1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 #include <linux/wait.h> 24 #include <linux/pr.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 54 static void do_deferred_remove(struct work_struct *w); 55 56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 57 58 static struct workqueue_struct *deferred_remove_workqueue; 59 60 /* 61 * One of these is allocated per bio. 62 */ 63 struct dm_io { 64 struct mapped_device *md; 65 int error; 66 atomic_t io_count; 67 struct bio *bio; 68 unsigned long start_time; 69 spinlock_t endio_lock; 70 struct dm_stats_aux stats_aux; 71 }; 72 73 #define MINOR_ALLOCED ((void *)-1) 74 75 /* 76 * Bits for the md->flags field. 77 */ 78 #define DMF_BLOCK_IO_FOR_SUSPEND 0 79 #define DMF_SUSPENDED 1 80 #define DMF_FROZEN 2 81 #define DMF_FREEING 3 82 #define DMF_DELETING 4 83 #define DMF_NOFLUSH_SUSPENDING 5 84 #define DMF_DEFERRED_REMOVE 6 85 #define DMF_SUSPENDED_INTERNALLY 7 86 87 #define DM_NUMA_NODE NUMA_NO_NODE 88 static int dm_numa_node = DM_NUMA_NODE; 89 90 /* 91 * For mempools pre-allocation at the table loading time. 92 */ 93 struct dm_md_mempools { 94 mempool_t *io_pool; 95 struct bio_set *bs; 96 }; 97 98 struct table_device { 99 struct list_head list; 100 atomic_t count; 101 struct dm_dev dm_dev; 102 }; 103 104 static struct kmem_cache *_io_cache; 105 static struct kmem_cache *_rq_tio_cache; 106 static struct kmem_cache *_rq_cache; 107 108 /* 109 * Bio-based DM's mempools' reserved IOs set by the user. 110 */ 111 #define RESERVED_BIO_BASED_IOS 16 112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 113 114 static int __dm_get_module_param_int(int *module_param, int min, int max) 115 { 116 int param = ACCESS_ONCE(*module_param); 117 int modified_param = 0; 118 bool modified = true; 119 120 if (param < min) 121 modified_param = min; 122 else if (param > max) 123 modified_param = max; 124 else 125 modified = false; 126 127 if (modified) { 128 (void)cmpxchg(module_param, param, modified_param); 129 param = modified_param; 130 } 131 132 return param; 133 } 134 135 unsigned __dm_get_module_param(unsigned *module_param, 136 unsigned def, unsigned max) 137 { 138 unsigned param = ACCESS_ONCE(*module_param); 139 unsigned modified_param = 0; 140 141 if (!param) 142 modified_param = def; 143 else if (param > max) 144 modified_param = max; 145 146 if (modified_param) { 147 (void)cmpxchg(module_param, param, modified_param); 148 param = modified_param; 149 } 150 151 return param; 152 } 153 154 unsigned dm_get_reserved_bio_based_ios(void) 155 { 156 return __dm_get_module_param(&reserved_bio_based_ios, 157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 158 } 159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 160 161 static unsigned dm_get_numa_node(void) 162 { 163 return __dm_get_module_param_int(&dm_numa_node, 164 DM_NUMA_NODE, num_online_nodes() - 1); 165 } 166 167 static int __init local_init(void) 168 { 169 int r = -ENOMEM; 170 171 /* allocate a slab for the dm_ios */ 172 _io_cache = KMEM_CACHE(dm_io, 0); 173 if (!_io_cache) 174 return r; 175 176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 177 if (!_rq_tio_cache) 178 goto out_free_io_cache; 179 180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 181 __alignof__(struct request), 0, NULL); 182 if (!_rq_cache) 183 goto out_free_rq_tio_cache; 184 185 r = dm_uevent_init(); 186 if (r) 187 goto out_free_rq_cache; 188 189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 190 if (!deferred_remove_workqueue) { 191 r = -ENOMEM; 192 goto out_uevent_exit; 193 } 194 195 _major = major; 196 r = register_blkdev(_major, _name); 197 if (r < 0) 198 goto out_free_workqueue; 199 200 if (!_major) 201 _major = r; 202 203 return 0; 204 205 out_free_workqueue: 206 destroy_workqueue(deferred_remove_workqueue); 207 out_uevent_exit: 208 dm_uevent_exit(); 209 out_free_rq_cache: 210 kmem_cache_destroy(_rq_cache); 211 out_free_rq_tio_cache: 212 kmem_cache_destroy(_rq_tio_cache); 213 out_free_io_cache: 214 kmem_cache_destroy(_io_cache); 215 216 return r; 217 } 218 219 static void local_exit(void) 220 { 221 flush_scheduled_work(); 222 destroy_workqueue(deferred_remove_workqueue); 223 224 kmem_cache_destroy(_rq_cache); 225 kmem_cache_destroy(_rq_tio_cache); 226 kmem_cache_destroy(_io_cache); 227 unregister_blkdev(_major, _name); 228 dm_uevent_exit(); 229 230 _major = 0; 231 232 DMINFO("cleaned up"); 233 } 234 235 static int (*_inits[])(void) __initdata = { 236 local_init, 237 dm_target_init, 238 dm_linear_init, 239 dm_stripe_init, 240 dm_io_init, 241 dm_kcopyd_init, 242 dm_interface_init, 243 dm_statistics_init, 244 }; 245 246 static void (*_exits[])(void) = { 247 local_exit, 248 dm_target_exit, 249 dm_linear_exit, 250 dm_stripe_exit, 251 dm_io_exit, 252 dm_kcopyd_exit, 253 dm_interface_exit, 254 dm_statistics_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 285 /* 286 * Should be empty by this point. 287 */ 288 idr_destroy(&_minor_idr); 289 } 290 291 /* 292 * Block device functions 293 */ 294 int dm_deleting_md(struct mapped_device *md) 295 { 296 return test_bit(DMF_DELETING, &md->flags); 297 } 298 299 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 300 { 301 struct mapped_device *md; 302 303 spin_lock(&_minor_lock); 304 305 md = bdev->bd_disk->private_data; 306 if (!md) 307 goto out; 308 309 if (test_bit(DMF_FREEING, &md->flags) || 310 dm_deleting_md(md)) { 311 md = NULL; 312 goto out; 313 } 314 315 dm_get(md); 316 atomic_inc(&md->open_count); 317 out: 318 spin_unlock(&_minor_lock); 319 320 return md ? 0 : -ENXIO; 321 } 322 323 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 324 { 325 struct mapped_device *md; 326 327 spin_lock(&_minor_lock); 328 329 md = disk->private_data; 330 if (WARN_ON(!md)) 331 goto out; 332 333 if (atomic_dec_and_test(&md->open_count) && 334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 335 queue_work(deferred_remove_workqueue, &deferred_remove_work); 336 337 dm_put(md); 338 out: 339 spin_unlock(&_minor_lock); 340 } 341 342 int dm_open_count(struct mapped_device *md) 343 { 344 return atomic_read(&md->open_count); 345 } 346 347 /* 348 * Guarantees nothing is using the device before it's deleted. 349 */ 350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 351 { 352 int r = 0; 353 354 spin_lock(&_minor_lock); 355 356 if (dm_open_count(md)) { 357 r = -EBUSY; 358 if (mark_deferred) 359 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 361 r = -EEXIST; 362 else 363 set_bit(DMF_DELETING, &md->flags); 364 365 spin_unlock(&_minor_lock); 366 367 return r; 368 } 369 370 int dm_cancel_deferred_remove(struct mapped_device *md) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (test_bit(DMF_DELETING, &md->flags)) 377 r = -EBUSY; 378 else 379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 381 spin_unlock(&_minor_lock); 382 383 return r; 384 } 385 386 static void do_deferred_remove(struct work_struct *w) 387 { 388 dm_deferred_remove(); 389 } 390 391 sector_t dm_get_size(struct mapped_device *md) 392 { 393 return get_capacity(md->disk); 394 } 395 396 struct request_queue *dm_get_md_queue(struct mapped_device *md) 397 { 398 return md->queue; 399 } 400 401 struct dm_stats *dm_get_stats(struct mapped_device *md) 402 { 403 return &md->stats; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 414 struct block_device **bdev, 415 fmode_t *mode) 416 { 417 struct dm_target *tgt; 418 struct dm_table *map; 419 int srcu_idx, r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, &srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 goto out; 426 427 /* We only support devices that have a single target */ 428 if (dm_table_get_num_targets(map) != 1) 429 goto out; 430 431 tgt = dm_table_get_target(map, 0); 432 if (!tgt->type->prepare_ioctl) 433 goto out; 434 435 if (dm_suspended_md(md)) { 436 r = -EAGAIN; 437 goto out; 438 } 439 440 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 441 if (r < 0) 442 goto out; 443 444 bdgrab(*bdev); 445 dm_put_live_table(md, srcu_idx); 446 return r; 447 448 out: 449 dm_put_live_table(md, srcu_idx); 450 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 451 msleep(10); 452 goto retry; 453 } 454 return r; 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r; 462 463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 464 if (r < 0) 465 return r; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against a 470 * subset of the parent bdev; require extra privileges. 471 */ 472 if (!capable(CAP_SYS_RAWIO)) { 473 DMWARN_LIMIT( 474 "%s: sending ioctl %x to DM device without required privilege.", 475 current->comm, cmd); 476 r = -ENOIOCTLCMD; 477 goto out; 478 } 479 } 480 481 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 482 out: 483 bdput(bdev); 484 return r; 485 } 486 487 static struct dm_io *alloc_io(struct mapped_device *md) 488 { 489 return mempool_alloc(md->io_pool, GFP_NOIO); 490 } 491 492 static void free_io(struct mapped_device *md, struct dm_io *io) 493 { 494 mempool_free(io, md->io_pool); 495 } 496 497 static void free_tio(struct dm_target_io *tio) 498 { 499 bio_put(&tio->clone); 500 } 501 502 int md_in_flight(struct mapped_device *md) 503 { 504 return atomic_read(&md->pending[READ]) + 505 atomic_read(&md->pending[WRITE]); 506 } 507 508 static void start_io_acct(struct dm_io *io) 509 { 510 struct mapped_device *md = io->md; 511 struct bio *bio = io->bio; 512 int cpu; 513 int rw = bio_data_dir(bio); 514 515 io->start_time = jiffies; 516 517 cpu = part_stat_lock(); 518 part_round_stats(cpu, &dm_disk(md)->part0); 519 part_stat_unlock(); 520 atomic_set(&dm_disk(md)->part0.in_flight[rw], 521 atomic_inc_return(&md->pending[rw])); 522 523 if (unlikely(dm_stats_used(&md->stats))) 524 dm_stats_account_io(&md->stats, bio_data_dir(bio), 525 bio->bi_iter.bi_sector, bio_sectors(bio), 526 false, 0, &io->stats_aux); 527 } 528 529 static void end_io_acct(struct dm_io *io) 530 { 531 struct mapped_device *md = io->md; 532 struct bio *bio = io->bio; 533 unsigned long duration = jiffies - io->start_time; 534 int pending; 535 int rw = bio_data_dir(bio); 536 537 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 538 539 if (unlikely(dm_stats_used(&md->stats))) 540 dm_stats_account_io(&md->stats, bio_data_dir(bio), 541 bio->bi_iter.bi_sector, bio_sectors(bio), 542 true, duration, &io->stats_aux); 543 544 /* 545 * After this is decremented the bio must not be touched if it is 546 * a flush. 547 */ 548 pending = atomic_dec_return(&md->pending[rw]); 549 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 550 pending += atomic_read(&md->pending[rw^0x1]); 551 552 /* nudge anyone waiting on suspend queue */ 553 if (!pending) 554 wake_up(&md->wait); 555 } 556 557 /* 558 * Add the bio to the list of deferred io. 559 */ 560 static void queue_io(struct mapped_device *md, struct bio *bio) 561 { 562 unsigned long flags; 563 564 spin_lock_irqsave(&md->deferred_lock, flags); 565 bio_list_add(&md->deferred, bio); 566 spin_unlock_irqrestore(&md->deferred_lock, flags); 567 queue_work(md->wq, &md->work); 568 } 569 570 /* 571 * Everyone (including functions in this file), should use this 572 * function to access the md->map field, and make sure they call 573 * dm_put_live_table() when finished. 574 */ 575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 576 { 577 *srcu_idx = srcu_read_lock(&md->io_barrier); 578 579 return srcu_dereference(md->map, &md->io_barrier); 580 } 581 582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 583 { 584 srcu_read_unlock(&md->io_barrier, srcu_idx); 585 } 586 587 void dm_sync_table(struct mapped_device *md) 588 { 589 synchronize_srcu(&md->io_barrier); 590 synchronize_rcu_expedited(); 591 } 592 593 /* 594 * A fast alternative to dm_get_live_table/dm_put_live_table. 595 * The caller must not block between these two functions. 596 */ 597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 598 { 599 rcu_read_lock(); 600 return rcu_dereference(md->map); 601 } 602 603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 604 { 605 rcu_read_unlock(); 606 } 607 608 /* 609 * Open a table device so we can use it as a map destination. 610 */ 611 static int open_table_device(struct table_device *td, dev_t dev, 612 struct mapped_device *md) 613 { 614 static char *_claim_ptr = "I belong to device-mapper"; 615 struct block_device *bdev; 616 617 int r; 618 619 BUG_ON(td->dm_dev.bdev); 620 621 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 622 if (IS_ERR(bdev)) 623 return PTR_ERR(bdev); 624 625 r = bd_link_disk_holder(bdev, dm_disk(md)); 626 if (r) { 627 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 628 return r; 629 } 630 631 td->dm_dev.bdev = bdev; 632 return 0; 633 } 634 635 /* 636 * Close a table device that we've been using. 637 */ 638 static void close_table_device(struct table_device *td, struct mapped_device *md) 639 { 640 if (!td->dm_dev.bdev) 641 return; 642 643 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 644 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 645 td->dm_dev.bdev = NULL; 646 } 647 648 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 649 fmode_t mode) { 650 struct table_device *td; 651 652 list_for_each_entry(td, l, list) 653 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 654 return td; 655 656 return NULL; 657 } 658 659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 660 struct dm_dev **result) { 661 int r; 662 struct table_device *td; 663 664 mutex_lock(&md->table_devices_lock); 665 td = find_table_device(&md->table_devices, dev, mode); 666 if (!td) { 667 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 668 if (!td) { 669 mutex_unlock(&md->table_devices_lock); 670 return -ENOMEM; 671 } 672 673 td->dm_dev.mode = mode; 674 td->dm_dev.bdev = NULL; 675 676 if ((r = open_table_device(td, dev, md))) { 677 mutex_unlock(&md->table_devices_lock); 678 kfree(td); 679 return r; 680 } 681 682 format_dev_t(td->dm_dev.name, dev); 683 684 atomic_set(&td->count, 0); 685 list_add(&td->list, &md->table_devices); 686 } 687 atomic_inc(&td->count); 688 mutex_unlock(&md->table_devices_lock); 689 690 *result = &td->dm_dev; 691 return 0; 692 } 693 EXPORT_SYMBOL_GPL(dm_get_table_device); 694 695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 696 { 697 struct table_device *td = container_of(d, struct table_device, dm_dev); 698 699 mutex_lock(&md->table_devices_lock); 700 if (atomic_dec_and_test(&td->count)) { 701 close_table_device(td, md); 702 list_del(&td->list); 703 kfree(td); 704 } 705 mutex_unlock(&md->table_devices_lock); 706 } 707 EXPORT_SYMBOL(dm_put_table_device); 708 709 static void free_table_devices(struct list_head *devices) 710 { 711 struct list_head *tmp, *next; 712 713 list_for_each_safe(tmp, next, devices) { 714 struct table_device *td = list_entry(tmp, struct table_device, list); 715 716 DMWARN("dm_destroy: %s still exists with %d references", 717 td->dm_dev.name, atomic_read(&td->count)); 718 kfree(td); 719 } 720 } 721 722 /* 723 * Get the geometry associated with a dm device 724 */ 725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 726 { 727 *geo = md->geometry; 728 729 return 0; 730 } 731 732 /* 733 * Set the geometry of a device. 734 */ 735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 736 { 737 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 738 739 if (geo->start > sz) { 740 DMWARN("Start sector is beyond the geometry limits."); 741 return -EINVAL; 742 } 743 744 md->geometry = *geo; 745 746 return 0; 747 } 748 749 /*----------------------------------------------------------------- 750 * CRUD START: 751 * A more elegant soln is in the works that uses the queue 752 * merge fn, unfortunately there are a couple of changes to 753 * the block layer that I want to make for this. So in the 754 * interests of getting something for people to use I give 755 * you this clearly demarcated crap. 756 *---------------------------------------------------------------*/ 757 758 static int __noflush_suspending(struct mapped_device *md) 759 { 760 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 761 } 762 763 /* 764 * Decrements the number of outstanding ios that a bio has been 765 * cloned into, completing the original io if necc. 766 */ 767 static void dec_pending(struct dm_io *io, int error) 768 { 769 unsigned long flags; 770 int io_error; 771 struct bio *bio; 772 struct mapped_device *md = io->md; 773 774 /* Push-back supersedes any I/O errors */ 775 if (unlikely(error)) { 776 spin_lock_irqsave(&io->endio_lock, flags); 777 if (!(io->error > 0 && __noflush_suspending(md))) 778 io->error = error; 779 spin_unlock_irqrestore(&io->endio_lock, flags); 780 } 781 782 if (atomic_dec_and_test(&io->io_count)) { 783 if (io->error == DM_ENDIO_REQUEUE) { 784 /* 785 * Target requested pushing back the I/O. 786 */ 787 spin_lock_irqsave(&md->deferred_lock, flags); 788 if (__noflush_suspending(md)) 789 bio_list_add_head(&md->deferred, io->bio); 790 else 791 /* noflush suspend was interrupted. */ 792 io->error = -EIO; 793 spin_unlock_irqrestore(&md->deferred_lock, flags); 794 } 795 796 io_error = io->error; 797 bio = io->bio; 798 end_io_acct(io); 799 free_io(md, io); 800 801 if (io_error == DM_ENDIO_REQUEUE) 802 return; 803 804 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 805 /* 806 * Preflush done for flush with data, reissue 807 * without REQ_PREFLUSH. 808 */ 809 bio->bi_opf &= ~REQ_PREFLUSH; 810 queue_io(md, bio); 811 } else { 812 /* done with normal IO or empty flush */ 813 trace_block_bio_complete(md->queue, bio, io_error); 814 bio->bi_error = io_error; 815 bio_endio(bio); 816 } 817 } 818 } 819 820 void disable_write_same(struct mapped_device *md) 821 { 822 struct queue_limits *limits = dm_get_queue_limits(md); 823 824 /* device doesn't really support WRITE SAME, disable it */ 825 limits->max_write_same_sectors = 0; 826 } 827 828 static void clone_endio(struct bio *bio) 829 { 830 int error = bio->bi_error; 831 int r = error; 832 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 833 struct dm_io *io = tio->io; 834 struct mapped_device *md = tio->io->md; 835 dm_endio_fn endio = tio->ti->type->end_io; 836 837 if (endio) { 838 r = endio(tio->ti, bio, error); 839 if (r < 0 || r == DM_ENDIO_REQUEUE) 840 /* 841 * error and requeue request are handled 842 * in dec_pending(). 843 */ 844 error = r; 845 else if (r == DM_ENDIO_INCOMPLETE) 846 /* The target will handle the io */ 847 return; 848 else if (r) { 849 DMWARN("unimplemented target endio return value: %d", r); 850 BUG(); 851 } 852 } 853 854 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) && 855 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 856 disable_write_same(md); 857 858 free_tio(tio); 859 dec_pending(io, error); 860 } 861 862 /* 863 * Return maximum size of I/O possible at the supplied sector up to the current 864 * target boundary. 865 */ 866 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 867 { 868 sector_t target_offset = dm_target_offset(ti, sector); 869 870 return ti->len - target_offset; 871 } 872 873 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 874 { 875 sector_t len = max_io_len_target_boundary(sector, ti); 876 sector_t offset, max_len; 877 878 /* 879 * Does the target need to split even further? 880 */ 881 if (ti->max_io_len) { 882 offset = dm_target_offset(ti, sector); 883 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 884 max_len = sector_div(offset, ti->max_io_len); 885 else 886 max_len = offset & (ti->max_io_len - 1); 887 max_len = ti->max_io_len - max_len; 888 889 if (len > max_len) 890 len = max_len; 891 } 892 893 return len; 894 } 895 896 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 897 { 898 if (len > UINT_MAX) { 899 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 900 (unsigned long long)len, UINT_MAX); 901 ti->error = "Maximum size of target IO is too large"; 902 return -EINVAL; 903 } 904 905 ti->max_io_len = (uint32_t) len; 906 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 910 911 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector, 912 void **kaddr, pfn_t *pfn, long size) 913 { 914 struct mapped_device *md = bdev->bd_disk->private_data; 915 struct dm_table *map; 916 struct dm_target *ti; 917 int srcu_idx; 918 long len, ret = -EIO; 919 920 map = dm_get_live_table(md, &srcu_idx); 921 if (!map) 922 goto out; 923 924 ti = dm_table_find_target(map, sector); 925 if (!dm_target_is_valid(ti)) 926 goto out; 927 928 len = max_io_len(sector, ti) << SECTOR_SHIFT; 929 size = min(len, size); 930 931 if (ti->type->direct_access) 932 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size); 933 out: 934 dm_put_live_table(md, srcu_idx); 935 return min(ret, size); 936 } 937 938 /* 939 * A target may call dm_accept_partial_bio only from the map routine. It is 940 * allowed for all bio types except REQ_PREFLUSH. 941 * 942 * dm_accept_partial_bio informs the dm that the target only wants to process 943 * additional n_sectors sectors of the bio and the rest of the data should be 944 * sent in a next bio. 945 * 946 * A diagram that explains the arithmetics: 947 * +--------------------+---------------+-------+ 948 * | 1 | 2 | 3 | 949 * +--------------------+---------------+-------+ 950 * 951 * <-------------- *tio->len_ptr ---------------> 952 * <------- bi_size -------> 953 * <-- n_sectors --> 954 * 955 * Region 1 was already iterated over with bio_advance or similar function. 956 * (it may be empty if the target doesn't use bio_advance) 957 * Region 2 is the remaining bio size that the target wants to process. 958 * (it may be empty if region 1 is non-empty, although there is no reason 959 * to make it empty) 960 * The target requires that region 3 is to be sent in the next bio. 961 * 962 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 963 * the partially processed part (the sum of regions 1+2) must be the same for all 964 * copies of the bio. 965 */ 966 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 967 { 968 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 969 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 970 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 971 BUG_ON(bi_size > *tio->len_ptr); 972 BUG_ON(n_sectors > bi_size); 973 *tio->len_ptr -= bi_size - n_sectors; 974 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 975 } 976 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 977 978 /* 979 * Flush current->bio_list when the target map method blocks. 980 * This fixes deadlocks in snapshot and possibly in other targets. 981 */ 982 struct dm_offload { 983 struct blk_plug plug; 984 struct blk_plug_cb cb; 985 }; 986 987 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 988 { 989 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 990 struct bio_list list; 991 struct bio *bio; 992 993 INIT_LIST_HEAD(&o->cb.list); 994 995 if (unlikely(!current->bio_list)) 996 return; 997 998 list = *current->bio_list; 999 bio_list_init(current->bio_list); 1000 1001 while ((bio = bio_list_pop(&list))) { 1002 struct bio_set *bs = bio->bi_pool; 1003 if (unlikely(!bs) || bs == fs_bio_set) { 1004 bio_list_add(current->bio_list, bio); 1005 continue; 1006 } 1007 1008 spin_lock(&bs->rescue_lock); 1009 bio_list_add(&bs->rescue_list, bio); 1010 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1011 spin_unlock(&bs->rescue_lock); 1012 } 1013 } 1014 1015 static void dm_offload_start(struct dm_offload *o) 1016 { 1017 blk_start_plug(&o->plug); 1018 o->cb.callback = flush_current_bio_list; 1019 list_add(&o->cb.list, ¤t->plug->cb_list); 1020 } 1021 1022 static void dm_offload_end(struct dm_offload *o) 1023 { 1024 list_del(&o->cb.list); 1025 blk_finish_plug(&o->plug); 1026 } 1027 1028 static void __map_bio(struct dm_target_io *tio) 1029 { 1030 int r; 1031 sector_t sector; 1032 struct dm_offload o; 1033 struct bio *clone = &tio->clone; 1034 struct dm_target *ti = tio->ti; 1035 1036 clone->bi_end_io = clone_endio; 1037 1038 /* 1039 * Map the clone. If r == 0 we don't need to do 1040 * anything, the target has assumed ownership of 1041 * this io. 1042 */ 1043 atomic_inc(&tio->io->io_count); 1044 sector = clone->bi_iter.bi_sector; 1045 1046 dm_offload_start(&o); 1047 r = ti->type->map(ti, clone); 1048 dm_offload_end(&o); 1049 1050 if (r == DM_MAPIO_REMAPPED) { 1051 /* the bio has been remapped so dispatch it */ 1052 1053 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1054 tio->io->bio->bi_bdev->bd_dev, sector); 1055 1056 generic_make_request(clone); 1057 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1058 /* error the io and bail out, or requeue it if needed */ 1059 dec_pending(tio->io, r); 1060 free_tio(tio); 1061 } else if (r != DM_MAPIO_SUBMITTED) { 1062 DMWARN("unimplemented target map return value: %d", r); 1063 BUG(); 1064 } 1065 } 1066 1067 struct clone_info { 1068 struct mapped_device *md; 1069 struct dm_table *map; 1070 struct bio *bio; 1071 struct dm_io *io; 1072 sector_t sector; 1073 unsigned sector_count; 1074 }; 1075 1076 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1077 { 1078 bio->bi_iter.bi_sector = sector; 1079 bio->bi_iter.bi_size = to_bytes(len); 1080 } 1081 1082 /* 1083 * Creates a bio that consists of range of complete bvecs. 1084 */ 1085 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1086 sector_t sector, unsigned len) 1087 { 1088 struct bio *clone = &tio->clone; 1089 1090 __bio_clone_fast(clone, bio); 1091 1092 if (unlikely(bio_integrity(bio) != NULL)) { 1093 int r; 1094 1095 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1096 !dm_target_passes_integrity(tio->ti->type))) { 1097 DMWARN("%s: the target %s doesn't support integrity data.", 1098 dm_device_name(tio->io->md), 1099 tio->ti->type->name); 1100 return -EIO; 1101 } 1102 1103 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1104 if (r < 0) 1105 return r; 1106 } 1107 1108 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1109 clone->bi_iter.bi_size = to_bytes(len); 1110 1111 if (unlikely(bio_integrity(bio) != NULL)) 1112 bio_integrity_trim(clone, 0, len); 1113 1114 return 0; 1115 } 1116 1117 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1118 struct dm_target *ti, 1119 unsigned target_bio_nr) 1120 { 1121 struct dm_target_io *tio; 1122 struct bio *clone; 1123 1124 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1125 tio = container_of(clone, struct dm_target_io, clone); 1126 1127 tio->io = ci->io; 1128 tio->ti = ti; 1129 tio->target_bio_nr = target_bio_nr; 1130 1131 return tio; 1132 } 1133 1134 static void __clone_and_map_simple_bio(struct clone_info *ci, 1135 struct dm_target *ti, 1136 unsigned target_bio_nr, unsigned *len) 1137 { 1138 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1139 struct bio *clone = &tio->clone; 1140 1141 tio->len_ptr = len; 1142 1143 __bio_clone_fast(clone, ci->bio); 1144 if (len) 1145 bio_setup_sector(clone, ci->sector, *len); 1146 1147 __map_bio(tio); 1148 } 1149 1150 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1151 unsigned num_bios, unsigned *len) 1152 { 1153 unsigned target_bio_nr; 1154 1155 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1156 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1157 } 1158 1159 static int __send_empty_flush(struct clone_info *ci) 1160 { 1161 unsigned target_nr = 0; 1162 struct dm_target *ti; 1163 1164 BUG_ON(bio_has_data(ci->bio)); 1165 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1166 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1167 1168 return 0; 1169 } 1170 1171 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1172 sector_t sector, unsigned *len) 1173 { 1174 struct bio *bio = ci->bio; 1175 struct dm_target_io *tio; 1176 unsigned target_bio_nr; 1177 unsigned num_target_bios = 1; 1178 int r = 0; 1179 1180 /* 1181 * Does the target want to receive duplicate copies of the bio? 1182 */ 1183 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1184 num_target_bios = ti->num_write_bios(ti, bio); 1185 1186 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1187 tio = alloc_tio(ci, ti, target_bio_nr); 1188 tio->len_ptr = len; 1189 r = clone_bio(tio, bio, sector, *len); 1190 if (r < 0) { 1191 free_tio(tio); 1192 break; 1193 } 1194 __map_bio(tio); 1195 } 1196 1197 return r; 1198 } 1199 1200 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1201 1202 static unsigned get_num_discard_bios(struct dm_target *ti) 1203 { 1204 return ti->num_discard_bios; 1205 } 1206 1207 static unsigned get_num_write_same_bios(struct dm_target *ti) 1208 { 1209 return ti->num_write_same_bios; 1210 } 1211 1212 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1213 1214 static bool is_split_required_for_discard(struct dm_target *ti) 1215 { 1216 return ti->split_discard_bios; 1217 } 1218 1219 static int __send_changing_extent_only(struct clone_info *ci, 1220 get_num_bios_fn get_num_bios, 1221 is_split_required_fn is_split_required) 1222 { 1223 struct dm_target *ti; 1224 unsigned len; 1225 unsigned num_bios; 1226 1227 do { 1228 ti = dm_table_find_target(ci->map, ci->sector); 1229 if (!dm_target_is_valid(ti)) 1230 return -EIO; 1231 1232 /* 1233 * Even though the device advertised support for this type of 1234 * request, that does not mean every target supports it, and 1235 * reconfiguration might also have changed that since the 1236 * check was performed. 1237 */ 1238 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1239 if (!num_bios) 1240 return -EOPNOTSUPP; 1241 1242 if (is_split_required && !is_split_required(ti)) 1243 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1244 else 1245 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1246 1247 __send_duplicate_bios(ci, ti, num_bios, &len); 1248 1249 ci->sector += len; 1250 } while (ci->sector_count -= len); 1251 1252 return 0; 1253 } 1254 1255 static int __send_discard(struct clone_info *ci) 1256 { 1257 return __send_changing_extent_only(ci, get_num_discard_bios, 1258 is_split_required_for_discard); 1259 } 1260 1261 static int __send_write_same(struct clone_info *ci) 1262 { 1263 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1264 } 1265 1266 /* 1267 * Select the correct strategy for processing a non-flush bio. 1268 */ 1269 static int __split_and_process_non_flush(struct clone_info *ci) 1270 { 1271 struct bio *bio = ci->bio; 1272 struct dm_target *ti; 1273 unsigned len; 1274 int r; 1275 1276 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1277 return __send_discard(ci); 1278 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1279 return __send_write_same(ci); 1280 1281 ti = dm_table_find_target(ci->map, ci->sector); 1282 if (!dm_target_is_valid(ti)) 1283 return -EIO; 1284 1285 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1286 1287 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1288 if (r < 0) 1289 return r; 1290 1291 ci->sector += len; 1292 ci->sector_count -= len; 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Entry point to split a bio into clones and submit them to the targets. 1299 */ 1300 static void __split_and_process_bio(struct mapped_device *md, 1301 struct dm_table *map, struct bio *bio) 1302 { 1303 struct clone_info ci; 1304 int error = 0; 1305 1306 if (unlikely(!map)) { 1307 bio_io_error(bio); 1308 return; 1309 } 1310 1311 ci.map = map; 1312 ci.md = md; 1313 ci.io = alloc_io(md); 1314 ci.io->error = 0; 1315 atomic_set(&ci.io->io_count, 1); 1316 ci.io->bio = bio; 1317 ci.io->md = md; 1318 spin_lock_init(&ci.io->endio_lock); 1319 ci.sector = bio->bi_iter.bi_sector; 1320 1321 start_io_acct(ci.io); 1322 1323 if (bio->bi_opf & REQ_PREFLUSH) { 1324 ci.bio = &ci.md->flush_bio; 1325 ci.sector_count = 0; 1326 error = __send_empty_flush(&ci); 1327 /* dec_pending submits any data associated with flush */ 1328 } else { 1329 ci.bio = bio; 1330 ci.sector_count = bio_sectors(bio); 1331 while (ci.sector_count && !error) 1332 error = __split_and_process_non_flush(&ci); 1333 } 1334 1335 /* drop the extra reference count */ 1336 dec_pending(ci.io, error); 1337 } 1338 /*----------------------------------------------------------------- 1339 * CRUD END 1340 *---------------------------------------------------------------*/ 1341 1342 /* 1343 * The request function that just remaps the bio built up by 1344 * dm_merge_bvec. 1345 */ 1346 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1347 { 1348 int rw = bio_data_dir(bio); 1349 struct mapped_device *md = q->queuedata; 1350 int srcu_idx; 1351 struct dm_table *map; 1352 1353 map = dm_get_live_table(md, &srcu_idx); 1354 1355 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1356 1357 /* if we're suspended, we have to queue this io for later */ 1358 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1359 dm_put_live_table(md, srcu_idx); 1360 1361 if (!(bio->bi_opf & REQ_RAHEAD)) 1362 queue_io(md, bio); 1363 else 1364 bio_io_error(bio); 1365 return BLK_QC_T_NONE; 1366 } 1367 1368 __split_and_process_bio(md, map, bio); 1369 dm_put_live_table(md, srcu_idx); 1370 return BLK_QC_T_NONE; 1371 } 1372 1373 static int dm_any_congested(void *congested_data, int bdi_bits) 1374 { 1375 int r = bdi_bits; 1376 struct mapped_device *md = congested_data; 1377 struct dm_table *map; 1378 1379 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1380 if (dm_request_based(md)) { 1381 /* 1382 * With request-based DM we only need to check the 1383 * top-level queue for congestion. 1384 */ 1385 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1386 } else { 1387 map = dm_get_live_table_fast(md); 1388 if (map) 1389 r = dm_table_any_congested(map, bdi_bits); 1390 dm_put_live_table_fast(md); 1391 } 1392 } 1393 1394 return r; 1395 } 1396 1397 /*----------------------------------------------------------------- 1398 * An IDR is used to keep track of allocated minor numbers. 1399 *---------------------------------------------------------------*/ 1400 static void free_minor(int minor) 1401 { 1402 spin_lock(&_minor_lock); 1403 idr_remove(&_minor_idr, minor); 1404 spin_unlock(&_minor_lock); 1405 } 1406 1407 /* 1408 * See if the device with a specific minor # is free. 1409 */ 1410 static int specific_minor(int minor) 1411 { 1412 int r; 1413 1414 if (minor >= (1 << MINORBITS)) 1415 return -EINVAL; 1416 1417 idr_preload(GFP_KERNEL); 1418 spin_lock(&_minor_lock); 1419 1420 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1421 1422 spin_unlock(&_minor_lock); 1423 idr_preload_end(); 1424 if (r < 0) 1425 return r == -ENOSPC ? -EBUSY : r; 1426 return 0; 1427 } 1428 1429 static int next_free_minor(int *minor) 1430 { 1431 int r; 1432 1433 idr_preload(GFP_KERNEL); 1434 spin_lock(&_minor_lock); 1435 1436 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1437 1438 spin_unlock(&_minor_lock); 1439 idr_preload_end(); 1440 if (r < 0) 1441 return r; 1442 *minor = r; 1443 return 0; 1444 } 1445 1446 static const struct block_device_operations dm_blk_dops; 1447 1448 static void dm_wq_work(struct work_struct *work); 1449 1450 void dm_init_md_queue(struct mapped_device *md) 1451 { 1452 /* 1453 * Request-based dm devices cannot be stacked on top of bio-based dm 1454 * devices. The type of this dm device may not have been decided yet. 1455 * The type is decided at the first table loading time. 1456 * To prevent problematic device stacking, clear the queue flag 1457 * for request stacking support until then. 1458 * 1459 * This queue is new, so no concurrency on the queue_flags. 1460 */ 1461 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1462 1463 /* 1464 * Initialize data that will only be used by a non-blk-mq DM queue 1465 * - must do so here (in alloc_dev callchain) before queue is used 1466 */ 1467 md->queue->queuedata = md; 1468 md->queue->backing_dev_info->congested_data = md; 1469 } 1470 1471 void dm_init_normal_md_queue(struct mapped_device *md) 1472 { 1473 md->use_blk_mq = false; 1474 dm_init_md_queue(md); 1475 1476 /* 1477 * Initialize aspects of queue that aren't relevant for blk-mq 1478 */ 1479 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1480 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1481 } 1482 1483 static void cleanup_mapped_device(struct mapped_device *md) 1484 { 1485 if (md->wq) 1486 destroy_workqueue(md->wq); 1487 if (md->kworker_task) 1488 kthread_stop(md->kworker_task); 1489 mempool_destroy(md->io_pool); 1490 if (md->bs) 1491 bioset_free(md->bs); 1492 1493 if (md->disk) { 1494 spin_lock(&_minor_lock); 1495 md->disk->private_data = NULL; 1496 spin_unlock(&_minor_lock); 1497 del_gendisk(md->disk); 1498 put_disk(md->disk); 1499 } 1500 1501 if (md->queue) 1502 blk_cleanup_queue(md->queue); 1503 1504 cleanup_srcu_struct(&md->io_barrier); 1505 1506 if (md->bdev) { 1507 bdput(md->bdev); 1508 md->bdev = NULL; 1509 } 1510 1511 dm_mq_cleanup_mapped_device(md); 1512 } 1513 1514 /* 1515 * Allocate and initialise a blank device with a given minor. 1516 */ 1517 static struct mapped_device *alloc_dev(int minor) 1518 { 1519 int r, numa_node_id = dm_get_numa_node(); 1520 struct mapped_device *md; 1521 void *old_md; 1522 1523 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1524 if (!md) { 1525 DMWARN("unable to allocate device, out of memory."); 1526 return NULL; 1527 } 1528 1529 if (!try_module_get(THIS_MODULE)) 1530 goto bad_module_get; 1531 1532 /* get a minor number for the dev */ 1533 if (minor == DM_ANY_MINOR) 1534 r = next_free_minor(&minor); 1535 else 1536 r = specific_minor(minor); 1537 if (r < 0) 1538 goto bad_minor; 1539 1540 r = init_srcu_struct(&md->io_barrier); 1541 if (r < 0) 1542 goto bad_io_barrier; 1543 1544 md->numa_node_id = numa_node_id; 1545 md->use_blk_mq = dm_use_blk_mq_default(); 1546 md->init_tio_pdu = false; 1547 md->type = DM_TYPE_NONE; 1548 mutex_init(&md->suspend_lock); 1549 mutex_init(&md->type_lock); 1550 mutex_init(&md->table_devices_lock); 1551 spin_lock_init(&md->deferred_lock); 1552 atomic_set(&md->holders, 1); 1553 atomic_set(&md->open_count, 0); 1554 atomic_set(&md->event_nr, 0); 1555 atomic_set(&md->uevent_seq, 0); 1556 INIT_LIST_HEAD(&md->uevent_list); 1557 INIT_LIST_HEAD(&md->table_devices); 1558 spin_lock_init(&md->uevent_lock); 1559 1560 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1561 if (!md->queue) 1562 goto bad; 1563 1564 dm_init_md_queue(md); 1565 1566 md->disk = alloc_disk_node(1, numa_node_id); 1567 if (!md->disk) 1568 goto bad; 1569 1570 atomic_set(&md->pending[0], 0); 1571 atomic_set(&md->pending[1], 0); 1572 init_waitqueue_head(&md->wait); 1573 INIT_WORK(&md->work, dm_wq_work); 1574 init_waitqueue_head(&md->eventq); 1575 init_completion(&md->kobj_holder.completion); 1576 md->kworker_task = NULL; 1577 1578 md->disk->major = _major; 1579 md->disk->first_minor = minor; 1580 md->disk->fops = &dm_blk_dops; 1581 md->disk->queue = md->queue; 1582 md->disk->private_data = md; 1583 sprintf(md->disk->disk_name, "dm-%d", minor); 1584 add_disk(md->disk); 1585 format_dev_t(md->name, MKDEV(_major, minor)); 1586 1587 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1588 if (!md->wq) 1589 goto bad; 1590 1591 md->bdev = bdget_disk(md->disk, 0); 1592 if (!md->bdev) 1593 goto bad; 1594 1595 bio_init(&md->flush_bio, NULL, 0); 1596 md->flush_bio.bi_bdev = md->bdev; 1597 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1598 1599 dm_stats_init(&md->stats); 1600 1601 /* Populate the mapping, nobody knows we exist yet */ 1602 spin_lock(&_minor_lock); 1603 old_md = idr_replace(&_minor_idr, md, minor); 1604 spin_unlock(&_minor_lock); 1605 1606 BUG_ON(old_md != MINOR_ALLOCED); 1607 1608 return md; 1609 1610 bad: 1611 cleanup_mapped_device(md); 1612 bad_io_barrier: 1613 free_minor(minor); 1614 bad_minor: 1615 module_put(THIS_MODULE); 1616 bad_module_get: 1617 kfree(md); 1618 return NULL; 1619 } 1620 1621 static void unlock_fs(struct mapped_device *md); 1622 1623 static void free_dev(struct mapped_device *md) 1624 { 1625 int minor = MINOR(disk_devt(md->disk)); 1626 1627 unlock_fs(md); 1628 1629 cleanup_mapped_device(md); 1630 1631 free_table_devices(&md->table_devices); 1632 dm_stats_cleanup(&md->stats); 1633 free_minor(minor); 1634 1635 module_put(THIS_MODULE); 1636 kfree(md); 1637 } 1638 1639 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1640 { 1641 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1642 1643 if (md->bs) { 1644 /* The md already has necessary mempools. */ 1645 if (dm_table_bio_based(t)) { 1646 /* 1647 * Reload bioset because front_pad may have changed 1648 * because a different table was loaded. 1649 */ 1650 bioset_free(md->bs); 1651 md->bs = p->bs; 1652 p->bs = NULL; 1653 } 1654 /* 1655 * There's no need to reload with request-based dm 1656 * because the size of front_pad doesn't change. 1657 * Note for future: If you are to reload bioset, 1658 * prep-ed requests in the queue may refer 1659 * to bio from the old bioset, so you must walk 1660 * through the queue to unprep. 1661 */ 1662 goto out; 1663 } 1664 1665 BUG_ON(!p || md->io_pool || md->bs); 1666 1667 md->io_pool = p->io_pool; 1668 p->io_pool = NULL; 1669 md->bs = p->bs; 1670 p->bs = NULL; 1671 1672 out: 1673 /* mempool bind completed, no longer need any mempools in the table */ 1674 dm_table_free_md_mempools(t); 1675 } 1676 1677 /* 1678 * Bind a table to the device. 1679 */ 1680 static void event_callback(void *context) 1681 { 1682 unsigned long flags; 1683 LIST_HEAD(uevents); 1684 struct mapped_device *md = (struct mapped_device *) context; 1685 1686 spin_lock_irqsave(&md->uevent_lock, flags); 1687 list_splice_init(&md->uevent_list, &uevents); 1688 spin_unlock_irqrestore(&md->uevent_lock, flags); 1689 1690 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1691 1692 atomic_inc(&md->event_nr); 1693 wake_up(&md->eventq); 1694 } 1695 1696 /* 1697 * Protected by md->suspend_lock obtained by dm_swap_table(). 1698 */ 1699 static void __set_size(struct mapped_device *md, sector_t size) 1700 { 1701 lockdep_assert_held(&md->suspend_lock); 1702 1703 set_capacity(md->disk, size); 1704 1705 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1706 } 1707 1708 /* 1709 * Returns old map, which caller must destroy. 1710 */ 1711 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1712 struct queue_limits *limits) 1713 { 1714 struct dm_table *old_map; 1715 struct request_queue *q = md->queue; 1716 sector_t size; 1717 1718 lockdep_assert_held(&md->suspend_lock); 1719 1720 size = dm_table_get_size(t); 1721 1722 /* 1723 * Wipe any geometry if the size of the table changed. 1724 */ 1725 if (size != dm_get_size(md)) 1726 memset(&md->geometry, 0, sizeof(md->geometry)); 1727 1728 __set_size(md, size); 1729 1730 dm_table_event_callback(t, event_callback, md); 1731 1732 /* 1733 * The queue hasn't been stopped yet, if the old table type wasn't 1734 * for request-based during suspension. So stop it to prevent 1735 * I/O mapping before resume. 1736 * This must be done before setting the queue restrictions, 1737 * because request-based dm may be run just after the setting. 1738 */ 1739 if (dm_table_request_based(t)) { 1740 dm_stop_queue(q); 1741 /* 1742 * Leverage the fact that request-based DM targets are 1743 * immutable singletons and establish md->immutable_target 1744 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1745 */ 1746 md->immutable_target = dm_table_get_immutable_target(t); 1747 } 1748 1749 __bind_mempools(md, t); 1750 1751 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1752 rcu_assign_pointer(md->map, (void *)t); 1753 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1754 1755 dm_table_set_restrictions(t, q, limits); 1756 if (old_map) 1757 dm_sync_table(md); 1758 1759 return old_map; 1760 } 1761 1762 /* 1763 * Returns unbound table for the caller to free. 1764 */ 1765 static struct dm_table *__unbind(struct mapped_device *md) 1766 { 1767 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1768 1769 if (!map) 1770 return NULL; 1771 1772 dm_table_event_callback(map, NULL, NULL); 1773 RCU_INIT_POINTER(md->map, NULL); 1774 dm_sync_table(md); 1775 1776 return map; 1777 } 1778 1779 /* 1780 * Constructor for a new device. 1781 */ 1782 int dm_create(int minor, struct mapped_device **result) 1783 { 1784 struct mapped_device *md; 1785 1786 md = alloc_dev(minor); 1787 if (!md) 1788 return -ENXIO; 1789 1790 dm_sysfs_init(md); 1791 1792 *result = md; 1793 return 0; 1794 } 1795 1796 /* 1797 * Functions to manage md->type. 1798 * All are required to hold md->type_lock. 1799 */ 1800 void dm_lock_md_type(struct mapped_device *md) 1801 { 1802 mutex_lock(&md->type_lock); 1803 } 1804 1805 void dm_unlock_md_type(struct mapped_device *md) 1806 { 1807 mutex_unlock(&md->type_lock); 1808 } 1809 1810 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1811 { 1812 BUG_ON(!mutex_is_locked(&md->type_lock)); 1813 md->type = type; 1814 } 1815 1816 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1817 { 1818 return md->type; 1819 } 1820 1821 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1822 { 1823 return md->immutable_target_type; 1824 } 1825 1826 /* 1827 * The queue_limits are only valid as long as you have a reference 1828 * count on 'md'. 1829 */ 1830 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1831 { 1832 BUG_ON(!atomic_read(&md->holders)); 1833 return &md->queue->limits; 1834 } 1835 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1836 1837 /* 1838 * Setup the DM device's queue based on md's type 1839 */ 1840 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1841 { 1842 int r; 1843 enum dm_queue_mode type = dm_get_md_type(md); 1844 1845 switch (type) { 1846 case DM_TYPE_REQUEST_BASED: 1847 r = dm_old_init_request_queue(md, t); 1848 if (r) { 1849 DMERR("Cannot initialize queue for request-based mapped device"); 1850 return r; 1851 } 1852 break; 1853 case DM_TYPE_MQ_REQUEST_BASED: 1854 r = dm_mq_init_request_queue(md, t); 1855 if (r) { 1856 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1857 return r; 1858 } 1859 break; 1860 case DM_TYPE_BIO_BASED: 1861 case DM_TYPE_DAX_BIO_BASED: 1862 dm_init_normal_md_queue(md); 1863 blk_queue_make_request(md->queue, dm_make_request); 1864 /* 1865 * DM handles splitting bios as needed. Free the bio_split bioset 1866 * since it won't be used (saves 1 process per bio-based DM device). 1867 */ 1868 bioset_free(md->queue->bio_split); 1869 md->queue->bio_split = NULL; 1870 1871 if (type == DM_TYPE_DAX_BIO_BASED) 1872 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1873 break; 1874 case DM_TYPE_NONE: 1875 WARN_ON_ONCE(true); 1876 break; 1877 } 1878 1879 return 0; 1880 } 1881 1882 struct mapped_device *dm_get_md(dev_t dev) 1883 { 1884 struct mapped_device *md; 1885 unsigned minor = MINOR(dev); 1886 1887 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1888 return NULL; 1889 1890 spin_lock(&_minor_lock); 1891 1892 md = idr_find(&_minor_idr, minor); 1893 if (md) { 1894 if ((md == MINOR_ALLOCED || 1895 (MINOR(disk_devt(dm_disk(md))) != minor) || 1896 dm_deleting_md(md) || 1897 test_bit(DMF_FREEING, &md->flags))) { 1898 md = NULL; 1899 goto out; 1900 } 1901 dm_get(md); 1902 } 1903 1904 out: 1905 spin_unlock(&_minor_lock); 1906 1907 return md; 1908 } 1909 EXPORT_SYMBOL_GPL(dm_get_md); 1910 1911 void *dm_get_mdptr(struct mapped_device *md) 1912 { 1913 return md->interface_ptr; 1914 } 1915 1916 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1917 { 1918 md->interface_ptr = ptr; 1919 } 1920 1921 void dm_get(struct mapped_device *md) 1922 { 1923 atomic_inc(&md->holders); 1924 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1925 } 1926 1927 int dm_hold(struct mapped_device *md) 1928 { 1929 spin_lock(&_minor_lock); 1930 if (test_bit(DMF_FREEING, &md->flags)) { 1931 spin_unlock(&_minor_lock); 1932 return -EBUSY; 1933 } 1934 dm_get(md); 1935 spin_unlock(&_minor_lock); 1936 return 0; 1937 } 1938 EXPORT_SYMBOL_GPL(dm_hold); 1939 1940 const char *dm_device_name(struct mapped_device *md) 1941 { 1942 return md->name; 1943 } 1944 EXPORT_SYMBOL_GPL(dm_device_name); 1945 1946 static void __dm_destroy(struct mapped_device *md, bool wait) 1947 { 1948 struct request_queue *q = dm_get_md_queue(md); 1949 struct dm_table *map; 1950 int srcu_idx; 1951 1952 might_sleep(); 1953 1954 spin_lock(&_minor_lock); 1955 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1956 set_bit(DMF_FREEING, &md->flags); 1957 spin_unlock(&_minor_lock); 1958 1959 blk_set_queue_dying(q); 1960 1961 if (dm_request_based(md) && md->kworker_task) 1962 kthread_flush_worker(&md->kworker); 1963 1964 /* 1965 * Take suspend_lock so that presuspend and postsuspend methods 1966 * do not race with internal suspend. 1967 */ 1968 mutex_lock(&md->suspend_lock); 1969 map = dm_get_live_table(md, &srcu_idx); 1970 if (!dm_suspended_md(md)) { 1971 dm_table_presuspend_targets(map); 1972 dm_table_postsuspend_targets(map); 1973 } 1974 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1975 dm_put_live_table(md, srcu_idx); 1976 mutex_unlock(&md->suspend_lock); 1977 1978 /* 1979 * Rare, but there may be I/O requests still going to complete, 1980 * for example. Wait for all references to disappear. 1981 * No one should increment the reference count of the mapped_device, 1982 * after the mapped_device state becomes DMF_FREEING. 1983 */ 1984 if (wait) 1985 while (atomic_read(&md->holders)) 1986 msleep(1); 1987 else if (atomic_read(&md->holders)) 1988 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 1989 dm_device_name(md), atomic_read(&md->holders)); 1990 1991 dm_sysfs_exit(md); 1992 dm_table_destroy(__unbind(md)); 1993 free_dev(md); 1994 } 1995 1996 void dm_destroy(struct mapped_device *md) 1997 { 1998 __dm_destroy(md, true); 1999 } 2000 2001 void dm_destroy_immediate(struct mapped_device *md) 2002 { 2003 __dm_destroy(md, false); 2004 } 2005 2006 void dm_put(struct mapped_device *md) 2007 { 2008 atomic_dec(&md->holders); 2009 } 2010 EXPORT_SYMBOL_GPL(dm_put); 2011 2012 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2013 { 2014 int r = 0; 2015 DEFINE_WAIT(wait); 2016 2017 while (1) { 2018 prepare_to_wait(&md->wait, &wait, task_state); 2019 2020 if (!md_in_flight(md)) 2021 break; 2022 2023 if (signal_pending_state(task_state, current)) { 2024 r = -EINTR; 2025 break; 2026 } 2027 2028 io_schedule(); 2029 } 2030 finish_wait(&md->wait, &wait); 2031 2032 return r; 2033 } 2034 2035 /* 2036 * Process the deferred bios 2037 */ 2038 static void dm_wq_work(struct work_struct *work) 2039 { 2040 struct mapped_device *md = container_of(work, struct mapped_device, 2041 work); 2042 struct bio *c; 2043 int srcu_idx; 2044 struct dm_table *map; 2045 2046 map = dm_get_live_table(md, &srcu_idx); 2047 2048 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2049 spin_lock_irq(&md->deferred_lock); 2050 c = bio_list_pop(&md->deferred); 2051 spin_unlock_irq(&md->deferred_lock); 2052 2053 if (!c) 2054 break; 2055 2056 if (dm_request_based(md)) 2057 generic_make_request(c); 2058 else 2059 __split_and_process_bio(md, map, c); 2060 } 2061 2062 dm_put_live_table(md, srcu_idx); 2063 } 2064 2065 static void dm_queue_flush(struct mapped_device *md) 2066 { 2067 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2068 smp_mb__after_atomic(); 2069 queue_work(md->wq, &md->work); 2070 } 2071 2072 /* 2073 * Swap in a new table, returning the old one for the caller to destroy. 2074 */ 2075 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2076 { 2077 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2078 struct queue_limits limits; 2079 int r; 2080 2081 mutex_lock(&md->suspend_lock); 2082 2083 /* device must be suspended */ 2084 if (!dm_suspended_md(md)) 2085 goto out; 2086 2087 /* 2088 * If the new table has no data devices, retain the existing limits. 2089 * This helps multipath with queue_if_no_path if all paths disappear, 2090 * then new I/O is queued based on these limits, and then some paths 2091 * reappear. 2092 */ 2093 if (dm_table_has_no_data_devices(table)) { 2094 live_map = dm_get_live_table_fast(md); 2095 if (live_map) 2096 limits = md->queue->limits; 2097 dm_put_live_table_fast(md); 2098 } 2099 2100 if (!live_map) { 2101 r = dm_calculate_queue_limits(table, &limits); 2102 if (r) { 2103 map = ERR_PTR(r); 2104 goto out; 2105 } 2106 } 2107 2108 map = __bind(md, table, &limits); 2109 2110 out: 2111 mutex_unlock(&md->suspend_lock); 2112 return map; 2113 } 2114 2115 /* 2116 * Functions to lock and unlock any filesystem running on the 2117 * device. 2118 */ 2119 static int lock_fs(struct mapped_device *md) 2120 { 2121 int r; 2122 2123 WARN_ON(md->frozen_sb); 2124 2125 md->frozen_sb = freeze_bdev(md->bdev); 2126 if (IS_ERR(md->frozen_sb)) { 2127 r = PTR_ERR(md->frozen_sb); 2128 md->frozen_sb = NULL; 2129 return r; 2130 } 2131 2132 set_bit(DMF_FROZEN, &md->flags); 2133 2134 return 0; 2135 } 2136 2137 static void unlock_fs(struct mapped_device *md) 2138 { 2139 if (!test_bit(DMF_FROZEN, &md->flags)) 2140 return; 2141 2142 thaw_bdev(md->bdev, md->frozen_sb); 2143 md->frozen_sb = NULL; 2144 clear_bit(DMF_FROZEN, &md->flags); 2145 } 2146 2147 /* 2148 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2149 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2150 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2151 * 2152 * If __dm_suspend returns 0, the device is completely quiescent 2153 * now. There is no request-processing activity. All new requests 2154 * are being added to md->deferred list. 2155 */ 2156 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2157 unsigned suspend_flags, long task_state, 2158 int dmf_suspended_flag) 2159 { 2160 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2161 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2162 int r; 2163 2164 lockdep_assert_held(&md->suspend_lock); 2165 2166 /* 2167 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2168 * This flag is cleared before dm_suspend returns. 2169 */ 2170 if (noflush) 2171 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2172 2173 /* 2174 * This gets reverted if there's an error later and the targets 2175 * provide the .presuspend_undo hook. 2176 */ 2177 dm_table_presuspend_targets(map); 2178 2179 /* 2180 * Flush I/O to the device. 2181 * Any I/O submitted after lock_fs() may not be flushed. 2182 * noflush takes precedence over do_lockfs. 2183 * (lock_fs() flushes I/Os and waits for them to complete.) 2184 */ 2185 if (!noflush && do_lockfs) { 2186 r = lock_fs(md); 2187 if (r) { 2188 dm_table_presuspend_undo_targets(map); 2189 return r; 2190 } 2191 } 2192 2193 /* 2194 * Here we must make sure that no processes are submitting requests 2195 * to target drivers i.e. no one may be executing 2196 * __split_and_process_bio. This is called from dm_request and 2197 * dm_wq_work. 2198 * 2199 * To get all processes out of __split_and_process_bio in dm_request, 2200 * we take the write lock. To prevent any process from reentering 2201 * __split_and_process_bio from dm_request and quiesce the thread 2202 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2203 * flush_workqueue(md->wq). 2204 */ 2205 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2206 if (map) 2207 synchronize_srcu(&md->io_barrier); 2208 2209 /* 2210 * Stop md->queue before flushing md->wq in case request-based 2211 * dm defers requests to md->wq from md->queue. 2212 */ 2213 if (dm_request_based(md)) { 2214 dm_stop_queue(md->queue); 2215 if (md->kworker_task) 2216 kthread_flush_worker(&md->kworker); 2217 } 2218 2219 flush_workqueue(md->wq); 2220 2221 /* 2222 * At this point no more requests are entering target request routines. 2223 * We call dm_wait_for_completion to wait for all existing requests 2224 * to finish. 2225 */ 2226 r = dm_wait_for_completion(md, task_state); 2227 if (!r) 2228 set_bit(dmf_suspended_flag, &md->flags); 2229 2230 if (noflush) 2231 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2232 if (map) 2233 synchronize_srcu(&md->io_barrier); 2234 2235 /* were we interrupted ? */ 2236 if (r < 0) { 2237 dm_queue_flush(md); 2238 2239 if (dm_request_based(md)) 2240 dm_start_queue(md->queue); 2241 2242 unlock_fs(md); 2243 dm_table_presuspend_undo_targets(map); 2244 /* pushback list is already flushed, so skip flush */ 2245 } 2246 2247 return r; 2248 } 2249 2250 /* 2251 * We need to be able to change a mapping table under a mounted 2252 * filesystem. For example we might want to move some data in 2253 * the background. Before the table can be swapped with 2254 * dm_bind_table, dm_suspend must be called to flush any in 2255 * flight bios and ensure that any further io gets deferred. 2256 */ 2257 /* 2258 * Suspend mechanism in request-based dm. 2259 * 2260 * 1. Flush all I/Os by lock_fs() if needed. 2261 * 2. Stop dispatching any I/O by stopping the request_queue. 2262 * 3. Wait for all in-flight I/Os to be completed or requeued. 2263 * 2264 * To abort suspend, start the request_queue. 2265 */ 2266 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2267 { 2268 struct dm_table *map = NULL; 2269 int r = 0; 2270 2271 retry: 2272 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2273 2274 if (dm_suspended_md(md)) { 2275 r = -EINVAL; 2276 goto out_unlock; 2277 } 2278 2279 if (dm_suspended_internally_md(md)) { 2280 /* already internally suspended, wait for internal resume */ 2281 mutex_unlock(&md->suspend_lock); 2282 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2283 if (r) 2284 return r; 2285 goto retry; 2286 } 2287 2288 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2289 2290 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2291 if (r) 2292 goto out_unlock; 2293 2294 dm_table_postsuspend_targets(map); 2295 2296 out_unlock: 2297 mutex_unlock(&md->suspend_lock); 2298 return r; 2299 } 2300 2301 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2302 { 2303 if (map) { 2304 int r = dm_table_resume_targets(map); 2305 if (r) 2306 return r; 2307 } 2308 2309 dm_queue_flush(md); 2310 2311 /* 2312 * Flushing deferred I/Os must be done after targets are resumed 2313 * so that mapping of targets can work correctly. 2314 * Request-based dm is queueing the deferred I/Os in its request_queue. 2315 */ 2316 if (dm_request_based(md)) 2317 dm_start_queue(md->queue); 2318 2319 unlock_fs(md); 2320 2321 return 0; 2322 } 2323 2324 int dm_resume(struct mapped_device *md) 2325 { 2326 int r; 2327 struct dm_table *map = NULL; 2328 2329 retry: 2330 r = -EINVAL; 2331 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2332 2333 if (!dm_suspended_md(md)) 2334 goto out; 2335 2336 if (dm_suspended_internally_md(md)) { 2337 /* already internally suspended, wait for internal resume */ 2338 mutex_unlock(&md->suspend_lock); 2339 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2340 if (r) 2341 return r; 2342 goto retry; 2343 } 2344 2345 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2346 if (!map || !dm_table_get_size(map)) 2347 goto out; 2348 2349 r = __dm_resume(md, map); 2350 if (r) 2351 goto out; 2352 2353 clear_bit(DMF_SUSPENDED, &md->flags); 2354 out: 2355 mutex_unlock(&md->suspend_lock); 2356 2357 return r; 2358 } 2359 2360 /* 2361 * Internal suspend/resume works like userspace-driven suspend. It waits 2362 * until all bios finish and prevents issuing new bios to the target drivers. 2363 * It may be used only from the kernel. 2364 */ 2365 2366 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2367 { 2368 struct dm_table *map = NULL; 2369 2370 lockdep_assert_held(&md->suspend_lock); 2371 2372 if (md->internal_suspend_count++) 2373 return; /* nested internal suspend */ 2374 2375 if (dm_suspended_md(md)) { 2376 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2377 return; /* nest suspend */ 2378 } 2379 2380 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2381 2382 /* 2383 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2384 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2385 * would require changing .presuspend to return an error -- avoid this 2386 * until there is a need for more elaborate variants of internal suspend. 2387 */ 2388 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2389 DMF_SUSPENDED_INTERNALLY); 2390 2391 dm_table_postsuspend_targets(map); 2392 } 2393 2394 static void __dm_internal_resume(struct mapped_device *md) 2395 { 2396 BUG_ON(!md->internal_suspend_count); 2397 2398 if (--md->internal_suspend_count) 2399 return; /* resume from nested internal suspend */ 2400 2401 if (dm_suspended_md(md)) 2402 goto done; /* resume from nested suspend */ 2403 2404 /* 2405 * NOTE: existing callers don't need to call dm_table_resume_targets 2406 * (which may fail -- so best to avoid it for now by passing NULL map) 2407 */ 2408 (void) __dm_resume(md, NULL); 2409 2410 done: 2411 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2412 smp_mb__after_atomic(); 2413 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2414 } 2415 2416 void dm_internal_suspend_noflush(struct mapped_device *md) 2417 { 2418 mutex_lock(&md->suspend_lock); 2419 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2420 mutex_unlock(&md->suspend_lock); 2421 } 2422 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2423 2424 void dm_internal_resume(struct mapped_device *md) 2425 { 2426 mutex_lock(&md->suspend_lock); 2427 __dm_internal_resume(md); 2428 mutex_unlock(&md->suspend_lock); 2429 } 2430 EXPORT_SYMBOL_GPL(dm_internal_resume); 2431 2432 /* 2433 * Fast variants of internal suspend/resume hold md->suspend_lock, 2434 * which prevents interaction with userspace-driven suspend. 2435 */ 2436 2437 void dm_internal_suspend_fast(struct mapped_device *md) 2438 { 2439 mutex_lock(&md->suspend_lock); 2440 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2441 return; 2442 2443 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2444 synchronize_srcu(&md->io_barrier); 2445 flush_workqueue(md->wq); 2446 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2447 } 2448 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2449 2450 void dm_internal_resume_fast(struct mapped_device *md) 2451 { 2452 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2453 goto done; 2454 2455 dm_queue_flush(md); 2456 2457 done: 2458 mutex_unlock(&md->suspend_lock); 2459 } 2460 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2461 2462 /*----------------------------------------------------------------- 2463 * Event notification. 2464 *---------------------------------------------------------------*/ 2465 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2466 unsigned cookie) 2467 { 2468 char udev_cookie[DM_COOKIE_LENGTH]; 2469 char *envp[] = { udev_cookie, NULL }; 2470 2471 if (!cookie) 2472 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2473 else { 2474 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2475 DM_COOKIE_ENV_VAR_NAME, cookie); 2476 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2477 action, envp); 2478 } 2479 } 2480 2481 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2482 { 2483 return atomic_add_return(1, &md->uevent_seq); 2484 } 2485 2486 uint32_t dm_get_event_nr(struct mapped_device *md) 2487 { 2488 return atomic_read(&md->event_nr); 2489 } 2490 2491 int dm_wait_event(struct mapped_device *md, int event_nr) 2492 { 2493 return wait_event_interruptible(md->eventq, 2494 (event_nr != atomic_read(&md->event_nr))); 2495 } 2496 2497 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2498 { 2499 unsigned long flags; 2500 2501 spin_lock_irqsave(&md->uevent_lock, flags); 2502 list_add(elist, &md->uevent_list); 2503 spin_unlock_irqrestore(&md->uevent_lock, flags); 2504 } 2505 2506 /* 2507 * The gendisk is only valid as long as you have a reference 2508 * count on 'md'. 2509 */ 2510 struct gendisk *dm_disk(struct mapped_device *md) 2511 { 2512 return md->disk; 2513 } 2514 EXPORT_SYMBOL_GPL(dm_disk); 2515 2516 struct kobject *dm_kobject(struct mapped_device *md) 2517 { 2518 return &md->kobj_holder.kobj; 2519 } 2520 2521 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2522 { 2523 struct mapped_device *md; 2524 2525 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2526 2527 if (test_bit(DMF_FREEING, &md->flags) || 2528 dm_deleting_md(md)) 2529 return NULL; 2530 2531 dm_get(md); 2532 return md; 2533 } 2534 2535 int dm_suspended_md(struct mapped_device *md) 2536 { 2537 return test_bit(DMF_SUSPENDED, &md->flags); 2538 } 2539 2540 int dm_suspended_internally_md(struct mapped_device *md) 2541 { 2542 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2543 } 2544 2545 int dm_test_deferred_remove_flag(struct mapped_device *md) 2546 { 2547 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2548 } 2549 2550 int dm_suspended(struct dm_target *ti) 2551 { 2552 return dm_suspended_md(dm_table_get_md(ti->table)); 2553 } 2554 EXPORT_SYMBOL_GPL(dm_suspended); 2555 2556 int dm_noflush_suspending(struct dm_target *ti) 2557 { 2558 return __noflush_suspending(dm_table_get_md(ti->table)); 2559 } 2560 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2561 2562 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2563 unsigned integrity, unsigned per_io_data_size) 2564 { 2565 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2566 unsigned int pool_size = 0; 2567 unsigned int front_pad; 2568 2569 if (!pools) 2570 return NULL; 2571 2572 switch (type) { 2573 case DM_TYPE_BIO_BASED: 2574 case DM_TYPE_DAX_BIO_BASED: 2575 pool_size = dm_get_reserved_bio_based_ios(); 2576 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2577 2578 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2579 if (!pools->io_pool) 2580 goto out; 2581 break; 2582 case DM_TYPE_REQUEST_BASED: 2583 case DM_TYPE_MQ_REQUEST_BASED: 2584 pool_size = dm_get_reserved_rq_based_ios(); 2585 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2586 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2587 break; 2588 default: 2589 BUG(); 2590 } 2591 2592 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2593 if (!pools->bs) 2594 goto out; 2595 2596 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2597 goto out; 2598 2599 return pools; 2600 2601 out: 2602 dm_free_md_mempools(pools); 2603 2604 return NULL; 2605 } 2606 2607 void dm_free_md_mempools(struct dm_md_mempools *pools) 2608 { 2609 if (!pools) 2610 return; 2611 2612 mempool_destroy(pools->io_pool); 2613 2614 if (pools->bs) 2615 bioset_free(pools->bs); 2616 2617 kfree(pools); 2618 } 2619 2620 struct dm_pr { 2621 u64 old_key; 2622 u64 new_key; 2623 u32 flags; 2624 bool fail_early; 2625 }; 2626 2627 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2628 void *data) 2629 { 2630 struct mapped_device *md = bdev->bd_disk->private_data; 2631 struct dm_table *table; 2632 struct dm_target *ti; 2633 int ret = -ENOTTY, srcu_idx; 2634 2635 table = dm_get_live_table(md, &srcu_idx); 2636 if (!table || !dm_table_get_size(table)) 2637 goto out; 2638 2639 /* We only support devices that have a single target */ 2640 if (dm_table_get_num_targets(table) != 1) 2641 goto out; 2642 ti = dm_table_get_target(table, 0); 2643 2644 ret = -EINVAL; 2645 if (!ti->type->iterate_devices) 2646 goto out; 2647 2648 ret = ti->type->iterate_devices(ti, fn, data); 2649 out: 2650 dm_put_live_table(md, srcu_idx); 2651 return ret; 2652 } 2653 2654 /* 2655 * For register / unregister we need to manually call out to every path. 2656 */ 2657 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2658 sector_t start, sector_t len, void *data) 2659 { 2660 struct dm_pr *pr = data; 2661 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2662 2663 if (!ops || !ops->pr_register) 2664 return -EOPNOTSUPP; 2665 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2666 } 2667 2668 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2669 u32 flags) 2670 { 2671 struct dm_pr pr = { 2672 .old_key = old_key, 2673 .new_key = new_key, 2674 .flags = flags, 2675 .fail_early = true, 2676 }; 2677 int ret; 2678 2679 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2680 if (ret && new_key) { 2681 /* unregister all paths if we failed to register any path */ 2682 pr.old_key = new_key; 2683 pr.new_key = 0; 2684 pr.flags = 0; 2685 pr.fail_early = false; 2686 dm_call_pr(bdev, __dm_pr_register, &pr); 2687 } 2688 2689 return ret; 2690 } 2691 2692 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2693 u32 flags) 2694 { 2695 struct mapped_device *md = bdev->bd_disk->private_data; 2696 const struct pr_ops *ops; 2697 fmode_t mode; 2698 int r; 2699 2700 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2701 if (r < 0) 2702 return r; 2703 2704 ops = bdev->bd_disk->fops->pr_ops; 2705 if (ops && ops->pr_reserve) 2706 r = ops->pr_reserve(bdev, key, type, flags); 2707 else 2708 r = -EOPNOTSUPP; 2709 2710 bdput(bdev); 2711 return r; 2712 } 2713 2714 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2715 { 2716 struct mapped_device *md = bdev->bd_disk->private_data; 2717 const struct pr_ops *ops; 2718 fmode_t mode; 2719 int r; 2720 2721 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2722 if (r < 0) 2723 return r; 2724 2725 ops = bdev->bd_disk->fops->pr_ops; 2726 if (ops && ops->pr_release) 2727 r = ops->pr_release(bdev, key, type); 2728 else 2729 r = -EOPNOTSUPP; 2730 2731 bdput(bdev); 2732 return r; 2733 } 2734 2735 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2736 enum pr_type type, bool abort) 2737 { 2738 struct mapped_device *md = bdev->bd_disk->private_data; 2739 const struct pr_ops *ops; 2740 fmode_t mode; 2741 int r; 2742 2743 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2744 if (r < 0) 2745 return r; 2746 2747 ops = bdev->bd_disk->fops->pr_ops; 2748 if (ops && ops->pr_preempt) 2749 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2750 else 2751 r = -EOPNOTSUPP; 2752 2753 bdput(bdev); 2754 return r; 2755 } 2756 2757 static int dm_pr_clear(struct block_device *bdev, u64 key) 2758 { 2759 struct mapped_device *md = bdev->bd_disk->private_data; 2760 const struct pr_ops *ops; 2761 fmode_t mode; 2762 int r; 2763 2764 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2765 if (r < 0) 2766 return r; 2767 2768 ops = bdev->bd_disk->fops->pr_ops; 2769 if (ops && ops->pr_clear) 2770 r = ops->pr_clear(bdev, key); 2771 else 2772 r = -EOPNOTSUPP; 2773 2774 bdput(bdev); 2775 return r; 2776 } 2777 2778 static const struct pr_ops dm_pr_ops = { 2779 .pr_register = dm_pr_register, 2780 .pr_reserve = dm_pr_reserve, 2781 .pr_release = dm_pr_release, 2782 .pr_preempt = dm_pr_preempt, 2783 .pr_clear = dm_pr_clear, 2784 }; 2785 2786 static const struct block_device_operations dm_blk_dops = { 2787 .open = dm_blk_open, 2788 .release = dm_blk_close, 2789 .ioctl = dm_blk_ioctl, 2790 .direct_access = dm_blk_direct_access, 2791 .getgeo = dm_blk_getgeo, 2792 .pr_ops = &dm_pr_ops, 2793 .owner = THIS_MODULE 2794 }; 2795 2796 /* 2797 * module hooks 2798 */ 2799 module_init(dm_init); 2800 module_exit(dm_exit); 2801 2802 module_param(major, uint, 0); 2803 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2804 2805 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2806 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2807 2808 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2809 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2810 2811 MODULE_DESCRIPTION(DM_NAME " driver"); 2812 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2813 MODULE_LICENSE("GPL"); 2814