xref: /openbmc/linux/drivers/md/dm.c (revision 70246286e94c335b5bea0cbc68a17a96dd620281)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 #define MINOR_ALLOCED ((void *)-1)
110 
111 /*
112  * Bits for the md->flags field.
113  */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122 
123 /*
124  * Work processed by per-device workqueue.
125  */
126 struct mapped_device {
127 	struct srcu_struct io_barrier;
128 	struct mutex suspend_lock;
129 
130 	/*
131 	 * The current mapping (struct dm_table *).
132 	 * Use dm_get_live_table{_fast} or take suspend_lock for
133 	 * dereference.
134 	 */
135 	void __rcu *map;
136 
137 	struct list_head table_devices;
138 	struct mutex table_devices_lock;
139 
140 	unsigned long flags;
141 
142 	struct request_queue *queue;
143 	int numa_node_id;
144 
145 	unsigned type;
146 	/* Protect queue and type against concurrent access. */
147 	struct mutex type_lock;
148 
149 	atomic_t holders;
150 	atomic_t open_count;
151 
152 	struct dm_target *immutable_target;
153 	struct target_type *immutable_target_type;
154 
155 	struct gendisk *disk;
156 	char name[16];
157 
158 	void *interface_ptr;
159 
160 	/*
161 	 * A list of ios that arrived while we were suspended.
162 	 */
163 	atomic_t pending[2];
164 	wait_queue_head_t wait;
165 	struct work_struct work;
166 	spinlock_t deferred_lock;
167 	struct bio_list deferred;
168 
169 	/*
170 	 * Event handling.
171 	 */
172 	wait_queue_head_t eventq;
173 	atomic_t event_nr;
174 	atomic_t uevent_seq;
175 	struct list_head uevent_list;
176 	spinlock_t uevent_lock; /* Protect access to uevent_list */
177 
178 	/* the number of internal suspends */
179 	unsigned internal_suspend_count;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * freeze/thaw support require holding onto a super block
196 	 */
197 	struct super_block *frozen_sb;
198 
199 	/* forced geometry settings */
200 	struct hd_geometry geometry;
201 
202 	struct block_device *bdev;
203 
204 	/* kobject and completion */
205 	struct dm_kobject_holder kobj_holder;
206 
207 	/* zero-length flush that will be cloned and submitted to targets */
208 	struct bio flush_bio;
209 
210 	struct dm_stats stats;
211 
212 	struct kthread_worker kworker;
213 	struct task_struct *kworker_task;
214 
215 	/* for request-based merge heuristic in dm_request_fn() */
216 	unsigned seq_rq_merge_deadline_usecs;
217 	int last_rq_rw;
218 	sector_t last_rq_pos;
219 	ktime_t last_rq_start_time;
220 
221 	/* for blk-mq request-based DM support */
222 	struct blk_mq_tag_set *tag_set;
223 	bool use_blk_mq:1;
224 	bool init_tio_pdu:1;
225 };
226 
227 #ifdef CONFIG_DM_MQ_DEFAULT
228 static bool use_blk_mq = true;
229 #else
230 static bool use_blk_mq = false;
231 #endif
232 
233 #define DM_MQ_NR_HW_QUEUES 1
234 #define DM_MQ_QUEUE_DEPTH 2048
235 #define DM_NUMA_NODE NUMA_NO_NODE
236 
237 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
238 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
239 static int dm_numa_node = DM_NUMA_NODE;
240 
241 bool dm_use_blk_mq(struct mapped_device *md)
242 {
243 	return md->use_blk_mq;
244 }
245 EXPORT_SYMBOL_GPL(dm_use_blk_mq);
246 
247 /*
248  * For mempools pre-allocation at the table loading time.
249  */
250 struct dm_md_mempools {
251 	mempool_t *io_pool;
252 	mempool_t *rq_pool;
253 	struct bio_set *bs;
254 };
255 
256 struct table_device {
257 	struct list_head list;
258 	atomic_t count;
259 	struct dm_dev dm_dev;
260 };
261 
262 #define RESERVED_BIO_BASED_IOS		16
263 #define RESERVED_REQUEST_BASED_IOS	256
264 #define RESERVED_MAX_IOS		1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268 
269 /*
270  * Bio-based DM's mempools' reserved IOs set by the user.
271  */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 
274 /*
275  * Request-based DM's mempools' reserved IOs set by the user.
276  */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278 
279 static int __dm_get_module_param_int(int *module_param, int min, int max)
280 {
281 	int param = ACCESS_ONCE(*module_param);
282 	int modified_param = 0;
283 	bool modified = true;
284 
285 	if (param < min)
286 		modified_param = min;
287 	else if (param > max)
288 		modified_param = max;
289 	else
290 		modified = false;
291 
292 	if (modified) {
293 		(void)cmpxchg(module_param, param, modified_param);
294 		param = modified_param;
295 	}
296 
297 	return param;
298 }
299 
300 static unsigned __dm_get_module_param(unsigned *module_param,
301 				      unsigned def, unsigned max)
302 {
303 	unsigned param = ACCESS_ONCE(*module_param);
304 	unsigned modified_param = 0;
305 
306 	if (!param)
307 		modified_param = def;
308 	else if (param > max)
309 		modified_param = max;
310 
311 	if (modified_param) {
312 		(void)cmpxchg(module_param, param, modified_param);
313 		param = modified_param;
314 	}
315 
316 	return param;
317 }
318 
319 unsigned dm_get_reserved_bio_based_ios(void)
320 {
321 	return __dm_get_module_param(&reserved_bio_based_ios,
322 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
323 }
324 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
325 
326 unsigned dm_get_reserved_rq_based_ios(void)
327 {
328 	return __dm_get_module_param(&reserved_rq_based_ios,
329 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
330 }
331 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
332 
333 static unsigned dm_get_blk_mq_nr_hw_queues(void)
334 {
335 	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
336 }
337 
338 static unsigned dm_get_blk_mq_queue_depth(void)
339 {
340 	return __dm_get_module_param(&dm_mq_queue_depth,
341 				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
342 }
343 
344 static unsigned dm_get_numa_node(void)
345 {
346 	return __dm_get_module_param_int(&dm_numa_node,
347 					 DM_NUMA_NODE, num_online_nodes() - 1);
348 }
349 
350 static int __init local_init(void)
351 {
352 	int r = -ENOMEM;
353 
354 	/* allocate a slab for the dm_ios */
355 	_io_cache = KMEM_CACHE(dm_io, 0);
356 	if (!_io_cache)
357 		return r;
358 
359 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
360 	if (!_rq_tio_cache)
361 		goto out_free_io_cache;
362 
363 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
364 				      __alignof__(struct request), 0, NULL);
365 	if (!_rq_cache)
366 		goto out_free_rq_tio_cache;
367 
368 	r = dm_uevent_init();
369 	if (r)
370 		goto out_free_rq_cache;
371 
372 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
373 	if (!deferred_remove_workqueue) {
374 		r = -ENOMEM;
375 		goto out_uevent_exit;
376 	}
377 
378 	_major = major;
379 	r = register_blkdev(_major, _name);
380 	if (r < 0)
381 		goto out_free_workqueue;
382 
383 	if (!_major)
384 		_major = r;
385 
386 	return 0;
387 
388 out_free_workqueue:
389 	destroy_workqueue(deferred_remove_workqueue);
390 out_uevent_exit:
391 	dm_uevent_exit();
392 out_free_rq_cache:
393 	kmem_cache_destroy(_rq_cache);
394 out_free_rq_tio_cache:
395 	kmem_cache_destroy(_rq_tio_cache);
396 out_free_io_cache:
397 	kmem_cache_destroy(_io_cache);
398 
399 	return r;
400 }
401 
402 static void local_exit(void)
403 {
404 	flush_scheduled_work();
405 	destroy_workqueue(deferred_remove_workqueue);
406 
407 	kmem_cache_destroy(_rq_cache);
408 	kmem_cache_destroy(_rq_tio_cache);
409 	kmem_cache_destroy(_io_cache);
410 	unregister_blkdev(_major, _name);
411 	dm_uevent_exit();
412 
413 	_major = 0;
414 
415 	DMINFO("cleaned up");
416 }
417 
418 static int (*_inits[])(void) __initdata = {
419 	local_init,
420 	dm_target_init,
421 	dm_linear_init,
422 	dm_stripe_init,
423 	dm_io_init,
424 	dm_kcopyd_init,
425 	dm_interface_init,
426 	dm_statistics_init,
427 };
428 
429 static void (*_exits[])(void) = {
430 	local_exit,
431 	dm_target_exit,
432 	dm_linear_exit,
433 	dm_stripe_exit,
434 	dm_io_exit,
435 	dm_kcopyd_exit,
436 	dm_interface_exit,
437 	dm_statistics_exit,
438 };
439 
440 static int __init dm_init(void)
441 {
442 	const int count = ARRAY_SIZE(_inits);
443 
444 	int r, i;
445 
446 	for (i = 0; i < count; i++) {
447 		r = _inits[i]();
448 		if (r)
449 			goto bad;
450 	}
451 
452 	return 0;
453 
454       bad:
455 	while (i--)
456 		_exits[i]();
457 
458 	return r;
459 }
460 
461 static void __exit dm_exit(void)
462 {
463 	int i = ARRAY_SIZE(_exits);
464 
465 	while (i--)
466 		_exits[i]();
467 
468 	/*
469 	 * Should be empty by this point.
470 	 */
471 	idr_destroy(&_minor_idr);
472 }
473 
474 /*
475  * Block device functions
476  */
477 int dm_deleting_md(struct mapped_device *md)
478 {
479 	return test_bit(DMF_DELETING, &md->flags);
480 }
481 
482 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
483 {
484 	struct mapped_device *md;
485 
486 	spin_lock(&_minor_lock);
487 
488 	md = bdev->bd_disk->private_data;
489 	if (!md)
490 		goto out;
491 
492 	if (test_bit(DMF_FREEING, &md->flags) ||
493 	    dm_deleting_md(md)) {
494 		md = NULL;
495 		goto out;
496 	}
497 
498 	dm_get(md);
499 	atomic_inc(&md->open_count);
500 out:
501 	spin_unlock(&_minor_lock);
502 
503 	return md ? 0 : -ENXIO;
504 }
505 
506 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
507 {
508 	struct mapped_device *md;
509 
510 	spin_lock(&_minor_lock);
511 
512 	md = disk->private_data;
513 	if (WARN_ON(!md))
514 		goto out;
515 
516 	if (atomic_dec_and_test(&md->open_count) &&
517 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
518 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
519 
520 	dm_put(md);
521 out:
522 	spin_unlock(&_minor_lock);
523 }
524 
525 int dm_open_count(struct mapped_device *md)
526 {
527 	return atomic_read(&md->open_count);
528 }
529 
530 /*
531  * Guarantees nothing is using the device before it's deleted.
532  */
533 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
534 {
535 	int r = 0;
536 
537 	spin_lock(&_minor_lock);
538 
539 	if (dm_open_count(md)) {
540 		r = -EBUSY;
541 		if (mark_deferred)
542 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
543 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
544 		r = -EEXIST;
545 	else
546 		set_bit(DMF_DELETING, &md->flags);
547 
548 	spin_unlock(&_minor_lock);
549 
550 	return r;
551 }
552 
553 int dm_cancel_deferred_remove(struct mapped_device *md)
554 {
555 	int r = 0;
556 
557 	spin_lock(&_minor_lock);
558 
559 	if (test_bit(DMF_DELETING, &md->flags))
560 		r = -EBUSY;
561 	else
562 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
563 
564 	spin_unlock(&_minor_lock);
565 
566 	return r;
567 }
568 
569 static void do_deferred_remove(struct work_struct *w)
570 {
571 	dm_deferred_remove();
572 }
573 
574 sector_t dm_get_size(struct mapped_device *md)
575 {
576 	return get_capacity(md->disk);
577 }
578 
579 struct request_queue *dm_get_md_queue(struct mapped_device *md)
580 {
581 	return md->queue;
582 }
583 
584 struct dm_stats *dm_get_stats(struct mapped_device *md)
585 {
586 	return &md->stats;
587 }
588 
589 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
590 {
591 	struct mapped_device *md = bdev->bd_disk->private_data;
592 
593 	return dm_get_geometry(md, geo);
594 }
595 
596 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
597 				  struct block_device **bdev,
598 				  fmode_t *mode)
599 {
600 	struct dm_target *tgt;
601 	struct dm_table *map;
602 	int srcu_idx, r;
603 
604 retry:
605 	r = -ENOTTY;
606 	map = dm_get_live_table(md, &srcu_idx);
607 	if (!map || !dm_table_get_size(map))
608 		goto out;
609 
610 	/* We only support devices that have a single target */
611 	if (dm_table_get_num_targets(map) != 1)
612 		goto out;
613 
614 	tgt = dm_table_get_target(map, 0);
615 	if (!tgt->type->prepare_ioctl)
616 		goto out;
617 
618 	if (dm_suspended_md(md)) {
619 		r = -EAGAIN;
620 		goto out;
621 	}
622 
623 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
624 	if (r < 0)
625 		goto out;
626 
627 	bdgrab(*bdev);
628 	dm_put_live_table(md, srcu_idx);
629 	return r;
630 
631 out:
632 	dm_put_live_table(md, srcu_idx);
633 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
634 		msleep(10);
635 		goto retry;
636 	}
637 	return r;
638 }
639 
640 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
641 			unsigned int cmd, unsigned long arg)
642 {
643 	struct mapped_device *md = bdev->bd_disk->private_data;
644 	int r;
645 
646 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
647 	if (r < 0)
648 		return r;
649 
650 	if (r > 0) {
651 		/*
652 		 * Target determined this ioctl is being issued against
653 		 * a logical partition of the parent bdev; so extra
654 		 * validation is needed.
655 		 */
656 		r = scsi_verify_blk_ioctl(NULL, cmd);
657 		if (r)
658 			goto out;
659 	}
660 
661 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
662 out:
663 	bdput(bdev);
664 	return r;
665 }
666 
667 static struct dm_io *alloc_io(struct mapped_device *md)
668 {
669 	return mempool_alloc(md->io_pool, GFP_NOIO);
670 }
671 
672 static void free_io(struct mapped_device *md, struct dm_io *io)
673 {
674 	mempool_free(io, md->io_pool);
675 }
676 
677 static void free_tio(struct dm_target_io *tio)
678 {
679 	bio_put(&tio->clone);
680 }
681 
682 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
683 						gfp_t gfp_mask)
684 {
685 	return mempool_alloc(md->io_pool, gfp_mask);
686 }
687 
688 static void free_old_rq_tio(struct dm_rq_target_io *tio)
689 {
690 	mempool_free(tio, tio->md->io_pool);
691 }
692 
693 static struct request *alloc_old_clone_request(struct mapped_device *md,
694 					       gfp_t gfp_mask)
695 {
696 	return mempool_alloc(md->rq_pool, gfp_mask);
697 }
698 
699 static void free_old_clone_request(struct mapped_device *md, struct request *rq)
700 {
701 	mempool_free(rq, md->rq_pool);
702 }
703 
704 static int md_in_flight(struct mapped_device *md)
705 {
706 	return atomic_read(&md->pending[READ]) +
707 	       atomic_read(&md->pending[WRITE]);
708 }
709 
710 static void start_io_acct(struct dm_io *io)
711 {
712 	struct mapped_device *md = io->md;
713 	struct bio *bio = io->bio;
714 	int cpu;
715 	int rw = bio_data_dir(bio);
716 
717 	io->start_time = jiffies;
718 
719 	cpu = part_stat_lock();
720 	part_round_stats(cpu, &dm_disk(md)->part0);
721 	part_stat_unlock();
722 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
723 		atomic_inc_return(&md->pending[rw]));
724 
725 	if (unlikely(dm_stats_used(&md->stats)))
726 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
727 				    bio->bi_iter.bi_sector, bio_sectors(bio),
728 				    false, 0, &io->stats_aux);
729 }
730 
731 static void end_io_acct(struct dm_io *io)
732 {
733 	struct mapped_device *md = io->md;
734 	struct bio *bio = io->bio;
735 	unsigned long duration = jiffies - io->start_time;
736 	int pending;
737 	int rw = bio_data_dir(bio);
738 
739 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
740 
741 	if (unlikely(dm_stats_used(&md->stats)))
742 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
743 				    bio->bi_iter.bi_sector, bio_sectors(bio),
744 				    true, duration, &io->stats_aux);
745 
746 	/*
747 	 * After this is decremented the bio must not be touched if it is
748 	 * a flush.
749 	 */
750 	pending = atomic_dec_return(&md->pending[rw]);
751 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
752 	pending += atomic_read(&md->pending[rw^0x1]);
753 
754 	/* nudge anyone waiting on suspend queue */
755 	if (!pending)
756 		wake_up(&md->wait);
757 }
758 
759 /*
760  * Add the bio to the list of deferred io.
761  */
762 static void queue_io(struct mapped_device *md, struct bio *bio)
763 {
764 	unsigned long flags;
765 
766 	spin_lock_irqsave(&md->deferred_lock, flags);
767 	bio_list_add(&md->deferred, bio);
768 	spin_unlock_irqrestore(&md->deferred_lock, flags);
769 	queue_work(md->wq, &md->work);
770 }
771 
772 /*
773  * Everyone (including functions in this file), should use this
774  * function to access the md->map field, and make sure they call
775  * dm_put_live_table() when finished.
776  */
777 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
778 {
779 	*srcu_idx = srcu_read_lock(&md->io_barrier);
780 
781 	return srcu_dereference(md->map, &md->io_barrier);
782 }
783 
784 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
785 {
786 	srcu_read_unlock(&md->io_barrier, srcu_idx);
787 }
788 
789 void dm_sync_table(struct mapped_device *md)
790 {
791 	synchronize_srcu(&md->io_barrier);
792 	synchronize_rcu_expedited();
793 }
794 
795 /*
796  * A fast alternative to dm_get_live_table/dm_put_live_table.
797  * The caller must not block between these two functions.
798  */
799 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
800 {
801 	rcu_read_lock();
802 	return rcu_dereference(md->map);
803 }
804 
805 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
806 {
807 	rcu_read_unlock();
808 }
809 
810 /*
811  * Open a table device so we can use it as a map destination.
812  */
813 static int open_table_device(struct table_device *td, dev_t dev,
814 			     struct mapped_device *md)
815 {
816 	static char *_claim_ptr = "I belong to device-mapper";
817 	struct block_device *bdev;
818 
819 	int r;
820 
821 	BUG_ON(td->dm_dev.bdev);
822 
823 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
824 	if (IS_ERR(bdev))
825 		return PTR_ERR(bdev);
826 
827 	r = bd_link_disk_holder(bdev, dm_disk(md));
828 	if (r) {
829 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
830 		return r;
831 	}
832 
833 	td->dm_dev.bdev = bdev;
834 	return 0;
835 }
836 
837 /*
838  * Close a table device that we've been using.
839  */
840 static void close_table_device(struct table_device *td, struct mapped_device *md)
841 {
842 	if (!td->dm_dev.bdev)
843 		return;
844 
845 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
846 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
847 	td->dm_dev.bdev = NULL;
848 }
849 
850 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
851 					      fmode_t mode) {
852 	struct table_device *td;
853 
854 	list_for_each_entry(td, l, list)
855 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
856 			return td;
857 
858 	return NULL;
859 }
860 
861 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
862 			struct dm_dev **result) {
863 	int r;
864 	struct table_device *td;
865 
866 	mutex_lock(&md->table_devices_lock);
867 	td = find_table_device(&md->table_devices, dev, mode);
868 	if (!td) {
869 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
870 		if (!td) {
871 			mutex_unlock(&md->table_devices_lock);
872 			return -ENOMEM;
873 		}
874 
875 		td->dm_dev.mode = mode;
876 		td->dm_dev.bdev = NULL;
877 
878 		if ((r = open_table_device(td, dev, md))) {
879 			mutex_unlock(&md->table_devices_lock);
880 			kfree(td);
881 			return r;
882 		}
883 
884 		format_dev_t(td->dm_dev.name, dev);
885 
886 		atomic_set(&td->count, 0);
887 		list_add(&td->list, &md->table_devices);
888 	}
889 	atomic_inc(&td->count);
890 	mutex_unlock(&md->table_devices_lock);
891 
892 	*result = &td->dm_dev;
893 	return 0;
894 }
895 EXPORT_SYMBOL_GPL(dm_get_table_device);
896 
897 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
898 {
899 	struct table_device *td = container_of(d, struct table_device, dm_dev);
900 
901 	mutex_lock(&md->table_devices_lock);
902 	if (atomic_dec_and_test(&td->count)) {
903 		close_table_device(td, md);
904 		list_del(&td->list);
905 		kfree(td);
906 	}
907 	mutex_unlock(&md->table_devices_lock);
908 }
909 EXPORT_SYMBOL(dm_put_table_device);
910 
911 static void free_table_devices(struct list_head *devices)
912 {
913 	struct list_head *tmp, *next;
914 
915 	list_for_each_safe(tmp, next, devices) {
916 		struct table_device *td = list_entry(tmp, struct table_device, list);
917 
918 		DMWARN("dm_destroy: %s still exists with %d references",
919 		       td->dm_dev.name, atomic_read(&td->count));
920 		kfree(td);
921 	}
922 }
923 
924 /*
925  * Get the geometry associated with a dm device
926  */
927 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
928 {
929 	*geo = md->geometry;
930 
931 	return 0;
932 }
933 
934 /*
935  * Set the geometry of a device.
936  */
937 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
938 {
939 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
940 
941 	if (geo->start > sz) {
942 		DMWARN("Start sector is beyond the geometry limits.");
943 		return -EINVAL;
944 	}
945 
946 	md->geometry = *geo;
947 
948 	return 0;
949 }
950 
951 /*-----------------------------------------------------------------
952  * CRUD START:
953  *   A more elegant soln is in the works that uses the queue
954  *   merge fn, unfortunately there are a couple of changes to
955  *   the block layer that I want to make for this.  So in the
956  *   interests of getting something for people to use I give
957  *   you this clearly demarcated crap.
958  *---------------------------------------------------------------*/
959 
960 static int __noflush_suspending(struct mapped_device *md)
961 {
962 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
963 }
964 
965 /*
966  * Decrements the number of outstanding ios that a bio has been
967  * cloned into, completing the original io if necc.
968  */
969 static void dec_pending(struct dm_io *io, int error)
970 {
971 	unsigned long flags;
972 	int io_error;
973 	struct bio *bio;
974 	struct mapped_device *md = io->md;
975 
976 	/* Push-back supersedes any I/O errors */
977 	if (unlikely(error)) {
978 		spin_lock_irqsave(&io->endio_lock, flags);
979 		if (!(io->error > 0 && __noflush_suspending(md)))
980 			io->error = error;
981 		spin_unlock_irqrestore(&io->endio_lock, flags);
982 	}
983 
984 	if (atomic_dec_and_test(&io->io_count)) {
985 		if (io->error == DM_ENDIO_REQUEUE) {
986 			/*
987 			 * Target requested pushing back the I/O.
988 			 */
989 			spin_lock_irqsave(&md->deferred_lock, flags);
990 			if (__noflush_suspending(md))
991 				bio_list_add_head(&md->deferred, io->bio);
992 			else
993 				/* noflush suspend was interrupted. */
994 				io->error = -EIO;
995 			spin_unlock_irqrestore(&md->deferred_lock, flags);
996 		}
997 
998 		io_error = io->error;
999 		bio = io->bio;
1000 		end_io_acct(io);
1001 		free_io(md, io);
1002 
1003 		if (io_error == DM_ENDIO_REQUEUE)
1004 			return;
1005 
1006 		if ((bio->bi_rw & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
1007 			/*
1008 			 * Preflush done for flush with data, reissue
1009 			 * without REQ_PREFLUSH.
1010 			 */
1011 			bio->bi_rw &= ~REQ_PREFLUSH;
1012 			queue_io(md, bio);
1013 		} else {
1014 			/* done with normal IO or empty flush */
1015 			trace_block_bio_complete(md->queue, bio, io_error);
1016 			bio->bi_error = io_error;
1017 			bio_endio(bio);
1018 		}
1019 	}
1020 }
1021 
1022 static void disable_write_same(struct mapped_device *md)
1023 {
1024 	struct queue_limits *limits = dm_get_queue_limits(md);
1025 
1026 	/* device doesn't really support WRITE SAME, disable it */
1027 	limits->max_write_same_sectors = 0;
1028 }
1029 
1030 static void clone_endio(struct bio *bio)
1031 {
1032 	int error = bio->bi_error;
1033 	int r = error;
1034 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1035 	struct dm_io *io = tio->io;
1036 	struct mapped_device *md = tio->io->md;
1037 	dm_endio_fn endio = tio->ti->type->end_io;
1038 
1039 	if (endio) {
1040 		r = endio(tio->ti, bio, error);
1041 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1042 			/*
1043 			 * error and requeue request are handled
1044 			 * in dec_pending().
1045 			 */
1046 			error = r;
1047 		else if (r == DM_ENDIO_INCOMPLETE)
1048 			/* The target will handle the io */
1049 			return;
1050 		else if (r) {
1051 			DMWARN("unimplemented target endio return value: %d", r);
1052 			BUG();
1053 		}
1054 	}
1055 
1056 	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
1057 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1058 		disable_write_same(md);
1059 
1060 	free_tio(tio);
1061 	dec_pending(io, error);
1062 }
1063 
1064 /*
1065  * Partial completion handling for request-based dm
1066  */
1067 static void end_clone_bio(struct bio *clone)
1068 {
1069 	struct dm_rq_clone_bio_info *info =
1070 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1071 	struct dm_rq_target_io *tio = info->tio;
1072 	struct bio *bio = info->orig;
1073 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1074 	int error = clone->bi_error;
1075 
1076 	bio_put(clone);
1077 
1078 	if (tio->error)
1079 		/*
1080 		 * An error has already been detected on the request.
1081 		 * Once error occurred, just let clone->end_io() handle
1082 		 * the remainder.
1083 		 */
1084 		return;
1085 	else if (error) {
1086 		/*
1087 		 * Don't notice the error to the upper layer yet.
1088 		 * The error handling decision is made by the target driver,
1089 		 * when the request is completed.
1090 		 */
1091 		tio->error = error;
1092 		return;
1093 	}
1094 
1095 	/*
1096 	 * I/O for the bio successfully completed.
1097 	 * Notice the data completion to the upper layer.
1098 	 */
1099 
1100 	/*
1101 	 * bios are processed from the head of the list.
1102 	 * So the completing bio should always be rq->bio.
1103 	 * If it's not, something wrong is happening.
1104 	 */
1105 	if (tio->orig->bio != bio)
1106 		DMERR("bio completion is going in the middle of the request");
1107 
1108 	/*
1109 	 * Update the original request.
1110 	 * Do not use blk_end_request() here, because it may complete
1111 	 * the original request before the clone, and break the ordering.
1112 	 */
1113 	blk_update_request(tio->orig, 0, nr_bytes);
1114 }
1115 
1116 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1117 {
1118 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1119 }
1120 
1121 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1122 {
1123 	if (unlikely(dm_stats_used(&md->stats))) {
1124 		struct dm_rq_target_io *tio = tio_from_request(orig);
1125 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1126 		dm_stats_account_io(&md->stats, rq_data_dir(orig),
1127 				    blk_rq_pos(orig), tio->n_sectors, true,
1128 				    tio->duration_jiffies, &tio->stats_aux);
1129 	}
1130 }
1131 
1132 /*
1133  * Don't touch any member of the md after calling this function because
1134  * the md may be freed in dm_put() at the end of this function.
1135  * Or do dm_get() before calling this function and dm_put() later.
1136  */
1137 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1138 {
1139 	atomic_dec(&md->pending[rw]);
1140 
1141 	/* nudge anyone waiting on suspend queue */
1142 	if (!md_in_flight(md))
1143 		wake_up(&md->wait);
1144 
1145 	/*
1146 	 * Run this off this callpath, as drivers could invoke end_io while
1147 	 * inside their request_fn (and holding the queue lock). Calling
1148 	 * back into ->request_fn() could deadlock attempting to grab the
1149 	 * queue lock again.
1150 	 */
1151 	if (!md->queue->mq_ops && run_queue)
1152 		blk_run_queue_async(md->queue);
1153 
1154 	/*
1155 	 * dm_put() must be at the end of this function. See the comment above
1156 	 */
1157 	dm_put(md);
1158 }
1159 
1160 static void free_rq_clone(struct request *clone)
1161 {
1162 	struct dm_rq_target_io *tio = clone->end_io_data;
1163 	struct mapped_device *md = tio->md;
1164 
1165 	blk_rq_unprep_clone(clone);
1166 
1167 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1168 		/* stacked on blk-mq queue(s) */
1169 		tio->ti->type->release_clone_rq(clone);
1170 	else if (!md->queue->mq_ops)
1171 		/* request_fn queue stacked on request_fn queue(s) */
1172 		free_old_clone_request(md, clone);
1173 
1174 	if (!md->queue->mq_ops)
1175 		free_old_rq_tio(tio);
1176 }
1177 
1178 /*
1179  * Complete the clone and the original request.
1180  * Must be called without clone's queue lock held,
1181  * see end_clone_request() for more details.
1182  */
1183 static void dm_end_request(struct request *clone, int error)
1184 {
1185 	int rw = rq_data_dir(clone);
1186 	struct dm_rq_target_io *tio = clone->end_io_data;
1187 	struct mapped_device *md = tio->md;
1188 	struct request *rq = tio->orig;
1189 
1190 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1191 		rq->errors = clone->errors;
1192 		rq->resid_len = clone->resid_len;
1193 
1194 		if (rq->sense)
1195 			/*
1196 			 * We are using the sense buffer of the original
1197 			 * request.
1198 			 * So setting the length of the sense data is enough.
1199 			 */
1200 			rq->sense_len = clone->sense_len;
1201 	}
1202 
1203 	free_rq_clone(clone);
1204 	rq_end_stats(md, rq);
1205 	if (!rq->q->mq_ops)
1206 		blk_end_request_all(rq, error);
1207 	else
1208 		blk_mq_end_request(rq, error);
1209 	rq_completed(md, rw, true);
1210 }
1211 
1212 static void dm_unprep_request(struct request *rq)
1213 {
1214 	struct dm_rq_target_io *tio = tio_from_request(rq);
1215 	struct request *clone = tio->clone;
1216 
1217 	if (!rq->q->mq_ops) {
1218 		rq->special = NULL;
1219 		rq->cmd_flags &= ~REQ_DONTPREP;
1220 	}
1221 
1222 	if (clone)
1223 		free_rq_clone(clone);
1224 	else if (!tio->md->queue->mq_ops)
1225 		free_old_rq_tio(tio);
1226 }
1227 
1228 /*
1229  * Requeue the original request of a clone.
1230  */
1231 static void dm_old_requeue_request(struct request *rq)
1232 {
1233 	struct request_queue *q = rq->q;
1234 	unsigned long flags;
1235 
1236 	spin_lock_irqsave(q->queue_lock, flags);
1237 	blk_requeue_request(q, rq);
1238 	blk_run_queue_async(q);
1239 	spin_unlock_irqrestore(q->queue_lock, flags);
1240 }
1241 
1242 static void dm_mq_requeue_request(struct request *rq)
1243 {
1244 	struct request_queue *q = rq->q;
1245 	unsigned long flags;
1246 
1247 	blk_mq_requeue_request(rq);
1248 	spin_lock_irqsave(q->queue_lock, flags);
1249 	if (!blk_queue_stopped(q))
1250 		blk_mq_kick_requeue_list(q);
1251 	spin_unlock_irqrestore(q->queue_lock, flags);
1252 }
1253 
1254 static void dm_requeue_original_request(struct mapped_device *md,
1255 					struct request *rq)
1256 {
1257 	int rw = rq_data_dir(rq);
1258 
1259 	rq_end_stats(md, rq);
1260 	dm_unprep_request(rq);
1261 
1262 	if (!rq->q->mq_ops)
1263 		dm_old_requeue_request(rq);
1264 	else
1265 		dm_mq_requeue_request(rq);
1266 
1267 	rq_completed(md, rw, false);
1268 }
1269 
1270 static void dm_old_stop_queue(struct request_queue *q)
1271 {
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(q->queue_lock, flags);
1275 	if (blk_queue_stopped(q)) {
1276 		spin_unlock_irqrestore(q->queue_lock, flags);
1277 		return;
1278 	}
1279 
1280 	blk_stop_queue(q);
1281 	spin_unlock_irqrestore(q->queue_lock, flags);
1282 }
1283 
1284 static void dm_stop_queue(struct request_queue *q)
1285 {
1286 	if (!q->mq_ops)
1287 		dm_old_stop_queue(q);
1288 	else
1289 		blk_mq_stop_hw_queues(q);
1290 }
1291 
1292 static void dm_old_start_queue(struct request_queue *q)
1293 {
1294 	unsigned long flags;
1295 
1296 	spin_lock_irqsave(q->queue_lock, flags);
1297 	if (blk_queue_stopped(q))
1298 		blk_start_queue(q);
1299 	spin_unlock_irqrestore(q->queue_lock, flags);
1300 }
1301 
1302 static void dm_start_queue(struct request_queue *q)
1303 {
1304 	if (!q->mq_ops)
1305 		dm_old_start_queue(q);
1306 	else {
1307 		blk_mq_start_stopped_hw_queues(q, true);
1308 		blk_mq_kick_requeue_list(q);
1309 	}
1310 }
1311 
1312 static void dm_done(struct request *clone, int error, bool mapped)
1313 {
1314 	int r = error;
1315 	struct dm_rq_target_io *tio = clone->end_io_data;
1316 	dm_request_endio_fn rq_end_io = NULL;
1317 
1318 	if (tio->ti) {
1319 		rq_end_io = tio->ti->type->rq_end_io;
1320 
1321 		if (mapped && rq_end_io)
1322 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1323 	}
1324 
1325 	if (unlikely(r == -EREMOTEIO && (req_op(clone) == REQ_OP_WRITE_SAME) &&
1326 		     !clone->q->limits.max_write_same_sectors))
1327 		disable_write_same(tio->md);
1328 
1329 	if (r <= 0)
1330 		/* The target wants to complete the I/O */
1331 		dm_end_request(clone, r);
1332 	else if (r == DM_ENDIO_INCOMPLETE)
1333 		/* The target will handle the I/O */
1334 		return;
1335 	else if (r == DM_ENDIO_REQUEUE)
1336 		/* The target wants to requeue the I/O */
1337 		dm_requeue_original_request(tio->md, tio->orig);
1338 	else {
1339 		DMWARN("unimplemented target endio return value: %d", r);
1340 		BUG();
1341 	}
1342 }
1343 
1344 /*
1345  * Request completion handler for request-based dm
1346  */
1347 static void dm_softirq_done(struct request *rq)
1348 {
1349 	bool mapped = true;
1350 	struct dm_rq_target_io *tio = tio_from_request(rq);
1351 	struct request *clone = tio->clone;
1352 	int rw;
1353 
1354 	if (!clone) {
1355 		rq_end_stats(tio->md, rq);
1356 		rw = rq_data_dir(rq);
1357 		if (!rq->q->mq_ops) {
1358 			blk_end_request_all(rq, tio->error);
1359 			rq_completed(tio->md, rw, false);
1360 			free_old_rq_tio(tio);
1361 		} else {
1362 			blk_mq_end_request(rq, tio->error);
1363 			rq_completed(tio->md, rw, false);
1364 		}
1365 		return;
1366 	}
1367 
1368 	if (rq->cmd_flags & REQ_FAILED)
1369 		mapped = false;
1370 
1371 	dm_done(clone, tio->error, mapped);
1372 }
1373 
1374 /*
1375  * Complete the clone and the original request with the error status
1376  * through softirq context.
1377  */
1378 static void dm_complete_request(struct request *rq, int error)
1379 {
1380 	struct dm_rq_target_io *tio = tio_from_request(rq);
1381 
1382 	tio->error = error;
1383 	if (!rq->q->mq_ops)
1384 		blk_complete_request(rq);
1385 	else
1386 		blk_mq_complete_request(rq, error);
1387 }
1388 
1389 /*
1390  * Complete the not-mapped clone and the original request with the error status
1391  * through softirq context.
1392  * Target's rq_end_io() function isn't called.
1393  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1394  */
1395 static void dm_kill_unmapped_request(struct request *rq, int error)
1396 {
1397 	rq->cmd_flags |= REQ_FAILED;
1398 	dm_complete_request(rq, error);
1399 }
1400 
1401 /*
1402  * Called with the clone's queue lock held (in the case of .request_fn)
1403  */
1404 static void end_clone_request(struct request *clone, int error)
1405 {
1406 	struct dm_rq_target_io *tio = clone->end_io_data;
1407 
1408 	if (!clone->q->mq_ops) {
1409 		/*
1410 		 * For just cleaning up the information of the queue in which
1411 		 * the clone was dispatched.
1412 		 * The clone is *NOT* freed actually here because it is alloced
1413 		 * from dm own mempool (REQ_ALLOCED isn't set).
1414 		 */
1415 		__blk_put_request(clone->q, clone);
1416 	}
1417 
1418 	/*
1419 	 * Actual request completion is done in a softirq context which doesn't
1420 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1421 	 *     - another request may be submitted by the upper level driver
1422 	 *       of the stacking during the completion
1423 	 *     - the submission which requires queue lock may be done
1424 	 *       against this clone's queue
1425 	 */
1426 	dm_complete_request(tio->orig, error);
1427 }
1428 
1429 /*
1430  * Return maximum size of I/O possible at the supplied sector up to the current
1431  * target boundary.
1432  */
1433 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1434 {
1435 	sector_t target_offset = dm_target_offset(ti, sector);
1436 
1437 	return ti->len - target_offset;
1438 }
1439 
1440 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1441 {
1442 	sector_t len = max_io_len_target_boundary(sector, ti);
1443 	sector_t offset, max_len;
1444 
1445 	/*
1446 	 * Does the target need to split even further?
1447 	 */
1448 	if (ti->max_io_len) {
1449 		offset = dm_target_offset(ti, sector);
1450 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1451 			max_len = sector_div(offset, ti->max_io_len);
1452 		else
1453 			max_len = offset & (ti->max_io_len - 1);
1454 		max_len = ti->max_io_len - max_len;
1455 
1456 		if (len > max_len)
1457 			len = max_len;
1458 	}
1459 
1460 	return len;
1461 }
1462 
1463 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1464 {
1465 	if (len > UINT_MAX) {
1466 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1467 		      (unsigned long long)len, UINT_MAX);
1468 		ti->error = "Maximum size of target IO is too large";
1469 		return -EINVAL;
1470 	}
1471 
1472 	ti->max_io_len = (uint32_t) len;
1473 
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1477 
1478 /*
1479  * A target may call dm_accept_partial_bio only from the map routine.  It is
1480  * allowed for all bio types except REQ_PREFLUSH.
1481  *
1482  * dm_accept_partial_bio informs the dm that the target only wants to process
1483  * additional n_sectors sectors of the bio and the rest of the data should be
1484  * sent in a next bio.
1485  *
1486  * A diagram that explains the arithmetics:
1487  * +--------------------+---------------+-------+
1488  * |         1          |       2       |   3   |
1489  * +--------------------+---------------+-------+
1490  *
1491  * <-------------- *tio->len_ptr --------------->
1492  *                      <------- bi_size ------->
1493  *                      <-- n_sectors -->
1494  *
1495  * Region 1 was already iterated over with bio_advance or similar function.
1496  *	(it may be empty if the target doesn't use bio_advance)
1497  * Region 2 is the remaining bio size that the target wants to process.
1498  *	(it may be empty if region 1 is non-empty, although there is no reason
1499  *	 to make it empty)
1500  * The target requires that region 3 is to be sent in the next bio.
1501  *
1502  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1503  * the partially processed part (the sum of regions 1+2) must be the same for all
1504  * copies of the bio.
1505  */
1506 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1507 {
1508 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1509 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1510 	BUG_ON(bio->bi_rw & REQ_PREFLUSH);
1511 	BUG_ON(bi_size > *tio->len_ptr);
1512 	BUG_ON(n_sectors > bi_size);
1513 	*tio->len_ptr -= bi_size - n_sectors;
1514 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1515 }
1516 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1517 
1518 static void __map_bio(struct dm_target_io *tio)
1519 {
1520 	int r;
1521 	sector_t sector;
1522 	struct bio *clone = &tio->clone;
1523 	struct dm_target *ti = tio->ti;
1524 
1525 	clone->bi_end_io = clone_endio;
1526 
1527 	/*
1528 	 * Map the clone.  If r == 0 we don't need to do
1529 	 * anything, the target has assumed ownership of
1530 	 * this io.
1531 	 */
1532 	atomic_inc(&tio->io->io_count);
1533 	sector = clone->bi_iter.bi_sector;
1534 	r = ti->type->map(ti, clone);
1535 	if (r == DM_MAPIO_REMAPPED) {
1536 		/* the bio has been remapped so dispatch it */
1537 
1538 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1539 				      tio->io->bio->bi_bdev->bd_dev, sector);
1540 
1541 		generic_make_request(clone);
1542 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1543 		/* error the io and bail out, or requeue it if needed */
1544 		dec_pending(tio->io, r);
1545 		free_tio(tio);
1546 	} else if (r != DM_MAPIO_SUBMITTED) {
1547 		DMWARN("unimplemented target map return value: %d", r);
1548 		BUG();
1549 	}
1550 }
1551 
1552 struct clone_info {
1553 	struct mapped_device *md;
1554 	struct dm_table *map;
1555 	struct bio *bio;
1556 	struct dm_io *io;
1557 	sector_t sector;
1558 	unsigned sector_count;
1559 };
1560 
1561 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562 {
1563 	bio->bi_iter.bi_sector = sector;
1564 	bio->bi_iter.bi_size = to_bytes(len);
1565 }
1566 
1567 /*
1568  * Creates a bio that consists of range of complete bvecs.
1569  */
1570 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571 		     sector_t sector, unsigned len)
1572 {
1573 	struct bio *clone = &tio->clone;
1574 
1575 	__bio_clone_fast(clone, bio);
1576 
1577 	if (bio_integrity(bio)) {
1578 		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579 		if (r < 0)
1580 			return r;
1581 	}
1582 
1583 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584 	clone->bi_iter.bi_size = to_bytes(len);
1585 
1586 	if (bio_integrity(bio))
1587 		bio_integrity_trim(clone, 0, len);
1588 
1589 	return 0;
1590 }
1591 
1592 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593 				      struct dm_target *ti,
1594 				      unsigned target_bio_nr)
1595 {
1596 	struct dm_target_io *tio;
1597 	struct bio *clone;
1598 
1599 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600 	tio = container_of(clone, struct dm_target_io, clone);
1601 
1602 	tio->io = ci->io;
1603 	tio->ti = ti;
1604 	tio->target_bio_nr = target_bio_nr;
1605 
1606 	return tio;
1607 }
1608 
1609 static void __clone_and_map_simple_bio(struct clone_info *ci,
1610 				       struct dm_target *ti,
1611 				       unsigned target_bio_nr, unsigned *len)
1612 {
1613 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614 	struct bio *clone = &tio->clone;
1615 
1616 	tio->len_ptr = len;
1617 
1618 	__bio_clone_fast(clone, ci->bio);
1619 	if (len)
1620 		bio_setup_sector(clone, ci->sector, *len);
1621 
1622 	__map_bio(tio);
1623 }
1624 
1625 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626 				  unsigned num_bios, unsigned *len)
1627 {
1628 	unsigned target_bio_nr;
1629 
1630 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632 }
1633 
1634 static int __send_empty_flush(struct clone_info *ci)
1635 {
1636 	unsigned target_nr = 0;
1637 	struct dm_target *ti;
1638 
1639 	BUG_ON(bio_has_data(ci->bio));
1640 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642 
1643 	return 0;
1644 }
1645 
1646 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647 				     sector_t sector, unsigned *len)
1648 {
1649 	struct bio *bio = ci->bio;
1650 	struct dm_target_io *tio;
1651 	unsigned target_bio_nr;
1652 	unsigned num_target_bios = 1;
1653 	int r = 0;
1654 
1655 	/*
1656 	 * Does the target want to receive duplicate copies of the bio?
1657 	 */
1658 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659 		num_target_bios = ti->num_write_bios(ti, bio);
1660 
1661 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662 		tio = alloc_tio(ci, ti, target_bio_nr);
1663 		tio->len_ptr = len;
1664 		r = clone_bio(tio, bio, sector, *len);
1665 		if (r < 0) {
1666 			free_tio(tio);
1667 			break;
1668 		}
1669 		__map_bio(tio);
1670 	}
1671 
1672 	return r;
1673 }
1674 
1675 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1676 
1677 static unsigned get_num_discard_bios(struct dm_target *ti)
1678 {
1679 	return ti->num_discard_bios;
1680 }
1681 
1682 static unsigned get_num_write_same_bios(struct dm_target *ti)
1683 {
1684 	return ti->num_write_same_bios;
1685 }
1686 
1687 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1688 
1689 static bool is_split_required_for_discard(struct dm_target *ti)
1690 {
1691 	return ti->split_discard_bios;
1692 }
1693 
1694 static int __send_changing_extent_only(struct clone_info *ci,
1695 				       get_num_bios_fn get_num_bios,
1696 				       is_split_required_fn is_split_required)
1697 {
1698 	struct dm_target *ti;
1699 	unsigned len;
1700 	unsigned num_bios;
1701 
1702 	do {
1703 		ti = dm_table_find_target(ci->map, ci->sector);
1704 		if (!dm_target_is_valid(ti))
1705 			return -EIO;
1706 
1707 		/*
1708 		 * Even though the device advertised support for this type of
1709 		 * request, that does not mean every target supports it, and
1710 		 * reconfiguration might also have changed that since the
1711 		 * check was performed.
1712 		 */
1713 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1714 		if (!num_bios)
1715 			return -EOPNOTSUPP;
1716 
1717 		if (is_split_required && !is_split_required(ti))
1718 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1719 		else
1720 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1721 
1722 		__send_duplicate_bios(ci, ti, num_bios, &len);
1723 
1724 		ci->sector += len;
1725 	} while (ci->sector_count -= len);
1726 
1727 	return 0;
1728 }
1729 
1730 static int __send_discard(struct clone_info *ci)
1731 {
1732 	return __send_changing_extent_only(ci, get_num_discard_bios,
1733 					   is_split_required_for_discard);
1734 }
1735 
1736 static int __send_write_same(struct clone_info *ci)
1737 {
1738 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1739 }
1740 
1741 /*
1742  * Select the correct strategy for processing a non-flush bio.
1743  */
1744 static int __split_and_process_non_flush(struct clone_info *ci)
1745 {
1746 	struct bio *bio = ci->bio;
1747 	struct dm_target *ti;
1748 	unsigned len;
1749 	int r;
1750 
1751 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1752 		return __send_discard(ci);
1753 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1754 		return __send_write_same(ci);
1755 
1756 	ti = dm_table_find_target(ci->map, ci->sector);
1757 	if (!dm_target_is_valid(ti))
1758 		return -EIO;
1759 
1760 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1761 
1762 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763 	if (r < 0)
1764 		return r;
1765 
1766 	ci->sector += len;
1767 	ci->sector_count -= len;
1768 
1769 	return 0;
1770 }
1771 
1772 /*
1773  * Entry point to split a bio into clones and submit them to the targets.
1774  */
1775 static void __split_and_process_bio(struct mapped_device *md,
1776 				    struct dm_table *map, struct bio *bio)
1777 {
1778 	struct clone_info ci;
1779 	int error = 0;
1780 
1781 	if (unlikely(!map)) {
1782 		bio_io_error(bio);
1783 		return;
1784 	}
1785 
1786 	ci.map = map;
1787 	ci.md = md;
1788 	ci.io = alloc_io(md);
1789 	ci.io->error = 0;
1790 	atomic_set(&ci.io->io_count, 1);
1791 	ci.io->bio = bio;
1792 	ci.io->md = md;
1793 	spin_lock_init(&ci.io->endio_lock);
1794 	ci.sector = bio->bi_iter.bi_sector;
1795 
1796 	start_io_acct(ci.io);
1797 
1798 	if (bio->bi_rw & REQ_PREFLUSH) {
1799 		ci.bio = &ci.md->flush_bio;
1800 		ci.sector_count = 0;
1801 		error = __send_empty_flush(&ci);
1802 		/* dec_pending submits any data associated with flush */
1803 	} else {
1804 		ci.bio = bio;
1805 		ci.sector_count = bio_sectors(bio);
1806 		while (ci.sector_count && !error)
1807 			error = __split_and_process_non_flush(&ci);
1808 	}
1809 
1810 	/* drop the extra reference count */
1811 	dec_pending(ci.io, error);
1812 }
1813 /*-----------------------------------------------------------------
1814  * CRUD END
1815  *---------------------------------------------------------------*/
1816 
1817 /*
1818  * The request function that just remaps the bio built up by
1819  * dm_merge_bvec.
1820  */
1821 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1822 {
1823 	int rw = bio_data_dir(bio);
1824 	struct mapped_device *md = q->queuedata;
1825 	int srcu_idx;
1826 	struct dm_table *map;
1827 
1828 	map = dm_get_live_table(md, &srcu_idx);
1829 
1830 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1831 
1832 	/* if we're suspended, we have to queue this io for later */
1833 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1834 		dm_put_live_table(md, srcu_idx);
1835 
1836 		if (!(bio->bi_rw & REQ_RAHEAD))
1837 			queue_io(md, bio);
1838 		else
1839 			bio_io_error(bio);
1840 		return BLK_QC_T_NONE;
1841 	}
1842 
1843 	__split_and_process_bio(md, map, bio);
1844 	dm_put_live_table(md, srcu_idx);
1845 	return BLK_QC_T_NONE;
1846 }
1847 
1848 int dm_request_based(struct mapped_device *md)
1849 {
1850 	return blk_queue_stackable(md->queue);
1851 }
1852 
1853 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1854 {
1855 	int r;
1856 
1857 	if (blk_queue_io_stat(clone->q))
1858 		clone->cmd_flags |= REQ_IO_STAT;
1859 
1860 	clone->start_time = jiffies;
1861 	r = blk_insert_cloned_request(clone->q, clone);
1862 	if (r)
1863 		/* must complete clone in terms of original request */
1864 		dm_complete_request(rq, r);
1865 }
1866 
1867 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1868 				 void *data)
1869 {
1870 	struct dm_rq_target_io *tio = data;
1871 	struct dm_rq_clone_bio_info *info =
1872 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1873 
1874 	info->orig = bio_orig;
1875 	info->tio = tio;
1876 	bio->bi_end_io = end_clone_bio;
1877 
1878 	return 0;
1879 }
1880 
1881 static int setup_clone(struct request *clone, struct request *rq,
1882 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1883 {
1884 	int r;
1885 
1886 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1887 			      dm_rq_bio_constructor, tio);
1888 	if (r)
1889 		return r;
1890 
1891 	clone->cmd = rq->cmd;
1892 	clone->cmd_len = rq->cmd_len;
1893 	clone->sense = rq->sense;
1894 	clone->end_io = end_clone_request;
1895 	clone->end_io_data = tio;
1896 
1897 	tio->clone = clone;
1898 
1899 	return 0;
1900 }
1901 
1902 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1903 				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1904 {
1905 	/*
1906 	 * Create clone for use with .request_fn request_queue
1907 	 */
1908 	struct request *clone;
1909 
1910 	clone = alloc_old_clone_request(md, gfp_mask);
1911 	if (!clone)
1912 		return NULL;
1913 
1914 	blk_rq_init(NULL, clone);
1915 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1916 		/* -ENOMEM */
1917 		free_old_clone_request(md, clone);
1918 		return NULL;
1919 	}
1920 
1921 	return clone;
1922 }
1923 
1924 static void map_tio_request(struct kthread_work *work);
1925 
1926 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1927 		     struct mapped_device *md)
1928 {
1929 	tio->md = md;
1930 	tio->ti = NULL;
1931 	tio->clone = NULL;
1932 	tio->orig = rq;
1933 	tio->error = 0;
1934 	/*
1935 	 * Avoid initializing info for blk-mq; it passes
1936 	 * target-specific data through info.ptr
1937 	 * (see: dm_mq_init_request)
1938 	 */
1939 	if (!md->init_tio_pdu)
1940 		memset(&tio->info, 0, sizeof(tio->info));
1941 	if (md->kworker_task)
1942 		init_kthread_work(&tio->work, map_tio_request);
1943 }
1944 
1945 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1946 					       struct mapped_device *md,
1947 					       gfp_t gfp_mask)
1948 {
1949 	struct dm_rq_target_io *tio;
1950 	int srcu_idx;
1951 	struct dm_table *table;
1952 
1953 	tio = alloc_old_rq_tio(md, gfp_mask);
1954 	if (!tio)
1955 		return NULL;
1956 
1957 	init_tio(tio, rq, md);
1958 
1959 	table = dm_get_live_table(md, &srcu_idx);
1960 	/*
1961 	 * Must clone a request if this .request_fn DM device
1962 	 * is stacked on .request_fn device(s).
1963 	 */
1964 	if (!dm_table_mq_request_based(table)) {
1965 		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1966 			dm_put_live_table(md, srcu_idx);
1967 			free_old_rq_tio(tio);
1968 			return NULL;
1969 		}
1970 	}
1971 	dm_put_live_table(md, srcu_idx);
1972 
1973 	return tio;
1974 }
1975 
1976 /*
1977  * Called with the queue lock held.
1978  */
1979 static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1980 {
1981 	struct mapped_device *md = q->queuedata;
1982 	struct dm_rq_target_io *tio;
1983 
1984 	if (unlikely(rq->special)) {
1985 		DMWARN("Already has something in rq->special.");
1986 		return BLKPREP_KILL;
1987 	}
1988 
1989 	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1990 	if (!tio)
1991 		return BLKPREP_DEFER;
1992 
1993 	rq->special = tio;
1994 	rq->cmd_flags |= REQ_DONTPREP;
1995 
1996 	return BLKPREP_OK;
1997 }
1998 
1999 /*
2000  * Returns:
2001  * 0                : the request has been processed
2002  * DM_MAPIO_REQUEUE : the original request needs to be requeued
2003  * < 0              : the request was completed due to failure
2004  */
2005 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2006 		       struct mapped_device *md)
2007 {
2008 	int r;
2009 	struct dm_target *ti = tio->ti;
2010 	struct request *clone = NULL;
2011 
2012 	if (tio->clone) {
2013 		clone = tio->clone;
2014 		r = ti->type->map_rq(ti, clone, &tio->info);
2015 	} else {
2016 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2017 		if (r < 0) {
2018 			/* The target wants to complete the I/O */
2019 			dm_kill_unmapped_request(rq, r);
2020 			return r;
2021 		}
2022 		if (r != DM_MAPIO_REMAPPED)
2023 			return r;
2024 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2025 			/* -ENOMEM */
2026 			ti->type->release_clone_rq(clone);
2027 			return DM_MAPIO_REQUEUE;
2028 		}
2029 	}
2030 
2031 	switch (r) {
2032 	case DM_MAPIO_SUBMITTED:
2033 		/* The target has taken the I/O to submit by itself later */
2034 		break;
2035 	case DM_MAPIO_REMAPPED:
2036 		/* The target has remapped the I/O so dispatch it */
2037 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2038 				     blk_rq_pos(rq));
2039 		dm_dispatch_clone_request(clone, rq);
2040 		break;
2041 	case DM_MAPIO_REQUEUE:
2042 		/* The target wants to requeue the I/O */
2043 		dm_requeue_original_request(md, tio->orig);
2044 		break;
2045 	default:
2046 		if (r > 0) {
2047 			DMWARN("unimplemented target map return value: %d", r);
2048 			BUG();
2049 		}
2050 
2051 		/* The target wants to complete the I/O */
2052 		dm_kill_unmapped_request(rq, r);
2053 		return r;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static void map_tio_request(struct kthread_work *work)
2060 {
2061 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2062 	struct request *rq = tio->orig;
2063 	struct mapped_device *md = tio->md;
2064 
2065 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2066 		dm_requeue_original_request(md, rq);
2067 }
2068 
2069 static void dm_start_request(struct mapped_device *md, struct request *orig)
2070 {
2071 	if (!orig->q->mq_ops)
2072 		blk_start_request(orig);
2073 	else
2074 		blk_mq_start_request(orig);
2075 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2076 
2077 	if (md->seq_rq_merge_deadline_usecs) {
2078 		md->last_rq_pos = rq_end_sector(orig);
2079 		md->last_rq_rw = rq_data_dir(orig);
2080 		md->last_rq_start_time = ktime_get();
2081 	}
2082 
2083 	if (unlikely(dm_stats_used(&md->stats))) {
2084 		struct dm_rq_target_io *tio = tio_from_request(orig);
2085 		tio->duration_jiffies = jiffies;
2086 		tio->n_sectors = blk_rq_sectors(orig);
2087 		dm_stats_account_io(&md->stats, rq_data_dir(orig),
2088 				    blk_rq_pos(orig), tio->n_sectors, false, 0,
2089 				    &tio->stats_aux);
2090 	}
2091 
2092 	/*
2093 	 * Hold the md reference here for the in-flight I/O.
2094 	 * We can't rely on the reference count by device opener,
2095 	 * because the device may be closed during the request completion
2096 	 * when all bios are completed.
2097 	 * See the comment in rq_completed() too.
2098 	 */
2099 	dm_get(md);
2100 }
2101 
2102 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2103 
2104 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2105 {
2106 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2107 }
2108 
2109 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2110 						     const char *buf, size_t count)
2111 {
2112 	unsigned deadline;
2113 
2114 	if (!dm_request_based(md) || md->use_blk_mq)
2115 		return count;
2116 
2117 	if (kstrtouint(buf, 10, &deadline))
2118 		return -EINVAL;
2119 
2120 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2121 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2122 
2123 	md->seq_rq_merge_deadline_usecs = deadline;
2124 
2125 	return count;
2126 }
2127 
2128 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2129 {
2130 	ktime_t kt_deadline;
2131 
2132 	if (!md->seq_rq_merge_deadline_usecs)
2133 		return false;
2134 
2135 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2136 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2137 
2138 	return !ktime_after(ktime_get(), kt_deadline);
2139 }
2140 
2141 /*
2142  * q->request_fn for request-based dm.
2143  * Called with the queue lock held.
2144  */
2145 static void dm_request_fn(struct request_queue *q)
2146 {
2147 	struct mapped_device *md = q->queuedata;
2148 	struct dm_target *ti = md->immutable_target;
2149 	struct request *rq;
2150 	struct dm_rq_target_io *tio;
2151 	sector_t pos = 0;
2152 
2153 	if (unlikely(!ti)) {
2154 		int srcu_idx;
2155 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2156 
2157 		ti = dm_table_find_target(map, pos);
2158 		dm_put_live_table(md, srcu_idx);
2159 	}
2160 
2161 	/*
2162 	 * For suspend, check blk_queue_stopped() and increment
2163 	 * ->pending within a single queue_lock not to increment the
2164 	 * number of in-flight I/Os after the queue is stopped in
2165 	 * dm_suspend().
2166 	 */
2167 	while (!blk_queue_stopped(q)) {
2168 		rq = blk_peek_request(q);
2169 		if (!rq)
2170 			return;
2171 
2172 		/* always use block 0 to find the target for flushes for now */
2173 		pos = 0;
2174 		if (req_op(rq) != REQ_OP_FLUSH)
2175 			pos = blk_rq_pos(rq);
2176 
2177 		if ((dm_request_peeked_before_merge_deadline(md) &&
2178 		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2179 		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2180 		    (ti->type->busy && ti->type->busy(ti))) {
2181 			blk_delay_queue(q, HZ / 100);
2182 			return;
2183 		}
2184 
2185 		dm_start_request(md, rq);
2186 
2187 		tio = tio_from_request(rq);
2188 		/* Establish tio->ti before queuing work (map_tio_request) */
2189 		tio->ti = ti;
2190 		queue_kthread_work(&md->kworker, &tio->work);
2191 		BUG_ON(!irqs_disabled());
2192 	}
2193 }
2194 
2195 static int dm_any_congested(void *congested_data, int bdi_bits)
2196 {
2197 	int r = bdi_bits;
2198 	struct mapped_device *md = congested_data;
2199 	struct dm_table *map;
2200 
2201 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2202 		if (dm_request_based(md)) {
2203 			/*
2204 			 * With request-based DM we only need to check the
2205 			 * top-level queue for congestion.
2206 			 */
2207 			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2208 		} else {
2209 			map = dm_get_live_table_fast(md);
2210 			if (map)
2211 				r = dm_table_any_congested(map, bdi_bits);
2212 			dm_put_live_table_fast(md);
2213 		}
2214 	}
2215 
2216 	return r;
2217 }
2218 
2219 /*-----------------------------------------------------------------
2220  * An IDR is used to keep track of allocated minor numbers.
2221  *---------------------------------------------------------------*/
2222 static void free_minor(int minor)
2223 {
2224 	spin_lock(&_minor_lock);
2225 	idr_remove(&_minor_idr, minor);
2226 	spin_unlock(&_minor_lock);
2227 }
2228 
2229 /*
2230  * See if the device with a specific minor # is free.
2231  */
2232 static int specific_minor(int minor)
2233 {
2234 	int r;
2235 
2236 	if (minor >= (1 << MINORBITS))
2237 		return -EINVAL;
2238 
2239 	idr_preload(GFP_KERNEL);
2240 	spin_lock(&_minor_lock);
2241 
2242 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2243 
2244 	spin_unlock(&_minor_lock);
2245 	idr_preload_end();
2246 	if (r < 0)
2247 		return r == -ENOSPC ? -EBUSY : r;
2248 	return 0;
2249 }
2250 
2251 static int next_free_minor(int *minor)
2252 {
2253 	int r;
2254 
2255 	idr_preload(GFP_KERNEL);
2256 	spin_lock(&_minor_lock);
2257 
2258 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2259 
2260 	spin_unlock(&_minor_lock);
2261 	idr_preload_end();
2262 	if (r < 0)
2263 		return r;
2264 	*minor = r;
2265 	return 0;
2266 }
2267 
2268 static const struct block_device_operations dm_blk_dops;
2269 
2270 static void dm_wq_work(struct work_struct *work);
2271 
2272 static void dm_init_md_queue(struct mapped_device *md)
2273 {
2274 	/*
2275 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2276 	 * devices.  The type of this dm device may not have been decided yet.
2277 	 * The type is decided at the first table loading time.
2278 	 * To prevent problematic device stacking, clear the queue flag
2279 	 * for request stacking support until then.
2280 	 *
2281 	 * This queue is new, so no concurrency on the queue_flags.
2282 	 */
2283 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2284 
2285 	/*
2286 	 * Initialize data that will only be used by a non-blk-mq DM queue
2287 	 * - must do so here (in alloc_dev callchain) before queue is used
2288 	 */
2289 	md->queue->queuedata = md;
2290 	md->queue->backing_dev_info.congested_data = md;
2291 }
2292 
2293 static void dm_init_normal_md_queue(struct mapped_device *md)
2294 {
2295 	md->use_blk_mq = false;
2296 	dm_init_md_queue(md);
2297 
2298 	/*
2299 	 * Initialize aspects of queue that aren't relevant for blk-mq
2300 	 */
2301 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2302 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2303 }
2304 
2305 static void cleanup_mapped_device(struct mapped_device *md)
2306 {
2307 	if (md->wq)
2308 		destroy_workqueue(md->wq);
2309 	if (md->kworker_task)
2310 		kthread_stop(md->kworker_task);
2311 	mempool_destroy(md->io_pool);
2312 	mempool_destroy(md->rq_pool);
2313 	if (md->bs)
2314 		bioset_free(md->bs);
2315 
2316 	cleanup_srcu_struct(&md->io_barrier);
2317 
2318 	if (md->disk) {
2319 		spin_lock(&_minor_lock);
2320 		md->disk->private_data = NULL;
2321 		spin_unlock(&_minor_lock);
2322 		del_gendisk(md->disk);
2323 		put_disk(md->disk);
2324 	}
2325 
2326 	if (md->queue)
2327 		blk_cleanup_queue(md->queue);
2328 
2329 	if (md->bdev) {
2330 		bdput(md->bdev);
2331 		md->bdev = NULL;
2332 	}
2333 }
2334 
2335 /*
2336  * Allocate and initialise a blank device with a given minor.
2337  */
2338 static struct mapped_device *alloc_dev(int minor)
2339 {
2340 	int r, numa_node_id = dm_get_numa_node();
2341 	struct mapped_device *md;
2342 	void *old_md;
2343 
2344 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2345 	if (!md) {
2346 		DMWARN("unable to allocate device, out of memory.");
2347 		return NULL;
2348 	}
2349 
2350 	if (!try_module_get(THIS_MODULE))
2351 		goto bad_module_get;
2352 
2353 	/* get a minor number for the dev */
2354 	if (minor == DM_ANY_MINOR)
2355 		r = next_free_minor(&minor);
2356 	else
2357 		r = specific_minor(minor);
2358 	if (r < 0)
2359 		goto bad_minor;
2360 
2361 	r = init_srcu_struct(&md->io_barrier);
2362 	if (r < 0)
2363 		goto bad_io_barrier;
2364 
2365 	md->numa_node_id = numa_node_id;
2366 	md->use_blk_mq = use_blk_mq;
2367 	md->init_tio_pdu = false;
2368 	md->type = DM_TYPE_NONE;
2369 	mutex_init(&md->suspend_lock);
2370 	mutex_init(&md->type_lock);
2371 	mutex_init(&md->table_devices_lock);
2372 	spin_lock_init(&md->deferred_lock);
2373 	atomic_set(&md->holders, 1);
2374 	atomic_set(&md->open_count, 0);
2375 	atomic_set(&md->event_nr, 0);
2376 	atomic_set(&md->uevent_seq, 0);
2377 	INIT_LIST_HEAD(&md->uevent_list);
2378 	INIT_LIST_HEAD(&md->table_devices);
2379 	spin_lock_init(&md->uevent_lock);
2380 
2381 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2382 	if (!md->queue)
2383 		goto bad;
2384 
2385 	dm_init_md_queue(md);
2386 
2387 	md->disk = alloc_disk_node(1, numa_node_id);
2388 	if (!md->disk)
2389 		goto bad;
2390 
2391 	atomic_set(&md->pending[0], 0);
2392 	atomic_set(&md->pending[1], 0);
2393 	init_waitqueue_head(&md->wait);
2394 	INIT_WORK(&md->work, dm_wq_work);
2395 	init_waitqueue_head(&md->eventq);
2396 	init_completion(&md->kobj_holder.completion);
2397 	md->kworker_task = NULL;
2398 
2399 	md->disk->major = _major;
2400 	md->disk->first_minor = minor;
2401 	md->disk->fops = &dm_blk_dops;
2402 	md->disk->queue = md->queue;
2403 	md->disk->private_data = md;
2404 	sprintf(md->disk->disk_name, "dm-%d", minor);
2405 	add_disk(md->disk);
2406 	format_dev_t(md->name, MKDEV(_major, minor));
2407 
2408 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2409 	if (!md->wq)
2410 		goto bad;
2411 
2412 	md->bdev = bdget_disk(md->disk, 0);
2413 	if (!md->bdev)
2414 		goto bad;
2415 
2416 	bio_init(&md->flush_bio);
2417 	md->flush_bio.bi_bdev = md->bdev;
2418 	bio_set_op_attrs(&md->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
2419 
2420 	dm_stats_init(&md->stats);
2421 
2422 	/* Populate the mapping, nobody knows we exist yet */
2423 	spin_lock(&_minor_lock);
2424 	old_md = idr_replace(&_minor_idr, md, minor);
2425 	spin_unlock(&_minor_lock);
2426 
2427 	BUG_ON(old_md != MINOR_ALLOCED);
2428 
2429 	return md;
2430 
2431 bad:
2432 	cleanup_mapped_device(md);
2433 bad_io_barrier:
2434 	free_minor(minor);
2435 bad_minor:
2436 	module_put(THIS_MODULE);
2437 bad_module_get:
2438 	kfree(md);
2439 	return NULL;
2440 }
2441 
2442 static void unlock_fs(struct mapped_device *md);
2443 
2444 static void free_dev(struct mapped_device *md)
2445 {
2446 	int minor = MINOR(disk_devt(md->disk));
2447 
2448 	unlock_fs(md);
2449 
2450 	cleanup_mapped_device(md);
2451 	if (md->tag_set) {
2452 		blk_mq_free_tag_set(md->tag_set);
2453 		kfree(md->tag_set);
2454 	}
2455 
2456 	free_table_devices(&md->table_devices);
2457 	dm_stats_cleanup(&md->stats);
2458 	free_minor(minor);
2459 
2460 	module_put(THIS_MODULE);
2461 	kfree(md);
2462 }
2463 
2464 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2465 {
2466 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2467 
2468 	if (md->bs) {
2469 		/* The md already has necessary mempools. */
2470 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2471 			/*
2472 			 * Reload bioset because front_pad may have changed
2473 			 * because a different table was loaded.
2474 			 */
2475 			bioset_free(md->bs);
2476 			md->bs = p->bs;
2477 			p->bs = NULL;
2478 		}
2479 		/*
2480 		 * There's no need to reload with request-based dm
2481 		 * because the size of front_pad doesn't change.
2482 		 * Note for future: If you are to reload bioset,
2483 		 * prep-ed requests in the queue may refer
2484 		 * to bio from the old bioset, so you must walk
2485 		 * through the queue to unprep.
2486 		 */
2487 		goto out;
2488 	}
2489 
2490 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2491 
2492 	md->io_pool = p->io_pool;
2493 	p->io_pool = NULL;
2494 	md->rq_pool = p->rq_pool;
2495 	p->rq_pool = NULL;
2496 	md->bs = p->bs;
2497 	p->bs = NULL;
2498 
2499 out:
2500 	/* mempool bind completed, no longer need any mempools in the table */
2501 	dm_table_free_md_mempools(t);
2502 }
2503 
2504 /*
2505  * Bind a table to the device.
2506  */
2507 static void event_callback(void *context)
2508 {
2509 	unsigned long flags;
2510 	LIST_HEAD(uevents);
2511 	struct mapped_device *md = (struct mapped_device *) context;
2512 
2513 	spin_lock_irqsave(&md->uevent_lock, flags);
2514 	list_splice_init(&md->uevent_list, &uevents);
2515 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2516 
2517 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2518 
2519 	atomic_inc(&md->event_nr);
2520 	wake_up(&md->eventq);
2521 }
2522 
2523 /*
2524  * Protected by md->suspend_lock obtained by dm_swap_table().
2525  */
2526 static void __set_size(struct mapped_device *md, sector_t size)
2527 {
2528 	set_capacity(md->disk, size);
2529 
2530 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2531 }
2532 
2533 /*
2534  * Returns old map, which caller must destroy.
2535  */
2536 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2537 			       struct queue_limits *limits)
2538 {
2539 	struct dm_table *old_map;
2540 	struct request_queue *q = md->queue;
2541 	sector_t size;
2542 
2543 	size = dm_table_get_size(t);
2544 
2545 	/*
2546 	 * Wipe any geometry if the size of the table changed.
2547 	 */
2548 	if (size != dm_get_size(md))
2549 		memset(&md->geometry, 0, sizeof(md->geometry));
2550 
2551 	__set_size(md, size);
2552 
2553 	dm_table_event_callback(t, event_callback, md);
2554 
2555 	/*
2556 	 * The queue hasn't been stopped yet, if the old table type wasn't
2557 	 * for request-based during suspension.  So stop it to prevent
2558 	 * I/O mapping before resume.
2559 	 * This must be done before setting the queue restrictions,
2560 	 * because request-based dm may be run just after the setting.
2561 	 */
2562 	if (dm_table_request_based(t)) {
2563 		dm_stop_queue(q);
2564 		/*
2565 		 * Leverage the fact that request-based DM targets are
2566 		 * immutable singletons and establish md->immutable_target
2567 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2568 		 */
2569 		md->immutable_target = dm_table_get_immutable_target(t);
2570 	}
2571 
2572 	__bind_mempools(md, t);
2573 
2574 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2575 	rcu_assign_pointer(md->map, (void *)t);
2576 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2577 
2578 	dm_table_set_restrictions(t, q, limits);
2579 	if (old_map)
2580 		dm_sync_table(md);
2581 
2582 	return old_map;
2583 }
2584 
2585 /*
2586  * Returns unbound table for the caller to free.
2587  */
2588 static struct dm_table *__unbind(struct mapped_device *md)
2589 {
2590 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2591 
2592 	if (!map)
2593 		return NULL;
2594 
2595 	dm_table_event_callback(map, NULL, NULL);
2596 	RCU_INIT_POINTER(md->map, NULL);
2597 	dm_sync_table(md);
2598 
2599 	return map;
2600 }
2601 
2602 /*
2603  * Constructor for a new device.
2604  */
2605 int dm_create(int minor, struct mapped_device **result)
2606 {
2607 	struct mapped_device *md;
2608 
2609 	md = alloc_dev(minor);
2610 	if (!md)
2611 		return -ENXIO;
2612 
2613 	dm_sysfs_init(md);
2614 
2615 	*result = md;
2616 	return 0;
2617 }
2618 
2619 /*
2620  * Functions to manage md->type.
2621  * All are required to hold md->type_lock.
2622  */
2623 void dm_lock_md_type(struct mapped_device *md)
2624 {
2625 	mutex_lock(&md->type_lock);
2626 }
2627 
2628 void dm_unlock_md_type(struct mapped_device *md)
2629 {
2630 	mutex_unlock(&md->type_lock);
2631 }
2632 
2633 void dm_set_md_type(struct mapped_device *md, unsigned type)
2634 {
2635 	BUG_ON(!mutex_is_locked(&md->type_lock));
2636 	md->type = type;
2637 }
2638 
2639 unsigned dm_get_md_type(struct mapped_device *md)
2640 {
2641 	return md->type;
2642 }
2643 
2644 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2645 {
2646 	return md->immutable_target_type;
2647 }
2648 
2649 /*
2650  * The queue_limits are only valid as long as you have a reference
2651  * count on 'md'.
2652  */
2653 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2654 {
2655 	BUG_ON(!atomic_read(&md->holders));
2656 	return &md->queue->limits;
2657 }
2658 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2659 
2660 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2661 {
2662 	/* Initialize the request-based DM worker thread */
2663 	init_kthread_worker(&md->kworker);
2664 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2665 				       "kdmwork-%s", dm_device_name(md));
2666 }
2667 
2668 /*
2669  * Fully initialize a .request_fn request-based queue.
2670  */
2671 static int dm_old_init_request_queue(struct mapped_device *md)
2672 {
2673 	/* Fully initialize the queue */
2674 	if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2675 		return -EINVAL;
2676 
2677 	/* disable dm_request_fn's merge heuristic by default */
2678 	md->seq_rq_merge_deadline_usecs = 0;
2679 
2680 	dm_init_normal_md_queue(md);
2681 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2682 	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2683 
2684 	dm_old_init_rq_based_worker_thread(md);
2685 
2686 	elv_register_queue(md->queue);
2687 
2688 	return 0;
2689 }
2690 
2691 static int dm_mq_init_request(void *data, struct request *rq,
2692 			      unsigned int hctx_idx, unsigned int request_idx,
2693 			      unsigned int numa_node)
2694 {
2695 	struct mapped_device *md = data;
2696 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2697 
2698 	/*
2699 	 * Must initialize md member of tio, otherwise it won't
2700 	 * be available in dm_mq_queue_rq.
2701 	 */
2702 	tio->md = md;
2703 
2704 	if (md->init_tio_pdu) {
2705 		/* target-specific per-io data is immediately after the tio */
2706 		tio->info.ptr = tio + 1;
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2713 			  const struct blk_mq_queue_data *bd)
2714 {
2715 	struct request *rq = bd->rq;
2716 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2717 	struct mapped_device *md = tio->md;
2718 	struct dm_target *ti = md->immutable_target;
2719 
2720 	if (unlikely(!ti)) {
2721 		int srcu_idx;
2722 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2723 
2724 		ti = dm_table_find_target(map, 0);
2725 		dm_put_live_table(md, srcu_idx);
2726 	}
2727 
2728 	if (ti->type->busy && ti->type->busy(ti))
2729 		return BLK_MQ_RQ_QUEUE_BUSY;
2730 
2731 	dm_start_request(md, rq);
2732 
2733 	/* Init tio using md established in .init_request */
2734 	init_tio(tio, rq, md);
2735 
2736 	/*
2737 	 * Establish tio->ti before queuing work (map_tio_request)
2738 	 * or making direct call to map_request().
2739 	 */
2740 	tio->ti = ti;
2741 
2742 	/* Direct call is fine since .queue_rq allows allocations */
2743 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2744 		/* Undo dm_start_request() before requeuing */
2745 		rq_end_stats(md, rq);
2746 		rq_completed(md, rq_data_dir(rq), false);
2747 		return BLK_MQ_RQ_QUEUE_BUSY;
2748 	}
2749 
2750 	return BLK_MQ_RQ_QUEUE_OK;
2751 }
2752 
2753 static struct blk_mq_ops dm_mq_ops = {
2754 	.queue_rq = dm_mq_queue_rq,
2755 	.map_queue = blk_mq_map_queue,
2756 	.complete = dm_softirq_done,
2757 	.init_request = dm_mq_init_request,
2758 };
2759 
2760 static int dm_mq_init_request_queue(struct mapped_device *md,
2761 				    struct dm_target *immutable_tgt)
2762 {
2763 	struct request_queue *q;
2764 	int err;
2765 
2766 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2767 		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2768 		return -EINVAL;
2769 	}
2770 
2771 	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2772 	if (!md->tag_set)
2773 		return -ENOMEM;
2774 
2775 	md->tag_set->ops = &dm_mq_ops;
2776 	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2777 	md->tag_set->numa_node = md->numa_node_id;
2778 	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2779 	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2780 	md->tag_set->driver_data = md;
2781 
2782 	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2783 	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2784 		/* any target-specific per-io data is immediately after the tio */
2785 		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2786 		md->init_tio_pdu = true;
2787 	}
2788 
2789 	err = blk_mq_alloc_tag_set(md->tag_set);
2790 	if (err)
2791 		goto out_kfree_tag_set;
2792 
2793 	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2794 	if (IS_ERR(q)) {
2795 		err = PTR_ERR(q);
2796 		goto out_tag_set;
2797 	}
2798 	dm_init_md_queue(md);
2799 
2800 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2801 	blk_mq_register_disk(md->disk);
2802 
2803 	return 0;
2804 
2805 out_tag_set:
2806 	blk_mq_free_tag_set(md->tag_set);
2807 out_kfree_tag_set:
2808 	kfree(md->tag_set);
2809 
2810 	return err;
2811 }
2812 
2813 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2814 {
2815 	if (type == DM_TYPE_BIO_BASED)
2816 		return type;
2817 
2818 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2819 }
2820 
2821 /*
2822  * Setup the DM device's queue based on md's type
2823  */
2824 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2825 {
2826 	int r;
2827 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2828 
2829 	switch (md_type) {
2830 	case DM_TYPE_REQUEST_BASED:
2831 		r = dm_old_init_request_queue(md);
2832 		if (r) {
2833 			DMERR("Cannot initialize queue for request-based mapped device");
2834 			return r;
2835 		}
2836 		break;
2837 	case DM_TYPE_MQ_REQUEST_BASED:
2838 		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2839 		if (r) {
2840 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2841 			return r;
2842 		}
2843 		break;
2844 	case DM_TYPE_BIO_BASED:
2845 		dm_init_normal_md_queue(md);
2846 		blk_queue_make_request(md->queue, dm_make_request);
2847 		/*
2848 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2849 		 * since it won't be used (saves 1 process per bio-based DM device).
2850 		 */
2851 		bioset_free(md->queue->bio_split);
2852 		md->queue->bio_split = NULL;
2853 		break;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 struct mapped_device *dm_get_md(dev_t dev)
2860 {
2861 	struct mapped_device *md;
2862 	unsigned minor = MINOR(dev);
2863 
2864 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2865 		return NULL;
2866 
2867 	spin_lock(&_minor_lock);
2868 
2869 	md = idr_find(&_minor_idr, minor);
2870 	if (md) {
2871 		if ((md == MINOR_ALLOCED ||
2872 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2873 		     dm_deleting_md(md) ||
2874 		     test_bit(DMF_FREEING, &md->flags))) {
2875 			md = NULL;
2876 			goto out;
2877 		}
2878 		dm_get(md);
2879 	}
2880 
2881 out:
2882 	spin_unlock(&_minor_lock);
2883 
2884 	return md;
2885 }
2886 EXPORT_SYMBOL_GPL(dm_get_md);
2887 
2888 void *dm_get_mdptr(struct mapped_device *md)
2889 {
2890 	return md->interface_ptr;
2891 }
2892 
2893 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2894 {
2895 	md->interface_ptr = ptr;
2896 }
2897 
2898 void dm_get(struct mapped_device *md)
2899 {
2900 	atomic_inc(&md->holders);
2901 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2902 }
2903 
2904 int dm_hold(struct mapped_device *md)
2905 {
2906 	spin_lock(&_minor_lock);
2907 	if (test_bit(DMF_FREEING, &md->flags)) {
2908 		spin_unlock(&_minor_lock);
2909 		return -EBUSY;
2910 	}
2911 	dm_get(md);
2912 	spin_unlock(&_minor_lock);
2913 	return 0;
2914 }
2915 EXPORT_SYMBOL_GPL(dm_hold);
2916 
2917 const char *dm_device_name(struct mapped_device *md)
2918 {
2919 	return md->name;
2920 }
2921 EXPORT_SYMBOL_GPL(dm_device_name);
2922 
2923 static void __dm_destroy(struct mapped_device *md, bool wait)
2924 {
2925 	struct dm_table *map;
2926 	int srcu_idx;
2927 
2928 	might_sleep();
2929 
2930 	spin_lock(&_minor_lock);
2931 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2932 	set_bit(DMF_FREEING, &md->flags);
2933 	spin_unlock(&_minor_lock);
2934 
2935 	if (dm_request_based(md) && md->kworker_task)
2936 		flush_kthread_worker(&md->kworker);
2937 
2938 	/*
2939 	 * Take suspend_lock so that presuspend and postsuspend methods
2940 	 * do not race with internal suspend.
2941 	 */
2942 	mutex_lock(&md->suspend_lock);
2943 	map = dm_get_live_table(md, &srcu_idx);
2944 	if (!dm_suspended_md(md)) {
2945 		dm_table_presuspend_targets(map);
2946 		dm_table_postsuspend_targets(map);
2947 	}
2948 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2949 	dm_put_live_table(md, srcu_idx);
2950 	mutex_unlock(&md->suspend_lock);
2951 
2952 	/*
2953 	 * Rare, but there may be I/O requests still going to complete,
2954 	 * for example.  Wait for all references to disappear.
2955 	 * No one should increment the reference count of the mapped_device,
2956 	 * after the mapped_device state becomes DMF_FREEING.
2957 	 */
2958 	if (wait)
2959 		while (atomic_read(&md->holders))
2960 			msleep(1);
2961 	else if (atomic_read(&md->holders))
2962 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2963 		       dm_device_name(md), atomic_read(&md->holders));
2964 
2965 	dm_sysfs_exit(md);
2966 	dm_table_destroy(__unbind(md));
2967 	free_dev(md);
2968 }
2969 
2970 void dm_destroy(struct mapped_device *md)
2971 {
2972 	__dm_destroy(md, true);
2973 }
2974 
2975 void dm_destroy_immediate(struct mapped_device *md)
2976 {
2977 	__dm_destroy(md, false);
2978 }
2979 
2980 void dm_put(struct mapped_device *md)
2981 {
2982 	atomic_dec(&md->holders);
2983 }
2984 EXPORT_SYMBOL_GPL(dm_put);
2985 
2986 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2987 {
2988 	int r = 0;
2989 	DECLARE_WAITQUEUE(wait, current);
2990 
2991 	add_wait_queue(&md->wait, &wait);
2992 
2993 	while (1) {
2994 		set_current_state(interruptible);
2995 
2996 		if (!md_in_flight(md))
2997 			break;
2998 
2999 		if (interruptible == TASK_INTERRUPTIBLE &&
3000 		    signal_pending(current)) {
3001 			r = -EINTR;
3002 			break;
3003 		}
3004 
3005 		io_schedule();
3006 	}
3007 	set_current_state(TASK_RUNNING);
3008 
3009 	remove_wait_queue(&md->wait, &wait);
3010 
3011 	return r;
3012 }
3013 
3014 /*
3015  * Process the deferred bios
3016  */
3017 static void dm_wq_work(struct work_struct *work)
3018 {
3019 	struct mapped_device *md = container_of(work, struct mapped_device,
3020 						work);
3021 	struct bio *c;
3022 	int srcu_idx;
3023 	struct dm_table *map;
3024 
3025 	map = dm_get_live_table(md, &srcu_idx);
3026 
3027 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3028 		spin_lock_irq(&md->deferred_lock);
3029 		c = bio_list_pop(&md->deferred);
3030 		spin_unlock_irq(&md->deferred_lock);
3031 
3032 		if (!c)
3033 			break;
3034 
3035 		if (dm_request_based(md))
3036 			generic_make_request(c);
3037 		else
3038 			__split_and_process_bio(md, map, c);
3039 	}
3040 
3041 	dm_put_live_table(md, srcu_idx);
3042 }
3043 
3044 static void dm_queue_flush(struct mapped_device *md)
3045 {
3046 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3047 	smp_mb__after_atomic();
3048 	queue_work(md->wq, &md->work);
3049 }
3050 
3051 /*
3052  * Swap in a new table, returning the old one for the caller to destroy.
3053  */
3054 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3055 {
3056 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3057 	struct queue_limits limits;
3058 	int r;
3059 
3060 	mutex_lock(&md->suspend_lock);
3061 
3062 	/* device must be suspended */
3063 	if (!dm_suspended_md(md))
3064 		goto out;
3065 
3066 	/*
3067 	 * If the new table has no data devices, retain the existing limits.
3068 	 * This helps multipath with queue_if_no_path if all paths disappear,
3069 	 * then new I/O is queued based on these limits, and then some paths
3070 	 * reappear.
3071 	 */
3072 	if (dm_table_has_no_data_devices(table)) {
3073 		live_map = dm_get_live_table_fast(md);
3074 		if (live_map)
3075 			limits = md->queue->limits;
3076 		dm_put_live_table_fast(md);
3077 	}
3078 
3079 	if (!live_map) {
3080 		r = dm_calculate_queue_limits(table, &limits);
3081 		if (r) {
3082 			map = ERR_PTR(r);
3083 			goto out;
3084 		}
3085 	}
3086 
3087 	map = __bind(md, table, &limits);
3088 
3089 out:
3090 	mutex_unlock(&md->suspend_lock);
3091 	return map;
3092 }
3093 
3094 /*
3095  * Functions to lock and unlock any filesystem running on the
3096  * device.
3097  */
3098 static int lock_fs(struct mapped_device *md)
3099 {
3100 	int r;
3101 
3102 	WARN_ON(md->frozen_sb);
3103 
3104 	md->frozen_sb = freeze_bdev(md->bdev);
3105 	if (IS_ERR(md->frozen_sb)) {
3106 		r = PTR_ERR(md->frozen_sb);
3107 		md->frozen_sb = NULL;
3108 		return r;
3109 	}
3110 
3111 	set_bit(DMF_FROZEN, &md->flags);
3112 
3113 	return 0;
3114 }
3115 
3116 static void unlock_fs(struct mapped_device *md)
3117 {
3118 	if (!test_bit(DMF_FROZEN, &md->flags))
3119 		return;
3120 
3121 	thaw_bdev(md->bdev, md->frozen_sb);
3122 	md->frozen_sb = NULL;
3123 	clear_bit(DMF_FROZEN, &md->flags);
3124 }
3125 
3126 /*
3127  * If __dm_suspend returns 0, the device is completely quiescent
3128  * now. There is no request-processing activity. All new requests
3129  * are being added to md->deferred list.
3130  *
3131  * Caller must hold md->suspend_lock
3132  */
3133 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3134 			unsigned suspend_flags, int interruptible)
3135 {
3136 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3137 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3138 	int r;
3139 
3140 	/*
3141 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3142 	 * This flag is cleared before dm_suspend returns.
3143 	 */
3144 	if (noflush)
3145 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3146 
3147 	/*
3148 	 * This gets reverted if there's an error later and the targets
3149 	 * provide the .presuspend_undo hook.
3150 	 */
3151 	dm_table_presuspend_targets(map);
3152 
3153 	/*
3154 	 * Flush I/O to the device.
3155 	 * Any I/O submitted after lock_fs() may not be flushed.
3156 	 * noflush takes precedence over do_lockfs.
3157 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3158 	 */
3159 	if (!noflush && do_lockfs) {
3160 		r = lock_fs(md);
3161 		if (r) {
3162 			dm_table_presuspend_undo_targets(map);
3163 			return r;
3164 		}
3165 	}
3166 
3167 	/*
3168 	 * Here we must make sure that no processes are submitting requests
3169 	 * to target drivers i.e. no one may be executing
3170 	 * __split_and_process_bio. This is called from dm_request and
3171 	 * dm_wq_work.
3172 	 *
3173 	 * To get all processes out of __split_and_process_bio in dm_request,
3174 	 * we take the write lock. To prevent any process from reentering
3175 	 * __split_and_process_bio from dm_request and quiesce the thread
3176 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3177 	 * flush_workqueue(md->wq).
3178 	 */
3179 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3180 	if (map)
3181 		synchronize_srcu(&md->io_barrier);
3182 
3183 	/*
3184 	 * Stop md->queue before flushing md->wq in case request-based
3185 	 * dm defers requests to md->wq from md->queue.
3186 	 */
3187 	if (dm_request_based(md)) {
3188 		dm_stop_queue(md->queue);
3189 		if (md->kworker_task)
3190 			flush_kthread_worker(&md->kworker);
3191 	}
3192 
3193 	flush_workqueue(md->wq);
3194 
3195 	/*
3196 	 * At this point no more requests are entering target request routines.
3197 	 * We call dm_wait_for_completion to wait for all existing requests
3198 	 * to finish.
3199 	 */
3200 	r = dm_wait_for_completion(md, interruptible);
3201 
3202 	if (noflush)
3203 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3204 	if (map)
3205 		synchronize_srcu(&md->io_barrier);
3206 
3207 	/* were we interrupted ? */
3208 	if (r < 0) {
3209 		dm_queue_flush(md);
3210 
3211 		if (dm_request_based(md))
3212 			dm_start_queue(md->queue);
3213 
3214 		unlock_fs(md);
3215 		dm_table_presuspend_undo_targets(map);
3216 		/* pushback list is already flushed, so skip flush */
3217 	}
3218 
3219 	return r;
3220 }
3221 
3222 /*
3223  * We need to be able to change a mapping table under a mounted
3224  * filesystem.  For example we might want to move some data in
3225  * the background.  Before the table can be swapped with
3226  * dm_bind_table, dm_suspend must be called to flush any in
3227  * flight bios and ensure that any further io gets deferred.
3228  */
3229 /*
3230  * Suspend mechanism in request-based dm.
3231  *
3232  * 1. Flush all I/Os by lock_fs() if needed.
3233  * 2. Stop dispatching any I/O by stopping the request_queue.
3234  * 3. Wait for all in-flight I/Os to be completed or requeued.
3235  *
3236  * To abort suspend, start the request_queue.
3237  */
3238 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3239 {
3240 	struct dm_table *map = NULL;
3241 	int r = 0;
3242 
3243 retry:
3244 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3245 
3246 	if (dm_suspended_md(md)) {
3247 		r = -EINVAL;
3248 		goto out_unlock;
3249 	}
3250 
3251 	if (dm_suspended_internally_md(md)) {
3252 		/* already internally suspended, wait for internal resume */
3253 		mutex_unlock(&md->suspend_lock);
3254 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3255 		if (r)
3256 			return r;
3257 		goto retry;
3258 	}
3259 
3260 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3261 
3262 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3263 	if (r)
3264 		goto out_unlock;
3265 
3266 	set_bit(DMF_SUSPENDED, &md->flags);
3267 
3268 	dm_table_postsuspend_targets(map);
3269 
3270 out_unlock:
3271 	mutex_unlock(&md->suspend_lock);
3272 	return r;
3273 }
3274 
3275 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3276 {
3277 	if (map) {
3278 		int r = dm_table_resume_targets(map);
3279 		if (r)
3280 			return r;
3281 	}
3282 
3283 	dm_queue_flush(md);
3284 
3285 	/*
3286 	 * Flushing deferred I/Os must be done after targets are resumed
3287 	 * so that mapping of targets can work correctly.
3288 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3289 	 */
3290 	if (dm_request_based(md))
3291 		dm_start_queue(md->queue);
3292 
3293 	unlock_fs(md);
3294 
3295 	return 0;
3296 }
3297 
3298 int dm_resume(struct mapped_device *md)
3299 {
3300 	int r = -EINVAL;
3301 	struct dm_table *map = NULL;
3302 
3303 retry:
3304 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3305 
3306 	if (!dm_suspended_md(md))
3307 		goto out;
3308 
3309 	if (dm_suspended_internally_md(md)) {
3310 		/* already internally suspended, wait for internal resume */
3311 		mutex_unlock(&md->suspend_lock);
3312 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3313 		if (r)
3314 			return r;
3315 		goto retry;
3316 	}
3317 
3318 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3319 	if (!map || !dm_table_get_size(map))
3320 		goto out;
3321 
3322 	r = __dm_resume(md, map);
3323 	if (r)
3324 		goto out;
3325 
3326 	clear_bit(DMF_SUSPENDED, &md->flags);
3327 
3328 	r = 0;
3329 out:
3330 	mutex_unlock(&md->suspend_lock);
3331 
3332 	return r;
3333 }
3334 
3335 /*
3336  * Internal suspend/resume works like userspace-driven suspend. It waits
3337  * until all bios finish and prevents issuing new bios to the target drivers.
3338  * It may be used only from the kernel.
3339  */
3340 
3341 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3342 {
3343 	struct dm_table *map = NULL;
3344 
3345 	if (md->internal_suspend_count++)
3346 		return; /* nested internal suspend */
3347 
3348 	if (dm_suspended_md(md)) {
3349 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3350 		return; /* nest suspend */
3351 	}
3352 
3353 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3354 
3355 	/*
3356 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3357 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3358 	 * would require changing .presuspend to return an error -- avoid this
3359 	 * until there is a need for more elaborate variants of internal suspend.
3360 	 */
3361 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3362 
3363 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3364 
3365 	dm_table_postsuspend_targets(map);
3366 }
3367 
3368 static void __dm_internal_resume(struct mapped_device *md)
3369 {
3370 	BUG_ON(!md->internal_suspend_count);
3371 
3372 	if (--md->internal_suspend_count)
3373 		return; /* resume from nested internal suspend */
3374 
3375 	if (dm_suspended_md(md))
3376 		goto done; /* resume from nested suspend */
3377 
3378 	/*
3379 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3380 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3381 	 */
3382 	(void) __dm_resume(md, NULL);
3383 
3384 done:
3385 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3386 	smp_mb__after_atomic();
3387 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3388 }
3389 
3390 void dm_internal_suspend_noflush(struct mapped_device *md)
3391 {
3392 	mutex_lock(&md->suspend_lock);
3393 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3394 	mutex_unlock(&md->suspend_lock);
3395 }
3396 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3397 
3398 void dm_internal_resume(struct mapped_device *md)
3399 {
3400 	mutex_lock(&md->suspend_lock);
3401 	__dm_internal_resume(md);
3402 	mutex_unlock(&md->suspend_lock);
3403 }
3404 EXPORT_SYMBOL_GPL(dm_internal_resume);
3405 
3406 /*
3407  * Fast variants of internal suspend/resume hold md->suspend_lock,
3408  * which prevents interaction with userspace-driven suspend.
3409  */
3410 
3411 void dm_internal_suspend_fast(struct mapped_device *md)
3412 {
3413 	mutex_lock(&md->suspend_lock);
3414 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3415 		return;
3416 
3417 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3418 	synchronize_srcu(&md->io_barrier);
3419 	flush_workqueue(md->wq);
3420 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3421 }
3422 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3423 
3424 void dm_internal_resume_fast(struct mapped_device *md)
3425 {
3426 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3427 		goto done;
3428 
3429 	dm_queue_flush(md);
3430 
3431 done:
3432 	mutex_unlock(&md->suspend_lock);
3433 }
3434 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3435 
3436 /*-----------------------------------------------------------------
3437  * Event notification.
3438  *---------------------------------------------------------------*/
3439 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3440 		       unsigned cookie)
3441 {
3442 	char udev_cookie[DM_COOKIE_LENGTH];
3443 	char *envp[] = { udev_cookie, NULL };
3444 
3445 	if (!cookie)
3446 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3447 	else {
3448 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3449 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3450 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3451 					  action, envp);
3452 	}
3453 }
3454 
3455 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3456 {
3457 	return atomic_add_return(1, &md->uevent_seq);
3458 }
3459 
3460 uint32_t dm_get_event_nr(struct mapped_device *md)
3461 {
3462 	return atomic_read(&md->event_nr);
3463 }
3464 
3465 int dm_wait_event(struct mapped_device *md, int event_nr)
3466 {
3467 	return wait_event_interruptible(md->eventq,
3468 			(event_nr != atomic_read(&md->event_nr)));
3469 }
3470 
3471 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3472 {
3473 	unsigned long flags;
3474 
3475 	spin_lock_irqsave(&md->uevent_lock, flags);
3476 	list_add(elist, &md->uevent_list);
3477 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3478 }
3479 
3480 /*
3481  * The gendisk is only valid as long as you have a reference
3482  * count on 'md'.
3483  */
3484 struct gendisk *dm_disk(struct mapped_device *md)
3485 {
3486 	return md->disk;
3487 }
3488 EXPORT_SYMBOL_GPL(dm_disk);
3489 
3490 struct kobject *dm_kobject(struct mapped_device *md)
3491 {
3492 	return &md->kobj_holder.kobj;
3493 }
3494 
3495 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3496 {
3497 	struct mapped_device *md;
3498 
3499 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3500 
3501 	if (test_bit(DMF_FREEING, &md->flags) ||
3502 	    dm_deleting_md(md))
3503 		return NULL;
3504 
3505 	dm_get(md);
3506 	return md;
3507 }
3508 
3509 int dm_suspended_md(struct mapped_device *md)
3510 {
3511 	return test_bit(DMF_SUSPENDED, &md->flags);
3512 }
3513 
3514 int dm_suspended_internally_md(struct mapped_device *md)
3515 {
3516 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3517 }
3518 
3519 int dm_test_deferred_remove_flag(struct mapped_device *md)
3520 {
3521 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3522 }
3523 
3524 int dm_suspended(struct dm_target *ti)
3525 {
3526 	return dm_suspended_md(dm_table_get_md(ti->table));
3527 }
3528 EXPORT_SYMBOL_GPL(dm_suspended);
3529 
3530 int dm_noflush_suspending(struct dm_target *ti)
3531 {
3532 	return __noflush_suspending(dm_table_get_md(ti->table));
3533 }
3534 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3535 
3536 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3537 					    unsigned integrity, unsigned per_io_data_size)
3538 {
3539 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3540 	struct kmem_cache *cachep = NULL;
3541 	unsigned int pool_size = 0;
3542 	unsigned int front_pad;
3543 
3544 	if (!pools)
3545 		return NULL;
3546 
3547 	type = filter_md_type(type, md);
3548 
3549 	switch (type) {
3550 	case DM_TYPE_BIO_BASED:
3551 		cachep = _io_cache;
3552 		pool_size = dm_get_reserved_bio_based_ios();
3553 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3554 		break;
3555 	case DM_TYPE_REQUEST_BASED:
3556 		cachep = _rq_tio_cache;
3557 		pool_size = dm_get_reserved_rq_based_ios();
3558 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3559 		if (!pools->rq_pool)
3560 			goto out;
3561 		/* fall through to setup remaining rq-based pools */
3562 	case DM_TYPE_MQ_REQUEST_BASED:
3563 		if (!pool_size)
3564 			pool_size = dm_get_reserved_rq_based_ios();
3565 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3566 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3567 		break;
3568 	default:
3569 		BUG();
3570 	}
3571 
3572 	if (cachep) {
3573 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3574 		if (!pools->io_pool)
3575 			goto out;
3576 	}
3577 
3578 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3579 	if (!pools->bs)
3580 		goto out;
3581 
3582 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3583 		goto out;
3584 
3585 	return pools;
3586 
3587 out:
3588 	dm_free_md_mempools(pools);
3589 
3590 	return NULL;
3591 }
3592 
3593 void dm_free_md_mempools(struct dm_md_mempools *pools)
3594 {
3595 	if (!pools)
3596 		return;
3597 
3598 	mempool_destroy(pools->io_pool);
3599 	mempool_destroy(pools->rq_pool);
3600 
3601 	if (pools->bs)
3602 		bioset_free(pools->bs);
3603 
3604 	kfree(pools);
3605 }
3606 
3607 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3608 			  u32 flags)
3609 {
3610 	struct mapped_device *md = bdev->bd_disk->private_data;
3611 	const struct pr_ops *ops;
3612 	fmode_t mode;
3613 	int r;
3614 
3615 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3616 	if (r < 0)
3617 		return r;
3618 
3619 	ops = bdev->bd_disk->fops->pr_ops;
3620 	if (ops && ops->pr_register)
3621 		r = ops->pr_register(bdev, old_key, new_key, flags);
3622 	else
3623 		r = -EOPNOTSUPP;
3624 
3625 	bdput(bdev);
3626 	return r;
3627 }
3628 
3629 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3630 			 u32 flags)
3631 {
3632 	struct mapped_device *md = bdev->bd_disk->private_data;
3633 	const struct pr_ops *ops;
3634 	fmode_t mode;
3635 	int r;
3636 
3637 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3638 	if (r < 0)
3639 		return r;
3640 
3641 	ops = bdev->bd_disk->fops->pr_ops;
3642 	if (ops && ops->pr_reserve)
3643 		r = ops->pr_reserve(bdev, key, type, flags);
3644 	else
3645 		r = -EOPNOTSUPP;
3646 
3647 	bdput(bdev);
3648 	return r;
3649 }
3650 
3651 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3652 {
3653 	struct mapped_device *md = bdev->bd_disk->private_data;
3654 	const struct pr_ops *ops;
3655 	fmode_t mode;
3656 	int r;
3657 
3658 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3659 	if (r < 0)
3660 		return r;
3661 
3662 	ops = bdev->bd_disk->fops->pr_ops;
3663 	if (ops && ops->pr_release)
3664 		r = ops->pr_release(bdev, key, type);
3665 	else
3666 		r = -EOPNOTSUPP;
3667 
3668 	bdput(bdev);
3669 	return r;
3670 }
3671 
3672 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3673 			 enum pr_type type, bool abort)
3674 {
3675 	struct mapped_device *md = bdev->bd_disk->private_data;
3676 	const struct pr_ops *ops;
3677 	fmode_t mode;
3678 	int r;
3679 
3680 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3681 	if (r < 0)
3682 		return r;
3683 
3684 	ops = bdev->bd_disk->fops->pr_ops;
3685 	if (ops && ops->pr_preempt)
3686 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3687 	else
3688 		r = -EOPNOTSUPP;
3689 
3690 	bdput(bdev);
3691 	return r;
3692 }
3693 
3694 static int dm_pr_clear(struct block_device *bdev, u64 key)
3695 {
3696 	struct mapped_device *md = bdev->bd_disk->private_data;
3697 	const struct pr_ops *ops;
3698 	fmode_t mode;
3699 	int r;
3700 
3701 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3702 	if (r < 0)
3703 		return r;
3704 
3705 	ops = bdev->bd_disk->fops->pr_ops;
3706 	if (ops && ops->pr_clear)
3707 		r = ops->pr_clear(bdev, key);
3708 	else
3709 		r = -EOPNOTSUPP;
3710 
3711 	bdput(bdev);
3712 	return r;
3713 }
3714 
3715 static const struct pr_ops dm_pr_ops = {
3716 	.pr_register	= dm_pr_register,
3717 	.pr_reserve	= dm_pr_reserve,
3718 	.pr_release	= dm_pr_release,
3719 	.pr_preempt	= dm_pr_preempt,
3720 	.pr_clear	= dm_pr_clear,
3721 };
3722 
3723 static const struct block_device_operations dm_blk_dops = {
3724 	.open = dm_blk_open,
3725 	.release = dm_blk_close,
3726 	.ioctl = dm_blk_ioctl,
3727 	.getgeo = dm_blk_getgeo,
3728 	.pr_ops = &dm_pr_ops,
3729 	.owner = THIS_MODULE
3730 };
3731 
3732 /*
3733  * module hooks
3734  */
3735 module_init(dm_init);
3736 module_exit(dm_exit);
3737 
3738 module_param(major, uint, 0);
3739 MODULE_PARM_DESC(major, "The major number of the device mapper");
3740 
3741 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3742 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3743 
3744 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3745 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3746 
3747 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3748 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3749 
3750 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3751 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3752 
3753 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3754 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3755 
3756 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3757 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3758 
3759 MODULE_DESCRIPTION(DM_NAME " driver");
3760 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3761 MODULE_LICENSE("GPL");
3762