xref: /openbmc/linux/drivers/md/dm.c (revision 82f6cdcc3676c68abaad2aac51a32f4e5d67d01e)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!clone_to_tio(bio)->inside_dm_io)
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless is_duplicate_bio.
542 	 */
543 	if (!clone || likely(!clone_to_tio(clone)->is_duplicate_bio)) {
544 		if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED)))
545 			return;
546 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
547 	} else {
548 		unsigned long flags;
549 		if (dm_io_flagged(io, DM_IO_ACCOUNTED))
550 			return;
551 		/* Can afford locking given is_duplicate_bio */
552 		spin_lock_irqsave(&io->startio_lock, flags);
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 		spin_unlock_irqrestore(&io->startio_lock, flags);
555 	}
556 
557 	__dm_start_io_acct(io, bio);
558 }
559 
560 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
561 {
562 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
563 }
564 
565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
566 {
567 	struct dm_io *io;
568 	struct dm_target_io *tio;
569 	struct bio *clone;
570 
571 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
572 
573 	tio = clone_to_tio(clone);
574 	tio->inside_dm_io = true;
575 	tio->io = NULL;
576 
577 	io = container_of(tio, struct dm_io, tio);
578 	io->magic = DM_IO_MAGIC;
579 	io->status = 0;
580 	atomic_set(&io->io_count, 1);
581 	this_cpu_inc(*md->pending_io);
582 	io->orig_bio = NULL;
583 	io->md = md;
584 	io->map_task = current;
585 	spin_lock_init(&io->startio_lock);
586 	spin_lock_init(&io->endio_lock);
587 	io->start_time = jiffies;
588 	io->flags = 0;
589 
590 	dm_stats_record_start(&md->stats, &io->stats_aux);
591 
592 	return io;
593 }
594 
595 static void free_io(struct dm_io *io)
596 {
597 	bio_put(&io->tio.clone);
598 }
599 
600 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
601 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
602 {
603 	struct dm_target_io *tio;
604 	struct bio *clone;
605 
606 	if (!ci->io->tio.io) {
607 		/* the dm_target_io embedded in ci->io is available */
608 		tio = &ci->io->tio;
609 		/* alloc_io() already initialized embedded clone */
610 		clone = &tio->clone;
611 	} else {
612 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
613 					gfp_mask, &ci->io->md->bs);
614 		if (!clone)
615 			return NULL;
616 
617 		/* REQ_DM_POLL_LIST shouldn't be inherited */
618 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
619 
620 		tio = clone_to_tio(clone);
621 		tio->inside_dm_io = false;
622 	}
623 
624 	tio->magic = DM_TIO_MAGIC;
625 	tio->io = ci->io;
626 	tio->ti = ti;
627 	tio->target_bio_nr = target_bio_nr;
628 	tio->is_duplicate_bio = false;
629 	tio->len_ptr = len;
630 	tio->old_sector = 0;
631 
632 	if (len) {
633 		clone->bi_iter.bi_size = to_bytes(*len);
634 		if (bio_integrity(clone))
635 			bio_integrity_trim(clone);
636 	}
637 
638 	return clone;
639 }
640 
641 static void free_tio(struct bio *clone)
642 {
643 	if (clone_to_tio(clone)->inside_dm_io)
644 		return;
645 	bio_put(clone);
646 }
647 
648 /*
649  * Add the bio to the list of deferred io.
650  */
651 static void queue_io(struct mapped_device *md, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&md->deferred_lock, flags);
656 	bio_list_add(&md->deferred, bio);
657 	spin_unlock_irqrestore(&md->deferred_lock, flags);
658 	queue_work(md->wq, &md->work);
659 }
660 
661 /*
662  * Everyone (including functions in this file), should use this
663  * function to access the md->map field, and make sure they call
664  * dm_put_live_table() when finished.
665  */
666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
667 {
668 	*srcu_idx = srcu_read_lock(&md->io_barrier);
669 
670 	return srcu_dereference(md->map, &md->io_barrier);
671 }
672 
673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
674 {
675 	srcu_read_unlock(&md->io_barrier, srcu_idx);
676 }
677 
678 void dm_sync_table(struct mapped_device *md)
679 {
680 	synchronize_srcu(&md->io_barrier);
681 	synchronize_rcu_expedited();
682 }
683 
684 /*
685  * A fast alternative to dm_get_live_table/dm_put_live_table.
686  * The caller must not block between these two functions.
687  */
688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
689 {
690 	rcu_read_lock();
691 	return rcu_dereference(md->map);
692 }
693 
694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
695 {
696 	rcu_read_unlock();
697 }
698 
699 static char *_dm_claim_ptr = "I belong to device-mapper";
700 
701 /*
702  * Open a table device so we can use it as a map destination.
703  */
704 static int open_table_device(struct table_device *td, dev_t dev,
705 			     struct mapped_device *md)
706 {
707 	struct block_device *bdev;
708 	u64 part_off;
709 	int r;
710 
711 	BUG_ON(td->dm_dev.bdev);
712 
713 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
714 	if (IS_ERR(bdev))
715 		return PTR_ERR(bdev);
716 
717 	r = bd_link_disk_holder(bdev, dm_disk(md));
718 	if (r) {
719 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
720 		return r;
721 	}
722 
723 	td->dm_dev.bdev = bdev;
724 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
725 	return 0;
726 }
727 
728 /*
729  * Close a table device that we've been using.
730  */
731 static void close_table_device(struct table_device *td, struct mapped_device *md)
732 {
733 	if (!td->dm_dev.bdev)
734 		return;
735 
736 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
737 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
738 	put_dax(td->dm_dev.dax_dev);
739 	td->dm_dev.bdev = NULL;
740 	td->dm_dev.dax_dev = NULL;
741 }
742 
743 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
744 					      fmode_t mode)
745 {
746 	struct table_device *td;
747 
748 	list_for_each_entry(td, l, list)
749 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
750 			return td;
751 
752 	return NULL;
753 }
754 
755 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
756 			struct dm_dev **result)
757 {
758 	int r;
759 	struct table_device *td;
760 
761 	mutex_lock(&md->table_devices_lock);
762 	td = find_table_device(&md->table_devices, dev, mode);
763 	if (!td) {
764 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
765 		if (!td) {
766 			mutex_unlock(&md->table_devices_lock);
767 			return -ENOMEM;
768 		}
769 
770 		td->dm_dev.mode = mode;
771 		td->dm_dev.bdev = NULL;
772 
773 		if ((r = open_table_device(td, dev, md))) {
774 			mutex_unlock(&md->table_devices_lock);
775 			kfree(td);
776 			return r;
777 		}
778 
779 		format_dev_t(td->dm_dev.name, dev);
780 
781 		refcount_set(&td->count, 1);
782 		list_add(&td->list, &md->table_devices);
783 	} else {
784 		refcount_inc(&td->count);
785 	}
786 	mutex_unlock(&md->table_devices_lock);
787 
788 	*result = &td->dm_dev;
789 	return 0;
790 }
791 
792 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
793 {
794 	struct table_device *td = container_of(d, struct table_device, dm_dev);
795 
796 	mutex_lock(&md->table_devices_lock);
797 	if (refcount_dec_and_test(&td->count)) {
798 		close_table_device(td, md);
799 		list_del(&td->list);
800 		kfree(td);
801 	}
802 	mutex_unlock(&md->table_devices_lock);
803 }
804 
805 static void free_table_devices(struct list_head *devices)
806 {
807 	struct list_head *tmp, *next;
808 
809 	list_for_each_safe(tmp, next, devices) {
810 		struct table_device *td = list_entry(tmp, struct table_device, list);
811 
812 		DMWARN("dm_destroy: %s still exists with %d references",
813 		       td->dm_dev.name, refcount_read(&td->count));
814 		kfree(td);
815 	}
816 }
817 
818 /*
819  * Get the geometry associated with a dm device
820  */
821 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
822 {
823 	*geo = md->geometry;
824 
825 	return 0;
826 }
827 
828 /*
829  * Set the geometry of a device.
830  */
831 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
834 
835 	if (geo->start > sz) {
836 		DMWARN("Start sector is beyond the geometry limits.");
837 		return -EINVAL;
838 	}
839 
840 	md->geometry = *geo;
841 
842 	return 0;
843 }
844 
845 static int __noflush_suspending(struct mapped_device *md)
846 {
847 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
848 }
849 
850 static void dm_io_complete(struct dm_io *io)
851 {
852 	blk_status_t io_error;
853 	struct mapped_device *md = io->md;
854 	struct bio *bio = io->orig_bio;
855 
856 	if (io->status == BLK_STS_DM_REQUEUE) {
857 		unsigned long flags;
858 		/*
859 		 * Target requested pushing back the I/O.
860 		 */
861 		spin_lock_irqsave(&md->deferred_lock, flags);
862 		if (__noflush_suspending(md) &&
863 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
864 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
865 			bio_list_add_head(&md->deferred, bio);
866 		} else {
867 			/*
868 			 * noflush suspend was interrupted or this is
869 			 * a write to a zoned target.
870 			 */
871 			io->status = BLK_STS_IOERR;
872 		}
873 		spin_unlock_irqrestore(&md->deferred_lock, flags);
874 	}
875 
876 	io_error = io->status;
877 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
878 		dm_end_io_acct(io, bio);
879 	else if (!io_error) {
880 		/*
881 		 * Must handle target that DM_MAPIO_SUBMITTED only to
882 		 * then bio_endio() rather than dm_submit_bio_remap()
883 		 */
884 		__dm_start_io_acct(io, bio);
885 		dm_end_io_acct(io, bio);
886 	}
887 	free_io(io);
888 	smp_wmb();
889 	this_cpu_dec(*md->pending_io);
890 
891 	/* nudge anyone waiting on suspend queue */
892 	if (unlikely(wq_has_sleeper(&md->wait)))
893 		wake_up(&md->wait);
894 
895 	if (io_error == BLK_STS_DM_REQUEUE) {
896 		/*
897 		 * Upper layer won't help us poll split bio, io->orig_bio
898 		 * may only reflect a subset of the pre-split original,
899 		 * so clear REQ_POLLED in case of requeue
900 		 */
901 		bio->bi_opf &= ~REQ_POLLED;
902 		return;
903 	}
904 
905 	if (bio_is_flush_with_data(bio)) {
906 		/*
907 		 * Preflush done for flush with data, reissue
908 		 * without REQ_PREFLUSH.
909 		 */
910 		bio->bi_opf &= ~REQ_PREFLUSH;
911 		queue_io(md, bio);
912 	} else {
913 		/* done with normal IO or empty flush */
914 		if (io_error)
915 			bio->bi_status = io_error;
916 		bio_endio(bio);
917 	}
918 }
919 
920 /*
921  * Decrements the number of outstanding ios that a bio has been
922  * cloned into, completing the original io if necc.
923  */
924 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
925 {
926 	/* Push-back supersedes any I/O errors */
927 	if (unlikely(error)) {
928 		unsigned long flags;
929 		spin_lock_irqsave(&io->endio_lock, flags);
930 		if (!(io->status == BLK_STS_DM_REQUEUE &&
931 		      __noflush_suspending(io->md)))
932 			io->status = error;
933 		spin_unlock_irqrestore(&io->endio_lock, flags);
934 	}
935 
936 	if (atomic_dec_and_test(&io->io_count))
937 		dm_io_complete(io);
938 }
939 
940 void disable_discard(struct mapped_device *md)
941 {
942 	struct queue_limits *limits = dm_get_queue_limits(md);
943 
944 	/* device doesn't really support DISCARD, disable it */
945 	limits->max_discard_sectors = 0;
946 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
947 }
948 
949 void disable_write_same(struct mapped_device *md)
950 {
951 	struct queue_limits *limits = dm_get_queue_limits(md);
952 
953 	/* device doesn't really support WRITE SAME, disable it */
954 	limits->max_write_same_sectors = 0;
955 }
956 
957 void disable_write_zeroes(struct mapped_device *md)
958 {
959 	struct queue_limits *limits = dm_get_queue_limits(md);
960 
961 	/* device doesn't really support WRITE ZEROES, disable it */
962 	limits->max_write_zeroes_sectors = 0;
963 }
964 
965 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
966 {
967 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
968 }
969 
970 static void clone_endio(struct bio *bio)
971 {
972 	blk_status_t error = bio->bi_status;
973 	struct dm_target_io *tio = clone_to_tio(bio);
974 	struct dm_io *io = tio->io;
975 	struct mapped_device *md = tio->io->md;
976 	dm_endio_fn endio = tio->ti->type->end_io;
977 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
978 
979 	if (unlikely(error == BLK_STS_TARGET)) {
980 		if (bio_op(bio) == REQ_OP_DISCARD &&
981 		    !q->limits.max_discard_sectors)
982 			disable_discard(md);
983 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
984 			 !q->limits.max_write_same_sectors)
985 			disable_write_same(md);
986 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
987 			 !q->limits.max_write_zeroes_sectors)
988 			disable_write_zeroes(md);
989 	}
990 
991 	if (blk_queue_is_zoned(q))
992 		dm_zone_endio(io, bio);
993 
994 	if (endio) {
995 		int r = endio(tio->ti, bio, &error);
996 		switch (r) {
997 		case DM_ENDIO_REQUEUE:
998 			/*
999 			 * Requeuing writes to a sequential zone of a zoned
1000 			 * target will break the sequential write pattern:
1001 			 * fail such IO.
1002 			 */
1003 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1004 				error = BLK_STS_IOERR;
1005 			else
1006 				error = BLK_STS_DM_REQUEUE;
1007 			fallthrough;
1008 		case DM_ENDIO_DONE:
1009 			break;
1010 		case DM_ENDIO_INCOMPLETE:
1011 			/* The target will handle the io */
1012 			return;
1013 		default:
1014 			DMWARN("unimplemented target endio return value: %d", r);
1015 			BUG();
1016 		}
1017 	}
1018 
1019 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1020 		struct mapped_device *md = io->md;
1021 		up(&md->swap_bios_semaphore);
1022 	}
1023 
1024 	free_tio(bio);
1025 	dm_io_dec_pending(io, error);
1026 }
1027 
1028 /*
1029  * Return maximum size of I/O possible at the supplied sector up to the current
1030  * target boundary.
1031  */
1032 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1033 						  sector_t target_offset)
1034 {
1035 	return ti->len - target_offset;
1036 }
1037 
1038 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1039 {
1040 	sector_t target_offset = dm_target_offset(ti, sector);
1041 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1042 	sector_t max_len;
1043 
1044 	/*
1045 	 * Does the target need to split IO even further?
1046 	 * - varied (per target) IO splitting is a tenet of DM; this
1047 	 *   explains why stacked chunk_sectors based splitting via
1048 	 *   blk_max_size_offset() isn't possible here. So pass in
1049 	 *   ti->max_io_len to override stacked chunk_sectors.
1050 	 */
1051 	if (ti->max_io_len) {
1052 		max_len = blk_max_size_offset(ti->table->md->queue,
1053 					      target_offset, ti->max_io_len);
1054 		if (len > max_len)
1055 			len = max_len;
1056 	}
1057 
1058 	return len;
1059 }
1060 
1061 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1062 {
1063 	if (len > UINT_MAX) {
1064 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1065 		      (unsigned long long)len, UINT_MAX);
1066 		ti->error = "Maximum size of target IO is too large";
1067 		return -EINVAL;
1068 	}
1069 
1070 	ti->max_io_len = (uint32_t) len;
1071 
1072 	return 0;
1073 }
1074 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1075 
1076 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1077 						sector_t sector, int *srcu_idx)
1078 	__acquires(md->io_barrier)
1079 {
1080 	struct dm_table *map;
1081 	struct dm_target *ti;
1082 
1083 	map = dm_get_live_table(md, srcu_idx);
1084 	if (!map)
1085 		return NULL;
1086 
1087 	ti = dm_table_find_target(map, sector);
1088 	if (!ti)
1089 		return NULL;
1090 
1091 	return ti;
1092 }
1093 
1094 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1095 				 long nr_pages, void **kaddr, pfn_t *pfn)
1096 {
1097 	struct mapped_device *md = dax_get_private(dax_dev);
1098 	sector_t sector = pgoff * PAGE_SECTORS;
1099 	struct dm_target *ti;
1100 	long len, ret = -EIO;
1101 	int srcu_idx;
1102 
1103 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104 
1105 	if (!ti)
1106 		goto out;
1107 	if (!ti->type->direct_access)
1108 		goto out;
1109 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1110 	if (len < 1)
1111 		goto out;
1112 	nr_pages = min(len, nr_pages);
1113 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1114 
1115  out:
1116 	dm_put_live_table(md, srcu_idx);
1117 
1118 	return ret;
1119 }
1120 
1121 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1122 				  size_t nr_pages)
1123 {
1124 	struct mapped_device *md = dax_get_private(dax_dev);
1125 	sector_t sector = pgoff * PAGE_SECTORS;
1126 	struct dm_target *ti;
1127 	int ret = -EIO;
1128 	int srcu_idx;
1129 
1130 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1131 
1132 	if (!ti)
1133 		goto out;
1134 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1135 		/*
1136 		 * ->zero_page_range() is mandatory dax operation. If we are
1137 		 *  here, something is wrong.
1138 		 */
1139 		goto out;
1140 	}
1141 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1142  out:
1143 	dm_put_live_table(md, srcu_idx);
1144 
1145 	return ret;
1146 }
1147 
1148 /*
1149  * A target may call dm_accept_partial_bio only from the map routine.  It is
1150  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1151  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1152  * __send_duplicate_bios().
1153  *
1154  * dm_accept_partial_bio informs the dm that the target only wants to process
1155  * additional n_sectors sectors of the bio and the rest of the data should be
1156  * sent in a next bio.
1157  *
1158  * A diagram that explains the arithmetics:
1159  * +--------------------+---------------+-------+
1160  * |         1          |       2       |   3   |
1161  * +--------------------+---------------+-------+
1162  *
1163  * <-------------- *tio->len_ptr --------------->
1164  *                      <------- bi_size ------->
1165  *                      <-- n_sectors -->
1166  *
1167  * Region 1 was already iterated over with bio_advance or similar function.
1168  *	(it may be empty if the target doesn't use bio_advance)
1169  * Region 2 is the remaining bio size that the target wants to process.
1170  *	(it may be empty if region 1 is non-empty, although there is no reason
1171  *	 to make it empty)
1172  * The target requires that region 3 is to be sent in the next bio.
1173  *
1174  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1175  * the partially processed part (the sum of regions 1+2) must be the same for all
1176  * copies of the bio.
1177  */
1178 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1179 {
1180 	struct dm_target_io *tio = clone_to_tio(bio);
1181 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1182 
1183 	BUG_ON(tio->is_duplicate_bio);
1184 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1185 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1186 	BUG_ON(bi_size > *tio->len_ptr);
1187 	BUG_ON(n_sectors > bi_size);
1188 
1189 	*tio->len_ptr -= bi_size - n_sectors;
1190 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1191 }
1192 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1193 
1194 static inline void __dm_submit_bio_remap(struct bio *clone,
1195 					 dev_t dev, sector_t old_sector)
1196 {
1197 	trace_block_bio_remap(clone, dev, old_sector);
1198 	submit_bio_noacct(clone);
1199 }
1200 
1201 /*
1202  * @clone: clone bio that DM core passed to target's .map function
1203  * @tgt_clone: clone of @clone bio that target needs submitted
1204  *
1205  * Targets should use this interface to submit bios they take
1206  * ownership of when returning DM_MAPIO_SUBMITTED.
1207  *
1208  * Target should also enable ti->accounts_remapped_io
1209  */
1210 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1211 {
1212 	struct dm_target_io *tio = clone_to_tio(clone);
1213 	struct dm_io *io = tio->io;
1214 
1215 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1216 
1217 	/* establish bio that will get submitted */
1218 	if (!tgt_clone)
1219 		tgt_clone = clone;
1220 
1221 	/*
1222 	 * Account io->origin_bio to DM dev on behalf of target
1223 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1224 	 */
1225 	if (io->map_task == current) {
1226 		/* Still in target's map function */
1227 		dm_io_set_flag(io, DM_IO_START_ACCT);
1228 	} else {
1229 		/*
1230 		 * Called by another thread, managed by DM target,
1231 		 * wait for dm_split_and_process_bio() to store
1232 		 * io->orig_bio
1233 		 */
1234 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1235 			msleep(1);
1236 		dm_start_io_acct(io, clone);
1237 	}
1238 
1239 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1240 			      tio->old_sector);
1241 }
1242 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1243 
1244 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1245 {
1246 	mutex_lock(&md->swap_bios_lock);
1247 	while (latch < md->swap_bios) {
1248 		cond_resched();
1249 		down(&md->swap_bios_semaphore);
1250 		md->swap_bios--;
1251 	}
1252 	while (latch > md->swap_bios) {
1253 		cond_resched();
1254 		up(&md->swap_bios_semaphore);
1255 		md->swap_bios++;
1256 	}
1257 	mutex_unlock(&md->swap_bios_lock);
1258 }
1259 
1260 static void __map_bio(struct bio *clone)
1261 {
1262 	struct dm_target_io *tio = clone_to_tio(clone);
1263 	int r;
1264 	struct dm_io *io = tio->io;
1265 	struct dm_target *ti = tio->ti;
1266 
1267 	clone->bi_end_io = clone_endio;
1268 
1269 	/*
1270 	 * Map the clone.
1271 	 */
1272 	dm_io_inc_pending(io);
1273 	tio->old_sector = clone->bi_iter.bi_sector;
1274 
1275 	if (unlikely(swap_bios_limit(ti, clone))) {
1276 		struct mapped_device *md = io->md;
1277 		int latch = get_swap_bios();
1278 		if (unlikely(latch != md->swap_bios))
1279 			__set_swap_bios_limit(md, latch);
1280 		down(&md->swap_bios_semaphore);
1281 	}
1282 
1283 	/*
1284 	 * Check if the IO needs a special mapping due to zone append emulation
1285 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1286 	 * map operation.
1287 	 */
1288 	if (dm_emulate_zone_append(io->md))
1289 		r = dm_zone_map_bio(tio);
1290 	else
1291 		r = ti->type->map(ti, clone);
1292 
1293 	switch (r) {
1294 	case DM_MAPIO_SUBMITTED:
1295 		/* target has assumed ownership of this io */
1296 		if (!ti->accounts_remapped_io)
1297 			dm_io_set_flag(io, DM_IO_START_ACCT);
1298 		break;
1299 	case DM_MAPIO_REMAPPED:
1300 		/*
1301 		 * the bio has been remapped so dispatch it, but defer
1302 		 * dm_start_io_acct() until after possible bio_split().
1303 		 */
1304 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1305 				      tio->old_sector);
1306 		dm_io_set_flag(io, DM_IO_START_ACCT);
1307 		break;
1308 	case DM_MAPIO_KILL:
1309 	case DM_MAPIO_REQUEUE:
1310 		if (unlikely(swap_bios_limit(ti, clone)))
1311 			up(&io->md->swap_bios_semaphore);
1312 		free_tio(clone);
1313 		if (r == DM_MAPIO_KILL)
1314 			dm_io_dec_pending(io, BLK_STS_IOERR);
1315 		else
1316 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1317 		break;
1318 	default:
1319 		DMWARN("unimplemented target map return value: %d", r);
1320 		BUG();
1321 	}
1322 }
1323 
1324 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1325 				struct dm_target *ti, unsigned num_bios,
1326 				unsigned *len)
1327 {
1328 	struct bio *bio;
1329 	int try;
1330 
1331 	for (try = 0; try < 2; try++) {
1332 		int bio_nr;
1333 
1334 		if (try)
1335 			mutex_lock(&ci->io->md->table_devices_lock);
1336 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1337 			bio = alloc_tio(ci, ti, bio_nr, len,
1338 					try ? GFP_NOIO : GFP_NOWAIT);
1339 			if (!bio)
1340 				break;
1341 
1342 			bio_list_add(blist, bio);
1343 		}
1344 		if (try)
1345 			mutex_unlock(&ci->io->md->table_devices_lock);
1346 		if (bio_nr == num_bios)
1347 			return;
1348 
1349 		while ((bio = bio_list_pop(blist)))
1350 			free_tio(bio);
1351 	}
1352 }
1353 
1354 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1355 				  unsigned num_bios, unsigned *len)
1356 {
1357 	struct bio_list blist = BIO_EMPTY_LIST;
1358 	struct bio *clone;
1359 
1360 	switch (num_bios) {
1361 	case 0:
1362 		break;
1363 	case 1:
1364 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1365 		clone_to_tio(clone)->is_duplicate_bio = true;
1366 		__map_bio(clone);
1367 		break;
1368 	default:
1369 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1370 		while ((clone = bio_list_pop(&blist))) {
1371 			clone_to_tio(clone)->is_duplicate_bio = true;
1372 			__map_bio(clone);
1373 		}
1374 		break;
1375 	}
1376 }
1377 
1378 static void __send_empty_flush(struct clone_info *ci)
1379 {
1380 	unsigned target_nr = 0;
1381 	struct dm_target *ti;
1382 	struct bio flush_bio;
1383 
1384 	/*
1385 	 * Use an on-stack bio for this, it's safe since we don't
1386 	 * need to reference it after submit. It's just used as
1387 	 * the basis for the clone(s).
1388 	 */
1389 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1390 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1391 
1392 	ci->bio = &flush_bio;
1393 	ci->sector_count = 0;
1394 
1395 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1396 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1397 
1398 	bio_uninit(ci->bio);
1399 }
1400 
1401 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1402 					unsigned num_bios)
1403 {
1404 	unsigned len;
1405 
1406 	len = min_t(sector_t, ci->sector_count,
1407 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1408 
1409 	/*
1410 	 * dm_accept_partial_bio cannot be used with duplicate bios,
1411 	 * so update clone_info cursor before __send_duplicate_bios().
1412 	 */
1413 	ci->sector += len;
1414 	ci->sector_count -= len;
1415 
1416 	__send_duplicate_bios(ci, ti, num_bios, &len);
1417 }
1418 
1419 static bool is_abnormal_io(struct bio *bio)
1420 {
1421 	bool r = false;
1422 
1423 	switch (bio_op(bio)) {
1424 	case REQ_OP_DISCARD:
1425 	case REQ_OP_SECURE_ERASE:
1426 	case REQ_OP_WRITE_SAME:
1427 	case REQ_OP_WRITE_ZEROES:
1428 		r = true;
1429 		break;
1430 	}
1431 
1432 	return r;
1433 }
1434 
1435 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1436 				  int *result)
1437 {
1438 	unsigned num_bios = 0;
1439 
1440 	switch (bio_op(ci->bio)) {
1441 	case REQ_OP_DISCARD:
1442 		num_bios = ti->num_discard_bios;
1443 		break;
1444 	case REQ_OP_SECURE_ERASE:
1445 		num_bios = ti->num_secure_erase_bios;
1446 		break;
1447 	case REQ_OP_WRITE_SAME:
1448 		num_bios = ti->num_write_same_bios;
1449 		break;
1450 	case REQ_OP_WRITE_ZEROES:
1451 		num_bios = ti->num_write_zeroes_bios;
1452 		break;
1453 	default:
1454 		return false;
1455 	}
1456 
1457 	/*
1458 	 * Even though the device advertised support for this type of
1459 	 * request, that does not mean every target supports it, and
1460 	 * reconfiguration might also have changed that since the
1461 	 * check was performed.
1462 	 */
1463 	if (!num_bios)
1464 		*result = -EOPNOTSUPP;
1465 	else {
1466 		__send_changing_extent_only(ci, ti, num_bios);
1467 		*result = 0;
1468 	}
1469 	return true;
1470 }
1471 
1472 /*
1473  * Reuse ->bi_private as hlist head for storing all dm_io instances
1474  * associated with this bio, and this bio's bi_private needs to be
1475  * stored in dm_io->data before the reuse.
1476  *
1477  * bio->bi_private is owned by fs or upper layer, so block layer won't
1478  * touch it after splitting. Meantime it won't be changed by anyone after
1479  * bio is submitted. So this reuse is safe.
1480  */
1481 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1482 {
1483 	return (struct hlist_head *)&bio->bi_private;
1484 }
1485 
1486 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1487 {
1488 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1489 
1490 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1491 		bio->bi_opf |= REQ_DM_POLL_LIST;
1492 		/*
1493 		 * Save .bi_private into dm_io, so that we can reuse
1494 		 * .bi_private as hlist head for storing dm_io list
1495 		 */
1496 		io->data = bio->bi_private;
1497 
1498 		INIT_HLIST_HEAD(head);
1499 
1500 		/* tell block layer to poll for completion */
1501 		bio->bi_cookie = ~BLK_QC_T_NONE;
1502 	} else {
1503 		/*
1504 		 * bio recursed due to split, reuse original poll list,
1505 		 * and save bio->bi_private too.
1506 		 */
1507 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1508 	}
1509 
1510 	hlist_add_head(&io->node, head);
1511 }
1512 
1513 /*
1514  * Select the correct strategy for processing a non-flush bio.
1515  */
1516 static int __split_and_process_bio(struct clone_info *ci)
1517 {
1518 	struct bio *clone;
1519 	struct dm_target *ti;
1520 	unsigned len;
1521 	int r;
1522 
1523 	ti = dm_table_find_target(ci->map, ci->sector);
1524 	if (!ti)
1525 		return -EIO;
1526 
1527 	if (__process_abnormal_io(ci, ti, &r))
1528 		return r;
1529 
1530 	/*
1531 	 * Only support bio polling for normal IO, and the target io is
1532 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1533 	 */
1534 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1535 
1536 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1537 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1538 	__map_bio(clone);
1539 
1540 	ci->sector += len;
1541 	ci->sector_count -= len;
1542 
1543 	return 0;
1544 }
1545 
1546 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1547 			    struct dm_table *map, struct bio *bio)
1548 {
1549 	ci->map = map;
1550 	ci->io = alloc_io(md, bio);
1551 	ci->bio = bio;
1552 	ci->submit_as_polled = false;
1553 	ci->sector = bio->bi_iter.bi_sector;
1554 	ci->sector_count = bio_sectors(bio);
1555 
1556 	/* Shouldn't happen but sector_count was being set to 0 so... */
1557 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1558 		ci->sector_count = 0;
1559 }
1560 
1561 /*
1562  * Entry point to split a bio into clones and submit them to the targets.
1563  */
1564 static void dm_split_and_process_bio(struct mapped_device *md,
1565 				     struct dm_table *map, struct bio *bio)
1566 {
1567 	struct clone_info ci;
1568 	struct bio *orig_bio = NULL;
1569 	int error = 0;
1570 
1571 	init_clone_info(&ci, md, map, bio);
1572 
1573 	if (bio->bi_opf & REQ_PREFLUSH) {
1574 		__send_empty_flush(&ci);
1575 		/* dm_io_complete submits any data associated with flush */
1576 		goto out;
1577 	}
1578 
1579 	error = __split_and_process_bio(&ci);
1580 	ci.io->map_task = NULL;
1581 	if (error || !ci.sector_count)
1582 		goto out;
1583 
1584 	/*
1585 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1586 	 * *after* bios already submitted have been completely processed.
1587 	 * We take a clone of the original to store in ci.io->orig_bio to be
1588 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1589 	 * completion handling.
1590 	 */
1591 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1592 			     GFP_NOIO, &md->queue->bio_split);
1593 	bio_chain(orig_bio, bio);
1594 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1595 	submit_bio_noacct(bio);
1596 out:
1597 	if (!orig_bio)
1598 		orig_bio = bio;
1599 	smp_store_release(&ci.io->orig_bio, orig_bio);
1600 	if (dm_io_flagged(ci.io, DM_IO_START_ACCT))
1601 		dm_start_io_acct(ci.io, NULL);
1602 
1603 	/*
1604 	 * Drop the extra reference count for non-POLLED bio, and hold one
1605 	 * reference for POLLED bio, which will be released in dm_poll_bio
1606 	 *
1607 	 * Add every dm_io instance into the hlist_head which is stored in
1608 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1609 	 */
1610 	if (error || !ci.submit_as_polled)
1611 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1612 	else
1613 		dm_queue_poll_io(bio, ci.io);
1614 }
1615 
1616 static void dm_submit_bio(struct bio *bio)
1617 {
1618 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1619 	int srcu_idx;
1620 	struct dm_table *map;
1621 
1622 	map = dm_get_live_table(md, &srcu_idx);
1623 
1624 	/* If suspended, or map not yet available, queue this IO for later */
1625 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1626 	    unlikely(!map)) {
1627 		if (bio->bi_opf & REQ_NOWAIT)
1628 			bio_wouldblock_error(bio);
1629 		else if (bio->bi_opf & REQ_RAHEAD)
1630 			bio_io_error(bio);
1631 		else
1632 			queue_io(md, bio);
1633 		goto out;
1634 	}
1635 
1636 	/*
1637 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1638 	 * otherwise associated queue_limits won't be imposed.
1639 	 */
1640 	if (is_abnormal_io(bio))
1641 		blk_queue_split(&bio);
1642 
1643 	dm_split_and_process_bio(md, map, bio);
1644 out:
1645 	dm_put_live_table(md, srcu_idx);
1646 }
1647 
1648 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1649 			  unsigned int flags)
1650 {
1651 	WARN_ON_ONCE(!io->tio.inside_dm_io);
1652 
1653 	/* don't poll if the mapped io is done */
1654 	if (atomic_read(&io->io_count) > 1)
1655 		bio_poll(&io->tio.clone, iob, flags);
1656 
1657 	/* bio_poll holds the last reference */
1658 	return atomic_read(&io->io_count) == 1;
1659 }
1660 
1661 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1662 		       unsigned int flags)
1663 {
1664 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1665 	struct hlist_head tmp = HLIST_HEAD_INIT;
1666 	struct hlist_node *next;
1667 	struct dm_io *io;
1668 
1669 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1670 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1671 		return 0;
1672 
1673 	WARN_ON_ONCE(hlist_empty(head));
1674 
1675 	hlist_move_list(head, &tmp);
1676 
1677 	/*
1678 	 * Restore .bi_private before possibly completing dm_io.
1679 	 *
1680 	 * bio_poll() is only possible once @bio has been completely
1681 	 * submitted via submit_bio_noacct()'s depth-first submission.
1682 	 * So there is no dm_queue_poll_io() race associated with
1683 	 * clearing REQ_DM_POLL_LIST here.
1684 	 */
1685 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1686 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1687 
1688 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1689 		if (dm_poll_dm_io(io, iob, flags)) {
1690 			hlist_del_init(&io->node);
1691 			/*
1692 			 * clone_endio() has already occurred, so passing
1693 			 * error as 0 here doesn't override io->status
1694 			 */
1695 			dm_io_dec_pending(io, 0);
1696 		}
1697 	}
1698 
1699 	/* Not done? */
1700 	if (!hlist_empty(&tmp)) {
1701 		bio->bi_opf |= REQ_DM_POLL_LIST;
1702 		/* Reset bio->bi_private to dm_io list head */
1703 		hlist_move_list(&tmp, head);
1704 		return 0;
1705 	}
1706 	return 1;
1707 }
1708 
1709 /*-----------------------------------------------------------------
1710  * An IDR is used to keep track of allocated minor numbers.
1711  *---------------------------------------------------------------*/
1712 static void free_minor(int minor)
1713 {
1714 	spin_lock(&_minor_lock);
1715 	idr_remove(&_minor_idr, minor);
1716 	spin_unlock(&_minor_lock);
1717 }
1718 
1719 /*
1720  * See if the device with a specific minor # is free.
1721  */
1722 static int specific_minor(int minor)
1723 {
1724 	int r;
1725 
1726 	if (minor >= (1 << MINORBITS))
1727 		return -EINVAL;
1728 
1729 	idr_preload(GFP_KERNEL);
1730 	spin_lock(&_minor_lock);
1731 
1732 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1733 
1734 	spin_unlock(&_minor_lock);
1735 	idr_preload_end();
1736 	if (r < 0)
1737 		return r == -ENOSPC ? -EBUSY : r;
1738 	return 0;
1739 }
1740 
1741 static int next_free_minor(int *minor)
1742 {
1743 	int r;
1744 
1745 	idr_preload(GFP_KERNEL);
1746 	spin_lock(&_minor_lock);
1747 
1748 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1749 
1750 	spin_unlock(&_minor_lock);
1751 	idr_preload_end();
1752 	if (r < 0)
1753 		return r;
1754 	*minor = r;
1755 	return 0;
1756 }
1757 
1758 static const struct block_device_operations dm_blk_dops;
1759 static const struct block_device_operations dm_rq_blk_dops;
1760 static const struct dax_operations dm_dax_ops;
1761 
1762 static void dm_wq_work(struct work_struct *work);
1763 
1764 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1765 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1766 {
1767 	dm_destroy_crypto_profile(q->crypto_profile);
1768 }
1769 
1770 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1771 
1772 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1773 {
1774 }
1775 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1776 
1777 static void cleanup_mapped_device(struct mapped_device *md)
1778 {
1779 	if (md->wq)
1780 		destroy_workqueue(md->wq);
1781 	bioset_exit(&md->bs);
1782 	bioset_exit(&md->io_bs);
1783 
1784 	if (md->dax_dev) {
1785 		dax_remove_host(md->disk);
1786 		kill_dax(md->dax_dev);
1787 		put_dax(md->dax_dev);
1788 		md->dax_dev = NULL;
1789 	}
1790 
1791 	dm_cleanup_zoned_dev(md);
1792 	if (md->disk) {
1793 		spin_lock(&_minor_lock);
1794 		md->disk->private_data = NULL;
1795 		spin_unlock(&_minor_lock);
1796 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1797 			dm_sysfs_exit(md);
1798 			del_gendisk(md->disk);
1799 		}
1800 		dm_queue_destroy_crypto_profile(md->queue);
1801 		blk_cleanup_disk(md->disk);
1802 	}
1803 
1804 	if (md->pending_io) {
1805 		free_percpu(md->pending_io);
1806 		md->pending_io = NULL;
1807 	}
1808 
1809 	cleanup_srcu_struct(&md->io_barrier);
1810 
1811 	mutex_destroy(&md->suspend_lock);
1812 	mutex_destroy(&md->type_lock);
1813 	mutex_destroy(&md->table_devices_lock);
1814 	mutex_destroy(&md->swap_bios_lock);
1815 
1816 	dm_mq_cleanup_mapped_device(md);
1817 }
1818 
1819 /*
1820  * Allocate and initialise a blank device with a given minor.
1821  */
1822 static struct mapped_device *alloc_dev(int minor)
1823 {
1824 	int r, numa_node_id = dm_get_numa_node();
1825 	struct mapped_device *md;
1826 	void *old_md;
1827 
1828 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1829 	if (!md) {
1830 		DMWARN("unable to allocate device, out of memory.");
1831 		return NULL;
1832 	}
1833 
1834 	if (!try_module_get(THIS_MODULE))
1835 		goto bad_module_get;
1836 
1837 	/* get a minor number for the dev */
1838 	if (minor == DM_ANY_MINOR)
1839 		r = next_free_minor(&minor);
1840 	else
1841 		r = specific_minor(minor);
1842 	if (r < 0)
1843 		goto bad_minor;
1844 
1845 	r = init_srcu_struct(&md->io_barrier);
1846 	if (r < 0)
1847 		goto bad_io_barrier;
1848 
1849 	md->numa_node_id = numa_node_id;
1850 	md->init_tio_pdu = false;
1851 	md->type = DM_TYPE_NONE;
1852 	mutex_init(&md->suspend_lock);
1853 	mutex_init(&md->type_lock);
1854 	mutex_init(&md->table_devices_lock);
1855 	spin_lock_init(&md->deferred_lock);
1856 	atomic_set(&md->holders, 1);
1857 	atomic_set(&md->open_count, 0);
1858 	atomic_set(&md->event_nr, 0);
1859 	atomic_set(&md->uevent_seq, 0);
1860 	INIT_LIST_HEAD(&md->uevent_list);
1861 	INIT_LIST_HEAD(&md->table_devices);
1862 	spin_lock_init(&md->uevent_lock);
1863 
1864 	/*
1865 	 * default to bio-based until DM table is loaded and md->type
1866 	 * established. If request-based table is loaded: blk-mq will
1867 	 * override accordingly.
1868 	 */
1869 	md->disk = blk_alloc_disk(md->numa_node_id);
1870 	if (!md->disk)
1871 		goto bad;
1872 	md->queue = md->disk->queue;
1873 
1874 	init_waitqueue_head(&md->wait);
1875 	INIT_WORK(&md->work, dm_wq_work);
1876 	init_waitqueue_head(&md->eventq);
1877 	init_completion(&md->kobj_holder.completion);
1878 
1879 	md->swap_bios = get_swap_bios();
1880 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1881 	mutex_init(&md->swap_bios_lock);
1882 
1883 	md->disk->major = _major;
1884 	md->disk->first_minor = minor;
1885 	md->disk->minors = 1;
1886 	md->disk->flags |= GENHD_FL_NO_PART;
1887 	md->disk->fops = &dm_blk_dops;
1888 	md->disk->queue = md->queue;
1889 	md->disk->private_data = md;
1890 	sprintf(md->disk->disk_name, "dm-%d", minor);
1891 
1892 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1893 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1894 		if (IS_ERR(md->dax_dev)) {
1895 			md->dax_dev = NULL;
1896 			goto bad;
1897 		}
1898 		set_dax_nocache(md->dax_dev);
1899 		set_dax_nomc(md->dax_dev);
1900 		if (dax_add_host(md->dax_dev, md->disk))
1901 			goto bad;
1902 	}
1903 
1904 	format_dev_t(md->name, MKDEV(_major, minor));
1905 
1906 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1907 	if (!md->wq)
1908 		goto bad;
1909 
1910 	md->pending_io = alloc_percpu(unsigned long);
1911 	if (!md->pending_io)
1912 		goto bad;
1913 
1914 	dm_stats_init(&md->stats);
1915 
1916 	/* Populate the mapping, nobody knows we exist yet */
1917 	spin_lock(&_minor_lock);
1918 	old_md = idr_replace(&_minor_idr, md, minor);
1919 	spin_unlock(&_minor_lock);
1920 
1921 	BUG_ON(old_md != MINOR_ALLOCED);
1922 
1923 	return md;
1924 
1925 bad:
1926 	cleanup_mapped_device(md);
1927 bad_io_barrier:
1928 	free_minor(minor);
1929 bad_minor:
1930 	module_put(THIS_MODULE);
1931 bad_module_get:
1932 	kvfree(md);
1933 	return NULL;
1934 }
1935 
1936 static void unlock_fs(struct mapped_device *md);
1937 
1938 static void free_dev(struct mapped_device *md)
1939 {
1940 	int minor = MINOR(disk_devt(md->disk));
1941 
1942 	unlock_fs(md);
1943 
1944 	cleanup_mapped_device(md);
1945 
1946 	free_table_devices(&md->table_devices);
1947 	dm_stats_cleanup(&md->stats);
1948 	free_minor(minor);
1949 
1950 	module_put(THIS_MODULE);
1951 	kvfree(md);
1952 }
1953 
1954 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1955 {
1956 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1957 	int ret = 0;
1958 
1959 	if (dm_table_bio_based(t)) {
1960 		/*
1961 		 * The md may already have mempools that need changing.
1962 		 * If so, reload bioset because front_pad may have changed
1963 		 * because a different table was loaded.
1964 		 */
1965 		bioset_exit(&md->bs);
1966 		bioset_exit(&md->io_bs);
1967 
1968 	} else if (bioset_initialized(&md->bs)) {
1969 		/*
1970 		 * There's no need to reload with request-based dm
1971 		 * because the size of front_pad doesn't change.
1972 		 * Note for future: If you are to reload bioset,
1973 		 * prep-ed requests in the queue may refer
1974 		 * to bio from the old bioset, so you must walk
1975 		 * through the queue to unprep.
1976 		 */
1977 		goto out;
1978 	}
1979 
1980 	BUG_ON(!p ||
1981 	       bioset_initialized(&md->bs) ||
1982 	       bioset_initialized(&md->io_bs));
1983 
1984 	ret = bioset_init_from_src(&md->bs, &p->bs);
1985 	if (ret)
1986 		goto out;
1987 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1988 	if (ret)
1989 		bioset_exit(&md->bs);
1990 out:
1991 	/* mempool bind completed, no longer need any mempools in the table */
1992 	dm_table_free_md_mempools(t);
1993 	return ret;
1994 }
1995 
1996 /*
1997  * Bind a table to the device.
1998  */
1999 static void event_callback(void *context)
2000 {
2001 	unsigned long flags;
2002 	LIST_HEAD(uevents);
2003 	struct mapped_device *md = (struct mapped_device *) context;
2004 
2005 	spin_lock_irqsave(&md->uevent_lock, flags);
2006 	list_splice_init(&md->uevent_list, &uevents);
2007 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2008 
2009 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2010 
2011 	atomic_inc(&md->event_nr);
2012 	wake_up(&md->eventq);
2013 	dm_issue_global_event();
2014 }
2015 
2016 /*
2017  * Returns old map, which caller must destroy.
2018  */
2019 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2020 			       struct queue_limits *limits)
2021 {
2022 	struct dm_table *old_map;
2023 	sector_t size;
2024 	int ret;
2025 
2026 	lockdep_assert_held(&md->suspend_lock);
2027 
2028 	size = dm_table_get_size(t);
2029 
2030 	/*
2031 	 * Wipe any geometry if the size of the table changed.
2032 	 */
2033 	if (size != dm_get_size(md))
2034 		memset(&md->geometry, 0, sizeof(md->geometry));
2035 
2036 	if (!get_capacity(md->disk))
2037 		set_capacity(md->disk, size);
2038 	else
2039 		set_capacity_and_notify(md->disk, size);
2040 
2041 	dm_table_event_callback(t, event_callback, md);
2042 
2043 	if (dm_table_request_based(t)) {
2044 		/*
2045 		 * Leverage the fact that request-based DM targets are
2046 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2047 		 */
2048 		md->immutable_target = dm_table_get_immutable_target(t);
2049 	}
2050 
2051 	ret = __bind_mempools(md, t);
2052 	if (ret) {
2053 		old_map = ERR_PTR(ret);
2054 		goto out;
2055 	}
2056 
2057 	ret = dm_table_set_restrictions(t, md->queue, limits);
2058 	if (ret) {
2059 		old_map = ERR_PTR(ret);
2060 		goto out;
2061 	}
2062 
2063 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2064 	rcu_assign_pointer(md->map, (void *)t);
2065 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2066 
2067 	if (old_map)
2068 		dm_sync_table(md);
2069 out:
2070 	return old_map;
2071 }
2072 
2073 /*
2074  * Returns unbound table for the caller to free.
2075  */
2076 static struct dm_table *__unbind(struct mapped_device *md)
2077 {
2078 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2079 
2080 	if (!map)
2081 		return NULL;
2082 
2083 	dm_table_event_callback(map, NULL, NULL);
2084 	RCU_INIT_POINTER(md->map, NULL);
2085 	dm_sync_table(md);
2086 
2087 	return map;
2088 }
2089 
2090 /*
2091  * Constructor for a new device.
2092  */
2093 int dm_create(int minor, struct mapped_device **result)
2094 {
2095 	struct mapped_device *md;
2096 
2097 	md = alloc_dev(minor);
2098 	if (!md)
2099 		return -ENXIO;
2100 
2101 	dm_ima_reset_data(md);
2102 
2103 	*result = md;
2104 	return 0;
2105 }
2106 
2107 /*
2108  * Functions to manage md->type.
2109  * All are required to hold md->type_lock.
2110  */
2111 void dm_lock_md_type(struct mapped_device *md)
2112 {
2113 	mutex_lock(&md->type_lock);
2114 }
2115 
2116 void dm_unlock_md_type(struct mapped_device *md)
2117 {
2118 	mutex_unlock(&md->type_lock);
2119 }
2120 
2121 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2122 {
2123 	BUG_ON(!mutex_is_locked(&md->type_lock));
2124 	md->type = type;
2125 }
2126 
2127 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2128 {
2129 	return md->type;
2130 }
2131 
2132 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2133 {
2134 	return md->immutable_target_type;
2135 }
2136 
2137 /*
2138  * The queue_limits are only valid as long as you have a reference
2139  * count on 'md'.
2140  */
2141 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2142 {
2143 	BUG_ON(!atomic_read(&md->holders));
2144 	return &md->queue->limits;
2145 }
2146 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2147 
2148 /*
2149  * Setup the DM device's queue based on md's type
2150  */
2151 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2152 {
2153 	enum dm_queue_mode type = dm_table_get_type(t);
2154 	struct queue_limits limits;
2155 	int r;
2156 
2157 	switch (type) {
2158 	case DM_TYPE_REQUEST_BASED:
2159 		md->disk->fops = &dm_rq_blk_dops;
2160 		r = dm_mq_init_request_queue(md, t);
2161 		if (r) {
2162 			DMERR("Cannot initialize queue for request-based dm mapped device");
2163 			return r;
2164 		}
2165 		break;
2166 	case DM_TYPE_BIO_BASED:
2167 	case DM_TYPE_DAX_BIO_BASED:
2168 		break;
2169 	case DM_TYPE_NONE:
2170 		WARN_ON_ONCE(true);
2171 		break;
2172 	}
2173 
2174 	r = dm_calculate_queue_limits(t, &limits);
2175 	if (r) {
2176 		DMERR("Cannot calculate initial queue limits");
2177 		return r;
2178 	}
2179 	r = dm_table_set_restrictions(t, md->queue, &limits);
2180 	if (r)
2181 		return r;
2182 
2183 	r = add_disk(md->disk);
2184 	if (r)
2185 		return r;
2186 
2187 	r = dm_sysfs_init(md);
2188 	if (r) {
2189 		del_gendisk(md->disk);
2190 		return r;
2191 	}
2192 	md->type = type;
2193 	return 0;
2194 }
2195 
2196 struct mapped_device *dm_get_md(dev_t dev)
2197 {
2198 	struct mapped_device *md;
2199 	unsigned minor = MINOR(dev);
2200 
2201 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2202 		return NULL;
2203 
2204 	spin_lock(&_minor_lock);
2205 
2206 	md = idr_find(&_minor_idr, minor);
2207 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2208 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2209 		md = NULL;
2210 		goto out;
2211 	}
2212 	dm_get(md);
2213 out:
2214 	spin_unlock(&_minor_lock);
2215 
2216 	return md;
2217 }
2218 EXPORT_SYMBOL_GPL(dm_get_md);
2219 
2220 void *dm_get_mdptr(struct mapped_device *md)
2221 {
2222 	return md->interface_ptr;
2223 }
2224 
2225 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2226 {
2227 	md->interface_ptr = ptr;
2228 }
2229 
2230 void dm_get(struct mapped_device *md)
2231 {
2232 	atomic_inc(&md->holders);
2233 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2234 }
2235 
2236 int dm_hold(struct mapped_device *md)
2237 {
2238 	spin_lock(&_minor_lock);
2239 	if (test_bit(DMF_FREEING, &md->flags)) {
2240 		spin_unlock(&_minor_lock);
2241 		return -EBUSY;
2242 	}
2243 	dm_get(md);
2244 	spin_unlock(&_minor_lock);
2245 	return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(dm_hold);
2248 
2249 const char *dm_device_name(struct mapped_device *md)
2250 {
2251 	return md->name;
2252 }
2253 EXPORT_SYMBOL_GPL(dm_device_name);
2254 
2255 static void __dm_destroy(struct mapped_device *md, bool wait)
2256 {
2257 	struct dm_table *map;
2258 	int srcu_idx;
2259 
2260 	might_sleep();
2261 
2262 	spin_lock(&_minor_lock);
2263 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2264 	set_bit(DMF_FREEING, &md->flags);
2265 	spin_unlock(&_minor_lock);
2266 
2267 	blk_set_queue_dying(md->queue);
2268 
2269 	/*
2270 	 * Take suspend_lock so that presuspend and postsuspend methods
2271 	 * do not race with internal suspend.
2272 	 */
2273 	mutex_lock(&md->suspend_lock);
2274 	map = dm_get_live_table(md, &srcu_idx);
2275 	if (!dm_suspended_md(md)) {
2276 		dm_table_presuspend_targets(map);
2277 		set_bit(DMF_SUSPENDED, &md->flags);
2278 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2279 		dm_table_postsuspend_targets(map);
2280 	}
2281 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2282 	dm_put_live_table(md, srcu_idx);
2283 	mutex_unlock(&md->suspend_lock);
2284 
2285 	/*
2286 	 * Rare, but there may be I/O requests still going to complete,
2287 	 * for example.  Wait for all references to disappear.
2288 	 * No one should increment the reference count of the mapped_device,
2289 	 * after the mapped_device state becomes DMF_FREEING.
2290 	 */
2291 	if (wait)
2292 		while (atomic_read(&md->holders))
2293 			msleep(1);
2294 	else if (atomic_read(&md->holders))
2295 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296 		       dm_device_name(md), atomic_read(&md->holders));
2297 
2298 	dm_table_destroy(__unbind(md));
2299 	free_dev(md);
2300 }
2301 
2302 void dm_destroy(struct mapped_device *md)
2303 {
2304 	__dm_destroy(md, true);
2305 }
2306 
2307 void dm_destroy_immediate(struct mapped_device *md)
2308 {
2309 	__dm_destroy(md, false);
2310 }
2311 
2312 void dm_put(struct mapped_device *md)
2313 {
2314 	atomic_dec(&md->holders);
2315 }
2316 EXPORT_SYMBOL_GPL(dm_put);
2317 
2318 static bool dm_in_flight_bios(struct mapped_device *md)
2319 {
2320 	int cpu;
2321 	unsigned long sum = 0;
2322 
2323 	for_each_possible_cpu(cpu)
2324 		sum += *per_cpu_ptr(md->pending_io, cpu);
2325 
2326 	return sum != 0;
2327 }
2328 
2329 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2330 {
2331 	int r = 0;
2332 	DEFINE_WAIT(wait);
2333 
2334 	while (true) {
2335 		prepare_to_wait(&md->wait, &wait, task_state);
2336 
2337 		if (!dm_in_flight_bios(md))
2338 			break;
2339 
2340 		if (signal_pending_state(task_state, current)) {
2341 			r = -EINTR;
2342 			break;
2343 		}
2344 
2345 		io_schedule();
2346 	}
2347 	finish_wait(&md->wait, &wait);
2348 
2349 	smp_rmb();
2350 
2351 	return r;
2352 }
2353 
2354 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2355 {
2356 	int r = 0;
2357 
2358 	if (!queue_is_mq(md->queue))
2359 		return dm_wait_for_bios_completion(md, task_state);
2360 
2361 	while (true) {
2362 		if (!blk_mq_queue_inflight(md->queue))
2363 			break;
2364 
2365 		if (signal_pending_state(task_state, current)) {
2366 			r = -EINTR;
2367 			break;
2368 		}
2369 
2370 		msleep(5);
2371 	}
2372 
2373 	return r;
2374 }
2375 
2376 /*
2377  * Process the deferred bios
2378  */
2379 static void dm_wq_work(struct work_struct *work)
2380 {
2381 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2382 	struct bio *bio;
2383 
2384 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2385 		spin_lock_irq(&md->deferred_lock);
2386 		bio = bio_list_pop(&md->deferred);
2387 		spin_unlock_irq(&md->deferred_lock);
2388 
2389 		if (!bio)
2390 			break;
2391 
2392 		submit_bio_noacct(bio);
2393 	}
2394 }
2395 
2396 static void dm_queue_flush(struct mapped_device *md)
2397 {
2398 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2399 	smp_mb__after_atomic();
2400 	queue_work(md->wq, &md->work);
2401 }
2402 
2403 /*
2404  * Swap in a new table, returning the old one for the caller to destroy.
2405  */
2406 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2407 {
2408 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2409 	struct queue_limits limits;
2410 	int r;
2411 
2412 	mutex_lock(&md->suspend_lock);
2413 
2414 	/* device must be suspended */
2415 	if (!dm_suspended_md(md))
2416 		goto out;
2417 
2418 	/*
2419 	 * If the new table has no data devices, retain the existing limits.
2420 	 * This helps multipath with queue_if_no_path if all paths disappear,
2421 	 * then new I/O is queued based on these limits, and then some paths
2422 	 * reappear.
2423 	 */
2424 	if (dm_table_has_no_data_devices(table)) {
2425 		live_map = dm_get_live_table_fast(md);
2426 		if (live_map)
2427 			limits = md->queue->limits;
2428 		dm_put_live_table_fast(md);
2429 	}
2430 
2431 	if (!live_map) {
2432 		r = dm_calculate_queue_limits(table, &limits);
2433 		if (r) {
2434 			map = ERR_PTR(r);
2435 			goto out;
2436 		}
2437 	}
2438 
2439 	map = __bind(md, table, &limits);
2440 	dm_issue_global_event();
2441 
2442 out:
2443 	mutex_unlock(&md->suspend_lock);
2444 	return map;
2445 }
2446 
2447 /*
2448  * Functions to lock and unlock any filesystem running on the
2449  * device.
2450  */
2451 static int lock_fs(struct mapped_device *md)
2452 {
2453 	int r;
2454 
2455 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2456 
2457 	r = freeze_bdev(md->disk->part0);
2458 	if (!r)
2459 		set_bit(DMF_FROZEN, &md->flags);
2460 	return r;
2461 }
2462 
2463 static void unlock_fs(struct mapped_device *md)
2464 {
2465 	if (!test_bit(DMF_FROZEN, &md->flags))
2466 		return;
2467 	thaw_bdev(md->disk->part0);
2468 	clear_bit(DMF_FROZEN, &md->flags);
2469 }
2470 
2471 /*
2472  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2473  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2474  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2475  *
2476  * If __dm_suspend returns 0, the device is completely quiescent
2477  * now. There is no request-processing activity. All new requests
2478  * are being added to md->deferred list.
2479  */
2480 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2481 			unsigned suspend_flags, unsigned int task_state,
2482 			int dmf_suspended_flag)
2483 {
2484 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2485 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2486 	int r;
2487 
2488 	lockdep_assert_held(&md->suspend_lock);
2489 
2490 	/*
2491 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2492 	 * This flag is cleared before dm_suspend returns.
2493 	 */
2494 	if (noflush)
2495 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2496 	else
2497 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2498 
2499 	/*
2500 	 * This gets reverted if there's an error later and the targets
2501 	 * provide the .presuspend_undo hook.
2502 	 */
2503 	dm_table_presuspend_targets(map);
2504 
2505 	/*
2506 	 * Flush I/O to the device.
2507 	 * Any I/O submitted after lock_fs() may not be flushed.
2508 	 * noflush takes precedence over do_lockfs.
2509 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2510 	 */
2511 	if (!noflush && do_lockfs) {
2512 		r = lock_fs(md);
2513 		if (r) {
2514 			dm_table_presuspend_undo_targets(map);
2515 			return r;
2516 		}
2517 	}
2518 
2519 	/*
2520 	 * Here we must make sure that no processes are submitting requests
2521 	 * to target drivers i.e. no one may be executing
2522 	 * dm_split_and_process_bio from dm_submit_bio.
2523 	 *
2524 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2525 	 * we take the write lock. To prevent any process from reentering
2526 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2527 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2528 	 * flush_workqueue(md->wq).
2529 	 */
2530 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2531 	if (map)
2532 		synchronize_srcu(&md->io_barrier);
2533 
2534 	/*
2535 	 * Stop md->queue before flushing md->wq in case request-based
2536 	 * dm defers requests to md->wq from md->queue.
2537 	 */
2538 	if (dm_request_based(md))
2539 		dm_stop_queue(md->queue);
2540 
2541 	flush_workqueue(md->wq);
2542 
2543 	/*
2544 	 * At this point no more requests are entering target request routines.
2545 	 * We call dm_wait_for_completion to wait for all existing requests
2546 	 * to finish.
2547 	 */
2548 	r = dm_wait_for_completion(md, task_state);
2549 	if (!r)
2550 		set_bit(dmf_suspended_flag, &md->flags);
2551 
2552 	if (noflush)
2553 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 	if (map)
2555 		synchronize_srcu(&md->io_barrier);
2556 
2557 	/* were we interrupted ? */
2558 	if (r < 0) {
2559 		dm_queue_flush(md);
2560 
2561 		if (dm_request_based(md))
2562 			dm_start_queue(md->queue);
2563 
2564 		unlock_fs(md);
2565 		dm_table_presuspend_undo_targets(map);
2566 		/* pushback list is already flushed, so skip flush */
2567 	}
2568 
2569 	return r;
2570 }
2571 
2572 /*
2573  * We need to be able to change a mapping table under a mounted
2574  * filesystem.  For example we might want to move some data in
2575  * the background.  Before the table can be swapped with
2576  * dm_bind_table, dm_suspend must be called to flush any in
2577  * flight bios and ensure that any further io gets deferred.
2578  */
2579 /*
2580  * Suspend mechanism in request-based dm.
2581  *
2582  * 1. Flush all I/Os by lock_fs() if needed.
2583  * 2. Stop dispatching any I/O by stopping the request_queue.
2584  * 3. Wait for all in-flight I/Os to be completed or requeued.
2585  *
2586  * To abort suspend, start the request_queue.
2587  */
2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2589 {
2590 	struct dm_table *map = NULL;
2591 	int r = 0;
2592 
2593 retry:
2594 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2595 
2596 	if (dm_suspended_md(md)) {
2597 		r = -EINVAL;
2598 		goto out_unlock;
2599 	}
2600 
2601 	if (dm_suspended_internally_md(md)) {
2602 		/* already internally suspended, wait for internal resume */
2603 		mutex_unlock(&md->suspend_lock);
2604 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2605 		if (r)
2606 			return r;
2607 		goto retry;
2608 	}
2609 
2610 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2611 
2612 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2613 	if (r)
2614 		goto out_unlock;
2615 
2616 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2617 	dm_table_postsuspend_targets(map);
2618 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2619 
2620 out_unlock:
2621 	mutex_unlock(&md->suspend_lock);
2622 	return r;
2623 }
2624 
2625 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2626 {
2627 	if (map) {
2628 		int r = dm_table_resume_targets(map);
2629 		if (r)
2630 			return r;
2631 	}
2632 
2633 	dm_queue_flush(md);
2634 
2635 	/*
2636 	 * Flushing deferred I/Os must be done after targets are resumed
2637 	 * so that mapping of targets can work correctly.
2638 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2639 	 */
2640 	if (dm_request_based(md))
2641 		dm_start_queue(md->queue);
2642 
2643 	unlock_fs(md);
2644 
2645 	return 0;
2646 }
2647 
2648 int dm_resume(struct mapped_device *md)
2649 {
2650 	int r;
2651 	struct dm_table *map = NULL;
2652 
2653 retry:
2654 	r = -EINVAL;
2655 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656 
2657 	if (!dm_suspended_md(md))
2658 		goto out;
2659 
2660 	if (dm_suspended_internally_md(md)) {
2661 		/* already internally suspended, wait for internal resume */
2662 		mutex_unlock(&md->suspend_lock);
2663 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2664 		if (r)
2665 			return r;
2666 		goto retry;
2667 	}
2668 
2669 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 	if (!map || !dm_table_get_size(map))
2671 		goto out;
2672 
2673 	r = __dm_resume(md, map);
2674 	if (r)
2675 		goto out;
2676 
2677 	clear_bit(DMF_SUSPENDED, &md->flags);
2678 out:
2679 	mutex_unlock(&md->suspend_lock);
2680 
2681 	return r;
2682 }
2683 
2684 /*
2685  * Internal suspend/resume works like userspace-driven suspend. It waits
2686  * until all bios finish and prevents issuing new bios to the target drivers.
2687  * It may be used only from the kernel.
2688  */
2689 
2690 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2691 {
2692 	struct dm_table *map = NULL;
2693 
2694 	lockdep_assert_held(&md->suspend_lock);
2695 
2696 	if (md->internal_suspend_count++)
2697 		return; /* nested internal suspend */
2698 
2699 	if (dm_suspended_md(md)) {
2700 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2701 		return; /* nest suspend */
2702 	}
2703 
2704 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2705 
2706 	/*
2707 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2708 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2709 	 * would require changing .presuspend to return an error -- avoid this
2710 	 * until there is a need for more elaborate variants of internal suspend.
2711 	 */
2712 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2713 			    DMF_SUSPENDED_INTERNALLY);
2714 
2715 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2716 	dm_table_postsuspend_targets(map);
2717 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2718 }
2719 
2720 static void __dm_internal_resume(struct mapped_device *md)
2721 {
2722 	BUG_ON(!md->internal_suspend_count);
2723 
2724 	if (--md->internal_suspend_count)
2725 		return; /* resume from nested internal suspend */
2726 
2727 	if (dm_suspended_md(md))
2728 		goto done; /* resume from nested suspend */
2729 
2730 	/*
2731 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2732 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2733 	 */
2734 	(void) __dm_resume(md, NULL);
2735 
2736 done:
2737 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 	smp_mb__after_atomic();
2739 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2740 }
2741 
2742 void dm_internal_suspend_noflush(struct mapped_device *md)
2743 {
2744 	mutex_lock(&md->suspend_lock);
2745 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2746 	mutex_unlock(&md->suspend_lock);
2747 }
2748 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2749 
2750 void dm_internal_resume(struct mapped_device *md)
2751 {
2752 	mutex_lock(&md->suspend_lock);
2753 	__dm_internal_resume(md);
2754 	mutex_unlock(&md->suspend_lock);
2755 }
2756 EXPORT_SYMBOL_GPL(dm_internal_resume);
2757 
2758 /*
2759  * Fast variants of internal suspend/resume hold md->suspend_lock,
2760  * which prevents interaction with userspace-driven suspend.
2761  */
2762 
2763 void dm_internal_suspend_fast(struct mapped_device *md)
2764 {
2765 	mutex_lock(&md->suspend_lock);
2766 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2767 		return;
2768 
2769 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2770 	synchronize_srcu(&md->io_barrier);
2771 	flush_workqueue(md->wq);
2772 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2773 }
2774 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2775 
2776 void dm_internal_resume_fast(struct mapped_device *md)
2777 {
2778 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2779 		goto done;
2780 
2781 	dm_queue_flush(md);
2782 
2783 done:
2784 	mutex_unlock(&md->suspend_lock);
2785 }
2786 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2787 
2788 /*-----------------------------------------------------------------
2789  * Event notification.
2790  *---------------------------------------------------------------*/
2791 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2792 		       unsigned cookie)
2793 {
2794 	int r;
2795 	unsigned noio_flag;
2796 	char udev_cookie[DM_COOKIE_LENGTH];
2797 	char *envp[] = { udev_cookie, NULL };
2798 
2799 	noio_flag = memalloc_noio_save();
2800 
2801 	if (!cookie)
2802 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2803 	else {
2804 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2805 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2806 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2807 				       action, envp);
2808 	}
2809 
2810 	memalloc_noio_restore(noio_flag);
2811 
2812 	return r;
2813 }
2814 
2815 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2816 {
2817 	return atomic_add_return(1, &md->uevent_seq);
2818 }
2819 
2820 uint32_t dm_get_event_nr(struct mapped_device *md)
2821 {
2822 	return atomic_read(&md->event_nr);
2823 }
2824 
2825 int dm_wait_event(struct mapped_device *md, int event_nr)
2826 {
2827 	return wait_event_interruptible(md->eventq,
2828 			(event_nr != atomic_read(&md->event_nr)));
2829 }
2830 
2831 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2832 {
2833 	unsigned long flags;
2834 
2835 	spin_lock_irqsave(&md->uevent_lock, flags);
2836 	list_add(elist, &md->uevent_list);
2837 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2838 }
2839 
2840 /*
2841  * The gendisk is only valid as long as you have a reference
2842  * count on 'md'.
2843  */
2844 struct gendisk *dm_disk(struct mapped_device *md)
2845 {
2846 	return md->disk;
2847 }
2848 EXPORT_SYMBOL_GPL(dm_disk);
2849 
2850 struct kobject *dm_kobject(struct mapped_device *md)
2851 {
2852 	return &md->kobj_holder.kobj;
2853 }
2854 
2855 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2856 {
2857 	struct mapped_device *md;
2858 
2859 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2860 
2861 	spin_lock(&_minor_lock);
2862 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2863 		md = NULL;
2864 		goto out;
2865 	}
2866 	dm_get(md);
2867 out:
2868 	spin_unlock(&_minor_lock);
2869 
2870 	return md;
2871 }
2872 
2873 int dm_suspended_md(struct mapped_device *md)
2874 {
2875 	return test_bit(DMF_SUSPENDED, &md->flags);
2876 }
2877 
2878 static int dm_post_suspending_md(struct mapped_device *md)
2879 {
2880 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2881 }
2882 
2883 int dm_suspended_internally_md(struct mapped_device *md)
2884 {
2885 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2886 }
2887 
2888 int dm_test_deferred_remove_flag(struct mapped_device *md)
2889 {
2890 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2891 }
2892 
2893 int dm_suspended(struct dm_target *ti)
2894 {
2895 	return dm_suspended_md(ti->table->md);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_suspended);
2898 
2899 int dm_post_suspending(struct dm_target *ti)
2900 {
2901 	return dm_post_suspending_md(ti->table->md);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_post_suspending);
2904 
2905 int dm_noflush_suspending(struct dm_target *ti)
2906 {
2907 	return __noflush_suspending(ti->table->md);
2908 }
2909 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2910 
2911 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2912 					    unsigned integrity, unsigned per_io_data_size,
2913 					    unsigned min_pool_size)
2914 {
2915 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2916 	unsigned int pool_size = 0;
2917 	unsigned int front_pad, io_front_pad;
2918 	int ret;
2919 
2920 	if (!pools)
2921 		return NULL;
2922 
2923 	switch (type) {
2924 	case DM_TYPE_BIO_BASED:
2925 	case DM_TYPE_DAX_BIO_BASED:
2926 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2928 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2929 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2930 		if (ret)
2931 			goto out;
2932 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2933 			goto out;
2934 		break;
2935 	case DM_TYPE_REQUEST_BASED:
2936 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2939 		break;
2940 	default:
2941 		BUG();
2942 	}
2943 
2944 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2945 	if (ret)
2946 		goto out;
2947 
2948 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2949 		goto out;
2950 
2951 	return pools;
2952 
2953 out:
2954 	dm_free_md_mempools(pools);
2955 
2956 	return NULL;
2957 }
2958 
2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2960 {
2961 	if (!pools)
2962 		return;
2963 
2964 	bioset_exit(&pools->bs);
2965 	bioset_exit(&pools->io_bs);
2966 
2967 	kfree(pools);
2968 }
2969 
2970 struct dm_pr {
2971 	u64	old_key;
2972 	u64	new_key;
2973 	u32	flags;
2974 	bool	fail_early;
2975 };
2976 
2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2978 		      void *data)
2979 {
2980 	struct mapped_device *md = bdev->bd_disk->private_data;
2981 	struct dm_table *table;
2982 	struct dm_target *ti;
2983 	int ret = -ENOTTY, srcu_idx;
2984 
2985 	table = dm_get_live_table(md, &srcu_idx);
2986 	if (!table || !dm_table_get_size(table))
2987 		goto out;
2988 
2989 	/* We only support devices that have a single target */
2990 	if (dm_table_get_num_targets(table) != 1)
2991 		goto out;
2992 	ti = dm_table_get_target(table, 0);
2993 
2994 	ret = -EINVAL;
2995 	if (!ti->type->iterate_devices)
2996 		goto out;
2997 
2998 	ret = ti->type->iterate_devices(ti, fn, data);
2999 out:
3000 	dm_put_live_table(md, srcu_idx);
3001 	return ret;
3002 }
3003 
3004 /*
3005  * For register / unregister we need to manually call out to every path.
3006  */
3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 			    sector_t start, sector_t len, void *data)
3009 {
3010 	struct dm_pr *pr = data;
3011 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3012 
3013 	if (!ops || !ops->pr_register)
3014 		return -EOPNOTSUPP;
3015 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3016 }
3017 
3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3019 			  u32 flags)
3020 {
3021 	struct dm_pr pr = {
3022 		.old_key	= old_key,
3023 		.new_key	= new_key,
3024 		.flags		= flags,
3025 		.fail_early	= true,
3026 	};
3027 	int ret;
3028 
3029 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 	if (ret && new_key) {
3031 		/* unregister all paths if we failed to register any path */
3032 		pr.old_key = new_key;
3033 		pr.new_key = 0;
3034 		pr.flags = 0;
3035 		pr.fail_early = false;
3036 		dm_call_pr(bdev, __dm_pr_register, &pr);
3037 	}
3038 
3039 	return ret;
3040 }
3041 
3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3043 			 u32 flags)
3044 {
3045 	struct mapped_device *md = bdev->bd_disk->private_data;
3046 	const struct pr_ops *ops;
3047 	int r, srcu_idx;
3048 
3049 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3050 	if (r < 0)
3051 		goto out;
3052 
3053 	ops = bdev->bd_disk->fops->pr_ops;
3054 	if (ops && ops->pr_reserve)
3055 		r = ops->pr_reserve(bdev, key, type, flags);
3056 	else
3057 		r = -EOPNOTSUPP;
3058 out:
3059 	dm_unprepare_ioctl(md, srcu_idx);
3060 	return r;
3061 }
3062 
3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3064 {
3065 	struct mapped_device *md = bdev->bd_disk->private_data;
3066 	const struct pr_ops *ops;
3067 	int r, srcu_idx;
3068 
3069 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 	if (r < 0)
3071 		goto out;
3072 
3073 	ops = bdev->bd_disk->fops->pr_ops;
3074 	if (ops && ops->pr_release)
3075 		r = ops->pr_release(bdev, key, type);
3076 	else
3077 		r = -EOPNOTSUPP;
3078 out:
3079 	dm_unprepare_ioctl(md, srcu_idx);
3080 	return r;
3081 }
3082 
3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 			 enum pr_type type, bool abort)
3085 {
3086 	struct mapped_device *md = bdev->bd_disk->private_data;
3087 	const struct pr_ops *ops;
3088 	int r, srcu_idx;
3089 
3090 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3091 	if (r < 0)
3092 		goto out;
3093 
3094 	ops = bdev->bd_disk->fops->pr_ops;
3095 	if (ops && ops->pr_preempt)
3096 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3097 	else
3098 		r = -EOPNOTSUPP;
3099 out:
3100 	dm_unprepare_ioctl(md, srcu_idx);
3101 	return r;
3102 }
3103 
3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3105 {
3106 	struct mapped_device *md = bdev->bd_disk->private_data;
3107 	const struct pr_ops *ops;
3108 	int r, srcu_idx;
3109 
3110 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 	if (r < 0)
3112 		goto out;
3113 
3114 	ops = bdev->bd_disk->fops->pr_ops;
3115 	if (ops && ops->pr_clear)
3116 		r = ops->pr_clear(bdev, key);
3117 	else
3118 		r = -EOPNOTSUPP;
3119 out:
3120 	dm_unprepare_ioctl(md, srcu_idx);
3121 	return r;
3122 }
3123 
3124 static const struct pr_ops dm_pr_ops = {
3125 	.pr_register	= dm_pr_register,
3126 	.pr_reserve	= dm_pr_reserve,
3127 	.pr_release	= dm_pr_release,
3128 	.pr_preempt	= dm_pr_preempt,
3129 	.pr_clear	= dm_pr_clear,
3130 };
3131 
3132 static const struct block_device_operations dm_blk_dops = {
3133 	.submit_bio = dm_submit_bio,
3134 	.poll_bio = dm_poll_bio,
3135 	.open = dm_blk_open,
3136 	.release = dm_blk_close,
3137 	.ioctl = dm_blk_ioctl,
3138 	.getgeo = dm_blk_getgeo,
3139 	.report_zones = dm_blk_report_zones,
3140 	.pr_ops = &dm_pr_ops,
3141 	.owner = THIS_MODULE
3142 };
3143 
3144 static const struct block_device_operations dm_rq_blk_dops = {
3145 	.open = dm_blk_open,
3146 	.release = dm_blk_close,
3147 	.ioctl = dm_blk_ioctl,
3148 	.getgeo = dm_blk_getgeo,
3149 	.pr_ops = &dm_pr_ops,
3150 	.owner = THIS_MODULE
3151 };
3152 
3153 static const struct dax_operations dm_dax_ops = {
3154 	.direct_access = dm_dax_direct_access,
3155 	.zero_page_range = dm_dax_zero_page_range,
3156 };
3157 
3158 /*
3159  * module hooks
3160  */
3161 module_init(dm_init);
3162 module_exit(dm_exit);
3163 
3164 module_param(major, uint, 0);
3165 MODULE_PARM_DESC(major, "The major number of the device mapper");
3166 
3167 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3168 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3169 
3170 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3171 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3172 
3173 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3174 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3175 
3176 MODULE_DESCRIPTION(DM_NAME " driver");
3177 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3178 MODULE_LICENSE("GPL");
3179