xref: /openbmc/linux/drivers/md/dm.c (revision 745dc570b2c379730d2a78acdeb65b5239e833c6)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated per original bio.
64  */
65 struct dm_io {
66 	struct mapped_device *md;
67 	blk_status_t status;
68 	atomic_t io_count;
69 	struct bio *orig_bio;
70 	unsigned long start_time;
71 	spinlock_t endio_lock;
72 	struct dm_stats_aux stats_aux;
73 };
74 
75 #define MINOR_ALLOCED ((void *)-1)
76 
77 /*
78  * Bits for the md->flags field.
79  */
80 #define DMF_BLOCK_IO_FOR_SUSPEND 0
81 #define DMF_SUSPENDED 1
82 #define DMF_FROZEN 2
83 #define DMF_FREEING 3
84 #define DMF_DELETING 4
85 #define DMF_NOFLUSH_SUSPENDING 5
86 #define DMF_DEFERRED_REMOVE 6
87 #define DMF_SUSPENDED_INTERNALLY 7
88 
89 #define DM_NUMA_NODE NUMA_NO_NODE
90 static int dm_numa_node = DM_NUMA_NODE;
91 
92 /*
93  * For mempools pre-allocation at the table loading time.
94  */
95 struct dm_md_mempools {
96 	mempool_t *io_pool;
97 	struct bio_set *bs;
98 };
99 
100 struct table_device {
101 	struct list_head list;
102 	refcount_t count;
103 	struct dm_dev dm_dev;
104 };
105 
106 static struct kmem_cache *_io_cache;
107 static struct kmem_cache *_rq_tio_cache;
108 static struct kmem_cache *_rq_cache;
109 
110 /*
111  * Bio-based DM's mempools' reserved IOs set by the user.
112  */
113 #define RESERVED_BIO_BASED_IOS		16
114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115 
116 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 {
118 	int param = READ_ONCE(*module_param);
119 	int modified_param = 0;
120 	bool modified = true;
121 
122 	if (param < min)
123 		modified_param = min;
124 	else if (param > max)
125 		modified_param = max;
126 	else
127 		modified = false;
128 
129 	if (modified) {
130 		(void)cmpxchg(module_param, param, modified_param);
131 		param = modified_param;
132 	}
133 
134 	return param;
135 }
136 
137 unsigned __dm_get_module_param(unsigned *module_param,
138 			       unsigned def, unsigned max)
139 {
140 	unsigned param = READ_ONCE(*module_param);
141 	unsigned modified_param = 0;
142 
143 	if (!param)
144 		modified_param = def;
145 	else if (param > max)
146 		modified_param = max;
147 
148 	if (modified_param) {
149 		(void)cmpxchg(module_param, param, modified_param);
150 		param = modified_param;
151 	}
152 
153 	return param;
154 }
155 
156 unsigned dm_get_reserved_bio_based_ios(void)
157 {
158 	return __dm_get_module_param(&reserved_bio_based_ios,
159 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 }
161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162 
163 static unsigned dm_get_numa_node(void)
164 {
165 	return __dm_get_module_param_int(&dm_numa_node,
166 					 DM_NUMA_NODE, num_online_nodes() - 1);
167 }
168 
169 static int __init local_init(void)
170 {
171 	int r = -ENOMEM;
172 
173 	/* allocate a slab for the dm_ios */
174 	_io_cache = KMEM_CACHE(dm_io, 0);
175 	if (!_io_cache)
176 		return r;
177 
178 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 	if (!_rq_tio_cache)
180 		goto out_free_io_cache;
181 
182 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
183 				      __alignof__(struct request), 0, NULL);
184 	if (!_rq_cache)
185 		goto out_free_rq_tio_cache;
186 
187 	r = dm_uevent_init();
188 	if (r)
189 		goto out_free_rq_cache;
190 
191 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
192 	if (!deferred_remove_workqueue) {
193 		r = -ENOMEM;
194 		goto out_uevent_exit;
195 	}
196 
197 	_major = major;
198 	r = register_blkdev(_major, _name);
199 	if (r < 0)
200 		goto out_free_workqueue;
201 
202 	if (!_major)
203 		_major = r;
204 
205 	return 0;
206 
207 out_free_workqueue:
208 	destroy_workqueue(deferred_remove_workqueue);
209 out_uevent_exit:
210 	dm_uevent_exit();
211 out_free_rq_cache:
212 	kmem_cache_destroy(_rq_cache);
213 out_free_rq_tio_cache:
214 	kmem_cache_destroy(_rq_tio_cache);
215 out_free_io_cache:
216 	kmem_cache_destroy(_io_cache);
217 
218 	return r;
219 }
220 
221 static void local_exit(void)
222 {
223 	flush_scheduled_work();
224 	destroy_workqueue(deferred_remove_workqueue);
225 
226 	kmem_cache_destroy(_rq_cache);
227 	kmem_cache_destroy(_rq_tio_cache);
228 	kmem_cache_destroy(_io_cache);
229 	unregister_blkdev(_major, _name);
230 	dm_uevent_exit();
231 
232 	_major = 0;
233 
234 	DMINFO("cleaned up");
235 }
236 
237 static int (*_inits[])(void) __initdata = {
238 	local_init,
239 	dm_target_init,
240 	dm_linear_init,
241 	dm_stripe_init,
242 	dm_io_init,
243 	dm_kcopyd_init,
244 	dm_interface_init,
245 	dm_statistics_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_io_exit,
254 	dm_kcopyd_exit,
255 	dm_interface_exit,
256 	dm_statistics_exit,
257 };
258 
259 static int __init dm_init(void)
260 {
261 	const int count = ARRAY_SIZE(_inits);
262 
263 	int r, i;
264 
265 	for (i = 0; i < count; i++) {
266 		r = _inits[i]();
267 		if (r)
268 			goto bad;
269 	}
270 
271 	return 0;
272 
273       bad:
274 	while (i--)
275 		_exits[i]();
276 
277 	return r;
278 }
279 
280 static void __exit dm_exit(void)
281 {
282 	int i = ARRAY_SIZE(_exits);
283 
284 	while (i--)
285 		_exits[i]();
286 
287 	/*
288 	 * Should be empty by this point.
289 	 */
290 	idr_destroy(&_minor_idr);
291 }
292 
293 /*
294  * Block device functions
295  */
296 int dm_deleting_md(struct mapped_device *md)
297 {
298 	return test_bit(DMF_DELETING, &md->flags);
299 }
300 
301 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 {
303 	struct mapped_device *md;
304 
305 	spin_lock(&_minor_lock);
306 
307 	md = bdev->bd_disk->private_data;
308 	if (!md)
309 		goto out;
310 
311 	if (test_bit(DMF_FREEING, &md->flags) ||
312 	    dm_deleting_md(md)) {
313 		md = NULL;
314 		goto out;
315 	}
316 
317 	dm_get(md);
318 	atomic_inc(&md->open_count);
319 out:
320 	spin_unlock(&_minor_lock);
321 
322 	return md ? 0 : -ENXIO;
323 }
324 
325 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mapped_device *md;
328 
329 	spin_lock(&_minor_lock);
330 
331 	md = disk->private_data;
332 	if (WARN_ON(!md))
333 		goto out;
334 
335 	if (atomic_dec_and_test(&md->open_count) &&
336 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
337 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
338 
339 	dm_put(md);
340 out:
341 	spin_unlock(&_minor_lock);
342 }
343 
344 int dm_open_count(struct mapped_device *md)
345 {
346 	return atomic_read(&md->open_count);
347 }
348 
349 /*
350  * Guarantees nothing is using the device before it's deleted.
351  */
352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 {
354 	int r = 0;
355 
356 	spin_lock(&_minor_lock);
357 
358 	if (dm_open_count(md)) {
359 		r = -EBUSY;
360 		if (mark_deferred)
361 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
362 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
363 		r = -EEXIST;
364 	else
365 		set_bit(DMF_DELETING, &md->flags);
366 
367 	spin_unlock(&_minor_lock);
368 
369 	return r;
370 }
371 
372 int dm_cancel_deferred_remove(struct mapped_device *md)
373 {
374 	int r = 0;
375 
376 	spin_lock(&_minor_lock);
377 
378 	if (test_bit(DMF_DELETING, &md->flags))
379 		r = -EBUSY;
380 	else
381 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382 
383 	spin_unlock(&_minor_lock);
384 
385 	return r;
386 }
387 
388 static void do_deferred_remove(struct work_struct *w)
389 {
390 	dm_deferred_remove();
391 }
392 
393 sector_t dm_get_size(struct mapped_device *md)
394 {
395 	return get_capacity(md->disk);
396 }
397 
398 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 {
400 	return md->queue;
401 }
402 
403 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 {
405 	return &md->stats;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
416 				  struct block_device **bdev,
417 				  fmode_t *mode)
418 {
419 	struct dm_target *tgt;
420 	struct dm_table *map;
421 	int srcu_idx, r;
422 
423 retry:
424 	r = -ENOTTY;
425 	map = dm_get_live_table(md, &srcu_idx);
426 	if (!map || !dm_table_get_size(map))
427 		goto out;
428 
429 	/* We only support devices that have a single target */
430 	if (dm_table_get_num_targets(map) != 1)
431 		goto out;
432 
433 	tgt = dm_table_get_target(map, 0);
434 	if (!tgt->type->prepare_ioctl)
435 		goto out;
436 
437 	if (dm_suspended_md(md)) {
438 		r = -EAGAIN;
439 		goto out;
440 	}
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
443 	if (r < 0)
444 		goto out;
445 
446 	bdgrab(*bdev);
447 	dm_put_live_table(md, srcu_idx);
448 	return r;
449 
450 out:
451 	dm_put_live_table(md, srcu_idx);
452 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
453 		msleep(10);
454 		goto retry;
455 	}
456 	return r;
457 }
458 
459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
460 			unsigned int cmd, unsigned long arg)
461 {
462 	struct mapped_device *md = bdev->bd_disk->private_data;
463 	int r;
464 
465 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
466 	if (r < 0)
467 		return r;
468 
469 	if (r > 0) {
470 		/*
471 		 * Target determined this ioctl is being issued against a
472 		 * subset of the parent bdev; require extra privileges.
473 		 */
474 		if (!capable(CAP_SYS_RAWIO)) {
475 			DMWARN_LIMIT(
476 	"%s: sending ioctl %x to DM device without required privilege.",
477 				current->comm, cmd);
478 			r = -ENOIOCTLCMD;
479 			goto out;
480 		}
481 	}
482 
483 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
484 out:
485 	bdput(bdev);
486 	return r;
487 }
488 
489 static struct dm_io *alloc_io(struct mapped_device *md)
490 {
491 	return mempool_alloc(md->io_pool, GFP_NOIO);
492 }
493 
494 static void free_io(struct mapped_device *md, struct dm_io *io)
495 {
496 	mempool_free(io, md->io_pool);
497 }
498 
499 static void free_tio(struct dm_target_io *tio)
500 {
501 	bio_put(&tio->clone);
502 }
503 
504 int md_in_flight(struct mapped_device *md)
505 {
506 	return atomic_read(&md->pending[READ]) +
507 	       atomic_read(&md->pending[WRITE]);
508 }
509 
510 static void start_io_acct(struct dm_io *io)
511 {
512 	struct mapped_device *md = io->md;
513 	struct bio *bio = io->orig_bio;
514 	int cpu;
515 	int rw = bio_data_dir(bio);
516 
517 	io->start_time = jiffies;
518 
519 	cpu = part_stat_lock();
520 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
521 	part_stat_unlock();
522 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
523 		atomic_inc_return(&md->pending[rw]));
524 
525 	if (unlikely(dm_stats_used(&md->stats)))
526 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 				    bio->bi_iter.bi_sector, bio_sectors(bio),
528 				    false, 0, &io->stats_aux);
529 }
530 
531 static void end_io_acct(struct dm_io *io)
532 {
533 	struct mapped_device *md = io->md;
534 	struct bio *bio = io->orig_bio;
535 	unsigned long duration = jiffies - io->start_time;
536 	int pending;
537 	int rw = bio_data_dir(bio);
538 
539 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
540 
541 	if (unlikely(dm_stats_used(&md->stats)))
542 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
543 				    bio->bi_iter.bi_sector, bio_sectors(bio),
544 				    true, duration, &io->stats_aux);
545 
546 	/*
547 	 * After this is decremented the bio must not be touched if it is
548 	 * a flush.
549 	 */
550 	pending = atomic_dec_return(&md->pending[rw]);
551 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
552 	pending += atomic_read(&md->pending[rw^0x1]);
553 
554 	/* nudge anyone waiting on suspend queue */
555 	if (!pending)
556 		wake_up(&md->wait);
557 }
558 
559 /*
560  * Add the bio to the list of deferred io.
561  */
562 static void queue_io(struct mapped_device *md, struct bio *bio)
563 {
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(&md->deferred_lock, flags);
567 	bio_list_add(&md->deferred, bio);
568 	spin_unlock_irqrestore(&md->deferred_lock, flags);
569 	queue_work(md->wq, &md->work);
570 }
571 
572 /*
573  * Everyone (including functions in this file), should use this
574  * function to access the md->map field, and make sure they call
575  * dm_put_live_table() when finished.
576  */
577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 {
579 	*srcu_idx = srcu_read_lock(&md->io_barrier);
580 
581 	return srcu_dereference(md->map, &md->io_barrier);
582 }
583 
584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 {
586 	srcu_read_unlock(&md->io_barrier, srcu_idx);
587 }
588 
589 void dm_sync_table(struct mapped_device *md)
590 {
591 	synchronize_srcu(&md->io_barrier);
592 	synchronize_rcu_expedited();
593 }
594 
595 /*
596  * A fast alternative to dm_get_live_table/dm_put_live_table.
597  * The caller must not block between these two functions.
598  */
599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
600 {
601 	rcu_read_lock();
602 	return rcu_dereference(md->map);
603 }
604 
605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
606 {
607 	rcu_read_unlock();
608 }
609 
610 /*
611  * Open a table device so we can use it as a map destination.
612  */
613 static int open_table_device(struct table_device *td, dev_t dev,
614 			     struct mapped_device *md)
615 {
616 	static char *_claim_ptr = "I belong to device-mapper";
617 	struct block_device *bdev;
618 
619 	int r;
620 
621 	BUG_ON(td->dm_dev.bdev);
622 
623 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 	if (IS_ERR(bdev))
625 		return PTR_ERR(bdev);
626 
627 	r = bd_link_disk_holder(bdev, dm_disk(md));
628 	if (r) {
629 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 		return r;
631 	}
632 
633 	td->dm_dev.bdev = bdev;
634 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
635 	return 0;
636 }
637 
638 /*
639  * Close a table device that we've been using.
640  */
641 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 {
643 	if (!td->dm_dev.bdev)
644 		return;
645 
646 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
647 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
648 	put_dax(td->dm_dev.dax_dev);
649 	td->dm_dev.bdev = NULL;
650 	td->dm_dev.dax_dev = NULL;
651 }
652 
653 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 					      fmode_t mode) {
655 	struct table_device *td;
656 
657 	list_for_each_entry(td, l, list)
658 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
659 			return td;
660 
661 	return NULL;
662 }
663 
664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
665 			struct dm_dev **result) {
666 	int r;
667 	struct table_device *td;
668 
669 	mutex_lock(&md->table_devices_lock);
670 	td = find_table_device(&md->table_devices, dev, mode);
671 	if (!td) {
672 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 		if (!td) {
674 			mutex_unlock(&md->table_devices_lock);
675 			return -ENOMEM;
676 		}
677 
678 		td->dm_dev.mode = mode;
679 		td->dm_dev.bdev = NULL;
680 
681 		if ((r = open_table_device(td, dev, md))) {
682 			mutex_unlock(&md->table_devices_lock);
683 			kfree(td);
684 			return r;
685 		}
686 
687 		format_dev_t(td->dm_dev.name, dev);
688 
689 		refcount_set(&td->count, 1);
690 		list_add(&td->list, &md->table_devices);
691 	} else {
692 		refcount_inc(&td->count);
693 	}
694 	mutex_unlock(&md->table_devices_lock);
695 
696 	*result = &td->dm_dev;
697 	return 0;
698 }
699 EXPORT_SYMBOL_GPL(dm_get_table_device);
700 
701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
702 {
703 	struct table_device *td = container_of(d, struct table_device, dm_dev);
704 
705 	mutex_lock(&md->table_devices_lock);
706 	if (refcount_dec_and_test(&td->count)) {
707 		close_table_device(td, md);
708 		list_del(&td->list);
709 		kfree(td);
710 	}
711 	mutex_unlock(&md->table_devices_lock);
712 }
713 EXPORT_SYMBOL(dm_put_table_device);
714 
715 static void free_table_devices(struct list_head *devices)
716 {
717 	struct list_head *tmp, *next;
718 
719 	list_for_each_safe(tmp, next, devices) {
720 		struct table_device *td = list_entry(tmp, struct table_device, list);
721 
722 		DMWARN("dm_destroy: %s still exists with %d references",
723 		       td->dm_dev.name, refcount_read(&td->count));
724 		kfree(td);
725 	}
726 }
727 
728 /*
729  * Get the geometry associated with a dm device
730  */
731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 	*geo = md->geometry;
734 
735 	return 0;
736 }
737 
738 /*
739  * Set the geometry of a device.
740  */
741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
742 {
743 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
744 
745 	if (geo->start > sz) {
746 		DMWARN("Start sector is beyond the geometry limits.");
747 		return -EINVAL;
748 	}
749 
750 	md->geometry = *geo;
751 
752 	return 0;
753 }
754 
755 static int __noflush_suspending(struct mapped_device *md)
756 {
757 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
758 }
759 
760 /*
761  * Decrements the number of outstanding ios that a bio has been
762  * cloned into, completing the original io if necc.
763  */
764 static void dec_pending(struct dm_io *io, blk_status_t error)
765 {
766 	unsigned long flags;
767 	blk_status_t io_error;
768 	struct bio *bio;
769 	struct mapped_device *md = io->md;
770 
771 	/* Push-back supersedes any I/O errors */
772 	if (unlikely(error)) {
773 		spin_lock_irqsave(&io->endio_lock, flags);
774 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
775 			io->status = error;
776 		spin_unlock_irqrestore(&io->endio_lock, flags);
777 	}
778 
779 	if (atomic_dec_and_test(&io->io_count)) {
780 		if (io->status == BLK_STS_DM_REQUEUE) {
781 			/*
782 			 * Target requested pushing back the I/O.
783 			 */
784 			spin_lock_irqsave(&md->deferred_lock, flags);
785 			if (__noflush_suspending(md))
786 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
787 				bio_list_add_head(&md->deferred, io->orig_bio);
788 			else
789 				/* noflush suspend was interrupted. */
790 				io->status = BLK_STS_IOERR;
791 			spin_unlock_irqrestore(&md->deferred_lock, flags);
792 		}
793 
794 		io_error = io->status;
795 		bio = io->orig_bio;
796 		end_io_acct(io);
797 		free_io(md, io);
798 
799 		if (io_error == BLK_STS_DM_REQUEUE)
800 			return;
801 
802 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
803 			/*
804 			 * Preflush done for flush with data, reissue
805 			 * without REQ_PREFLUSH.
806 			 */
807 			bio->bi_opf &= ~REQ_PREFLUSH;
808 			queue_io(md, bio);
809 		} else {
810 			/* done with normal IO or empty flush */
811 			bio->bi_status = io_error;
812 			bio_endio(bio);
813 		}
814 	}
815 }
816 
817 void disable_write_same(struct mapped_device *md)
818 {
819 	struct queue_limits *limits = dm_get_queue_limits(md);
820 
821 	/* device doesn't really support WRITE SAME, disable it */
822 	limits->max_write_same_sectors = 0;
823 }
824 
825 void disable_write_zeroes(struct mapped_device *md)
826 {
827 	struct queue_limits *limits = dm_get_queue_limits(md);
828 
829 	/* device doesn't really support WRITE ZEROES, disable it */
830 	limits->max_write_zeroes_sectors = 0;
831 }
832 
833 static void clone_endio(struct bio *bio)
834 {
835 	blk_status_t error = bio->bi_status;
836 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
837 	struct dm_io *io = tio->io;
838 	struct mapped_device *md = tio->io->md;
839 	dm_endio_fn endio = tio->ti->type->end_io;
840 
841 	if (unlikely(error == BLK_STS_TARGET)) {
842 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
843 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
844 			disable_write_same(md);
845 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
846 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
847 			disable_write_zeroes(md);
848 	}
849 
850 	if (endio) {
851 		int r = endio(tio->ti, bio, &error);
852 		switch (r) {
853 		case DM_ENDIO_REQUEUE:
854 			error = BLK_STS_DM_REQUEUE;
855 			/*FALLTHRU*/
856 		case DM_ENDIO_DONE:
857 			break;
858 		case DM_ENDIO_INCOMPLETE:
859 			/* The target will handle the io */
860 			return;
861 		default:
862 			DMWARN("unimplemented target endio return value: %d", r);
863 			BUG();
864 		}
865 	}
866 
867 	free_tio(tio);
868 	dec_pending(io, error);
869 }
870 
871 /*
872  * Return maximum size of I/O possible at the supplied sector up to the current
873  * target boundary.
874  */
875 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
876 {
877 	sector_t target_offset = dm_target_offset(ti, sector);
878 
879 	return ti->len - target_offset;
880 }
881 
882 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
883 {
884 	sector_t len = max_io_len_target_boundary(sector, ti);
885 	sector_t offset, max_len;
886 
887 	/*
888 	 * Does the target need to split even further?
889 	 */
890 	if (ti->max_io_len) {
891 		offset = dm_target_offset(ti, sector);
892 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
893 			max_len = sector_div(offset, ti->max_io_len);
894 		else
895 			max_len = offset & (ti->max_io_len - 1);
896 		max_len = ti->max_io_len - max_len;
897 
898 		if (len > max_len)
899 			len = max_len;
900 	}
901 
902 	return len;
903 }
904 
905 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
906 {
907 	if (len > UINT_MAX) {
908 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
909 		      (unsigned long long)len, UINT_MAX);
910 		ti->error = "Maximum size of target IO is too large";
911 		return -EINVAL;
912 	}
913 
914 	ti->max_io_len = (uint32_t) len;
915 
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
919 
920 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
921 		sector_t sector, int *srcu_idx)
922 {
923 	struct dm_table *map;
924 	struct dm_target *ti;
925 
926 	map = dm_get_live_table(md, srcu_idx);
927 	if (!map)
928 		return NULL;
929 
930 	ti = dm_table_find_target(map, sector);
931 	if (!dm_target_is_valid(ti))
932 		return NULL;
933 
934 	return ti;
935 }
936 
937 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
938 		long nr_pages, void **kaddr, pfn_t *pfn)
939 {
940 	struct mapped_device *md = dax_get_private(dax_dev);
941 	sector_t sector = pgoff * PAGE_SECTORS;
942 	struct dm_target *ti;
943 	long len, ret = -EIO;
944 	int srcu_idx;
945 
946 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
947 
948 	if (!ti)
949 		goto out;
950 	if (!ti->type->direct_access)
951 		goto out;
952 	len = max_io_len(sector, ti) / PAGE_SECTORS;
953 	if (len < 1)
954 		goto out;
955 	nr_pages = min(len, nr_pages);
956 	if (ti->type->direct_access)
957 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
958 
959  out:
960 	dm_put_live_table(md, srcu_idx);
961 
962 	return ret;
963 }
964 
965 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
966 		void *addr, size_t bytes, struct iov_iter *i)
967 {
968 	struct mapped_device *md = dax_get_private(dax_dev);
969 	sector_t sector = pgoff * PAGE_SECTORS;
970 	struct dm_target *ti;
971 	long ret = 0;
972 	int srcu_idx;
973 
974 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
975 
976 	if (!ti)
977 		goto out;
978 	if (!ti->type->dax_copy_from_iter) {
979 		ret = copy_from_iter(addr, bytes, i);
980 		goto out;
981 	}
982 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
983  out:
984 	dm_put_live_table(md, srcu_idx);
985 
986 	return ret;
987 }
988 
989 /*
990  * A target may call dm_accept_partial_bio only from the map routine.  It is
991  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
992  *
993  * dm_accept_partial_bio informs the dm that the target only wants to process
994  * additional n_sectors sectors of the bio and the rest of the data should be
995  * sent in a next bio.
996  *
997  * A diagram that explains the arithmetics:
998  * +--------------------+---------------+-------+
999  * |         1          |       2       |   3   |
1000  * +--------------------+---------------+-------+
1001  *
1002  * <-------------- *tio->len_ptr --------------->
1003  *                      <------- bi_size ------->
1004  *                      <-- n_sectors -->
1005  *
1006  * Region 1 was already iterated over with bio_advance or similar function.
1007  *	(it may be empty if the target doesn't use bio_advance)
1008  * Region 2 is the remaining bio size that the target wants to process.
1009  *	(it may be empty if region 1 is non-empty, although there is no reason
1010  *	 to make it empty)
1011  * The target requires that region 3 is to be sent in the next bio.
1012  *
1013  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1014  * the partially processed part (the sum of regions 1+2) must be the same for all
1015  * copies of the bio.
1016  */
1017 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1018 {
1019 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1020 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1021 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1022 	BUG_ON(bi_size > *tio->len_ptr);
1023 	BUG_ON(n_sectors > bi_size);
1024 	*tio->len_ptr -= bi_size - n_sectors;
1025 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1026 }
1027 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1028 
1029 /*
1030  * The zone descriptors obtained with a zone report indicate
1031  * zone positions within the target device. The zone descriptors
1032  * must be remapped to match their position within the dm device.
1033  * A target may call dm_remap_zone_report after completion of a
1034  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1035  * from the target device mapping to the dm device.
1036  */
1037 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1038 {
1039 #ifdef CONFIG_BLK_DEV_ZONED
1040 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1041 	struct bio *report_bio = tio->io->orig_bio;
1042 	struct blk_zone_report_hdr *hdr = NULL;
1043 	struct blk_zone *zone;
1044 	unsigned int nr_rep = 0;
1045 	unsigned int ofst;
1046 	struct bio_vec bvec;
1047 	struct bvec_iter iter;
1048 	void *addr;
1049 
1050 	if (bio->bi_status)
1051 		return;
1052 
1053 	/*
1054 	 * Remap the start sector of the reported zones. For sequential zones,
1055 	 * also remap the write pointer position.
1056 	 */
1057 	bio_for_each_segment(bvec, report_bio, iter) {
1058 		addr = kmap_atomic(bvec.bv_page);
1059 
1060 		/* Remember the report header in the first page */
1061 		if (!hdr) {
1062 			hdr = addr;
1063 			ofst = sizeof(struct blk_zone_report_hdr);
1064 		} else
1065 			ofst = 0;
1066 
1067 		/* Set zones start sector */
1068 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1069 			zone = addr + ofst;
1070 			if (zone->start >= start + ti->len) {
1071 				hdr->nr_zones = 0;
1072 				break;
1073 			}
1074 			zone->start = zone->start + ti->begin - start;
1075 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1076 				if (zone->cond == BLK_ZONE_COND_FULL)
1077 					zone->wp = zone->start + zone->len;
1078 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1079 					zone->wp = zone->start;
1080 				else
1081 					zone->wp = zone->wp + ti->begin - start;
1082 			}
1083 			ofst += sizeof(struct blk_zone);
1084 			hdr->nr_zones--;
1085 			nr_rep++;
1086 		}
1087 
1088 		if (addr != hdr)
1089 			kunmap_atomic(addr);
1090 
1091 		if (!hdr->nr_zones)
1092 			break;
1093 	}
1094 
1095 	if (hdr) {
1096 		hdr->nr_zones = nr_rep;
1097 		kunmap_atomic(hdr);
1098 	}
1099 
1100 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1101 
1102 #else /* !CONFIG_BLK_DEV_ZONED */
1103 	bio->bi_status = BLK_STS_NOTSUPP;
1104 #endif
1105 }
1106 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1107 
1108 static void __map_bio(struct dm_target_io *tio)
1109 {
1110 	int r;
1111 	sector_t sector;
1112 	struct bio *clone = &tio->clone;
1113 	struct dm_target *ti = tio->ti;
1114 
1115 	clone->bi_end_io = clone_endio;
1116 
1117 	/*
1118 	 * Map the clone.  If r == 0 we don't need to do
1119 	 * anything, the target has assumed ownership of
1120 	 * this io.
1121 	 */
1122 	atomic_inc(&tio->io->io_count);
1123 	sector = clone->bi_iter.bi_sector;
1124 
1125 	r = ti->type->map(ti, clone);
1126 	switch (r) {
1127 	case DM_MAPIO_SUBMITTED:
1128 		break;
1129 	case DM_MAPIO_REMAPPED:
1130 		/* the bio has been remapped so dispatch it */
1131 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1132 				      bio_dev(tio->io->orig_bio), sector);
1133 		generic_make_request(clone);
1134 		break;
1135 	case DM_MAPIO_KILL:
1136 		dec_pending(tio->io, BLK_STS_IOERR);
1137 		free_tio(tio);
1138 		break;
1139 	case DM_MAPIO_REQUEUE:
1140 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1141 		free_tio(tio);
1142 		break;
1143 	default:
1144 		DMWARN("unimplemented target map return value: %d", r);
1145 		BUG();
1146 	}
1147 }
1148 
1149 struct clone_info {
1150 	struct mapped_device *md;
1151 	struct dm_table *map;
1152 	struct bio *bio;
1153 	struct dm_io *io;
1154 	sector_t sector;
1155 	unsigned sector_count;
1156 };
1157 
1158 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1159 {
1160 	bio->bi_iter.bi_sector = sector;
1161 	bio->bi_iter.bi_size = to_bytes(len);
1162 }
1163 
1164 /*
1165  * Creates a bio that consists of range of complete bvecs.
1166  */
1167 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1168 		     sector_t sector, unsigned len)
1169 {
1170 	struct bio *clone = &tio->clone;
1171 
1172 	__bio_clone_fast(clone, bio);
1173 
1174 	if (unlikely(bio_integrity(bio) != NULL)) {
1175 		int r;
1176 
1177 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1178 			     !dm_target_passes_integrity(tio->ti->type))) {
1179 			DMWARN("%s: the target %s doesn't support integrity data.",
1180 				dm_device_name(tio->io->md),
1181 				tio->ti->type->name);
1182 			return -EIO;
1183 		}
1184 
1185 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1186 		if (r < 0)
1187 			return r;
1188 	}
1189 
1190 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1191 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1192 	clone->bi_iter.bi_size = to_bytes(len);
1193 
1194 	if (unlikely(bio_integrity(bio) != NULL))
1195 		bio_integrity_trim(clone);
1196 
1197 	return 0;
1198 }
1199 
1200 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
1201 				      unsigned target_bio_nr, gfp_t gfp_mask)
1202 {
1203 	struct dm_target_io *tio;
1204 	struct bio *clone;
1205 
1206 	clone = bio_alloc_bioset(gfp_mask, 0, ci->md->bs);
1207 	if (!clone)
1208 		return NULL;
1209 
1210 	tio = container_of(clone, struct dm_target_io, clone);
1211 	tio->io = ci->io;
1212 	tio->ti = ti;
1213 	tio->target_bio_nr = target_bio_nr;
1214 
1215 	return tio;
1216 }
1217 
1218 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1219 				struct dm_target *ti, unsigned num_bios)
1220 {
1221 	struct dm_target_io *tio;
1222 	int try;
1223 
1224 	if (!num_bios)
1225 		return;
1226 
1227 	if (num_bios == 1) {
1228 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1229 		bio_list_add(blist, &tio->clone);
1230 		return;
1231 	}
1232 
1233 	for (try = 0; try < 2; try++) {
1234 		int bio_nr;
1235 		struct bio *bio;
1236 
1237 		if (try)
1238 			mutex_lock(&ci->md->table_devices_lock);
1239 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1240 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1241 			if (!tio)
1242 				break;
1243 
1244 			bio_list_add(blist, &tio->clone);
1245 		}
1246 		if (try)
1247 			mutex_unlock(&ci->md->table_devices_lock);
1248 		if (bio_nr == num_bios)
1249 			return;
1250 
1251 		while ((bio = bio_list_pop(blist))) {
1252 			tio = container_of(bio, struct dm_target_io, clone);
1253 			free_tio(tio);
1254 		}
1255 	}
1256 }
1257 
1258 static void __clone_and_map_simple_bio(struct clone_info *ci,
1259 				       struct dm_target_io *tio, unsigned *len)
1260 {
1261 	struct bio *clone = &tio->clone;
1262 
1263 	tio->len_ptr = len;
1264 
1265 	__bio_clone_fast(clone, ci->bio);
1266 	if (len)
1267 		bio_setup_sector(clone, ci->sector, *len);
1268 
1269 	__map_bio(tio);
1270 }
1271 
1272 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1273 				  unsigned num_bios, unsigned *len)
1274 {
1275 	struct bio_list blist = BIO_EMPTY_LIST;
1276 	struct bio *bio;
1277 	struct dm_target_io *tio;
1278 
1279 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1280 
1281 	while ((bio = bio_list_pop(&blist))) {
1282 		tio = container_of(bio, struct dm_target_io, clone);
1283 		__clone_and_map_simple_bio(ci, tio, len);
1284 	}
1285 }
1286 
1287 static int __send_empty_flush(struct clone_info *ci)
1288 {
1289 	unsigned target_nr = 0;
1290 	struct dm_target *ti;
1291 
1292 	BUG_ON(bio_has_data(ci->bio));
1293 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1294 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1295 
1296 	return 0;
1297 }
1298 
1299 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1300 				    sector_t sector, unsigned *len)
1301 {
1302 	struct bio *bio = ci->bio;
1303 	struct dm_target_io *tio;
1304 	int r;
1305 
1306 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1307 	tio->len_ptr = len;
1308 	r = clone_bio(tio, bio, sector, *len);
1309 	if (r < 0) {
1310 		free_tio(tio);
1311 		return r;
1312 	}
1313 	__map_bio(tio);
1314 
1315 	return 0;
1316 }
1317 
1318 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1319 
1320 static unsigned get_num_discard_bios(struct dm_target *ti)
1321 {
1322 	return ti->num_discard_bios;
1323 }
1324 
1325 static unsigned get_num_write_same_bios(struct dm_target *ti)
1326 {
1327 	return ti->num_write_same_bios;
1328 }
1329 
1330 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1331 {
1332 	return ti->num_write_zeroes_bios;
1333 }
1334 
1335 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1336 
1337 static bool is_split_required_for_discard(struct dm_target *ti)
1338 {
1339 	return ti->split_discard_bios;
1340 }
1341 
1342 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1343 				       get_num_bios_fn get_num_bios,
1344 				       is_split_required_fn is_split_required)
1345 {
1346 	unsigned len;
1347 	unsigned num_bios;
1348 
1349 	/*
1350 	 * Even though the device advertised support for this type of
1351 	 * request, that does not mean every target supports it, and
1352 	 * reconfiguration might also have changed that since the
1353 	 * check was performed.
1354 	 */
1355 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1356 	if (!num_bios)
1357 		return -EOPNOTSUPP;
1358 
1359 	if (is_split_required && !is_split_required(ti))
1360 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1361 	else
1362 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1363 
1364 	__send_duplicate_bios(ci, ti, num_bios, &len);
1365 
1366 	ci->sector += len;
1367 	ci->sector_count -= len;
1368 
1369 	return 0;
1370 }
1371 
1372 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1373 {
1374 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1375 					   is_split_required_for_discard);
1376 }
1377 
1378 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1379 {
1380 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1381 }
1382 
1383 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1384 {
1385 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1386 }
1387 
1388 /*
1389  * Select the correct strategy for processing a non-flush bio.
1390  */
1391 static int __split_and_process_non_flush(struct clone_info *ci)
1392 {
1393 	struct bio *bio = ci->bio;
1394 	struct dm_target *ti;
1395 	unsigned len;
1396 	int r;
1397 
1398 	ti = dm_table_find_target(ci->map, ci->sector);
1399 	if (!dm_target_is_valid(ti))
1400 		return -EIO;
1401 
1402 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1403 		return __send_discard(ci, ti);
1404 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1405 		return __send_write_same(ci, ti);
1406 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1407 		return __send_write_zeroes(ci, ti);
1408 
1409 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1410 		len = ci->sector_count;
1411 	else
1412 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1413 			    ci->sector_count);
1414 
1415 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1416 	if (r < 0)
1417 		return r;
1418 
1419 	ci->sector += len;
1420 	ci->sector_count -= len;
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Entry point to split a bio into clones and submit them to the targets.
1427  */
1428 static void __split_and_process_bio(struct mapped_device *md,
1429 				    struct dm_table *map, struct bio *bio)
1430 {
1431 	struct clone_info ci;
1432 	int error = 0;
1433 
1434 	if (unlikely(!map)) {
1435 		bio_io_error(bio);
1436 		return;
1437 	}
1438 
1439 	ci.map = map;
1440 	ci.md = md;
1441 	ci.io = alloc_io(md);
1442 	ci.io->status = 0;
1443 	atomic_set(&ci.io->io_count, 1);
1444 	ci.io->orig_bio = bio;
1445 	ci.io->md = md;
1446 	spin_lock_init(&ci.io->endio_lock);
1447 	ci.sector = bio->bi_iter.bi_sector;
1448 
1449 	start_io_acct(ci.io);
1450 
1451 	if (bio->bi_opf & REQ_PREFLUSH) {
1452 		ci.bio = &ci.md->flush_bio;
1453 		ci.sector_count = 0;
1454 		error = __send_empty_flush(&ci);
1455 		/* dec_pending submits any data associated with flush */
1456 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1457 		ci.bio = bio;
1458 		ci.sector_count = 0;
1459 		error = __split_and_process_non_flush(&ci);
1460 	} else {
1461 		ci.bio = bio;
1462 		ci.sector_count = bio_sectors(bio);
1463 		while (ci.sector_count && !error) {
1464 			error = __split_and_process_non_flush(&ci);
1465 			if (current->bio_list && ci.sector_count && !error) {
1466 				/*
1467 				 * Remainder must be passed to generic_make_request()
1468 				 * so that it gets handled *after* bios already submitted
1469 				 * have been completely processed.
1470 				 * We take a clone of the original to store in
1471 				 * ci.io->orig_bio to be used by end_io_acct() and
1472 				 * for dec_pending to use for completion handling.
1473 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1474 				 * the usage of io->orig_bio in dm_remap_zone_report()
1475 				 * won't be affected by this reassignment.
1476 				 */
1477 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1478 								 md->queue->bio_split);
1479 				ci.io->orig_bio = b;
1480 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1481 				bio_chain(b, bio);
1482 				generic_make_request(bio);
1483 				break;
1484 			}
1485 		}
1486 	}
1487 
1488 	/* drop the extra reference count */
1489 	dec_pending(ci.io, errno_to_blk_status(error));
1490 }
1491 
1492 /*
1493  * The request function that remaps the bio to one target and
1494  * splits off any remainder.
1495  */
1496 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1497 {
1498 	int rw = bio_data_dir(bio);
1499 	struct mapped_device *md = q->queuedata;
1500 	int srcu_idx;
1501 	struct dm_table *map;
1502 
1503 	map = dm_get_live_table(md, &srcu_idx);
1504 
1505 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1506 
1507 	/* if we're suspended, we have to queue this io for later */
1508 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1509 		dm_put_live_table(md, srcu_idx);
1510 
1511 		if (!(bio->bi_opf & REQ_RAHEAD))
1512 			queue_io(md, bio);
1513 		else
1514 			bio_io_error(bio);
1515 		return BLK_QC_T_NONE;
1516 	}
1517 
1518 	__split_and_process_bio(md, map, bio);
1519 	dm_put_live_table(md, srcu_idx);
1520 	return BLK_QC_T_NONE;
1521 }
1522 
1523 static int dm_any_congested(void *congested_data, int bdi_bits)
1524 {
1525 	int r = bdi_bits;
1526 	struct mapped_device *md = congested_data;
1527 	struct dm_table *map;
1528 
1529 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1530 		if (dm_request_based(md)) {
1531 			/*
1532 			 * With request-based DM we only need to check the
1533 			 * top-level queue for congestion.
1534 			 */
1535 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1536 		} else {
1537 			map = dm_get_live_table_fast(md);
1538 			if (map)
1539 				r = dm_table_any_congested(map, bdi_bits);
1540 			dm_put_live_table_fast(md);
1541 		}
1542 	}
1543 
1544 	return r;
1545 }
1546 
1547 /*-----------------------------------------------------------------
1548  * An IDR is used to keep track of allocated minor numbers.
1549  *---------------------------------------------------------------*/
1550 static void free_minor(int minor)
1551 {
1552 	spin_lock(&_minor_lock);
1553 	idr_remove(&_minor_idr, minor);
1554 	spin_unlock(&_minor_lock);
1555 }
1556 
1557 /*
1558  * See if the device with a specific minor # is free.
1559  */
1560 static int specific_minor(int minor)
1561 {
1562 	int r;
1563 
1564 	if (minor >= (1 << MINORBITS))
1565 		return -EINVAL;
1566 
1567 	idr_preload(GFP_KERNEL);
1568 	spin_lock(&_minor_lock);
1569 
1570 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1571 
1572 	spin_unlock(&_minor_lock);
1573 	idr_preload_end();
1574 	if (r < 0)
1575 		return r == -ENOSPC ? -EBUSY : r;
1576 	return 0;
1577 }
1578 
1579 static int next_free_minor(int *minor)
1580 {
1581 	int r;
1582 
1583 	idr_preload(GFP_KERNEL);
1584 	spin_lock(&_minor_lock);
1585 
1586 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1587 
1588 	spin_unlock(&_minor_lock);
1589 	idr_preload_end();
1590 	if (r < 0)
1591 		return r;
1592 	*minor = r;
1593 	return 0;
1594 }
1595 
1596 static const struct block_device_operations dm_blk_dops;
1597 static const struct dax_operations dm_dax_ops;
1598 
1599 static void dm_wq_work(struct work_struct *work);
1600 
1601 void dm_init_md_queue(struct mapped_device *md)
1602 {
1603 	/*
1604 	 * Initialize data that will only be used by a non-blk-mq DM queue
1605 	 * - must do so here (in alloc_dev callchain) before queue is used
1606 	 */
1607 	md->queue->queuedata = md;
1608 	md->queue->backing_dev_info->congested_data = md;
1609 }
1610 
1611 void dm_init_normal_md_queue(struct mapped_device *md)
1612 {
1613 	md->use_blk_mq = false;
1614 	dm_init_md_queue(md);
1615 
1616 	/*
1617 	 * Initialize aspects of queue that aren't relevant for blk-mq
1618 	 */
1619 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1620 }
1621 
1622 static void cleanup_mapped_device(struct mapped_device *md)
1623 {
1624 	if (md->wq)
1625 		destroy_workqueue(md->wq);
1626 	if (md->kworker_task)
1627 		kthread_stop(md->kworker_task);
1628 	mempool_destroy(md->io_pool);
1629 	if (md->bs)
1630 		bioset_free(md->bs);
1631 
1632 	if (md->dax_dev) {
1633 		kill_dax(md->dax_dev);
1634 		put_dax(md->dax_dev);
1635 		md->dax_dev = NULL;
1636 	}
1637 
1638 	if (md->disk) {
1639 		spin_lock(&_minor_lock);
1640 		md->disk->private_data = NULL;
1641 		spin_unlock(&_minor_lock);
1642 		del_gendisk(md->disk);
1643 		put_disk(md->disk);
1644 	}
1645 
1646 	if (md->queue)
1647 		blk_cleanup_queue(md->queue);
1648 
1649 	cleanup_srcu_struct(&md->io_barrier);
1650 
1651 	if (md->bdev) {
1652 		bdput(md->bdev);
1653 		md->bdev = NULL;
1654 	}
1655 
1656 	dm_mq_cleanup_mapped_device(md);
1657 }
1658 
1659 /*
1660  * Allocate and initialise a blank device with a given minor.
1661  */
1662 static struct mapped_device *alloc_dev(int minor)
1663 {
1664 	int r, numa_node_id = dm_get_numa_node();
1665 	struct dax_device *dax_dev;
1666 	struct mapped_device *md;
1667 	void *old_md;
1668 
1669 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1670 	if (!md) {
1671 		DMWARN("unable to allocate device, out of memory.");
1672 		return NULL;
1673 	}
1674 
1675 	if (!try_module_get(THIS_MODULE))
1676 		goto bad_module_get;
1677 
1678 	/* get a minor number for the dev */
1679 	if (minor == DM_ANY_MINOR)
1680 		r = next_free_minor(&minor);
1681 	else
1682 		r = specific_minor(minor);
1683 	if (r < 0)
1684 		goto bad_minor;
1685 
1686 	r = init_srcu_struct(&md->io_barrier);
1687 	if (r < 0)
1688 		goto bad_io_barrier;
1689 
1690 	md->numa_node_id = numa_node_id;
1691 	md->use_blk_mq = dm_use_blk_mq_default();
1692 	md->init_tio_pdu = false;
1693 	md->type = DM_TYPE_NONE;
1694 	mutex_init(&md->suspend_lock);
1695 	mutex_init(&md->type_lock);
1696 	mutex_init(&md->table_devices_lock);
1697 	spin_lock_init(&md->deferred_lock);
1698 	atomic_set(&md->holders, 1);
1699 	atomic_set(&md->open_count, 0);
1700 	atomic_set(&md->event_nr, 0);
1701 	atomic_set(&md->uevent_seq, 0);
1702 	INIT_LIST_HEAD(&md->uevent_list);
1703 	INIT_LIST_HEAD(&md->table_devices);
1704 	spin_lock_init(&md->uevent_lock);
1705 
1706 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1707 	if (!md->queue)
1708 		goto bad;
1709 
1710 	dm_init_md_queue(md);
1711 
1712 	md->disk = alloc_disk_node(1, numa_node_id);
1713 	if (!md->disk)
1714 		goto bad;
1715 
1716 	atomic_set(&md->pending[0], 0);
1717 	atomic_set(&md->pending[1], 0);
1718 	init_waitqueue_head(&md->wait);
1719 	INIT_WORK(&md->work, dm_wq_work);
1720 	init_waitqueue_head(&md->eventq);
1721 	init_completion(&md->kobj_holder.completion);
1722 	md->kworker_task = NULL;
1723 
1724 	md->disk->major = _major;
1725 	md->disk->first_minor = minor;
1726 	md->disk->fops = &dm_blk_dops;
1727 	md->disk->queue = md->queue;
1728 	md->disk->private_data = md;
1729 	sprintf(md->disk->disk_name, "dm-%d", minor);
1730 
1731 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1732 	if (!dax_dev)
1733 		goto bad;
1734 	md->dax_dev = dax_dev;
1735 
1736 	add_disk(md->disk);
1737 	format_dev_t(md->name, MKDEV(_major, minor));
1738 
1739 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1740 	if (!md->wq)
1741 		goto bad;
1742 
1743 	md->bdev = bdget_disk(md->disk, 0);
1744 	if (!md->bdev)
1745 		goto bad;
1746 
1747 	bio_init(&md->flush_bio, NULL, 0);
1748 	bio_set_dev(&md->flush_bio, md->bdev);
1749 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1750 
1751 	dm_stats_init(&md->stats);
1752 
1753 	/* Populate the mapping, nobody knows we exist yet */
1754 	spin_lock(&_minor_lock);
1755 	old_md = idr_replace(&_minor_idr, md, minor);
1756 	spin_unlock(&_minor_lock);
1757 
1758 	BUG_ON(old_md != MINOR_ALLOCED);
1759 
1760 	return md;
1761 
1762 bad:
1763 	cleanup_mapped_device(md);
1764 bad_io_barrier:
1765 	free_minor(minor);
1766 bad_minor:
1767 	module_put(THIS_MODULE);
1768 bad_module_get:
1769 	kvfree(md);
1770 	return NULL;
1771 }
1772 
1773 static void unlock_fs(struct mapped_device *md);
1774 
1775 static void free_dev(struct mapped_device *md)
1776 {
1777 	int minor = MINOR(disk_devt(md->disk));
1778 
1779 	unlock_fs(md);
1780 
1781 	cleanup_mapped_device(md);
1782 
1783 	free_table_devices(&md->table_devices);
1784 	dm_stats_cleanup(&md->stats);
1785 	free_minor(minor);
1786 
1787 	module_put(THIS_MODULE);
1788 	kvfree(md);
1789 }
1790 
1791 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1792 {
1793 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1794 
1795 	if (dm_table_bio_based(t)) {
1796 		/* The md may already have mempools that need changing. */
1797 		if (md->bs) {
1798 			/*
1799 			 * Reload bioset because front_pad may have changed
1800 			 * because a different table was loaded.
1801 			 */
1802 			bioset_free(md->bs);
1803 			md->bs = NULL;
1804 		}
1805 		if (md->io_pool) {
1806 			/*
1807 			 * Reload io_pool because pool_size may have changed
1808 			 * because a different table was loaded.
1809 			 */
1810 			mempool_destroy(md->io_pool);
1811 			md->io_pool = NULL;
1812 		}
1813 
1814 	} else if (md->bs) {
1815 		/*
1816 		 * There's no need to reload with request-based dm
1817 		 * because the size of front_pad doesn't change.
1818 		 * Note for future: If you are to reload bioset,
1819 		 * prep-ed requests in the queue may refer
1820 		 * to bio from the old bioset, so you must walk
1821 		 * through the queue to unprep.
1822 		 */
1823 		goto out;
1824 	}
1825 
1826 	BUG_ON(!p || md->io_pool || md->bs);
1827 
1828 	md->io_pool = p->io_pool;
1829 	p->io_pool = NULL;
1830 	md->bs = p->bs;
1831 	p->bs = NULL;
1832 out:
1833 	/* mempool bind completed, no longer need any mempools in the table */
1834 	dm_table_free_md_mempools(t);
1835 }
1836 
1837 /*
1838  * Bind a table to the device.
1839  */
1840 static void event_callback(void *context)
1841 {
1842 	unsigned long flags;
1843 	LIST_HEAD(uevents);
1844 	struct mapped_device *md = (struct mapped_device *) context;
1845 
1846 	spin_lock_irqsave(&md->uevent_lock, flags);
1847 	list_splice_init(&md->uevent_list, &uevents);
1848 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1849 
1850 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1851 
1852 	atomic_inc(&md->event_nr);
1853 	wake_up(&md->eventq);
1854 	dm_issue_global_event();
1855 }
1856 
1857 /*
1858  * Protected by md->suspend_lock obtained by dm_swap_table().
1859  */
1860 static void __set_size(struct mapped_device *md, sector_t size)
1861 {
1862 	lockdep_assert_held(&md->suspend_lock);
1863 
1864 	set_capacity(md->disk, size);
1865 
1866 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1867 }
1868 
1869 /*
1870  * Returns old map, which caller must destroy.
1871  */
1872 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1873 			       struct queue_limits *limits)
1874 {
1875 	struct dm_table *old_map;
1876 	struct request_queue *q = md->queue;
1877 	sector_t size;
1878 
1879 	lockdep_assert_held(&md->suspend_lock);
1880 
1881 	size = dm_table_get_size(t);
1882 
1883 	/*
1884 	 * Wipe any geometry if the size of the table changed.
1885 	 */
1886 	if (size != dm_get_size(md))
1887 		memset(&md->geometry, 0, sizeof(md->geometry));
1888 
1889 	__set_size(md, size);
1890 
1891 	dm_table_event_callback(t, event_callback, md);
1892 
1893 	/*
1894 	 * The queue hasn't been stopped yet, if the old table type wasn't
1895 	 * for request-based during suspension.  So stop it to prevent
1896 	 * I/O mapping before resume.
1897 	 * This must be done before setting the queue restrictions,
1898 	 * because request-based dm may be run just after the setting.
1899 	 */
1900 	if (dm_table_request_based(t)) {
1901 		dm_stop_queue(q);
1902 		/*
1903 		 * Leverage the fact that request-based DM targets are
1904 		 * immutable singletons and establish md->immutable_target
1905 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1906 		 */
1907 		md->immutable_target = dm_table_get_immutable_target(t);
1908 	}
1909 
1910 	__bind_mempools(md, t);
1911 
1912 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1913 	rcu_assign_pointer(md->map, (void *)t);
1914 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1915 
1916 	dm_table_set_restrictions(t, q, limits);
1917 	if (old_map)
1918 		dm_sync_table(md);
1919 
1920 	return old_map;
1921 }
1922 
1923 /*
1924  * Returns unbound table for the caller to free.
1925  */
1926 static struct dm_table *__unbind(struct mapped_device *md)
1927 {
1928 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1929 
1930 	if (!map)
1931 		return NULL;
1932 
1933 	dm_table_event_callback(map, NULL, NULL);
1934 	RCU_INIT_POINTER(md->map, NULL);
1935 	dm_sync_table(md);
1936 
1937 	return map;
1938 }
1939 
1940 /*
1941  * Constructor for a new device.
1942  */
1943 int dm_create(int minor, struct mapped_device **result)
1944 {
1945 	struct mapped_device *md;
1946 
1947 	md = alloc_dev(minor);
1948 	if (!md)
1949 		return -ENXIO;
1950 
1951 	dm_sysfs_init(md);
1952 
1953 	*result = md;
1954 	return 0;
1955 }
1956 
1957 /*
1958  * Functions to manage md->type.
1959  * All are required to hold md->type_lock.
1960  */
1961 void dm_lock_md_type(struct mapped_device *md)
1962 {
1963 	mutex_lock(&md->type_lock);
1964 }
1965 
1966 void dm_unlock_md_type(struct mapped_device *md)
1967 {
1968 	mutex_unlock(&md->type_lock);
1969 }
1970 
1971 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1972 {
1973 	BUG_ON(!mutex_is_locked(&md->type_lock));
1974 	md->type = type;
1975 }
1976 
1977 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1978 {
1979 	return md->type;
1980 }
1981 
1982 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1983 {
1984 	return md->immutable_target_type;
1985 }
1986 
1987 /*
1988  * The queue_limits are only valid as long as you have a reference
1989  * count on 'md'.
1990  */
1991 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1992 {
1993 	BUG_ON(!atomic_read(&md->holders));
1994 	return &md->queue->limits;
1995 }
1996 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1997 
1998 /*
1999  * Setup the DM device's queue based on md's type
2000  */
2001 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2002 {
2003 	int r;
2004 	enum dm_queue_mode type = dm_get_md_type(md);
2005 
2006 	switch (type) {
2007 	case DM_TYPE_REQUEST_BASED:
2008 		r = dm_old_init_request_queue(md, t);
2009 		if (r) {
2010 			DMERR("Cannot initialize queue for request-based mapped device");
2011 			return r;
2012 		}
2013 		break;
2014 	case DM_TYPE_MQ_REQUEST_BASED:
2015 		r = dm_mq_init_request_queue(md, t);
2016 		if (r) {
2017 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2018 			return r;
2019 		}
2020 		break;
2021 	case DM_TYPE_BIO_BASED:
2022 	case DM_TYPE_DAX_BIO_BASED:
2023 		dm_init_normal_md_queue(md);
2024 		blk_queue_make_request(md->queue, dm_make_request);
2025 		break;
2026 	case DM_TYPE_NONE:
2027 		WARN_ON_ONCE(true);
2028 		break;
2029 	}
2030 
2031 	return 0;
2032 }
2033 
2034 struct mapped_device *dm_get_md(dev_t dev)
2035 {
2036 	struct mapped_device *md;
2037 	unsigned minor = MINOR(dev);
2038 
2039 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2040 		return NULL;
2041 
2042 	spin_lock(&_minor_lock);
2043 
2044 	md = idr_find(&_minor_idr, minor);
2045 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2046 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2047 		md = NULL;
2048 		goto out;
2049 	}
2050 	dm_get(md);
2051 out:
2052 	spin_unlock(&_minor_lock);
2053 
2054 	return md;
2055 }
2056 EXPORT_SYMBOL_GPL(dm_get_md);
2057 
2058 void *dm_get_mdptr(struct mapped_device *md)
2059 {
2060 	return md->interface_ptr;
2061 }
2062 
2063 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2064 {
2065 	md->interface_ptr = ptr;
2066 }
2067 
2068 void dm_get(struct mapped_device *md)
2069 {
2070 	atomic_inc(&md->holders);
2071 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2072 }
2073 
2074 int dm_hold(struct mapped_device *md)
2075 {
2076 	spin_lock(&_minor_lock);
2077 	if (test_bit(DMF_FREEING, &md->flags)) {
2078 		spin_unlock(&_minor_lock);
2079 		return -EBUSY;
2080 	}
2081 	dm_get(md);
2082 	spin_unlock(&_minor_lock);
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(dm_hold);
2086 
2087 const char *dm_device_name(struct mapped_device *md)
2088 {
2089 	return md->name;
2090 }
2091 EXPORT_SYMBOL_GPL(dm_device_name);
2092 
2093 static void __dm_destroy(struct mapped_device *md, bool wait)
2094 {
2095 	struct request_queue *q = dm_get_md_queue(md);
2096 	struct dm_table *map;
2097 	int srcu_idx;
2098 
2099 	might_sleep();
2100 
2101 	spin_lock(&_minor_lock);
2102 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2103 	set_bit(DMF_FREEING, &md->flags);
2104 	spin_unlock(&_minor_lock);
2105 
2106 	blk_set_queue_dying(q);
2107 
2108 	if (dm_request_based(md) && md->kworker_task)
2109 		kthread_flush_worker(&md->kworker);
2110 
2111 	/*
2112 	 * Take suspend_lock so that presuspend and postsuspend methods
2113 	 * do not race with internal suspend.
2114 	 */
2115 	mutex_lock(&md->suspend_lock);
2116 	map = dm_get_live_table(md, &srcu_idx);
2117 	if (!dm_suspended_md(md)) {
2118 		dm_table_presuspend_targets(map);
2119 		dm_table_postsuspend_targets(map);
2120 	}
2121 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2122 	dm_put_live_table(md, srcu_idx);
2123 	mutex_unlock(&md->suspend_lock);
2124 
2125 	/*
2126 	 * Rare, but there may be I/O requests still going to complete,
2127 	 * for example.  Wait for all references to disappear.
2128 	 * No one should increment the reference count of the mapped_device,
2129 	 * after the mapped_device state becomes DMF_FREEING.
2130 	 */
2131 	if (wait)
2132 		while (atomic_read(&md->holders))
2133 			msleep(1);
2134 	else if (atomic_read(&md->holders))
2135 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2136 		       dm_device_name(md), atomic_read(&md->holders));
2137 
2138 	dm_sysfs_exit(md);
2139 	dm_table_destroy(__unbind(md));
2140 	free_dev(md);
2141 }
2142 
2143 void dm_destroy(struct mapped_device *md)
2144 {
2145 	__dm_destroy(md, true);
2146 }
2147 
2148 void dm_destroy_immediate(struct mapped_device *md)
2149 {
2150 	__dm_destroy(md, false);
2151 }
2152 
2153 void dm_put(struct mapped_device *md)
2154 {
2155 	atomic_dec(&md->holders);
2156 }
2157 EXPORT_SYMBOL_GPL(dm_put);
2158 
2159 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2160 {
2161 	int r = 0;
2162 	DEFINE_WAIT(wait);
2163 
2164 	while (1) {
2165 		prepare_to_wait(&md->wait, &wait, task_state);
2166 
2167 		if (!md_in_flight(md))
2168 			break;
2169 
2170 		if (signal_pending_state(task_state, current)) {
2171 			r = -EINTR;
2172 			break;
2173 		}
2174 
2175 		io_schedule();
2176 	}
2177 	finish_wait(&md->wait, &wait);
2178 
2179 	return r;
2180 }
2181 
2182 /*
2183  * Process the deferred bios
2184  */
2185 static void dm_wq_work(struct work_struct *work)
2186 {
2187 	struct mapped_device *md = container_of(work, struct mapped_device,
2188 						work);
2189 	struct bio *c;
2190 	int srcu_idx;
2191 	struct dm_table *map;
2192 
2193 	map = dm_get_live_table(md, &srcu_idx);
2194 
2195 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2196 		spin_lock_irq(&md->deferred_lock);
2197 		c = bio_list_pop(&md->deferred);
2198 		spin_unlock_irq(&md->deferred_lock);
2199 
2200 		if (!c)
2201 			break;
2202 
2203 		if (dm_request_based(md))
2204 			generic_make_request(c);
2205 		else
2206 			__split_and_process_bio(md, map, c);
2207 	}
2208 
2209 	dm_put_live_table(md, srcu_idx);
2210 }
2211 
2212 static void dm_queue_flush(struct mapped_device *md)
2213 {
2214 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2215 	smp_mb__after_atomic();
2216 	queue_work(md->wq, &md->work);
2217 }
2218 
2219 /*
2220  * Swap in a new table, returning the old one for the caller to destroy.
2221  */
2222 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2223 {
2224 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2225 	struct queue_limits limits;
2226 	int r;
2227 
2228 	mutex_lock(&md->suspend_lock);
2229 
2230 	/* device must be suspended */
2231 	if (!dm_suspended_md(md))
2232 		goto out;
2233 
2234 	/*
2235 	 * If the new table has no data devices, retain the existing limits.
2236 	 * This helps multipath with queue_if_no_path if all paths disappear,
2237 	 * then new I/O is queued based on these limits, and then some paths
2238 	 * reappear.
2239 	 */
2240 	if (dm_table_has_no_data_devices(table)) {
2241 		live_map = dm_get_live_table_fast(md);
2242 		if (live_map)
2243 			limits = md->queue->limits;
2244 		dm_put_live_table_fast(md);
2245 	}
2246 
2247 	if (!live_map) {
2248 		r = dm_calculate_queue_limits(table, &limits);
2249 		if (r) {
2250 			map = ERR_PTR(r);
2251 			goto out;
2252 		}
2253 	}
2254 
2255 	map = __bind(md, table, &limits);
2256 	dm_issue_global_event();
2257 
2258 out:
2259 	mutex_unlock(&md->suspend_lock);
2260 	return map;
2261 }
2262 
2263 /*
2264  * Functions to lock and unlock any filesystem running on the
2265  * device.
2266  */
2267 static int lock_fs(struct mapped_device *md)
2268 {
2269 	int r;
2270 
2271 	WARN_ON(md->frozen_sb);
2272 
2273 	md->frozen_sb = freeze_bdev(md->bdev);
2274 	if (IS_ERR(md->frozen_sb)) {
2275 		r = PTR_ERR(md->frozen_sb);
2276 		md->frozen_sb = NULL;
2277 		return r;
2278 	}
2279 
2280 	set_bit(DMF_FROZEN, &md->flags);
2281 
2282 	return 0;
2283 }
2284 
2285 static void unlock_fs(struct mapped_device *md)
2286 {
2287 	if (!test_bit(DMF_FROZEN, &md->flags))
2288 		return;
2289 
2290 	thaw_bdev(md->bdev, md->frozen_sb);
2291 	md->frozen_sb = NULL;
2292 	clear_bit(DMF_FROZEN, &md->flags);
2293 }
2294 
2295 /*
2296  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2297  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2298  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2299  *
2300  * If __dm_suspend returns 0, the device is completely quiescent
2301  * now. There is no request-processing activity. All new requests
2302  * are being added to md->deferred list.
2303  */
2304 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2305 			unsigned suspend_flags, long task_state,
2306 			int dmf_suspended_flag)
2307 {
2308 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2309 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2310 	int r;
2311 
2312 	lockdep_assert_held(&md->suspend_lock);
2313 
2314 	/*
2315 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2316 	 * This flag is cleared before dm_suspend returns.
2317 	 */
2318 	if (noflush)
2319 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2320 	else
2321 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2322 
2323 	/*
2324 	 * This gets reverted if there's an error later and the targets
2325 	 * provide the .presuspend_undo hook.
2326 	 */
2327 	dm_table_presuspend_targets(map);
2328 
2329 	/*
2330 	 * Flush I/O to the device.
2331 	 * Any I/O submitted after lock_fs() may not be flushed.
2332 	 * noflush takes precedence over do_lockfs.
2333 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2334 	 */
2335 	if (!noflush && do_lockfs) {
2336 		r = lock_fs(md);
2337 		if (r) {
2338 			dm_table_presuspend_undo_targets(map);
2339 			return r;
2340 		}
2341 	}
2342 
2343 	/*
2344 	 * Here we must make sure that no processes are submitting requests
2345 	 * to target drivers i.e. no one may be executing
2346 	 * __split_and_process_bio. This is called from dm_request and
2347 	 * dm_wq_work.
2348 	 *
2349 	 * To get all processes out of __split_and_process_bio in dm_request,
2350 	 * we take the write lock. To prevent any process from reentering
2351 	 * __split_and_process_bio from dm_request and quiesce the thread
2352 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2353 	 * flush_workqueue(md->wq).
2354 	 */
2355 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2356 	if (map)
2357 		synchronize_srcu(&md->io_barrier);
2358 
2359 	/*
2360 	 * Stop md->queue before flushing md->wq in case request-based
2361 	 * dm defers requests to md->wq from md->queue.
2362 	 */
2363 	if (dm_request_based(md)) {
2364 		dm_stop_queue(md->queue);
2365 		if (md->kworker_task)
2366 			kthread_flush_worker(&md->kworker);
2367 	}
2368 
2369 	flush_workqueue(md->wq);
2370 
2371 	/*
2372 	 * At this point no more requests are entering target request routines.
2373 	 * We call dm_wait_for_completion to wait for all existing requests
2374 	 * to finish.
2375 	 */
2376 	r = dm_wait_for_completion(md, task_state);
2377 	if (!r)
2378 		set_bit(dmf_suspended_flag, &md->flags);
2379 
2380 	if (noflush)
2381 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2382 	if (map)
2383 		synchronize_srcu(&md->io_barrier);
2384 
2385 	/* were we interrupted ? */
2386 	if (r < 0) {
2387 		dm_queue_flush(md);
2388 
2389 		if (dm_request_based(md))
2390 			dm_start_queue(md->queue);
2391 
2392 		unlock_fs(md);
2393 		dm_table_presuspend_undo_targets(map);
2394 		/* pushback list is already flushed, so skip flush */
2395 	}
2396 
2397 	return r;
2398 }
2399 
2400 /*
2401  * We need to be able to change a mapping table under a mounted
2402  * filesystem.  For example we might want to move some data in
2403  * the background.  Before the table can be swapped with
2404  * dm_bind_table, dm_suspend must be called to flush any in
2405  * flight bios and ensure that any further io gets deferred.
2406  */
2407 /*
2408  * Suspend mechanism in request-based dm.
2409  *
2410  * 1. Flush all I/Os by lock_fs() if needed.
2411  * 2. Stop dispatching any I/O by stopping the request_queue.
2412  * 3. Wait for all in-flight I/Os to be completed or requeued.
2413  *
2414  * To abort suspend, start the request_queue.
2415  */
2416 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2417 {
2418 	struct dm_table *map = NULL;
2419 	int r = 0;
2420 
2421 retry:
2422 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2423 
2424 	if (dm_suspended_md(md)) {
2425 		r = -EINVAL;
2426 		goto out_unlock;
2427 	}
2428 
2429 	if (dm_suspended_internally_md(md)) {
2430 		/* already internally suspended, wait for internal resume */
2431 		mutex_unlock(&md->suspend_lock);
2432 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2433 		if (r)
2434 			return r;
2435 		goto retry;
2436 	}
2437 
2438 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2439 
2440 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2441 	if (r)
2442 		goto out_unlock;
2443 
2444 	dm_table_postsuspend_targets(map);
2445 
2446 out_unlock:
2447 	mutex_unlock(&md->suspend_lock);
2448 	return r;
2449 }
2450 
2451 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2452 {
2453 	if (map) {
2454 		int r = dm_table_resume_targets(map);
2455 		if (r)
2456 			return r;
2457 	}
2458 
2459 	dm_queue_flush(md);
2460 
2461 	/*
2462 	 * Flushing deferred I/Os must be done after targets are resumed
2463 	 * so that mapping of targets can work correctly.
2464 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2465 	 */
2466 	if (dm_request_based(md))
2467 		dm_start_queue(md->queue);
2468 
2469 	unlock_fs(md);
2470 
2471 	return 0;
2472 }
2473 
2474 int dm_resume(struct mapped_device *md)
2475 {
2476 	int r;
2477 	struct dm_table *map = NULL;
2478 
2479 retry:
2480 	r = -EINVAL;
2481 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2482 
2483 	if (!dm_suspended_md(md))
2484 		goto out;
2485 
2486 	if (dm_suspended_internally_md(md)) {
2487 		/* already internally suspended, wait for internal resume */
2488 		mutex_unlock(&md->suspend_lock);
2489 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2490 		if (r)
2491 			return r;
2492 		goto retry;
2493 	}
2494 
2495 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2496 	if (!map || !dm_table_get_size(map))
2497 		goto out;
2498 
2499 	r = __dm_resume(md, map);
2500 	if (r)
2501 		goto out;
2502 
2503 	clear_bit(DMF_SUSPENDED, &md->flags);
2504 out:
2505 	mutex_unlock(&md->suspend_lock);
2506 
2507 	return r;
2508 }
2509 
2510 /*
2511  * Internal suspend/resume works like userspace-driven suspend. It waits
2512  * until all bios finish and prevents issuing new bios to the target drivers.
2513  * It may be used only from the kernel.
2514  */
2515 
2516 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2517 {
2518 	struct dm_table *map = NULL;
2519 
2520 	lockdep_assert_held(&md->suspend_lock);
2521 
2522 	if (md->internal_suspend_count++)
2523 		return; /* nested internal suspend */
2524 
2525 	if (dm_suspended_md(md)) {
2526 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2527 		return; /* nest suspend */
2528 	}
2529 
2530 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2531 
2532 	/*
2533 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2534 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2535 	 * would require changing .presuspend to return an error -- avoid this
2536 	 * until there is a need for more elaborate variants of internal suspend.
2537 	 */
2538 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2539 			    DMF_SUSPENDED_INTERNALLY);
2540 
2541 	dm_table_postsuspend_targets(map);
2542 }
2543 
2544 static void __dm_internal_resume(struct mapped_device *md)
2545 {
2546 	BUG_ON(!md->internal_suspend_count);
2547 
2548 	if (--md->internal_suspend_count)
2549 		return; /* resume from nested internal suspend */
2550 
2551 	if (dm_suspended_md(md))
2552 		goto done; /* resume from nested suspend */
2553 
2554 	/*
2555 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2556 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2557 	 */
2558 	(void) __dm_resume(md, NULL);
2559 
2560 done:
2561 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2562 	smp_mb__after_atomic();
2563 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2564 }
2565 
2566 void dm_internal_suspend_noflush(struct mapped_device *md)
2567 {
2568 	mutex_lock(&md->suspend_lock);
2569 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2570 	mutex_unlock(&md->suspend_lock);
2571 }
2572 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2573 
2574 void dm_internal_resume(struct mapped_device *md)
2575 {
2576 	mutex_lock(&md->suspend_lock);
2577 	__dm_internal_resume(md);
2578 	mutex_unlock(&md->suspend_lock);
2579 }
2580 EXPORT_SYMBOL_GPL(dm_internal_resume);
2581 
2582 /*
2583  * Fast variants of internal suspend/resume hold md->suspend_lock,
2584  * which prevents interaction with userspace-driven suspend.
2585  */
2586 
2587 void dm_internal_suspend_fast(struct mapped_device *md)
2588 {
2589 	mutex_lock(&md->suspend_lock);
2590 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2591 		return;
2592 
2593 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2594 	synchronize_srcu(&md->io_barrier);
2595 	flush_workqueue(md->wq);
2596 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2597 }
2598 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2599 
2600 void dm_internal_resume_fast(struct mapped_device *md)
2601 {
2602 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2603 		goto done;
2604 
2605 	dm_queue_flush(md);
2606 
2607 done:
2608 	mutex_unlock(&md->suspend_lock);
2609 }
2610 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2611 
2612 /*-----------------------------------------------------------------
2613  * Event notification.
2614  *---------------------------------------------------------------*/
2615 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2616 		       unsigned cookie)
2617 {
2618 	char udev_cookie[DM_COOKIE_LENGTH];
2619 	char *envp[] = { udev_cookie, NULL };
2620 
2621 	if (!cookie)
2622 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2623 	else {
2624 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2625 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2626 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2627 					  action, envp);
2628 	}
2629 }
2630 
2631 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2632 {
2633 	return atomic_add_return(1, &md->uevent_seq);
2634 }
2635 
2636 uint32_t dm_get_event_nr(struct mapped_device *md)
2637 {
2638 	return atomic_read(&md->event_nr);
2639 }
2640 
2641 int dm_wait_event(struct mapped_device *md, int event_nr)
2642 {
2643 	return wait_event_interruptible(md->eventq,
2644 			(event_nr != atomic_read(&md->event_nr)));
2645 }
2646 
2647 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2648 {
2649 	unsigned long flags;
2650 
2651 	spin_lock_irqsave(&md->uevent_lock, flags);
2652 	list_add(elist, &md->uevent_list);
2653 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2654 }
2655 
2656 /*
2657  * The gendisk is only valid as long as you have a reference
2658  * count on 'md'.
2659  */
2660 struct gendisk *dm_disk(struct mapped_device *md)
2661 {
2662 	return md->disk;
2663 }
2664 EXPORT_SYMBOL_GPL(dm_disk);
2665 
2666 struct kobject *dm_kobject(struct mapped_device *md)
2667 {
2668 	return &md->kobj_holder.kobj;
2669 }
2670 
2671 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2672 {
2673 	struct mapped_device *md;
2674 
2675 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2676 
2677 	spin_lock(&_minor_lock);
2678 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2679 		md = NULL;
2680 		goto out;
2681 	}
2682 	dm_get(md);
2683 out:
2684 	spin_unlock(&_minor_lock);
2685 
2686 	return md;
2687 }
2688 
2689 int dm_suspended_md(struct mapped_device *md)
2690 {
2691 	return test_bit(DMF_SUSPENDED, &md->flags);
2692 }
2693 
2694 int dm_suspended_internally_md(struct mapped_device *md)
2695 {
2696 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2697 }
2698 
2699 int dm_test_deferred_remove_flag(struct mapped_device *md)
2700 {
2701 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2702 }
2703 
2704 int dm_suspended(struct dm_target *ti)
2705 {
2706 	return dm_suspended_md(dm_table_get_md(ti->table));
2707 }
2708 EXPORT_SYMBOL_GPL(dm_suspended);
2709 
2710 int dm_noflush_suspending(struct dm_target *ti)
2711 {
2712 	return __noflush_suspending(dm_table_get_md(ti->table));
2713 }
2714 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2715 
2716 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2717 					    unsigned integrity, unsigned per_io_data_size,
2718 					    unsigned min_pool_size)
2719 {
2720 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2721 	unsigned int pool_size = 0;
2722 	unsigned int front_pad;
2723 
2724 	if (!pools)
2725 		return NULL;
2726 
2727 	switch (type) {
2728 	case DM_TYPE_BIO_BASED:
2729 	case DM_TYPE_DAX_BIO_BASED:
2730 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2731 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2732 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2733 		if (!pools->io_pool)
2734 			goto out;
2735 		break;
2736 	case DM_TYPE_REQUEST_BASED:
2737 	case DM_TYPE_MQ_REQUEST_BASED:
2738 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2739 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2740 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2741 		break;
2742 	default:
2743 		BUG();
2744 	}
2745 
2746 	pools->bs = bioset_create(pool_size, front_pad, 0);
2747 	if (!pools->bs)
2748 		goto out;
2749 
2750 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2751 		goto out;
2752 
2753 	return pools;
2754 
2755 out:
2756 	dm_free_md_mempools(pools);
2757 
2758 	return NULL;
2759 }
2760 
2761 void dm_free_md_mempools(struct dm_md_mempools *pools)
2762 {
2763 	if (!pools)
2764 		return;
2765 
2766 	mempool_destroy(pools->io_pool);
2767 
2768 	if (pools->bs)
2769 		bioset_free(pools->bs);
2770 
2771 	kfree(pools);
2772 }
2773 
2774 struct dm_pr {
2775 	u64	old_key;
2776 	u64	new_key;
2777 	u32	flags;
2778 	bool	fail_early;
2779 };
2780 
2781 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2782 		      void *data)
2783 {
2784 	struct mapped_device *md = bdev->bd_disk->private_data;
2785 	struct dm_table *table;
2786 	struct dm_target *ti;
2787 	int ret = -ENOTTY, srcu_idx;
2788 
2789 	table = dm_get_live_table(md, &srcu_idx);
2790 	if (!table || !dm_table_get_size(table))
2791 		goto out;
2792 
2793 	/* We only support devices that have a single target */
2794 	if (dm_table_get_num_targets(table) != 1)
2795 		goto out;
2796 	ti = dm_table_get_target(table, 0);
2797 
2798 	ret = -EINVAL;
2799 	if (!ti->type->iterate_devices)
2800 		goto out;
2801 
2802 	ret = ti->type->iterate_devices(ti, fn, data);
2803 out:
2804 	dm_put_live_table(md, srcu_idx);
2805 	return ret;
2806 }
2807 
2808 /*
2809  * For register / unregister we need to manually call out to every path.
2810  */
2811 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2812 			    sector_t start, sector_t len, void *data)
2813 {
2814 	struct dm_pr *pr = data;
2815 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2816 
2817 	if (!ops || !ops->pr_register)
2818 		return -EOPNOTSUPP;
2819 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2820 }
2821 
2822 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2823 			  u32 flags)
2824 {
2825 	struct dm_pr pr = {
2826 		.old_key	= old_key,
2827 		.new_key	= new_key,
2828 		.flags		= flags,
2829 		.fail_early	= true,
2830 	};
2831 	int ret;
2832 
2833 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2834 	if (ret && new_key) {
2835 		/* unregister all paths if we failed to register any path */
2836 		pr.old_key = new_key;
2837 		pr.new_key = 0;
2838 		pr.flags = 0;
2839 		pr.fail_early = false;
2840 		dm_call_pr(bdev, __dm_pr_register, &pr);
2841 	}
2842 
2843 	return ret;
2844 }
2845 
2846 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2847 			 u32 flags)
2848 {
2849 	struct mapped_device *md = bdev->bd_disk->private_data;
2850 	const struct pr_ops *ops;
2851 	fmode_t mode;
2852 	int r;
2853 
2854 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2855 	if (r < 0)
2856 		return r;
2857 
2858 	ops = bdev->bd_disk->fops->pr_ops;
2859 	if (ops && ops->pr_reserve)
2860 		r = ops->pr_reserve(bdev, key, type, flags);
2861 	else
2862 		r = -EOPNOTSUPP;
2863 
2864 	bdput(bdev);
2865 	return r;
2866 }
2867 
2868 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2869 {
2870 	struct mapped_device *md = bdev->bd_disk->private_data;
2871 	const struct pr_ops *ops;
2872 	fmode_t mode;
2873 	int r;
2874 
2875 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2876 	if (r < 0)
2877 		return r;
2878 
2879 	ops = bdev->bd_disk->fops->pr_ops;
2880 	if (ops && ops->pr_release)
2881 		r = ops->pr_release(bdev, key, type);
2882 	else
2883 		r = -EOPNOTSUPP;
2884 
2885 	bdput(bdev);
2886 	return r;
2887 }
2888 
2889 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2890 			 enum pr_type type, bool abort)
2891 {
2892 	struct mapped_device *md = bdev->bd_disk->private_data;
2893 	const struct pr_ops *ops;
2894 	fmode_t mode;
2895 	int r;
2896 
2897 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2898 	if (r < 0)
2899 		return r;
2900 
2901 	ops = bdev->bd_disk->fops->pr_ops;
2902 	if (ops && ops->pr_preempt)
2903 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2904 	else
2905 		r = -EOPNOTSUPP;
2906 
2907 	bdput(bdev);
2908 	return r;
2909 }
2910 
2911 static int dm_pr_clear(struct block_device *bdev, u64 key)
2912 {
2913 	struct mapped_device *md = bdev->bd_disk->private_data;
2914 	const struct pr_ops *ops;
2915 	fmode_t mode;
2916 	int r;
2917 
2918 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2919 	if (r < 0)
2920 		return r;
2921 
2922 	ops = bdev->bd_disk->fops->pr_ops;
2923 	if (ops && ops->pr_clear)
2924 		r = ops->pr_clear(bdev, key);
2925 	else
2926 		r = -EOPNOTSUPP;
2927 
2928 	bdput(bdev);
2929 	return r;
2930 }
2931 
2932 static const struct pr_ops dm_pr_ops = {
2933 	.pr_register	= dm_pr_register,
2934 	.pr_reserve	= dm_pr_reserve,
2935 	.pr_release	= dm_pr_release,
2936 	.pr_preempt	= dm_pr_preempt,
2937 	.pr_clear	= dm_pr_clear,
2938 };
2939 
2940 static const struct block_device_operations dm_blk_dops = {
2941 	.open = dm_blk_open,
2942 	.release = dm_blk_close,
2943 	.ioctl = dm_blk_ioctl,
2944 	.getgeo = dm_blk_getgeo,
2945 	.pr_ops = &dm_pr_ops,
2946 	.owner = THIS_MODULE
2947 };
2948 
2949 static const struct dax_operations dm_dax_ops = {
2950 	.direct_access = dm_dax_direct_access,
2951 	.copy_from_iter = dm_dax_copy_from_iter,
2952 };
2953 
2954 /*
2955  * module hooks
2956  */
2957 module_init(dm_init);
2958 module_exit(dm_exit);
2959 
2960 module_param(major, uint, 0);
2961 MODULE_PARM_DESC(major, "The major number of the device mapper");
2962 
2963 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2964 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2965 
2966 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2967 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2968 
2969 MODULE_DESCRIPTION(DM_NAME " driver");
2970 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2971 MODULE_LICENSE("GPL");
2972