xref: /openbmc/linux/drivers/md/dm.c (revision 708e929513502fb050c0a3c3ee267cab5b056ded)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/smp_lock.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
24 
25 #include <trace/events/block.h>
26 
27 #define DM_MSG_PREFIX "core"
28 
29 /*
30  * Cookies are numeric values sent with CHANGE and REMOVE
31  * uevents while resuming, removing or renaming the device.
32  */
33 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
34 #define DM_COOKIE_LENGTH 24
35 
36 static const char *_name = DM_NAME;
37 
38 static unsigned int major = 0;
39 static unsigned int _major = 0;
40 
41 static DEFINE_SPINLOCK(_minor_lock);
42 /*
43  * For bio-based dm.
44  * One of these is allocated per bio.
45  */
46 struct dm_io {
47 	struct mapped_device *md;
48 	int error;
49 	atomic_t io_count;
50 	struct bio *bio;
51 	unsigned long start_time;
52 	spinlock_t endio_lock;
53 };
54 
55 /*
56  * For bio-based dm.
57  * One of these is allocated per target within a bio.  Hopefully
58  * this will be simplified out one day.
59  */
60 struct dm_target_io {
61 	struct dm_io *io;
62 	struct dm_target *ti;
63 	union map_info info;
64 };
65 
66 /*
67  * For request-based dm.
68  * One of these is allocated per request.
69  */
70 struct dm_rq_target_io {
71 	struct mapped_device *md;
72 	struct dm_target *ti;
73 	struct request *orig, clone;
74 	int error;
75 	union map_info info;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per bio.
81  */
82 struct dm_rq_clone_bio_info {
83 	struct bio *orig;
84 	struct dm_rq_target_io *tio;
85 };
86 
87 union map_info *dm_get_mapinfo(struct bio *bio)
88 {
89 	if (bio && bio->bi_private)
90 		return &((struct dm_target_io *)bio->bi_private)->info;
91 	return NULL;
92 }
93 
94 union map_info *dm_get_rq_mapinfo(struct request *rq)
95 {
96 	if (rq && rq->end_io_data)
97 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
98 	return NULL;
99 }
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101 
102 #define MINOR_ALLOCED ((void *)-1)
103 
104 /*
105  * Bits for the md->flags field.
106  */
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
109 #define DMF_FROZEN 2
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
113 #define DMF_QUEUE_IO_TO_THREAD 6
114 
115 /*
116  * Work processed by per-device workqueue.
117  */
118 struct mapped_device {
119 	struct rw_semaphore io_lock;
120 	struct mutex suspend_lock;
121 	rwlock_t map_lock;
122 	atomic_t holders;
123 	atomic_t open_count;
124 
125 	unsigned long flags;
126 
127 	struct request_queue *queue;
128 	struct gendisk *disk;
129 	char name[16];
130 
131 	void *interface_ptr;
132 
133 	/*
134 	 * A list of ios that arrived while we were suspended.
135 	 */
136 	atomic_t pending[2];
137 	wait_queue_head_t wait;
138 	struct work_struct work;
139 	struct bio_list deferred;
140 	spinlock_t deferred_lock;
141 
142 	/*
143 	 * An error from the barrier request currently being processed.
144 	 */
145 	int barrier_error;
146 
147 	/*
148 	 * Protect barrier_error from concurrent endio processing
149 	 * in request-based dm.
150 	 */
151 	spinlock_t barrier_error_lock;
152 
153 	/*
154 	 * Processing queue (flush/barriers)
155 	 */
156 	struct workqueue_struct *wq;
157 	struct work_struct barrier_work;
158 
159 	/* A pointer to the currently processing pre/post flush request */
160 	struct request *flush_request;
161 
162 	/*
163 	 * The current mapping.
164 	 */
165 	struct dm_table *map;
166 
167 	/*
168 	 * io objects are allocated from here.
169 	 */
170 	mempool_t *io_pool;
171 	mempool_t *tio_pool;
172 
173 	struct bio_set *bs;
174 
175 	/*
176 	 * Event handling.
177 	 */
178 	atomic_t event_nr;
179 	wait_queue_head_t eventq;
180 	atomic_t uevent_seq;
181 	struct list_head uevent_list;
182 	spinlock_t uevent_lock; /* Protect access to uevent_list */
183 
184 	/*
185 	 * freeze/thaw support require holding onto a super block
186 	 */
187 	struct super_block *frozen_sb;
188 	struct block_device *bdev;
189 
190 	/* forced geometry settings */
191 	struct hd_geometry geometry;
192 
193 	/* For saving the address of __make_request for request based dm */
194 	make_request_fn *saved_make_request_fn;
195 
196 	/* sysfs handle */
197 	struct kobject kobj;
198 
199 	/* zero-length barrier that will be cloned and submitted to targets */
200 	struct bio barrier_bio;
201 };
202 
203 /*
204  * For mempools pre-allocation at the table loading time.
205  */
206 struct dm_md_mempools {
207 	mempool_t *io_pool;
208 	mempool_t *tio_pool;
209 	struct bio_set *bs;
210 };
211 
212 #define MIN_IOS 256
213 static struct kmem_cache *_io_cache;
214 static struct kmem_cache *_tio_cache;
215 static struct kmem_cache *_rq_tio_cache;
216 static struct kmem_cache *_rq_bio_info_cache;
217 
218 static int __init local_init(void)
219 {
220 	int r = -ENOMEM;
221 
222 	/* allocate a slab for the dm_ios */
223 	_io_cache = KMEM_CACHE(dm_io, 0);
224 	if (!_io_cache)
225 		return r;
226 
227 	/* allocate a slab for the target ios */
228 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
229 	if (!_tio_cache)
230 		goto out_free_io_cache;
231 
232 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
233 	if (!_rq_tio_cache)
234 		goto out_free_tio_cache;
235 
236 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
237 	if (!_rq_bio_info_cache)
238 		goto out_free_rq_tio_cache;
239 
240 	r = dm_uevent_init();
241 	if (r)
242 		goto out_free_rq_bio_info_cache;
243 
244 	_major = major;
245 	r = register_blkdev(_major, _name);
246 	if (r < 0)
247 		goto out_uevent_exit;
248 
249 	if (!_major)
250 		_major = r;
251 
252 	return 0;
253 
254 out_uevent_exit:
255 	dm_uevent_exit();
256 out_free_rq_bio_info_cache:
257 	kmem_cache_destroy(_rq_bio_info_cache);
258 out_free_rq_tio_cache:
259 	kmem_cache_destroy(_rq_tio_cache);
260 out_free_tio_cache:
261 	kmem_cache_destroy(_tio_cache);
262 out_free_io_cache:
263 	kmem_cache_destroy(_io_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	kmem_cache_destroy(_rq_bio_info_cache);
271 	kmem_cache_destroy(_rq_tio_cache);
272 	kmem_cache_destroy(_tio_cache);
273 	kmem_cache_destroy(_io_cache);
274 	unregister_blkdev(_major, _name);
275 	dm_uevent_exit();
276 
277 	_major = 0;
278 
279 	DMINFO("cleaned up");
280 }
281 
282 static int (*_inits[])(void) __initdata = {
283 	local_init,
284 	dm_target_init,
285 	dm_linear_init,
286 	dm_stripe_init,
287 	dm_io_init,
288 	dm_kcopyd_init,
289 	dm_interface_init,
290 };
291 
292 static void (*_exits[])(void) = {
293 	local_exit,
294 	dm_target_exit,
295 	dm_linear_exit,
296 	dm_stripe_exit,
297 	dm_io_exit,
298 	dm_kcopyd_exit,
299 	dm_interface_exit,
300 };
301 
302 static int __init dm_init(void)
303 {
304 	const int count = ARRAY_SIZE(_inits);
305 
306 	int r, i;
307 
308 	for (i = 0; i < count; i++) {
309 		r = _inits[i]();
310 		if (r)
311 			goto bad;
312 	}
313 
314 	return 0;
315 
316       bad:
317 	while (i--)
318 		_exits[i]();
319 
320 	return r;
321 }
322 
323 static void __exit dm_exit(void)
324 {
325 	int i = ARRAY_SIZE(_exits);
326 
327 	while (i--)
328 		_exits[i]();
329 }
330 
331 /*
332  * Block device functions
333  */
334 int dm_deleting_md(struct mapped_device *md)
335 {
336 	return test_bit(DMF_DELETING, &md->flags);
337 }
338 
339 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
340 {
341 	struct mapped_device *md;
342 
343 	lock_kernel();
344 	spin_lock(&_minor_lock);
345 
346 	md = bdev->bd_disk->private_data;
347 	if (!md)
348 		goto out;
349 
350 	if (test_bit(DMF_FREEING, &md->flags) ||
351 	    dm_deleting_md(md)) {
352 		md = NULL;
353 		goto out;
354 	}
355 
356 	dm_get(md);
357 	atomic_inc(&md->open_count);
358 
359 out:
360 	spin_unlock(&_minor_lock);
361 	unlock_kernel();
362 
363 	return md ? 0 : -ENXIO;
364 }
365 
366 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
367 {
368 	struct mapped_device *md = disk->private_data;
369 
370 	lock_kernel();
371 	atomic_dec(&md->open_count);
372 	dm_put(md);
373 	unlock_kernel();
374 
375 	return 0;
376 }
377 
378 int dm_open_count(struct mapped_device *md)
379 {
380 	return atomic_read(&md->open_count);
381 }
382 
383 /*
384  * Guarantees nothing is using the device before it's deleted.
385  */
386 int dm_lock_for_deletion(struct mapped_device *md)
387 {
388 	int r = 0;
389 
390 	spin_lock(&_minor_lock);
391 
392 	if (dm_open_count(md))
393 		r = -EBUSY;
394 	else
395 		set_bit(DMF_DELETING, &md->flags);
396 
397 	spin_unlock(&_minor_lock);
398 
399 	return r;
400 }
401 
402 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
403 {
404 	struct mapped_device *md = bdev->bd_disk->private_data;
405 
406 	return dm_get_geometry(md, geo);
407 }
408 
409 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
410 			unsigned int cmd, unsigned long arg)
411 {
412 	struct mapped_device *md = bdev->bd_disk->private_data;
413 	struct dm_table *map = dm_get_live_table(md);
414 	struct dm_target *tgt;
415 	int r = -ENOTTY;
416 
417 	if (!map || !dm_table_get_size(map))
418 		goto out;
419 
420 	/* We only support devices that have a single target */
421 	if (dm_table_get_num_targets(map) != 1)
422 		goto out;
423 
424 	tgt = dm_table_get_target(map, 0);
425 
426 	if (dm_suspended_md(md)) {
427 		r = -EAGAIN;
428 		goto out;
429 	}
430 
431 	if (tgt->type->ioctl)
432 		r = tgt->type->ioctl(tgt, cmd, arg);
433 
434 out:
435 	dm_table_put(map);
436 
437 	return r;
438 }
439 
440 static struct dm_io *alloc_io(struct mapped_device *md)
441 {
442 	return mempool_alloc(md->io_pool, GFP_NOIO);
443 }
444 
445 static void free_io(struct mapped_device *md, struct dm_io *io)
446 {
447 	mempool_free(io, md->io_pool);
448 }
449 
450 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
451 {
452 	mempool_free(tio, md->tio_pool);
453 }
454 
455 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
456 					    gfp_t gfp_mask)
457 {
458 	return mempool_alloc(md->tio_pool, gfp_mask);
459 }
460 
461 static void free_rq_tio(struct dm_rq_target_io *tio)
462 {
463 	mempool_free(tio, tio->md->tio_pool);
464 }
465 
466 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
467 {
468 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
469 }
470 
471 static void free_bio_info(struct dm_rq_clone_bio_info *info)
472 {
473 	mempool_free(info, info->tio->md->io_pool);
474 }
475 
476 static int md_in_flight(struct mapped_device *md)
477 {
478 	return atomic_read(&md->pending[READ]) +
479 	       atomic_read(&md->pending[WRITE]);
480 }
481 
482 static void start_io_acct(struct dm_io *io)
483 {
484 	struct mapped_device *md = io->md;
485 	int cpu;
486 	int rw = bio_data_dir(io->bio);
487 
488 	io->start_time = jiffies;
489 
490 	cpu = part_stat_lock();
491 	part_round_stats(cpu, &dm_disk(md)->part0);
492 	part_stat_unlock();
493 	dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
494 }
495 
496 static void end_io_acct(struct dm_io *io)
497 {
498 	struct mapped_device *md = io->md;
499 	struct bio *bio = io->bio;
500 	unsigned long duration = jiffies - io->start_time;
501 	int pending, cpu;
502 	int rw = bio_data_dir(bio);
503 
504 	cpu = part_stat_lock();
505 	part_round_stats(cpu, &dm_disk(md)->part0);
506 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
507 	part_stat_unlock();
508 
509 	/*
510 	 * After this is decremented the bio must not be touched if it is
511 	 * a barrier.
512 	 */
513 	dm_disk(md)->part0.in_flight[rw] = pending =
514 		atomic_dec_return(&md->pending[rw]);
515 	pending += atomic_read(&md->pending[rw^0x1]);
516 
517 	/* nudge anyone waiting on suspend queue */
518 	if (!pending)
519 		wake_up(&md->wait);
520 }
521 
522 /*
523  * Add the bio to the list of deferred io.
524  */
525 static void queue_io(struct mapped_device *md, struct bio *bio)
526 {
527 	down_write(&md->io_lock);
528 
529 	spin_lock_irq(&md->deferred_lock);
530 	bio_list_add(&md->deferred, bio);
531 	spin_unlock_irq(&md->deferred_lock);
532 
533 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
534 		queue_work(md->wq, &md->work);
535 
536 	up_write(&md->io_lock);
537 }
538 
539 /*
540  * Everyone (including functions in this file), should use this
541  * function to access the md->map field, and make sure they call
542  * dm_table_put() when finished.
543  */
544 struct dm_table *dm_get_live_table(struct mapped_device *md)
545 {
546 	struct dm_table *t;
547 	unsigned long flags;
548 
549 	read_lock_irqsave(&md->map_lock, flags);
550 	t = md->map;
551 	if (t)
552 		dm_table_get(t);
553 	read_unlock_irqrestore(&md->map_lock, flags);
554 
555 	return t;
556 }
557 
558 /*
559  * Get the geometry associated with a dm device
560  */
561 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
562 {
563 	*geo = md->geometry;
564 
565 	return 0;
566 }
567 
568 /*
569  * Set the geometry of a device.
570  */
571 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
572 {
573 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
574 
575 	if (geo->start > sz) {
576 		DMWARN("Start sector is beyond the geometry limits.");
577 		return -EINVAL;
578 	}
579 
580 	md->geometry = *geo;
581 
582 	return 0;
583 }
584 
585 /*-----------------------------------------------------------------
586  * CRUD START:
587  *   A more elegant soln is in the works that uses the queue
588  *   merge fn, unfortunately there are a couple of changes to
589  *   the block layer that I want to make for this.  So in the
590  *   interests of getting something for people to use I give
591  *   you this clearly demarcated crap.
592  *---------------------------------------------------------------*/
593 
594 static int __noflush_suspending(struct mapped_device *md)
595 {
596 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
597 }
598 
599 /*
600  * Decrements the number of outstanding ios that a bio has been
601  * cloned into, completing the original io if necc.
602  */
603 static void dec_pending(struct dm_io *io, int error)
604 {
605 	unsigned long flags;
606 	int io_error;
607 	struct bio *bio;
608 	struct mapped_device *md = io->md;
609 
610 	/* Push-back supersedes any I/O errors */
611 	if (unlikely(error)) {
612 		spin_lock_irqsave(&io->endio_lock, flags);
613 		if (!(io->error > 0 && __noflush_suspending(md)))
614 			io->error = error;
615 		spin_unlock_irqrestore(&io->endio_lock, flags);
616 	}
617 
618 	if (atomic_dec_and_test(&io->io_count)) {
619 		if (io->error == DM_ENDIO_REQUEUE) {
620 			/*
621 			 * Target requested pushing back the I/O.
622 			 */
623 			spin_lock_irqsave(&md->deferred_lock, flags);
624 			if (__noflush_suspending(md)) {
625 				if (!(io->bio->bi_rw & REQ_HARDBARRIER))
626 					bio_list_add_head(&md->deferred,
627 							  io->bio);
628 			} else
629 				/* noflush suspend was interrupted. */
630 				io->error = -EIO;
631 			spin_unlock_irqrestore(&md->deferred_lock, flags);
632 		}
633 
634 		io_error = io->error;
635 		bio = io->bio;
636 
637 		if (bio->bi_rw & REQ_HARDBARRIER) {
638 			/*
639 			 * There can be just one barrier request so we use
640 			 * a per-device variable for error reporting.
641 			 * Note that you can't touch the bio after end_io_acct
642 			 *
643 			 * We ignore -EOPNOTSUPP for empty flush reported by
644 			 * underlying devices. We assume that if the device
645 			 * doesn't support empty barriers, it doesn't need
646 			 * cache flushing commands.
647 			 */
648 			if (!md->barrier_error &&
649 			    !(bio_empty_barrier(bio) && io_error == -EOPNOTSUPP))
650 				md->barrier_error = io_error;
651 			end_io_acct(io);
652 			free_io(md, io);
653 		} else {
654 			end_io_acct(io);
655 			free_io(md, io);
656 
657 			if (io_error != DM_ENDIO_REQUEUE) {
658 				trace_block_bio_complete(md->queue, bio);
659 
660 				bio_endio(bio, io_error);
661 			}
662 		}
663 	}
664 }
665 
666 static void clone_endio(struct bio *bio, int error)
667 {
668 	int r = 0;
669 	struct dm_target_io *tio = bio->bi_private;
670 	struct dm_io *io = tio->io;
671 	struct mapped_device *md = tio->io->md;
672 	dm_endio_fn endio = tio->ti->type->end_io;
673 
674 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
675 		error = -EIO;
676 
677 	if (endio) {
678 		r = endio(tio->ti, bio, error, &tio->info);
679 		if (r < 0 || r == DM_ENDIO_REQUEUE)
680 			/*
681 			 * error and requeue request are handled
682 			 * in dec_pending().
683 			 */
684 			error = r;
685 		else if (r == DM_ENDIO_INCOMPLETE)
686 			/* The target will handle the io */
687 			return;
688 		else if (r) {
689 			DMWARN("unimplemented target endio return value: %d", r);
690 			BUG();
691 		}
692 	}
693 
694 	/*
695 	 * Store md for cleanup instead of tio which is about to get freed.
696 	 */
697 	bio->bi_private = md->bs;
698 
699 	free_tio(md, tio);
700 	bio_put(bio);
701 	dec_pending(io, error);
702 }
703 
704 /*
705  * Partial completion handling for request-based dm
706  */
707 static void end_clone_bio(struct bio *clone, int error)
708 {
709 	struct dm_rq_clone_bio_info *info = clone->bi_private;
710 	struct dm_rq_target_io *tio = info->tio;
711 	struct bio *bio = info->orig;
712 	unsigned int nr_bytes = info->orig->bi_size;
713 
714 	bio_put(clone);
715 
716 	if (tio->error)
717 		/*
718 		 * An error has already been detected on the request.
719 		 * Once error occurred, just let clone->end_io() handle
720 		 * the remainder.
721 		 */
722 		return;
723 	else if (error) {
724 		/*
725 		 * Don't notice the error to the upper layer yet.
726 		 * The error handling decision is made by the target driver,
727 		 * when the request is completed.
728 		 */
729 		tio->error = error;
730 		return;
731 	}
732 
733 	/*
734 	 * I/O for the bio successfully completed.
735 	 * Notice the data completion to the upper layer.
736 	 */
737 
738 	/*
739 	 * bios are processed from the head of the list.
740 	 * So the completing bio should always be rq->bio.
741 	 * If it's not, something wrong is happening.
742 	 */
743 	if (tio->orig->bio != bio)
744 		DMERR("bio completion is going in the middle of the request");
745 
746 	/*
747 	 * Update the original request.
748 	 * Do not use blk_end_request() here, because it may complete
749 	 * the original request before the clone, and break the ordering.
750 	 */
751 	blk_update_request(tio->orig, 0, nr_bytes);
752 }
753 
754 static void store_barrier_error(struct mapped_device *md, int error)
755 {
756 	unsigned long flags;
757 
758 	spin_lock_irqsave(&md->barrier_error_lock, flags);
759 	/*
760 	 * Basically, the first error is taken, but:
761 	 *   -EOPNOTSUPP supersedes any I/O error.
762 	 *   Requeue request supersedes any I/O error but -EOPNOTSUPP.
763 	 */
764 	if (!md->barrier_error || error == -EOPNOTSUPP ||
765 	    (md->barrier_error != -EOPNOTSUPP &&
766 	     error == DM_ENDIO_REQUEUE))
767 		md->barrier_error = error;
768 	spin_unlock_irqrestore(&md->barrier_error_lock, flags);
769 }
770 
771 /*
772  * Don't touch any member of the md after calling this function because
773  * the md may be freed in dm_put() at the end of this function.
774  * Or do dm_get() before calling this function and dm_put() later.
775  */
776 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
777 {
778 	atomic_dec(&md->pending[rw]);
779 
780 	/* nudge anyone waiting on suspend queue */
781 	if (!md_in_flight(md))
782 		wake_up(&md->wait);
783 
784 	if (run_queue)
785 		blk_run_queue(md->queue);
786 
787 	/*
788 	 * dm_put() must be at the end of this function. See the comment above
789 	 */
790 	dm_put(md);
791 }
792 
793 static void free_rq_clone(struct request *clone)
794 {
795 	struct dm_rq_target_io *tio = clone->end_io_data;
796 
797 	blk_rq_unprep_clone(clone);
798 	free_rq_tio(tio);
799 }
800 
801 /*
802  * Complete the clone and the original request.
803  * Must be called without queue lock.
804  */
805 static void dm_end_request(struct request *clone, int error)
806 {
807 	int rw = rq_data_dir(clone);
808 	int run_queue = 1;
809 	bool is_barrier = clone->cmd_flags & REQ_HARDBARRIER;
810 	struct dm_rq_target_io *tio = clone->end_io_data;
811 	struct mapped_device *md = tio->md;
812 	struct request *rq = tio->orig;
813 
814 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC && !is_barrier) {
815 		rq->errors = clone->errors;
816 		rq->resid_len = clone->resid_len;
817 
818 		if (rq->sense)
819 			/*
820 			 * We are using the sense buffer of the original
821 			 * request.
822 			 * So setting the length of the sense data is enough.
823 			 */
824 			rq->sense_len = clone->sense_len;
825 	}
826 
827 	free_rq_clone(clone);
828 
829 	if (unlikely(is_barrier)) {
830 		if (unlikely(error))
831 			store_barrier_error(md, error);
832 		run_queue = 0;
833 	} else
834 		blk_end_request_all(rq, error);
835 
836 	rq_completed(md, rw, run_queue);
837 }
838 
839 static void dm_unprep_request(struct request *rq)
840 {
841 	struct request *clone = rq->special;
842 
843 	rq->special = NULL;
844 	rq->cmd_flags &= ~REQ_DONTPREP;
845 
846 	free_rq_clone(clone);
847 }
848 
849 /*
850  * Requeue the original request of a clone.
851  */
852 void dm_requeue_unmapped_request(struct request *clone)
853 {
854 	int rw = rq_data_dir(clone);
855 	struct dm_rq_target_io *tio = clone->end_io_data;
856 	struct mapped_device *md = tio->md;
857 	struct request *rq = tio->orig;
858 	struct request_queue *q = rq->q;
859 	unsigned long flags;
860 
861 	if (unlikely(clone->cmd_flags & REQ_HARDBARRIER)) {
862 		/*
863 		 * Barrier clones share an original request.
864 		 * Leave it to dm_end_request(), which handles this special
865 		 * case.
866 		 */
867 		dm_end_request(clone, DM_ENDIO_REQUEUE);
868 		return;
869 	}
870 
871 	dm_unprep_request(rq);
872 
873 	spin_lock_irqsave(q->queue_lock, flags);
874 	if (elv_queue_empty(q))
875 		blk_plug_device(q);
876 	blk_requeue_request(q, rq);
877 	spin_unlock_irqrestore(q->queue_lock, flags);
878 
879 	rq_completed(md, rw, 0);
880 }
881 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
882 
883 static void __stop_queue(struct request_queue *q)
884 {
885 	blk_stop_queue(q);
886 }
887 
888 static void stop_queue(struct request_queue *q)
889 {
890 	unsigned long flags;
891 
892 	spin_lock_irqsave(q->queue_lock, flags);
893 	__stop_queue(q);
894 	spin_unlock_irqrestore(q->queue_lock, flags);
895 }
896 
897 static void __start_queue(struct request_queue *q)
898 {
899 	if (blk_queue_stopped(q))
900 		blk_start_queue(q);
901 }
902 
903 static void start_queue(struct request_queue *q)
904 {
905 	unsigned long flags;
906 
907 	spin_lock_irqsave(q->queue_lock, flags);
908 	__start_queue(q);
909 	spin_unlock_irqrestore(q->queue_lock, flags);
910 }
911 
912 static void dm_done(struct request *clone, int error, bool mapped)
913 {
914 	int r = error;
915 	struct dm_rq_target_io *tio = clone->end_io_data;
916 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
917 
918 	if (mapped && rq_end_io)
919 		r = rq_end_io(tio->ti, clone, error, &tio->info);
920 
921 	if (r <= 0)
922 		/* The target wants to complete the I/O */
923 		dm_end_request(clone, r);
924 	else if (r == DM_ENDIO_INCOMPLETE)
925 		/* The target will handle the I/O */
926 		return;
927 	else if (r == DM_ENDIO_REQUEUE)
928 		/* The target wants to requeue the I/O */
929 		dm_requeue_unmapped_request(clone);
930 	else {
931 		DMWARN("unimplemented target endio return value: %d", r);
932 		BUG();
933 	}
934 }
935 
936 /*
937  * Request completion handler for request-based dm
938  */
939 static void dm_softirq_done(struct request *rq)
940 {
941 	bool mapped = true;
942 	struct request *clone = rq->completion_data;
943 	struct dm_rq_target_io *tio = clone->end_io_data;
944 
945 	if (rq->cmd_flags & REQ_FAILED)
946 		mapped = false;
947 
948 	dm_done(clone, tio->error, mapped);
949 }
950 
951 /*
952  * Complete the clone and the original request with the error status
953  * through softirq context.
954  */
955 static void dm_complete_request(struct request *clone, int error)
956 {
957 	struct dm_rq_target_io *tio = clone->end_io_data;
958 	struct request *rq = tio->orig;
959 
960 	if (unlikely(clone->cmd_flags & REQ_HARDBARRIER)) {
961 		/*
962 		 * Barrier clones share an original request.  So can't use
963 		 * softirq_done with the original.
964 		 * Pass the clone to dm_done() directly in this special case.
965 		 * It is safe (even if clone->q->queue_lock is held here)
966 		 * because there is no I/O dispatching during the completion
967 		 * of barrier clone.
968 		 */
969 		dm_done(clone, error, true);
970 		return;
971 	}
972 
973 	tio->error = error;
974 	rq->completion_data = clone;
975 	blk_complete_request(rq);
976 }
977 
978 /*
979  * Complete the not-mapped clone and the original request with the error status
980  * through softirq context.
981  * Target's rq_end_io() function isn't called.
982  * This may be used when the target's map_rq() function fails.
983  */
984 void dm_kill_unmapped_request(struct request *clone, int error)
985 {
986 	struct dm_rq_target_io *tio = clone->end_io_data;
987 	struct request *rq = tio->orig;
988 
989 	if (unlikely(clone->cmd_flags & REQ_HARDBARRIER)) {
990 		/*
991 		 * Barrier clones share an original request.
992 		 * Leave it to dm_end_request(), which handles this special
993 		 * case.
994 		 */
995 		BUG_ON(error > 0);
996 		dm_end_request(clone, error);
997 		return;
998 	}
999 
1000 	rq->cmd_flags |= REQ_FAILED;
1001 	dm_complete_request(clone, error);
1002 }
1003 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1004 
1005 /*
1006  * Called with the queue lock held
1007  */
1008 static void end_clone_request(struct request *clone, int error)
1009 {
1010 	/*
1011 	 * For just cleaning up the information of the queue in which
1012 	 * the clone was dispatched.
1013 	 * The clone is *NOT* freed actually here because it is alloced from
1014 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1015 	 */
1016 	__blk_put_request(clone->q, clone);
1017 
1018 	/*
1019 	 * Actual request completion is done in a softirq context which doesn't
1020 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1021 	 *     - another request may be submitted by the upper level driver
1022 	 *       of the stacking during the completion
1023 	 *     - the submission which requires queue lock may be done
1024 	 *       against this queue
1025 	 */
1026 	dm_complete_request(clone, error);
1027 }
1028 
1029 static sector_t max_io_len(struct mapped_device *md,
1030 			   sector_t sector, struct dm_target *ti)
1031 {
1032 	sector_t offset = sector - ti->begin;
1033 	sector_t len = ti->len - offset;
1034 
1035 	/*
1036 	 * Does the target need to split even further ?
1037 	 */
1038 	if (ti->split_io) {
1039 		sector_t boundary;
1040 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
1041 			   - offset;
1042 		if (len > boundary)
1043 			len = boundary;
1044 	}
1045 
1046 	return len;
1047 }
1048 
1049 static void __map_bio(struct dm_target *ti, struct bio *clone,
1050 		      struct dm_target_io *tio)
1051 {
1052 	int r;
1053 	sector_t sector;
1054 	struct mapped_device *md;
1055 
1056 	clone->bi_end_io = clone_endio;
1057 	clone->bi_private = tio;
1058 
1059 	/*
1060 	 * Map the clone.  If r == 0 we don't need to do
1061 	 * anything, the target has assumed ownership of
1062 	 * this io.
1063 	 */
1064 	atomic_inc(&tio->io->io_count);
1065 	sector = clone->bi_sector;
1066 	r = ti->type->map(ti, clone, &tio->info);
1067 	if (r == DM_MAPIO_REMAPPED) {
1068 		/* the bio has been remapped so dispatch it */
1069 
1070 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
1071 				    tio->io->bio->bi_bdev->bd_dev, sector);
1072 
1073 		generic_make_request(clone);
1074 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1075 		/* error the io and bail out, or requeue it if needed */
1076 		md = tio->io->md;
1077 		dec_pending(tio->io, r);
1078 		/*
1079 		 * Store bio_set for cleanup.
1080 		 */
1081 		clone->bi_private = md->bs;
1082 		bio_put(clone);
1083 		free_tio(md, tio);
1084 	} else if (r) {
1085 		DMWARN("unimplemented target map return value: %d", r);
1086 		BUG();
1087 	}
1088 }
1089 
1090 struct clone_info {
1091 	struct mapped_device *md;
1092 	struct dm_table *map;
1093 	struct bio *bio;
1094 	struct dm_io *io;
1095 	sector_t sector;
1096 	sector_t sector_count;
1097 	unsigned short idx;
1098 };
1099 
1100 static void dm_bio_destructor(struct bio *bio)
1101 {
1102 	struct bio_set *bs = bio->bi_private;
1103 
1104 	bio_free(bio, bs);
1105 }
1106 
1107 /*
1108  * Creates a little bio that is just does part of a bvec.
1109  */
1110 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1111 			      unsigned short idx, unsigned int offset,
1112 			      unsigned int len, struct bio_set *bs)
1113 {
1114 	struct bio *clone;
1115 	struct bio_vec *bv = bio->bi_io_vec + idx;
1116 
1117 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1118 	clone->bi_destructor = dm_bio_destructor;
1119 	*clone->bi_io_vec = *bv;
1120 
1121 	clone->bi_sector = sector;
1122 	clone->bi_bdev = bio->bi_bdev;
1123 	clone->bi_rw = bio->bi_rw & ~REQ_HARDBARRIER;
1124 	clone->bi_vcnt = 1;
1125 	clone->bi_size = to_bytes(len);
1126 	clone->bi_io_vec->bv_offset = offset;
1127 	clone->bi_io_vec->bv_len = clone->bi_size;
1128 	clone->bi_flags |= 1 << BIO_CLONED;
1129 
1130 	if (bio_integrity(bio)) {
1131 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1132 		bio_integrity_trim(clone,
1133 				   bio_sector_offset(bio, idx, offset), len);
1134 	}
1135 
1136 	return clone;
1137 }
1138 
1139 /*
1140  * Creates a bio that consists of range of complete bvecs.
1141  */
1142 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1143 			     unsigned short idx, unsigned short bv_count,
1144 			     unsigned int len, struct bio_set *bs)
1145 {
1146 	struct bio *clone;
1147 
1148 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1149 	__bio_clone(clone, bio);
1150 	clone->bi_rw &= ~REQ_HARDBARRIER;
1151 	clone->bi_destructor = dm_bio_destructor;
1152 	clone->bi_sector = sector;
1153 	clone->bi_idx = idx;
1154 	clone->bi_vcnt = idx + bv_count;
1155 	clone->bi_size = to_bytes(len);
1156 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1157 
1158 	if (bio_integrity(bio)) {
1159 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1160 
1161 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1162 			bio_integrity_trim(clone,
1163 					   bio_sector_offset(bio, idx, 0), len);
1164 	}
1165 
1166 	return clone;
1167 }
1168 
1169 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1170 				      struct dm_target *ti)
1171 {
1172 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1173 
1174 	tio->io = ci->io;
1175 	tio->ti = ti;
1176 	memset(&tio->info, 0, sizeof(tio->info));
1177 
1178 	return tio;
1179 }
1180 
1181 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1182 			  unsigned flush_nr)
1183 {
1184 	struct dm_target_io *tio = alloc_tio(ci, ti);
1185 	struct bio *clone;
1186 
1187 	tio->info.flush_request = flush_nr;
1188 
1189 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1190 	__bio_clone(clone, ci->bio);
1191 	clone->bi_destructor = dm_bio_destructor;
1192 
1193 	__map_bio(ti, clone, tio);
1194 }
1195 
1196 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1197 {
1198 	unsigned target_nr = 0, flush_nr;
1199 	struct dm_target *ti;
1200 
1201 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1202 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1203 		     flush_nr++)
1204 			__flush_target(ci, ti, flush_nr);
1205 
1206 	ci->sector_count = 0;
1207 
1208 	return 0;
1209 }
1210 
1211 static int __clone_and_map(struct clone_info *ci)
1212 {
1213 	struct bio *clone, *bio = ci->bio;
1214 	struct dm_target *ti;
1215 	sector_t len = 0, max;
1216 	struct dm_target_io *tio;
1217 
1218 	if (unlikely(bio_empty_barrier(bio)))
1219 		return __clone_and_map_empty_barrier(ci);
1220 
1221 	ti = dm_table_find_target(ci->map, ci->sector);
1222 	if (!dm_target_is_valid(ti))
1223 		return -EIO;
1224 
1225 	max = max_io_len(ci->md, ci->sector, ti);
1226 
1227 	/*
1228 	 * Allocate a target io object.
1229 	 */
1230 	tio = alloc_tio(ci, ti);
1231 
1232 	if (ci->sector_count <= max) {
1233 		/*
1234 		 * Optimise for the simple case where we can do all of
1235 		 * the remaining io with a single clone.
1236 		 */
1237 		clone = clone_bio(bio, ci->sector, ci->idx,
1238 				  bio->bi_vcnt - ci->idx, ci->sector_count,
1239 				  ci->md->bs);
1240 		__map_bio(ti, clone, tio);
1241 		ci->sector_count = 0;
1242 
1243 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1244 		/*
1245 		 * There are some bvecs that don't span targets.
1246 		 * Do as many of these as possible.
1247 		 */
1248 		int i;
1249 		sector_t remaining = max;
1250 		sector_t bv_len;
1251 
1252 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1253 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1254 
1255 			if (bv_len > remaining)
1256 				break;
1257 
1258 			remaining -= bv_len;
1259 			len += bv_len;
1260 		}
1261 
1262 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1263 				  ci->md->bs);
1264 		__map_bio(ti, clone, tio);
1265 
1266 		ci->sector += len;
1267 		ci->sector_count -= len;
1268 		ci->idx = i;
1269 
1270 	} else {
1271 		/*
1272 		 * Handle a bvec that must be split between two or more targets.
1273 		 */
1274 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1275 		sector_t remaining = to_sector(bv->bv_len);
1276 		unsigned int offset = 0;
1277 
1278 		do {
1279 			if (offset) {
1280 				ti = dm_table_find_target(ci->map, ci->sector);
1281 				if (!dm_target_is_valid(ti))
1282 					return -EIO;
1283 
1284 				max = max_io_len(ci->md, ci->sector, ti);
1285 
1286 				tio = alloc_tio(ci, ti);
1287 			}
1288 
1289 			len = min(remaining, max);
1290 
1291 			clone = split_bvec(bio, ci->sector, ci->idx,
1292 					   bv->bv_offset + offset, len,
1293 					   ci->md->bs);
1294 
1295 			__map_bio(ti, clone, tio);
1296 
1297 			ci->sector += len;
1298 			ci->sector_count -= len;
1299 			offset += to_bytes(len);
1300 		} while (remaining -= len);
1301 
1302 		ci->idx++;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Split the bio into several clones and submit it to targets.
1310  */
1311 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1312 {
1313 	struct clone_info ci;
1314 	int error = 0;
1315 
1316 	ci.map = dm_get_live_table(md);
1317 	if (unlikely(!ci.map)) {
1318 		if (!(bio->bi_rw & REQ_HARDBARRIER))
1319 			bio_io_error(bio);
1320 		else
1321 			if (!md->barrier_error)
1322 				md->barrier_error = -EIO;
1323 		return;
1324 	}
1325 
1326 	ci.md = md;
1327 	ci.bio = bio;
1328 	ci.io = alloc_io(md);
1329 	ci.io->error = 0;
1330 	atomic_set(&ci.io->io_count, 1);
1331 	ci.io->bio = bio;
1332 	ci.io->md = md;
1333 	spin_lock_init(&ci.io->endio_lock);
1334 	ci.sector = bio->bi_sector;
1335 	ci.sector_count = bio_sectors(bio);
1336 	if (unlikely(bio_empty_barrier(bio)))
1337 		ci.sector_count = 1;
1338 	ci.idx = bio->bi_idx;
1339 
1340 	start_io_acct(ci.io);
1341 	while (ci.sector_count && !error)
1342 		error = __clone_and_map(&ci);
1343 
1344 	/* drop the extra reference count */
1345 	dec_pending(ci.io, error);
1346 	dm_table_put(ci.map);
1347 }
1348 /*-----------------------------------------------------------------
1349  * CRUD END
1350  *---------------------------------------------------------------*/
1351 
1352 static int dm_merge_bvec(struct request_queue *q,
1353 			 struct bvec_merge_data *bvm,
1354 			 struct bio_vec *biovec)
1355 {
1356 	struct mapped_device *md = q->queuedata;
1357 	struct dm_table *map = dm_get_live_table(md);
1358 	struct dm_target *ti;
1359 	sector_t max_sectors;
1360 	int max_size = 0;
1361 
1362 	if (unlikely(!map))
1363 		goto out;
1364 
1365 	ti = dm_table_find_target(map, bvm->bi_sector);
1366 	if (!dm_target_is_valid(ti))
1367 		goto out_table;
1368 
1369 	/*
1370 	 * Find maximum amount of I/O that won't need splitting
1371 	 */
1372 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1373 			  (sector_t) BIO_MAX_SECTORS);
1374 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1375 	if (max_size < 0)
1376 		max_size = 0;
1377 
1378 	/*
1379 	 * merge_bvec_fn() returns number of bytes
1380 	 * it can accept at this offset
1381 	 * max is precomputed maximal io size
1382 	 */
1383 	if (max_size && ti->type->merge)
1384 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1385 	/*
1386 	 * If the target doesn't support merge method and some of the devices
1387 	 * provided their merge_bvec method (we know this by looking at
1388 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1389 	 * entries.  So always set max_size to 0, and the code below allows
1390 	 * just one page.
1391 	 */
1392 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1393 
1394 		max_size = 0;
1395 
1396 out_table:
1397 	dm_table_put(map);
1398 
1399 out:
1400 	/*
1401 	 * Always allow an entire first page
1402 	 */
1403 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1404 		max_size = biovec->bv_len;
1405 
1406 	return max_size;
1407 }
1408 
1409 /*
1410  * The request function that just remaps the bio built up by
1411  * dm_merge_bvec.
1412  */
1413 static int _dm_request(struct request_queue *q, struct bio *bio)
1414 {
1415 	int rw = bio_data_dir(bio);
1416 	struct mapped_device *md = q->queuedata;
1417 	int cpu;
1418 
1419 	down_read(&md->io_lock);
1420 
1421 	cpu = part_stat_lock();
1422 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1423 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1424 	part_stat_unlock();
1425 
1426 	/*
1427 	 * If we're suspended or the thread is processing barriers
1428 	 * we have to queue this io for later.
1429 	 */
1430 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1431 	    unlikely(bio->bi_rw & REQ_HARDBARRIER)) {
1432 		up_read(&md->io_lock);
1433 
1434 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1435 		    bio_rw(bio) == READA) {
1436 			bio_io_error(bio);
1437 			return 0;
1438 		}
1439 
1440 		queue_io(md, bio);
1441 
1442 		return 0;
1443 	}
1444 
1445 	__split_and_process_bio(md, bio);
1446 	up_read(&md->io_lock);
1447 	return 0;
1448 }
1449 
1450 static int dm_make_request(struct request_queue *q, struct bio *bio)
1451 {
1452 	struct mapped_device *md = q->queuedata;
1453 
1454 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1455 }
1456 
1457 static int dm_request_based(struct mapped_device *md)
1458 {
1459 	return blk_queue_stackable(md->queue);
1460 }
1461 
1462 static int dm_request(struct request_queue *q, struct bio *bio)
1463 {
1464 	struct mapped_device *md = q->queuedata;
1465 
1466 	if (dm_request_based(md))
1467 		return dm_make_request(q, bio);
1468 
1469 	return _dm_request(q, bio);
1470 }
1471 
1472 static bool dm_rq_is_flush_request(struct request *rq)
1473 {
1474 	if (rq->cmd_flags & REQ_FLUSH)
1475 		return true;
1476 	else
1477 		return false;
1478 }
1479 
1480 void dm_dispatch_request(struct request *rq)
1481 {
1482 	int r;
1483 
1484 	if (blk_queue_io_stat(rq->q))
1485 		rq->cmd_flags |= REQ_IO_STAT;
1486 
1487 	rq->start_time = jiffies;
1488 	r = blk_insert_cloned_request(rq->q, rq);
1489 	if (r)
1490 		dm_complete_request(rq, r);
1491 }
1492 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1493 
1494 static void dm_rq_bio_destructor(struct bio *bio)
1495 {
1496 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1497 	struct mapped_device *md = info->tio->md;
1498 
1499 	free_bio_info(info);
1500 	bio_free(bio, md->bs);
1501 }
1502 
1503 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1504 				 void *data)
1505 {
1506 	struct dm_rq_target_io *tio = data;
1507 	struct mapped_device *md = tio->md;
1508 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1509 
1510 	if (!info)
1511 		return -ENOMEM;
1512 
1513 	info->orig = bio_orig;
1514 	info->tio = tio;
1515 	bio->bi_end_io = end_clone_bio;
1516 	bio->bi_private = info;
1517 	bio->bi_destructor = dm_rq_bio_destructor;
1518 
1519 	return 0;
1520 }
1521 
1522 static int setup_clone(struct request *clone, struct request *rq,
1523 		       struct dm_rq_target_io *tio)
1524 {
1525 	int r;
1526 
1527 	if (dm_rq_is_flush_request(rq)) {
1528 		blk_rq_init(NULL, clone);
1529 		clone->cmd_type = REQ_TYPE_FS;
1530 		clone->cmd_flags |= (REQ_HARDBARRIER | WRITE);
1531 	} else {
1532 		r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1533 				      dm_rq_bio_constructor, tio);
1534 		if (r)
1535 			return r;
1536 
1537 		clone->cmd = rq->cmd;
1538 		clone->cmd_len = rq->cmd_len;
1539 		clone->sense = rq->sense;
1540 		clone->buffer = rq->buffer;
1541 	}
1542 
1543 	clone->end_io = end_clone_request;
1544 	clone->end_io_data = tio;
1545 
1546 	return 0;
1547 }
1548 
1549 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1550 				gfp_t gfp_mask)
1551 {
1552 	struct request *clone;
1553 	struct dm_rq_target_io *tio;
1554 
1555 	tio = alloc_rq_tio(md, gfp_mask);
1556 	if (!tio)
1557 		return NULL;
1558 
1559 	tio->md = md;
1560 	tio->ti = NULL;
1561 	tio->orig = rq;
1562 	tio->error = 0;
1563 	memset(&tio->info, 0, sizeof(tio->info));
1564 
1565 	clone = &tio->clone;
1566 	if (setup_clone(clone, rq, tio)) {
1567 		/* -ENOMEM */
1568 		free_rq_tio(tio);
1569 		return NULL;
1570 	}
1571 
1572 	return clone;
1573 }
1574 
1575 /*
1576  * Called with the queue lock held.
1577  */
1578 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1579 {
1580 	struct mapped_device *md = q->queuedata;
1581 	struct request *clone;
1582 
1583 	if (unlikely(dm_rq_is_flush_request(rq)))
1584 		return BLKPREP_OK;
1585 
1586 	if (unlikely(rq->special)) {
1587 		DMWARN("Already has something in rq->special.");
1588 		return BLKPREP_KILL;
1589 	}
1590 
1591 	clone = clone_rq(rq, md, GFP_ATOMIC);
1592 	if (!clone)
1593 		return BLKPREP_DEFER;
1594 
1595 	rq->special = clone;
1596 	rq->cmd_flags |= REQ_DONTPREP;
1597 
1598 	return BLKPREP_OK;
1599 }
1600 
1601 /*
1602  * Returns:
1603  * 0  : the request has been processed (not requeued)
1604  * !0 : the request has been requeued
1605  */
1606 static int map_request(struct dm_target *ti, struct request *clone,
1607 		       struct mapped_device *md)
1608 {
1609 	int r, requeued = 0;
1610 	struct dm_rq_target_io *tio = clone->end_io_data;
1611 
1612 	/*
1613 	 * Hold the md reference here for the in-flight I/O.
1614 	 * We can't rely on the reference count by device opener,
1615 	 * because the device may be closed during the request completion
1616 	 * when all bios are completed.
1617 	 * See the comment in rq_completed() too.
1618 	 */
1619 	dm_get(md);
1620 
1621 	tio->ti = ti;
1622 	r = ti->type->map_rq(ti, clone, &tio->info);
1623 	switch (r) {
1624 	case DM_MAPIO_SUBMITTED:
1625 		/* The target has taken the I/O to submit by itself later */
1626 		break;
1627 	case DM_MAPIO_REMAPPED:
1628 		/* The target has remapped the I/O so dispatch it */
1629 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1630 				     blk_rq_pos(tio->orig));
1631 		dm_dispatch_request(clone);
1632 		break;
1633 	case DM_MAPIO_REQUEUE:
1634 		/* The target wants to requeue the I/O */
1635 		dm_requeue_unmapped_request(clone);
1636 		requeued = 1;
1637 		break;
1638 	default:
1639 		if (r > 0) {
1640 			DMWARN("unimplemented target map return value: %d", r);
1641 			BUG();
1642 		}
1643 
1644 		/* The target wants to complete the I/O */
1645 		dm_kill_unmapped_request(clone, r);
1646 		break;
1647 	}
1648 
1649 	return requeued;
1650 }
1651 
1652 /*
1653  * q->request_fn for request-based dm.
1654  * Called with the queue lock held.
1655  */
1656 static void dm_request_fn(struct request_queue *q)
1657 {
1658 	struct mapped_device *md = q->queuedata;
1659 	struct dm_table *map = dm_get_live_table(md);
1660 	struct dm_target *ti;
1661 	struct request *rq, *clone;
1662 
1663 	/*
1664 	 * For suspend, check blk_queue_stopped() and increment
1665 	 * ->pending within a single queue_lock not to increment the
1666 	 * number of in-flight I/Os after the queue is stopped in
1667 	 * dm_suspend().
1668 	 */
1669 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1670 		rq = blk_peek_request(q);
1671 		if (!rq)
1672 			goto plug_and_out;
1673 
1674 		if (unlikely(dm_rq_is_flush_request(rq))) {
1675 			BUG_ON(md->flush_request);
1676 			md->flush_request = rq;
1677 			blk_start_request(rq);
1678 			queue_work(md->wq, &md->barrier_work);
1679 			goto out;
1680 		}
1681 
1682 		ti = dm_table_find_target(map, blk_rq_pos(rq));
1683 		if (ti->type->busy && ti->type->busy(ti))
1684 			goto plug_and_out;
1685 
1686 		blk_start_request(rq);
1687 		clone = rq->special;
1688 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1689 
1690 		spin_unlock(q->queue_lock);
1691 		if (map_request(ti, clone, md))
1692 			goto requeued;
1693 
1694 		spin_lock_irq(q->queue_lock);
1695 	}
1696 
1697 	goto out;
1698 
1699 requeued:
1700 	spin_lock_irq(q->queue_lock);
1701 
1702 plug_and_out:
1703 	if (!elv_queue_empty(q))
1704 		/* Some requests still remain, retry later */
1705 		blk_plug_device(q);
1706 
1707 out:
1708 	dm_table_put(map);
1709 
1710 	return;
1711 }
1712 
1713 int dm_underlying_device_busy(struct request_queue *q)
1714 {
1715 	return blk_lld_busy(q);
1716 }
1717 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1718 
1719 static int dm_lld_busy(struct request_queue *q)
1720 {
1721 	int r;
1722 	struct mapped_device *md = q->queuedata;
1723 	struct dm_table *map = dm_get_live_table(md);
1724 
1725 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1726 		r = 1;
1727 	else
1728 		r = dm_table_any_busy_target(map);
1729 
1730 	dm_table_put(map);
1731 
1732 	return r;
1733 }
1734 
1735 static void dm_unplug_all(struct request_queue *q)
1736 {
1737 	struct mapped_device *md = q->queuedata;
1738 	struct dm_table *map = dm_get_live_table(md);
1739 
1740 	if (map) {
1741 		if (dm_request_based(md))
1742 			generic_unplug_device(q);
1743 
1744 		dm_table_unplug_all(map);
1745 		dm_table_put(map);
1746 	}
1747 }
1748 
1749 static int dm_any_congested(void *congested_data, int bdi_bits)
1750 {
1751 	int r = bdi_bits;
1752 	struct mapped_device *md = congested_data;
1753 	struct dm_table *map;
1754 
1755 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1756 		map = dm_get_live_table(md);
1757 		if (map) {
1758 			/*
1759 			 * Request-based dm cares about only own queue for
1760 			 * the query about congestion status of request_queue
1761 			 */
1762 			if (dm_request_based(md))
1763 				r = md->queue->backing_dev_info.state &
1764 				    bdi_bits;
1765 			else
1766 				r = dm_table_any_congested(map, bdi_bits);
1767 
1768 			dm_table_put(map);
1769 		}
1770 	}
1771 
1772 	return r;
1773 }
1774 
1775 /*-----------------------------------------------------------------
1776  * An IDR is used to keep track of allocated minor numbers.
1777  *---------------------------------------------------------------*/
1778 static DEFINE_IDR(_minor_idr);
1779 
1780 static void free_minor(int minor)
1781 {
1782 	spin_lock(&_minor_lock);
1783 	idr_remove(&_minor_idr, minor);
1784 	spin_unlock(&_minor_lock);
1785 }
1786 
1787 /*
1788  * See if the device with a specific minor # is free.
1789  */
1790 static int specific_minor(int minor)
1791 {
1792 	int r, m;
1793 
1794 	if (minor >= (1 << MINORBITS))
1795 		return -EINVAL;
1796 
1797 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1798 	if (!r)
1799 		return -ENOMEM;
1800 
1801 	spin_lock(&_minor_lock);
1802 
1803 	if (idr_find(&_minor_idr, minor)) {
1804 		r = -EBUSY;
1805 		goto out;
1806 	}
1807 
1808 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1809 	if (r)
1810 		goto out;
1811 
1812 	if (m != minor) {
1813 		idr_remove(&_minor_idr, m);
1814 		r = -EBUSY;
1815 		goto out;
1816 	}
1817 
1818 out:
1819 	spin_unlock(&_minor_lock);
1820 	return r;
1821 }
1822 
1823 static int next_free_minor(int *minor)
1824 {
1825 	int r, m;
1826 
1827 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1828 	if (!r)
1829 		return -ENOMEM;
1830 
1831 	spin_lock(&_minor_lock);
1832 
1833 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1834 	if (r)
1835 		goto out;
1836 
1837 	if (m >= (1 << MINORBITS)) {
1838 		idr_remove(&_minor_idr, m);
1839 		r = -ENOSPC;
1840 		goto out;
1841 	}
1842 
1843 	*minor = m;
1844 
1845 out:
1846 	spin_unlock(&_minor_lock);
1847 	return r;
1848 }
1849 
1850 static const struct block_device_operations dm_blk_dops;
1851 
1852 static void dm_wq_work(struct work_struct *work);
1853 static void dm_rq_barrier_work(struct work_struct *work);
1854 
1855 /*
1856  * Allocate and initialise a blank device with a given minor.
1857  */
1858 static struct mapped_device *alloc_dev(int minor)
1859 {
1860 	int r;
1861 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1862 	void *old_md;
1863 
1864 	if (!md) {
1865 		DMWARN("unable to allocate device, out of memory.");
1866 		return NULL;
1867 	}
1868 
1869 	if (!try_module_get(THIS_MODULE))
1870 		goto bad_module_get;
1871 
1872 	/* get a minor number for the dev */
1873 	if (minor == DM_ANY_MINOR)
1874 		r = next_free_minor(&minor);
1875 	else
1876 		r = specific_minor(minor);
1877 	if (r < 0)
1878 		goto bad_minor;
1879 
1880 	init_rwsem(&md->io_lock);
1881 	mutex_init(&md->suspend_lock);
1882 	spin_lock_init(&md->deferred_lock);
1883 	spin_lock_init(&md->barrier_error_lock);
1884 	rwlock_init(&md->map_lock);
1885 	atomic_set(&md->holders, 1);
1886 	atomic_set(&md->open_count, 0);
1887 	atomic_set(&md->event_nr, 0);
1888 	atomic_set(&md->uevent_seq, 0);
1889 	INIT_LIST_HEAD(&md->uevent_list);
1890 	spin_lock_init(&md->uevent_lock);
1891 
1892 	md->queue = blk_init_queue(dm_request_fn, NULL);
1893 	if (!md->queue)
1894 		goto bad_queue;
1895 
1896 	/*
1897 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1898 	 * devices.  The type of this dm device has not been decided yet,
1899 	 * although we initialized the queue using blk_init_queue().
1900 	 * The type is decided at the first table loading time.
1901 	 * To prevent problematic device stacking, clear the queue flag
1902 	 * for request stacking support until then.
1903 	 *
1904 	 * This queue is new, so no concurrency on the queue_flags.
1905 	 */
1906 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1907 	md->saved_make_request_fn = md->queue->make_request_fn;
1908 	md->queue->queuedata = md;
1909 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1910 	md->queue->backing_dev_info.congested_data = md;
1911 	blk_queue_make_request(md->queue, dm_request);
1912 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1913 	md->queue->unplug_fn = dm_unplug_all;
1914 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1915 	blk_queue_softirq_done(md->queue, dm_softirq_done);
1916 	blk_queue_prep_rq(md->queue, dm_prep_fn);
1917 	blk_queue_lld_busy(md->queue, dm_lld_busy);
1918 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN_FLUSH);
1919 
1920 	md->disk = alloc_disk(1);
1921 	if (!md->disk)
1922 		goto bad_disk;
1923 
1924 	atomic_set(&md->pending[0], 0);
1925 	atomic_set(&md->pending[1], 0);
1926 	init_waitqueue_head(&md->wait);
1927 	INIT_WORK(&md->work, dm_wq_work);
1928 	INIT_WORK(&md->barrier_work, dm_rq_barrier_work);
1929 	init_waitqueue_head(&md->eventq);
1930 
1931 	md->disk->major = _major;
1932 	md->disk->first_minor = minor;
1933 	md->disk->fops = &dm_blk_dops;
1934 	md->disk->queue = md->queue;
1935 	md->disk->private_data = md;
1936 	sprintf(md->disk->disk_name, "dm-%d", minor);
1937 	add_disk(md->disk);
1938 	format_dev_t(md->name, MKDEV(_major, minor));
1939 
1940 	md->wq = create_singlethread_workqueue("kdmflush");
1941 	if (!md->wq)
1942 		goto bad_thread;
1943 
1944 	md->bdev = bdget_disk(md->disk, 0);
1945 	if (!md->bdev)
1946 		goto bad_bdev;
1947 
1948 	/* Populate the mapping, nobody knows we exist yet */
1949 	spin_lock(&_minor_lock);
1950 	old_md = idr_replace(&_minor_idr, md, minor);
1951 	spin_unlock(&_minor_lock);
1952 
1953 	BUG_ON(old_md != MINOR_ALLOCED);
1954 
1955 	return md;
1956 
1957 bad_bdev:
1958 	destroy_workqueue(md->wq);
1959 bad_thread:
1960 	del_gendisk(md->disk);
1961 	put_disk(md->disk);
1962 bad_disk:
1963 	blk_cleanup_queue(md->queue);
1964 bad_queue:
1965 	free_minor(minor);
1966 bad_minor:
1967 	module_put(THIS_MODULE);
1968 bad_module_get:
1969 	kfree(md);
1970 	return NULL;
1971 }
1972 
1973 static void unlock_fs(struct mapped_device *md);
1974 
1975 static void free_dev(struct mapped_device *md)
1976 {
1977 	int minor = MINOR(disk_devt(md->disk));
1978 
1979 	unlock_fs(md);
1980 	bdput(md->bdev);
1981 	destroy_workqueue(md->wq);
1982 	if (md->tio_pool)
1983 		mempool_destroy(md->tio_pool);
1984 	if (md->io_pool)
1985 		mempool_destroy(md->io_pool);
1986 	if (md->bs)
1987 		bioset_free(md->bs);
1988 	blk_integrity_unregister(md->disk);
1989 	del_gendisk(md->disk);
1990 	free_minor(minor);
1991 
1992 	spin_lock(&_minor_lock);
1993 	md->disk->private_data = NULL;
1994 	spin_unlock(&_minor_lock);
1995 
1996 	put_disk(md->disk);
1997 	blk_cleanup_queue(md->queue);
1998 	module_put(THIS_MODULE);
1999 	kfree(md);
2000 }
2001 
2002 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2003 {
2004 	struct dm_md_mempools *p;
2005 
2006 	if (md->io_pool && md->tio_pool && md->bs)
2007 		/* the md already has necessary mempools */
2008 		goto out;
2009 
2010 	p = dm_table_get_md_mempools(t);
2011 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
2012 
2013 	md->io_pool = p->io_pool;
2014 	p->io_pool = NULL;
2015 	md->tio_pool = p->tio_pool;
2016 	p->tio_pool = NULL;
2017 	md->bs = p->bs;
2018 	p->bs = NULL;
2019 
2020 out:
2021 	/* mempool bind completed, now no need any mempools in the table */
2022 	dm_table_free_md_mempools(t);
2023 }
2024 
2025 /*
2026  * Bind a table to the device.
2027  */
2028 static void event_callback(void *context)
2029 {
2030 	unsigned long flags;
2031 	LIST_HEAD(uevents);
2032 	struct mapped_device *md = (struct mapped_device *) context;
2033 
2034 	spin_lock_irqsave(&md->uevent_lock, flags);
2035 	list_splice_init(&md->uevent_list, &uevents);
2036 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2037 
2038 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2039 
2040 	atomic_inc(&md->event_nr);
2041 	wake_up(&md->eventq);
2042 }
2043 
2044 static void __set_size(struct mapped_device *md, sector_t size)
2045 {
2046 	set_capacity(md->disk, size);
2047 
2048 	mutex_lock(&md->bdev->bd_inode->i_mutex);
2049 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2050 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
2051 }
2052 
2053 /*
2054  * Returns old map, which caller must destroy.
2055  */
2056 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2057 			       struct queue_limits *limits)
2058 {
2059 	struct dm_table *old_map;
2060 	struct request_queue *q = md->queue;
2061 	sector_t size;
2062 	unsigned long flags;
2063 
2064 	size = dm_table_get_size(t);
2065 
2066 	/*
2067 	 * Wipe any geometry if the size of the table changed.
2068 	 */
2069 	if (size != get_capacity(md->disk))
2070 		memset(&md->geometry, 0, sizeof(md->geometry));
2071 
2072 	__set_size(md, size);
2073 
2074 	dm_table_event_callback(t, event_callback, md);
2075 
2076 	/*
2077 	 * The queue hasn't been stopped yet, if the old table type wasn't
2078 	 * for request-based during suspension.  So stop it to prevent
2079 	 * I/O mapping before resume.
2080 	 * This must be done before setting the queue restrictions,
2081 	 * because request-based dm may be run just after the setting.
2082 	 */
2083 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2084 		stop_queue(q);
2085 
2086 	__bind_mempools(md, t);
2087 
2088 	write_lock_irqsave(&md->map_lock, flags);
2089 	old_map = md->map;
2090 	md->map = t;
2091 	dm_table_set_restrictions(t, q, limits);
2092 	write_unlock_irqrestore(&md->map_lock, flags);
2093 
2094 	return old_map;
2095 }
2096 
2097 /*
2098  * Returns unbound table for the caller to free.
2099  */
2100 static struct dm_table *__unbind(struct mapped_device *md)
2101 {
2102 	struct dm_table *map = md->map;
2103 	unsigned long flags;
2104 
2105 	if (!map)
2106 		return NULL;
2107 
2108 	dm_table_event_callback(map, NULL, NULL);
2109 	write_lock_irqsave(&md->map_lock, flags);
2110 	md->map = NULL;
2111 	write_unlock_irqrestore(&md->map_lock, flags);
2112 
2113 	return map;
2114 }
2115 
2116 /*
2117  * Constructor for a new device.
2118  */
2119 int dm_create(int minor, struct mapped_device **result)
2120 {
2121 	struct mapped_device *md;
2122 
2123 	md = alloc_dev(minor);
2124 	if (!md)
2125 		return -ENXIO;
2126 
2127 	dm_sysfs_init(md);
2128 
2129 	*result = md;
2130 	return 0;
2131 }
2132 
2133 static struct mapped_device *dm_find_md(dev_t dev)
2134 {
2135 	struct mapped_device *md;
2136 	unsigned minor = MINOR(dev);
2137 
2138 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2139 		return NULL;
2140 
2141 	spin_lock(&_minor_lock);
2142 
2143 	md = idr_find(&_minor_idr, minor);
2144 	if (md && (md == MINOR_ALLOCED ||
2145 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2146 		   dm_deleting_md(md) ||
2147 		   test_bit(DMF_FREEING, &md->flags))) {
2148 		md = NULL;
2149 		goto out;
2150 	}
2151 
2152 out:
2153 	spin_unlock(&_minor_lock);
2154 
2155 	return md;
2156 }
2157 
2158 struct mapped_device *dm_get_md(dev_t dev)
2159 {
2160 	struct mapped_device *md = dm_find_md(dev);
2161 
2162 	if (md)
2163 		dm_get(md);
2164 
2165 	return md;
2166 }
2167 
2168 void *dm_get_mdptr(struct mapped_device *md)
2169 {
2170 	return md->interface_ptr;
2171 }
2172 
2173 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2174 {
2175 	md->interface_ptr = ptr;
2176 }
2177 
2178 void dm_get(struct mapped_device *md)
2179 {
2180 	atomic_inc(&md->holders);
2181 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2182 }
2183 
2184 const char *dm_device_name(struct mapped_device *md)
2185 {
2186 	return md->name;
2187 }
2188 EXPORT_SYMBOL_GPL(dm_device_name);
2189 
2190 static void __dm_destroy(struct mapped_device *md, bool wait)
2191 {
2192 	struct dm_table *map;
2193 
2194 	might_sleep();
2195 
2196 	spin_lock(&_minor_lock);
2197 	map = dm_get_live_table(md);
2198 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2199 	set_bit(DMF_FREEING, &md->flags);
2200 	spin_unlock(&_minor_lock);
2201 
2202 	if (!dm_suspended_md(md)) {
2203 		dm_table_presuspend_targets(map);
2204 		dm_table_postsuspend_targets(map);
2205 	}
2206 
2207 	/*
2208 	 * Rare, but there may be I/O requests still going to complete,
2209 	 * for example.  Wait for all references to disappear.
2210 	 * No one should increment the reference count of the mapped_device,
2211 	 * after the mapped_device state becomes DMF_FREEING.
2212 	 */
2213 	if (wait)
2214 		while (atomic_read(&md->holders))
2215 			msleep(1);
2216 	else if (atomic_read(&md->holders))
2217 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2218 		       dm_device_name(md), atomic_read(&md->holders));
2219 
2220 	dm_sysfs_exit(md);
2221 	dm_table_put(map);
2222 	dm_table_destroy(__unbind(md));
2223 	free_dev(md);
2224 }
2225 
2226 void dm_destroy(struct mapped_device *md)
2227 {
2228 	__dm_destroy(md, true);
2229 }
2230 
2231 void dm_destroy_immediate(struct mapped_device *md)
2232 {
2233 	__dm_destroy(md, false);
2234 }
2235 
2236 void dm_put(struct mapped_device *md)
2237 {
2238 	atomic_dec(&md->holders);
2239 }
2240 EXPORT_SYMBOL_GPL(dm_put);
2241 
2242 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2243 {
2244 	int r = 0;
2245 	DECLARE_WAITQUEUE(wait, current);
2246 
2247 	dm_unplug_all(md->queue);
2248 
2249 	add_wait_queue(&md->wait, &wait);
2250 
2251 	while (1) {
2252 		set_current_state(interruptible);
2253 
2254 		smp_mb();
2255 		if (!md_in_flight(md))
2256 			break;
2257 
2258 		if (interruptible == TASK_INTERRUPTIBLE &&
2259 		    signal_pending(current)) {
2260 			r = -EINTR;
2261 			break;
2262 		}
2263 
2264 		io_schedule();
2265 	}
2266 	set_current_state(TASK_RUNNING);
2267 
2268 	remove_wait_queue(&md->wait, &wait);
2269 
2270 	return r;
2271 }
2272 
2273 static void dm_flush(struct mapped_device *md)
2274 {
2275 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2276 
2277 	bio_init(&md->barrier_bio);
2278 	md->barrier_bio.bi_bdev = md->bdev;
2279 	md->barrier_bio.bi_rw = WRITE_BARRIER;
2280 	__split_and_process_bio(md, &md->barrier_bio);
2281 
2282 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2283 }
2284 
2285 static void process_barrier(struct mapped_device *md, struct bio *bio)
2286 {
2287 	md->barrier_error = 0;
2288 
2289 	dm_flush(md);
2290 
2291 	if (!bio_empty_barrier(bio)) {
2292 		__split_and_process_bio(md, bio);
2293 		/*
2294 		 * If the request isn't supported, don't waste time with
2295 		 * the second flush.
2296 		 */
2297 		if (md->barrier_error != -EOPNOTSUPP)
2298 			dm_flush(md);
2299 	}
2300 
2301 	if (md->barrier_error != DM_ENDIO_REQUEUE)
2302 		bio_endio(bio, md->barrier_error);
2303 	else {
2304 		spin_lock_irq(&md->deferred_lock);
2305 		bio_list_add_head(&md->deferred, bio);
2306 		spin_unlock_irq(&md->deferred_lock);
2307 	}
2308 }
2309 
2310 /*
2311  * Process the deferred bios
2312  */
2313 static void dm_wq_work(struct work_struct *work)
2314 {
2315 	struct mapped_device *md = container_of(work, struct mapped_device,
2316 						work);
2317 	struct bio *c;
2318 
2319 	down_write(&md->io_lock);
2320 
2321 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2322 		spin_lock_irq(&md->deferred_lock);
2323 		c = bio_list_pop(&md->deferred);
2324 		spin_unlock_irq(&md->deferred_lock);
2325 
2326 		if (!c) {
2327 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2328 			break;
2329 		}
2330 
2331 		up_write(&md->io_lock);
2332 
2333 		if (dm_request_based(md))
2334 			generic_make_request(c);
2335 		else {
2336 			if (c->bi_rw & REQ_HARDBARRIER)
2337 				process_barrier(md, c);
2338 			else
2339 				__split_and_process_bio(md, c);
2340 		}
2341 
2342 		down_write(&md->io_lock);
2343 	}
2344 
2345 	up_write(&md->io_lock);
2346 }
2347 
2348 static void dm_queue_flush(struct mapped_device *md)
2349 {
2350 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2351 	smp_mb__after_clear_bit();
2352 	queue_work(md->wq, &md->work);
2353 }
2354 
2355 static void dm_rq_set_flush_nr(struct request *clone, unsigned flush_nr)
2356 {
2357 	struct dm_rq_target_io *tio = clone->end_io_data;
2358 
2359 	tio->info.flush_request = flush_nr;
2360 }
2361 
2362 /* Issue barrier requests to targets and wait for their completion. */
2363 static int dm_rq_barrier(struct mapped_device *md)
2364 {
2365 	int i, j;
2366 	struct dm_table *map = dm_get_live_table(md);
2367 	unsigned num_targets = dm_table_get_num_targets(map);
2368 	struct dm_target *ti;
2369 	struct request *clone;
2370 
2371 	md->barrier_error = 0;
2372 
2373 	for (i = 0; i < num_targets; i++) {
2374 		ti = dm_table_get_target(map, i);
2375 		for (j = 0; j < ti->num_flush_requests; j++) {
2376 			clone = clone_rq(md->flush_request, md, GFP_NOIO);
2377 			dm_rq_set_flush_nr(clone, j);
2378 			atomic_inc(&md->pending[rq_data_dir(clone)]);
2379 			map_request(ti, clone, md);
2380 		}
2381 	}
2382 
2383 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2384 	dm_table_put(map);
2385 
2386 	return md->barrier_error;
2387 }
2388 
2389 static void dm_rq_barrier_work(struct work_struct *work)
2390 {
2391 	int error;
2392 	struct mapped_device *md = container_of(work, struct mapped_device,
2393 						barrier_work);
2394 	struct request_queue *q = md->queue;
2395 	struct request *rq;
2396 	unsigned long flags;
2397 
2398 	/*
2399 	 * Hold the md reference here and leave it at the last part so that
2400 	 * the md can't be deleted by device opener when the barrier request
2401 	 * completes.
2402 	 */
2403 	dm_get(md);
2404 
2405 	error = dm_rq_barrier(md);
2406 
2407 	rq = md->flush_request;
2408 	md->flush_request = NULL;
2409 
2410 	if (error == DM_ENDIO_REQUEUE) {
2411 		spin_lock_irqsave(q->queue_lock, flags);
2412 		blk_requeue_request(q, rq);
2413 		spin_unlock_irqrestore(q->queue_lock, flags);
2414 	} else
2415 		blk_end_request_all(rq, error);
2416 
2417 	blk_run_queue(q);
2418 
2419 	dm_put(md);
2420 }
2421 
2422 /*
2423  * Swap in a new table, returning the old one for the caller to destroy.
2424  */
2425 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2426 {
2427 	struct dm_table *map = ERR_PTR(-EINVAL);
2428 	struct queue_limits limits;
2429 	int r;
2430 
2431 	mutex_lock(&md->suspend_lock);
2432 
2433 	/* device must be suspended */
2434 	if (!dm_suspended_md(md))
2435 		goto out;
2436 
2437 	r = dm_calculate_queue_limits(table, &limits);
2438 	if (r) {
2439 		map = ERR_PTR(r);
2440 		goto out;
2441 	}
2442 
2443 	/* cannot change the device type, once a table is bound */
2444 	if (md->map &&
2445 	    (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2446 		DMWARN("can't change the device type after a table is bound");
2447 		goto out;
2448 	}
2449 
2450 	map = __bind(md, table, &limits);
2451 
2452 out:
2453 	mutex_unlock(&md->suspend_lock);
2454 	return map;
2455 }
2456 
2457 /*
2458  * Functions to lock and unlock any filesystem running on the
2459  * device.
2460  */
2461 static int lock_fs(struct mapped_device *md)
2462 {
2463 	int r;
2464 
2465 	WARN_ON(md->frozen_sb);
2466 
2467 	md->frozen_sb = freeze_bdev(md->bdev);
2468 	if (IS_ERR(md->frozen_sb)) {
2469 		r = PTR_ERR(md->frozen_sb);
2470 		md->frozen_sb = NULL;
2471 		return r;
2472 	}
2473 
2474 	set_bit(DMF_FROZEN, &md->flags);
2475 
2476 	return 0;
2477 }
2478 
2479 static void unlock_fs(struct mapped_device *md)
2480 {
2481 	if (!test_bit(DMF_FROZEN, &md->flags))
2482 		return;
2483 
2484 	thaw_bdev(md->bdev, md->frozen_sb);
2485 	md->frozen_sb = NULL;
2486 	clear_bit(DMF_FROZEN, &md->flags);
2487 }
2488 
2489 /*
2490  * We need to be able to change a mapping table under a mounted
2491  * filesystem.  For example we might want to move some data in
2492  * the background.  Before the table can be swapped with
2493  * dm_bind_table, dm_suspend must be called to flush any in
2494  * flight bios and ensure that any further io gets deferred.
2495  */
2496 /*
2497  * Suspend mechanism in request-based dm.
2498  *
2499  * 1. Flush all I/Os by lock_fs() if needed.
2500  * 2. Stop dispatching any I/O by stopping the request_queue.
2501  * 3. Wait for all in-flight I/Os to be completed or requeued.
2502  *
2503  * To abort suspend, start the request_queue.
2504  */
2505 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2506 {
2507 	struct dm_table *map = NULL;
2508 	int r = 0;
2509 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2510 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2511 
2512 	mutex_lock(&md->suspend_lock);
2513 
2514 	if (dm_suspended_md(md)) {
2515 		r = -EINVAL;
2516 		goto out_unlock;
2517 	}
2518 
2519 	map = dm_get_live_table(md);
2520 
2521 	/*
2522 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2523 	 * This flag is cleared before dm_suspend returns.
2524 	 */
2525 	if (noflush)
2526 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2527 
2528 	/* This does not get reverted if there's an error later. */
2529 	dm_table_presuspend_targets(map);
2530 
2531 	/*
2532 	 * Flush I/O to the device.
2533 	 * Any I/O submitted after lock_fs() may not be flushed.
2534 	 * noflush takes precedence over do_lockfs.
2535 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2536 	 */
2537 	if (!noflush && do_lockfs) {
2538 		r = lock_fs(md);
2539 		if (r)
2540 			goto out;
2541 	}
2542 
2543 	/*
2544 	 * Here we must make sure that no processes are submitting requests
2545 	 * to target drivers i.e. no one may be executing
2546 	 * __split_and_process_bio. This is called from dm_request and
2547 	 * dm_wq_work.
2548 	 *
2549 	 * To get all processes out of __split_and_process_bio in dm_request,
2550 	 * we take the write lock. To prevent any process from reentering
2551 	 * __split_and_process_bio from dm_request, we set
2552 	 * DMF_QUEUE_IO_TO_THREAD.
2553 	 *
2554 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2555 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2556 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2557 	 * further calls to __split_and_process_bio from dm_wq_work.
2558 	 */
2559 	down_write(&md->io_lock);
2560 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2561 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2562 	up_write(&md->io_lock);
2563 
2564 	/*
2565 	 * Request-based dm uses md->wq for barrier (dm_rq_barrier_work) which
2566 	 * can be kicked until md->queue is stopped.  So stop md->queue before
2567 	 * flushing md->wq.
2568 	 */
2569 	if (dm_request_based(md))
2570 		stop_queue(md->queue);
2571 
2572 	flush_workqueue(md->wq);
2573 
2574 	/*
2575 	 * At this point no more requests are entering target request routines.
2576 	 * We call dm_wait_for_completion to wait for all existing requests
2577 	 * to finish.
2578 	 */
2579 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2580 
2581 	down_write(&md->io_lock);
2582 	if (noflush)
2583 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2584 	up_write(&md->io_lock);
2585 
2586 	/* were we interrupted ? */
2587 	if (r < 0) {
2588 		dm_queue_flush(md);
2589 
2590 		if (dm_request_based(md))
2591 			start_queue(md->queue);
2592 
2593 		unlock_fs(md);
2594 		goto out; /* pushback list is already flushed, so skip flush */
2595 	}
2596 
2597 	/*
2598 	 * If dm_wait_for_completion returned 0, the device is completely
2599 	 * quiescent now. There is no request-processing activity. All new
2600 	 * requests are being added to md->deferred list.
2601 	 */
2602 
2603 	set_bit(DMF_SUSPENDED, &md->flags);
2604 
2605 	dm_table_postsuspend_targets(map);
2606 
2607 out:
2608 	dm_table_put(map);
2609 
2610 out_unlock:
2611 	mutex_unlock(&md->suspend_lock);
2612 	return r;
2613 }
2614 
2615 int dm_resume(struct mapped_device *md)
2616 {
2617 	int r = -EINVAL;
2618 	struct dm_table *map = NULL;
2619 
2620 	mutex_lock(&md->suspend_lock);
2621 	if (!dm_suspended_md(md))
2622 		goto out;
2623 
2624 	map = dm_get_live_table(md);
2625 	if (!map || !dm_table_get_size(map))
2626 		goto out;
2627 
2628 	r = dm_table_resume_targets(map);
2629 	if (r)
2630 		goto out;
2631 
2632 	dm_queue_flush(md);
2633 
2634 	/*
2635 	 * Flushing deferred I/Os must be done after targets are resumed
2636 	 * so that mapping of targets can work correctly.
2637 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2638 	 */
2639 	if (dm_request_based(md))
2640 		start_queue(md->queue);
2641 
2642 	unlock_fs(md);
2643 
2644 	clear_bit(DMF_SUSPENDED, &md->flags);
2645 
2646 	dm_table_unplug_all(map);
2647 	r = 0;
2648 out:
2649 	dm_table_put(map);
2650 	mutex_unlock(&md->suspend_lock);
2651 
2652 	return r;
2653 }
2654 
2655 /*-----------------------------------------------------------------
2656  * Event notification.
2657  *---------------------------------------------------------------*/
2658 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2659 		       unsigned cookie)
2660 {
2661 	char udev_cookie[DM_COOKIE_LENGTH];
2662 	char *envp[] = { udev_cookie, NULL };
2663 
2664 	if (!cookie)
2665 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2666 	else {
2667 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2668 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2669 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2670 					  action, envp);
2671 	}
2672 }
2673 
2674 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2675 {
2676 	return atomic_add_return(1, &md->uevent_seq);
2677 }
2678 
2679 uint32_t dm_get_event_nr(struct mapped_device *md)
2680 {
2681 	return atomic_read(&md->event_nr);
2682 }
2683 
2684 int dm_wait_event(struct mapped_device *md, int event_nr)
2685 {
2686 	return wait_event_interruptible(md->eventq,
2687 			(event_nr != atomic_read(&md->event_nr)));
2688 }
2689 
2690 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2691 {
2692 	unsigned long flags;
2693 
2694 	spin_lock_irqsave(&md->uevent_lock, flags);
2695 	list_add(elist, &md->uevent_list);
2696 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2697 }
2698 
2699 /*
2700  * The gendisk is only valid as long as you have a reference
2701  * count on 'md'.
2702  */
2703 struct gendisk *dm_disk(struct mapped_device *md)
2704 {
2705 	return md->disk;
2706 }
2707 
2708 struct kobject *dm_kobject(struct mapped_device *md)
2709 {
2710 	return &md->kobj;
2711 }
2712 
2713 /*
2714  * struct mapped_device should not be exported outside of dm.c
2715  * so use this check to verify that kobj is part of md structure
2716  */
2717 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2718 {
2719 	struct mapped_device *md;
2720 
2721 	md = container_of(kobj, struct mapped_device, kobj);
2722 	if (&md->kobj != kobj)
2723 		return NULL;
2724 
2725 	if (test_bit(DMF_FREEING, &md->flags) ||
2726 	    dm_deleting_md(md))
2727 		return NULL;
2728 
2729 	dm_get(md);
2730 	return md;
2731 }
2732 
2733 int dm_suspended_md(struct mapped_device *md)
2734 {
2735 	return test_bit(DMF_SUSPENDED, &md->flags);
2736 }
2737 
2738 int dm_suspended(struct dm_target *ti)
2739 {
2740 	return dm_suspended_md(dm_table_get_md(ti->table));
2741 }
2742 EXPORT_SYMBOL_GPL(dm_suspended);
2743 
2744 int dm_noflush_suspending(struct dm_target *ti)
2745 {
2746 	return __noflush_suspending(dm_table_get_md(ti->table));
2747 }
2748 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2749 
2750 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2751 {
2752 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2753 
2754 	if (!pools)
2755 		return NULL;
2756 
2757 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2758 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2759 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2760 	if (!pools->io_pool)
2761 		goto free_pools_and_out;
2762 
2763 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2764 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2765 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2766 	if (!pools->tio_pool)
2767 		goto free_io_pool_and_out;
2768 
2769 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2770 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2771 	if (!pools->bs)
2772 		goto free_tio_pool_and_out;
2773 
2774 	return pools;
2775 
2776 free_tio_pool_and_out:
2777 	mempool_destroy(pools->tio_pool);
2778 
2779 free_io_pool_and_out:
2780 	mempool_destroy(pools->io_pool);
2781 
2782 free_pools_and_out:
2783 	kfree(pools);
2784 
2785 	return NULL;
2786 }
2787 
2788 void dm_free_md_mempools(struct dm_md_mempools *pools)
2789 {
2790 	if (!pools)
2791 		return;
2792 
2793 	if (pools->io_pool)
2794 		mempool_destroy(pools->io_pool);
2795 
2796 	if (pools->tio_pool)
2797 		mempool_destroy(pools->tio_pool);
2798 
2799 	if (pools->bs)
2800 		bioset_free(pools->bs);
2801 
2802 	kfree(pools);
2803 }
2804 
2805 static const struct block_device_operations dm_blk_dops = {
2806 	.open = dm_blk_open,
2807 	.release = dm_blk_close,
2808 	.ioctl = dm_blk_ioctl,
2809 	.getgeo = dm_blk_getgeo,
2810 	.owner = THIS_MODULE
2811 };
2812 
2813 EXPORT_SYMBOL(dm_get_mapinfo);
2814 
2815 /*
2816  * module hooks
2817  */
2818 module_init(dm_init);
2819 module_exit(dm_exit);
2820 
2821 module_param(major, uint, 0);
2822 MODULE_PARM_DESC(major, "The major number of the device mapper");
2823 MODULE_DESCRIPTION(DM_NAME " driver");
2824 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2825 MODULE_LICENSE("GPL");
2826