1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-list.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/blktrace_api.h> 23 24 static const char *_name = DM_NAME; 25 26 static unsigned int major = 0; 27 static unsigned int _major = 0; 28 29 /* 30 * One of these is allocated per bio. 31 */ 32 struct dm_io { 33 struct mapped_device *md; 34 int error; 35 struct bio *bio; 36 atomic_t io_count; 37 unsigned long start_time; 38 }; 39 40 /* 41 * One of these is allocated per target within a bio. Hopefully 42 * this will be simplified out one day. 43 */ 44 struct target_io { 45 struct dm_io *io; 46 struct dm_target *ti; 47 union map_info info; 48 }; 49 50 union map_info *dm_get_mapinfo(struct bio *bio) 51 { 52 if (bio && bio->bi_private) 53 return &((struct target_io *)bio->bi_private)->info; 54 return NULL; 55 } 56 57 #define MINOR_ALLOCED ((void *)-1) 58 59 /* 60 * Bits for the md->flags field. 61 */ 62 #define DMF_BLOCK_IO 0 63 #define DMF_SUSPENDED 1 64 #define DMF_FROZEN 2 65 66 struct mapped_device { 67 struct rw_semaphore io_lock; 68 struct semaphore suspend_lock; 69 rwlock_t map_lock; 70 atomic_t holders; 71 72 unsigned long flags; 73 74 request_queue_t *queue; 75 struct gendisk *disk; 76 char name[16]; 77 78 void *interface_ptr; 79 80 /* 81 * A list of ios that arrived while we were suspended. 82 */ 83 atomic_t pending; 84 wait_queue_head_t wait; 85 struct bio_list deferred; 86 87 /* 88 * The current mapping. 89 */ 90 struct dm_table *map; 91 92 /* 93 * io objects are allocated from here. 94 */ 95 mempool_t *io_pool; 96 mempool_t *tio_pool; 97 98 /* 99 * Event handling. 100 */ 101 atomic_t event_nr; 102 wait_queue_head_t eventq; 103 104 /* 105 * freeze/thaw support require holding onto a super block 106 */ 107 struct super_block *frozen_sb; 108 struct block_device *suspended_bdev; 109 110 /* forced geometry settings */ 111 struct hd_geometry geometry; 112 }; 113 114 #define MIN_IOS 256 115 static kmem_cache_t *_io_cache; 116 static kmem_cache_t *_tio_cache; 117 118 static struct bio_set *dm_set; 119 120 static int __init local_init(void) 121 { 122 int r; 123 124 dm_set = bioset_create(16, 16, 4); 125 if (!dm_set) 126 return -ENOMEM; 127 128 /* allocate a slab for the dm_ios */ 129 _io_cache = kmem_cache_create("dm_io", 130 sizeof(struct dm_io), 0, 0, NULL, NULL); 131 if (!_io_cache) 132 return -ENOMEM; 133 134 /* allocate a slab for the target ios */ 135 _tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io), 136 0, 0, NULL, NULL); 137 if (!_tio_cache) { 138 kmem_cache_destroy(_io_cache); 139 return -ENOMEM; 140 } 141 142 _major = major; 143 r = register_blkdev(_major, _name); 144 if (r < 0) { 145 kmem_cache_destroy(_tio_cache); 146 kmem_cache_destroy(_io_cache); 147 return r; 148 } 149 150 if (!_major) 151 _major = r; 152 153 return 0; 154 } 155 156 static void local_exit(void) 157 { 158 kmem_cache_destroy(_tio_cache); 159 kmem_cache_destroy(_io_cache); 160 161 bioset_free(dm_set); 162 163 if (unregister_blkdev(_major, _name) < 0) 164 DMERR("devfs_unregister_blkdev failed"); 165 166 _major = 0; 167 168 DMINFO("cleaned up"); 169 } 170 171 int (*_inits[])(void) __initdata = { 172 local_init, 173 dm_target_init, 174 dm_linear_init, 175 dm_stripe_init, 176 dm_interface_init, 177 }; 178 179 void (*_exits[])(void) = { 180 local_exit, 181 dm_target_exit, 182 dm_linear_exit, 183 dm_stripe_exit, 184 dm_interface_exit, 185 }; 186 187 static int __init dm_init(void) 188 { 189 const int count = ARRAY_SIZE(_inits); 190 191 int r, i; 192 193 for (i = 0; i < count; i++) { 194 r = _inits[i](); 195 if (r) 196 goto bad; 197 } 198 199 return 0; 200 201 bad: 202 while (i--) 203 _exits[i](); 204 205 return r; 206 } 207 208 static void __exit dm_exit(void) 209 { 210 int i = ARRAY_SIZE(_exits); 211 212 while (i--) 213 _exits[i](); 214 } 215 216 /* 217 * Block device functions 218 */ 219 static int dm_blk_open(struct inode *inode, struct file *file) 220 { 221 struct mapped_device *md; 222 223 md = inode->i_bdev->bd_disk->private_data; 224 dm_get(md); 225 return 0; 226 } 227 228 static int dm_blk_close(struct inode *inode, struct file *file) 229 { 230 struct mapped_device *md; 231 232 md = inode->i_bdev->bd_disk->private_data; 233 dm_put(md); 234 return 0; 235 } 236 237 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 238 { 239 struct mapped_device *md = bdev->bd_disk->private_data; 240 241 return dm_get_geometry(md, geo); 242 } 243 244 static inline struct dm_io *alloc_io(struct mapped_device *md) 245 { 246 return mempool_alloc(md->io_pool, GFP_NOIO); 247 } 248 249 static inline void free_io(struct mapped_device *md, struct dm_io *io) 250 { 251 mempool_free(io, md->io_pool); 252 } 253 254 static inline struct target_io *alloc_tio(struct mapped_device *md) 255 { 256 return mempool_alloc(md->tio_pool, GFP_NOIO); 257 } 258 259 static inline void free_tio(struct mapped_device *md, struct target_io *tio) 260 { 261 mempool_free(tio, md->tio_pool); 262 } 263 264 static void start_io_acct(struct dm_io *io) 265 { 266 struct mapped_device *md = io->md; 267 268 io->start_time = jiffies; 269 270 preempt_disable(); 271 disk_round_stats(dm_disk(md)); 272 preempt_enable(); 273 dm_disk(md)->in_flight = atomic_inc_return(&md->pending); 274 } 275 276 static int end_io_acct(struct dm_io *io) 277 { 278 struct mapped_device *md = io->md; 279 struct bio *bio = io->bio; 280 unsigned long duration = jiffies - io->start_time; 281 int pending; 282 int rw = bio_data_dir(bio); 283 284 preempt_disable(); 285 disk_round_stats(dm_disk(md)); 286 preempt_enable(); 287 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending); 288 289 disk_stat_add(dm_disk(md), ticks[rw], duration); 290 291 return !pending; 292 } 293 294 /* 295 * Add the bio to the list of deferred io. 296 */ 297 static int queue_io(struct mapped_device *md, struct bio *bio) 298 { 299 down_write(&md->io_lock); 300 301 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 302 up_write(&md->io_lock); 303 return 1; 304 } 305 306 bio_list_add(&md->deferred, bio); 307 308 up_write(&md->io_lock); 309 return 0; /* deferred successfully */ 310 } 311 312 /* 313 * Everyone (including functions in this file), should use this 314 * function to access the md->map field, and make sure they call 315 * dm_table_put() when finished. 316 */ 317 struct dm_table *dm_get_table(struct mapped_device *md) 318 { 319 struct dm_table *t; 320 321 read_lock(&md->map_lock); 322 t = md->map; 323 if (t) 324 dm_table_get(t); 325 read_unlock(&md->map_lock); 326 327 return t; 328 } 329 330 /* 331 * Get the geometry associated with a dm device 332 */ 333 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 334 { 335 *geo = md->geometry; 336 337 return 0; 338 } 339 340 /* 341 * Set the geometry of a device. 342 */ 343 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 344 { 345 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 346 347 if (geo->start > sz) { 348 DMWARN("Start sector is beyond the geometry limits."); 349 return -EINVAL; 350 } 351 352 md->geometry = *geo; 353 354 return 0; 355 } 356 357 /*----------------------------------------------------------------- 358 * CRUD START: 359 * A more elegant soln is in the works that uses the queue 360 * merge fn, unfortunately there are a couple of changes to 361 * the block layer that I want to make for this. So in the 362 * interests of getting something for people to use I give 363 * you this clearly demarcated crap. 364 *---------------------------------------------------------------*/ 365 366 /* 367 * Decrements the number of outstanding ios that a bio has been 368 * cloned into, completing the original io if necc. 369 */ 370 static void dec_pending(struct dm_io *io, int error) 371 { 372 if (error) 373 io->error = error; 374 375 if (atomic_dec_and_test(&io->io_count)) { 376 if (end_io_acct(io)) 377 /* nudge anyone waiting on suspend queue */ 378 wake_up(&io->md->wait); 379 380 blk_add_trace_bio(io->md->queue, io->bio, BLK_TA_COMPLETE); 381 382 bio_endio(io->bio, io->bio->bi_size, io->error); 383 free_io(io->md, io); 384 } 385 } 386 387 static int clone_endio(struct bio *bio, unsigned int done, int error) 388 { 389 int r = 0; 390 struct target_io *tio = bio->bi_private; 391 struct dm_io *io = tio->io; 392 dm_endio_fn endio = tio->ti->type->end_io; 393 394 if (bio->bi_size) 395 return 1; 396 397 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 398 error = -EIO; 399 400 if (endio) { 401 r = endio(tio->ti, bio, error, &tio->info); 402 if (r < 0) 403 error = r; 404 405 else if (r > 0) 406 /* the target wants another shot at the io */ 407 return 1; 408 } 409 410 free_tio(io->md, tio); 411 dec_pending(io, error); 412 bio_put(bio); 413 return r; 414 } 415 416 static sector_t max_io_len(struct mapped_device *md, 417 sector_t sector, struct dm_target *ti) 418 { 419 sector_t offset = sector - ti->begin; 420 sector_t len = ti->len - offset; 421 422 /* 423 * Does the target need to split even further ? 424 */ 425 if (ti->split_io) { 426 sector_t boundary; 427 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 428 - offset; 429 if (len > boundary) 430 len = boundary; 431 } 432 433 return len; 434 } 435 436 static void __map_bio(struct dm_target *ti, struct bio *clone, 437 struct target_io *tio) 438 { 439 int r; 440 sector_t sector; 441 442 /* 443 * Sanity checks. 444 */ 445 BUG_ON(!clone->bi_size); 446 447 clone->bi_end_io = clone_endio; 448 clone->bi_private = tio; 449 450 /* 451 * Map the clone. If r == 0 we don't need to do 452 * anything, the target has assumed ownership of 453 * this io. 454 */ 455 atomic_inc(&tio->io->io_count); 456 sector = clone->bi_sector; 457 r = ti->type->map(ti, clone, &tio->info); 458 if (r > 0) { 459 /* the bio has been remapped so dispatch it */ 460 461 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone, 462 tio->io->bio->bi_bdev->bd_dev, sector, 463 clone->bi_sector); 464 465 generic_make_request(clone); 466 } 467 468 else if (r < 0) { 469 /* error the io and bail out */ 470 struct dm_io *io = tio->io; 471 free_tio(tio->io->md, tio); 472 dec_pending(io, r); 473 bio_put(clone); 474 } 475 } 476 477 struct clone_info { 478 struct mapped_device *md; 479 struct dm_table *map; 480 struct bio *bio; 481 struct dm_io *io; 482 sector_t sector; 483 sector_t sector_count; 484 unsigned short idx; 485 }; 486 487 static void dm_bio_destructor(struct bio *bio) 488 { 489 bio_free(bio, dm_set); 490 } 491 492 /* 493 * Creates a little bio that is just does part of a bvec. 494 */ 495 static struct bio *split_bvec(struct bio *bio, sector_t sector, 496 unsigned short idx, unsigned int offset, 497 unsigned int len) 498 { 499 struct bio *clone; 500 struct bio_vec *bv = bio->bi_io_vec + idx; 501 502 clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set); 503 clone->bi_destructor = dm_bio_destructor; 504 *clone->bi_io_vec = *bv; 505 506 clone->bi_sector = sector; 507 clone->bi_bdev = bio->bi_bdev; 508 clone->bi_rw = bio->bi_rw; 509 clone->bi_vcnt = 1; 510 clone->bi_size = to_bytes(len); 511 clone->bi_io_vec->bv_offset = offset; 512 clone->bi_io_vec->bv_len = clone->bi_size; 513 514 return clone; 515 } 516 517 /* 518 * Creates a bio that consists of range of complete bvecs. 519 */ 520 static struct bio *clone_bio(struct bio *bio, sector_t sector, 521 unsigned short idx, unsigned short bv_count, 522 unsigned int len) 523 { 524 struct bio *clone; 525 526 clone = bio_clone(bio, GFP_NOIO); 527 clone->bi_sector = sector; 528 clone->bi_idx = idx; 529 clone->bi_vcnt = idx + bv_count; 530 clone->bi_size = to_bytes(len); 531 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 532 533 return clone; 534 } 535 536 static void __clone_and_map(struct clone_info *ci) 537 { 538 struct bio *clone, *bio = ci->bio; 539 struct dm_target *ti = dm_table_find_target(ci->map, ci->sector); 540 sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti); 541 struct target_io *tio; 542 543 /* 544 * Allocate a target io object. 545 */ 546 tio = alloc_tio(ci->md); 547 tio->io = ci->io; 548 tio->ti = ti; 549 memset(&tio->info, 0, sizeof(tio->info)); 550 551 if (ci->sector_count <= max) { 552 /* 553 * Optimise for the simple case where we can do all of 554 * the remaining io with a single clone. 555 */ 556 clone = clone_bio(bio, ci->sector, ci->idx, 557 bio->bi_vcnt - ci->idx, ci->sector_count); 558 __map_bio(ti, clone, tio); 559 ci->sector_count = 0; 560 561 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 562 /* 563 * There are some bvecs that don't span targets. 564 * Do as many of these as possible. 565 */ 566 int i; 567 sector_t remaining = max; 568 sector_t bv_len; 569 570 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 571 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 572 573 if (bv_len > remaining) 574 break; 575 576 remaining -= bv_len; 577 len += bv_len; 578 } 579 580 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len); 581 __map_bio(ti, clone, tio); 582 583 ci->sector += len; 584 ci->sector_count -= len; 585 ci->idx = i; 586 587 } else { 588 /* 589 * Handle a bvec that must be split between two or more targets. 590 */ 591 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 592 sector_t remaining = to_sector(bv->bv_len); 593 unsigned int offset = 0; 594 595 do { 596 if (offset) { 597 ti = dm_table_find_target(ci->map, ci->sector); 598 max = max_io_len(ci->md, ci->sector, ti); 599 600 tio = alloc_tio(ci->md); 601 tio->io = ci->io; 602 tio->ti = ti; 603 memset(&tio->info, 0, sizeof(tio->info)); 604 } 605 606 len = min(remaining, max); 607 608 clone = split_bvec(bio, ci->sector, ci->idx, 609 bv->bv_offset + offset, len); 610 611 __map_bio(ti, clone, tio); 612 613 ci->sector += len; 614 ci->sector_count -= len; 615 offset += to_bytes(len); 616 } while (remaining -= len); 617 618 ci->idx++; 619 } 620 } 621 622 /* 623 * Split the bio into several clones. 624 */ 625 static void __split_bio(struct mapped_device *md, struct bio *bio) 626 { 627 struct clone_info ci; 628 629 ci.map = dm_get_table(md); 630 if (!ci.map) { 631 bio_io_error(bio, bio->bi_size); 632 return; 633 } 634 635 ci.md = md; 636 ci.bio = bio; 637 ci.io = alloc_io(md); 638 ci.io->error = 0; 639 atomic_set(&ci.io->io_count, 1); 640 ci.io->bio = bio; 641 ci.io->md = md; 642 ci.sector = bio->bi_sector; 643 ci.sector_count = bio_sectors(bio); 644 ci.idx = bio->bi_idx; 645 646 start_io_acct(ci.io); 647 while (ci.sector_count) 648 __clone_and_map(&ci); 649 650 /* drop the extra reference count */ 651 dec_pending(ci.io, 0); 652 dm_table_put(ci.map); 653 } 654 /*----------------------------------------------------------------- 655 * CRUD END 656 *---------------------------------------------------------------*/ 657 658 /* 659 * The request function that just remaps the bio built up by 660 * dm_merge_bvec. 661 */ 662 static int dm_request(request_queue_t *q, struct bio *bio) 663 { 664 int r; 665 int rw = bio_data_dir(bio); 666 struct mapped_device *md = q->queuedata; 667 668 down_read(&md->io_lock); 669 670 disk_stat_inc(dm_disk(md), ios[rw]); 671 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio)); 672 673 /* 674 * If we're suspended we have to queue 675 * this io for later. 676 */ 677 while (test_bit(DMF_BLOCK_IO, &md->flags)) { 678 up_read(&md->io_lock); 679 680 if (bio_rw(bio) == READA) { 681 bio_io_error(bio, bio->bi_size); 682 return 0; 683 } 684 685 r = queue_io(md, bio); 686 if (r < 0) { 687 bio_io_error(bio, bio->bi_size); 688 return 0; 689 690 } else if (r == 0) 691 return 0; /* deferred successfully */ 692 693 /* 694 * We're in a while loop, because someone could suspend 695 * before we get to the following read lock. 696 */ 697 down_read(&md->io_lock); 698 } 699 700 __split_bio(md, bio); 701 up_read(&md->io_lock); 702 return 0; 703 } 704 705 static int dm_flush_all(request_queue_t *q, struct gendisk *disk, 706 sector_t *error_sector) 707 { 708 struct mapped_device *md = q->queuedata; 709 struct dm_table *map = dm_get_table(md); 710 int ret = -ENXIO; 711 712 if (map) { 713 ret = dm_table_flush_all(map); 714 dm_table_put(map); 715 } 716 717 return ret; 718 } 719 720 static void dm_unplug_all(request_queue_t *q) 721 { 722 struct mapped_device *md = q->queuedata; 723 struct dm_table *map = dm_get_table(md); 724 725 if (map) { 726 dm_table_unplug_all(map); 727 dm_table_put(map); 728 } 729 } 730 731 static int dm_any_congested(void *congested_data, int bdi_bits) 732 { 733 int r; 734 struct mapped_device *md = (struct mapped_device *) congested_data; 735 struct dm_table *map = dm_get_table(md); 736 737 if (!map || test_bit(DMF_BLOCK_IO, &md->flags)) 738 r = bdi_bits; 739 else 740 r = dm_table_any_congested(map, bdi_bits); 741 742 dm_table_put(map); 743 return r; 744 } 745 746 /*----------------------------------------------------------------- 747 * An IDR is used to keep track of allocated minor numbers. 748 *---------------------------------------------------------------*/ 749 static DEFINE_MUTEX(_minor_lock); 750 static DEFINE_IDR(_minor_idr); 751 752 static void free_minor(unsigned int minor) 753 { 754 mutex_lock(&_minor_lock); 755 idr_remove(&_minor_idr, minor); 756 mutex_unlock(&_minor_lock); 757 } 758 759 /* 760 * See if the device with a specific minor # is free. 761 */ 762 static int specific_minor(struct mapped_device *md, unsigned int minor) 763 { 764 int r, m; 765 766 if (minor >= (1 << MINORBITS)) 767 return -EINVAL; 768 769 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 770 if (!r) 771 return -ENOMEM; 772 773 mutex_lock(&_minor_lock); 774 775 if (idr_find(&_minor_idr, minor)) { 776 r = -EBUSY; 777 goto out; 778 } 779 780 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 781 if (r) 782 goto out; 783 784 if (m != minor) { 785 idr_remove(&_minor_idr, m); 786 r = -EBUSY; 787 goto out; 788 } 789 790 out: 791 mutex_unlock(&_minor_lock); 792 return r; 793 } 794 795 static int next_free_minor(struct mapped_device *md, unsigned int *minor) 796 { 797 int r; 798 unsigned int m; 799 800 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 801 if (!r) 802 return -ENOMEM; 803 804 mutex_lock(&_minor_lock); 805 806 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 807 if (r) { 808 goto out; 809 } 810 811 if (m >= (1 << MINORBITS)) { 812 idr_remove(&_minor_idr, m); 813 r = -ENOSPC; 814 goto out; 815 } 816 817 *minor = m; 818 819 out: 820 mutex_unlock(&_minor_lock); 821 return r; 822 } 823 824 static struct block_device_operations dm_blk_dops; 825 826 /* 827 * Allocate and initialise a blank device with a given minor. 828 */ 829 static struct mapped_device *alloc_dev(unsigned int minor, int persistent) 830 { 831 int r; 832 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL); 833 void *old_md; 834 835 if (!md) { 836 DMWARN("unable to allocate device, out of memory."); 837 return NULL; 838 } 839 840 /* get a minor number for the dev */ 841 r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor); 842 if (r < 0) 843 goto bad1; 844 845 memset(md, 0, sizeof(*md)); 846 init_rwsem(&md->io_lock); 847 init_MUTEX(&md->suspend_lock); 848 rwlock_init(&md->map_lock); 849 atomic_set(&md->holders, 1); 850 atomic_set(&md->event_nr, 0); 851 852 md->queue = blk_alloc_queue(GFP_KERNEL); 853 if (!md->queue) 854 goto bad1; 855 856 md->queue->queuedata = md; 857 md->queue->backing_dev_info.congested_fn = dm_any_congested; 858 md->queue->backing_dev_info.congested_data = md; 859 blk_queue_make_request(md->queue, dm_request); 860 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 861 md->queue->unplug_fn = dm_unplug_all; 862 md->queue->issue_flush_fn = dm_flush_all; 863 864 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 865 if (!md->io_pool) 866 goto bad2; 867 868 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 869 if (!md->tio_pool) 870 goto bad3; 871 872 md->disk = alloc_disk(1); 873 if (!md->disk) 874 goto bad4; 875 876 md->disk->major = _major; 877 md->disk->first_minor = minor; 878 md->disk->fops = &dm_blk_dops; 879 md->disk->queue = md->queue; 880 md->disk->private_data = md; 881 sprintf(md->disk->disk_name, "dm-%d", minor); 882 add_disk(md->disk); 883 format_dev_t(md->name, MKDEV(_major, minor)); 884 885 atomic_set(&md->pending, 0); 886 init_waitqueue_head(&md->wait); 887 init_waitqueue_head(&md->eventq); 888 889 /* Populate the mapping, nobody knows we exist yet */ 890 mutex_lock(&_minor_lock); 891 old_md = idr_replace(&_minor_idr, md, minor); 892 mutex_unlock(&_minor_lock); 893 894 BUG_ON(old_md != MINOR_ALLOCED); 895 896 return md; 897 898 bad4: 899 mempool_destroy(md->tio_pool); 900 bad3: 901 mempool_destroy(md->io_pool); 902 bad2: 903 blk_cleanup_queue(md->queue); 904 free_minor(minor); 905 bad1: 906 kfree(md); 907 return NULL; 908 } 909 910 static void free_dev(struct mapped_device *md) 911 { 912 unsigned int minor = md->disk->first_minor; 913 914 if (md->suspended_bdev) { 915 thaw_bdev(md->suspended_bdev, NULL); 916 bdput(md->suspended_bdev); 917 } 918 mempool_destroy(md->tio_pool); 919 mempool_destroy(md->io_pool); 920 del_gendisk(md->disk); 921 free_minor(minor); 922 put_disk(md->disk); 923 blk_cleanup_queue(md->queue); 924 kfree(md); 925 } 926 927 /* 928 * Bind a table to the device. 929 */ 930 static void event_callback(void *context) 931 { 932 struct mapped_device *md = (struct mapped_device *) context; 933 934 atomic_inc(&md->event_nr); 935 wake_up(&md->eventq); 936 } 937 938 static void __set_size(struct mapped_device *md, sector_t size) 939 { 940 set_capacity(md->disk, size); 941 942 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex); 943 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 944 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex); 945 } 946 947 static int __bind(struct mapped_device *md, struct dm_table *t) 948 { 949 request_queue_t *q = md->queue; 950 sector_t size; 951 952 size = dm_table_get_size(t); 953 954 /* 955 * Wipe any geometry if the size of the table changed. 956 */ 957 if (size != get_capacity(md->disk)) 958 memset(&md->geometry, 0, sizeof(md->geometry)); 959 960 __set_size(md, size); 961 if (size == 0) 962 return 0; 963 964 dm_table_get(t); 965 dm_table_event_callback(t, event_callback, md); 966 967 write_lock(&md->map_lock); 968 md->map = t; 969 dm_table_set_restrictions(t, q); 970 write_unlock(&md->map_lock); 971 972 return 0; 973 } 974 975 static void __unbind(struct mapped_device *md) 976 { 977 struct dm_table *map = md->map; 978 979 if (!map) 980 return; 981 982 dm_table_event_callback(map, NULL, NULL); 983 write_lock(&md->map_lock); 984 md->map = NULL; 985 write_unlock(&md->map_lock); 986 dm_table_put(map); 987 } 988 989 /* 990 * Constructor for a new device. 991 */ 992 static int create_aux(unsigned int minor, int persistent, 993 struct mapped_device **result) 994 { 995 struct mapped_device *md; 996 997 md = alloc_dev(minor, persistent); 998 if (!md) 999 return -ENXIO; 1000 1001 *result = md; 1002 return 0; 1003 } 1004 1005 int dm_create(struct mapped_device **result) 1006 { 1007 return create_aux(0, 0, result); 1008 } 1009 1010 int dm_create_with_minor(unsigned int minor, struct mapped_device **result) 1011 { 1012 return create_aux(minor, 1, result); 1013 } 1014 1015 static struct mapped_device *dm_find_md(dev_t dev) 1016 { 1017 struct mapped_device *md; 1018 unsigned minor = MINOR(dev); 1019 1020 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1021 return NULL; 1022 1023 mutex_lock(&_minor_lock); 1024 1025 md = idr_find(&_minor_idr, minor); 1026 if (md && (md == MINOR_ALLOCED || (dm_disk(md)->first_minor != minor))) 1027 md = NULL; 1028 1029 mutex_unlock(&_minor_lock); 1030 1031 return md; 1032 } 1033 1034 struct mapped_device *dm_get_md(dev_t dev) 1035 { 1036 struct mapped_device *md = dm_find_md(dev); 1037 1038 if (md) 1039 dm_get(md); 1040 1041 return md; 1042 } 1043 1044 void *dm_get_mdptr(struct mapped_device *md) 1045 { 1046 return md->interface_ptr; 1047 } 1048 1049 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1050 { 1051 md->interface_ptr = ptr; 1052 } 1053 1054 void dm_get(struct mapped_device *md) 1055 { 1056 atomic_inc(&md->holders); 1057 } 1058 1059 void dm_put(struct mapped_device *md) 1060 { 1061 struct dm_table *map; 1062 1063 if (atomic_dec_and_test(&md->holders)) { 1064 map = dm_get_table(md); 1065 mutex_lock(&_minor_lock); 1066 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor); 1067 mutex_unlock(&_minor_lock); 1068 if (!dm_suspended(md)) { 1069 dm_table_presuspend_targets(map); 1070 dm_table_postsuspend_targets(map); 1071 } 1072 __unbind(md); 1073 dm_table_put(map); 1074 free_dev(md); 1075 } 1076 } 1077 1078 /* 1079 * Process the deferred bios 1080 */ 1081 static void __flush_deferred_io(struct mapped_device *md, struct bio *c) 1082 { 1083 struct bio *n; 1084 1085 while (c) { 1086 n = c->bi_next; 1087 c->bi_next = NULL; 1088 __split_bio(md, c); 1089 c = n; 1090 } 1091 } 1092 1093 /* 1094 * Swap in a new table (destroying old one). 1095 */ 1096 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1097 { 1098 int r = -EINVAL; 1099 1100 down(&md->suspend_lock); 1101 1102 /* device must be suspended */ 1103 if (!dm_suspended(md)) 1104 goto out; 1105 1106 __unbind(md); 1107 r = __bind(md, table); 1108 1109 out: 1110 up(&md->suspend_lock); 1111 return r; 1112 } 1113 1114 /* 1115 * Functions to lock and unlock any filesystem running on the 1116 * device. 1117 */ 1118 static int lock_fs(struct mapped_device *md) 1119 { 1120 int r; 1121 1122 WARN_ON(md->frozen_sb); 1123 1124 md->frozen_sb = freeze_bdev(md->suspended_bdev); 1125 if (IS_ERR(md->frozen_sb)) { 1126 r = PTR_ERR(md->frozen_sb); 1127 md->frozen_sb = NULL; 1128 return r; 1129 } 1130 1131 set_bit(DMF_FROZEN, &md->flags); 1132 1133 /* don't bdput right now, we don't want the bdev 1134 * to go away while it is locked. 1135 */ 1136 return 0; 1137 } 1138 1139 static void unlock_fs(struct mapped_device *md) 1140 { 1141 if (!test_bit(DMF_FROZEN, &md->flags)) 1142 return; 1143 1144 thaw_bdev(md->suspended_bdev, md->frozen_sb); 1145 md->frozen_sb = NULL; 1146 clear_bit(DMF_FROZEN, &md->flags); 1147 } 1148 1149 /* 1150 * We need to be able to change a mapping table under a mounted 1151 * filesystem. For example we might want to move some data in 1152 * the background. Before the table can be swapped with 1153 * dm_bind_table, dm_suspend must be called to flush any in 1154 * flight bios and ensure that any further io gets deferred. 1155 */ 1156 int dm_suspend(struct mapped_device *md, int do_lockfs) 1157 { 1158 struct dm_table *map = NULL; 1159 DECLARE_WAITQUEUE(wait, current); 1160 struct bio *def; 1161 int r = -EINVAL; 1162 1163 down(&md->suspend_lock); 1164 1165 if (dm_suspended(md)) 1166 goto out; 1167 1168 map = dm_get_table(md); 1169 1170 /* This does not get reverted if there's an error later. */ 1171 dm_table_presuspend_targets(map); 1172 1173 md->suspended_bdev = bdget_disk(md->disk, 0); 1174 if (!md->suspended_bdev) { 1175 DMWARN("bdget failed in dm_suspend"); 1176 r = -ENOMEM; 1177 goto out; 1178 } 1179 1180 /* Flush I/O to the device. */ 1181 if (do_lockfs) { 1182 r = lock_fs(md); 1183 if (r) 1184 goto out; 1185 } 1186 1187 /* 1188 * First we set the BLOCK_IO flag so no more ios will be mapped. 1189 */ 1190 down_write(&md->io_lock); 1191 set_bit(DMF_BLOCK_IO, &md->flags); 1192 1193 add_wait_queue(&md->wait, &wait); 1194 up_write(&md->io_lock); 1195 1196 /* unplug */ 1197 if (map) 1198 dm_table_unplug_all(map); 1199 1200 /* 1201 * Then we wait for the already mapped ios to 1202 * complete. 1203 */ 1204 while (1) { 1205 set_current_state(TASK_INTERRUPTIBLE); 1206 1207 if (!atomic_read(&md->pending) || signal_pending(current)) 1208 break; 1209 1210 io_schedule(); 1211 } 1212 set_current_state(TASK_RUNNING); 1213 1214 down_write(&md->io_lock); 1215 remove_wait_queue(&md->wait, &wait); 1216 1217 /* were we interrupted ? */ 1218 r = -EINTR; 1219 if (atomic_read(&md->pending)) { 1220 clear_bit(DMF_BLOCK_IO, &md->flags); 1221 def = bio_list_get(&md->deferred); 1222 __flush_deferred_io(md, def); 1223 up_write(&md->io_lock); 1224 unlock_fs(md); 1225 goto out; 1226 } 1227 up_write(&md->io_lock); 1228 1229 dm_table_postsuspend_targets(map); 1230 1231 set_bit(DMF_SUSPENDED, &md->flags); 1232 1233 r = 0; 1234 1235 out: 1236 if (r && md->suspended_bdev) { 1237 bdput(md->suspended_bdev); 1238 md->suspended_bdev = NULL; 1239 } 1240 1241 dm_table_put(map); 1242 up(&md->suspend_lock); 1243 return r; 1244 } 1245 1246 int dm_resume(struct mapped_device *md) 1247 { 1248 int r = -EINVAL; 1249 struct bio *def; 1250 struct dm_table *map = NULL; 1251 1252 down(&md->suspend_lock); 1253 if (!dm_suspended(md)) 1254 goto out; 1255 1256 map = dm_get_table(md); 1257 if (!map || !dm_table_get_size(map)) 1258 goto out; 1259 1260 dm_table_resume_targets(map); 1261 1262 down_write(&md->io_lock); 1263 clear_bit(DMF_BLOCK_IO, &md->flags); 1264 1265 def = bio_list_get(&md->deferred); 1266 __flush_deferred_io(md, def); 1267 up_write(&md->io_lock); 1268 1269 unlock_fs(md); 1270 1271 bdput(md->suspended_bdev); 1272 md->suspended_bdev = NULL; 1273 1274 clear_bit(DMF_SUSPENDED, &md->flags); 1275 1276 dm_table_unplug_all(map); 1277 1278 r = 0; 1279 1280 out: 1281 dm_table_put(map); 1282 up(&md->suspend_lock); 1283 1284 return r; 1285 } 1286 1287 /*----------------------------------------------------------------- 1288 * Event notification. 1289 *---------------------------------------------------------------*/ 1290 uint32_t dm_get_event_nr(struct mapped_device *md) 1291 { 1292 return atomic_read(&md->event_nr); 1293 } 1294 1295 int dm_wait_event(struct mapped_device *md, int event_nr) 1296 { 1297 return wait_event_interruptible(md->eventq, 1298 (event_nr != atomic_read(&md->event_nr))); 1299 } 1300 1301 /* 1302 * The gendisk is only valid as long as you have a reference 1303 * count on 'md'. 1304 */ 1305 struct gendisk *dm_disk(struct mapped_device *md) 1306 { 1307 return md->disk; 1308 } 1309 1310 int dm_suspended(struct mapped_device *md) 1311 { 1312 return test_bit(DMF_SUSPENDED, &md->flags); 1313 } 1314 1315 static struct block_device_operations dm_blk_dops = { 1316 .open = dm_blk_open, 1317 .release = dm_blk_close, 1318 .getgeo = dm_blk_getgeo, 1319 .owner = THIS_MODULE 1320 }; 1321 1322 EXPORT_SYMBOL(dm_get_mapinfo); 1323 1324 /* 1325 * module hooks 1326 */ 1327 module_init(dm_init); 1328 module_exit(dm_exit); 1329 1330 module_param(major, uint, 0); 1331 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1332 MODULE_DESCRIPTION(DM_NAME " driver"); 1333 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1334 MODULE_LICENSE("GPL"); 1335