xref: /openbmc/linux/drivers/md/dm.c (revision 692d0eb9e02cf81fb387ff891f53840db2f3110a)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * For bio-based dm.
36  * One of these is allocated per bio.
37  */
38 struct dm_io {
39 	struct mapped_device *md;
40 	int error;
41 	atomic_t io_count;
42 	struct bio *bio;
43 	unsigned long start_time;
44 };
45 
46 /*
47  * For bio-based dm.
48  * One of these is allocated per target within a bio.  Hopefully
49  * this will be simplified out one day.
50  */
51 struct dm_target_io {
52 	struct dm_io *io;
53 	struct dm_target *ti;
54 	union map_info info;
55 };
56 
57 DEFINE_TRACE(block_bio_complete);
58 
59 /*
60  * For request-based dm.
61  * One of these is allocated per request.
62  */
63 struct dm_rq_target_io {
64 	struct mapped_device *md;
65 	struct dm_target *ti;
66 	struct request *orig, clone;
67 	int error;
68 	union map_info info;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per bio.
74  */
75 struct dm_rq_clone_bio_info {
76 	struct bio *orig;
77 	struct request *rq;
78 };
79 
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 	if (bio && bio->bi_private)
83 		return &((struct dm_target_io *)bio->bi_private)->info;
84 	return NULL;
85 }
86 
87 #define MINOR_ALLOCED ((void *)-1)
88 
89 /*
90  * Bits for the md->flags field.
91  */
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98 
99 /*
100  * Work processed by per-device workqueue.
101  */
102 struct mapped_device {
103 	struct rw_semaphore io_lock;
104 	struct mutex suspend_lock;
105 	rwlock_t map_lock;
106 	atomic_t holders;
107 	atomic_t open_count;
108 
109 	unsigned long flags;
110 
111 	struct request_queue *queue;
112 	struct gendisk *disk;
113 	char name[16];
114 
115 	void *interface_ptr;
116 
117 	/*
118 	 * A list of ios that arrived while we were suspended.
119 	 */
120 	atomic_t pending;
121 	wait_queue_head_t wait;
122 	struct work_struct work;
123 	struct bio_list deferred;
124 	spinlock_t deferred_lock;
125 
126 	/*
127 	 * Processing queue (flush/barriers)
128 	 */
129 	struct workqueue_struct *wq;
130 
131 	/*
132 	 * The current mapping.
133 	 */
134 	struct dm_table *map;
135 
136 	/*
137 	 * io objects are allocated from here.
138 	 */
139 	mempool_t *io_pool;
140 	mempool_t *tio_pool;
141 
142 	struct bio_set *bs;
143 
144 	/*
145 	 * Event handling.
146 	 */
147 	atomic_t event_nr;
148 	wait_queue_head_t eventq;
149 	atomic_t uevent_seq;
150 	struct list_head uevent_list;
151 	spinlock_t uevent_lock; /* Protect access to uevent_list */
152 
153 	/*
154 	 * freeze/thaw support require holding onto a super block
155 	 */
156 	struct super_block *frozen_sb;
157 	struct block_device *suspended_bdev;
158 
159 	/* forced geometry settings */
160 	struct hd_geometry geometry;
161 
162 	/* sysfs handle */
163 	struct kobject kobj;
164 };
165 
166 #define MIN_IOS 256
167 static struct kmem_cache *_io_cache;
168 static struct kmem_cache *_tio_cache;
169 static struct kmem_cache *_rq_tio_cache;
170 static struct kmem_cache *_rq_bio_info_cache;
171 
172 static int __init local_init(void)
173 {
174 	int r = -ENOMEM;
175 
176 	/* allocate a slab for the dm_ios */
177 	_io_cache = KMEM_CACHE(dm_io, 0);
178 	if (!_io_cache)
179 		return r;
180 
181 	/* allocate a slab for the target ios */
182 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
183 	if (!_tio_cache)
184 		goto out_free_io_cache;
185 
186 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
187 	if (!_rq_tio_cache)
188 		goto out_free_tio_cache;
189 
190 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
191 	if (!_rq_bio_info_cache)
192 		goto out_free_rq_tio_cache;
193 
194 	r = dm_uevent_init();
195 	if (r)
196 		goto out_free_rq_bio_info_cache;
197 
198 	_major = major;
199 	r = register_blkdev(_major, _name);
200 	if (r < 0)
201 		goto out_uevent_exit;
202 
203 	if (!_major)
204 		_major = r;
205 
206 	return 0;
207 
208 out_uevent_exit:
209 	dm_uevent_exit();
210 out_free_rq_bio_info_cache:
211 	kmem_cache_destroy(_rq_bio_info_cache);
212 out_free_rq_tio_cache:
213 	kmem_cache_destroy(_rq_tio_cache);
214 out_free_tio_cache:
215 	kmem_cache_destroy(_tio_cache);
216 out_free_io_cache:
217 	kmem_cache_destroy(_io_cache);
218 
219 	return r;
220 }
221 
222 static void local_exit(void)
223 {
224 	kmem_cache_destroy(_rq_bio_info_cache);
225 	kmem_cache_destroy(_rq_tio_cache);
226 	kmem_cache_destroy(_tio_cache);
227 	kmem_cache_destroy(_io_cache);
228 	unregister_blkdev(_major, _name);
229 	dm_uevent_exit();
230 
231 	_major = 0;
232 
233 	DMINFO("cleaned up");
234 }
235 
236 static int (*_inits[])(void) __initdata = {
237 	local_init,
238 	dm_target_init,
239 	dm_linear_init,
240 	dm_stripe_init,
241 	dm_kcopyd_init,
242 	dm_interface_init,
243 };
244 
245 static void (*_exits[])(void) = {
246 	local_exit,
247 	dm_target_exit,
248 	dm_linear_exit,
249 	dm_stripe_exit,
250 	dm_kcopyd_exit,
251 	dm_interface_exit,
252 };
253 
254 static int __init dm_init(void)
255 {
256 	const int count = ARRAY_SIZE(_inits);
257 
258 	int r, i;
259 
260 	for (i = 0; i < count; i++) {
261 		r = _inits[i]();
262 		if (r)
263 			goto bad;
264 	}
265 
266 	return 0;
267 
268       bad:
269 	while (i--)
270 		_exits[i]();
271 
272 	return r;
273 }
274 
275 static void __exit dm_exit(void)
276 {
277 	int i = ARRAY_SIZE(_exits);
278 
279 	while (i--)
280 		_exits[i]();
281 }
282 
283 /*
284  * Block device functions
285  */
286 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
287 {
288 	struct mapped_device *md;
289 
290 	spin_lock(&_minor_lock);
291 
292 	md = bdev->bd_disk->private_data;
293 	if (!md)
294 		goto out;
295 
296 	if (test_bit(DMF_FREEING, &md->flags) ||
297 	    test_bit(DMF_DELETING, &md->flags)) {
298 		md = NULL;
299 		goto out;
300 	}
301 
302 	dm_get(md);
303 	atomic_inc(&md->open_count);
304 
305 out:
306 	spin_unlock(&_minor_lock);
307 
308 	return md ? 0 : -ENXIO;
309 }
310 
311 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
312 {
313 	struct mapped_device *md = disk->private_data;
314 	atomic_dec(&md->open_count);
315 	dm_put(md);
316 	return 0;
317 }
318 
319 int dm_open_count(struct mapped_device *md)
320 {
321 	return atomic_read(&md->open_count);
322 }
323 
324 /*
325  * Guarantees nothing is using the device before it's deleted.
326  */
327 int dm_lock_for_deletion(struct mapped_device *md)
328 {
329 	int r = 0;
330 
331 	spin_lock(&_minor_lock);
332 
333 	if (dm_open_count(md))
334 		r = -EBUSY;
335 	else
336 		set_bit(DMF_DELETING, &md->flags);
337 
338 	spin_unlock(&_minor_lock);
339 
340 	return r;
341 }
342 
343 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
344 {
345 	struct mapped_device *md = bdev->bd_disk->private_data;
346 
347 	return dm_get_geometry(md, geo);
348 }
349 
350 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
351 			unsigned int cmd, unsigned long arg)
352 {
353 	struct mapped_device *md = bdev->bd_disk->private_data;
354 	struct dm_table *map = dm_get_table(md);
355 	struct dm_target *tgt;
356 	int r = -ENOTTY;
357 
358 	if (!map || !dm_table_get_size(map))
359 		goto out;
360 
361 	/* We only support devices that have a single target */
362 	if (dm_table_get_num_targets(map) != 1)
363 		goto out;
364 
365 	tgt = dm_table_get_target(map, 0);
366 
367 	if (dm_suspended(md)) {
368 		r = -EAGAIN;
369 		goto out;
370 	}
371 
372 	if (tgt->type->ioctl)
373 		r = tgt->type->ioctl(tgt, cmd, arg);
374 
375 out:
376 	dm_table_put(map);
377 
378 	return r;
379 }
380 
381 static struct dm_io *alloc_io(struct mapped_device *md)
382 {
383 	return mempool_alloc(md->io_pool, GFP_NOIO);
384 }
385 
386 static void free_io(struct mapped_device *md, struct dm_io *io)
387 {
388 	mempool_free(io, md->io_pool);
389 }
390 
391 static struct dm_target_io *alloc_tio(struct mapped_device *md)
392 {
393 	return mempool_alloc(md->tio_pool, GFP_NOIO);
394 }
395 
396 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
397 {
398 	mempool_free(tio, md->tio_pool);
399 }
400 
401 static void start_io_acct(struct dm_io *io)
402 {
403 	struct mapped_device *md = io->md;
404 	int cpu;
405 
406 	io->start_time = jiffies;
407 
408 	cpu = part_stat_lock();
409 	part_round_stats(cpu, &dm_disk(md)->part0);
410 	part_stat_unlock();
411 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
412 }
413 
414 static void end_io_acct(struct dm_io *io)
415 {
416 	struct mapped_device *md = io->md;
417 	struct bio *bio = io->bio;
418 	unsigned long duration = jiffies - io->start_time;
419 	int pending, cpu;
420 	int rw = bio_data_dir(bio);
421 
422 	cpu = part_stat_lock();
423 	part_round_stats(cpu, &dm_disk(md)->part0);
424 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
425 	part_stat_unlock();
426 
427 	dm_disk(md)->part0.in_flight = pending =
428 		atomic_dec_return(&md->pending);
429 
430 	/* nudge anyone waiting on suspend queue */
431 	if (!pending)
432 		wake_up(&md->wait);
433 }
434 
435 /*
436  * Add the bio to the list of deferred io.
437  */
438 static int queue_io(struct mapped_device *md, struct bio *bio)
439 {
440 	down_write(&md->io_lock);
441 
442 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
443 		up_write(&md->io_lock);
444 		return 1;
445 	}
446 
447 	spin_lock_irq(&md->deferred_lock);
448 	bio_list_add(&md->deferred, bio);
449 	spin_unlock_irq(&md->deferred_lock);
450 
451 	up_write(&md->io_lock);
452 	return 0;		/* deferred successfully */
453 }
454 
455 /*
456  * Everyone (including functions in this file), should use this
457  * function to access the md->map field, and make sure they call
458  * dm_table_put() when finished.
459  */
460 struct dm_table *dm_get_table(struct mapped_device *md)
461 {
462 	struct dm_table *t;
463 
464 	read_lock(&md->map_lock);
465 	t = md->map;
466 	if (t)
467 		dm_table_get(t);
468 	read_unlock(&md->map_lock);
469 
470 	return t;
471 }
472 
473 /*
474  * Get the geometry associated with a dm device
475  */
476 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
477 {
478 	*geo = md->geometry;
479 
480 	return 0;
481 }
482 
483 /*
484  * Set the geometry of a device.
485  */
486 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
487 {
488 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
489 
490 	if (geo->start > sz) {
491 		DMWARN("Start sector is beyond the geometry limits.");
492 		return -EINVAL;
493 	}
494 
495 	md->geometry = *geo;
496 
497 	return 0;
498 }
499 
500 /*-----------------------------------------------------------------
501  * CRUD START:
502  *   A more elegant soln is in the works that uses the queue
503  *   merge fn, unfortunately there are a couple of changes to
504  *   the block layer that I want to make for this.  So in the
505  *   interests of getting something for people to use I give
506  *   you this clearly demarcated crap.
507  *---------------------------------------------------------------*/
508 
509 static int __noflush_suspending(struct mapped_device *md)
510 {
511 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
512 }
513 
514 /*
515  * Decrements the number of outstanding ios that a bio has been
516  * cloned into, completing the original io if necc.
517  */
518 static void dec_pending(struct dm_io *io, int error)
519 {
520 	unsigned long flags;
521 	int io_error;
522 	struct bio *bio;
523 	struct mapped_device *md = io->md;
524 
525 	/* Push-back supersedes any I/O errors */
526 	if (error && !(io->error > 0 && __noflush_suspending(md)))
527 		io->error = error;
528 
529 	if (atomic_dec_and_test(&io->io_count)) {
530 		if (io->error == DM_ENDIO_REQUEUE) {
531 			/*
532 			 * Target requested pushing back the I/O.
533 			 */
534 			spin_lock_irqsave(&md->deferred_lock, flags);
535 			if (__noflush_suspending(md))
536 				bio_list_add(&md->deferred, io->bio);
537 			else
538 				/* noflush suspend was interrupted. */
539 				io->error = -EIO;
540 			spin_unlock_irqrestore(&md->deferred_lock, flags);
541 		}
542 
543 		end_io_acct(io);
544 
545 		io_error = io->error;
546 		bio = io->bio;
547 
548 		free_io(md, io);
549 
550 		if (io_error != DM_ENDIO_REQUEUE) {
551 			trace_block_bio_complete(md->queue, bio);
552 
553 			bio_endio(bio, io_error);
554 		}
555 	}
556 }
557 
558 static void clone_endio(struct bio *bio, int error)
559 {
560 	int r = 0;
561 	struct dm_target_io *tio = bio->bi_private;
562 	struct dm_io *io = tio->io;
563 	struct mapped_device *md = tio->io->md;
564 	dm_endio_fn endio = tio->ti->type->end_io;
565 
566 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
567 		error = -EIO;
568 
569 	if (endio) {
570 		r = endio(tio->ti, bio, error, &tio->info);
571 		if (r < 0 || r == DM_ENDIO_REQUEUE)
572 			/*
573 			 * error and requeue request are handled
574 			 * in dec_pending().
575 			 */
576 			error = r;
577 		else if (r == DM_ENDIO_INCOMPLETE)
578 			/* The target will handle the io */
579 			return;
580 		else if (r) {
581 			DMWARN("unimplemented target endio return value: %d", r);
582 			BUG();
583 		}
584 	}
585 
586 	/*
587 	 * Store md for cleanup instead of tio which is about to get freed.
588 	 */
589 	bio->bi_private = md->bs;
590 
591 	free_tio(md, tio);
592 	bio_put(bio);
593 	dec_pending(io, error);
594 }
595 
596 static sector_t max_io_len(struct mapped_device *md,
597 			   sector_t sector, struct dm_target *ti)
598 {
599 	sector_t offset = sector - ti->begin;
600 	sector_t len = ti->len - offset;
601 
602 	/*
603 	 * Does the target need to split even further ?
604 	 */
605 	if (ti->split_io) {
606 		sector_t boundary;
607 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
608 			   - offset;
609 		if (len > boundary)
610 			len = boundary;
611 	}
612 
613 	return len;
614 }
615 
616 static void __map_bio(struct dm_target *ti, struct bio *clone,
617 		      struct dm_target_io *tio)
618 {
619 	int r;
620 	sector_t sector;
621 	struct mapped_device *md;
622 
623 	/*
624 	 * Sanity checks.
625 	 */
626 	BUG_ON(!clone->bi_size);
627 
628 	clone->bi_end_io = clone_endio;
629 	clone->bi_private = tio;
630 
631 	/*
632 	 * Map the clone.  If r == 0 we don't need to do
633 	 * anything, the target has assumed ownership of
634 	 * this io.
635 	 */
636 	atomic_inc(&tio->io->io_count);
637 	sector = clone->bi_sector;
638 	r = ti->type->map(ti, clone, &tio->info);
639 	if (r == DM_MAPIO_REMAPPED) {
640 		/* the bio has been remapped so dispatch it */
641 
642 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
643 				    tio->io->bio->bi_bdev->bd_dev,
644 				    clone->bi_sector, sector);
645 
646 		generic_make_request(clone);
647 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
648 		/* error the io and bail out, or requeue it if needed */
649 		md = tio->io->md;
650 		dec_pending(tio->io, r);
651 		/*
652 		 * Store bio_set for cleanup.
653 		 */
654 		clone->bi_private = md->bs;
655 		bio_put(clone);
656 		free_tio(md, tio);
657 	} else if (r) {
658 		DMWARN("unimplemented target map return value: %d", r);
659 		BUG();
660 	}
661 }
662 
663 struct clone_info {
664 	struct mapped_device *md;
665 	struct dm_table *map;
666 	struct bio *bio;
667 	struct dm_io *io;
668 	sector_t sector;
669 	sector_t sector_count;
670 	unsigned short idx;
671 };
672 
673 static void dm_bio_destructor(struct bio *bio)
674 {
675 	struct bio_set *bs = bio->bi_private;
676 
677 	bio_free(bio, bs);
678 }
679 
680 /*
681  * Creates a little bio that is just does part of a bvec.
682  */
683 static struct bio *split_bvec(struct bio *bio, sector_t sector,
684 			      unsigned short idx, unsigned int offset,
685 			      unsigned int len, struct bio_set *bs)
686 {
687 	struct bio *clone;
688 	struct bio_vec *bv = bio->bi_io_vec + idx;
689 
690 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
691 	clone->bi_destructor = dm_bio_destructor;
692 	*clone->bi_io_vec = *bv;
693 
694 	clone->bi_sector = sector;
695 	clone->bi_bdev = bio->bi_bdev;
696 	clone->bi_rw = bio->bi_rw;
697 	clone->bi_vcnt = 1;
698 	clone->bi_size = to_bytes(len);
699 	clone->bi_io_vec->bv_offset = offset;
700 	clone->bi_io_vec->bv_len = clone->bi_size;
701 	clone->bi_flags |= 1 << BIO_CLONED;
702 
703 	if (bio_integrity(bio)) {
704 		bio_integrity_clone(clone, bio, GFP_NOIO);
705 		bio_integrity_trim(clone,
706 				   bio_sector_offset(bio, idx, offset), len);
707 	}
708 
709 	return clone;
710 }
711 
712 /*
713  * Creates a bio that consists of range of complete bvecs.
714  */
715 static struct bio *clone_bio(struct bio *bio, sector_t sector,
716 			     unsigned short idx, unsigned short bv_count,
717 			     unsigned int len, struct bio_set *bs)
718 {
719 	struct bio *clone;
720 
721 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
722 	__bio_clone(clone, bio);
723 	clone->bi_destructor = dm_bio_destructor;
724 	clone->bi_sector = sector;
725 	clone->bi_idx = idx;
726 	clone->bi_vcnt = idx + bv_count;
727 	clone->bi_size = to_bytes(len);
728 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
729 
730 	if (bio_integrity(bio)) {
731 		bio_integrity_clone(clone, bio, GFP_NOIO);
732 
733 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
734 			bio_integrity_trim(clone,
735 					   bio_sector_offset(bio, idx, 0), len);
736 	}
737 
738 	return clone;
739 }
740 
741 static int __clone_and_map(struct clone_info *ci)
742 {
743 	struct bio *clone, *bio = ci->bio;
744 	struct dm_target *ti;
745 	sector_t len = 0, max;
746 	struct dm_target_io *tio;
747 
748 	ti = dm_table_find_target(ci->map, ci->sector);
749 	if (!dm_target_is_valid(ti))
750 		return -EIO;
751 
752 	max = max_io_len(ci->md, ci->sector, ti);
753 
754 	/*
755 	 * Allocate a target io object.
756 	 */
757 	tio = alloc_tio(ci->md);
758 	tio->io = ci->io;
759 	tio->ti = ti;
760 	memset(&tio->info, 0, sizeof(tio->info));
761 
762 	if (ci->sector_count <= max) {
763 		/*
764 		 * Optimise for the simple case where we can do all of
765 		 * the remaining io with a single clone.
766 		 */
767 		clone = clone_bio(bio, ci->sector, ci->idx,
768 				  bio->bi_vcnt - ci->idx, ci->sector_count,
769 				  ci->md->bs);
770 		__map_bio(ti, clone, tio);
771 		ci->sector_count = 0;
772 
773 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
774 		/*
775 		 * There are some bvecs that don't span targets.
776 		 * Do as many of these as possible.
777 		 */
778 		int i;
779 		sector_t remaining = max;
780 		sector_t bv_len;
781 
782 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
783 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
784 
785 			if (bv_len > remaining)
786 				break;
787 
788 			remaining -= bv_len;
789 			len += bv_len;
790 		}
791 
792 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
793 				  ci->md->bs);
794 		__map_bio(ti, clone, tio);
795 
796 		ci->sector += len;
797 		ci->sector_count -= len;
798 		ci->idx = i;
799 
800 	} else {
801 		/*
802 		 * Handle a bvec that must be split between two or more targets.
803 		 */
804 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
805 		sector_t remaining = to_sector(bv->bv_len);
806 		unsigned int offset = 0;
807 
808 		do {
809 			if (offset) {
810 				ti = dm_table_find_target(ci->map, ci->sector);
811 				if (!dm_target_is_valid(ti))
812 					return -EIO;
813 
814 				max = max_io_len(ci->md, ci->sector, ti);
815 
816 				tio = alloc_tio(ci->md);
817 				tio->io = ci->io;
818 				tio->ti = ti;
819 				memset(&tio->info, 0, sizeof(tio->info));
820 			}
821 
822 			len = min(remaining, max);
823 
824 			clone = split_bvec(bio, ci->sector, ci->idx,
825 					   bv->bv_offset + offset, len,
826 					   ci->md->bs);
827 
828 			__map_bio(ti, clone, tio);
829 
830 			ci->sector += len;
831 			ci->sector_count -= len;
832 			offset += to_bytes(len);
833 		} while (remaining -= len);
834 
835 		ci->idx++;
836 	}
837 
838 	return 0;
839 }
840 
841 /*
842  * Split the bio into several clones and submit it to targets.
843  */
844 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
845 {
846 	struct clone_info ci;
847 	int error = 0;
848 
849 	ci.map = dm_get_table(md);
850 	if (unlikely(!ci.map)) {
851 		bio_io_error(bio);
852 		return;
853 	}
854 
855 	ci.md = md;
856 	ci.bio = bio;
857 	ci.io = alloc_io(md);
858 	ci.io->error = 0;
859 	atomic_set(&ci.io->io_count, 1);
860 	ci.io->bio = bio;
861 	ci.io->md = md;
862 	ci.sector = bio->bi_sector;
863 	ci.sector_count = bio_sectors(bio);
864 	ci.idx = bio->bi_idx;
865 
866 	start_io_acct(ci.io);
867 	while (ci.sector_count && !error)
868 		error = __clone_and_map(&ci);
869 
870 	/* drop the extra reference count */
871 	dec_pending(ci.io, error);
872 	dm_table_put(ci.map);
873 }
874 /*-----------------------------------------------------------------
875  * CRUD END
876  *---------------------------------------------------------------*/
877 
878 static int dm_merge_bvec(struct request_queue *q,
879 			 struct bvec_merge_data *bvm,
880 			 struct bio_vec *biovec)
881 {
882 	struct mapped_device *md = q->queuedata;
883 	struct dm_table *map = dm_get_table(md);
884 	struct dm_target *ti;
885 	sector_t max_sectors;
886 	int max_size = 0;
887 
888 	if (unlikely(!map))
889 		goto out;
890 
891 	ti = dm_table_find_target(map, bvm->bi_sector);
892 	if (!dm_target_is_valid(ti))
893 		goto out_table;
894 
895 	/*
896 	 * Find maximum amount of I/O that won't need splitting
897 	 */
898 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
899 			  (sector_t) BIO_MAX_SECTORS);
900 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
901 	if (max_size < 0)
902 		max_size = 0;
903 
904 	/*
905 	 * merge_bvec_fn() returns number of bytes
906 	 * it can accept at this offset
907 	 * max is precomputed maximal io size
908 	 */
909 	if (max_size && ti->type->merge)
910 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
911 
912 out_table:
913 	dm_table_put(map);
914 
915 out:
916 	/*
917 	 * Always allow an entire first page
918 	 */
919 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
920 		max_size = biovec->bv_len;
921 
922 	return max_size;
923 }
924 
925 /*
926  * The request function that just remaps the bio built up by
927  * dm_merge_bvec.
928  */
929 static int dm_request(struct request_queue *q, struct bio *bio)
930 {
931 	int r = -EIO;
932 	int rw = bio_data_dir(bio);
933 	struct mapped_device *md = q->queuedata;
934 	int cpu;
935 
936 	/*
937 	 * There is no use in forwarding any barrier request since we can't
938 	 * guarantee it is (or can be) handled by the targets correctly.
939 	 */
940 	if (unlikely(bio_barrier(bio))) {
941 		bio_endio(bio, -EOPNOTSUPP);
942 		return 0;
943 	}
944 
945 	down_read(&md->io_lock);
946 
947 	cpu = part_stat_lock();
948 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
949 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
950 	part_stat_unlock();
951 
952 	/*
953 	 * If we're suspended we have to queue
954 	 * this io for later.
955 	 */
956 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
957 		up_read(&md->io_lock);
958 
959 		if (bio_rw(bio) != READA)
960 			r = queue_io(md, bio);
961 
962 		if (r <= 0)
963 			goto out_req;
964 
965 		/*
966 		 * We're in a while loop, because someone could suspend
967 		 * before we get to the following read lock.
968 		 */
969 		down_read(&md->io_lock);
970 	}
971 
972 	__split_and_process_bio(md, bio);
973 	up_read(&md->io_lock);
974 	return 0;
975 
976 out_req:
977 	if (r < 0)
978 		bio_io_error(bio);
979 
980 	return 0;
981 }
982 
983 static void dm_unplug_all(struct request_queue *q)
984 {
985 	struct mapped_device *md = q->queuedata;
986 	struct dm_table *map = dm_get_table(md);
987 
988 	if (map) {
989 		dm_table_unplug_all(map);
990 		dm_table_put(map);
991 	}
992 }
993 
994 static int dm_any_congested(void *congested_data, int bdi_bits)
995 {
996 	int r = bdi_bits;
997 	struct mapped_device *md = congested_data;
998 	struct dm_table *map;
999 
1000 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
1001 		map = dm_get_table(md);
1002 		if (map) {
1003 			r = dm_table_any_congested(map, bdi_bits);
1004 			dm_table_put(map);
1005 		}
1006 	}
1007 
1008 	return r;
1009 }
1010 
1011 /*-----------------------------------------------------------------
1012  * An IDR is used to keep track of allocated minor numbers.
1013  *---------------------------------------------------------------*/
1014 static DEFINE_IDR(_minor_idr);
1015 
1016 static void free_minor(int minor)
1017 {
1018 	spin_lock(&_minor_lock);
1019 	idr_remove(&_minor_idr, minor);
1020 	spin_unlock(&_minor_lock);
1021 }
1022 
1023 /*
1024  * See if the device with a specific minor # is free.
1025  */
1026 static int specific_minor(int minor)
1027 {
1028 	int r, m;
1029 
1030 	if (minor >= (1 << MINORBITS))
1031 		return -EINVAL;
1032 
1033 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1034 	if (!r)
1035 		return -ENOMEM;
1036 
1037 	spin_lock(&_minor_lock);
1038 
1039 	if (idr_find(&_minor_idr, minor)) {
1040 		r = -EBUSY;
1041 		goto out;
1042 	}
1043 
1044 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1045 	if (r)
1046 		goto out;
1047 
1048 	if (m != minor) {
1049 		idr_remove(&_minor_idr, m);
1050 		r = -EBUSY;
1051 		goto out;
1052 	}
1053 
1054 out:
1055 	spin_unlock(&_minor_lock);
1056 	return r;
1057 }
1058 
1059 static int next_free_minor(int *minor)
1060 {
1061 	int r, m;
1062 
1063 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1064 	if (!r)
1065 		return -ENOMEM;
1066 
1067 	spin_lock(&_minor_lock);
1068 
1069 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1070 	if (r)
1071 		goto out;
1072 
1073 	if (m >= (1 << MINORBITS)) {
1074 		idr_remove(&_minor_idr, m);
1075 		r = -ENOSPC;
1076 		goto out;
1077 	}
1078 
1079 	*minor = m;
1080 
1081 out:
1082 	spin_unlock(&_minor_lock);
1083 	return r;
1084 }
1085 
1086 static struct block_device_operations dm_blk_dops;
1087 
1088 static void dm_wq_work(struct work_struct *work);
1089 
1090 /*
1091  * Allocate and initialise a blank device with a given minor.
1092  */
1093 static struct mapped_device *alloc_dev(int minor)
1094 {
1095 	int r;
1096 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1097 	void *old_md;
1098 
1099 	if (!md) {
1100 		DMWARN("unable to allocate device, out of memory.");
1101 		return NULL;
1102 	}
1103 
1104 	if (!try_module_get(THIS_MODULE))
1105 		goto bad_module_get;
1106 
1107 	/* get a minor number for the dev */
1108 	if (minor == DM_ANY_MINOR)
1109 		r = next_free_minor(&minor);
1110 	else
1111 		r = specific_minor(minor);
1112 	if (r < 0)
1113 		goto bad_minor;
1114 
1115 	init_rwsem(&md->io_lock);
1116 	mutex_init(&md->suspend_lock);
1117 	spin_lock_init(&md->deferred_lock);
1118 	rwlock_init(&md->map_lock);
1119 	atomic_set(&md->holders, 1);
1120 	atomic_set(&md->open_count, 0);
1121 	atomic_set(&md->event_nr, 0);
1122 	atomic_set(&md->uevent_seq, 0);
1123 	INIT_LIST_HEAD(&md->uevent_list);
1124 	spin_lock_init(&md->uevent_lock);
1125 
1126 	md->queue = blk_alloc_queue(GFP_KERNEL);
1127 	if (!md->queue)
1128 		goto bad_queue;
1129 
1130 	md->queue->queuedata = md;
1131 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1132 	md->queue->backing_dev_info.congested_data = md;
1133 	blk_queue_make_request(md->queue, dm_request);
1134 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1135 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1136 	md->queue->unplug_fn = dm_unplug_all;
1137 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1138 
1139 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1140 	if (!md->io_pool)
1141 		goto bad_io_pool;
1142 
1143 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1144 	if (!md->tio_pool)
1145 		goto bad_tio_pool;
1146 
1147 	md->bs = bioset_create(16, 0);
1148 	if (!md->bs)
1149 		goto bad_no_bioset;
1150 
1151 	md->disk = alloc_disk(1);
1152 	if (!md->disk)
1153 		goto bad_disk;
1154 
1155 	atomic_set(&md->pending, 0);
1156 	init_waitqueue_head(&md->wait);
1157 	INIT_WORK(&md->work, dm_wq_work);
1158 	init_waitqueue_head(&md->eventq);
1159 
1160 	md->disk->major = _major;
1161 	md->disk->first_minor = minor;
1162 	md->disk->fops = &dm_blk_dops;
1163 	md->disk->queue = md->queue;
1164 	md->disk->private_data = md;
1165 	sprintf(md->disk->disk_name, "dm-%d", minor);
1166 	add_disk(md->disk);
1167 	format_dev_t(md->name, MKDEV(_major, minor));
1168 
1169 	md->wq = create_singlethread_workqueue("kdmflush");
1170 	if (!md->wq)
1171 		goto bad_thread;
1172 
1173 	/* Populate the mapping, nobody knows we exist yet */
1174 	spin_lock(&_minor_lock);
1175 	old_md = idr_replace(&_minor_idr, md, minor);
1176 	spin_unlock(&_minor_lock);
1177 
1178 	BUG_ON(old_md != MINOR_ALLOCED);
1179 
1180 	return md;
1181 
1182 bad_thread:
1183 	put_disk(md->disk);
1184 bad_disk:
1185 	bioset_free(md->bs);
1186 bad_no_bioset:
1187 	mempool_destroy(md->tio_pool);
1188 bad_tio_pool:
1189 	mempool_destroy(md->io_pool);
1190 bad_io_pool:
1191 	blk_cleanup_queue(md->queue);
1192 bad_queue:
1193 	free_minor(minor);
1194 bad_minor:
1195 	module_put(THIS_MODULE);
1196 bad_module_get:
1197 	kfree(md);
1198 	return NULL;
1199 }
1200 
1201 static void unlock_fs(struct mapped_device *md);
1202 
1203 static void free_dev(struct mapped_device *md)
1204 {
1205 	int minor = MINOR(disk_devt(md->disk));
1206 
1207 	if (md->suspended_bdev) {
1208 		unlock_fs(md);
1209 		bdput(md->suspended_bdev);
1210 	}
1211 	destroy_workqueue(md->wq);
1212 	mempool_destroy(md->tio_pool);
1213 	mempool_destroy(md->io_pool);
1214 	bioset_free(md->bs);
1215 	blk_integrity_unregister(md->disk);
1216 	del_gendisk(md->disk);
1217 	free_minor(minor);
1218 
1219 	spin_lock(&_minor_lock);
1220 	md->disk->private_data = NULL;
1221 	spin_unlock(&_minor_lock);
1222 
1223 	put_disk(md->disk);
1224 	blk_cleanup_queue(md->queue);
1225 	module_put(THIS_MODULE);
1226 	kfree(md);
1227 }
1228 
1229 /*
1230  * Bind a table to the device.
1231  */
1232 static void event_callback(void *context)
1233 {
1234 	unsigned long flags;
1235 	LIST_HEAD(uevents);
1236 	struct mapped_device *md = (struct mapped_device *) context;
1237 
1238 	spin_lock_irqsave(&md->uevent_lock, flags);
1239 	list_splice_init(&md->uevent_list, &uevents);
1240 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1241 
1242 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1243 
1244 	atomic_inc(&md->event_nr);
1245 	wake_up(&md->eventq);
1246 }
1247 
1248 static void __set_size(struct mapped_device *md, sector_t size)
1249 {
1250 	set_capacity(md->disk, size);
1251 
1252 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1253 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1254 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1255 }
1256 
1257 static int __bind(struct mapped_device *md, struct dm_table *t)
1258 {
1259 	struct request_queue *q = md->queue;
1260 	sector_t size;
1261 
1262 	size = dm_table_get_size(t);
1263 
1264 	/*
1265 	 * Wipe any geometry if the size of the table changed.
1266 	 */
1267 	if (size != get_capacity(md->disk))
1268 		memset(&md->geometry, 0, sizeof(md->geometry));
1269 
1270 	if (md->suspended_bdev)
1271 		__set_size(md, size);
1272 
1273 	if (!size) {
1274 		dm_table_destroy(t);
1275 		return 0;
1276 	}
1277 
1278 	dm_table_event_callback(t, event_callback, md);
1279 
1280 	write_lock(&md->map_lock);
1281 	md->map = t;
1282 	dm_table_set_restrictions(t, q);
1283 	write_unlock(&md->map_lock);
1284 
1285 	return 0;
1286 }
1287 
1288 static void __unbind(struct mapped_device *md)
1289 {
1290 	struct dm_table *map = md->map;
1291 
1292 	if (!map)
1293 		return;
1294 
1295 	dm_table_event_callback(map, NULL, NULL);
1296 	write_lock(&md->map_lock);
1297 	md->map = NULL;
1298 	write_unlock(&md->map_lock);
1299 	dm_table_destroy(map);
1300 }
1301 
1302 /*
1303  * Constructor for a new device.
1304  */
1305 int dm_create(int minor, struct mapped_device **result)
1306 {
1307 	struct mapped_device *md;
1308 
1309 	md = alloc_dev(minor);
1310 	if (!md)
1311 		return -ENXIO;
1312 
1313 	dm_sysfs_init(md);
1314 
1315 	*result = md;
1316 	return 0;
1317 }
1318 
1319 static struct mapped_device *dm_find_md(dev_t dev)
1320 {
1321 	struct mapped_device *md;
1322 	unsigned minor = MINOR(dev);
1323 
1324 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1325 		return NULL;
1326 
1327 	spin_lock(&_minor_lock);
1328 
1329 	md = idr_find(&_minor_idr, minor);
1330 	if (md && (md == MINOR_ALLOCED ||
1331 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1332 		   test_bit(DMF_FREEING, &md->flags))) {
1333 		md = NULL;
1334 		goto out;
1335 	}
1336 
1337 out:
1338 	spin_unlock(&_minor_lock);
1339 
1340 	return md;
1341 }
1342 
1343 struct mapped_device *dm_get_md(dev_t dev)
1344 {
1345 	struct mapped_device *md = dm_find_md(dev);
1346 
1347 	if (md)
1348 		dm_get(md);
1349 
1350 	return md;
1351 }
1352 
1353 void *dm_get_mdptr(struct mapped_device *md)
1354 {
1355 	return md->interface_ptr;
1356 }
1357 
1358 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1359 {
1360 	md->interface_ptr = ptr;
1361 }
1362 
1363 void dm_get(struct mapped_device *md)
1364 {
1365 	atomic_inc(&md->holders);
1366 }
1367 
1368 const char *dm_device_name(struct mapped_device *md)
1369 {
1370 	return md->name;
1371 }
1372 EXPORT_SYMBOL_GPL(dm_device_name);
1373 
1374 void dm_put(struct mapped_device *md)
1375 {
1376 	struct dm_table *map;
1377 
1378 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1379 
1380 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1381 		map = dm_get_table(md);
1382 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1383 			    MINOR(disk_devt(dm_disk(md))));
1384 		set_bit(DMF_FREEING, &md->flags);
1385 		spin_unlock(&_minor_lock);
1386 		if (!dm_suspended(md)) {
1387 			dm_table_presuspend_targets(map);
1388 			dm_table_postsuspend_targets(map);
1389 		}
1390 		dm_sysfs_exit(md);
1391 		dm_table_put(map);
1392 		__unbind(md);
1393 		free_dev(md);
1394 	}
1395 }
1396 EXPORT_SYMBOL_GPL(dm_put);
1397 
1398 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1399 {
1400 	int r = 0;
1401 	DECLARE_WAITQUEUE(wait, current);
1402 
1403 	dm_unplug_all(md->queue);
1404 
1405 	add_wait_queue(&md->wait, &wait);
1406 
1407 	while (1) {
1408 		set_current_state(interruptible);
1409 
1410 		smp_mb();
1411 		if (!atomic_read(&md->pending))
1412 			break;
1413 
1414 		if (interruptible == TASK_INTERRUPTIBLE &&
1415 		    signal_pending(current)) {
1416 			r = -EINTR;
1417 			break;
1418 		}
1419 
1420 		io_schedule();
1421 	}
1422 	set_current_state(TASK_RUNNING);
1423 
1424 	remove_wait_queue(&md->wait, &wait);
1425 
1426 	return r;
1427 }
1428 
1429 /*
1430  * Process the deferred bios
1431  */
1432 static void dm_wq_work(struct work_struct *work)
1433 {
1434 	struct mapped_device *md = container_of(work, struct mapped_device,
1435 						work);
1436 	struct bio *c;
1437 
1438 	down_write(&md->io_lock);
1439 
1440 next_bio:
1441 	spin_lock_irq(&md->deferred_lock);
1442 	c = bio_list_pop(&md->deferred);
1443 	spin_unlock_irq(&md->deferred_lock);
1444 
1445 	if (c) {
1446 		__split_and_process_bio(md, c);
1447 		goto next_bio;
1448 	}
1449 
1450 	clear_bit(DMF_BLOCK_IO, &md->flags);
1451 
1452 	up_write(&md->io_lock);
1453 }
1454 
1455 static void dm_queue_flush(struct mapped_device *md)
1456 {
1457 	queue_work(md->wq, &md->work);
1458 	flush_workqueue(md->wq);
1459 }
1460 
1461 /*
1462  * Swap in a new table (destroying old one).
1463  */
1464 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1465 {
1466 	int r = -EINVAL;
1467 
1468 	mutex_lock(&md->suspend_lock);
1469 
1470 	/* device must be suspended */
1471 	if (!dm_suspended(md))
1472 		goto out;
1473 
1474 	/* without bdev, the device size cannot be changed */
1475 	if (!md->suspended_bdev)
1476 		if (get_capacity(md->disk) != dm_table_get_size(table))
1477 			goto out;
1478 
1479 	__unbind(md);
1480 	r = __bind(md, table);
1481 
1482 out:
1483 	mutex_unlock(&md->suspend_lock);
1484 	return r;
1485 }
1486 
1487 /*
1488  * Functions to lock and unlock any filesystem running on the
1489  * device.
1490  */
1491 static int lock_fs(struct mapped_device *md)
1492 {
1493 	int r;
1494 
1495 	WARN_ON(md->frozen_sb);
1496 
1497 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1498 	if (IS_ERR(md->frozen_sb)) {
1499 		r = PTR_ERR(md->frozen_sb);
1500 		md->frozen_sb = NULL;
1501 		return r;
1502 	}
1503 
1504 	set_bit(DMF_FROZEN, &md->flags);
1505 
1506 	/* don't bdput right now, we don't want the bdev
1507 	 * to go away while it is locked.
1508 	 */
1509 	return 0;
1510 }
1511 
1512 static void unlock_fs(struct mapped_device *md)
1513 {
1514 	if (!test_bit(DMF_FROZEN, &md->flags))
1515 		return;
1516 
1517 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1518 	md->frozen_sb = NULL;
1519 	clear_bit(DMF_FROZEN, &md->flags);
1520 }
1521 
1522 /*
1523  * We need to be able to change a mapping table under a mounted
1524  * filesystem.  For example we might want to move some data in
1525  * the background.  Before the table can be swapped with
1526  * dm_bind_table, dm_suspend must be called to flush any in
1527  * flight bios and ensure that any further io gets deferred.
1528  */
1529 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1530 {
1531 	struct dm_table *map = NULL;
1532 	int r = 0;
1533 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1534 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1535 
1536 	mutex_lock(&md->suspend_lock);
1537 
1538 	if (dm_suspended(md)) {
1539 		r = -EINVAL;
1540 		goto out_unlock;
1541 	}
1542 
1543 	map = dm_get_table(md);
1544 
1545 	/*
1546 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1547 	 * This flag is cleared before dm_suspend returns.
1548 	 */
1549 	if (noflush)
1550 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1551 
1552 	/* This does not get reverted if there's an error later. */
1553 	dm_table_presuspend_targets(map);
1554 
1555 	/* bdget() can stall if the pending I/Os are not flushed */
1556 	if (!noflush) {
1557 		md->suspended_bdev = bdget_disk(md->disk, 0);
1558 		if (!md->suspended_bdev) {
1559 			DMWARN("bdget failed in dm_suspend");
1560 			r = -ENOMEM;
1561 			goto out;
1562 		}
1563 
1564 		/*
1565 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1566 		 * because lock_fs() needs to flush I/Os.
1567 		 */
1568 		if (do_lockfs) {
1569 			r = lock_fs(md);
1570 			if (r)
1571 				goto out;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1577 	 */
1578 	down_write(&md->io_lock);
1579 	set_bit(DMF_BLOCK_IO, &md->flags);
1580 
1581 	up_write(&md->io_lock);
1582 
1583 	/*
1584 	 * Wait for the already-mapped ios to complete.
1585 	 */
1586 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1587 
1588 	down_write(&md->io_lock);
1589 
1590 	if (noflush)
1591 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1592 	up_write(&md->io_lock);
1593 
1594 	/* were we interrupted ? */
1595 	if (r < 0) {
1596 		dm_queue_flush(md);
1597 
1598 		unlock_fs(md);
1599 		goto out; /* pushback list is already flushed, so skip flush */
1600 	}
1601 
1602 	dm_table_postsuspend_targets(map);
1603 
1604 	set_bit(DMF_SUSPENDED, &md->flags);
1605 
1606 out:
1607 	if (r && md->suspended_bdev) {
1608 		bdput(md->suspended_bdev);
1609 		md->suspended_bdev = NULL;
1610 	}
1611 
1612 	dm_table_put(map);
1613 
1614 out_unlock:
1615 	mutex_unlock(&md->suspend_lock);
1616 	return r;
1617 }
1618 
1619 int dm_resume(struct mapped_device *md)
1620 {
1621 	int r = -EINVAL;
1622 	struct dm_table *map = NULL;
1623 
1624 	mutex_lock(&md->suspend_lock);
1625 	if (!dm_suspended(md))
1626 		goto out;
1627 
1628 	map = dm_get_table(md);
1629 	if (!map || !dm_table_get_size(map))
1630 		goto out;
1631 
1632 	r = dm_table_resume_targets(map);
1633 	if (r)
1634 		goto out;
1635 
1636 	dm_queue_flush(md);
1637 
1638 	unlock_fs(md);
1639 
1640 	if (md->suspended_bdev) {
1641 		bdput(md->suspended_bdev);
1642 		md->suspended_bdev = NULL;
1643 	}
1644 
1645 	clear_bit(DMF_SUSPENDED, &md->flags);
1646 
1647 	dm_table_unplug_all(map);
1648 
1649 	dm_kobject_uevent(md);
1650 
1651 	r = 0;
1652 
1653 out:
1654 	dm_table_put(map);
1655 	mutex_unlock(&md->suspend_lock);
1656 
1657 	return r;
1658 }
1659 
1660 /*-----------------------------------------------------------------
1661  * Event notification.
1662  *---------------------------------------------------------------*/
1663 void dm_kobject_uevent(struct mapped_device *md)
1664 {
1665 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1666 }
1667 
1668 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1669 {
1670 	return atomic_add_return(1, &md->uevent_seq);
1671 }
1672 
1673 uint32_t dm_get_event_nr(struct mapped_device *md)
1674 {
1675 	return atomic_read(&md->event_nr);
1676 }
1677 
1678 int dm_wait_event(struct mapped_device *md, int event_nr)
1679 {
1680 	return wait_event_interruptible(md->eventq,
1681 			(event_nr != atomic_read(&md->event_nr)));
1682 }
1683 
1684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1685 {
1686 	unsigned long flags;
1687 
1688 	spin_lock_irqsave(&md->uevent_lock, flags);
1689 	list_add(elist, &md->uevent_list);
1690 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1691 }
1692 
1693 /*
1694  * The gendisk is only valid as long as you have a reference
1695  * count on 'md'.
1696  */
1697 struct gendisk *dm_disk(struct mapped_device *md)
1698 {
1699 	return md->disk;
1700 }
1701 
1702 struct kobject *dm_kobject(struct mapped_device *md)
1703 {
1704 	return &md->kobj;
1705 }
1706 
1707 /*
1708  * struct mapped_device should not be exported outside of dm.c
1709  * so use this check to verify that kobj is part of md structure
1710  */
1711 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1712 {
1713 	struct mapped_device *md;
1714 
1715 	md = container_of(kobj, struct mapped_device, kobj);
1716 	if (&md->kobj != kobj)
1717 		return NULL;
1718 
1719 	dm_get(md);
1720 	return md;
1721 }
1722 
1723 int dm_suspended(struct mapped_device *md)
1724 {
1725 	return test_bit(DMF_SUSPENDED, &md->flags);
1726 }
1727 
1728 int dm_noflush_suspending(struct dm_target *ti)
1729 {
1730 	struct mapped_device *md = dm_table_get_md(ti->table);
1731 	int r = __noflush_suspending(md);
1732 
1733 	dm_put(md);
1734 
1735 	return r;
1736 }
1737 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1738 
1739 static struct block_device_operations dm_blk_dops = {
1740 	.open = dm_blk_open,
1741 	.release = dm_blk_close,
1742 	.ioctl = dm_blk_ioctl,
1743 	.getgeo = dm_blk_getgeo,
1744 	.owner = THIS_MODULE
1745 };
1746 
1747 EXPORT_SYMBOL(dm_get_mapinfo);
1748 
1749 /*
1750  * module hooks
1751  */
1752 module_init(dm_init);
1753 module_exit(dm_exit);
1754 
1755 module_param(major, uint, 0);
1756 MODULE_PARM_DESC(major, "The major number of the device mapper");
1757 MODULE_DESCRIPTION(DM_NAME " driver");
1758 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1759 MODULE_LICENSE("GPL");
1760