blk_queue_split(&bio); 1494 1495 __split_and_process_bio(md, map, bio); 1496 out: 1497 dm_put_live_table(md, srcu_idx); 1498 } 1499 1500 /*----------------------------------------------------------------- 1501 * An IDR is used to keep track of allocated minor numbers. 1502 *---------------------------------------------------------------*/ 1503 static void free_minor(int minor) 1504 { 1505 spin_lock(&_minor_lock); 1506 idr_remove(&_minor_idr, minor); 1507 spin_unlock(&_minor_lock); 1508 } 1509 1510 /* 1511 * See if the device with a specific minor # is free. 1512 */ 1513 static int specific_minor(int minor) 1514 { 1515 int r; 1516 1517 if (minor >= (1 << MINORBITS)) 1518 return -EINVAL; 1519 1520 idr_preload(GFP_KERNEL); 1521 spin_lock(&_minor_lock); 1522 1523 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1524 1525 spin_unlock(&_minor_lock); 1526 idr_preload_end(); 1527 if (r < 0) 1528 return r == -ENOSPC ? -EBUSY : r; 1529 return 0; 1530 } 1531 1532 static int next_free_minor(int *minor) 1533 { 1534 int r; 1535 1536 idr_preload(GFP_KERNEL); 1537 spin_lock(&_minor_lock); 1538 1539 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1540 1541 spin_unlock(&_minor_lock); 1542 idr_preload_end(); 1543 if (r < 0) 1544 return r; 1545 *minor = r; 1546 return 0; 1547 } 1548 1549 static const struct block_device_operations dm_blk_dops; 1550 static const struct block_device_operations dm_rq_blk_dops; 1551 static const struct dax_operations dm_dax_ops; 1552 1553 static void dm_wq_work(struct work_struct *work); 1554 1555 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1556 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1557 { 1558 dm_destroy_crypto_profile(q->crypto_profile); 1559 } 1560 1561 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1562 1563 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1564 { 1565 } 1566 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1567 1568 static void cleanup_mapped_device(struct mapped_device *md) 1569 { 1570 if (md->wq) 1571 destroy_workqueue(md->wq); 1572 bioset_exit(&md->bs); 1573 bioset_exit(&md->io_bs); 1574 1575 if (md->dax_dev) { 1576 dax_remove_host(md->disk); 1577 kill_dax(md->dax_dev); 1578 put_dax(md->dax_dev); 1579 md->dax_dev = NULL; 1580 } 1581 1582 if (md->disk) { 1583 spin_lock(&_minor_lock); 1584 md->disk->private_data = NULL; 1585 spin_unlock(&_minor_lock); 1586 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1587 dm_sysfs_exit(md); 1588 del_gendisk(md->disk); 1589 } 1590 dm_queue_destroy_crypto_profile(md->queue); 1591 blk_cleanup_disk(md->disk); 1592 } 1593 1594 if (md->pending_io) { 1595 free_percpu(md->pending_io); 1596 md->pending_io = NULL; 1597 } 1598 1599 cleanup_srcu_struct(&md->io_barrier); 1600 1601 mutex_destroy(&md->suspend_lock); 1602 mutex_destroy(&md->type_lock); 1603 mutex_destroy(&md->table_devices_lock); 1604 mutex_destroy(&md->swap_bios_lock); 1605 1606 dm_mq_cleanup_mapped_device(md); 1607 dm_cleanup_zoned_dev(md); 1608 } 1609 1610 /* 1611 * Allocate and initialise a blank device with a given minor. 1612 */ 1613 static struct mapped_device *alloc_dev(int minor) 1614 { 1615 int r, numa_node_id = dm_get_numa_node(); 1616 struct mapped_device *md; 1617 void *old_md; 1618 1619 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1620 if (!md) { 1621 DMWARN("unable to allocate device, out of memory."); 1622 return NULL; 1623 } 1624 1625 if (!try_module_get(THIS_MODULE)) 1626 goto bad_module_get; 1627 1628 /* get a minor number for the dev */ 1629 if (minor == DM_ANY_MINOR) 1630 r = next_free_minor(&minor); 1631 else 1632 r = specific_minor(minor); 1633 if (r < 0) 1634 goto bad_minor; 1635 1636 r = init_srcu_struct(&md->io_barrier); 1637 if (r < 0) 1638 goto bad_io_barrier; 1639 1640 md->numa_node_id = numa_node_id; 1641 md->init_tio_pdu = false; 1642 md->type = DM_TYPE_NONE; 1643 mutex_init(&md->suspend_lock); 1644 mutex_init(&md->type_lock); 1645 mutex_init(&md->table_devices_lock); 1646 spin_lock_init(&md->deferred_lock); 1647 atomic_set(&md->holders, 1); 1648 atomic_set(&md->open_count, 0); 1649 atomic_set(&md->event_nr, 0); 1650 atomic_set(&md->uevent_seq, 0); 1651 INIT_LIST_HEAD(&md->uevent_list); 1652 INIT_LIST_HEAD(&md->table_devices); 1653 spin_lock_init(&md->uevent_lock); 1654 1655 /* 1656 * default to bio-based until DM table is loaded and md->type 1657 * established. If request-based table is loaded: blk-mq will 1658 * override accordingly. 1659 */ 1660 md->disk = blk_alloc_disk(md->numa_node_id); 1661 if (!md->disk) 1662 goto bad; 1663 md->queue = md->disk->queue; 1664 1665 init_waitqueue_head(&md->wait); 1666 INIT_WORK(&md->work, dm_wq_work); 1667 init_waitqueue_head(&md->eventq); 1668 init_completion(&md->kobj_holder.completion); 1669 1670 md->swap_bios = get_swap_bios(); 1671 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1672 mutex_init(&md->swap_bios_lock); 1673 1674 md->disk->major = _major; 1675 md->disk->first_minor = minor; 1676 md->disk->minors = 1; 1677 md->disk->flags |= GENHD_FL_NO_PART; 1678 md->disk->fops = &dm_blk_dops; 1679 md->disk->queue = md->queue; 1680 md->disk->private_data = md; 1681 sprintf(md->disk->disk_name, "dm-%d", minor); 1682 1683 if (IS_ENABLED(CONFIG_FS_DAX)) { 1684 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1685 if (IS_ERR(md->dax_dev)) { 1686 md->dax_dev = NULL; 1687 goto bad; 1688 } 1689 set_dax_nocache(md->dax_dev); 1690 set_dax_nomc(md->dax_dev); 1691 if (dax_add_host(md->dax_dev, md->disk)) 1692 goto bad; 1693 } 1694 1695 format_dev_t(md->name, MKDEV(_major, minor)); 1696 1697 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1698 if (!md->wq) 1699 goto bad; 1700 1701 md->pending_io = alloc_percpu(unsigned long); 1702 if (!md->pending_io) 1703 goto bad; 1704 1705 dm_stats_init(&md->stats); 1706 1707 /* Populate the mapping, nobody knows we exist yet */ 1708 spin_lock(&_minor_lock); 1709 old_md = idr_replace(&_minor_idr, md, minor); 1710 spin_unlock(&_minor_lock); 1711 1712 BUG_ON(old_md != MINOR_ALLOCED); 1713 1714 return md; 1715 1716 bad: 1717 cleanup_mapped_device(md); 1718 bad_io_barrier: 1719 free_minor(minor); 1720 bad_minor: 1721 module_put(THIS_MODULE); 1722 bad_module_get: 1723 kvfree(md); 1724 return NULL; 1725 } 1726 1727 static void unlock_fs(struct mapped_device *md); 1728 1729 static void free_dev(struct mapped_device *md) 1730 { 1731 int minor = MINOR(disk_devt(md->disk)); 1732 1733 unlock_fs(md); 1734 1735 cleanup_mapped_device(md); 1736 1737 free_table_devices(&md->table_devices); 1738 dm_stats_cleanup(&md->stats); 1739 free_minor(minor); 1740 1741 module_put(THIS_MODULE); 1742 kvfree(md); 1743 } 1744 1745 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1746 { 1747 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1748 int ret = 0; 1749 1750 if (dm_table_bio_based(t)) { 1751 /* 1752 * The md may already have mempools that need changing. 1753 * If so, reload bioset because front_pad may have changed 1754 * because a different table was loaded. 1755 */ 1756 bioset_exit(&md->bs); 1757 bioset_exit(&md->io_bs); 1758 1759 } else if (bioset_initialized(&md->bs)) { 1760 /* 1761 * There's no need to reload with request-based dm 1762 * because the size of front_pad doesn't change. 1763 * Note for future: If you are to reload bioset, 1764 * prep-ed requests in the queue may refer 1765 * to bio from the old bioset, so you must walk 1766 * through the queue to unprep. 1767 */ 1768 goto out; 1769 } 1770 1771 BUG_ON(!p || 1772 bioset_initialized(&md->bs) || 1773 bioset_initialized(&md->io_bs)); 1774 1775 ret = bioset_init_from_src(&md->bs, &p->bs); 1776 if (ret) 1777 goto out; 1778 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1779 if (ret) 1780 bioset_exit(&md->bs); 1781 out: 1782 /* mempool bind completed, no longer need any mempools in the table */ 1783 dm_table_free_md_mempools(t); 1784 return ret; 1785 } 1786 1787 /* 1788 * Bind a table to the device. 1789 */ 1790 static void event_callback(void *context) 1791 { 1792 unsigned long flags; 1793 LIST_HEAD(uevents); 1794 struct mapped_device *md = (struct mapped_device *) context; 1795 1796 spin_lock_irqsave(&md->uevent_lock, flags); 1797 list_splice_init(&md->uevent_list, &uevents); 1798 spin_unlock_irqrestore(&md->uevent_lock, flags); 1799 1800 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1801 1802 atomic_inc(&md->event_nr); 1803 wake_up(&md->eventq); 1804 dm_issue_global_event(); 1805 } 1806 1807 /* 1808 * Returns old map, which caller must destroy. 1809 */ 1810 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1811 struct queue_limits *limits) 1812 { 1813 struct dm_table *old_map; 1814 struct request_queue *q = md->queue; 1815 bool request_based = dm_table_request_based(t); 1816 sector_t size; 1817 int ret; 1818 1819 lockdep_assert_held(&md->suspend_lock); 1820 1821 size = dm_table_get_size(t); 1822 1823 /* 1824 * Wipe any geometry if the size of the table changed. 1825 */ 1826 if (size != dm_get_size(md)) 1827 memset(&md->geometry, 0, sizeof(md->geometry)); 1828 1829 if (!get_capacity(md->disk)) 1830 set_capacity(md->disk, size); 1831 else 1832 set_capacity_and_notify(md->disk, size); 1833 1834 dm_table_event_callback(t, event_callback, md); 1835 1836 if (request_based) { 1837 /* 1838 * Leverage the fact that request-based DM targets are 1839 * immutable singletons - used to optimize dm_mq_queue_rq. 1840 */ 1841 md->immutable_target = dm_table_get_immutable_target(t); 1842 } 1843 1844 ret = __bind_mempools(md, t); 1845 if (ret) { 1846 old_map = ERR_PTR(ret); 1847 goto out; 1848 } 1849 1850 ret = dm_table_set_restrictions(t, q, limits); 1851 if (ret) { 1852 old_map = ERR_PTR(ret); 1853 goto out; 1854 } 1855 1856 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1857 rcu_assign_pointer(md->map, (void *)t); 1858 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1859 1860 if (old_map) 1861 dm_sync_table(md); 1862 1863 out: 1864 return old_map; 1865 } 1866 1867 /* 1868 * Returns unbound table for the caller to free. 1869 */ 1870 static struct dm_table *__unbind(struct mapped_device *md) 1871 { 1872 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1873 1874 if (!map) 1875 return NULL; 1876 1877 dm_table_event_callback(map, NULL, NULL); 1878 RCU_INIT_POINTER(md->map, NULL); 1879 dm_sync_table(md); 1880 1881 return map; 1882 } 1883 1884 /* 1885 * Constructor for a new device. 1886 */ 1887 int dm_create(int minor, struct mapped_device **result) 1888 { 1889 struct mapped_device *md; 1890 1891 md = alloc_dev(minor); 1892 if (!md) 1893 return -ENXIO; 1894 1895 dm_ima_reset_data(md); 1896 1897 *result = md; 1898 return 0; 1899 } 1900 1901 /* 1902 * Functions to manage md->type. 1903 * All are required to hold md->type_lock. 1904 */ 1905 void dm_lock_md_type(struct mapped_device *md) 1906 { 1907 mutex_lock(&md->type_lock); 1908 } 1909 1910 void dm_unlock_md_type(struct mapped_device *md) 1911 { 1912 mutex_unlock(&md->type_lock); 1913 } 1914 1915 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1916 { 1917 BUG_ON(!mutex_is_locked(&md->type_lock)); 1918 md->type = type; 1919 } 1920 1921 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1922 { 1923 return md->type; 1924 } 1925 1926 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1927 { 1928 return md->immutable_target_type; 1929 } 1930 1931 /* 1932 * The queue_limits are only valid as long as you have a reference 1933 * count on 'md'. 1934 */ 1935 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1936 { 1937 BUG_ON(!atomic_read(&md->holders)); 1938 return &md->queue->limits; 1939 } 1940 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1941 1942 /* 1943 * Setup the DM device's queue based on md's type 1944 */ 1945 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1946 { 1947 enum dm_queue_mode type = dm_table_get_type(t); 1948 struct queue_limits limits; 1949 int r; 1950 1951 switch (type) { 1952 case DM_TYPE_REQUEST_BASED: 1953 md->disk->fops = &dm_rq_blk_dops; 1954 r = dm_mq_init_request_queue(md, t); 1955 if (r) { 1956 DMERR("Cannot initialize queue for request-based dm mapped device"); 1957 return r; 1958 } 1959 break; 1960 case DM_TYPE_BIO_BASED: 1961 case DM_TYPE_DAX_BIO_BASED: 1962 break; 1963 case DM_TYPE_NONE: 1964 WARN_ON_ONCE(true); 1965 break; 1966 } 1967 1968 r = dm_calculate_queue_limits(t, &limits); 1969 if (r) { 1970 DMERR("Cannot calculate initial queue limits"); 1971 return r; 1972 } 1973 r = dm_table_set_restrictions(t, md->queue, &limits); 1974 if (r) 1975 return r; 1976 1977 r = add_disk(md->disk); 1978 if (r) 1979 return r; 1980 1981 r = dm_sysfs_init(md); 1982 if (r) { 1983 del_gendisk(md->disk); 1984 return r; 1985 } 1986 md->type = type; 1987 return 0; 1988 } 1989 1990 struct mapped_device *dm_get_md(dev_t dev) 1991 { 1992 struct mapped_device *md; 1993 unsigned minor = MINOR(dev); 1994 1995 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1996 return NULL; 1997 1998 spin_lock(&_minor_lock); 1999 2000 md = idr_find(&_minor_idr, minor); 2001 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2002 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2003 md = NULL; 2004 goto out; 2005 } 2006 dm_get(md); 2007 out: 2008 spin_unlock(&_minor_lock); 2009 2010 return md; 2011 } 2012 EXPORT_SYMBOL_GPL(dm_get_md); 2013 2014 void *dm_get_mdptr(struct mapped_device *md) 2015 { 2016 return md->interface_ptr; 2017 } 2018 2019 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2020 { 2021 md->interface_ptr = ptr; 2022 } 2023 2024 void dm_get(struct mapped_device *md) 2025 { 2026 atomic_inc(&md->holders); 2027 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2028 } 2029 2030 int dm_hold(struct mapped_device *md) 2031 { 2032 spin_lock(&_minor_lock); 2033 if (test_bit(DMF_FREEING, &md->flags)) { 2034 spin_unlock(&_minor_lock); 2035 return -EBUSY; 2036 } 2037 dm_get(md); 2038 spin_unlock(&_minor_lock); 2039 return 0; 2040 } 2041 EXPORT_SYMBOL_GPL(dm_hold); 2042 2043 const char *dm_device_name(struct mapped_device *md) 2044 { 2045 return md->name; 2046 } 2047 EXPORT_SYMBOL_GPL(dm_device_name); 2048 2049 static void __dm_destroy(struct mapped_device *md, bool wait) 2050 { 2051 struct dm_table *map; 2052 int srcu_idx; 2053 2054 might_sleep(); 2055 2056 spin_lock(&_minor_lock); 2057 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2058 set_bit(DMF_FREEING, &md->flags); 2059 spin_unlock(&_minor_lock); 2060 2061 blk_set_queue_dying(md->queue); 2062 2063 /* 2064 * Take suspend_lock so that presuspend and postsuspend methods 2065 * do not race with internal suspend. 2066 */ 2067 mutex_lock(&md->suspend_lock); 2068 map = dm_get_live_table(md, &srcu_idx); 2069 if (!dm_suspended_md(md)) { 2070 dm_table_presuspend_targets(map); 2071 set_bit(DMF_SUSPENDED, &md->flags); 2072 set_bit(DMF_POST_SUSPENDING, &md->flags); 2073 dm_table_postsuspend_targets(map); 2074 } 2075 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2076 dm_put_live_table(md, srcu_idx); 2077 mutex_unlock(&md->suspend_lock); 2078 2079 /* 2080 * Rare, but there may be I/O requests still going to complete, 2081 * for example. Wait for all references to disappear. 2082 * No one should increment the reference count of the mapped_device, 2083 * after the mapped_device state becomes DMF_FREEING. 2084 */ 2085 if (wait) 2086 while (atomic_read(&md->holders)) 2087 msleep(1); 2088 else if (atomic_read(&md->holders)) 2089 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2090 dm_device_name(md), atomic_read(&md->holders)); 2091 2092 dm_table_destroy(__unbind(md)); 2093 free_dev(md); 2094 } 2095 2096 void dm_destroy(struct mapped_device *md) 2097 { 2098 __dm_destroy(md, true); 2099 } 2100 2101 void dm_destroy_immediate(struct mapped_device *md) 2102 { 2103 __dm_destroy(md, false); 2104 } 2105 2106 void dm_put(struct mapped_device *md) 2107 { 2108 atomic_dec(&md->holders); 2109 } 2110 EXPORT_SYMBOL_GPL(dm_put); 2111 2112 static bool dm_in_flight_bios(struct mapped_device *md) 2113 { 2114 int cpu; 2115 unsigned long sum = 0; 2116 2117 for_each_possible_cpu(cpu) 2118 sum += *per_cpu_ptr(md->pending_io, cpu); 2119 2120 return sum != 0; 2121 } 2122 2123 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2124 { 2125 int r = 0; 2126 DEFINE_WAIT(wait); 2127 2128 while (true) { 2129 prepare_to_wait(&md->wait, &wait, task_state); 2130 2131 if (!dm_in_flight_bios(md)) 2132 break; 2133 2134 if (signal_pending_state(task_state, current)) { 2135 r = -EINTR; 2136 break; 2137 } 2138 2139 io_schedule(); 2140 } 2141 finish_wait(&md->wait, &wait); 2142 2143 smp_rmb(); 2144 2145 return r; 2146 } 2147 2148 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2149 { 2150 int r = 0; 2151 2152 if (!queue_is_mq(md->queue)) 2153 return dm_wait_for_bios_completion(md, task_state); 2154 2155 while (true) { 2156 if (!blk_mq_queue_inflight(md->queue)) 2157 break; 2158 2159 if (signal_pending_state(task_state, current)) { 2160 r = -EINTR; 2161 break; 2162 } 2163 2164 msleep(5); 2165 } 2166 2167 return r; 2168 } 2169 2170 /* 2171 * Process the deferred bios 2172 */ 2173 static void dm_wq_work(struct work_struct *work) 2174 { 2175 struct mapped_device *md = container_of(work, struct mapped_device, work); 2176 struct bio *bio; 2177 2178 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2179 spin_lock_irq(&md->deferred_lock); 2180 bio = bio_list_pop(&md->deferred); 2181 spin_unlock_irq(&md->deferred_lock); 2182 2183 if (!bio) 2184 break; 2185 2186 submit_bio_noacct(bio); 2187 } 2188 } 2189 2190 static void dm_queue_flush(struct mapped_device *md) 2191 { 2192 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2193 smp_mb__after_atomic(); 2194 queue_work(md->wq, &md->work); 2195 } 2196 2197 /* 2198 * Swap in a new table, returning the old one for the caller to destroy. 2199 */ 2200 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2201 { 2202 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2203 struct queue_limits limits; 2204 int r; 2205 2206 mutex_lock(&md->suspend_lock); 2207 2208 /* device must be suspended */ 2209 if (!dm_suspended_md(md)) 2210 goto out; 2211 2212 /* 2213 * If the new table has no data devices, retain the existing limits. 2214 * This helps multipath with queue_if_no_path if all paths disappear, 2215 * then new I/O is queued based on these limits, and then some paths 2216 * reappear. 2217 */ 2218 if (dm_table_has_no_data_devices(table)) { 2219 live_map = dm_get_live_table_fast(md); 2220 if (live_map) 2221 limits = md->queue->limits; 2222 dm_put_live_table_fast(md); 2223 } 2224 2225 if (!live_map) { 2226 r = dm_calculate_queue_limits(table, &limits); 2227 if (r) { 2228 map = ERR_PTR(r); 2229 goto out; 2230 } 2231 } 2232 2233 map = __bind(md, table, &limits); 2234 dm_issue_global_event(); 2235 2236 out: 2237 mutex_unlock(&md->suspend_lock); 2238 return map; 2239 } 2240 2241 /* 2242 * Functions to lock and unlock any filesystem running on the 2243 * device. 2244 */ 2245 static int lock_fs(struct mapped_device *md) 2246 { 2247 int r; 2248 2249 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2250 2251 r = freeze_bdev(md->disk->part0); 2252 if (!r) 2253 set_bit(DMF_FROZEN, &md->flags); 2254 return r; 2255 } 2256 2257 static void unlock_fs(struct mapped_device *md) 2258 { 2259 if (!test_bit(DMF_FROZEN, &md->flags)) 2260 return; 2261 thaw_bdev(md->disk->part0); 2262 clear_bit(DMF_FROZEN, &md->flags); 2263 } 2264 2265 /* 2266 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2267 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2268 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2269 * 2270 * If __dm_suspend returns 0, the device is completely quiescent 2271 * now. There is no request-processing activity. All new requests 2272 * are being added to md->deferred list. 2273 */ 2274 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2275 unsigned suspend_flags, unsigned int task_state, 2276 int dmf_suspended_flag) 2277 { 2278 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2279 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2280 int r; 2281 2282 lockdep_assert_held(&md->suspend_lock); 2283 2284 /* 2285 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2286 * This flag is cleared before dm_suspend returns. 2287 */ 2288 if (noflush) 2289 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2290 else 2291 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2292 2293 /* 2294 * This gets reverted if there's an error later and the targets 2295 * provide the .presuspend_undo hook. 2296 */ 2297 dm_table_presuspend_targets(map); 2298 2299 /* 2300 * Flush I/O to the device. 2301 * Any I/O submitted after lock_fs() may not be flushed. 2302 * noflush takes precedence over do_lockfs. 2303 * (lock_fs() flushes I/Os and waits for them to complete.) 2304 */ 2305 if (!noflush && do_lockfs) { 2306 r = lock_fs(md); 2307 if (r) { 2308 dm_table_presuspend_undo_targets(map); 2309 return r; 2310 } 2311 } 2312 2313 /* 2314 * Here we must make sure that no processes are submitting requests 2315 * to target drivers i.e. no one may be executing 2316 * __split_and_process_bio from dm_submit_bio. 2317 * 2318 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2319 * we take the write lock. To prevent any process from reentering 2320 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2321 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2322 * flush_workqueue(md->wq). 2323 */ 2324 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2325 if (map) 2326 synchronize_srcu(&md->io_barrier); 2327 2328 /* 2329 * Stop md->queue before flushing md->wq in case request-based 2330 * dm defers requests to md->wq from md->queue. 2331 */ 2332 if (dm_request_based(md)) 2333 dm_stop_queue(md->queue); 2334 2335 flush_workqueue(md->wq); 2336 2337 /* 2338 * At this point no more requests are entering target request routines. 2339 * We call dm_wait_for_completion to wait for all existing requests 2340 * to finish. 2341 */ 2342 r = dm_wait_for_completion(md, task_state); 2343 if (!r) 2344 set_bit(dmf_suspended_flag, &md->flags); 2345 2346 if (noflush) 2347 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2348 if (map) 2349 synchronize_srcu(&md->io_barrier); 2350 2351 /* were we interrupted ? */ 2352 if (r < 0) { 2353 dm_queue_flush(md); 2354 2355 if (dm_request_based(md)) 2356 dm_start_queue(md->queue); 2357 2358 unlock_fs(md); 2359 dm_table_presuspend_undo_targets(map); 2360 /* pushback list is already flushed, so skip flush */ 2361 } 2362 2363 return r; 2364 } 2365 2366 /* 2367 * We need to be able to change a mapping table under a mounted 2368 * filesystem. For example we might want to move some data in 2369 * the background. Before the table can be swapped with 2370 * dm_bind_table, dm_suspend must be called to flush any in 2371 * flight bios and ensure that any further io gets deferred. 2372 */ 2373 /* 2374 * Suspend mechanism in request-based dm. 2375 * 2376 * 1. Flush all I/Os by lock_fs() if needed. 2377 * 2. Stop dispatching any I/O by stopping the request_queue. 2378 * 3. Wait for all in-flight I/Os to be completed or requeued. 2379 * 2380 * To abort suspend, start the request_queue. 2381 */ 2382 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2383 { 2384 struct dm_table *map = NULL; 2385 int r = 0; 2386 2387 retry: 2388 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2389 2390 if (dm_suspended_md(md)) { 2391 r = -EINVAL; 2392 goto out_unlock; 2393 } 2394 2395 if (dm_suspended_internally_md(md)) { 2396 /* already internally suspended, wait for internal resume */ 2397 mutex_unlock(&md->suspend_lock); 2398 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2399 if (r) 2400 return r; 2401 goto retry; 2402 } 2403 2404 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2405 2406 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2407 if (r) 2408 goto out_unlock; 2409 2410 set_bit(DMF_POST_SUSPENDING, &md->flags); 2411 dm_table_postsuspend_targets(map); 2412 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2413 2414 out_unlock: 2415 mutex_unlock(&md->suspend_lock); 2416 return r; 2417 } 2418 2419 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2420 { 2421 if (map) { 2422 int r = dm_table_resume_targets(map); 2423 if (r) 2424 return r; 2425 } 2426 2427 dm_queue_flush(md); 2428 2429 /* 2430 * Flushing deferred I/Os must be done after targets are resumed 2431 * so that mapping of targets can work correctly. 2432 * Request-based dm is queueing the deferred I/Os in its request_queue. 2433 */ 2434 if (dm_request_based(md)) 2435 dm_start_queue(md->queue); 2436 2437 unlock_fs(md); 2438 2439 return 0; 2440 } 2441 2442 int dm_resume(struct mapped_device *md) 2443 { 2444 int r; 2445 struct dm_table *map = NULL; 2446 2447 retry: 2448 r = -EINVAL; 2449 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2450 2451 if (!dm_suspended_md(md)) 2452 goto out; 2453 2454 if (dm_suspended_internally_md(md)) { 2455 /* already internally suspended, wait for internal resume */ 2456 mutex_unlock(&md->suspend_lock); 2457 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2458 if (r) 2459 return r; 2460 goto retry; 2461 } 2462 2463 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2464 if (!map || !dm_table_get_size(map)) 2465 goto out; 2466 2467 r = __dm_resume(md, map); 2468 if (r) 2469 goto out; 2470 2471 clear_bit(DMF_SUSPENDED, &md->flags); 2472 out: 2473 mutex_unlock(&md->suspend_lock); 2474 2475 return r; 2476 } 2477 2478 /* 2479 * Internal suspend/resume works like userspace-driven suspend. It waits 2480 * until all bios finish and prevents issuing new bios to the target drivers. 2481 * It may be used only from the kernel. 2482 */ 2483 2484 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2485 { 2486 struct dm_table *map = NULL; 2487 2488 lockdep_assert_held(&md->suspend_lock); 2489 2490 if (md->internal_suspend_count++) 2491 return; /* nested internal suspend */ 2492 2493 if (dm_suspended_md(md)) { 2494 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2495 return; /* nest suspend */ 2496 } 2497 2498 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2499 2500 /* 2501 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2502 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2503 * would require changing .presuspend to return an error -- avoid this 2504 * until there is a need for more elaborate variants of internal suspend. 2505 */ 2506 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2507 DMF_SUSPENDED_INTERNALLY); 2508 2509 set_bit(DMF_POST_SUSPENDING, &md->flags); 2510 dm_table_postsuspend_targets(map); 2511 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2512 } 2513 2514 static void __dm_internal_resume(struct mapped_device *md) 2515 { 2516 BUG_ON(!md->internal_suspend_count); 2517 2518 if (--md->internal_suspend_count) 2519 return; /* resume from nested internal suspend */ 2520 2521 if (dm_suspended_md(md)) 2522 goto done; /* resume from nested suspend */ 2523 2524 /* 2525 * NOTE: existing callers don't need to call dm_table_resume_targets 2526 * (which may fail -- so best to avoid it for now by passing NULL map) 2527 */ 2528 (void) __dm_resume(md, NULL); 2529 2530 done: 2531 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2532 smp_mb__after_atomic(); 2533 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2534 } 2535 2536 void dm_internal_suspend_noflush(struct mapped_device *md) 2537 { 2538 mutex_lock(&md->suspend_lock); 2539 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2540 mutex_unlock(&md->suspend_lock); 2541 } 2542 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2543 2544 void dm_internal_resume(struct mapped_device *md) 2545 { 2546 mutex_lock(&md->suspend_lock); 2547 __dm_internal_resume(md); 2548 mutex_unlock(&md->suspend_lock); 2549 } 2550 EXPORT_SYMBOL_GPL(dm_internal_resume); 2551 2552 /* 2553 * Fast variants of internal suspend/resume hold md->suspend_lock, 2554 * which prevents interaction with userspace-driven suspend. 2555 */ 2556 2557 void dm_internal_suspend_fast(struct mapped_device *md) 2558 { 2559 mutex_lock(&md->suspend_lock); 2560 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2561 return; 2562 2563 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2564 synchronize_srcu(&md->io_barrier); 2565 flush_workqueue(md->wq); 2566 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2567 } 2568 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2569 2570 void dm_internal_resume_fast(struct mapped_device *md) 2571 { 2572 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2573 goto done; 2574 2575 dm_queue_flush(md); 2576 2577 done: 2578 mutex_unlock(&md->suspend_lock); 2579 } 2580 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2581 2582 /*----------------------------------------------------------------- 2583 * Event notification. 2584 *---------------------------------------------------------------*/ 2585 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2586 unsigned cookie) 2587 { 2588 int r; 2589 unsigned noio_flag; 2590 char udev_cookie[DM_COOKIE_LENGTH]; 2591 char *envp[] = { udev_cookie, NULL }; 2592 2593 noio_flag = memalloc_noio_save(); 2594 2595 if (!cookie) 2596 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2597 else { 2598 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2599 DM_COOKIE_ENV_VAR_NAME, cookie); 2600 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2601 action, envp); 2602 } 2603 2604 memalloc_noio_restore(noio_flag); 2605 2606 return r; 2607 } 2608 2609 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2610 { 2611 return atomic_add_return(1, &md->uevent_seq); 2612 } 2613 2614 uint32_t dm_get_event_nr(struct mapped_device *md) 2615 { 2616 return atomic_read(&md->event_nr); 2617 } 2618 2619 int dm_wait_event(struct mapped_device *md, int event_nr) 2620 { 2621 return wait_event_interruptible(md->eventq, 2622 (event_nr != atomic_read(&md->event_nr))); 2623 } 2624 2625 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2626 { 2627 unsigned long flags; 2628 2629 spin_lock_irqsave(&md->uevent_lock, flags); 2630 list_add(elist, &md->uevent_list); 2631 spin_unlock_irqrestore(&md->uevent_lock, flags); 2632 } 2633 2634 /* 2635 * The gendisk is only valid as long as you have a reference 2636 * count on 'md'. 2637 */ 2638 struct gendisk *dm_disk(struct mapped_device *md) 2639 { 2640 return md->disk; 2641 } 2642 EXPORT_SYMBOL_GPL(dm_disk); 2643 2644 struct kobject *dm_kobject(struct mapped_device *md) 2645 { 2646 return &md->kobj_holder.kobj; 2647 } 2648 2649 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2650 { 2651 struct mapped_device *md; 2652 2653 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2654 2655 spin_lock(&_minor_lock); 2656 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2657 md = NULL; 2658 goto out; 2659 } 2660 dm_get(md); 2661 out: 2662 spin_unlock(&_minor_lock); 2663 2664 return md; 2665 } 2666 2667 int dm_suspended_md(struct mapped_device *md) 2668 { 2669 return test_bit(DMF_SUSPENDED, &md->flags); 2670 } 2671 2672 static int dm_post_suspending_md(struct mapped_device *md) 2673 { 2674 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2675 } 2676 2677 int dm_suspended_internally_md(struct mapped_device *md) 2678 { 2679 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2680 } 2681 2682 int dm_test_deferred_remove_flag(struct mapped_device *md) 2683 { 2684 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2685 } 2686 2687 int dm_suspended(struct dm_target *ti) 2688 { 2689 return dm_suspended_md(ti->table->md); 2690 } 2691 EXPORT_SYMBOL_GPL(dm_suspended); 2692 2693 int dm_post_suspending(struct dm_target *ti) 2694 { 2695 return dm_post_suspending_md(ti->table->md); 2696 } 2697 EXPORT_SYMBOL_GPL(dm_post_suspending); 2698 2699 int dm_noflush_suspending(struct dm_target *ti) 2700 { 2701 return __noflush_suspending(ti->table->md); 2702 } 2703 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2704 2705 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2706 unsigned integrity, unsigned per_io_data_size, 2707 unsigned min_pool_size) 2708 { 2709 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2710 unsigned int pool_size = 0; 2711 unsigned int front_pad, io_front_pad; 2712 int ret; 2713 2714 if (!pools) 2715 return NULL; 2716 2717 switch (type) { 2718 case DM_TYPE_BIO_BASED: 2719 case DM_TYPE_DAX_BIO_BASED: 2720 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2721 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2722 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2723 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2724 if (ret) 2725 goto out; 2726 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2727 goto out; 2728 break; 2729 case DM_TYPE_REQUEST_BASED: 2730 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2731 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2732 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2733 break; 2734 default: 2735 BUG(); 2736 } 2737 2738 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2739 if (ret) 2740 goto out; 2741 2742 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2743 goto out; 2744 2745 return pools; 2746 2747 out: 2748 dm_free_md_mempools(pools); 2749 2750 return NULL; 2751 } 2752 2753 void dm_free_md_mempools(struct dm_md_mempools *pools) 2754 { 2755 if (!pools) 2756 return; 2757 2758 bioset_exit(&pools->bs); 2759 bioset_exit(&pools->io_bs); 2760 2761 kfree(pools); 2762 } 2763 2764 struct dm_pr { 2765 u64 old_key; 2766 u64 new_key; 2767 u32 flags; 2768 bool fail_early; 2769 }; 2770 2771 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2772 void *data) 2773 { 2774 struct mapped_device *md = bdev->bd_disk->private_data; 2775 struct dm_table *table; 2776 struct dm_target *ti; 2777 int ret = -ENOTTY, srcu_idx; 2778 2779 table = dm_get_live_table(md, &srcu_idx); 2780 if (!table || !dm_table_get_size(table)) 2781 goto out; 2782 2783 /* We only support devices that have a single target */ 2784 if (dm_table_get_num_targets(table) != 1) 2785 goto out; 2786 ti = dm_table_get_target(table, 0); 2787 2788 ret = -EINVAL; 2789 if (!ti->type->iterate_devices) 2790 goto out; 2791 2792 ret = ti->type->iterate_devices(ti, fn, data); 2793 out: 2794 dm_put_live_table(md, srcu_idx); 2795 return ret; 2796 } 2797 2798 /* 2799 * For register / unregister we need to manually call out to every path. 2800 */ 2801 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2802 sector_t start, sector_t len, void *data) 2803 { 2804 struct dm_pr *pr = data; 2805 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2806 2807 if (!ops || !ops->pr_register) 2808 return -EOPNOTSUPP; 2809 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2810 } 2811 2812 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2813 u32 flags) 2814 { 2815 struct dm_pr pr = { 2816 .old_key = old_key, 2817 .new_key = new_key, 2818 .flags = flags, 2819 .fail_early = true, 2820 }; 2821 int ret; 2822 2823 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2824 if (ret && new_key) { 2825 /* unregister all paths if we failed to register any path */ 2826 pr.old_key = new_key; 2827 pr.new_key = 0; 2828 pr.flags = 0; 2829 pr.fail_early = false; 2830 dm_call_pr(bdev, __dm_pr_register, &pr); 2831 } 2832 2833 return ret; 2834 } 2835 2836 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2837 u32 flags) 2838 { 2839 struct mapped_device *md = bdev->bd_disk->private_data; 2840 const struct pr_ops *ops; 2841 int r, srcu_idx; 2842 2843 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2844 if (r < 0) 2845 goto out; 2846 2847 ops = bdev->bd_disk->fops->pr_ops; 2848 if (ops && ops->pr_reserve) 2849 r = ops->pr_reserve(bdev, key, type, flags); 2850 else 2851 r = -EOPNOTSUPP; 2852 out: 2853 dm_unprepare_ioctl(md, srcu_idx); 2854 return r; 2855 } 2856 2857 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2858 { 2859 struct mapped_device *md = bdev->bd_disk->private_data; 2860 const struct pr_ops *ops; 2861 int r, srcu_idx; 2862 2863 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2864 if (r < 0) 2865 goto out; 2866 2867 ops = bdev->bd_disk->fops->pr_ops; 2868 if (ops && ops->pr_release) 2869 r = ops->pr_release(bdev, key, type); 2870 else 2871 r = -EOPNOTSUPP; 2872 out: 2873 dm_unprepare_ioctl(md, srcu_idx); 2874 return r; 2875 } 2876 2877 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2878 enum pr_type type, bool abort) 2879 { 2880 struct mapped_device *md = bdev->bd_disk->private_data; 2881 const struct pr_ops *ops; 2882 int r, srcu_idx; 2883 2884 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2885 if (r < 0) 2886 goto out; 2887 2888 ops = bdev->bd_disk->fops->pr_ops; 2889 if (ops && ops->pr_preempt) 2890 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2891 else 2892 r = -EOPNOTSUPP; 2893 out: 2894 dm_unprepare_ioctl(md, srcu_idx); 2895 return r; 2896 } 2897 2898 static int dm_pr_clear(struct block_device *bdev, u64 key) 2899 { 2900 struct mapped_device *md = bdev->bd_disk->private_data; 2901 const struct pr_ops *ops; 2902 int r, srcu_idx; 2903 2904 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2905 if (r < 0) 2906 goto out; 2907 2908 ops = bdev->bd_disk->fops->pr_ops; 2909 if (ops && ops->pr_clear) 2910 r = ops->pr_clear(bdev, key); 2911 else 2912 r = -EOPNOTSUPP; 2913 out: 2914 dm_unprepare_ioctl(md, srcu_idx); 2915 return r; 2916 } 2917 2918 static const struct pr_ops dm_pr_ops = { 2919 .pr_register = dm_pr_register, 2920 .pr_reserve = dm_pr_reserve, 2921 .pr_release = dm_pr_release, 2922 .pr_preempt = dm_pr_preempt, 2923 .pr_clear = dm_pr_clear, 2924 }; 2925 2926 static const struct block_device_operations dm_blk_dops = { 2927 .submit_bio = dm_submit_bio, 2928 .open = dm_blk_open, 2929 .release = dm_blk_close, 2930 .ioctl = dm_blk_ioctl, 2931 .getgeo = dm_blk_getgeo, 2932 .report_zones = dm_blk_report_zones, 2933 .pr_ops = &dm_pr_ops, 2934 .owner = THIS_MODULE 2935 }; 2936 2937 static const struct block_device_operations dm_rq_blk_dops = { 2938 .open = dm_blk_open, 2939 .release = dm_blk_close, 2940 .ioctl = dm_blk_ioctl, 2941 .getgeo = dm_blk_getgeo, 2942 .pr_ops = &dm_pr_ops, 2943 .owner = THIS_MODULE 2944 }; 2945 2946 static const struct dax_operations dm_dax_ops = { 2947 .direct_access = dm_dax_direct_access, 2948 .zero_page_range = dm_dax_zero_page_range, 2949 }; 2950 2951 /* 2952 * module hooks 2953 */ 2954 module_init(dm_init); 2955 module_exit(dm_exit); 2956 2957 module_param(major, uint, 0); 2958 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2959 2960 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2961 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2962 2963 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2964 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2965 2966 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2967 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2968 2969 MODULE_DESCRIPTION(DM_NAME " driver"); 2970 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2971 MODULE_LICENSE("GPL"); 2972