xref: /openbmc/linux/drivers/md/dm.c (revision 7e0d574f2683a2346c978613a72ff07afc89b17a)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 #include <linux/wait.h>
24 #include <linux/pr.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 
54 static void do_deferred_remove(struct work_struct *w);
55 
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 
58 static struct workqueue_struct *deferred_remove_workqueue;
59 
60 /*
61  * One of these is allocated per bio.
62  */
63 struct dm_io {
64 	struct mapped_device *md;
65 	int error;
66 	atomic_t io_count;
67 	struct bio *bio;
68 	unsigned long start_time;
69 	spinlock_t endio_lock;
70 	struct dm_stats_aux stats_aux;
71 };
72 
73 #define MINOR_ALLOCED ((void *)-1)
74 
75 /*
76  * Bits for the md->flags field.
77  */
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
86 
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
89 
90 /*
91  * For mempools pre-allocation at the table loading time.
92  */
93 struct dm_md_mempools {
94 	mempool_t *io_pool;
95 	struct bio_set *bs;
96 };
97 
98 struct table_device {
99 	struct list_head list;
100 	atomic_t count;
101 	struct dm_dev dm_dev;
102 };
103 
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107 
108 /*
109  * Bio-based DM's mempools' reserved IOs set by the user.
110  */
111 #define RESERVED_BIO_BASED_IOS		16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113 
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 	int param = ACCESS_ONCE(*module_param);
117 	int modified_param = 0;
118 	bool modified = true;
119 
120 	if (param < min)
121 		modified_param = min;
122 	else if (param > max)
123 		modified_param = max;
124 	else
125 		modified = false;
126 
127 	if (modified) {
128 		(void)cmpxchg(module_param, param, modified_param);
129 		param = modified_param;
130 	}
131 
132 	return param;
133 }
134 
135 unsigned __dm_get_module_param(unsigned *module_param,
136 			       unsigned def, unsigned max)
137 {
138 	unsigned param = ACCESS_ONCE(*module_param);
139 	unsigned modified_param = 0;
140 
141 	if (!param)
142 		modified_param = def;
143 	else if (param > max)
144 		modified_param = max;
145 
146 	if (modified_param) {
147 		(void)cmpxchg(module_param, param, modified_param);
148 		param = modified_param;
149 	}
150 
151 	return param;
152 }
153 
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 	return __dm_get_module_param(&reserved_bio_based_ios,
157 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160 
161 static unsigned dm_get_numa_node(void)
162 {
163 	return __dm_get_module_param_int(&dm_numa_node,
164 					 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166 
167 static int __init local_init(void)
168 {
169 	int r = -ENOMEM;
170 
171 	/* allocate a slab for the dm_ios */
172 	_io_cache = KMEM_CACHE(dm_io, 0);
173 	if (!_io_cache)
174 		return r;
175 
176 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 	if (!_rq_tio_cache)
178 		goto out_free_io_cache;
179 
180 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 				      __alignof__(struct request), 0, NULL);
182 	if (!_rq_cache)
183 		goto out_free_rq_tio_cache;
184 
185 	r = dm_uevent_init();
186 	if (r)
187 		goto out_free_rq_cache;
188 
189 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 	if (!deferred_remove_workqueue) {
191 		r = -ENOMEM;
192 		goto out_uevent_exit;
193 	}
194 
195 	_major = major;
196 	r = register_blkdev(_major, _name);
197 	if (r < 0)
198 		goto out_free_workqueue;
199 
200 	if (!_major)
201 		_major = r;
202 
203 	return 0;
204 
205 out_free_workqueue:
206 	destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 	dm_uevent_exit();
209 out_free_rq_cache:
210 	kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 	kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 	kmem_cache_destroy(_io_cache);
215 
216 	return r;
217 }
218 
219 static void local_exit(void)
220 {
221 	flush_scheduled_work();
222 	destroy_workqueue(deferred_remove_workqueue);
223 
224 	kmem_cache_destroy(_rq_cache);
225 	kmem_cache_destroy(_rq_tio_cache);
226 	kmem_cache_destroy(_io_cache);
227 	unregister_blkdev(_major, _name);
228 	dm_uevent_exit();
229 
230 	_major = 0;
231 
232 	DMINFO("cleaned up");
233 }
234 
235 static int (*_inits[])(void) __initdata = {
236 	local_init,
237 	dm_target_init,
238 	dm_linear_init,
239 	dm_stripe_init,
240 	dm_io_init,
241 	dm_kcopyd_init,
242 	dm_interface_init,
243 	dm_statistics_init,
244 };
245 
246 static void (*_exits[])(void) = {
247 	local_exit,
248 	dm_target_exit,
249 	dm_linear_exit,
250 	dm_stripe_exit,
251 	dm_io_exit,
252 	dm_kcopyd_exit,
253 	dm_interface_exit,
254 	dm_statistics_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 
285 	/*
286 	 * Should be empty by this point.
287 	 */
288 	idr_destroy(&_minor_idr);
289 }
290 
291 /*
292  * Block device functions
293  */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 	return test_bit(DMF_DELETING, &md->flags);
297 }
298 
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 	struct mapped_device *md;
302 
303 	spin_lock(&_minor_lock);
304 
305 	md = bdev->bd_disk->private_data;
306 	if (!md)
307 		goto out;
308 
309 	if (test_bit(DMF_FREEING, &md->flags) ||
310 	    dm_deleting_md(md)) {
311 		md = NULL;
312 		goto out;
313 	}
314 
315 	dm_get(md);
316 	atomic_inc(&md->open_count);
317 out:
318 	spin_unlock(&_minor_lock);
319 
320 	return md ? 0 : -ENXIO;
321 }
322 
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 	struct mapped_device *md;
326 
327 	spin_lock(&_minor_lock);
328 
329 	md = disk->private_data;
330 	if (WARN_ON(!md))
331 		goto out;
332 
333 	if (atomic_dec_and_test(&md->open_count) &&
334 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
336 
337 	dm_put(md);
338 out:
339 	spin_unlock(&_minor_lock);
340 }
341 
342 int dm_open_count(struct mapped_device *md)
343 {
344 	return atomic_read(&md->open_count);
345 }
346 
347 /*
348  * Guarantees nothing is using the device before it's deleted.
349  */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 	int r = 0;
353 
354 	spin_lock(&_minor_lock);
355 
356 	if (dm_open_count(md)) {
357 		r = -EBUSY;
358 		if (mark_deferred)
359 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 		r = -EEXIST;
362 	else
363 		set_bit(DMF_DELETING, &md->flags);
364 
365 	spin_unlock(&_minor_lock);
366 
367 	return r;
368 }
369 
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (test_bit(DMF_DELETING, &md->flags))
377 		r = -EBUSY;
378 	else
379 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 
381 	spin_unlock(&_minor_lock);
382 
383 	return r;
384 }
385 
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 	dm_deferred_remove();
389 }
390 
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 	return get_capacity(md->disk);
394 }
395 
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 	return md->queue;
399 }
400 
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 	return &md->stats;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 				  struct block_device **bdev,
415 				  fmode_t *mode)
416 {
417 	struct dm_target *tgt;
418 	struct dm_table *map;
419 	int srcu_idx, r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, &srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		goto out;
426 
427 	/* We only support devices that have a single target */
428 	if (dm_table_get_num_targets(map) != 1)
429 		goto out;
430 
431 	tgt = dm_table_get_target(map, 0);
432 	if (!tgt->type->prepare_ioctl)
433 		goto out;
434 
435 	if (dm_suspended_md(md)) {
436 		r = -EAGAIN;
437 		goto out;
438 	}
439 
440 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 	if (r < 0)
442 		goto out;
443 
444 	bdgrab(*bdev);
445 	dm_put_live_table(md, srcu_idx);
446 	return r;
447 
448 out:
449 	dm_put_live_table(md, srcu_idx);
450 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 		msleep(10);
452 		goto retry;
453 	}
454 	return r;
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r;
462 
463 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 	if (r < 0)
465 		return r;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMWARN_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
482 out:
483 	bdput(bdev);
484 	return r;
485 }
486 
487 static struct dm_io *alloc_io(struct mapped_device *md)
488 {
489 	return mempool_alloc(md->io_pool, GFP_NOIO);
490 }
491 
492 static void free_io(struct mapped_device *md, struct dm_io *io)
493 {
494 	mempool_free(io, md->io_pool);
495 }
496 
497 static void free_tio(struct dm_target_io *tio)
498 {
499 	bio_put(&tio->clone);
500 }
501 
502 int md_in_flight(struct mapped_device *md)
503 {
504 	return atomic_read(&md->pending[READ]) +
505 	       atomic_read(&md->pending[WRITE]);
506 }
507 
508 static void start_io_acct(struct dm_io *io)
509 {
510 	struct mapped_device *md = io->md;
511 	struct bio *bio = io->bio;
512 	int cpu;
513 	int rw = bio_data_dir(bio);
514 
515 	io->start_time = jiffies;
516 
517 	cpu = part_stat_lock();
518 	part_round_stats(cpu, &dm_disk(md)->part0);
519 	part_stat_unlock();
520 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
521 		atomic_inc_return(&md->pending[rw]));
522 
523 	if (unlikely(dm_stats_used(&md->stats)))
524 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
525 				    bio->bi_iter.bi_sector, bio_sectors(bio),
526 				    false, 0, &io->stats_aux);
527 }
528 
529 static void end_io_acct(struct dm_io *io)
530 {
531 	struct mapped_device *md = io->md;
532 	struct bio *bio = io->bio;
533 	unsigned long duration = jiffies - io->start_time;
534 	int pending;
535 	int rw = bio_data_dir(bio);
536 
537 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538 
539 	if (unlikely(dm_stats_used(&md->stats)))
540 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
541 				    bio->bi_iter.bi_sector, bio_sectors(bio),
542 				    true, duration, &io->stats_aux);
543 
544 	/*
545 	 * After this is decremented the bio must not be touched if it is
546 	 * a flush.
547 	 */
548 	pending = atomic_dec_return(&md->pending[rw]);
549 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
550 	pending += atomic_read(&md->pending[rw^0x1]);
551 
552 	/* nudge anyone waiting on suspend queue */
553 	if (!pending)
554 		wake_up(&md->wait);
555 }
556 
557 /*
558  * Add the bio to the list of deferred io.
559  */
560 static void queue_io(struct mapped_device *md, struct bio *bio)
561 {
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&md->deferred_lock, flags);
565 	bio_list_add(&md->deferred, bio);
566 	spin_unlock_irqrestore(&md->deferred_lock, flags);
567 	queue_work(md->wq, &md->work);
568 }
569 
570 /*
571  * Everyone (including functions in this file), should use this
572  * function to access the md->map field, and make sure they call
573  * dm_put_live_table() when finished.
574  */
575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 {
577 	*srcu_idx = srcu_read_lock(&md->io_barrier);
578 
579 	return srcu_dereference(md->map, &md->io_barrier);
580 }
581 
582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 {
584 	srcu_read_unlock(&md->io_barrier, srcu_idx);
585 }
586 
587 void dm_sync_table(struct mapped_device *md)
588 {
589 	synchronize_srcu(&md->io_barrier);
590 	synchronize_rcu_expedited();
591 }
592 
593 /*
594  * A fast alternative to dm_get_live_table/dm_put_live_table.
595  * The caller must not block between these two functions.
596  */
597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
598 {
599 	rcu_read_lock();
600 	return rcu_dereference(md->map);
601 }
602 
603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
604 {
605 	rcu_read_unlock();
606 }
607 
608 /*
609  * Open a table device so we can use it as a map destination.
610  */
611 static int open_table_device(struct table_device *td, dev_t dev,
612 			     struct mapped_device *md)
613 {
614 	static char *_claim_ptr = "I belong to device-mapper";
615 	struct block_device *bdev;
616 
617 	int r;
618 
619 	BUG_ON(td->dm_dev.bdev);
620 
621 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 	if (IS_ERR(bdev))
623 		return PTR_ERR(bdev);
624 
625 	r = bd_link_disk_holder(bdev, dm_disk(md));
626 	if (r) {
627 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
628 		return r;
629 	}
630 
631 	td->dm_dev.bdev = bdev;
632 	return 0;
633 }
634 
635 /*
636  * Close a table device that we've been using.
637  */
638 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 {
640 	if (!td->dm_dev.bdev)
641 		return;
642 
643 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
644 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
645 	td->dm_dev.bdev = NULL;
646 }
647 
648 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 					      fmode_t mode) {
650 	struct table_device *td;
651 
652 	list_for_each_entry(td, l, list)
653 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
654 			return td;
655 
656 	return NULL;
657 }
658 
659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
660 			struct dm_dev **result) {
661 	int r;
662 	struct table_device *td;
663 
664 	mutex_lock(&md->table_devices_lock);
665 	td = find_table_device(&md->table_devices, dev, mode);
666 	if (!td) {
667 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 		if (!td) {
669 			mutex_unlock(&md->table_devices_lock);
670 			return -ENOMEM;
671 		}
672 
673 		td->dm_dev.mode = mode;
674 		td->dm_dev.bdev = NULL;
675 
676 		if ((r = open_table_device(td, dev, md))) {
677 			mutex_unlock(&md->table_devices_lock);
678 			kfree(td);
679 			return r;
680 		}
681 
682 		format_dev_t(td->dm_dev.name, dev);
683 
684 		atomic_set(&td->count, 0);
685 		list_add(&td->list, &md->table_devices);
686 	}
687 	atomic_inc(&td->count);
688 	mutex_unlock(&md->table_devices_lock);
689 
690 	*result = &td->dm_dev;
691 	return 0;
692 }
693 EXPORT_SYMBOL_GPL(dm_get_table_device);
694 
695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 {
697 	struct table_device *td = container_of(d, struct table_device, dm_dev);
698 
699 	mutex_lock(&md->table_devices_lock);
700 	if (atomic_dec_and_test(&td->count)) {
701 		close_table_device(td, md);
702 		list_del(&td->list);
703 		kfree(td);
704 	}
705 	mutex_unlock(&md->table_devices_lock);
706 }
707 EXPORT_SYMBOL(dm_put_table_device);
708 
709 static void free_table_devices(struct list_head *devices)
710 {
711 	struct list_head *tmp, *next;
712 
713 	list_for_each_safe(tmp, next, devices) {
714 		struct table_device *td = list_entry(tmp, struct table_device, list);
715 
716 		DMWARN("dm_destroy: %s still exists with %d references",
717 		       td->dm_dev.name, atomic_read(&td->count));
718 		kfree(td);
719 	}
720 }
721 
722 /*
723  * Get the geometry associated with a dm device
724  */
725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
726 {
727 	*geo = md->geometry;
728 
729 	return 0;
730 }
731 
732 /*
733  * Set the geometry of a device.
734  */
735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 {
737 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738 
739 	if (geo->start > sz) {
740 		DMWARN("Start sector is beyond the geometry limits.");
741 		return -EINVAL;
742 	}
743 
744 	md->geometry = *geo;
745 
746 	return 0;
747 }
748 
749 /*-----------------------------------------------------------------
750  * CRUD START:
751  *   A more elegant soln is in the works that uses the queue
752  *   merge fn, unfortunately there are a couple of changes to
753  *   the block layer that I want to make for this.  So in the
754  *   interests of getting something for people to use I give
755  *   you this clearly demarcated crap.
756  *---------------------------------------------------------------*/
757 
758 static int __noflush_suspending(struct mapped_device *md)
759 {
760 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
761 }
762 
763 /*
764  * Decrements the number of outstanding ios that a bio has been
765  * cloned into, completing the original io if necc.
766  */
767 static void dec_pending(struct dm_io *io, int error)
768 {
769 	unsigned long flags;
770 	int io_error;
771 	struct bio *bio;
772 	struct mapped_device *md = io->md;
773 
774 	/* Push-back supersedes any I/O errors */
775 	if (unlikely(error)) {
776 		spin_lock_irqsave(&io->endio_lock, flags);
777 		if (!(io->error > 0 && __noflush_suspending(md)))
778 			io->error = error;
779 		spin_unlock_irqrestore(&io->endio_lock, flags);
780 	}
781 
782 	if (atomic_dec_and_test(&io->io_count)) {
783 		if (io->error == DM_ENDIO_REQUEUE) {
784 			/*
785 			 * Target requested pushing back the I/O.
786 			 */
787 			spin_lock_irqsave(&md->deferred_lock, flags);
788 			if (__noflush_suspending(md))
789 				bio_list_add_head(&md->deferred, io->bio);
790 			else
791 				/* noflush suspend was interrupted. */
792 				io->error = -EIO;
793 			spin_unlock_irqrestore(&md->deferred_lock, flags);
794 		}
795 
796 		io_error = io->error;
797 		bio = io->bio;
798 		end_io_acct(io);
799 		free_io(md, io);
800 
801 		if (io_error == DM_ENDIO_REQUEUE)
802 			return;
803 
804 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 			/*
806 			 * Preflush done for flush with data, reissue
807 			 * without REQ_PREFLUSH.
808 			 */
809 			bio->bi_opf &= ~REQ_PREFLUSH;
810 			queue_io(md, bio);
811 		} else {
812 			/* done with normal IO or empty flush */
813 			trace_block_bio_complete(md->queue, bio, io_error);
814 			bio->bi_error = io_error;
815 			bio_endio(bio);
816 		}
817 	}
818 }
819 
820 void disable_write_same(struct mapped_device *md)
821 {
822 	struct queue_limits *limits = dm_get_queue_limits(md);
823 
824 	/* device doesn't really support WRITE SAME, disable it */
825 	limits->max_write_same_sectors = 0;
826 }
827 
828 static void clone_endio(struct bio *bio)
829 {
830 	int error = bio->bi_error;
831 	int r = error;
832 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
833 	struct dm_io *io = tio->io;
834 	struct mapped_device *md = tio->io->md;
835 	dm_endio_fn endio = tio->ti->type->end_io;
836 
837 	if (endio) {
838 		r = endio(tio->ti, bio, error);
839 		if (r < 0 || r == DM_ENDIO_REQUEUE)
840 			/*
841 			 * error and requeue request are handled
842 			 * in dec_pending().
843 			 */
844 			error = r;
845 		else if (r == DM_ENDIO_INCOMPLETE)
846 			/* The target will handle the io */
847 			return;
848 		else if (r) {
849 			DMWARN("unimplemented target endio return value: %d", r);
850 			BUG();
851 		}
852 	}
853 
854 	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
855 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
856 		disable_write_same(md);
857 
858 	free_tio(tio);
859 	dec_pending(io, error);
860 }
861 
862 /*
863  * Return maximum size of I/O possible at the supplied sector up to the current
864  * target boundary.
865  */
866 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
867 {
868 	sector_t target_offset = dm_target_offset(ti, sector);
869 
870 	return ti->len - target_offset;
871 }
872 
873 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
874 {
875 	sector_t len = max_io_len_target_boundary(sector, ti);
876 	sector_t offset, max_len;
877 
878 	/*
879 	 * Does the target need to split even further?
880 	 */
881 	if (ti->max_io_len) {
882 		offset = dm_target_offset(ti, sector);
883 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
884 			max_len = sector_div(offset, ti->max_io_len);
885 		else
886 			max_len = offset & (ti->max_io_len - 1);
887 		max_len = ti->max_io_len - max_len;
888 
889 		if (len > max_len)
890 			len = max_len;
891 	}
892 
893 	return len;
894 }
895 
896 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
897 {
898 	if (len > UINT_MAX) {
899 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
900 		      (unsigned long long)len, UINT_MAX);
901 		ti->error = "Maximum size of target IO is too large";
902 		return -EINVAL;
903 	}
904 
905 	ti->max_io_len = (uint32_t) len;
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
910 
911 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
912 				 void **kaddr, pfn_t *pfn, long size)
913 {
914 	struct mapped_device *md = bdev->bd_disk->private_data;
915 	struct dm_table *map;
916 	struct dm_target *ti;
917 	int srcu_idx;
918 	long len, ret = -EIO;
919 
920 	map = dm_get_live_table(md, &srcu_idx);
921 	if (!map)
922 		goto out;
923 
924 	ti = dm_table_find_target(map, sector);
925 	if (!dm_target_is_valid(ti))
926 		goto out;
927 
928 	len = max_io_len(sector, ti) << SECTOR_SHIFT;
929 	size = min(len, size);
930 
931 	if (ti->type->direct_access)
932 		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
933 out:
934 	dm_put_live_table(md, srcu_idx);
935 	return min(ret, size);
936 }
937 
938 /*
939  * A target may call dm_accept_partial_bio only from the map routine.  It is
940  * allowed for all bio types except REQ_PREFLUSH.
941  *
942  * dm_accept_partial_bio informs the dm that the target only wants to process
943  * additional n_sectors sectors of the bio and the rest of the data should be
944  * sent in a next bio.
945  *
946  * A diagram that explains the arithmetics:
947  * +--------------------+---------------+-------+
948  * |         1          |       2       |   3   |
949  * +--------------------+---------------+-------+
950  *
951  * <-------------- *tio->len_ptr --------------->
952  *                      <------- bi_size ------->
953  *                      <-- n_sectors -->
954  *
955  * Region 1 was already iterated over with bio_advance or similar function.
956  *	(it may be empty if the target doesn't use bio_advance)
957  * Region 2 is the remaining bio size that the target wants to process.
958  *	(it may be empty if region 1 is non-empty, although there is no reason
959  *	 to make it empty)
960  * The target requires that region 3 is to be sent in the next bio.
961  *
962  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
963  * the partially processed part (the sum of regions 1+2) must be the same for all
964  * copies of the bio.
965  */
966 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
967 {
968 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
969 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
970 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
971 	BUG_ON(bi_size > *tio->len_ptr);
972 	BUG_ON(n_sectors > bi_size);
973 	*tio->len_ptr -= bi_size - n_sectors;
974 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
975 }
976 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
977 
978 /*
979  * Flush current->bio_list when the target map method blocks.
980  * This fixes deadlocks in snapshot and possibly in other targets.
981  */
982 struct dm_offload {
983 	struct blk_plug plug;
984 	struct blk_plug_cb cb;
985 };
986 
987 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
988 {
989 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
990 	struct bio_list list;
991 	struct bio *bio;
992 
993 	INIT_LIST_HEAD(&o->cb.list);
994 
995 	if (unlikely(!current->bio_list))
996 		return;
997 
998 	list = *current->bio_list;
999 	bio_list_init(current->bio_list);
1000 
1001 	while ((bio = bio_list_pop(&list))) {
1002 		struct bio_set *bs = bio->bi_pool;
1003 		if (unlikely(!bs) || bs == fs_bio_set) {
1004 			bio_list_add(current->bio_list, bio);
1005 			continue;
1006 		}
1007 
1008 		spin_lock(&bs->rescue_lock);
1009 		bio_list_add(&bs->rescue_list, bio);
1010 		queue_work(bs->rescue_workqueue, &bs->rescue_work);
1011 		spin_unlock(&bs->rescue_lock);
1012 	}
1013 }
1014 
1015 static void dm_offload_start(struct dm_offload *o)
1016 {
1017 	blk_start_plug(&o->plug);
1018 	o->cb.callback = flush_current_bio_list;
1019 	list_add(&o->cb.list, &current->plug->cb_list);
1020 }
1021 
1022 static void dm_offload_end(struct dm_offload *o)
1023 {
1024 	list_del(&o->cb.list);
1025 	blk_finish_plug(&o->plug);
1026 }
1027 
1028 static void __map_bio(struct dm_target_io *tio)
1029 {
1030 	int r;
1031 	sector_t sector;
1032 	struct dm_offload o;
1033 	struct bio *clone = &tio->clone;
1034 	struct dm_target *ti = tio->ti;
1035 
1036 	clone->bi_end_io = clone_endio;
1037 
1038 	/*
1039 	 * Map the clone.  If r == 0 we don't need to do
1040 	 * anything, the target has assumed ownership of
1041 	 * this io.
1042 	 */
1043 	atomic_inc(&tio->io->io_count);
1044 	sector = clone->bi_iter.bi_sector;
1045 
1046 	dm_offload_start(&o);
1047 	r = ti->type->map(ti, clone);
1048 	dm_offload_end(&o);
1049 
1050 	if (r == DM_MAPIO_REMAPPED) {
1051 		/* the bio has been remapped so dispatch it */
1052 
1053 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054 				      tio->io->bio->bi_bdev->bd_dev, sector);
1055 
1056 		generic_make_request(clone);
1057 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058 		/* error the io and bail out, or requeue it if needed */
1059 		dec_pending(tio->io, r);
1060 		free_tio(tio);
1061 	} else if (r != DM_MAPIO_SUBMITTED) {
1062 		DMWARN("unimplemented target map return value: %d", r);
1063 		BUG();
1064 	}
1065 }
1066 
1067 struct clone_info {
1068 	struct mapped_device *md;
1069 	struct dm_table *map;
1070 	struct bio *bio;
1071 	struct dm_io *io;
1072 	sector_t sector;
1073 	unsigned sector_count;
1074 };
1075 
1076 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077 {
1078 	bio->bi_iter.bi_sector = sector;
1079 	bio->bi_iter.bi_size = to_bytes(len);
1080 }
1081 
1082 /*
1083  * Creates a bio that consists of range of complete bvecs.
1084  */
1085 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086 		     sector_t sector, unsigned len)
1087 {
1088 	struct bio *clone = &tio->clone;
1089 
1090 	__bio_clone_fast(clone, bio);
1091 
1092 	if (unlikely(bio_integrity(bio) != NULL)) {
1093 		int r;
1094 
1095 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1096 			     !dm_target_passes_integrity(tio->ti->type))) {
1097 			DMWARN("%s: the target %s doesn't support integrity data.",
1098 				dm_device_name(tio->io->md),
1099 				tio->ti->type->name);
1100 			return -EIO;
1101 		}
1102 
1103 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1104 		if (r < 0)
1105 			return r;
1106 	}
1107 
1108 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1109 	clone->bi_iter.bi_size = to_bytes(len);
1110 
1111 	if (unlikely(bio_integrity(bio) != NULL))
1112 		bio_integrity_trim(clone, 0, len);
1113 
1114 	return 0;
1115 }
1116 
1117 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1118 				      struct dm_target *ti,
1119 				      unsigned target_bio_nr)
1120 {
1121 	struct dm_target_io *tio;
1122 	struct bio *clone;
1123 
1124 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1125 	tio = container_of(clone, struct dm_target_io, clone);
1126 
1127 	tio->io = ci->io;
1128 	tio->ti = ti;
1129 	tio->target_bio_nr = target_bio_nr;
1130 
1131 	return tio;
1132 }
1133 
1134 static void __clone_and_map_simple_bio(struct clone_info *ci,
1135 				       struct dm_target *ti,
1136 				       unsigned target_bio_nr, unsigned *len)
1137 {
1138 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1139 	struct bio *clone = &tio->clone;
1140 
1141 	tio->len_ptr = len;
1142 
1143 	__bio_clone_fast(clone, ci->bio);
1144 	if (len)
1145 		bio_setup_sector(clone, ci->sector, *len);
1146 
1147 	__map_bio(tio);
1148 }
1149 
1150 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1151 				  unsigned num_bios, unsigned *len)
1152 {
1153 	unsigned target_bio_nr;
1154 
1155 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1156 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1157 }
1158 
1159 static int __send_empty_flush(struct clone_info *ci)
1160 {
1161 	unsigned target_nr = 0;
1162 	struct dm_target *ti;
1163 
1164 	BUG_ON(bio_has_data(ci->bio));
1165 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1166 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1167 
1168 	return 0;
1169 }
1170 
1171 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1172 				     sector_t sector, unsigned *len)
1173 {
1174 	struct bio *bio = ci->bio;
1175 	struct dm_target_io *tio;
1176 	unsigned target_bio_nr;
1177 	unsigned num_target_bios = 1;
1178 	int r = 0;
1179 
1180 	/*
1181 	 * Does the target want to receive duplicate copies of the bio?
1182 	 */
1183 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1184 		num_target_bios = ti->num_write_bios(ti, bio);
1185 
1186 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1187 		tio = alloc_tio(ci, ti, target_bio_nr);
1188 		tio->len_ptr = len;
1189 		r = clone_bio(tio, bio, sector, *len);
1190 		if (r < 0) {
1191 			free_tio(tio);
1192 			break;
1193 		}
1194 		__map_bio(tio);
1195 	}
1196 
1197 	return r;
1198 }
1199 
1200 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1201 
1202 static unsigned get_num_discard_bios(struct dm_target *ti)
1203 {
1204 	return ti->num_discard_bios;
1205 }
1206 
1207 static unsigned get_num_write_same_bios(struct dm_target *ti)
1208 {
1209 	return ti->num_write_same_bios;
1210 }
1211 
1212 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1213 
1214 static bool is_split_required_for_discard(struct dm_target *ti)
1215 {
1216 	return ti->split_discard_bios;
1217 }
1218 
1219 static int __send_changing_extent_only(struct clone_info *ci,
1220 				       get_num_bios_fn get_num_bios,
1221 				       is_split_required_fn is_split_required)
1222 {
1223 	struct dm_target *ti;
1224 	unsigned len;
1225 	unsigned num_bios;
1226 
1227 	do {
1228 		ti = dm_table_find_target(ci->map, ci->sector);
1229 		if (!dm_target_is_valid(ti))
1230 			return -EIO;
1231 
1232 		/*
1233 		 * Even though the device advertised support for this type of
1234 		 * request, that does not mean every target supports it, and
1235 		 * reconfiguration might also have changed that since the
1236 		 * check was performed.
1237 		 */
1238 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1239 		if (!num_bios)
1240 			return -EOPNOTSUPP;
1241 
1242 		if (is_split_required && !is_split_required(ti))
1243 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1244 		else
1245 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1246 
1247 		__send_duplicate_bios(ci, ti, num_bios, &len);
1248 
1249 		ci->sector += len;
1250 	} while (ci->sector_count -= len);
1251 
1252 	return 0;
1253 }
1254 
1255 static int __send_discard(struct clone_info *ci)
1256 {
1257 	return __send_changing_extent_only(ci, get_num_discard_bios,
1258 					   is_split_required_for_discard);
1259 }
1260 
1261 static int __send_write_same(struct clone_info *ci)
1262 {
1263 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1264 }
1265 
1266 /*
1267  * Select the correct strategy for processing a non-flush bio.
1268  */
1269 static int __split_and_process_non_flush(struct clone_info *ci)
1270 {
1271 	struct bio *bio = ci->bio;
1272 	struct dm_target *ti;
1273 	unsigned len;
1274 	int r;
1275 
1276 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1277 		return __send_discard(ci);
1278 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1279 		return __send_write_same(ci);
1280 
1281 	ti = dm_table_find_target(ci->map, ci->sector);
1282 	if (!dm_target_is_valid(ti))
1283 		return -EIO;
1284 
1285 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1286 
1287 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1288 	if (r < 0)
1289 		return r;
1290 
1291 	ci->sector += len;
1292 	ci->sector_count -= len;
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Entry point to split a bio into clones and submit them to the targets.
1299  */
1300 static void __split_and_process_bio(struct mapped_device *md,
1301 				    struct dm_table *map, struct bio *bio)
1302 {
1303 	struct clone_info ci;
1304 	int error = 0;
1305 
1306 	if (unlikely(!map)) {
1307 		bio_io_error(bio);
1308 		return;
1309 	}
1310 
1311 	ci.map = map;
1312 	ci.md = md;
1313 	ci.io = alloc_io(md);
1314 	ci.io->error = 0;
1315 	atomic_set(&ci.io->io_count, 1);
1316 	ci.io->bio = bio;
1317 	ci.io->md = md;
1318 	spin_lock_init(&ci.io->endio_lock);
1319 	ci.sector = bio->bi_iter.bi_sector;
1320 
1321 	start_io_acct(ci.io);
1322 
1323 	if (bio->bi_opf & REQ_PREFLUSH) {
1324 		ci.bio = &ci.md->flush_bio;
1325 		ci.sector_count = 0;
1326 		error = __send_empty_flush(&ci);
1327 		/* dec_pending submits any data associated with flush */
1328 	} else {
1329 		ci.bio = bio;
1330 		ci.sector_count = bio_sectors(bio);
1331 		while (ci.sector_count && !error)
1332 			error = __split_and_process_non_flush(&ci);
1333 	}
1334 
1335 	/* drop the extra reference count */
1336 	dec_pending(ci.io, error);
1337 }
1338 /*-----------------------------------------------------------------
1339  * CRUD END
1340  *---------------------------------------------------------------*/
1341 
1342 /*
1343  * The request function that just remaps the bio built up by
1344  * dm_merge_bvec.
1345  */
1346 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1347 {
1348 	int rw = bio_data_dir(bio);
1349 	struct mapped_device *md = q->queuedata;
1350 	int srcu_idx;
1351 	struct dm_table *map;
1352 
1353 	map = dm_get_live_table(md, &srcu_idx);
1354 
1355 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1356 
1357 	/* if we're suspended, we have to queue this io for later */
1358 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1359 		dm_put_live_table(md, srcu_idx);
1360 
1361 		if (!(bio->bi_opf & REQ_RAHEAD))
1362 			queue_io(md, bio);
1363 		else
1364 			bio_io_error(bio);
1365 		return BLK_QC_T_NONE;
1366 	}
1367 
1368 	__split_and_process_bio(md, map, bio);
1369 	dm_put_live_table(md, srcu_idx);
1370 	return BLK_QC_T_NONE;
1371 }
1372 
1373 static int dm_any_congested(void *congested_data, int bdi_bits)
1374 {
1375 	int r = bdi_bits;
1376 	struct mapped_device *md = congested_data;
1377 	struct dm_table *map;
1378 
1379 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1380 		if (dm_request_based(md)) {
1381 			/*
1382 			 * With request-based DM we only need to check the
1383 			 * top-level queue for congestion.
1384 			 */
1385 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1386 		} else {
1387 			map = dm_get_live_table_fast(md);
1388 			if (map)
1389 				r = dm_table_any_congested(map, bdi_bits);
1390 			dm_put_live_table_fast(md);
1391 		}
1392 	}
1393 
1394 	return r;
1395 }
1396 
1397 /*-----------------------------------------------------------------
1398  * An IDR is used to keep track of allocated minor numbers.
1399  *---------------------------------------------------------------*/
1400 static void free_minor(int minor)
1401 {
1402 	spin_lock(&_minor_lock);
1403 	idr_remove(&_minor_idr, minor);
1404 	spin_unlock(&_minor_lock);
1405 }
1406 
1407 /*
1408  * See if the device with a specific minor # is free.
1409  */
1410 static int specific_minor(int minor)
1411 {
1412 	int r;
1413 
1414 	if (minor >= (1 << MINORBITS))
1415 		return -EINVAL;
1416 
1417 	idr_preload(GFP_KERNEL);
1418 	spin_lock(&_minor_lock);
1419 
1420 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1421 
1422 	spin_unlock(&_minor_lock);
1423 	idr_preload_end();
1424 	if (r < 0)
1425 		return r == -ENOSPC ? -EBUSY : r;
1426 	return 0;
1427 }
1428 
1429 static int next_free_minor(int *minor)
1430 {
1431 	int r;
1432 
1433 	idr_preload(GFP_KERNEL);
1434 	spin_lock(&_minor_lock);
1435 
1436 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1437 
1438 	spin_unlock(&_minor_lock);
1439 	idr_preload_end();
1440 	if (r < 0)
1441 		return r;
1442 	*minor = r;
1443 	return 0;
1444 }
1445 
1446 static const struct block_device_operations dm_blk_dops;
1447 
1448 static void dm_wq_work(struct work_struct *work);
1449 
1450 void dm_init_md_queue(struct mapped_device *md)
1451 {
1452 	/*
1453 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1454 	 * devices.  The type of this dm device may not have been decided yet.
1455 	 * The type is decided at the first table loading time.
1456 	 * To prevent problematic device stacking, clear the queue flag
1457 	 * for request stacking support until then.
1458 	 *
1459 	 * This queue is new, so no concurrency on the queue_flags.
1460 	 */
1461 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1462 
1463 	/*
1464 	 * Initialize data that will only be used by a non-blk-mq DM queue
1465 	 * - must do so here (in alloc_dev callchain) before queue is used
1466 	 */
1467 	md->queue->queuedata = md;
1468 	md->queue->backing_dev_info->congested_data = md;
1469 }
1470 
1471 void dm_init_normal_md_queue(struct mapped_device *md)
1472 {
1473 	md->use_blk_mq = false;
1474 	dm_init_md_queue(md);
1475 
1476 	/*
1477 	 * Initialize aspects of queue that aren't relevant for blk-mq
1478 	 */
1479 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1480 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1481 }
1482 
1483 static void cleanup_mapped_device(struct mapped_device *md)
1484 {
1485 	if (md->wq)
1486 		destroy_workqueue(md->wq);
1487 	if (md->kworker_task)
1488 		kthread_stop(md->kworker_task);
1489 	mempool_destroy(md->io_pool);
1490 	if (md->bs)
1491 		bioset_free(md->bs);
1492 
1493 	if (md->disk) {
1494 		spin_lock(&_minor_lock);
1495 		md->disk->private_data = NULL;
1496 		spin_unlock(&_minor_lock);
1497 		del_gendisk(md->disk);
1498 		put_disk(md->disk);
1499 	}
1500 
1501 	if (md->queue)
1502 		blk_cleanup_queue(md->queue);
1503 
1504 	cleanup_srcu_struct(&md->io_barrier);
1505 
1506 	if (md->bdev) {
1507 		bdput(md->bdev);
1508 		md->bdev = NULL;
1509 	}
1510 
1511 	dm_mq_cleanup_mapped_device(md);
1512 }
1513 
1514 /*
1515  * Allocate and initialise a blank device with a given minor.
1516  */
1517 static struct mapped_device *alloc_dev(int minor)
1518 {
1519 	int r, numa_node_id = dm_get_numa_node();
1520 	struct mapped_device *md;
1521 	void *old_md;
1522 
1523 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1524 	if (!md) {
1525 		DMWARN("unable to allocate device, out of memory.");
1526 		return NULL;
1527 	}
1528 
1529 	if (!try_module_get(THIS_MODULE))
1530 		goto bad_module_get;
1531 
1532 	/* get a minor number for the dev */
1533 	if (minor == DM_ANY_MINOR)
1534 		r = next_free_minor(&minor);
1535 	else
1536 		r = specific_minor(minor);
1537 	if (r < 0)
1538 		goto bad_minor;
1539 
1540 	r = init_srcu_struct(&md->io_barrier);
1541 	if (r < 0)
1542 		goto bad_io_barrier;
1543 
1544 	md->numa_node_id = numa_node_id;
1545 	md->use_blk_mq = dm_use_blk_mq_default();
1546 	md->init_tio_pdu = false;
1547 	md->type = DM_TYPE_NONE;
1548 	mutex_init(&md->suspend_lock);
1549 	mutex_init(&md->type_lock);
1550 	mutex_init(&md->table_devices_lock);
1551 	spin_lock_init(&md->deferred_lock);
1552 	atomic_set(&md->holders, 1);
1553 	atomic_set(&md->open_count, 0);
1554 	atomic_set(&md->event_nr, 0);
1555 	atomic_set(&md->uevent_seq, 0);
1556 	INIT_LIST_HEAD(&md->uevent_list);
1557 	INIT_LIST_HEAD(&md->table_devices);
1558 	spin_lock_init(&md->uevent_lock);
1559 
1560 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1561 	if (!md->queue)
1562 		goto bad;
1563 
1564 	dm_init_md_queue(md);
1565 
1566 	md->disk = alloc_disk_node(1, numa_node_id);
1567 	if (!md->disk)
1568 		goto bad;
1569 
1570 	atomic_set(&md->pending[0], 0);
1571 	atomic_set(&md->pending[1], 0);
1572 	init_waitqueue_head(&md->wait);
1573 	INIT_WORK(&md->work, dm_wq_work);
1574 	init_waitqueue_head(&md->eventq);
1575 	init_completion(&md->kobj_holder.completion);
1576 	md->kworker_task = NULL;
1577 
1578 	md->disk->major = _major;
1579 	md->disk->first_minor = minor;
1580 	md->disk->fops = &dm_blk_dops;
1581 	md->disk->queue = md->queue;
1582 	md->disk->private_data = md;
1583 	sprintf(md->disk->disk_name, "dm-%d", minor);
1584 	add_disk(md->disk);
1585 	format_dev_t(md->name, MKDEV(_major, minor));
1586 
1587 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1588 	if (!md->wq)
1589 		goto bad;
1590 
1591 	md->bdev = bdget_disk(md->disk, 0);
1592 	if (!md->bdev)
1593 		goto bad;
1594 
1595 	bio_init(&md->flush_bio, NULL, 0);
1596 	md->flush_bio.bi_bdev = md->bdev;
1597 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1598 
1599 	dm_stats_init(&md->stats);
1600 
1601 	/* Populate the mapping, nobody knows we exist yet */
1602 	spin_lock(&_minor_lock);
1603 	old_md = idr_replace(&_minor_idr, md, minor);
1604 	spin_unlock(&_minor_lock);
1605 
1606 	BUG_ON(old_md != MINOR_ALLOCED);
1607 
1608 	return md;
1609 
1610 bad:
1611 	cleanup_mapped_device(md);
1612 bad_io_barrier:
1613 	free_minor(minor);
1614 bad_minor:
1615 	module_put(THIS_MODULE);
1616 bad_module_get:
1617 	kfree(md);
1618 	return NULL;
1619 }
1620 
1621 static void unlock_fs(struct mapped_device *md);
1622 
1623 static void free_dev(struct mapped_device *md)
1624 {
1625 	int minor = MINOR(disk_devt(md->disk));
1626 
1627 	unlock_fs(md);
1628 
1629 	cleanup_mapped_device(md);
1630 
1631 	free_table_devices(&md->table_devices);
1632 	dm_stats_cleanup(&md->stats);
1633 	free_minor(minor);
1634 
1635 	module_put(THIS_MODULE);
1636 	kfree(md);
1637 }
1638 
1639 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1640 {
1641 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1642 
1643 	if (md->bs) {
1644 		/* The md already has necessary mempools. */
1645 		if (dm_table_bio_based(t)) {
1646 			/*
1647 			 * Reload bioset because front_pad may have changed
1648 			 * because a different table was loaded.
1649 			 */
1650 			bioset_free(md->bs);
1651 			md->bs = p->bs;
1652 			p->bs = NULL;
1653 		}
1654 		/*
1655 		 * There's no need to reload with request-based dm
1656 		 * because the size of front_pad doesn't change.
1657 		 * Note for future: If you are to reload bioset,
1658 		 * prep-ed requests in the queue may refer
1659 		 * to bio from the old bioset, so you must walk
1660 		 * through the queue to unprep.
1661 		 */
1662 		goto out;
1663 	}
1664 
1665 	BUG_ON(!p || md->io_pool || md->bs);
1666 
1667 	md->io_pool = p->io_pool;
1668 	p->io_pool = NULL;
1669 	md->bs = p->bs;
1670 	p->bs = NULL;
1671 
1672 out:
1673 	/* mempool bind completed, no longer need any mempools in the table */
1674 	dm_table_free_md_mempools(t);
1675 }
1676 
1677 /*
1678  * Bind a table to the device.
1679  */
1680 static void event_callback(void *context)
1681 {
1682 	unsigned long flags;
1683 	LIST_HEAD(uevents);
1684 	struct mapped_device *md = (struct mapped_device *) context;
1685 
1686 	spin_lock_irqsave(&md->uevent_lock, flags);
1687 	list_splice_init(&md->uevent_list, &uevents);
1688 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1689 
1690 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1691 
1692 	atomic_inc(&md->event_nr);
1693 	wake_up(&md->eventq);
1694 }
1695 
1696 /*
1697  * Protected by md->suspend_lock obtained by dm_swap_table().
1698  */
1699 static void __set_size(struct mapped_device *md, sector_t size)
1700 {
1701 	lockdep_assert_held(&md->suspend_lock);
1702 
1703 	set_capacity(md->disk, size);
1704 
1705 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1706 }
1707 
1708 /*
1709  * Returns old map, which caller must destroy.
1710  */
1711 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1712 			       struct queue_limits *limits)
1713 {
1714 	struct dm_table *old_map;
1715 	struct request_queue *q = md->queue;
1716 	sector_t size;
1717 
1718 	lockdep_assert_held(&md->suspend_lock);
1719 
1720 	size = dm_table_get_size(t);
1721 
1722 	/*
1723 	 * Wipe any geometry if the size of the table changed.
1724 	 */
1725 	if (size != dm_get_size(md))
1726 		memset(&md->geometry, 0, sizeof(md->geometry));
1727 
1728 	__set_size(md, size);
1729 
1730 	dm_table_event_callback(t, event_callback, md);
1731 
1732 	/*
1733 	 * The queue hasn't been stopped yet, if the old table type wasn't
1734 	 * for request-based during suspension.  So stop it to prevent
1735 	 * I/O mapping before resume.
1736 	 * This must be done before setting the queue restrictions,
1737 	 * because request-based dm may be run just after the setting.
1738 	 */
1739 	if (dm_table_request_based(t)) {
1740 		dm_stop_queue(q);
1741 		/*
1742 		 * Leverage the fact that request-based DM targets are
1743 		 * immutable singletons and establish md->immutable_target
1744 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1745 		 */
1746 		md->immutable_target = dm_table_get_immutable_target(t);
1747 	}
1748 
1749 	__bind_mempools(md, t);
1750 
1751 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1752 	rcu_assign_pointer(md->map, (void *)t);
1753 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1754 
1755 	dm_table_set_restrictions(t, q, limits);
1756 	if (old_map)
1757 		dm_sync_table(md);
1758 
1759 	return old_map;
1760 }
1761 
1762 /*
1763  * Returns unbound table for the caller to free.
1764  */
1765 static struct dm_table *__unbind(struct mapped_device *md)
1766 {
1767 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1768 
1769 	if (!map)
1770 		return NULL;
1771 
1772 	dm_table_event_callback(map, NULL, NULL);
1773 	RCU_INIT_POINTER(md->map, NULL);
1774 	dm_sync_table(md);
1775 
1776 	return map;
1777 }
1778 
1779 /*
1780  * Constructor for a new device.
1781  */
1782 int dm_create(int minor, struct mapped_device **result)
1783 {
1784 	struct mapped_device *md;
1785 
1786 	md = alloc_dev(minor);
1787 	if (!md)
1788 		return -ENXIO;
1789 
1790 	dm_sysfs_init(md);
1791 
1792 	*result = md;
1793 	return 0;
1794 }
1795 
1796 /*
1797  * Functions to manage md->type.
1798  * All are required to hold md->type_lock.
1799  */
1800 void dm_lock_md_type(struct mapped_device *md)
1801 {
1802 	mutex_lock(&md->type_lock);
1803 }
1804 
1805 void dm_unlock_md_type(struct mapped_device *md)
1806 {
1807 	mutex_unlock(&md->type_lock);
1808 }
1809 
1810 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1811 {
1812 	BUG_ON(!mutex_is_locked(&md->type_lock));
1813 	md->type = type;
1814 }
1815 
1816 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1817 {
1818 	return md->type;
1819 }
1820 
1821 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1822 {
1823 	return md->immutable_target_type;
1824 }
1825 
1826 /*
1827  * The queue_limits are only valid as long as you have a reference
1828  * count on 'md'.
1829  */
1830 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1831 {
1832 	BUG_ON(!atomic_read(&md->holders));
1833 	return &md->queue->limits;
1834 }
1835 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1836 
1837 /*
1838  * Setup the DM device's queue based on md's type
1839  */
1840 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1841 {
1842 	int r;
1843 	enum dm_queue_mode type = dm_get_md_type(md);
1844 
1845 	switch (type) {
1846 	case DM_TYPE_REQUEST_BASED:
1847 		r = dm_old_init_request_queue(md, t);
1848 		if (r) {
1849 			DMERR("Cannot initialize queue for request-based mapped device");
1850 			return r;
1851 		}
1852 		break;
1853 	case DM_TYPE_MQ_REQUEST_BASED:
1854 		r = dm_mq_init_request_queue(md, t);
1855 		if (r) {
1856 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1857 			return r;
1858 		}
1859 		break;
1860 	case DM_TYPE_BIO_BASED:
1861 	case DM_TYPE_DAX_BIO_BASED:
1862 		dm_init_normal_md_queue(md);
1863 		blk_queue_make_request(md->queue, dm_make_request);
1864 		/*
1865 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1866 		 * since it won't be used (saves 1 process per bio-based DM device).
1867 		 */
1868 		bioset_free(md->queue->bio_split);
1869 		md->queue->bio_split = NULL;
1870 
1871 		if (type == DM_TYPE_DAX_BIO_BASED)
1872 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1873 		break;
1874 	case DM_TYPE_NONE:
1875 		WARN_ON_ONCE(true);
1876 		break;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 struct mapped_device *dm_get_md(dev_t dev)
1883 {
1884 	struct mapped_device *md;
1885 	unsigned minor = MINOR(dev);
1886 
1887 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1888 		return NULL;
1889 
1890 	spin_lock(&_minor_lock);
1891 
1892 	md = idr_find(&_minor_idr, minor);
1893 	if (md) {
1894 		if ((md == MINOR_ALLOCED ||
1895 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1896 		     dm_deleting_md(md) ||
1897 		     test_bit(DMF_FREEING, &md->flags))) {
1898 			md = NULL;
1899 			goto out;
1900 		}
1901 		dm_get(md);
1902 	}
1903 
1904 out:
1905 	spin_unlock(&_minor_lock);
1906 
1907 	return md;
1908 }
1909 EXPORT_SYMBOL_GPL(dm_get_md);
1910 
1911 void *dm_get_mdptr(struct mapped_device *md)
1912 {
1913 	return md->interface_ptr;
1914 }
1915 
1916 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1917 {
1918 	md->interface_ptr = ptr;
1919 }
1920 
1921 void dm_get(struct mapped_device *md)
1922 {
1923 	atomic_inc(&md->holders);
1924 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1925 }
1926 
1927 int dm_hold(struct mapped_device *md)
1928 {
1929 	spin_lock(&_minor_lock);
1930 	if (test_bit(DMF_FREEING, &md->flags)) {
1931 		spin_unlock(&_minor_lock);
1932 		return -EBUSY;
1933 	}
1934 	dm_get(md);
1935 	spin_unlock(&_minor_lock);
1936 	return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(dm_hold);
1939 
1940 const char *dm_device_name(struct mapped_device *md)
1941 {
1942 	return md->name;
1943 }
1944 EXPORT_SYMBOL_GPL(dm_device_name);
1945 
1946 static void __dm_destroy(struct mapped_device *md, bool wait)
1947 {
1948 	struct request_queue *q = dm_get_md_queue(md);
1949 	struct dm_table *map;
1950 	int srcu_idx;
1951 
1952 	might_sleep();
1953 
1954 	spin_lock(&_minor_lock);
1955 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1956 	set_bit(DMF_FREEING, &md->flags);
1957 	spin_unlock(&_minor_lock);
1958 
1959 	blk_set_queue_dying(q);
1960 
1961 	if (dm_request_based(md) && md->kworker_task)
1962 		kthread_flush_worker(&md->kworker);
1963 
1964 	/*
1965 	 * Take suspend_lock so that presuspend and postsuspend methods
1966 	 * do not race with internal suspend.
1967 	 */
1968 	mutex_lock(&md->suspend_lock);
1969 	map = dm_get_live_table(md, &srcu_idx);
1970 	if (!dm_suspended_md(md)) {
1971 		dm_table_presuspend_targets(map);
1972 		dm_table_postsuspend_targets(map);
1973 	}
1974 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1975 	dm_put_live_table(md, srcu_idx);
1976 	mutex_unlock(&md->suspend_lock);
1977 
1978 	/*
1979 	 * Rare, but there may be I/O requests still going to complete,
1980 	 * for example.  Wait for all references to disappear.
1981 	 * No one should increment the reference count of the mapped_device,
1982 	 * after the mapped_device state becomes DMF_FREEING.
1983 	 */
1984 	if (wait)
1985 		while (atomic_read(&md->holders))
1986 			msleep(1);
1987 	else if (atomic_read(&md->holders))
1988 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1989 		       dm_device_name(md), atomic_read(&md->holders));
1990 
1991 	dm_sysfs_exit(md);
1992 	dm_table_destroy(__unbind(md));
1993 	free_dev(md);
1994 }
1995 
1996 void dm_destroy(struct mapped_device *md)
1997 {
1998 	__dm_destroy(md, true);
1999 }
2000 
2001 void dm_destroy_immediate(struct mapped_device *md)
2002 {
2003 	__dm_destroy(md, false);
2004 }
2005 
2006 void dm_put(struct mapped_device *md)
2007 {
2008 	atomic_dec(&md->holders);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_put);
2011 
2012 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2013 {
2014 	int r = 0;
2015 	DEFINE_WAIT(wait);
2016 
2017 	while (1) {
2018 		prepare_to_wait(&md->wait, &wait, task_state);
2019 
2020 		if (!md_in_flight(md))
2021 			break;
2022 
2023 		if (signal_pending_state(task_state, current)) {
2024 			r = -EINTR;
2025 			break;
2026 		}
2027 
2028 		io_schedule();
2029 	}
2030 	finish_wait(&md->wait, &wait);
2031 
2032 	return r;
2033 }
2034 
2035 /*
2036  * Process the deferred bios
2037  */
2038 static void dm_wq_work(struct work_struct *work)
2039 {
2040 	struct mapped_device *md = container_of(work, struct mapped_device,
2041 						work);
2042 	struct bio *c;
2043 	int srcu_idx;
2044 	struct dm_table *map;
2045 
2046 	map = dm_get_live_table(md, &srcu_idx);
2047 
2048 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2049 		spin_lock_irq(&md->deferred_lock);
2050 		c = bio_list_pop(&md->deferred);
2051 		spin_unlock_irq(&md->deferred_lock);
2052 
2053 		if (!c)
2054 			break;
2055 
2056 		if (dm_request_based(md))
2057 			generic_make_request(c);
2058 		else
2059 			__split_and_process_bio(md, map, c);
2060 	}
2061 
2062 	dm_put_live_table(md, srcu_idx);
2063 }
2064 
2065 static void dm_queue_flush(struct mapped_device *md)
2066 {
2067 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2068 	smp_mb__after_atomic();
2069 	queue_work(md->wq, &md->work);
2070 }
2071 
2072 /*
2073  * Swap in a new table, returning the old one for the caller to destroy.
2074  */
2075 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2076 {
2077 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2078 	struct queue_limits limits;
2079 	int r;
2080 
2081 	mutex_lock(&md->suspend_lock);
2082 
2083 	/* device must be suspended */
2084 	if (!dm_suspended_md(md))
2085 		goto out;
2086 
2087 	/*
2088 	 * If the new table has no data devices, retain the existing limits.
2089 	 * This helps multipath with queue_if_no_path if all paths disappear,
2090 	 * then new I/O is queued based on these limits, and then some paths
2091 	 * reappear.
2092 	 */
2093 	if (dm_table_has_no_data_devices(table)) {
2094 		live_map = dm_get_live_table_fast(md);
2095 		if (live_map)
2096 			limits = md->queue->limits;
2097 		dm_put_live_table_fast(md);
2098 	}
2099 
2100 	if (!live_map) {
2101 		r = dm_calculate_queue_limits(table, &limits);
2102 		if (r) {
2103 			map = ERR_PTR(r);
2104 			goto out;
2105 		}
2106 	}
2107 
2108 	map = __bind(md, table, &limits);
2109 
2110 out:
2111 	mutex_unlock(&md->suspend_lock);
2112 	return map;
2113 }
2114 
2115 /*
2116  * Functions to lock and unlock any filesystem running on the
2117  * device.
2118  */
2119 static int lock_fs(struct mapped_device *md)
2120 {
2121 	int r;
2122 
2123 	WARN_ON(md->frozen_sb);
2124 
2125 	md->frozen_sb = freeze_bdev(md->bdev);
2126 	if (IS_ERR(md->frozen_sb)) {
2127 		r = PTR_ERR(md->frozen_sb);
2128 		md->frozen_sb = NULL;
2129 		return r;
2130 	}
2131 
2132 	set_bit(DMF_FROZEN, &md->flags);
2133 
2134 	return 0;
2135 }
2136 
2137 static void unlock_fs(struct mapped_device *md)
2138 {
2139 	if (!test_bit(DMF_FROZEN, &md->flags))
2140 		return;
2141 
2142 	thaw_bdev(md->bdev, md->frozen_sb);
2143 	md->frozen_sb = NULL;
2144 	clear_bit(DMF_FROZEN, &md->flags);
2145 }
2146 
2147 /*
2148  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2149  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2150  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2151  *
2152  * If __dm_suspend returns 0, the device is completely quiescent
2153  * now. There is no request-processing activity. All new requests
2154  * are being added to md->deferred list.
2155  */
2156 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2157 			unsigned suspend_flags, long task_state,
2158 			int dmf_suspended_flag)
2159 {
2160 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2161 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2162 	int r;
2163 
2164 	lockdep_assert_held(&md->suspend_lock);
2165 
2166 	/*
2167 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2168 	 * This flag is cleared before dm_suspend returns.
2169 	 */
2170 	if (noflush)
2171 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2172 
2173 	/*
2174 	 * This gets reverted if there's an error later and the targets
2175 	 * provide the .presuspend_undo hook.
2176 	 */
2177 	dm_table_presuspend_targets(map);
2178 
2179 	/*
2180 	 * Flush I/O to the device.
2181 	 * Any I/O submitted after lock_fs() may not be flushed.
2182 	 * noflush takes precedence over do_lockfs.
2183 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2184 	 */
2185 	if (!noflush && do_lockfs) {
2186 		r = lock_fs(md);
2187 		if (r) {
2188 			dm_table_presuspend_undo_targets(map);
2189 			return r;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * Here we must make sure that no processes are submitting requests
2195 	 * to target drivers i.e. no one may be executing
2196 	 * __split_and_process_bio. This is called from dm_request and
2197 	 * dm_wq_work.
2198 	 *
2199 	 * To get all processes out of __split_and_process_bio in dm_request,
2200 	 * we take the write lock. To prevent any process from reentering
2201 	 * __split_and_process_bio from dm_request and quiesce the thread
2202 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2203 	 * flush_workqueue(md->wq).
2204 	 */
2205 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2206 	if (map)
2207 		synchronize_srcu(&md->io_barrier);
2208 
2209 	/*
2210 	 * Stop md->queue before flushing md->wq in case request-based
2211 	 * dm defers requests to md->wq from md->queue.
2212 	 */
2213 	if (dm_request_based(md)) {
2214 		dm_stop_queue(md->queue);
2215 		if (md->kworker_task)
2216 			kthread_flush_worker(&md->kworker);
2217 	}
2218 
2219 	flush_workqueue(md->wq);
2220 
2221 	/*
2222 	 * At this point no more requests are entering target request routines.
2223 	 * We call dm_wait_for_completion to wait for all existing requests
2224 	 * to finish.
2225 	 */
2226 	r = dm_wait_for_completion(md, task_state);
2227 	if (!r)
2228 		set_bit(dmf_suspended_flag, &md->flags);
2229 
2230 	if (noflush)
2231 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2232 	if (map)
2233 		synchronize_srcu(&md->io_barrier);
2234 
2235 	/* were we interrupted ? */
2236 	if (r < 0) {
2237 		dm_queue_flush(md);
2238 
2239 		if (dm_request_based(md))
2240 			dm_start_queue(md->queue);
2241 
2242 		unlock_fs(md);
2243 		dm_table_presuspend_undo_targets(map);
2244 		/* pushback list is already flushed, so skip flush */
2245 	}
2246 
2247 	return r;
2248 }
2249 
2250 /*
2251  * We need to be able to change a mapping table under a mounted
2252  * filesystem.  For example we might want to move some data in
2253  * the background.  Before the table can be swapped with
2254  * dm_bind_table, dm_suspend must be called to flush any in
2255  * flight bios and ensure that any further io gets deferred.
2256  */
2257 /*
2258  * Suspend mechanism in request-based dm.
2259  *
2260  * 1. Flush all I/Os by lock_fs() if needed.
2261  * 2. Stop dispatching any I/O by stopping the request_queue.
2262  * 3. Wait for all in-flight I/Os to be completed or requeued.
2263  *
2264  * To abort suspend, start the request_queue.
2265  */
2266 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2267 {
2268 	struct dm_table *map = NULL;
2269 	int r = 0;
2270 
2271 retry:
2272 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2273 
2274 	if (dm_suspended_md(md)) {
2275 		r = -EINVAL;
2276 		goto out_unlock;
2277 	}
2278 
2279 	if (dm_suspended_internally_md(md)) {
2280 		/* already internally suspended, wait for internal resume */
2281 		mutex_unlock(&md->suspend_lock);
2282 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2283 		if (r)
2284 			return r;
2285 		goto retry;
2286 	}
2287 
2288 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2289 
2290 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2291 	if (r)
2292 		goto out_unlock;
2293 
2294 	dm_table_postsuspend_targets(map);
2295 
2296 out_unlock:
2297 	mutex_unlock(&md->suspend_lock);
2298 	return r;
2299 }
2300 
2301 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2302 {
2303 	if (map) {
2304 		int r = dm_table_resume_targets(map);
2305 		if (r)
2306 			return r;
2307 	}
2308 
2309 	dm_queue_flush(md);
2310 
2311 	/*
2312 	 * Flushing deferred I/Os must be done after targets are resumed
2313 	 * so that mapping of targets can work correctly.
2314 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2315 	 */
2316 	if (dm_request_based(md))
2317 		dm_start_queue(md->queue);
2318 
2319 	unlock_fs(md);
2320 
2321 	return 0;
2322 }
2323 
2324 int dm_resume(struct mapped_device *md)
2325 {
2326 	int r;
2327 	struct dm_table *map = NULL;
2328 
2329 retry:
2330 	r = -EINVAL;
2331 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2332 
2333 	if (!dm_suspended_md(md))
2334 		goto out;
2335 
2336 	if (dm_suspended_internally_md(md)) {
2337 		/* already internally suspended, wait for internal resume */
2338 		mutex_unlock(&md->suspend_lock);
2339 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2340 		if (r)
2341 			return r;
2342 		goto retry;
2343 	}
2344 
2345 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2346 	if (!map || !dm_table_get_size(map))
2347 		goto out;
2348 
2349 	r = __dm_resume(md, map);
2350 	if (r)
2351 		goto out;
2352 
2353 	clear_bit(DMF_SUSPENDED, &md->flags);
2354 out:
2355 	mutex_unlock(&md->suspend_lock);
2356 
2357 	return r;
2358 }
2359 
2360 /*
2361  * Internal suspend/resume works like userspace-driven suspend. It waits
2362  * until all bios finish and prevents issuing new bios to the target drivers.
2363  * It may be used only from the kernel.
2364  */
2365 
2366 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2367 {
2368 	struct dm_table *map = NULL;
2369 
2370 	lockdep_assert_held(&md->suspend_lock);
2371 
2372 	if (md->internal_suspend_count++)
2373 		return; /* nested internal suspend */
2374 
2375 	if (dm_suspended_md(md)) {
2376 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2377 		return; /* nest suspend */
2378 	}
2379 
2380 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2381 
2382 	/*
2383 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2384 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2385 	 * would require changing .presuspend to return an error -- avoid this
2386 	 * until there is a need for more elaborate variants of internal suspend.
2387 	 */
2388 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2389 			    DMF_SUSPENDED_INTERNALLY);
2390 
2391 	dm_table_postsuspend_targets(map);
2392 }
2393 
2394 static void __dm_internal_resume(struct mapped_device *md)
2395 {
2396 	BUG_ON(!md->internal_suspend_count);
2397 
2398 	if (--md->internal_suspend_count)
2399 		return; /* resume from nested internal suspend */
2400 
2401 	if (dm_suspended_md(md))
2402 		goto done; /* resume from nested suspend */
2403 
2404 	/*
2405 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2406 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2407 	 */
2408 	(void) __dm_resume(md, NULL);
2409 
2410 done:
2411 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2412 	smp_mb__after_atomic();
2413 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2414 }
2415 
2416 void dm_internal_suspend_noflush(struct mapped_device *md)
2417 {
2418 	mutex_lock(&md->suspend_lock);
2419 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2420 	mutex_unlock(&md->suspend_lock);
2421 }
2422 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2423 
2424 void dm_internal_resume(struct mapped_device *md)
2425 {
2426 	mutex_lock(&md->suspend_lock);
2427 	__dm_internal_resume(md);
2428 	mutex_unlock(&md->suspend_lock);
2429 }
2430 EXPORT_SYMBOL_GPL(dm_internal_resume);
2431 
2432 /*
2433  * Fast variants of internal suspend/resume hold md->suspend_lock,
2434  * which prevents interaction with userspace-driven suspend.
2435  */
2436 
2437 void dm_internal_suspend_fast(struct mapped_device *md)
2438 {
2439 	mutex_lock(&md->suspend_lock);
2440 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441 		return;
2442 
2443 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2444 	synchronize_srcu(&md->io_barrier);
2445 	flush_workqueue(md->wq);
2446 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2447 }
2448 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2449 
2450 void dm_internal_resume_fast(struct mapped_device *md)
2451 {
2452 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2453 		goto done;
2454 
2455 	dm_queue_flush(md);
2456 
2457 done:
2458 	mutex_unlock(&md->suspend_lock);
2459 }
2460 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2461 
2462 /*-----------------------------------------------------------------
2463  * Event notification.
2464  *---------------------------------------------------------------*/
2465 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2466 		       unsigned cookie)
2467 {
2468 	char udev_cookie[DM_COOKIE_LENGTH];
2469 	char *envp[] = { udev_cookie, NULL };
2470 
2471 	if (!cookie)
2472 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2473 	else {
2474 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2475 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2476 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2477 					  action, envp);
2478 	}
2479 }
2480 
2481 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2482 {
2483 	return atomic_add_return(1, &md->uevent_seq);
2484 }
2485 
2486 uint32_t dm_get_event_nr(struct mapped_device *md)
2487 {
2488 	return atomic_read(&md->event_nr);
2489 }
2490 
2491 int dm_wait_event(struct mapped_device *md, int event_nr)
2492 {
2493 	return wait_event_interruptible(md->eventq,
2494 			(event_nr != atomic_read(&md->event_nr)));
2495 }
2496 
2497 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2498 {
2499 	unsigned long flags;
2500 
2501 	spin_lock_irqsave(&md->uevent_lock, flags);
2502 	list_add(elist, &md->uevent_list);
2503 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2504 }
2505 
2506 /*
2507  * The gendisk is only valid as long as you have a reference
2508  * count on 'md'.
2509  */
2510 struct gendisk *dm_disk(struct mapped_device *md)
2511 {
2512 	return md->disk;
2513 }
2514 EXPORT_SYMBOL_GPL(dm_disk);
2515 
2516 struct kobject *dm_kobject(struct mapped_device *md)
2517 {
2518 	return &md->kobj_holder.kobj;
2519 }
2520 
2521 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2522 {
2523 	struct mapped_device *md;
2524 
2525 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2526 
2527 	if (test_bit(DMF_FREEING, &md->flags) ||
2528 	    dm_deleting_md(md))
2529 		return NULL;
2530 
2531 	dm_get(md);
2532 	return md;
2533 }
2534 
2535 int dm_suspended_md(struct mapped_device *md)
2536 {
2537 	return test_bit(DMF_SUSPENDED, &md->flags);
2538 }
2539 
2540 int dm_suspended_internally_md(struct mapped_device *md)
2541 {
2542 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2543 }
2544 
2545 int dm_test_deferred_remove_flag(struct mapped_device *md)
2546 {
2547 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2548 }
2549 
2550 int dm_suspended(struct dm_target *ti)
2551 {
2552 	return dm_suspended_md(dm_table_get_md(ti->table));
2553 }
2554 EXPORT_SYMBOL_GPL(dm_suspended);
2555 
2556 int dm_noflush_suspending(struct dm_target *ti)
2557 {
2558 	return __noflush_suspending(dm_table_get_md(ti->table));
2559 }
2560 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2561 
2562 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2563 					    unsigned integrity, unsigned per_io_data_size)
2564 {
2565 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2566 	unsigned int pool_size = 0;
2567 	unsigned int front_pad;
2568 
2569 	if (!pools)
2570 		return NULL;
2571 
2572 	switch (type) {
2573 	case DM_TYPE_BIO_BASED:
2574 	case DM_TYPE_DAX_BIO_BASED:
2575 		pool_size = dm_get_reserved_bio_based_ios();
2576 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2577 
2578 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2579 		if (!pools->io_pool)
2580 			goto out;
2581 		break;
2582 	case DM_TYPE_REQUEST_BASED:
2583 	case DM_TYPE_MQ_REQUEST_BASED:
2584 		pool_size = dm_get_reserved_rq_based_ios();
2585 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2586 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2587 		break;
2588 	default:
2589 		BUG();
2590 	}
2591 
2592 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2593 	if (!pools->bs)
2594 		goto out;
2595 
2596 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2597 		goto out;
2598 
2599 	return pools;
2600 
2601 out:
2602 	dm_free_md_mempools(pools);
2603 
2604 	return NULL;
2605 }
2606 
2607 void dm_free_md_mempools(struct dm_md_mempools *pools)
2608 {
2609 	if (!pools)
2610 		return;
2611 
2612 	mempool_destroy(pools->io_pool);
2613 
2614 	if (pools->bs)
2615 		bioset_free(pools->bs);
2616 
2617 	kfree(pools);
2618 }
2619 
2620 struct dm_pr {
2621 	u64	old_key;
2622 	u64	new_key;
2623 	u32	flags;
2624 	bool	fail_early;
2625 };
2626 
2627 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2628 		      void *data)
2629 {
2630 	struct mapped_device *md = bdev->bd_disk->private_data;
2631 	struct dm_table *table;
2632 	struct dm_target *ti;
2633 	int ret = -ENOTTY, srcu_idx;
2634 
2635 	table = dm_get_live_table(md, &srcu_idx);
2636 	if (!table || !dm_table_get_size(table))
2637 		goto out;
2638 
2639 	/* We only support devices that have a single target */
2640 	if (dm_table_get_num_targets(table) != 1)
2641 		goto out;
2642 	ti = dm_table_get_target(table, 0);
2643 
2644 	ret = -EINVAL;
2645 	if (!ti->type->iterate_devices)
2646 		goto out;
2647 
2648 	ret = ti->type->iterate_devices(ti, fn, data);
2649 out:
2650 	dm_put_live_table(md, srcu_idx);
2651 	return ret;
2652 }
2653 
2654 /*
2655  * For register / unregister we need to manually call out to every path.
2656  */
2657 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2658 			    sector_t start, sector_t len, void *data)
2659 {
2660 	struct dm_pr *pr = data;
2661 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2662 
2663 	if (!ops || !ops->pr_register)
2664 		return -EOPNOTSUPP;
2665 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2666 }
2667 
2668 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2669 			  u32 flags)
2670 {
2671 	struct dm_pr pr = {
2672 		.old_key	= old_key,
2673 		.new_key	= new_key,
2674 		.flags		= flags,
2675 		.fail_early	= true,
2676 	};
2677 	int ret;
2678 
2679 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2680 	if (ret && new_key) {
2681 		/* unregister all paths if we failed to register any path */
2682 		pr.old_key = new_key;
2683 		pr.new_key = 0;
2684 		pr.flags = 0;
2685 		pr.fail_early = false;
2686 		dm_call_pr(bdev, __dm_pr_register, &pr);
2687 	}
2688 
2689 	return ret;
2690 }
2691 
2692 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2693 			 u32 flags)
2694 {
2695 	struct mapped_device *md = bdev->bd_disk->private_data;
2696 	const struct pr_ops *ops;
2697 	fmode_t mode;
2698 	int r;
2699 
2700 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2701 	if (r < 0)
2702 		return r;
2703 
2704 	ops = bdev->bd_disk->fops->pr_ops;
2705 	if (ops && ops->pr_reserve)
2706 		r = ops->pr_reserve(bdev, key, type, flags);
2707 	else
2708 		r = -EOPNOTSUPP;
2709 
2710 	bdput(bdev);
2711 	return r;
2712 }
2713 
2714 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2715 {
2716 	struct mapped_device *md = bdev->bd_disk->private_data;
2717 	const struct pr_ops *ops;
2718 	fmode_t mode;
2719 	int r;
2720 
2721 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2722 	if (r < 0)
2723 		return r;
2724 
2725 	ops = bdev->bd_disk->fops->pr_ops;
2726 	if (ops && ops->pr_release)
2727 		r = ops->pr_release(bdev, key, type);
2728 	else
2729 		r = -EOPNOTSUPP;
2730 
2731 	bdput(bdev);
2732 	return r;
2733 }
2734 
2735 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2736 			 enum pr_type type, bool abort)
2737 {
2738 	struct mapped_device *md = bdev->bd_disk->private_data;
2739 	const struct pr_ops *ops;
2740 	fmode_t mode;
2741 	int r;
2742 
2743 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2744 	if (r < 0)
2745 		return r;
2746 
2747 	ops = bdev->bd_disk->fops->pr_ops;
2748 	if (ops && ops->pr_preempt)
2749 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2750 	else
2751 		r = -EOPNOTSUPP;
2752 
2753 	bdput(bdev);
2754 	return r;
2755 }
2756 
2757 static int dm_pr_clear(struct block_device *bdev, u64 key)
2758 {
2759 	struct mapped_device *md = bdev->bd_disk->private_data;
2760 	const struct pr_ops *ops;
2761 	fmode_t mode;
2762 	int r;
2763 
2764 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2765 	if (r < 0)
2766 		return r;
2767 
2768 	ops = bdev->bd_disk->fops->pr_ops;
2769 	if (ops && ops->pr_clear)
2770 		r = ops->pr_clear(bdev, key);
2771 	else
2772 		r = -EOPNOTSUPP;
2773 
2774 	bdput(bdev);
2775 	return r;
2776 }
2777 
2778 static const struct pr_ops dm_pr_ops = {
2779 	.pr_register	= dm_pr_register,
2780 	.pr_reserve	= dm_pr_reserve,
2781 	.pr_release	= dm_pr_release,
2782 	.pr_preempt	= dm_pr_preempt,
2783 	.pr_clear	= dm_pr_clear,
2784 };
2785 
2786 static const struct block_device_operations dm_blk_dops = {
2787 	.open = dm_blk_open,
2788 	.release = dm_blk_close,
2789 	.ioctl = dm_blk_ioctl,
2790 	.direct_access = dm_blk_direct_access,
2791 	.getgeo = dm_blk_getgeo,
2792 	.pr_ops = &dm_pr_ops,
2793 	.owner = THIS_MODULE
2794 };
2795 
2796 /*
2797  * module hooks
2798  */
2799 module_init(dm_init);
2800 module_exit(dm_exit);
2801 
2802 module_param(major, uint, 0);
2803 MODULE_PARM_DESC(major, "The major number of the device mapper");
2804 
2805 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2806 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2807 
2808 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2809 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2810 
2811 MODULE_DESCRIPTION(DM_NAME " driver");
2812 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2813 MODULE_LICENSE("GPL");
2814