xref: /openbmc/linux/drivers/md/dm.c (revision 655f3aad7aa4858d06cdaca6c4b14635cc3c0eba)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO.
542 	 */
543 	if (!clone ||
544 	    likely(!dm_tio_flagged(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO))) {
545 		if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED)))
546 			return;
547 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
548 	} else {
549 		unsigned long flags;
550 		if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 			return;
552 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 		spin_lock_irqsave(&io->startio_lock, flags);
554 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 		spin_unlock_irqrestore(&io->startio_lock, flags);
556 	}
557 
558 	__dm_start_io_acct(io, bio);
559 }
560 
561 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
562 {
563 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
564 }
565 
566 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
567 {
568 	struct dm_io *io;
569 	struct dm_target_io *tio;
570 	struct bio *clone;
571 
572 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
573 
574 	tio = clone_to_tio(clone);
575 	tio->flags = 0;
576 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
577 	tio->io = NULL;
578 
579 	io = container_of(tio, struct dm_io, tio);
580 	io->magic = DM_IO_MAGIC;
581 	io->status = 0;
582 	atomic_set(&io->io_count, 1);
583 	this_cpu_inc(*md->pending_io);
584 	io->orig_bio = NULL;
585 	io->md = md;
586 	io->map_task = current;
587 	spin_lock_init(&io->startio_lock);
588 	spin_lock_init(&io->endio_lock);
589 	io->start_time = jiffies;
590 	io->flags = 0;
591 
592 	dm_stats_record_start(&md->stats, &io->stats_aux);
593 
594 	return io;
595 }
596 
597 static void free_io(struct dm_io *io)
598 {
599 	bio_put(&io->tio.clone);
600 }
601 
602 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
603 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
604 {
605 	struct dm_target_io *tio;
606 	struct bio *clone;
607 
608 	if (!ci->io->tio.io) {
609 		/* the dm_target_io embedded in ci->io is available */
610 		tio = &ci->io->tio;
611 		/* alloc_io() already initialized embedded clone */
612 		clone = &tio->clone;
613 	} else {
614 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
615 					gfp_mask, &ci->io->md->bs);
616 		if (!clone)
617 			return NULL;
618 
619 		/* REQ_DM_POLL_LIST shouldn't be inherited */
620 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
621 
622 		tio = clone_to_tio(clone);
623 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
624 	}
625 
626 	tio->magic = DM_TIO_MAGIC;
627 	tio->io = ci->io;
628 	tio->ti = ti;
629 	tio->target_bio_nr = target_bio_nr;
630 	tio->len_ptr = len;
631 	tio->old_sector = 0;
632 
633 	if (len) {
634 		clone->bi_iter.bi_size = to_bytes(*len);
635 		if (bio_integrity(clone))
636 			bio_integrity_trim(clone);
637 	}
638 
639 	return clone;
640 }
641 
642 static void free_tio(struct bio *clone)
643 {
644 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
645 		return;
646 	bio_put(clone);
647 }
648 
649 /*
650  * Add the bio to the list of deferred io.
651  */
652 static void queue_io(struct mapped_device *md, struct bio *bio)
653 {
654 	unsigned long flags;
655 
656 	spin_lock_irqsave(&md->deferred_lock, flags);
657 	bio_list_add(&md->deferred, bio);
658 	spin_unlock_irqrestore(&md->deferred_lock, flags);
659 	queue_work(md->wq, &md->work);
660 }
661 
662 /*
663  * Everyone (including functions in this file), should use this
664  * function to access the md->map field, and make sure they call
665  * dm_put_live_table() when finished.
666  */
667 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
668 {
669 	*srcu_idx = srcu_read_lock(&md->io_barrier);
670 
671 	return srcu_dereference(md->map, &md->io_barrier);
672 }
673 
674 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
675 {
676 	srcu_read_unlock(&md->io_barrier, srcu_idx);
677 }
678 
679 void dm_sync_table(struct mapped_device *md)
680 {
681 	synchronize_srcu(&md->io_barrier);
682 	synchronize_rcu_expedited();
683 }
684 
685 /*
686  * A fast alternative to dm_get_live_table/dm_put_live_table.
687  * The caller must not block between these two functions.
688  */
689 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
690 {
691 	rcu_read_lock();
692 	return rcu_dereference(md->map);
693 }
694 
695 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
696 {
697 	rcu_read_unlock();
698 }
699 
700 static char *_dm_claim_ptr = "I belong to device-mapper";
701 
702 /*
703  * Open a table device so we can use it as a map destination.
704  */
705 static int open_table_device(struct table_device *td, dev_t dev,
706 			     struct mapped_device *md)
707 {
708 	struct block_device *bdev;
709 	u64 part_off;
710 	int r;
711 
712 	BUG_ON(td->dm_dev.bdev);
713 
714 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
715 	if (IS_ERR(bdev))
716 		return PTR_ERR(bdev);
717 
718 	r = bd_link_disk_holder(bdev, dm_disk(md));
719 	if (r) {
720 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
721 		return r;
722 	}
723 
724 	td->dm_dev.bdev = bdev;
725 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
726 	return 0;
727 }
728 
729 /*
730  * Close a table device that we've been using.
731  */
732 static void close_table_device(struct table_device *td, struct mapped_device *md)
733 {
734 	if (!td->dm_dev.bdev)
735 		return;
736 
737 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
738 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
739 	put_dax(td->dm_dev.dax_dev);
740 	td->dm_dev.bdev = NULL;
741 	td->dm_dev.dax_dev = NULL;
742 }
743 
744 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
745 					      fmode_t mode)
746 {
747 	struct table_device *td;
748 
749 	list_for_each_entry(td, l, list)
750 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
751 			return td;
752 
753 	return NULL;
754 }
755 
756 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
757 			struct dm_dev **result)
758 {
759 	int r;
760 	struct table_device *td;
761 
762 	mutex_lock(&md->table_devices_lock);
763 	td = find_table_device(&md->table_devices, dev, mode);
764 	if (!td) {
765 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 		if (!td) {
767 			mutex_unlock(&md->table_devices_lock);
768 			return -ENOMEM;
769 		}
770 
771 		td->dm_dev.mode = mode;
772 		td->dm_dev.bdev = NULL;
773 
774 		if ((r = open_table_device(td, dev, md))) {
775 			mutex_unlock(&md->table_devices_lock);
776 			kfree(td);
777 			return r;
778 		}
779 
780 		format_dev_t(td->dm_dev.name, dev);
781 
782 		refcount_set(&td->count, 1);
783 		list_add(&td->list, &md->table_devices);
784 	} else {
785 		refcount_inc(&td->count);
786 	}
787 	mutex_unlock(&md->table_devices_lock);
788 
789 	*result = &td->dm_dev;
790 	return 0;
791 }
792 
793 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
794 {
795 	struct table_device *td = container_of(d, struct table_device, dm_dev);
796 
797 	mutex_lock(&md->table_devices_lock);
798 	if (refcount_dec_and_test(&td->count)) {
799 		close_table_device(td, md);
800 		list_del(&td->list);
801 		kfree(td);
802 	}
803 	mutex_unlock(&md->table_devices_lock);
804 }
805 
806 static void free_table_devices(struct list_head *devices)
807 {
808 	struct list_head *tmp, *next;
809 
810 	list_for_each_safe(tmp, next, devices) {
811 		struct table_device *td = list_entry(tmp, struct table_device, list);
812 
813 		DMWARN("dm_destroy: %s still exists with %d references",
814 		       td->dm_dev.name, refcount_read(&td->count));
815 		kfree(td);
816 	}
817 }
818 
819 /*
820  * Get the geometry associated with a dm device
821  */
822 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
823 {
824 	*geo = md->geometry;
825 
826 	return 0;
827 }
828 
829 /*
830  * Set the geometry of a device.
831  */
832 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
833 {
834 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
835 
836 	if (geo->start > sz) {
837 		DMWARN("Start sector is beyond the geometry limits.");
838 		return -EINVAL;
839 	}
840 
841 	md->geometry = *geo;
842 
843 	return 0;
844 }
845 
846 static int __noflush_suspending(struct mapped_device *md)
847 {
848 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
849 }
850 
851 static void dm_io_complete(struct dm_io *io)
852 {
853 	blk_status_t io_error;
854 	struct mapped_device *md = io->md;
855 	struct bio *bio = io->orig_bio;
856 
857 	if (io->status == BLK_STS_DM_REQUEUE) {
858 		unsigned long flags;
859 		/*
860 		 * Target requested pushing back the I/O.
861 		 */
862 		spin_lock_irqsave(&md->deferred_lock, flags);
863 		if (__noflush_suspending(md) &&
864 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
865 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
866 			bio_list_add_head(&md->deferred, bio);
867 		} else {
868 			/*
869 			 * noflush suspend was interrupted or this is
870 			 * a write to a zoned target.
871 			 */
872 			io->status = BLK_STS_IOERR;
873 		}
874 		spin_unlock_irqrestore(&md->deferred_lock, flags);
875 	}
876 
877 	io_error = io->status;
878 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
879 		dm_end_io_acct(io, bio);
880 	else if (!io_error) {
881 		/*
882 		 * Must handle target that DM_MAPIO_SUBMITTED only to
883 		 * then bio_endio() rather than dm_submit_bio_remap()
884 		 */
885 		__dm_start_io_acct(io, bio);
886 		dm_end_io_acct(io, bio);
887 	}
888 	free_io(io);
889 	smp_wmb();
890 	this_cpu_dec(*md->pending_io);
891 
892 	/* nudge anyone waiting on suspend queue */
893 	if (unlikely(wq_has_sleeper(&md->wait)))
894 		wake_up(&md->wait);
895 
896 	if (io_error == BLK_STS_DM_REQUEUE) {
897 		/*
898 		 * Upper layer won't help us poll split bio, io->orig_bio
899 		 * may only reflect a subset of the pre-split original,
900 		 * so clear REQ_POLLED in case of requeue
901 		 */
902 		bio->bi_opf &= ~REQ_POLLED;
903 		return;
904 	}
905 
906 	if (bio_is_flush_with_data(bio)) {
907 		/*
908 		 * Preflush done for flush with data, reissue
909 		 * without REQ_PREFLUSH.
910 		 */
911 		bio->bi_opf &= ~REQ_PREFLUSH;
912 		queue_io(md, bio);
913 	} else {
914 		/* done with normal IO or empty flush */
915 		if (io_error)
916 			bio->bi_status = io_error;
917 		bio_endio(bio);
918 	}
919 }
920 
921 static inline bool dm_tio_is_normal(struct dm_target_io *tio)
922 {
923 	return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) &&
924 		!dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
925 }
926 
927 /*
928  * Decrements the number of outstanding ios that a bio has been
929  * cloned into, completing the original io if necc.
930  */
931 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
932 {
933 	/* Push-back supersedes any I/O errors */
934 	if (unlikely(error)) {
935 		unsigned long flags;
936 		spin_lock_irqsave(&io->endio_lock, flags);
937 		if (!(io->status == BLK_STS_DM_REQUEUE &&
938 		      __noflush_suspending(io->md)))
939 			io->status = error;
940 		spin_unlock_irqrestore(&io->endio_lock, flags);
941 	}
942 
943 	if (atomic_dec_and_test(&io->io_count))
944 		dm_io_complete(io);
945 }
946 
947 void disable_discard(struct mapped_device *md)
948 {
949 	struct queue_limits *limits = dm_get_queue_limits(md);
950 
951 	/* device doesn't really support DISCARD, disable it */
952 	limits->max_discard_sectors = 0;
953 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
954 }
955 
956 void disable_write_same(struct mapped_device *md)
957 {
958 	struct queue_limits *limits = dm_get_queue_limits(md);
959 
960 	/* device doesn't really support WRITE SAME, disable it */
961 	limits->max_write_same_sectors = 0;
962 }
963 
964 void disable_write_zeroes(struct mapped_device *md)
965 {
966 	struct queue_limits *limits = dm_get_queue_limits(md);
967 
968 	/* device doesn't really support WRITE ZEROES, disable it */
969 	limits->max_write_zeroes_sectors = 0;
970 }
971 
972 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
973 {
974 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
975 }
976 
977 static void clone_endio(struct bio *bio)
978 {
979 	blk_status_t error = bio->bi_status;
980 	struct dm_target_io *tio = clone_to_tio(bio);
981 	struct dm_io *io = tio->io;
982 	struct mapped_device *md = tio->io->md;
983 	dm_endio_fn endio = tio->ti->type->end_io;
984 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
985 
986 	if (unlikely(error == BLK_STS_TARGET)) {
987 		if (bio_op(bio) == REQ_OP_DISCARD &&
988 		    !q->limits.max_discard_sectors)
989 			disable_discard(md);
990 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
991 			 !q->limits.max_write_same_sectors)
992 			disable_write_same(md);
993 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
994 			 !q->limits.max_write_zeroes_sectors)
995 			disable_write_zeroes(md);
996 	}
997 
998 	if (blk_queue_is_zoned(q))
999 		dm_zone_endio(io, bio);
1000 
1001 	if (endio) {
1002 		int r = endio(tio->ti, bio, &error);
1003 		switch (r) {
1004 		case DM_ENDIO_REQUEUE:
1005 			/*
1006 			 * Requeuing writes to a sequential zone of a zoned
1007 			 * target will break the sequential write pattern:
1008 			 * fail such IO.
1009 			 */
1010 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1011 				error = BLK_STS_IOERR;
1012 			else
1013 				error = BLK_STS_DM_REQUEUE;
1014 			fallthrough;
1015 		case DM_ENDIO_DONE:
1016 			break;
1017 		case DM_ENDIO_INCOMPLETE:
1018 			/* The target will handle the io */
1019 			return;
1020 		default:
1021 			DMWARN("unimplemented target endio return value: %d", r);
1022 			BUG();
1023 		}
1024 	}
1025 
1026 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1027 		struct mapped_device *md = io->md;
1028 		up(&md->swap_bios_semaphore);
1029 	}
1030 
1031 	free_tio(bio);
1032 	dm_io_dec_pending(io, error);
1033 }
1034 
1035 /*
1036  * Return maximum size of I/O possible at the supplied sector up to the current
1037  * target boundary.
1038  */
1039 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1040 						  sector_t target_offset)
1041 {
1042 	return ti->len - target_offset;
1043 }
1044 
1045 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1046 {
1047 	sector_t target_offset = dm_target_offset(ti, sector);
1048 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1049 	sector_t max_len;
1050 
1051 	/*
1052 	 * Does the target need to split IO even further?
1053 	 * - varied (per target) IO splitting is a tenet of DM; this
1054 	 *   explains why stacked chunk_sectors based splitting via
1055 	 *   blk_max_size_offset() isn't possible here. So pass in
1056 	 *   ti->max_io_len to override stacked chunk_sectors.
1057 	 */
1058 	if (ti->max_io_len) {
1059 		max_len = blk_max_size_offset(ti->table->md->queue,
1060 					      target_offset, ti->max_io_len);
1061 		if (len > max_len)
1062 			len = max_len;
1063 	}
1064 
1065 	return len;
1066 }
1067 
1068 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1069 {
1070 	if (len > UINT_MAX) {
1071 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1072 		      (unsigned long long)len, UINT_MAX);
1073 		ti->error = "Maximum size of target IO is too large";
1074 		return -EINVAL;
1075 	}
1076 
1077 	ti->max_io_len = (uint32_t) len;
1078 
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1082 
1083 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1084 						sector_t sector, int *srcu_idx)
1085 	__acquires(md->io_barrier)
1086 {
1087 	struct dm_table *map;
1088 	struct dm_target *ti;
1089 
1090 	map = dm_get_live_table(md, srcu_idx);
1091 	if (!map)
1092 		return NULL;
1093 
1094 	ti = dm_table_find_target(map, sector);
1095 	if (!ti)
1096 		return NULL;
1097 
1098 	return ti;
1099 }
1100 
1101 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1102 				 long nr_pages, void **kaddr, pfn_t *pfn)
1103 {
1104 	struct mapped_device *md = dax_get_private(dax_dev);
1105 	sector_t sector = pgoff * PAGE_SECTORS;
1106 	struct dm_target *ti;
1107 	long len, ret = -EIO;
1108 	int srcu_idx;
1109 
1110 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1111 
1112 	if (!ti)
1113 		goto out;
1114 	if (!ti->type->direct_access)
1115 		goto out;
1116 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1117 	if (len < 1)
1118 		goto out;
1119 	nr_pages = min(len, nr_pages);
1120 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1121 
1122  out:
1123 	dm_put_live_table(md, srcu_idx);
1124 
1125 	return ret;
1126 }
1127 
1128 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1129 				  size_t nr_pages)
1130 {
1131 	struct mapped_device *md = dax_get_private(dax_dev);
1132 	sector_t sector = pgoff * PAGE_SECTORS;
1133 	struct dm_target *ti;
1134 	int ret = -EIO;
1135 	int srcu_idx;
1136 
1137 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1138 
1139 	if (!ti)
1140 		goto out;
1141 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1142 		/*
1143 		 * ->zero_page_range() is mandatory dax operation. If we are
1144 		 *  here, something is wrong.
1145 		 */
1146 		goto out;
1147 	}
1148 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1149  out:
1150 	dm_put_live_table(md, srcu_idx);
1151 
1152 	return ret;
1153 }
1154 
1155 /*
1156  * A target may call dm_accept_partial_bio only from the map routine.  It is
1157  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1158  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1159  * __send_duplicate_bios().
1160  *
1161  * dm_accept_partial_bio informs the dm that the target only wants to process
1162  * additional n_sectors sectors of the bio and the rest of the data should be
1163  * sent in a next bio.
1164  *
1165  * A diagram that explains the arithmetics:
1166  * +--------------------+---------------+-------+
1167  * |         1          |       2       |   3   |
1168  * +--------------------+---------------+-------+
1169  *
1170  * <-------------- *tio->len_ptr --------------->
1171  *                      <------- bi_size ------->
1172  *                      <-- n_sectors -->
1173  *
1174  * Region 1 was already iterated over with bio_advance or similar function.
1175  *	(it may be empty if the target doesn't use bio_advance)
1176  * Region 2 is the remaining bio size that the target wants to process.
1177  *	(it may be empty if region 1 is non-empty, although there is no reason
1178  *	 to make it empty)
1179  * The target requires that region 3 is to be sent in the next bio.
1180  *
1181  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1182  * the partially processed part (the sum of regions 1+2) must be the same for all
1183  * copies of the bio.
1184  */
1185 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1186 {
1187 	struct dm_target_io *tio = clone_to_tio(bio);
1188 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1189 
1190 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1191 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1192 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1193 	BUG_ON(bi_size > *tio->len_ptr);
1194 	BUG_ON(n_sectors > bi_size);
1195 
1196 	*tio->len_ptr -= bi_size - n_sectors;
1197 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1198 }
1199 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1200 
1201 static inline void __dm_submit_bio_remap(struct bio *clone,
1202 					 dev_t dev, sector_t old_sector)
1203 {
1204 	trace_block_bio_remap(clone, dev, old_sector);
1205 	submit_bio_noacct(clone);
1206 }
1207 
1208 /*
1209  * @clone: clone bio that DM core passed to target's .map function
1210  * @tgt_clone: clone of @clone bio that target needs submitted
1211  *
1212  * Targets should use this interface to submit bios they take
1213  * ownership of when returning DM_MAPIO_SUBMITTED.
1214  *
1215  * Target should also enable ti->accounts_remapped_io
1216  */
1217 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1218 {
1219 	struct dm_target_io *tio = clone_to_tio(clone);
1220 	struct dm_io *io = tio->io;
1221 
1222 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1223 
1224 	/* establish bio that will get submitted */
1225 	if (!tgt_clone)
1226 		tgt_clone = clone;
1227 
1228 	/*
1229 	 * Account io->origin_bio to DM dev on behalf of target
1230 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1231 	 */
1232 	if (io->map_task == current) {
1233 		/* Still in target's map function */
1234 		dm_io_set_flag(io, DM_IO_START_ACCT);
1235 	} else {
1236 		/*
1237 		 * Called by another thread, managed by DM target,
1238 		 * wait for dm_split_and_process_bio() to store
1239 		 * io->orig_bio
1240 		 */
1241 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1242 			msleep(1);
1243 		dm_start_io_acct(io, clone);
1244 	}
1245 
1246 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1247 			      tio->old_sector);
1248 }
1249 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1250 
1251 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1252 {
1253 	mutex_lock(&md->swap_bios_lock);
1254 	while (latch < md->swap_bios) {
1255 		cond_resched();
1256 		down(&md->swap_bios_semaphore);
1257 		md->swap_bios--;
1258 	}
1259 	while (latch > md->swap_bios) {
1260 		cond_resched();
1261 		up(&md->swap_bios_semaphore);
1262 		md->swap_bios++;
1263 	}
1264 	mutex_unlock(&md->swap_bios_lock);
1265 }
1266 
1267 static void __map_bio(struct bio *clone)
1268 {
1269 	struct dm_target_io *tio = clone_to_tio(clone);
1270 	int r;
1271 	struct dm_io *io = tio->io;
1272 	struct dm_target *ti = tio->ti;
1273 
1274 	clone->bi_end_io = clone_endio;
1275 
1276 	/*
1277 	 * Map the clone.
1278 	 */
1279 	dm_io_inc_pending(io);
1280 	tio->old_sector = clone->bi_iter.bi_sector;
1281 
1282 	if (unlikely(swap_bios_limit(ti, clone))) {
1283 		struct mapped_device *md = io->md;
1284 		int latch = get_swap_bios();
1285 		if (unlikely(latch != md->swap_bios))
1286 			__set_swap_bios_limit(md, latch);
1287 		down(&md->swap_bios_semaphore);
1288 	}
1289 
1290 	/*
1291 	 * Check if the IO needs a special mapping due to zone append emulation
1292 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1293 	 * map operation.
1294 	 */
1295 	if (dm_emulate_zone_append(io->md))
1296 		r = dm_zone_map_bio(tio);
1297 	else
1298 		r = ti->type->map(ti, clone);
1299 
1300 	switch (r) {
1301 	case DM_MAPIO_SUBMITTED:
1302 		/* target has assumed ownership of this io */
1303 		if (!ti->accounts_remapped_io)
1304 			dm_io_set_flag(io, DM_IO_START_ACCT);
1305 		break;
1306 	case DM_MAPIO_REMAPPED:
1307 		/*
1308 		 * the bio has been remapped so dispatch it, but defer
1309 		 * dm_start_io_acct() until after possible bio_split().
1310 		 */
1311 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1312 				      tio->old_sector);
1313 		dm_io_set_flag(io, DM_IO_START_ACCT);
1314 		break;
1315 	case DM_MAPIO_KILL:
1316 	case DM_MAPIO_REQUEUE:
1317 		if (unlikely(swap_bios_limit(ti, clone)))
1318 			up(&io->md->swap_bios_semaphore);
1319 		free_tio(clone);
1320 		if (r == DM_MAPIO_KILL)
1321 			dm_io_dec_pending(io, BLK_STS_IOERR);
1322 		else
1323 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1324 		break;
1325 	default:
1326 		DMWARN("unimplemented target map return value: %d", r);
1327 		BUG();
1328 	}
1329 }
1330 
1331 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1332 				struct dm_target *ti, unsigned num_bios,
1333 				unsigned *len)
1334 {
1335 	struct bio *bio;
1336 	int try;
1337 
1338 	for (try = 0; try < 2; try++) {
1339 		int bio_nr;
1340 
1341 		if (try)
1342 			mutex_lock(&ci->io->md->table_devices_lock);
1343 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1344 			bio = alloc_tio(ci, ti, bio_nr, len,
1345 					try ? GFP_NOIO : GFP_NOWAIT);
1346 			if (!bio)
1347 				break;
1348 
1349 			bio_list_add(blist, bio);
1350 		}
1351 		if (try)
1352 			mutex_unlock(&ci->io->md->table_devices_lock);
1353 		if (bio_nr == num_bios)
1354 			return;
1355 
1356 		while ((bio = bio_list_pop(blist)))
1357 			free_tio(bio);
1358 	}
1359 }
1360 
1361 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1362 				  unsigned num_bios, unsigned *len)
1363 {
1364 	struct bio_list blist = BIO_EMPTY_LIST;
1365 	struct bio *clone;
1366 
1367 	switch (num_bios) {
1368 	case 0:
1369 		break;
1370 	case 1:
1371 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1372 		dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1373 		__map_bio(clone);
1374 		break;
1375 	default:
1376 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1377 		while ((clone = bio_list_pop(&blist))) {
1378 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1379 			__map_bio(clone);
1380 		}
1381 		break;
1382 	}
1383 }
1384 
1385 static void __send_empty_flush(struct clone_info *ci)
1386 {
1387 	unsigned target_nr = 0;
1388 	struct dm_target *ti;
1389 	struct bio flush_bio;
1390 
1391 	/*
1392 	 * Use an on-stack bio for this, it's safe since we don't
1393 	 * need to reference it after submit. It's just used as
1394 	 * the basis for the clone(s).
1395 	 */
1396 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1397 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1398 
1399 	ci->bio = &flush_bio;
1400 	ci->sector_count = 0;
1401 
1402 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1403 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1404 
1405 	bio_uninit(ci->bio);
1406 }
1407 
1408 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1409 					unsigned num_bios)
1410 {
1411 	unsigned len;
1412 
1413 	len = min_t(sector_t, ci->sector_count,
1414 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1415 
1416 	/*
1417 	 * dm_accept_partial_bio cannot be used with duplicate bios,
1418 	 * so update clone_info cursor before __send_duplicate_bios().
1419 	 */
1420 	ci->sector += len;
1421 	ci->sector_count -= len;
1422 
1423 	__send_duplicate_bios(ci, ti, num_bios, &len);
1424 }
1425 
1426 static bool is_abnormal_io(struct bio *bio)
1427 {
1428 	bool r = false;
1429 
1430 	switch (bio_op(bio)) {
1431 	case REQ_OP_DISCARD:
1432 	case REQ_OP_SECURE_ERASE:
1433 	case REQ_OP_WRITE_SAME:
1434 	case REQ_OP_WRITE_ZEROES:
1435 		r = true;
1436 		break;
1437 	}
1438 
1439 	return r;
1440 }
1441 
1442 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1443 				  int *result)
1444 {
1445 	unsigned num_bios = 0;
1446 
1447 	switch (bio_op(ci->bio)) {
1448 	case REQ_OP_DISCARD:
1449 		num_bios = ti->num_discard_bios;
1450 		break;
1451 	case REQ_OP_SECURE_ERASE:
1452 		num_bios = ti->num_secure_erase_bios;
1453 		break;
1454 	case REQ_OP_WRITE_SAME:
1455 		num_bios = ti->num_write_same_bios;
1456 		break;
1457 	case REQ_OP_WRITE_ZEROES:
1458 		num_bios = ti->num_write_zeroes_bios;
1459 		break;
1460 	default:
1461 		return false;
1462 	}
1463 
1464 	/*
1465 	 * Even though the device advertised support for this type of
1466 	 * request, that does not mean every target supports it, and
1467 	 * reconfiguration might also have changed that since the
1468 	 * check was performed.
1469 	 */
1470 	if (!num_bios)
1471 		*result = -EOPNOTSUPP;
1472 	else {
1473 		__send_changing_extent_only(ci, ti, num_bios);
1474 		*result = 0;
1475 	}
1476 	return true;
1477 }
1478 
1479 /*
1480  * Reuse ->bi_private as hlist head for storing all dm_io instances
1481  * associated with this bio, and this bio's bi_private needs to be
1482  * stored in dm_io->data before the reuse.
1483  *
1484  * bio->bi_private is owned by fs or upper layer, so block layer won't
1485  * touch it after splitting. Meantime it won't be changed by anyone after
1486  * bio is submitted. So this reuse is safe.
1487  */
1488 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1489 {
1490 	return (struct hlist_head *)&bio->bi_private;
1491 }
1492 
1493 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1494 {
1495 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1496 
1497 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1498 		bio->bi_opf |= REQ_DM_POLL_LIST;
1499 		/*
1500 		 * Save .bi_private into dm_io, so that we can reuse
1501 		 * .bi_private as hlist head for storing dm_io list
1502 		 */
1503 		io->data = bio->bi_private;
1504 
1505 		INIT_HLIST_HEAD(head);
1506 
1507 		/* tell block layer to poll for completion */
1508 		bio->bi_cookie = ~BLK_QC_T_NONE;
1509 	} else {
1510 		/*
1511 		 * bio recursed due to split, reuse original poll list,
1512 		 * and save bio->bi_private too.
1513 		 */
1514 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1515 	}
1516 
1517 	hlist_add_head(&io->node, head);
1518 }
1519 
1520 /*
1521  * Select the correct strategy for processing a non-flush bio.
1522  */
1523 static int __split_and_process_bio(struct clone_info *ci)
1524 {
1525 	struct bio *clone;
1526 	struct dm_target *ti;
1527 	unsigned len;
1528 	int r;
1529 
1530 	ti = dm_table_find_target(ci->map, ci->sector);
1531 	if (!ti)
1532 		return -EIO;
1533 
1534 	if (__process_abnormal_io(ci, ti, &r))
1535 		return r;
1536 
1537 	/*
1538 	 * Only support bio polling for normal IO, and the target io is
1539 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1540 	 */
1541 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1542 
1543 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1544 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1545 	__map_bio(clone);
1546 
1547 	ci->sector += len;
1548 	ci->sector_count -= len;
1549 
1550 	return 0;
1551 }
1552 
1553 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1554 			    struct dm_table *map, struct bio *bio)
1555 {
1556 	ci->map = map;
1557 	ci->io = alloc_io(md, bio);
1558 	ci->bio = bio;
1559 	ci->submit_as_polled = false;
1560 	ci->sector = bio->bi_iter.bi_sector;
1561 	ci->sector_count = bio_sectors(bio);
1562 
1563 	/* Shouldn't happen but sector_count was being set to 0 so... */
1564 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1565 		ci->sector_count = 0;
1566 }
1567 
1568 /*
1569  * Entry point to split a bio into clones and submit them to the targets.
1570  */
1571 static void dm_split_and_process_bio(struct mapped_device *md,
1572 				     struct dm_table *map, struct bio *bio)
1573 {
1574 	struct clone_info ci;
1575 	struct bio *orig_bio = NULL;
1576 	int error = 0;
1577 
1578 	init_clone_info(&ci, md, map, bio);
1579 
1580 	if (bio->bi_opf & REQ_PREFLUSH) {
1581 		__send_empty_flush(&ci);
1582 		/* dm_io_complete submits any data associated with flush */
1583 		goto out;
1584 	}
1585 
1586 	error = __split_and_process_bio(&ci);
1587 	ci.io->map_task = NULL;
1588 	if (error || !ci.sector_count)
1589 		goto out;
1590 
1591 	/*
1592 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1593 	 * *after* bios already submitted have been completely processed.
1594 	 * We take a clone of the original to store in ci.io->orig_bio to be
1595 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1596 	 * completion handling.
1597 	 */
1598 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1599 			     GFP_NOIO, &md->queue->bio_split);
1600 	bio_chain(orig_bio, bio);
1601 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1602 	submit_bio_noacct(bio);
1603 out:
1604 	if (!orig_bio)
1605 		orig_bio = bio;
1606 	smp_store_release(&ci.io->orig_bio, orig_bio);
1607 	if (dm_io_flagged(ci.io, DM_IO_START_ACCT))
1608 		dm_start_io_acct(ci.io, NULL);
1609 
1610 	/*
1611 	 * Drop the extra reference count for non-POLLED bio, and hold one
1612 	 * reference for POLLED bio, which will be released in dm_poll_bio
1613 	 *
1614 	 * Add every dm_io instance into the hlist_head which is stored in
1615 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1616 	 */
1617 	if (error || !ci.submit_as_polled)
1618 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1619 	else
1620 		dm_queue_poll_io(bio, ci.io);
1621 }
1622 
1623 static void dm_submit_bio(struct bio *bio)
1624 {
1625 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1626 	int srcu_idx;
1627 	struct dm_table *map;
1628 
1629 	map = dm_get_live_table(md, &srcu_idx);
1630 
1631 	/* If suspended, or map not yet available, queue this IO for later */
1632 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1633 	    unlikely(!map)) {
1634 		if (bio->bi_opf & REQ_NOWAIT)
1635 			bio_wouldblock_error(bio);
1636 		else if (bio->bi_opf & REQ_RAHEAD)
1637 			bio_io_error(bio);
1638 		else
1639 			queue_io(md, bio);
1640 		goto out;
1641 	}
1642 
1643 	/*
1644 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1645 	 * otherwise associated queue_limits won't be imposed.
1646 	 */
1647 	if (is_abnormal_io(bio))
1648 		blk_queue_split(&bio);
1649 
1650 	dm_split_and_process_bio(md, map, bio);
1651 out:
1652 	dm_put_live_table(md, srcu_idx);
1653 }
1654 
1655 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1656 			  unsigned int flags)
1657 {
1658 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1659 
1660 	/* don't poll if the mapped io is done */
1661 	if (atomic_read(&io->io_count) > 1)
1662 		bio_poll(&io->tio.clone, iob, flags);
1663 
1664 	/* bio_poll holds the last reference */
1665 	return atomic_read(&io->io_count) == 1;
1666 }
1667 
1668 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1669 		       unsigned int flags)
1670 {
1671 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1672 	struct hlist_head tmp = HLIST_HEAD_INIT;
1673 	struct hlist_node *next;
1674 	struct dm_io *io;
1675 
1676 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1677 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1678 		return 0;
1679 
1680 	WARN_ON_ONCE(hlist_empty(head));
1681 
1682 	hlist_move_list(head, &tmp);
1683 
1684 	/*
1685 	 * Restore .bi_private before possibly completing dm_io.
1686 	 *
1687 	 * bio_poll() is only possible once @bio has been completely
1688 	 * submitted via submit_bio_noacct()'s depth-first submission.
1689 	 * So there is no dm_queue_poll_io() race associated with
1690 	 * clearing REQ_DM_POLL_LIST here.
1691 	 */
1692 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1693 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1694 
1695 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1696 		if (dm_poll_dm_io(io, iob, flags)) {
1697 			hlist_del_init(&io->node);
1698 			/*
1699 			 * clone_endio() has already occurred, so passing
1700 			 * error as 0 here doesn't override io->status
1701 			 */
1702 			dm_io_dec_pending(io, 0);
1703 		}
1704 	}
1705 
1706 	/* Not done? */
1707 	if (!hlist_empty(&tmp)) {
1708 		bio->bi_opf |= REQ_DM_POLL_LIST;
1709 		/* Reset bio->bi_private to dm_io list head */
1710 		hlist_move_list(&tmp, head);
1711 		return 0;
1712 	}
1713 	return 1;
1714 }
1715 
1716 /*-----------------------------------------------------------------
1717  * An IDR is used to keep track of allocated minor numbers.
1718  *---------------------------------------------------------------*/
1719 static void free_minor(int minor)
1720 {
1721 	spin_lock(&_minor_lock);
1722 	idr_remove(&_minor_idr, minor);
1723 	spin_unlock(&_minor_lock);
1724 }
1725 
1726 /*
1727  * See if the device with a specific minor # is free.
1728  */
1729 static int specific_minor(int minor)
1730 {
1731 	int r;
1732 
1733 	if (minor >= (1 << MINORBITS))
1734 		return -EINVAL;
1735 
1736 	idr_preload(GFP_KERNEL);
1737 	spin_lock(&_minor_lock);
1738 
1739 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1740 
1741 	spin_unlock(&_minor_lock);
1742 	idr_preload_end();
1743 	if (r < 0)
1744 		return r == -ENOSPC ? -EBUSY : r;
1745 	return 0;
1746 }
1747 
1748 static int next_free_minor(int *minor)
1749 {
1750 	int r;
1751 
1752 	idr_preload(GFP_KERNEL);
1753 	spin_lock(&_minor_lock);
1754 
1755 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1756 
1757 	spin_unlock(&_minor_lock);
1758 	idr_preload_end();
1759 	if (r < 0)
1760 		return r;
1761 	*minor = r;
1762 	return 0;
1763 }
1764 
1765 static const struct block_device_operations dm_blk_dops;
1766 static const struct block_device_operations dm_rq_blk_dops;
1767 static const struct dax_operations dm_dax_ops;
1768 
1769 static void dm_wq_work(struct work_struct *work);
1770 
1771 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1772 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1773 {
1774 	dm_destroy_crypto_profile(q->crypto_profile);
1775 }
1776 
1777 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1778 
1779 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1780 {
1781 }
1782 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1783 
1784 static void cleanup_mapped_device(struct mapped_device *md)
1785 {
1786 	if (md->wq)
1787 		destroy_workqueue(md->wq);
1788 	bioset_exit(&md->bs);
1789 	bioset_exit(&md->io_bs);
1790 
1791 	if (md->dax_dev) {
1792 		dax_remove_host(md->disk);
1793 		kill_dax(md->dax_dev);
1794 		put_dax(md->dax_dev);
1795 		md->dax_dev = NULL;
1796 	}
1797 
1798 	dm_cleanup_zoned_dev(md);
1799 	if (md->disk) {
1800 		spin_lock(&_minor_lock);
1801 		md->disk->private_data = NULL;
1802 		spin_unlock(&_minor_lock);
1803 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1804 			dm_sysfs_exit(md);
1805 			del_gendisk(md->disk);
1806 		}
1807 		dm_queue_destroy_crypto_profile(md->queue);
1808 		blk_cleanup_disk(md->disk);
1809 	}
1810 
1811 	if (md->pending_io) {
1812 		free_percpu(md->pending_io);
1813 		md->pending_io = NULL;
1814 	}
1815 
1816 	cleanup_srcu_struct(&md->io_barrier);
1817 
1818 	mutex_destroy(&md->suspend_lock);
1819 	mutex_destroy(&md->type_lock);
1820 	mutex_destroy(&md->table_devices_lock);
1821 	mutex_destroy(&md->swap_bios_lock);
1822 
1823 	dm_mq_cleanup_mapped_device(md);
1824 }
1825 
1826 /*
1827  * Allocate and initialise a blank device with a given minor.
1828  */
1829 static struct mapped_device *alloc_dev(int minor)
1830 {
1831 	int r, numa_node_id = dm_get_numa_node();
1832 	struct mapped_device *md;
1833 	void *old_md;
1834 
1835 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1836 	if (!md) {
1837 		DMWARN("unable to allocate device, out of memory.");
1838 		return NULL;
1839 	}
1840 
1841 	if (!try_module_get(THIS_MODULE))
1842 		goto bad_module_get;
1843 
1844 	/* get a minor number for the dev */
1845 	if (minor == DM_ANY_MINOR)
1846 		r = next_free_minor(&minor);
1847 	else
1848 		r = specific_minor(minor);
1849 	if (r < 0)
1850 		goto bad_minor;
1851 
1852 	r = init_srcu_struct(&md->io_barrier);
1853 	if (r < 0)
1854 		goto bad_io_barrier;
1855 
1856 	md->numa_node_id = numa_node_id;
1857 	md->init_tio_pdu = false;
1858 	md->type = DM_TYPE_NONE;
1859 	mutex_init(&md->suspend_lock);
1860 	mutex_init(&md->type_lock);
1861 	mutex_init(&md->table_devices_lock);
1862 	spin_lock_init(&md->deferred_lock);
1863 	atomic_set(&md->holders, 1);
1864 	atomic_set(&md->open_count, 0);
1865 	atomic_set(&md->event_nr, 0);
1866 	atomic_set(&md->uevent_seq, 0);
1867 	INIT_LIST_HEAD(&md->uevent_list);
1868 	INIT_LIST_HEAD(&md->table_devices);
1869 	spin_lock_init(&md->uevent_lock);
1870 
1871 	/*
1872 	 * default to bio-based until DM table is loaded and md->type
1873 	 * established. If request-based table is loaded: blk-mq will
1874 	 * override accordingly.
1875 	 */
1876 	md->disk = blk_alloc_disk(md->numa_node_id);
1877 	if (!md->disk)
1878 		goto bad;
1879 	md->queue = md->disk->queue;
1880 
1881 	init_waitqueue_head(&md->wait);
1882 	INIT_WORK(&md->work, dm_wq_work);
1883 	init_waitqueue_head(&md->eventq);
1884 	init_completion(&md->kobj_holder.completion);
1885 
1886 	md->swap_bios = get_swap_bios();
1887 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1888 	mutex_init(&md->swap_bios_lock);
1889 
1890 	md->disk->major = _major;
1891 	md->disk->first_minor = minor;
1892 	md->disk->minors = 1;
1893 	md->disk->flags |= GENHD_FL_NO_PART;
1894 	md->disk->fops = &dm_blk_dops;
1895 	md->disk->queue = md->queue;
1896 	md->disk->private_data = md;
1897 	sprintf(md->disk->disk_name, "dm-%d", minor);
1898 
1899 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1900 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1901 		if (IS_ERR(md->dax_dev)) {
1902 			md->dax_dev = NULL;
1903 			goto bad;
1904 		}
1905 		set_dax_nocache(md->dax_dev);
1906 		set_dax_nomc(md->dax_dev);
1907 		if (dax_add_host(md->dax_dev, md->disk))
1908 			goto bad;
1909 	}
1910 
1911 	format_dev_t(md->name, MKDEV(_major, minor));
1912 
1913 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1914 	if (!md->wq)
1915 		goto bad;
1916 
1917 	md->pending_io = alloc_percpu(unsigned long);
1918 	if (!md->pending_io)
1919 		goto bad;
1920 
1921 	dm_stats_init(&md->stats);
1922 
1923 	/* Populate the mapping, nobody knows we exist yet */
1924 	spin_lock(&_minor_lock);
1925 	old_md = idr_replace(&_minor_idr, md, minor);
1926 	spin_unlock(&_minor_lock);
1927 
1928 	BUG_ON(old_md != MINOR_ALLOCED);
1929 
1930 	return md;
1931 
1932 bad:
1933 	cleanup_mapped_device(md);
1934 bad_io_barrier:
1935 	free_minor(minor);
1936 bad_minor:
1937 	module_put(THIS_MODULE);
1938 bad_module_get:
1939 	kvfree(md);
1940 	return NULL;
1941 }
1942 
1943 static void unlock_fs(struct mapped_device *md);
1944 
1945 static void free_dev(struct mapped_device *md)
1946 {
1947 	int minor = MINOR(disk_devt(md->disk));
1948 
1949 	unlock_fs(md);
1950 
1951 	cleanup_mapped_device(md);
1952 
1953 	free_table_devices(&md->table_devices);
1954 	dm_stats_cleanup(&md->stats);
1955 	free_minor(minor);
1956 
1957 	module_put(THIS_MODULE);
1958 	kvfree(md);
1959 }
1960 
1961 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1962 {
1963 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1964 	int ret = 0;
1965 
1966 	if (dm_table_bio_based(t)) {
1967 		/*
1968 		 * The md may already have mempools that need changing.
1969 		 * If so, reload bioset because front_pad may have changed
1970 		 * because a different table was loaded.
1971 		 */
1972 		bioset_exit(&md->bs);
1973 		bioset_exit(&md->io_bs);
1974 
1975 	} else if (bioset_initialized(&md->bs)) {
1976 		/*
1977 		 * There's no need to reload with request-based dm
1978 		 * because the size of front_pad doesn't change.
1979 		 * Note for future: If you are to reload bioset,
1980 		 * prep-ed requests in the queue may refer
1981 		 * to bio from the old bioset, so you must walk
1982 		 * through the queue to unprep.
1983 		 */
1984 		goto out;
1985 	}
1986 
1987 	BUG_ON(!p ||
1988 	       bioset_initialized(&md->bs) ||
1989 	       bioset_initialized(&md->io_bs));
1990 
1991 	ret = bioset_init_from_src(&md->bs, &p->bs);
1992 	if (ret)
1993 		goto out;
1994 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1995 	if (ret)
1996 		bioset_exit(&md->bs);
1997 out:
1998 	/* mempool bind completed, no longer need any mempools in the table */
1999 	dm_table_free_md_mempools(t);
2000 	return ret;
2001 }
2002 
2003 /*
2004  * Bind a table to the device.
2005  */
2006 static void event_callback(void *context)
2007 {
2008 	unsigned long flags;
2009 	LIST_HEAD(uevents);
2010 	struct mapped_device *md = (struct mapped_device *) context;
2011 
2012 	spin_lock_irqsave(&md->uevent_lock, flags);
2013 	list_splice_init(&md->uevent_list, &uevents);
2014 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2015 
2016 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2017 
2018 	atomic_inc(&md->event_nr);
2019 	wake_up(&md->eventq);
2020 	dm_issue_global_event();
2021 }
2022 
2023 /*
2024  * Returns old map, which caller must destroy.
2025  */
2026 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2027 			       struct queue_limits *limits)
2028 {
2029 	struct dm_table *old_map;
2030 	sector_t size;
2031 	int ret;
2032 
2033 	lockdep_assert_held(&md->suspend_lock);
2034 
2035 	size = dm_table_get_size(t);
2036 
2037 	/*
2038 	 * Wipe any geometry if the size of the table changed.
2039 	 */
2040 	if (size != dm_get_size(md))
2041 		memset(&md->geometry, 0, sizeof(md->geometry));
2042 
2043 	if (!get_capacity(md->disk))
2044 		set_capacity(md->disk, size);
2045 	else
2046 		set_capacity_and_notify(md->disk, size);
2047 
2048 	dm_table_event_callback(t, event_callback, md);
2049 
2050 	if (dm_table_request_based(t)) {
2051 		/*
2052 		 * Leverage the fact that request-based DM targets are
2053 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2054 		 */
2055 		md->immutable_target = dm_table_get_immutable_target(t);
2056 	}
2057 
2058 	ret = __bind_mempools(md, t);
2059 	if (ret) {
2060 		old_map = ERR_PTR(ret);
2061 		goto out;
2062 	}
2063 
2064 	ret = dm_table_set_restrictions(t, md->queue, limits);
2065 	if (ret) {
2066 		old_map = ERR_PTR(ret);
2067 		goto out;
2068 	}
2069 
2070 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2071 	rcu_assign_pointer(md->map, (void *)t);
2072 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2073 
2074 	if (old_map)
2075 		dm_sync_table(md);
2076 out:
2077 	return old_map;
2078 }
2079 
2080 /*
2081  * Returns unbound table for the caller to free.
2082  */
2083 static struct dm_table *__unbind(struct mapped_device *md)
2084 {
2085 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2086 
2087 	if (!map)
2088 		return NULL;
2089 
2090 	dm_table_event_callback(map, NULL, NULL);
2091 	RCU_INIT_POINTER(md->map, NULL);
2092 	dm_sync_table(md);
2093 
2094 	return map;
2095 }
2096 
2097 /*
2098  * Constructor for a new device.
2099  */
2100 int dm_create(int minor, struct mapped_device **result)
2101 {
2102 	struct mapped_device *md;
2103 
2104 	md = alloc_dev(minor);
2105 	if (!md)
2106 		return -ENXIO;
2107 
2108 	dm_ima_reset_data(md);
2109 
2110 	*result = md;
2111 	return 0;
2112 }
2113 
2114 /*
2115  * Functions to manage md->type.
2116  * All are required to hold md->type_lock.
2117  */
2118 void dm_lock_md_type(struct mapped_device *md)
2119 {
2120 	mutex_lock(&md->type_lock);
2121 }
2122 
2123 void dm_unlock_md_type(struct mapped_device *md)
2124 {
2125 	mutex_unlock(&md->type_lock);
2126 }
2127 
2128 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2129 {
2130 	BUG_ON(!mutex_is_locked(&md->type_lock));
2131 	md->type = type;
2132 }
2133 
2134 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2135 {
2136 	return md->type;
2137 }
2138 
2139 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2140 {
2141 	return md->immutable_target_type;
2142 }
2143 
2144 /*
2145  * The queue_limits are only valid as long as you have a reference
2146  * count on 'md'.
2147  */
2148 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2149 {
2150 	BUG_ON(!atomic_read(&md->holders));
2151 	return &md->queue->limits;
2152 }
2153 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2154 
2155 /*
2156  * Setup the DM device's queue based on md's type
2157  */
2158 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2159 {
2160 	enum dm_queue_mode type = dm_table_get_type(t);
2161 	struct queue_limits limits;
2162 	int r;
2163 
2164 	switch (type) {
2165 	case DM_TYPE_REQUEST_BASED:
2166 		md->disk->fops = &dm_rq_blk_dops;
2167 		r = dm_mq_init_request_queue(md, t);
2168 		if (r) {
2169 			DMERR("Cannot initialize queue for request-based dm mapped device");
2170 			return r;
2171 		}
2172 		break;
2173 	case DM_TYPE_BIO_BASED:
2174 	case DM_TYPE_DAX_BIO_BASED:
2175 		break;
2176 	case DM_TYPE_NONE:
2177 		WARN_ON_ONCE(true);
2178 		break;
2179 	}
2180 
2181 	r = dm_calculate_queue_limits(t, &limits);
2182 	if (r) {
2183 		DMERR("Cannot calculate initial queue limits");
2184 		return r;
2185 	}
2186 	r = dm_table_set_restrictions(t, md->queue, &limits);
2187 	if (r)
2188 		return r;
2189 
2190 	r = add_disk(md->disk);
2191 	if (r)
2192 		return r;
2193 
2194 	r = dm_sysfs_init(md);
2195 	if (r) {
2196 		del_gendisk(md->disk);
2197 		return r;
2198 	}
2199 	md->type = type;
2200 	return 0;
2201 }
2202 
2203 struct mapped_device *dm_get_md(dev_t dev)
2204 {
2205 	struct mapped_device *md;
2206 	unsigned minor = MINOR(dev);
2207 
2208 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2209 		return NULL;
2210 
2211 	spin_lock(&_minor_lock);
2212 
2213 	md = idr_find(&_minor_idr, minor);
2214 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2215 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2216 		md = NULL;
2217 		goto out;
2218 	}
2219 	dm_get(md);
2220 out:
2221 	spin_unlock(&_minor_lock);
2222 
2223 	return md;
2224 }
2225 EXPORT_SYMBOL_GPL(dm_get_md);
2226 
2227 void *dm_get_mdptr(struct mapped_device *md)
2228 {
2229 	return md->interface_ptr;
2230 }
2231 
2232 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2233 {
2234 	md->interface_ptr = ptr;
2235 }
2236 
2237 void dm_get(struct mapped_device *md)
2238 {
2239 	atomic_inc(&md->holders);
2240 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2241 }
2242 
2243 int dm_hold(struct mapped_device *md)
2244 {
2245 	spin_lock(&_minor_lock);
2246 	if (test_bit(DMF_FREEING, &md->flags)) {
2247 		spin_unlock(&_minor_lock);
2248 		return -EBUSY;
2249 	}
2250 	dm_get(md);
2251 	spin_unlock(&_minor_lock);
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL_GPL(dm_hold);
2255 
2256 const char *dm_device_name(struct mapped_device *md)
2257 {
2258 	return md->name;
2259 }
2260 EXPORT_SYMBOL_GPL(dm_device_name);
2261 
2262 static void __dm_destroy(struct mapped_device *md, bool wait)
2263 {
2264 	struct dm_table *map;
2265 	int srcu_idx;
2266 
2267 	might_sleep();
2268 
2269 	spin_lock(&_minor_lock);
2270 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2271 	set_bit(DMF_FREEING, &md->flags);
2272 	spin_unlock(&_minor_lock);
2273 
2274 	blk_set_queue_dying(md->queue);
2275 
2276 	/*
2277 	 * Take suspend_lock so that presuspend and postsuspend methods
2278 	 * do not race with internal suspend.
2279 	 */
2280 	mutex_lock(&md->suspend_lock);
2281 	map = dm_get_live_table(md, &srcu_idx);
2282 	if (!dm_suspended_md(md)) {
2283 		dm_table_presuspend_targets(map);
2284 		set_bit(DMF_SUSPENDED, &md->flags);
2285 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2286 		dm_table_postsuspend_targets(map);
2287 	}
2288 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2289 	dm_put_live_table(md, srcu_idx);
2290 	mutex_unlock(&md->suspend_lock);
2291 
2292 	/*
2293 	 * Rare, but there may be I/O requests still going to complete,
2294 	 * for example.  Wait for all references to disappear.
2295 	 * No one should increment the reference count of the mapped_device,
2296 	 * after the mapped_device state becomes DMF_FREEING.
2297 	 */
2298 	if (wait)
2299 		while (atomic_read(&md->holders))
2300 			msleep(1);
2301 	else if (atomic_read(&md->holders))
2302 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2303 		       dm_device_name(md), atomic_read(&md->holders));
2304 
2305 	dm_table_destroy(__unbind(md));
2306 	free_dev(md);
2307 }
2308 
2309 void dm_destroy(struct mapped_device *md)
2310 {
2311 	__dm_destroy(md, true);
2312 }
2313 
2314 void dm_destroy_immediate(struct mapped_device *md)
2315 {
2316 	__dm_destroy(md, false);
2317 }
2318 
2319 void dm_put(struct mapped_device *md)
2320 {
2321 	atomic_dec(&md->holders);
2322 }
2323 EXPORT_SYMBOL_GPL(dm_put);
2324 
2325 static bool dm_in_flight_bios(struct mapped_device *md)
2326 {
2327 	int cpu;
2328 	unsigned long sum = 0;
2329 
2330 	for_each_possible_cpu(cpu)
2331 		sum += *per_cpu_ptr(md->pending_io, cpu);
2332 
2333 	return sum != 0;
2334 }
2335 
2336 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2337 {
2338 	int r = 0;
2339 	DEFINE_WAIT(wait);
2340 
2341 	while (true) {
2342 		prepare_to_wait(&md->wait, &wait, task_state);
2343 
2344 		if (!dm_in_flight_bios(md))
2345 			break;
2346 
2347 		if (signal_pending_state(task_state, current)) {
2348 			r = -EINTR;
2349 			break;
2350 		}
2351 
2352 		io_schedule();
2353 	}
2354 	finish_wait(&md->wait, &wait);
2355 
2356 	smp_rmb();
2357 
2358 	return r;
2359 }
2360 
2361 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2362 {
2363 	int r = 0;
2364 
2365 	if (!queue_is_mq(md->queue))
2366 		return dm_wait_for_bios_completion(md, task_state);
2367 
2368 	while (true) {
2369 		if (!blk_mq_queue_inflight(md->queue))
2370 			break;
2371 
2372 		if (signal_pending_state(task_state, current)) {
2373 			r = -EINTR;
2374 			break;
2375 		}
2376 
2377 		msleep(5);
2378 	}
2379 
2380 	return r;
2381 }
2382 
2383 /*
2384  * Process the deferred bios
2385  */
2386 static void dm_wq_work(struct work_struct *work)
2387 {
2388 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2389 	struct bio *bio;
2390 
2391 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2392 		spin_lock_irq(&md->deferred_lock);
2393 		bio = bio_list_pop(&md->deferred);
2394 		spin_unlock_irq(&md->deferred_lock);
2395 
2396 		if (!bio)
2397 			break;
2398 
2399 		submit_bio_noacct(bio);
2400 	}
2401 }
2402 
2403 static void dm_queue_flush(struct mapped_device *md)
2404 {
2405 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2406 	smp_mb__after_atomic();
2407 	queue_work(md->wq, &md->work);
2408 }
2409 
2410 /*
2411  * Swap in a new table, returning the old one for the caller to destroy.
2412  */
2413 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2414 {
2415 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2416 	struct queue_limits limits;
2417 	int r;
2418 
2419 	mutex_lock(&md->suspend_lock);
2420 
2421 	/* device must be suspended */
2422 	if (!dm_suspended_md(md))
2423 		goto out;
2424 
2425 	/*
2426 	 * If the new table has no data devices, retain the existing limits.
2427 	 * This helps multipath with queue_if_no_path if all paths disappear,
2428 	 * then new I/O is queued based on these limits, and then some paths
2429 	 * reappear.
2430 	 */
2431 	if (dm_table_has_no_data_devices(table)) {
2432 		live_map = dm_get_live_table_fast(md);
2433 		if (live_map)
2434 			limits = md->queue->limits;
2435 		dm_put_live_table_fast(md);
2436 	}
2437 
2438 	if (!live_map) {
2439 		r = dm_calculate_queue_limits(table, &limits);
2440 		if (r) {
2441 			map = ERR_PTR(r);
2442 			goto out;
2443 		}
2444 	}
2445 
2446 	map = __bind(md, table, &limits);
2447 	dm_issue_global_event();
2448 
2449 out:
2450 	mutex_unlock(&md->suspend_lock);
2451 	return map;
2452 }
2453 
2454 /*
2455  * Functions to lock and unlock any filesystem running on the
2456  * device.
2457  */
2458 static int lock_fs(struct mapped_device *md)
2459 {
2460 	int r;
2461 
2462 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2463 
2464 	r = freeze_bdev(md->disk->part0);
2465 	if (!r)
2466 		set_bit(DMF_FROZEN, &md->flags);
2467 	return r;
2468 }
2469 
2470 static void unlock_fs(struct mapped_device *md)
2471 {
2472 	if (!test_bit(DMF_FROZEN, &md->flags))
2473 		return;
2474 	thaw_bdev(md->disk->part0);
2475 	clear_bit(DMF_FROZEN, &md->flags);
2476 }
2477 
2478 /*
2479  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2480  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2481  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2482  *
2483  * If __dm_suspend returns 0, the device is completely quiescent
2484  * now. There is no request-processing activity. All new requests
2485  * are being added to md->deferred list.
2486  */
2487 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2488 			unsigned suspend_flags, unsigned int task_state,
2489 			int dmf_suspended_flag)
2490 {
2491 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2492 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2493 	int r;
2494 
2495 	lockdep_assert_held(&md->suspend_lock);
2496 
2497 	/*
2498 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2499 	 * This flag is cleared before dm_suspend returns.
2500 	 */
2501 	if (noflush)
2502 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2503 	else
2504 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2505 
2506 	/*
2507 	 * This gets reverted if there's an error later and the targets
2508 	 * provide the .presuspend_undo hook.
2509 	 */
2510 	dm_table_presuspend_targets(map);
2511 
2512 	/*
2513 	 * Flush I/O to the device.
2514 	 * Any I/O submitted after lock_fs() may not be flushed.
2515 	 * noflush takes precedence over do_lockfs.
2516 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2517 	 */
2518 	if (!noflush && do_lockfs) {
2519 		r = lock_fs(md);
2520 		if (r) {
2521 			dm_table_presuspend_undo_targets(map);
2522 			return r;
2523 		}
2524 	}
2525 
2526 	/*
2527 	 * Here we must make sure that no processes are submitting requests
2528 	 * to target drivers i.e. no one may be executing
2529 	 * dm_split_and_process_bio from dm_submit_bio.
2530 	 *
2531 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2532 	 * we take the write lock. To prevent any process from reentering
2533 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2534 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2535 	 * flush_workqueue(md->wq).
2536 	 */
2537 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2538 	if (map)
2539 		synchronize_srcu(&md->io_barrier);
2540 
2541 	/*
2542 	 * Stop md->queue before flushing md->wq in case request-based
2543 	 * dm defers requests to md->wq from md->queue.
2544 	 */
2545 	if (dm_request_based(md))
2546 		dm_stop_queue(md->queue);
2547 
2548 	flush_workqueue(md->wq);
2549 
2550 	/*
2551 	 * At this point no more requests are entering target request routines.
2552 	 * We call dm_wait_for_completion to wait for all existing requests
2553 	 * to finish.
2554 	 */
2555 	r = dm_wait_for_completion(md, task_state);
2556 	if (!r)
2557 		set_bit(dmf_suspended_flag, &md->flags);
2558 
2559 	if (noflush)
2560 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2561 	if (map)
2562 		synchronize_srcu(&md->io_barrier);
2563 
2564 	/* were we interrupted ? */
2565 	if (r < 0) {
2566 		dm_queue_flush(md);
2567 
2568 		if (dm_request_based(md))
2569 			dm_start_queue(md->queue);
2570 
2571 		unlock_fs(md);
2572 		dm_table_presuspend_undo_targets(map);
2573 		/* pushback list is already flushed, so skip flush */
2574 	}
2575 
2576 	return r;
2577 }
2578 
2579 /*
2580  * We need to be able to change a mapping table under a mounted
2581  * filesystem.  For example we might want to move some data in
2582  * the background.  Before the table can be swapped with
2583  * dm_bind_table, dm_suspend must be called to flush any in
2584  * flight bios and ensure that any further io gets deferred.
2585  */
2586 /*
2587  * Suspend mechanism in request-based dm.
2588  *
2589  * 1. Flush all I/Os by lock_fs() if needed.
2590  * 2. Stop dispatching any I/O by stopping the request_queue.
2591  * 3. Wait for all in-flight I/Os to be completed or requeued.
2592  *
2593  * To abort suspend, start the request_queue.
2594  */
2595 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2596 {
2597 	struct dm_table *map = NULL;
2598 	int r = 0;
2599 
2600 retry:
2601 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2602 
2603 	if (dm_suspended_md(md)) {
2604 		r = -EINVAL;
2605 		goto out_unlock;
2606 	}
2607 
2608 	if (dm_suspended_internally_md(md)) {
2609 		/* already internally suspended, wait for internal resume */
2610 		mutex_unlock(&md->suspend_lock);
2611 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2612 		if (r)
2613 			return r;
2614 		goto retry;
2615 	}
2616 
2617 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2618 
2619 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2620 	if (r)
2621 		goto out_unlock;
2622 
2623 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2624 	dm_table_postsuspend_targets(map);
2625 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2626 
2627 out_unlock:
2628 	mutex_unlock(&md->suspend_lock);
2629 	return r;
2630 }
2631 
2632 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2633 {
2634 	if (map) {
2635 		int r = dm_table_resume_targets(map);
2636 		if (r)
2637 			return r;
2638 	}
2639 
2640 	dm_queue_flush(md);
2641 
2642 	/*
2643 	 * Flushing deferred I/Os must be done after targets are resumed
2644 	 * so that mapping of targets can work correctly.
2645 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2646 	 */
2647 	if (dm_request_based(md))
2648 		dm_start_queue(md->queue);
2649 
2650 	unlock_fs(md);
2651 
2652 	return 0;
2653 }
2654 
2655 int dm_resume(struct mapped_device *md)
2656 {
2657 	int r;
2658 	struct dm_table *map = NULL;
2659 
2660 retry:
2661 	r = -EINVAL;
2662 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2663 
2664 	if (!dm_suspended_md(md))
2665 		goto out;
2666 
2667 	if (dm_suspended_internally_md(md)) {
2668 		/* already internally suspended, wait for internal resume */
2669 		mutex_unlock(&md->suspend_lock);
2670 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2671 		if (r)
2672 			return r;
2673 		goto retry;
2674 	}
2675 
2676 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2677 	if (!map || !dm_table_get_size(map))
2678 		goto out;
2679 
2680 	r = __dm_resume(md, map);
2681 	if (r)
2682 		goto out;
2683 
2684 	clear_bit(DMF_SUSPENDED, &md->flags);
2685 out:
2686 	mutex_unlock(&md->suspend_lock);
2687 
2688 	return r;
2689 }
2690 
2691 /*
2692  * Internal suspend/resume works like userspace-driven suspend. It waits
2693  * until all bios finish and prevents issuing new bios to the target drivers.
2694  * It may be used only from the kernel.
2695  */
2696 
2697 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2698 {
2699 	struct dm_table *map = NULL;
2700 
2701 	lockdep_assert_held(&md->suspend_lock);
2702 
2703 	if (md->internal_suspend_count++)
2704 		return; /* nested internal suspend */
2705 
2706 	if (dm_suspended_md(md)) {
2707 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2708 		return; /* nest suspend */
2709 	}
2710 
2711 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2712 
2713 	/*
2714 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2715 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2716 	 * would require changing .presuspend to return an error -- avoid this
2717 	 * until there is a need for more elaborate variants of internal suspend.
2718 	 */
2719 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2720 			    DMF_SUSPENDED_INTERNALLY);
2721 
2722 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2723 	dm_table_postsuspend_targets(map);
2724 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2725 }
2726 
2727 static void __dm_internal_resume(struct mapped_device *md)
2728 {
2729 	BUG_ON(!md->internal_suspend_count);
2730 
2731 	if (--md->internal_suspend_count)
2732 		return; /* resume from nested internal suspend */
2733 
2734 	if (dm_suspended_md(md))
2735 		goto done; /* resume from nested suspend */
2736 
2737 	/*
2738 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2739 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2740 	 */
2741 	(void) __dm_resume(md, NULL);
2742 
2743 done:
2744 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2745 	smp_mb__after_atomic();
2746 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2747 }
2748 
2749 void dm_internal_suspend_noflush(struct mapped_device *md)
2750 {
2751 	mutex_lock(&md->suspend_lock);
2752 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2753 	mutex_unlock(&md->suspend_lock);
2754 }
2755 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2756 
2757 void dm_internal_resume(struct mapped_device *md)
2758 {
2759 	mutex_lock(&md->suspend_lock);
2760 	__dm_internal_resume(md);
2761 	mutex_unlock(&md->suspend_lock);
2762 }
2763 EXPORT_SYMBOL_GPL(dm_internal_resume);
2764 
2765 /*
2766  * Fast variants of internal suspend/resume hold md->suspend_lock,
2767  * which prevents interaction with userspace-driven suspend.
2768  */
2769 
2770 void dm_internal_suspend_fast(struct mapped_device *md)
2771 {
2772 	mutex_lock(&md->suspend_lock);
2773 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2774 		return;
2775 
2776 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2777 	synchronize_srcu(&md->io_barrier);
2778 	flush_workqueue(md->wq);
2779 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2780 }
2781 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2782 
2783 void dm_internal_resume_fast(struct mapped_device *md)
2784 {
2785 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2786 		goto done;
2787 
2788 	dm_queue_flush(md);
2789 
2790 done:
2791 	mutex_unlock(&md->suspend_lock);
2792 }
2793 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2794 
2795 /*-----------------------------------------------------------------
2796  * Event notification.
2797  *---------------------------------------------------------------*/
2798 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2799 		       unsigned cookie)
2800 {
2801 	int r;
2802 	unsigned noio_flag;
2803 	char udev_cookie[DM_COOKIE_LENGTH];
2804 	char *envp[] = { udev_cookie, NULL };
2805 
2806 	noio_flag = memalloc_noio_save();
2807 
2808 	if (!cookie)
2809 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2810 	else {
2811 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2812 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2813 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2814 				       action, envp);
2815 	}
2816 
2817 	memalloc_noio_restore(noio_flag);
2818 
2819 	return r;
2820 }
2821 
2822 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2823 {
2824 	return atomic_add_return(1, &md->uevent_seq);
2825 }
2826 
2827 uint32_t dm_get_event_nr(struct mapped_device *md)
2828 {
2829 	return atomic_read(&md->event_nr);
2830 }
2831 
2832 int dm_wait_event(struct mapped_device *md, int event_nr)
2833 {
2834 	return wait_event_interruptible(md->eventq,
2835 			(event_nr != atomic_read(&md->event_nr)));
2836 }
2837 
2838 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2839 {
2840 	unsigned long flags;
2841 
2842 	spin_lock_irqsave(&md->uevent_lock, flags);
2843 	list_add(elist, &md->uevent_list);
2844 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2845 }
2846 
2847 /*
2848  * The gendisk is only valid as long as you have a reference
2849  * count on 'md'.
2850  */
2851 struct gendisk *dm_disk(struct mapped_device *md)
2852 {
2853 	return md->disk;
2854 }
2855 EXPORT_SYMBOL_GPL(dm_disk);
2856 
2857 struct kobject *dm_kobject(struct mapped_device *md)
2858 {
2859 	return &md->kobj_holder.kobj;
2860 }
2861 
2862 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2863 {
2864 	struct mapped_device *md;
2865 
2866 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2867 
2868 	spin_lock(&_minor_lock);
2869 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2870 		md = NULL;
2871 		goto out;
2872 	}
2873 	dm_get(md);
2874 out:
2875 	spin_unlock(&_minor_lock);
2876 
2877 	return md;
2878 }
2879 
2880 int dm_suspended_md(struct mapped_device *md)
2881 {
2882 	return test_bit(DMF_SUSPENDED, &md->flags);
2883 }
2884 
2885 static int dm_post_suspending_md(struct mapped_device *md)
2886 {
2887 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2888 }
2889 
2890 int dm_suspended_internally_md(struct mapped_device *md)
2891 {
2892 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2893 }
2894 
2895 int dm_test_deferred_remove_flag(struct mapped_device *md)
2896 {
2897 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2898 }
2899 
2900 int dm_suspended(struct dm_target *ti)
2901 {
2902 	return dm_suspended_md(ti->table->md);
2903 }
2904 EXPORT_SYMBOL_GPL(dm_suspended);
2905 
2906 int dm_post_suspending(struct dm_target *ti)
2907 {
2908 	return dm_post_suspending_md(ti->table->md);
2909 }
2910 EXPORT_SYMBOL_GPL(dm_post_suspending);
2911 
2912 int dm_noflush_suspending(struct dm_target *ti)
2913 {
2914 	return __noflush_suspending(ti->table->md);
2915 }
2916 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2917 
2918 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2919 					    unsigned integrity, unsigned per_io_data_size,
2920 					    unsigned min_pool_size)
2921 {
2922 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2923 	unsigned int pool_size = 0;
2924 	unsigned int front_pad, io_front_pad;
2925 	int ret;
2926 
2927 	if (!pools)
2928 		return NULL;
2929 
2930 	switch (type) {
2931 	case DM_TYPE_BIO_BASED:
2932 	case DM_TYPE_DAX_BIO_BASED:
2933 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2934 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2935 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2936 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2937 		if (ret)
2938 			goto out;
2939 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2940 			goto out;
2941 		break;
2942 	case DM_TYPE_REQUEST_BASED:
2943 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2944 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2945 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2946 		break;
2947 	default:
2948 		BUG();
2949 	}
2950 
2951 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2952 	if (ret)
2953 		goto out;
2954 
2955 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2956 		goto out;
2957 
2958 	return pools;
2959 
2960 out:
2961 	dm_free_md_mempools(pools);
2962 
2963 	return NULL;
2964 }
2965 
2966 void dm_free_md_mempools(struct dm_md_mempools *pools)
2967 {
2968 	if (!pools)
2969 		return;
2970 
2971 	bioset_exit(&pools->bs);
2972 	bioset_exit(&pools->io_bs);
2973 
2974 	kfree(pools);
2975 }
2976 
2977 struct dm_pr {
2978 	u64	old_key;
2979 	u64	new_key;
2980 	u32	flags;
2981 	bool	fail_early;
2982 };
2983 
2984 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2985 		      void *data)
2986 {
2987 	struct mapped_device *md = bdev->bd_disk->private_data;
2988 	struct dm_table *table;
2989 	struct dm_target *ti;
2990 	int ret = -ENOTTY, srcu_idx;
2991 
2992 	table = dm_get_live_table(md, &srcu_idx);
2993 	if (!table || !dm_table_get_size(table))
2994 		goto out;
2995 
2996 	/* We only support devices that have a single target */
2997 	if (dm_table_get_num_targets(table) != 1)
2998 		goto out;
2999 	ti = dm_table_get_target(table, 0);
3000 
3001 	ret = -EINVAL;
3002 	if (!ti->type->iterate_devices)
3003 		goto out;
3004 
3005 	ret = ti->type->iterate_devices(ti, fn, data);
3006 out:
3007 	dm_put_live_table(md, srcu_idx);
3008 	return ret;
3009 }
3010 
3011 /*
3012  * For register / unregister we need to manually call out to every path.
3013  */
3014 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3015 			    sector_t start, sector_t len, void *data)
3016 {
3017 	struct dm_pr *pr = data;
3018 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3019 
3020 	if (!ops || !ops->pr_register)
3021 		return -EOPNOTSUPP;
3022 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3023 }
3024 
3025 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3026 			  u32 flags)
3027 {
3028 	struct dm_pr pr = {
3029 		.old_key	= old_key,
3030 		.new_key	= new_key,
3031 		.flags		= flags,
3032 		.fail_early	= true,
3033 	};
3034 	int ret;
3035 
3036 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3037 	if (ret && new_key) {
3038 		/* unregister all paths if we failed to register any path */
3039 		pr.old_key = new_key;
3040 		pr.new_key = 0;
3041 		pr.flags = 0;
3042 		pr.fail_early = false;
3043 		dm_call_pr(bdev, __dm_pr_register, &pr);
3044 	}
3045 
3046 	return ret;
3047 }
3048 
3049 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3050 			 u32 flags)
3051 {
3052 	struct mapped_device *md = bdev->bd_disk->private_data;
3053 	const struct pr_ops *ops;
3054 	int r, srcu_idx;
3055 
3056 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3057 	if (r < 0)
3058 		goto out;
3059 
3060 	ops = bdev->bd_disk->fops->pr_ops;
3061 	if (ops && ops->pr_reserve)
3062 		r = ops->pr_reserve(bdev, key, type, flags);
3063 	else
3064 		r = -EOPNOTSUPP;
3065 out:
3066 	dm_unprepare_ioctl(md, srcu_idx);
3067 	return r;
3068 }
3069 
3070 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3071 {
3072 	struct mapped_device *md = bdev->bd_disk->private_data;
3073 	const struct pr_ops *ops;
3074 	int r, srcu_idx;
3075 
3076 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3077 	if (r < 0)
3078 		goto out;
3079 
3080 	ops = bdev->bd_disk->fops->pr_ops;
3081 	if (ops && ops->pr_release)
3082 		r = ops->pr_release(bdev, key, type);
3083 	else
3084 		r = -EOPNOTSUPP;
3085 out:
3086 	dm_unprepare_ioctl(md, srcu_idx);
3087 	return r;
3088 }
3089 
3090 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3091 			 enum pr_type type, bool abort)
3092 {
3093 	struct mapped_device *md = bdev->bd_disk->private_data;
3094 	const struct pr_ops *ops;
3095 	int r, srcu_idx;
3096 
3097 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3098 	if (r < 0)
3099 		goto out;
3100 
3101 	ops = bdev->bd_disk->fops->pr_ops;
3102 	if (ops && ops->pr_preempt)
3103 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3104 	else
3105 		r = -EOPNOTSUPP;
3106 out:
3107 	dm_unprepare_ioctl(md, srcu_idx);
3108 	return r;
3109 }
3110 
3111 static int dm_pr_clear(struct block_device *bdev, u64 key)
3112 {
3113 	struct mapped_device *md = bdev->bd_disk->private_data;
3114 	const struct pr_ops *ops;
3115 	int r, srcu_idx;
3116 
3117 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3118 	if (r < 0)
3119 		goto out;
3120 
3121 	ops = bdev->bd_disk->fops->pr_ops;
3122 	if (ops && ops->pr_clear)
3123 		r = ops->pr_clear(bdev, key);
3124 	else
3125 		r = -EOPNOTSUPP;
3126 out:
3127 	dm_unprepare_ioctl(md, srcu_idx);
3128 	return r;
3129 }
3130 
3131 static const struct pr_ops dm_pr_ops = {
3132 	.pr_register	= dm_pr_register,
3133 	.pr_reserve	= dm_pr_reserve,
3134 	.pr_release	= dm_pr_release,
3135 	.pr_preempt	= dm_pr_preempt,
3136 	.pr_clear	= dm_pr_clear,
3137 };
3138 
3139 static const struct block_device_operations dm_blk_dops = {
3140 	.submit_bio = dm_submit_bio,
3141 	.poll_bio = dm_poll_bio,
3142 	.open = dm_blk_open,
3143 	.release = dm_blk_close,
3144 	.ioctl = dm_blk_ioctl,
3145 	.getgeo = dm_blk_getgeo,
3146 	.report_zones = dm_blk_report_zones,
3147 	.pr_ops = &dm_pr_ops,
3148 	.owner = THIS_MODULE
3149 };
3150 
3151 static const struct block_device_operations dm_rq_blk_dops = {
3152 	.open = dm_blk_open,
3153 	.release = dm_blk_close,
3154 	.ioctl = dm_blk_ioctl,
3155 	.getgeo = dm_blk_getgeo,
3156 	.pr_ops = &dm_pr_ops,
3157 	.owner = THIS_MODULE
3158 };
3159 
3160 static const struct dax_operations dm_dax_ops = {
3161 	.direct_access = dm_dax_direct_access,
3162 	.zero_page_range = dm_dax_zero_page_range,
3163 };
3164 
3165 /*
3166  * module hooks
3167  */
3168 module_init(dm_init);
3169 module_exit(dm_exit);
3170 
3171 module_param(major, uint, 0);
3172 MODULE_PARM_DESC(major, "The major number of the device mapper");
3173 
3174 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3175 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3176 
3177 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3178 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3179 
3180 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3181 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3182 
3183 MODULE_DESCRIPTION(DM_NAME " driver");
3184 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3185 MODULE_LICENSE("GPL");
3186