1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones) 445 { 446 #ifdef CONFIG_BLK_DEV_ZONED 447 struct mapped_device *md = disk->private_data; 448 struct dm_target *tgt; 449 struct dm_table *map; 450 int srcu_idx, ret; 451 452 if (dm_suspended_md(md)) 453 return -EAGAIN; 454 455 map = dm_get_live_table(md, &srcu_idx); 456 if (!map) 457 return -EIO; 458 459 tgt = dm_table_find_target(map, sector); 460 if (!tgt) { 461 ret = -EIO; 462 goto out; 463 } 464 465 /* 466 * If we are executing this, we already know that the block device 467 * is a zoned device and so each target should have support for that 468 * type of drive. A missing report_zones method means that the target 469 * driver has a problem. 470 */ 471 if (WARN_ON(!tgt->type->report_zones)) { 472 ret = -EIO; 473 goto out; 474 } 475 476 ret = tgt->type->report_zones(tgt, sector, zones, nr_zones); 477 478 out: 479 dm_put_live_table(md, srcu_idx); 480 return ret; 481 #else 482 return -ENOTSUPP; 483 #endif 484 } 485 486 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 487 struct block_device **bdev) 488 __acquires(md->io_barrier) 489 { 490 struct dm_target *tgt; 491 struct dm_table *map; 492 int r; 493 494 retry: 495 r = -ENOTTY; 496 map = dm_get_live_table(md, srcu_idx); 497 if (!map || !dm_table_get_size(map)) 498 return r; 499 500 /* We only support devices that have a single target */ 501 if (dm_table_get_num_targets(map) != 1) 502 return r; 503 504 tgt = dm_table_get_target(map, 0); 505 if (!tgt->type->prepare_ioctl) 506 return r; 507 508 if (dm_suspended_md(md)) 509 return -EAGAIN; 510 511 r = tgt->type->prepare_ioctl(tgt, bdev); 512 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 513 dm_put_live_table(md, *srcu_idx); 514 msleep(10); 515 goto retry; 516 } 517 518 return r; 519 } 520 521 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 522 __releases(md->io_barrier) 523 { 524 dm_put_live_table(md, srcu_idx); 525 } 526 527 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 528 unsigned int cmd, unsigned long arg) 529 { 530 struct mapped_device *md = bdev->bd_disk->private_data; 531 int r, srcu_idx; 532 533 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 534 if (r < 0) 535 goto out; 536 537 if (r > 0) { 538 /* 539 * Target determined this ioctl is being issued against a 540 * subset of the parent bdev; require extra privileges. 541 */ 542 if (!capable(CAP_SYS_RAWIO)) { 543 DMWARN_LIMIT( 544 "%s: sending ioctl %x to DM device without required privilege.", 545 current->comm, cmd); 546 r = -ENOIOCTLCMD; 547 goto out; 548 } 549 } 550 551 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 552 out: 553 dm_unprepare_ioctl(md, srcu_idx); 554 return r; 555 } 556 557 static void start_io_acct(struct dm_io *io); 558 559 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 560 { 561 struct dm_io *io; 562 struct dm_target_io *tio; 563 struct bio *clone; 564 565 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 566 if (!clone) 567 return NULL; 568 569 tio = container_of(clone, struct dm_target_io, clone); 570 tio->inside_dm_io = true; 571 tio->io = NULL; 572 573 io = container_of(tio, struct dm_io, tio); 574 io->magic = DM_IO_MAGIC; 575 io->status = 0; 576 atomic_set(&io->io_count, 1); 577 io->orig_bio = bio; 578 io->md = md; 579 spin_lock_init(&io->endio_lock); 580 581 start_io_acct(io); 582 583 return io; 584 } 585 586 static void free_io(struct mapped_device *md, struct dm_io *io) 587 { 588 bio_put(&io->tio.clone); 589 } 590 591 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 592 unsigned target_bio_nr, gfp_t gfp_mask) 593 { 594 struct dm_target_io *tio; 595 596 if (!ci->io->tio.io) { 597 /* the dm_target_io embedded in ci->io is available */ 598 tio = &ci->io->tio; 599 } else { 600 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 601 if (!clone) 602 return NULL; 603 604 tio = container_of(clone, struct dm_target_io, clone); 605 tio->inside_dm_io = false; 606 } 607 608 tio->magic = DM_TIO_MAGIC; 609 tio->io = ci->io; 610 tio->ti = ti; 611 tio->target_bio_nr = target_bio_nr; 612 613 return tio; 614 } 615 616 static void free_tio(struct dm_target_io *tio) 617 { 618 if (tio->inside_dm_io) 619 return; 620 bio_put(&tio->clone); 621 } 622 623 static bool md_in_flight_bios(struct mapped_device *md) 624 { 625 int cpu; 626 struct hd_struct *part = &dm_disk(md)->part0; 627 long sum = 0; 628 629 for_each_possible_cpu(cpu) { 630 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 631 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 632 } 633 634 return sum != 0; 635 } 636 637 static bool md_in_flight(struct mapped_device *md) 638 { 639 if (queue_is_mq(md->queue)) 640 return blk_mq_queue_inflight(md->queue); 641 else 642 return md_in_flight_bios(md); 643 } 644 645 static void start_io_acct(struct dm_io *io) 646 { 647 struct mapped_device *md = io->md; 648 struct bio *bio = io->orig_bio; 649 650 io->start_time = jiffies; 651 652 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 653 &dm_disk(md)->part0); 654 655 if (unlikely(dm_stats_used(&md->stats))) 656 dm_stats_account_io(&md->stats, bio_data_dir(bio), 657 bio->bi_iter.bi_sector, bio_sectors(bio), 658 false, 0, &io->stats_aux); 659 } 660 661 static void end_io_acct(struct dm_io *io) 662 { 663 struct mapped_device *md = io->md; 664 struct bio *bio = io->orig_bio; 665 unsigned long duration = jiffies - io->start_time; 666 667 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 668 io->start_time); 669 670 if (unlikely(dm_stats_used(&md->stats))) 671 dm_stats_account_io(&md->stats, bio_data_dir(bio), 672 bio->bi_iter.bi_sector, bio_sectors(bio), 673 true, duration, &io->stats_aux); 674 675 /* nudge anyone waiting on suspend queue */ 676 if (unlikely(wq_has_sleeper(&md->wait))) 677 wake_up(&md->wait); 678 } 679 680 /* 681 * Add the bio to the list of deferred io. 682 */ 683 static void queue_io(struct mapped_device *md, struct bio *bio) 684 { 685 unsigned long flags; 686 687 spin_lock_irqsave(&md->deferred_lock, flags); 688 bio_list_add(&md->deferred, bio); 689 spin_unlock_irqrestore(&md->deferred_lock, flags); 690 queue_work(md->wq, &md->work); 691 } 692 693 /* 694 * Everyone (including functions in this file), should use this 695 * function to access the md->map field, and make sure they call 696 * dm_put_live_table() when finished. 697 */ 698 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 699 { 700 *srcu_idx = srcu_read_lock(&md->io_barrier); 701 702 return srcu_dereference(md->map, &md->io_barrier); 703 } 704 705 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 706 { 707 srcu_read_unlock(&md->io_barrier, srcu_idx); 708 } 709 710 void dm_sync_table(struct mapped_device *md) 711 { 712 synchronize_srcu(&md->io_barrier); 713 synchronize_rcu_expedited(); 714 } 715 716 /* 717 * A fast alternative to dm_get_live_table/dm_put_live_table. 718 * The caller must not block between these two functions. 719 */ 720 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 721 { 722 rcu_read_lock(); 723 return rcu_dereference(md->map); 724 } 725 726 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 727 { 728 rcu_read_unlock(); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static int open_table_device(struct table_device *td, dev_t dev, 737 struct mapped_device *md) 738 { 739 struct block_device *bdev; 740 741 int r; 742 743 BUG_ON(td->dm_dev.bdev); 744 745 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 746 if (IS_ERR(bdev)) 747 return PTR_ERR(bdev); 748 749 r = bd_link_disk_holder(bdev, dm_disk(md)); 750 if (r) { 751 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 752 return r; 753 } 754 755 td->dm_dev.bdev = bdev; 756 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 757 return 0; 758 } 759 760 /* 761 * Close a table device that we've been using. 762 */ 763 static void close_table_device(struct table_device *td, struct mapped_device *md) 764 { 765 if (!td->dm_dev.bdev) 766 return; 767 768 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 769 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 770 put_dax(td->dm_dev.dax_dev); 771 td->dm_dev.bdev = NULL; 772 td->dm_dev.dax_dev = NULL; 773 } 774 775 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 776 fmode_t mode) 777 { 778 struct table_device *td; 779 780 list_for_each_entry(td, l, list) 781 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 782 return td; 783 784 return NULL; 785 } 786 787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 788 struct dm_dev **result) 789 { 790 int r; 791 struct table_device *td; 792 793 mutex_lock(&md->table_devices_lock); 794 td = find_table_device(&md->table_devices, dev, mode); 795 if (!td) { 796 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 797 if (!td) { 798 mutex_unlock(&md->table_devices_lock); 799 return -ENOMEM; 800 } 801 802 td->dm_dev.mode = mode; 803 td->dm_dev.bdev = NULL; 804 805 if ((r = open_table_device(td, dev, md))) { 806 mutex_unlock(&md->table_devices_lock); 807 kfree(td); 808 return r; 809 } 810 811 format_dev_t(td->dm_dev.name, dev); 812 813 refcount_set(&td->count, 1); 814 list_add(&td->list, &md->table_devices); 815 } else { 816 refcount_inc(&td->count); 817 } 818 mutex_unlock(&md->table_devices_lock); 819 820 *result = &td->dm_dev; 821 return 0; 822 } 823 EXPORT_SYMBOL_GPL(dm_get_table_device); 824 825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 826 { 827 struct table_device *td = container_of(d, struct table_device, dm_dev); 828 829 mutex_lock(&md->table_devices_lock); 830 if (refcount_dec_and_test(&td->count)) { 831 close_table_device(td, md); 832 list_del(&td->list); 833 kfree(td); 834 } 835 mutex_unlock(&md->table_devices_lock); 836 } 837 EXPORT_SYMBOL(dm_put_table_device); 838 839 static void free_table_devices(struct list_head *devices) 840 { 841 struct list_head *tmp, *next; 842 843 list_for_each_safe(tmp, next, devices) { 844 struct table_device *td = list_entry(tmp, struct table_device, list); 845 846 DMWARN("dm_destroy: %s still exists with %d references", 847 td->dm_dev.name, refcount_read(&td->count)); 848 kfree(td); 849 } 850 } 851 852 /* 853 * Get the geometry associated with a dm device 854 */ 855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 856 { 857 *geo = md->geometry; 858 859 return 0; 860 } 861 862 /* 863 * Set the geometry of a device. 864 */ 865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 866 { 867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 868 869 if (geo->start > sz) { 870 DMWARN("Start sector is beyond the geometry limits."); 871 return -EINVAL; 872 } 873 874 md->geometry = *geo; 875 876 return 0; 877 } 878 879 static int __noflush_suspending(struct mapped_device *md) 880 { 881 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 882 } 883 884 /* 885 * Decrements the number of outstanding ios that a bio has been 886 * cloned into, completing the original io if necc. 887 */ 888 static void dec_pending(struct dm_io *io, blk_status_t error) 889 { 890 unsigned long flags; 891 blk_status_t io_error; 892 struct bio *bio; 893 struct mapped_device *md = io->md; 894 895 /* Push-back supersedes any I/O errors */ 896 if (unlikely(error)) { 897 spin_lock_irqsave(&io->endio_lock, flags); 898 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 899 io->status = error; 900 spin_unlock_irqrestore(&io->endio_lock, flags); 901 } 902 903 if (atomic_dec_and_test(&io->io_count)) { 904 if (io->status == BLK_STS_DM_REQUEUE) { 905 /* 906 * Target requested pushing back the I/O. 907 */ 908 spin_lock_irqsave(&md->deferred_lock, flags); 909 if (__noflush_suspending(md)) 910 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 911 bio_list_add_head(&md->deferred, io->orig_bio); 912 else 913 /* noflush suspend was interrupted. */ 914 io->status = BLK_STS_IOERR; 915 spin_unlock_irqrestore(&md->deferred_lock, flags); 916 } 917 918 io_error = io->status; 919 bio = io->orig_bio; 920 end_io_acct(io); 921 free_io(md, io); 922 923 if (io_error == BLK_STS_DM_REQUEUE) 924 return; 925 926 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 927 /* 928 * Preflush done for flush with data, reissue 929 * without REQ_PREFLUSH. 930 */ 931 bio->bi_opf &= ~REQ_PREFLUSH; 932 queue_io(md, bio); 933 } else { 934 /* done with normal IO or empty flush */ 935 if (io_error) 936 bio->bi_status = io_error; 937 bio_endio(bio); 938 } 939 } 940 } 941 942 void disable_discard(struct mapped_device *md) 943 { 944 struct queue_limits *limits = dm_get_queue_limits(md); 945 946 /* device doesn't really support DISCARD, disable it */ 947 limits->max_discard_sectors = 0; 948 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 949 } 950 951 void disable_write_same(struct mapped_device *md) 952 { 953 struct queue_limits *limits = dm_get_queue_limits(md); 954 955 /* device doesn't really support WRITE SAME, disable it */ 956 limits->max_write_same_sectors = 0; 957 } 958 959 void disable_write_zeroes(struct mapped_device *md) 960 { 961 struct queue_limits *limits = dm_get_queue_limits(md); 962 963 /* device doesn't really support WRITE ZEROES, disable it */ 964 limits->max_write_zeroes_sectors = 0; 965 } 966 967 static void clone_endio(struct bio *bio) 968 { 969 blk_status_t error = bio->bi_status; 970 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 971 struct dm_io *io = tio->io; 972 struct mapped_device *md = tio->io->md; 973 dm_endio_fn endio = tio->ti->type->end_io; 974 975 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 976 if (bio_op(bio) == REQ_OP_DISCARD && 977 !bio->bi_disk->queue->limits.max_discard_sectors) 978 disable_discard(md); 979 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 980 !bio->bi_disk->queue->limits.max_write_same_sectors) 981 disable_write_same(md); 982 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 983 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 984 disable_write_zeroes(md); 985 } 986 987 if (endio) { 988 int r = endio(tio->ti, bio, &error); 989 switch (r) { 990 case DM_ENDIO_REQUEUE: 991 error = BLK_STS_DM_REQUEUE; 992 /*FALLTHRU*/ 993 case DM_ENDIO_DONE: 994 break; 995 case DM_ENDIO_INCOMPLETE: 996 /* The target will handle the io */ 997 return; 998 default: 999 DMWARN("unimplemented target endio return value: %d", r); 1000 BUG(); 1001 } 1002 } 1003 1004 free_tio(tio); 1005 dec_pending(io, error); 1006 } 1007 1008 /* 1009 * Return maximum size of I/O possible at the supplied sector up to the current 1010 * target boundary. 1011 */ 1012 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1013 { 1014 sector_t target_offset = dm_target_offset(ti, sector); 1015 1016 return ti->len - target_offset; 1017 } 1018 1019 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1020 { 1021 sector_t len = max_io_len_target_boundary(sector, ti); 1022 sector_t offset, max_len; 1023 1024 /* 1025 * Does the target need to split even further? 1026 */ 1027 if (ti->max_io_len) { 1028 offset = dm_target_offset(ti, sector); 1029 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1030 max_len = sector_div(offset, ti->max_io_len); 1031 else 1032 max_len = offset & (ti->max_io_len - 1); 1033 max_len = ti->max_io_len - max_len; 1034 1035 if (len > max_len) 1036 len = max_len; 1037 } 1038 1039 return len; 1040 } 1041 1042 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1043 { 1044 if (len > UINT_MAX) { 1045 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1046 (unsigned long long)len, UINT_MAX); 1047 ti->error = "Maximum size of target IO is too large"; 1048 return -EINVAL; 1049 } 1050 1051 ti->max_io_len = (uint32_t) len; 1052 1053 return 0; 1054 } 1055 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1056 1057 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1058 sector_t sector, int *srcu_idx) 1059 __acquires(md->io_barrier) 1060 { 1061 struct dm_table *map; 1062 struct dm_target *ti; 1063 1064 map = dm_get_live_table(md, srcu_idx); 1065 if (!map) 1066 return NULL; 1067 1068 ti = dm_table_find_target(map, sector); 1069 if (!ti) 1070 return NULL; 1071 1072 return ti; 1073 } 1074 1075 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1076 long nr_pages, void **kaddr, pfn_t *pfn) 1077 { 1078 struct mapped_device *md = dax_get_private(dax_dev); 1079 sector_t sector = pgoff * PAGE_SECTORS; 1080 struct dm_target *ti; 1081 long len, ret = -EIO; 1082 int srcu_idx; 1083 1084 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1085 1086 if (!ti) 1087 goto out; 1088 if (!ti->type->direct_access) 1089 goto out; 1090 len = max_io_len(sector, ti) / PAGE_SECTORS; 1091 if (len < 1) 1092 goto out; 1093 nr_pages = min(len, nr_pages); 1094 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1095 1096 out: 1097 dm_put_live_table(md, srcu_idx); 1098 1099 return ret; 1100 } 1101 1102 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1103 int blocksize, sector_t start, sector_t len) 1104 { 1105 struct mapped_device *md = dax_get_private(dax_dev); 1106 struct dm_table *map; 1107 int srcu_idx; 1108 bool ret; 1109 1110 map = dm_get_live_table(md, &srcu_idx); 1111 if (!map) 1112 return false; 1113 1114 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1115 1116 dm_put_live_table(md, srcu_idx); 1117 1118 return ret; 1119 } 1120 1121 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1122 void *addr, size_t bytes, struct iov_iter *i) 1123 { 1124 struct mapped_device *md = dax_get_private(dax_dev); 1125 sector_t sector = pgoff * PAGE_SECTORS; 1126 struct dm_target *ti; 1127 long ret = 0; 1128 int srcu_idx; 1129 1130 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1131 1132 if (!ti) 1133 goto out; 1134 if (!ti->type->dax_copy_from_iter) { 1135 ret = copy_from_iter(addr, bytes, i); 1136 goto out; 1137 } 1138 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1139 out: 1140 dm_put_live_table(md, srcu_idx); 1141 1142 return ret; 1143 } 1144 1145 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1146 void *addr, size_t bytes, struct iov_iter *i) 1147 { 1148 struct mapped_device *md = dax_get_private(dax_dev); 1149 sector_t sector = pgoff * PAGE_SECTORS; 1150 struct dm_target *ti; 1151 long ret = 0; 1152 int srcu_idx; 1153 1154 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1155 1156 if (!ti) 1157 goto out; 1158 if (!ti->type->dax_copy_to_iter) { 1159 ret = copy_to_iter(addr, bytes, i); 1160 goto out; 1161 } 1162 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1163 out: 1164 dm_put_live_table(md, srcu_idx); 1165 1166 return ret; 1167 } 1168 1169 /* 1170 * A target may call dm_accept_partial_bio only from the map routine. It is 1171 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1172 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1173 * 1174 * dm_accept_partial_bio informs the dm that the target only wants to process 1175 * additional n_sectors sectors of the bio and the rest of the data should be 1176 * sent in a next bio. 1177 * 1178 * A diagram that explains the arithmetics: 1179 * +--------------------+---------------+-------+ 1180 * | 1 | 2 | 3 | 1181 * +--------------------+---------------+-------+ 1182 * 1183 * <-------------- *tio->len_ptr ---------------> 1184 * <------- bi_size -------> 1185 * <-- n_sectors --> 1186 * 1187 * Region 1 was already iterated over with bio_advance or similar function. 1188 * (it may be empty if the target doesn't use bio_advance) 1189 * Region 2 is the remaining bio size that the target wants to process. 1190 * (it may be empty if region 1 is non-empty, although there is no reason 1191 * to make it empty) 1192 * The target requires that region 3 is to be sent in the next bio. 1193 * 1194 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1195 * the partially processed part (the sum of regions 1+2) must be the same for all 1196 * copies of the bio. 1197 */ 1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1199 { 1200 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1201 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1202 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1203 BUG_ON(bi_size > *tio->len_ptr); 1204 BUG_ON(n_sectors > bi_size); 1205 *tio->len_ptr -= bi_size - n_sectors; 1206 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1207 } 1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1209 1210 /* 1211 * The zone descriptors obtained with a zone report indicate 1212 * zone positions within the underlying device of the target. The zone 1213 * descriptors must be remapped to match their position within the dm device. 1214 */ 1215 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1216 struct blk_zone *zones, unsigned int *nr_zones) 1217 { 1218 #ifdef CONFIG_BLK_DEV_ZONED 1219 struct blk_zone *zone; 1220 unsigned int nrz = *nr_zones; 1221 int i; 1222 1223 /* 1224 * Remap the start sector and write pointer position of the zones in 1225 * the array. Since we may have obtained from the target underlying 1226 * device more zones that the target size, also adjust the number 1227 * of zones. 1228 */ 1229 for (i = 0; i < nrz; i++) { 1230 zone = zones + i; 1231 if (zone->start >= start + ti->len) { 1232 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1233 break; 1234 } 1235 1236 zone->start = zone->start + ti->begin - start; 1237 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1238 continue; 1239 1240 if (zone->cond == BLK_ZONE_COND_FULL) 1241 zone->wp = zone->start + zone->len; 1242 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1243 zone->wp = zone->start; 1244 else 1245 zone->wp = zone->wp + ti->begin - start; 1246 } 1247 1248 *nr_zones = i; 1249 #else /* !CONFIG_BLK_DEV_ZONED */ 1250 *nr_zones = 0; 1251 #endif 1252 } 1253 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1254 1255 static blk_qc_t __map_bio(struct dm_target_io *tio) 1256 { 1257 int r; 1258 sector_t sector; 1259 struct bio *clone = &tio->clone; 1260 struct dm_io *io = tio->io; 1261 struct mapped_device *md = io->md; 1262 struct dm_target *ti = tio->ti; 1263 blk_qc_t ret = BLK_QC_T_NONE; 1264 1265 clone->bi_end_io = clone_endio; 1266 1267 /* 1268 * Map the clone. If r == 0 we don't need to do 1269 * anything, the target has assumed ownership of 1270 * this io. 1271 */ 1272 atomic_inc(&io->io_count); 1273 sector = clone->bi_iter.bi_sector; 1274 1275 r = ti->type->map(ti, clone); 1276 switch (r) { 1277 case DM_MAPIO_SUBMITTED: 1278 break; 1279 case DM_MAPIO_REMAPPED: 1280 /* the bio has been remapped so dispatch it */ 1281 trace_block_bio_remap(clone->bi_disk->queue, clone, 1282 bio_dev(io->orig_bio), sector); 1283 if (md->type == DM_TYPE_NVME_BIO_BASED) 1284 ret = direct_make_request(clone); 1285 else 1286 ret = generic_make_request(clone); 1287 break; 1288 case DM_MAPIO_KILL: 1289 free_tio(tio); 1290 dec_pending(io, BLK_STS_IOERR); 1291 break; 1292 case DM_MAPIO_REQUEUE: 1293 free_tio(tio); 1294 dec_pending(io, BLK_STS_DM_REQUEUE); 1295 break; 1296 default: 1297 DMWARN("unimplemented target map return value: %d", r); 1298 BUG(); 1299 } 1300 1301 return ret; 1302 } 1303 1304 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1305 { 1306 bio->bi_iter.bi_sector = sector; 1307 bio->bi_iter.bi_size = to_bytes(len); 1308 } 1309 1310 /* 1311 * Creates a bio that consists of range of complete bvecs. 1312 */ 1313 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1314 sector_t sector, unsigned len) 1315 { 1316 struct bio *clone = &tio->clone; 1317 1318 __bio_clone_fast(clone, bio); 1319 1320 if (bio_integrity(bio)) { 1321 int r; 1322 1323 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1324 !dm_target_passes_integrity(tio->ti->type))) { 1325 DMWARN("%s: the target %s doesn't support integrity data.", 1326 dm_device_name(tio->io->md), 1327 tio->ti->type->name); 1328 return -EIO; 1329 } 1330 1331 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1332 if (r < 0) 1333 return r; 1334 } 1335 1336 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1337 clone->bi_iter.bi_size = to_bytes(len); 1338 1339 if (bio_integrity(bio)) 1340 bio_integrity_trim(clone); 1341 1342 return 0; 1343 } 1344 1345 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1346 struct dm_target *ti, unsigned num_bios) 1347 { 1348 struct dm_target_io *tio; 1349 int try; 1350 1351 if (!num_bios) 1352 return; 1353 1354 if (num_bios == 1) { 1355 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1356 bio_list_add(blist, &tio->clone); 1357 return; 1358 } 1359 1360 for (try = 0; try < 2; try++) { 1361 int bio_nr; 1362 struct bio *bio; 1363 1364 if (try) 1365 mutex_lock(&ci->io->md->table_devices_lock); 1366 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1367 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1368 if (!tio) 1369 break; 1370 1371 bio_list_add(blist, &tio->clone); 1372 } 1373 if (try) 1374 mutex_unlock(&ci->io->md->table_devices_lock); 1375 if (bio_nr == num_bios) 1376 return; 1377 1378 while ((bio = bio_list_pop(blist))) { 1379 tio = container_of(bio, struct dm_target_io, clone); 1380 free_tio(tio); 1381 } 1382 } 1383 } 1384 1385 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1386 struct dm_target_io *tio, unsigned *len) 1387 { 1388 struct bio *clone = &tio->clone; 1389 1390 tio->len_ptr = len; 1391 1392 __bio_clone_fast(clone, ci->bio); 1393 if (len) 1394 bio_setup_sector(clone, ci->sector, *len); 1395 1396 return __map_bio(tio); 1397 } 1398 1399 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1400 unsigned num_bios, unsigned *len) 1401 { 1402 struct bio_list blist = BIO_EMPTY_LIST; 1403 struct bio *bio; 1404 struct dm_target_io *tio; 1405 1406 alloc_multiple_bios(&blist, ci, ti, num_bios); 1407 1408 while ((bio = bio_list_pop(&blist))) { 1409 tio = container_of(bio, struct dm_target_io, clone); 1410 (void) __clone_and_map_simple_bio(ci, tio, len); 1411 } 1412 } 1413 1414 static int __send_empty_flush(struct clone_info *ci) 1415 { 1416 unsigned target_nr = 0; 1417 struct dm_target *ti; 1418 1419 /* 1420 * Empty flush uses a statically initialized bio, as the base for 1421 * cloning. However, blkg association requires that a bdev is 1422 * associated with a gendisk, which doesn't happen until the bdev is 1423 * opened. So, blkg association is done at issue time of the flush 1424 * rather than when the device is created in alloc_dev(). 1425 */ 1426 bio_set_dev(ci->bio, ci->io->md->bdev); 1427 1428 BUG_ON(bio_has_data(ci->bio)); 1429 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1430 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1431 1432 bio_disassociate_blkg(ci->bio); 1433 1434 return 0; 1435 } 1436 1437 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1438 sector_t sector, unsigned *len) 1439 { 1440 struct bio *bio = ci->bio; 1441 struct dm_target_io *tio; 1442 int r; 1443 1444 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1445 tio->len_ptr = len; 1446 r = clone_bio(tio, bio, sector, *len); 1447 if (r < 0) { 1448 free_tio(tio); 1449 return r; 1450 } 1451 (void) __map_bio(tio); 1452 1453 return 0; 1454 } 1455 1456 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1457 1458 static unsigned get_num_discard_bios(struct dm_target *ti) 1459 { 1460 return ti->num_discard_bios; 1461 } 1462 1463 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1464 { 1465 return ti->num_secure_erase_bios; 1466 } 1467 1468 static unsigned get_num_write_same_bios(struct dm_target *ti) 1469 { 1470 return ti->num_write_same_bios; 1471 } 1472 1473 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1474 { 1475 return ti->num_write_zeroes_bios; 1476 } 1477 1478 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1479 unsigned num_bios) 1480 { 1481 unsigned len; 1482 1483 /* 1484 * Even though the device advertised support for this type of 1485 * request, that does not mean every target supports it, and 1486 * reconfiguration might also have changed that since the 1487 * check was performed. 1488 */ 1489 if (!num_bios) 1490 return -EOPNOTSUPP; 1491 1492 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1493 1494 __send_duplicate_bios(ci, ti, num_bios, &len); 1495 1496 ci->sector += len; 1497 ci->sector_count -= len; 1498 1499 return 0; 1500 } 1501 1502 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1503 { 1504 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1505 } 1506 1507 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1508 { 1509 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1510 } 1511 1512 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1513 { 1514 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1515 } 1516 1517 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1518 { 1519 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1520 } 1521 1522 static bool is_abnormal_io(struct bio *bio) 1523 { 1524 bool r = false; 1525 1526 switch (bio_op(bio)) { 1527 case REQ_OP_DISCARD: 1528 case REQ_OP_SECURE_ERASE: 1529 case REQ_OP_WRITE_SAME: 1530 case REQ_OP_WRITE_ZEROES: 1531 r = true; 1532 break; 1533 } 1534 1535 return r; 1536 } 1537 1538 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1539 int *result) 1540 { 1541 struct bio *bio = ci->bio; 1542 1543 if (bio_op(bio) == REQ_OP_DISCARD) 1544 *result = __send_discard(ci, ti); 1545 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1546 *result = __send_secure_erase(ci, ti); 1547 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1548 *result = __send_write_same(ci, ti); 1549 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1550 *result = __send_write_zeroes(ci, ti); 1551 else 1552 return false; 1553 1554 return true; 1555 } 1556 1557 /* 1558 * Select the correct strategy for processing a non-flush bio. 1559 */ 1560 static int __split_and_process_non_flush(struct clone_info *ci) 1561 { 1562 struct dm_target *ti; 1563 unsigned len; 1564 int r; 1565 1566 ti = dm_table_find_target(ci->map, ci->sector); 1567 if (!ti) 1568 return -EIO; 1569 1570 if (__process_abnormal_io(ci, ti, &r)) 1571 return r; 1572 1573 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1574 1575 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1576 if (r < 0) 1577 return r; 1578 1579 ci->sector += len; 1580 ci->sector_count -= len; 1581 1582 return 0; 1583 } 1584 1585 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1586 struct dm_table *map, struct bio *bio) 1587 { 1588 ci->map = map; 1589 ci->io = alloc_io(md, bio); 1590 ci->sector = bio->bi_iter.bi_sector; 1591 } 1592 1593 #define __dm_part_stat_sub(part, field, subnd) \ 1594 (part_stat_get(part, field) -= (subnd)) 1595 1596 /* 1597 * Entry point to split a bio into clones and submit them to the targets. 1598 */ 1599 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1600 struct dm_table *map, struct bio *bio) 1601 { 1602 struct clone_info ci; 1603 blk_qc_t ret = BLK_QC_T_NONE; 1604 int error = 0; 1605 1606 init_clone_info(&ci, md, map, bio); 1607 1608 if (bio->bi_opf & REQ_PREFLUSH) { 1609 struct bio flush_bio; 1610 1611 /* 1612 * Use an on-stack bio for this, it's safe since we don't 1613 * need to reference it after submit. It's just used as 1614 * the basis for the clone(s). 1615 */ 1616 bio_init(&flush_bio, NULL, 0); 1617 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1618 ci.bio = &flush_bio; 1619 ci.sector_count = 0; 1620 error = __send_empty_flush(&ci); 1621 /* dec_pending submits any data associated with flush */ 1622 } else if (op_is_zone_mgmt(bio_op(bio))) { 1623 ci.bio = bio; 1624 ci.sector_count = 0; 1625 error = __split_and_process_non_flush(&ci); 1626 } else { 1627 ci.bio = bio; 1628 ci.sector_count = bio_sectors(bio); 1629 while (ci.sector_count && !error) { 1630 error = __split_and_process_non_flush(&ci); 1631 if (current->bio_list && ci.sector_count && !error) { 1632 /* 1633 * Remainder must be passed to generic_make_request() 1634 * so that it gets handled *after* bios already submitted 1635 * have been completely processed. 1636 * We take a clone of the original to store in 1637 * ci.io->orig_bio to be used by end_io_acct() and 1638 * for dec_pending to use for completion handling. 1639 */ 1640 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1641 GFP_NOIO, &md->queue->bio_split); 1642 ci.io->orig_bio = b; 1643 1644 /* 1645 * Adjust IO stats for each split, otherwise upon queue 1646 * reentry there will be redundant IO accounting. 1647 * NOTE: this is a stop-gap fix, a proper fix involves 1648 * significant refactoring of DM core's bio splitting 1649 * (by eliminating DM's splitting and just using bio_split) 1650 */ 1651 part_stat_lock(); 1652 __dm_part_stat_sub(&dm_disk(md)->part0, 1653 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1654 part_stat_unlock(); 1655 1656 bio_chain(b, bio); 1657 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1658 ret = generic_make_request(bio); 1659 break; 1660 } 1661 } 1662 } 1663 1664 /* drop the extra reference count */ 1665 dec_pending(ci.io, errno_to_blk_status(error)); 1666 return ret; 1667 } 1668 1669 /* 1670 * Optimized variant of __split_and_process_bio that leverages the 1671 * fact that targets that use it do _not_ have a need to split bios. 1672 */ 1673 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1674 struct bio *bio, struct dm_target *ti) 1675 { 1676 struct clone_info ci; 1677 blk_qc_t ret = BLK_QC_T_NONE; 1678 int error = 0; 1679 1680 init_clone_info(&ci, md, map, bio); 1681 1682 if (bio->bi_opf & REQ_PREFLUSH) { 1683 struct bio flush_bio; 1684 1685 /* 1686 * Use an on-stack bio for this, it's safe since we don't 1687 * need to reference it after submit. It's just used as 1688 * the basis for the clone(s). 1689 */ 1690 bio_init(&flush_bio, NULL, 0); 1691 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1692 ci.bio = &flush_bio; 1693 ci.sector_count = 0; 1694 error = __send_empty_flush(&ci); 1695 /* dec_pending submits any data associated with flush */ 1696 } else { 1697 struct dm_target_io *tio; 1698 1699 ci.bio = bio; 1700 ci.sector_count = bio_sectors(bio); 1701 if (__process_abnormal_io(&ci, ti, &error)) 1702 goto out; 1703 1704 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1705 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1706 } 1707 out: 1708 /* drop the extra reference count */ 1709 dec_pending(ci.io, errno_to_blk_status(error)); 1710 return ret; 1711 } 1712 1713 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1714 { 1715 unsigned len, sector_count; 1716 1717 sector_count = bio_sectors(*bio); 1718 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1719 1720 if (sector_count > len) { 1721 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1722 1723 bio_chain(split, *bio); 1724 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1725 generic_make_request(*bio); 1726 *bio = split; 1727 } 1728 } 1729 1730 static blk_qc_t dm_process_bio(struct mapped_device *md, 1731 struct dm_table *map, struct bio *bio) 1732 { 1733 blk_qc_t ret = BLK_QC_T_NONE; 1734 struct dm_target *ti = md->immutable_target; 1735 1736 if (unlikely(!map)) { 1737 bio_io_error(bio); 1738 return ret; 1739 } 1740 1741 if (!ti) { 1742 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1743 if (unlikely(!ti)) { 1744 bio_io_error(bio); 1745 return ret; 1746 } 1747 } 1748 1749 /* 1750 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1751 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1752 * won't be imposed. 1753 */ 1754 if (current->bio_list) { 1755 blk_queue_split(md->queue, &bio); 1756 if (!is_abnormal_io(bio)) 1757 dm_queue_split(md, ti, &bio); 1758 } 1759 1760 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1761 return __process_bio(md, map, bio, ti); 1762 else 1763 return __split_and_process_bio(md, map, bio); 1764 } 1765 1766 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1767 { 1768 struct mapped_device *md = q->queuedata; 1769 blk_qc_t ret = BLK_QC_T_NONE; 1770 int srcu_idx; 1771 struct dm_table *map; 1772 1773 map = dm_get_live_table(md, &srcu_idx); 1774 1775 /* if we're suspended, we have to queue this io for later */ 1776 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1777 dm_put_live_table(md, srcu_idx); 1778 1779 if (!(bio->bi_opf & REQ_RAHEAD)) 1780 queue_io(md, bio); 1781 else 1782 bio_io_error(bio); 1783 return ret; 1784 } 1785 1786 ret = dm_process_bio(md, map, bio); 1787 1788 dm_put_live_table(md, srcu_idx); 1789 return ret; 1790 } 1791 1792 static int dm_any_congested(void *congested_data, int bdi_bits) 1793 { 1794 int r = bdi_bits; 1795 struct mapped_device *md = congested_data; 1796 struct dm_table *map; 1797 1798 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1799 if (dm_request_based(md)) { 1800 /* 1801 * With request-based DM we only need to check the 1802 * top-level queue for congestion. 1803 */ 1804 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1805 } else { 1806 map = dm_get_live_table_fast(md); 1807 if (map) 1808 r = dm_table_any_congested(map, bdi_bits); 1809 dm_put_live_table_fast(md); 1810 } 1811 } 1812 1813 return r; 1814 } 1815 1816 /*----------------------------------------------------------------- 1817 * An IDR is used to keep track of allocated minor numbers. 1818 *---------------------------------------------------------------*/ 1819 static void free_minor(int minor) 1820 { 1821 spin_lock(&_minor_lock); 1822 idr_remove(&_minor_idr, minor); 1823 spin_unlock(&_minor_lock); 1824 } 1825 1826 /* 1827 * See if the device with a specific minor # is free. 1828 */ 1829 static int specific_minor(int minor) 1830 { 1831 int r; 1832 1833 if (minor >= (1 << MINORBITS)) 1834 return -EINVAL; 1835 1836 idr_preload(GFP_KERNEL); 1837 spin_lock(&_minor_lock); 1838 1839 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1840 1841 spin_unlock(&_minor_lock); 1842 idr_preload_end(); 1843 if (r < 0) 1844 return r == -ENOSPC ? -EBUSY : r; 1845 return 0; 1846 } 1847 1848 static int next_free_minor(int *minor) 1849 { 1850 int r; 1851 1852 idr_preload(GFP_KERNEL); 1853 spin_lock(&_minor_lock); 1854 1855 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1856 1857 spin_unlock(&_minor_lock); 1858 idr_preload_end(); 1859 if (r < 0) 1860 return r; 1861 *minor = r; 1862 return 0; 1863 } 1864 1865 static const struct block_device_operations dm_blk_dops; 1866 static const struct dax_operations dm_dax_ops; 1867 1868 static void dm_wq_work(struct work_struct *work); 1869 1870 static void dm_init_normal_md_queue(struct mapped_device *md) 1871 { 1872 /* 1873 * Initialize aspects of queue that aren't relevant for blk-mq 1874 */ 1875 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1876 } 1877 1878 static void cleanup_mapped_device(struct mapped_device *md) 1879 { 1880 if (md->wq) 1881 destroy_workqueue(md->wq); 1882 bioset_exit(&md->bs); 1883 bioset_exit(&md->io_bs); 1884 1885 if (md->dax_dev) { 1886 kill_dax(md->dax_dev); 1887 put_dax(md->dax_dev); 1888 md->dax_dev = NULL; 1889 } 1890 1891 if (md->disk) { 1892 spin_lock(&_minor_lock); 1893 md->disk->private_data = NULL; 1894 spin_unlock(&_minor_lock); 1895 del_gendisk(md->disk); 1896 put_disk(md->disk); 1897 } 1898 1899 if (md->queue) 1900 blk_cleanup_queue(md->queue); 1901 1902 cleanup_srcu_struct(&md->io_barrier); 1903 1904 if (md->bdev) { 1905 bdput(md->bdev); 1906 md->bdev = NULL; 1907 } 1908 1909 mutex_destroy(&md->suspend_lock); 1910 mutex_destroy(&md->type_lock); 1911 mutex_destroy(&md->table_devices_lock); 1912 1913 dm_mq_cleanup_mapped_device(md); 1914 } 1915 1916 /* 1917 * Allocate and initialise a blank device with a given minor. 1918 */ 1919 static struct mapped_device *alloc_dev(int minor) 1920 { 1921 int r, numa_node_id = dm_get_numa_node(); 1922 struct mapped_device *md; 1923 void *old_md; 1924 1925 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1926 if (!md) { 1927 DMWARN("unable to allocate device, out of memory."); 1928 return NULL; 1929 } 1930 1931 if (!try_module_get(THIS_MODULE)) 1932 goto bad_module_get; 1933 1934 /* get a minor number for the dev */ 1935 if (minor == DM_ANY_MINOR) 1936 r = next_free_minor(&minor); 1937 else 1938 r = specific_minor(minor); 1939 if (r < 0) 1940 goto bad_minor; 1941 1942 r = init_srcu_struct(&md->io_barrier); 1943 if (r < 0) 1944 goto bad_io_barrier; 1945 1946 md->numa_node_id = numa_node_id; 1947 md->init_tio_pdu = false; 1948 md->type = DM_TYPE_NONE; 1949 mutex_init(&md->suspend_lock); 1950 mutex_init(&md->type_lock); 1951 mutex_init(&md->table_devices_lock); 1952 spin_lock_init(&md->deferred_lock); 1953 atomic_set(&md->holders, 1); 1954 atomic_set(&md->open_count, 0); 1955 atomic_set(&md->event_nr, 0); 1956 atomic_set(&md->uevent_seq, 0); 1957 INIT_LIST_HEAD(&md->uevent_list); 1958 INIT_LIST_HEAD(&md->table_devices); 1959 spin_lock_init(&md->uevent_lock); 1960 1961 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1962 if (!md->queue) 1963 goto bad; 1964 md->queue->queuedata = md; 1965 md->queue->backing_dev_info->congested_data = md; 1966 1967 md->disk = alloc_disk_node(1, md->numa_node_id); 1968 if (!md->disk) 1969 goto bad; 1970 1971 init_waitqueue_head(&md->wait); 1972 INIT_WORK(&md->work, dm_wq_work); 1973 init_waitqueue_head(&md->eventq); 1974 init_completion(&md->kobj_holder.completion); 1975 1976 md->disk->major = _major; 1977 md->disk->first_minor = minor; 1978 md->disk->fops = &dm_blk_dops; 1979 md->disk->queue = md->queue; 1980 md->disk->private_data = md; 1981 sprintf(md->disk->disk_name, "dm-%d", minor); 1982 1983 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1984 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1985 &dm_dax_ops, 0); 1986 if (!md->dax_dev) 1987 goto bad; 1988 } 1989 1990 add_disk_no_queue_reg(md->disk); 1991 format_dev_t(md->name, MKDEV(_major, minor)); 1992 1993 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1994 if (!md->wq) 1995 goto bad; 1996 1997 md->bdev = bdget_disk(md->disk, 0); 1998 if (!md->bdev) 1999 goto bad; 2000 2001 dm_stats_init(&md->stats); 2002 2003 /* Populate the mapping, nobody knows we exist yet */ 2004 spin_lock(&_minor_lock); 2005 old_md = idr_replace(&_minor_idr, md, minor); 2006 spin_unlock(&_minor_lock); 2007 2008 BUG_ON(old_md != MINOR_ALLOCED); 2009 2010 return md; 2011 2012 bad: 2013 cleanup_mapped_device(md); 2014 bad_io_barrier: 2015 free_minor(minor); 2016 bad_minor: 2017 module_put(THIS_MODULE); 2018 bad_module_get: 2019 kvfree(md); 2020 return NULL; 2021 } 2022 2023 static void unlock_fs(struct mapped_device *md); 2024 2025 static void free_dev(struct mapped_device *md) 2026 { 2027 int minor = MINOR(disk_devt(md->disk)); 2028 2029 unlock_fs(md); 2030 2031 cleanup_mapped_device(md); 2032 2033 free_table_devices(&md->table_devices); 2034 dm_stats_cleanup(&md->stats); 2035 free_minor(minor); 2036 2037 module_put(THIS_MODULE); 2038 kvfree(md); 2039 } 2040 2041 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2042 { 2043 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2044 int ret = 0; 2045 2046 if (dm_table_bio_based(t)) { 2047 /* 2048 * The md may already have mempools that need changing. 2049 * If so, reload bioset because front_pad may have changed 2050 * because a different table was loaded. 2051 */ 2052 bioset_exit(&md->bs); 2053 bioset_exit(&md->io_bs); 2054 2055 } else if (bioset_initialized(&md->bs)) { 2056 /* 2057 * There's no need to reload with request-based dm 2058 * because the size of front_pad doesn't change. 2059 * Note for future: If you are to reload bioset, 2060 * prep-ed requests in the queue may refer 2061 * to bio from the old bioset, so you must walk 2062 * through the queue to unprep. 2063 */ 2064 goto out; 2065 } 2066 2067 BUG_ON(!p || 2068 bioset_initialized(&md->bs) || 2069 bioset_initialized(&md->io_bs)); 2070 2071 ret = bioset_init_from_src(&md->bs, &p->bs); 2072 if (ret) 2073 goto out; 2074 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2075 if (ret) 2076 bioset_exit(&md->bs); 2077 out: 2078 /* mempool bind completed, no longer need any mempools in the table */ 2079 dm_table_free_md_mempools(t); 2080 return ret; 2081 } 2082 2083 /* 2084 * Bind a table to the device. 2085 */ 2086 static void event_callback(void *context) 2087 { 2088 unsigned long flags; 2089 LIST_HEAD(uevents); 2090 struct mapped_device *md = (struct mapped_device *) context; 2091 2092 spin_lock_irqsave(&md->uevent_lock, flags); 2093 list_splice_init(&md->uevent_list, &uevents); 2094 spin_unlock_irqrestore(&md->uevent_lock, flags); 2095 2096 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2097 2098 atomic_inc(&md->event_nr); 2099 wake_up(&md->eventq); 2100 dm_issue_global_event(); 2101 } 2102 2103 /* 2104 * Protected by md->suspend_lock obtained by dm_swap_table(). 2105 */ 2106 static void __set_size(struct mapped_device *md, sector_t size) 2107 { 2108 lockdep_assert_held(&md->suspend_lock); 2109 2110 set_capacity(md->disk, size); 2111 2112 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2113 } 2114 2115 /* 2116 * Returns old map, which caller must destroy. 2117 */ 2118 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2119 struct queue_limits *limits) 2120 { 2121 struct dm_table *old_map; 2122 struct request_queue *q = md->queue; 2123 bool request_based = dm_table_request_based(t); 2124 sector_t size; 2125 int ret; 2126 2127 lockdep_assert_held(&md->suspend_lock); 2128 2129 size = dm_table_get_size(t); 2130 2131 /* 2132 * Wipe any geometry if the size of the table changed. 2133 */ 2134 if (size != dm_get_size(md)) 2135 memset(&md->geometry, 0, sizeof(md->geometry)); 2136 2137 __set_size(md, size); 2138 2139 dm_table_event_callback(t, event_callback, md); 2140 2141 /* 2142 * The queue hasn't been stopped yet, if the old table type wasn't 2143 * for request-based during suspension. So stop it to prevent 2144 * I/O mapping before resume. 2145 * This must be done before setting the queue restrictions, 2146 * because request-based dm may be run just after the setting. 2147 */ 2148 if (request_based) 2149 dm_stop_queue(q); 2150 2151 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2152 /* 2153 * Leverage the fact that request-based DM targets and 2154 * NVMe bio based targets are immutable singletons 2155 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2156 * and __process_bio. 2157 */ 2158 md->immutable_target = dm_table_get_immutable_target(t); 2159 } 2160 2161 ret = __bind_mempools(md, t); 2162 if (ret) { 2163 old_map = ERR_PTR(ret); 2164 goto out; 2165 } 2166 2167 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2168 rcu_assign_pointer(md->map, (void *)t); 2169 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2170 2171 dm_table_set_restrictions(t, q, limits); 2172 if (old_map) 2173 dm_sync_table(md); 2174 2175 out: 2176 return old_map; 2177 } 2178 2179 /* 2180 * Returns unbound table for the caller to free. 2181 */ 2182 static struct dm_table *__unbind(struct mapped_device *md) 2183 { 2184 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2185 2186 if (!map) 2187 return NULL; 2188 2189 dm_table_event_callback(map, NULL, NULL); 2190 RCU_INIT_POINTER(md->map, NULL); 2191 dm_sync_table(md); 2192 2193 return map; 2194 } 2195 2196 /* 2197 * Constructor for a new device. 2198 */ 2199 int dm_create(int minor, struct mapped_device **result) 2200 { 2201 int r; 2202 struct mapped_device *md; 2203 2204 md = alloc_dev(minor); 2205 if (!md) 2206 return -ENXIO; 2207 2208 r = dm_sysfs_init(md); 2209 if (r) { 2210 free_dev(md); 2211 return r; 2212 } 2213 2214 *result = md; 2215 return 0; 2216 } 2217 2218 /* 2219 * Functions to manage md->type. 2220 * All are required to hold md->type_lock. 2221 */ 2222 void dm_lock_md_type(struct mapped_device *md) 2223 { 2224 mutex_lock(&md->type_lock); 2225 } 2226 2227 void dm_unlock_md_type(struct mapped_device *md) 2228 { 2229 mutex_unlock(&md->type_lock); 2230 } 2231 2232 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2233 { 2234 BUG_ON(!mutex_is_locked(&md->type_lock)); 2235 md->type = type; 2236 } 2237 2238 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2239 { 2240 return md->type; 2241 } 2242 2243 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2244 { 2245 return md->immutable_target_type; 2246 } 2247 2248 /* 2249 * The queue_limits are only valid as long as you have a reference 2250 * count on 'md'. 2251 */ 2252 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2253 { 2254 BUG_ON(!atomic_read(&md->holders)); 2255 return &md->queue->limits; 2256 } 2257 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2258 2259 /* 2260 * Setup the DM device's queue based on md's type 2261 */ 2262 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2263 { 2264 int r; 2265 struct queue_limits limits; 2266 enum dm_queue_mode type = dm_get_md_type(md); 2267 2268 switch (type) { 2269 case DM_TYPE_REQUEST_BASED: 2270 r = dm_mq_init_request_queue(md, t); 2271 if (r) { 2272 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2273 return r; 2274 } 2275 break; 2276 case DM_TYPE_BIO_BASED: 2277 case DM_TYPE_DAX_BIO_BASED: 2278 case DM_TYPE_NVME_BIO_BASED: 2279 dm_init_normal_md_queue(md); 2280 blk_queue_make_request(md->queue, dm_make_request); 2281 break; 2282 case DM_TYPE_NONE: 2283 WARN_ON_ONCE(true); 2284 break; 2285 } 2286 2287 r = dm_calculate_queue_limits(t, &limits); 2288 if (r) { 2289 DMERR("Cannot calculate initial queue limits"); 2290 return r; 2291 } 2292 dm_table_set_restrictions(t, md->queue, &limits); 2293 blk_register_queue(md->disk); 2294 2295 return 0; 2296 } 2297 2298 struct mapped_device *dm_get_md(dev_t dev) 2299 { 2300 struct mapped_device *md; 2301 unsigned minor = MINOR(dev); 2302 2303 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2304 return NULL; 2305 2306 spin_lock(&_minor_lock); 2307 2308 md = idr_find(&_minor_idr, minor); 2309 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2310 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2311 md = NULL; 2312 goto out; 2313 } 2314 dm_get(md); 2315 out: 2316 spin_unlock(&_minor_lock); 2317 2318 return md; 2319 } 2320 EXPORT_SYMBOL_GPL(dm_get_md); 2321 2322 void *dm_get_mdptr(struct mapped_device *md) 2323 { 2324 return md->interface_ptr; 2325 } 2326 2327 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2328 { 2329 md->interface_ptr = ptr; 2330 } 2331 2332 void dm_get(struct mapped_device *md) 2333 { 2334 atomic_inc(&md->holders); 2335 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2336 } 2337 2338 int dm_hold(struct mapped_device *md) 2339 { 2340 spin_lock(&_minor_lock); 2341 if (test_bit(DMF_FREEING, &md->flags)) { 2342 spin_unlock(&_minor_lock); 2343 return -EBUSY; 2344 } 2345 dm_get(md); 2346 spin_unlock(&_minor_lock); 2347 return 0; 2348 } 2349 EXPORT_SYMBOL_GPL(dm_hold); 2350 2351 const char *dm_device_name(struct mapped_device *md) 2352 { 2353 return md->name; 2354 } 2355 EXPORT_SYMBOL_GPL(dm_device_name); 2356 2357 static void __dm_destroy(struct mapped_device *md, bool wait) 2358 { 2359 struct dm_table *map; 2360 int srcu_idx; 2361 2362 might_sleep(); 2363 2364 spin_lock(&_minor_lock); 2365 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2366 set_bit(DMF_FREEING, &md->flags); 2367 spin_unlock(&_minor_lock); 2368 2369 blk_set_queue_dying(md->queue); 2370 2371 /* 2372 * Take suspend_lock so that presuspend and postsuspend methods 2373 * do not race with internal suspend. 2374 */ 2375 mutex_lock(&md->suspend_lock); 2376 map = dm_get_live_table(md, &srcu_idx); 2377 if (!dm_suspended_md(md)) { 2378 dm_table_presuspend_targets(map); 2379 dm_table_postsuspend_targets(map); 2380 } 2381 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2382 dm_put_live_table(md, srcu_idx); 2383 mutex_unlock(&md->suspend_lock); 2384 2385 /* 2386 * Rare, but there may be I/O requests still going to complete, 2387 * for example. Wait for all references to disappear. 2388 * No one should increment the reference count of the mapped_device, 2389 * after the mapped_device state becomes DMF_FREEING. 2390 */ 2391 if (wait) 2392 while (atomic_read(&md->holders)) 2393 msleep(1); 2394 else if (atomic_read(&md->holders)) 2395 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2396 dm_device_name(md), atomic_read(&md->holders)); 2397 2398 dm_sysfs_exit(md); 2399 dm_table_destroy(__unbind(md)); 2400 free_dev(md); 2401 } 2402 2403 void dm_destroy(struct mapped_device *md) 2404 { 2405 __dm_destroy(md, true); 2406 } 2407 2408 void dm_destroy_immediate(struct mapped_device *md) 2409 { 2410 __dm_destroy(md, false); 2411 } 2412 2413 void dm_put(struct mapped_device *md) 2414 { 2415 atomic_dec(&md->holders); 2416 } 2417 EXPORT_SYMBOL_GPL(dm_put); 2418 2419 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2420 { 2421 int r = 0; 2422 DEFINE_WAIT(wait); 2423 2424 while (1) { 2425 prepare_to_wait(&md->wait, &wait, task_state); 2426 2427 if (!md_in_flight(md)) 2428 break; 2429 2430 if (signal_pending_state(task_state, current)) { 2431 r = -EINTR; 2432 break; 2433 } 2434 2435 io_schedule(); 2436 } 2437 finish_wait(&md->wait, &wait); 2438 2439 return r; 2440 } 2441 2442 /* 2443 * Process the deferred bios 2444 */ 2445 static void dm_wq_work(struct work_struct *work) 2446 { 2447 struct mapped_device *md = container_of(work, struct mapped_device, 2448 work); 2449 struct bio *c; 2450 int srcu_idx; 2451 struct dm_table *map; 2452 2453 map = dm_get_live_table(md, &srcu_idx); 2454 2455 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2456 spin_lock_irq(&md->deferred_lock); 2457 c = bio_list_pop(&md->deferred); 2458 spin_unlock_irq(&md->deferred_lock); 2459 2460 if (!c) 2461 break; 2462 2463 if (dm_request_based(md)) 2464 (void) generic_make_request(c); 2465 else 2466 (void) dm_process_bio(md, map, c); 2467 } 2468 2469 dm_put_live_table(md, srcu_idx); 2470 } 2471 2472 static void dm_queue_flush(struct mapped_device *md) 2473 { 2474 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2475 smp_mb__after_atomic(); 2476 queue_work(md->wq, &md->work); 2477 } 2478 2479 /* 2480 * Swap in a new table, returning the old one for the caller to destroy. 2481 */ 2482 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2483 { 2484 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2485 struct queue_limits limits; 2486 int r; 2487 2488 mutex_lock(&md->suspend_lock); 2489 2490 /* device must be suspended */ 2491 if (!dm_suspended_md(md)) 2492 goto out; 2493 2494 /* 2495 * If the new table has no data devices, retain the existing limits. 2496 * This helps multipath with queue_if_no_path if all paths disappear, 2497 * then new I/O is queued based on these limits, and then some paths 2498 * reappear. 2499 */ 2500 if (dm_table_has_no_data_devices(table)) { 2501 live_map = dm_get_live_table_fast(md); 2502 if (live_map) 2503 limits = md->queue->limits; 2504 dm_put_live_table_fast(md); 2505 } 2506 2507 if (!live_map) { 2508 r = dm_calculate_queue_limits(table, &limits); 2509 if (r) { 2510 map = ERR_PTR(r); 2511 goto out; 2512 } 2513 } 2514 2515 map = __bind(md, table, &limits); 2516 dm_issue_global_event(); 2517 2518 out: 2519 mutex_unlock(&md->suspend_lock); 2520 return map; 2521 } 2522 2523 /* 2524 * Functions to lock and unlock any filesystem running on the 2525 * device. 2526 */ 2527 static int lock_fs(struct mapped_device *md) 2528 { 2529 int r; 2530 2531 WARN_ON(md->frozen_sb); 2532 2533 md->frozen_sb = freeze_bdev(md->bdev); 2534 if (IS_ERR(md->frozen_sb)) { 2535 r = PTR_ERR(md->frozen_sb); 2536 md->frozen_sb = NULL; 2537 return r; 2538 } 2539 2540 set_bit(DMF_FROZEN, &md->flags); 2541 2542 return 0; 2543 } 2544 2545 static void unlock_fs(struct mapped_device *md) 2546 { 2547 if (!test_bit(DMF_FROZEN, &md->flags)) 2548 return; 2549 2550 thaw_bdev(md->bdev, md->frozen_sb); 2551 md->frozen_sb = NULL; 2552 clear_bit(DMF_FROZEN, &md->flags); 2553 } 2554 2555 /* 2556 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2557 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2558 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2559 * 2560 * If __dm_suspend returns 0, the device is completely quiescent 2561 * now. There is no request-processing activity. All new requests 2562 * are being added to md->deferred list. 2563 */ 2564 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2565 unsigned suspend_flags, long task_state, 2566 int dmf_suspended_flag) 2567 { 2568 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2569 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2570 int r; 2571 2572 lockdep_assert_held(&md->suspend_lock); 2573 2574 /* 2575 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2576 * This flag is cleared before dm_suspend returns. 2577 */ 2578 if (noflush) 2579 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2580 else 2581 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2582 2583 /* 2584 * This gets reverted if there's an error later and the targets 2585 * provide the .presuspend_undo hook. 2586 */ 2587 dm_table_presuspend_targets(map); 2588 2589 /* 2590 * Flush I/O to the device. 2591 * Any I/O submitted after lock_fs() may not be flushed. 2592 * noflush takes precedence over do_lockfs. 2593 * (lock_fs() flushes I/Os and waits for them to complete.) 2594 */ 2595 if (!noflush && do_lockfs) { 2596 r = lock_fs(md); 2597 if (r) { 2598 dm_table_presuspend_undo_targets(map); 2599 return r; 2600 } 2601 } 2602 2603 /* 2604 * Here we must make sure that no processes are submitting requests 2605 * to target drivers i.e. no one may be executing 2606 * __split_and_process_bio. This is called from dm_request and 2607 * dm_wq_work. 2608 * 2609 * To get all processes out of __split_and_process_bio in dm_request, 2610 * we take the write lock. To prevent any process from reentering 2611 * __split_and_process_bio from dm_request and quiesce the thread 2612 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2613 * flush_workqueue(md->wq). 2614 */ 2615 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2616 if (map) 2617 synchronize_srcu(&md->io_barrier); 2618 2619 /* 2620 * Stop md->queue before flushing md->wq in case request-based 2621 * dm defers requests to md->wq from md->queue. 2622 */ 2623 if (dm_request_based(md)) 2624 dm_stop_queue(md->queue); 2625 2626 flush_workqueue(md->wq); 2627 2628 /* 2629 * At this point no more requests are entering target request routines. 2630 * We call dm_wait_for_completion to wait for all existing requests 2631 * to finish. 2632 */ 2633 r = dm_wait_for_completion(md, task_state); 2634 if (!r) 2635 set_bit(dmf_suspended_flag, &md->flags); 2636 2637 if (noflush) 2638 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2639 if (map) 2640 synchronize_srcu(&md->io_barrier); 2641 2642 /* were we interrupted ? */ 2643 if (r < 0) { 2644 dm_queue_flush(md); 2645 2646 if (dm_request_based(md)) 2647 dm_start_queue(md->queue); 2648 2649 unlock_fs(md); 2650 dm_table_presuspend_undo_targets(map); 2651 /* pushback list is already flushed, so skip flush */ 2652 } 2653 2654 return r; 2655 } 2656 2657 /* 2658 * We need to be able to change a mapping table under a mounted 2659 * filesystem. For example we might want to move some data in 2660 * the background. Before the table can be swapped with 2661 * dm_bind_table, dm_suspend must be called to flush any in 2662 * flight bios and ensure that any further io gets deferred. 2663 */ 2664 /* 2665 * Suspend mechanism in request-based dm. 2666 * 2667 * 1. Flush all I/Os by lock_fs() if needed. 2668 * 2. Stop dispatching any I/O by stopping the request_queue. 2669 * 3. Wait for all in-flight I/Os to be completed or requeued. 2670 * 2671 * To abort suspend, start the request_queue. 2672 */ 2673 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2674 { 2675 struct dm_table *map = NULL; 2676 int r = 0; 2677 2678 retry: 2679 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2680 2681 if (dm_suspended_md(md)) { 2682 r = -EINVAL; 2683 goto out_unlock; 2684 } 2685 2686 if (dm_suspended_internally_md(md)) { 2687 /* already internally suspended, wait for internal resume */ 2688 mutex_unlock(&md->suspend_lock); 2689 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2690 if (r) 2691 return r; 2692 goto retry; 2693 } 2694 2695 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2696 2697 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2698 if (r) 2699 goto out_unlock; 2700 2701 dm_table_postsuspend_targets(map); 2702 2703 out_unlock: 2704 mutex_unlock(&md->suspend_lock); 2705 return r; 2706 } 2707 2708 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2709 { 2710 if (map) { 2711 int r = dm_table_resume_targets(map); 2712 if (r) 2713 return r; 2714 } 2715 2716 dm_queue_flush(md); 2717 2718 /* 2719 * Flushing deferred I/Os must be done after targets are resumed 2720 * so that mapping of targets can work correctly. 2721 * Request-based dm is queueing the deferred I/Os in its request_queue. 2722 */ 2723 if (dm_request_based(md)) 2724 dm_start_queue(md->queue); 2725 2726 unlock_fs(md); 2727 2728 return 0; 2729 } 2730 2731 int dm_resume(struct mapped_device *md) 2732 { 2733 int r; 2734 struct dm_table *map = NULL; 2735 2736 retry: 2737 r = -EINVAL; 2738 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2739 2740 if (!dm_suspended_md(md)) 2741 goto out; 2742 2743 if (dm_suspended_internally_md(md)) { 2744 /* already internally suspended, wait for internal resume */ 2745 mutex_unlock(&md->suspend_lock); 2746 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2747 if (r) 2748 return r; 2749 goto retry; 2750 } 2751 2752 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2753 if (!map || !dm_table_get_size(map)) 2754 goto out; 2755 2756 r = __dm_resume(md, map); 2757 if (r) 2758 goto out; 2759 2760 clear_bit(DMF_SUSPENDED, &md->flags); 2761 out: 2762 mutex_unlock(&md->suspend_lock); 2763 2764 return r; 2765 } 2766 2767 /* 2768 * Internal suspend/resume works like userspace-driven suspend. It waits 2769 * until all bios finish and prevents issuing new bios to the target drivers. 2770 * It may be used only from the kernel. 2771 */ 2772 2773 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2774 { 2775 struct dm_table *map = NULL; 2776 2777 lockdep_assert_held(&md->suspend_lock); 2778 2779 if (md->internal_suspend_count++) 2780 return; /* nested internal suspend */ 2781 2782 if (dm_suspended_md(md)) { 2783 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2784 return; /* nest suspend */ 2785 } 2786 2787 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2788 2789 /* 2790 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2791 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2792 * would require changing .presuspend to return an error -- avoid this 2793 * until there is a need for more elaborate variants of internal suspend. 2794 */ 2795 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2796 DMF_SUSPENDED_INTERNALLY); 2797 2798 dm_table_postsuspend_targets(map); 2799 } 2800 2801 static void __dm_internal_resume(struct mapped_device *md) 2802 { 2803 BUG_ON(!md->internal_suspend_count); 2804 2805 if (--md->internal_suspend_count) 2806 return; /* resume from nested internal suspend */ 2807 2808 if (dm_suspended_md(md)) 2809 goto done; /* resume from nested suspend */ 2810 2811 /* 2812 * NOTE: existing callers don't need to call dm_table_resume_targets 2813 * (which may fail -- so best to avoid it for now by passing NULL map) 2814 */ 2815 (void) __dm_resume(md, NULL); 2816 2817 done: 2818 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2819 smp_mb__after_atomic(); 2820 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2821 } 2822 2823 void dm_internal_suspend_noflush(struct mapped_device *md) 2824 { 2825 mutex_lock(&md->suspend_lock); 2826 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2827 mutex_unlock(&md->suspend_lock); 2828 } 2829 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2830 2831 void dm_internal_resume(struct mapped_device *md) 2832 { 2833 mutex_lock(&md->suspend_lock); 2834 __dm_internal_resume(md); 2835 mutex_unlock(&md->suspend_lock); 2836 } 2837 EXPORT_SYMBOL_GPL(dm_internal_resume); 2838 2839 /* 2840 * Fast variants of internal suspend/resume hold md->suspend_lock, 2841 * which prevents interaction with userspace-driven suspend. 2842 */ 2843 2844 void dm_internal_suspend_fast(struct mapped_device *md) 2845 { 2846 mutex_lock(&md->suspend_lock); 2847 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2848 return; 2849 2850 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2851 synchronize_srcu(&md->io_barrier); 2852 flush_workqueue(md->wq); 2853 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2854 } 2855 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2856 2857 void dm_internal_resume_fast(struct mapped_device *md) 2858 { 2859 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2860 goto done; 2861 2862 dm_queue_flush(md); 2863 2864 done: 2865 mutex_unlock(&md->suspend_lock); 2866 } 2867 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2868 2869 /*----------------------------------------------------------------- 2870 * Event notification. 2871 *---------------------------------------------------------------*/ 2872 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2873 unsigned cookie) 2874 { 2875 char udev_cookie[DM_COOKIE_LENGTH]; 2876 char *envp[] = { udev_cookie, NULL }; 2877 2878 if (!cookie) 2879 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2880 else { 2881 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2882 DM_COOKIE_ENV_VAR_NAME, cookie); 2883 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2884 action, envp); 2885 } 2886 } 2887 2888 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2889 { 2890 return atomic_add_return(1, &md->uevent_seq); 2891 } 2892 2893 uint32_t dm_get_event_nr(struct mapped_device *md) 2894 { 2895 return atomic_read(&md->event_nr); 2896 } 2897 2898 int dm_wait_event(struct mapped_device *md, int event_nr) 2899 { 2900 return wait_event_interruptible(md->eventq, 2901 (event_nr != atomic_read(&md->event_nr))); 2902 } 2903 2904 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2905 { 2906 unsigned long flags; 2907 2908 spin_lock_irqsave(&md->uevent_lock, flags); 2909 list_add(elist, &md->uevent_list); 2910 spin_unlock_irqrestore(&md->uevent_lock, flags); 2911 } 2912 2913 /* 2914 * The gendisk is only valid as long as you have a reference 2915 * count on 'md'. 2916 */ 2917 struct gendisk *dm_disk(struct mapped_device *md) 2918 { 2919 return md->disk; 2920 } 2921 EXPORT_SYMBOL_GPL(dm_disk); 2922 2923 struct kobject *dm_kobject(struct mapped_device *md) 2924 { 2925 return &md->kobj_holder.kobj; 2926 } 2927 2928 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2929 { 2930 struct mapped_device *md; 2931 2932 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2933 2934 spin_lock(&_minor_lock); 2935 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2936 md = NULL; 2937 goto out; 2938 } 2939 dm_get(md); 2940 out: 2941 spin_unlock(&_minor_lock); 2942 2943 return md; 2944 } 2945 2946 int dm_suspended_md(struct mapped_device *md) 2947 { 2948 return test_bit(DMF_SUSPENDED, &md->flags); 2949 } 2950 2951 int dm_suspended_internally_md(struct mapped_device *md) 2952 { 2953 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2954 } 2955 2956 int dm_test_deferred_remove_flag(struct mapped_device *md) 2957 { 2958 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2959 } 2960 2961 int dm_suspended(struct dm_target *ti) 2962 { 2963 return dm_suspended_md(dm_table_get_md(ti->table)); 2964 } 2965 EXPORT_SYMBOL_GPL(dm_suspended); 2966 2967 int dm_noflush_suspending(struct dm_target *ti) 2968 { 2969 return __noflush_suspending(dm_table_get_md(ti->table)); 2970 } 2971 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2972 2973 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2974 unsigned integrity, unsigned per_io_data_size, 2975 unsigned min_pool_size) 2976 { 2977 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2978 unsigned int pool_size = 0; 2979 unsigned int front_pad, io_front_pad; 2980 int ret; 2981 2982 if (!pools) 2983 return NULL; 2984 2985 switch (type) { 2986 case DM_TYPE_BIO_BASED: 2987 case DM_TYPE_DAX_BIO_BASED: 2988 case DM_TYPE_NVME_BIO_BASED: 2989 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2990 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2991 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2992 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2993 if (ret) 2994 goto out; 2995 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2996 goto out; 2997 break; 2998 case DM_TYPE_REQUEST_BASED: 2999 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3000 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3001 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3002 break; 3003 default: 3004 BUG(); 3005 } 3006 3007 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3008 if (ret) 3009 goto out; 3010 3011 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3012 goto out; 3013 3014 return pools; 3015 3016 out: 3017 dm_free_md_mempools(pools); 3018 3019 return NULL; 3020 } 3021 3022 void dm_free_md_mempools(struct dm_md_mempools *pools) 3023 { 3024 if (!pools) 3025 return; 3026 3027 bioset_exit(&pools->bs); 3028 bioset_exit(&pools->io_bs); 3029 3030 kfree(pools); 3031 } 3032 3033 struct dm_pr { 3034 u64 old_key; 3035 u64 new_key; 3036 u32 flags; 3037 bool fail_early; 3038 }; 3039 3040 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3041 void *data) 3042 { 3043 struct mapped_device *md = bdev->bd_disk->private_data; 3044 struct dm_table *table; 3045 struct dm_target *ti; 3046 int ret = -ENOTTY, srcu_idx; 3047 3048 table = dm_get_live_table(md, &srcu_idx); 3049 if (!table || !dm_table_get_size(table)) 3050 goto out; 3051 3052 /* We only support devices that have a single target */ 3053 if (dm_table_get_num_targets(table) != 1) 3054 goto out; 3055 ti = dm_table_get_target(table, 0); 3056 3057 ret = -EINVAL; 3058 if (!ti->type->iterate_devices) 3059 goto out; 3060 3061 ret = ti->type->iterate_devices(ti, fn, data); 3062 out: 3063 dm_put_live_table(md, srcu_idx); 3064 return ret; 3065 } 3066 3067 /* 3068 * For register / unregister we need to manually call out to every path. 3069 */ 3070 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3071 sector_t start, sector_t len, void *data) 3072 { 3073 struct dm_pr *pr = data; 3074 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3075 3076 if (!ops || !ops->pr_register) 3077 return -EOPNOTSUPP; 3078 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3079 } 3080 3081 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3082 u32 flags) 3083 { 3084 struct dm_pr pr = { 3085 .old_key = old_key, 3086 .new_key = new_key, 3087 .flags = flags, 3088 .fail_early = true, 3089 }; 3090 int ret; 3091 3092 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3093 if (ret && new_key) { 3094 /* unregister all paths if we failed to register any path */ 3095 pr.old_key = new_key; 3096 pr.new_key = 0; 3097 pr.flags = 0; 3098 pr.fail_early = false; 3099 dm_call_pr(bdev, __dm_pr_register, &pr); 3100 } 3101 3102 return ret; 3103 } 3104 3105 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3106 u32 flags) 3107 { 3108 struct mapped_device *md = bdev->bd_disk->private_data; 3109 const struct pr_ops *ops; 3110 int r, srcu_idx; 3111 3112 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3113 if (r < 0) 3114 goto out; 3115 3116 ops = bdev->bd_disk->fops->pr_ops; 3117 if (ops && ops->pr_reserve) 3118 r = ops->pr_reserve(bdev, key, type, flags); 3119 else 3120 r = -EOPNOTSUPP; 3121 out: 3122 dm_unprepare_ioctl(md, srcu_idx); 3123 return r; 3124 } 3125 3126 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3127 { 3128 struct mapped_device *md = bdev->bd_disk->private_data; 3129 const struct pr_ops *ops; 3130 int r, srcu_idx; 3131 3132 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3133 if (r < 0) 3134 goto out; 3135 3136 ops = bdev->bd_disk->fops->pr_ops; 3137 if (ops && ops->pr_release) 3138 r = ops->pr_release(bdev, key, type); 3139 else 3140 r = -EOPNOTSUPP; 3141 out: 3142 dm_unprepare_ioctl(md, srcu_idx); 3143 return r; 3144 } 3145 3146 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3147 enum pr_type type, bool abort) 3148 { 3149 struct mapped_device *md = bdev->bd_disk->private_data; 3150 const struct pr_ops *ops; 3151 int r, srcu_idx; 3152 3153 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3154 if (r < 0) 3155 goto out; 3156 3157 ops = bdev->bd_disk->fops->pr_ops; 3158 if (ops && ops->pr_preempt) 3159 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3160 else 3161 r = -EOPNOTSUPP; 3162 out: 3163 dm_unprepare_ioctl(md, srcu_idx); 3164 return r; 3165 } 3166 3167 static int dm_pr_clear(struct block_device *bdev, u64 key) 3168 { 3169 struct mapped_device *md = bdev->bd_disk->private_data; 3170 const struct pr_ops *ops; 3171 int r, srcu_idx; 3172 3173 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3174 if (r < 0) 3175 goto out; 3176 3177 ops = bdev->bd_disk->fops->pr_ops; 3178 if (ops && ops->pr_clear) 3179 r = ops->pr_clear(bdev, key); 3180 else 3181 r = -EOPNOTSUPP; 3182 out: 3183 dm_unprepare_ioctl(md, srcu_idx); 3184 return r; 3185 } 3186 3187 static const struct pr_ops dm_pr_ops = { 3188 .pr_register = dm_pr_register, 3189 .pr_reserve = dm_pr_reserve, 3190 .pr_release = dm_pr_release, 3191 .pr_preempt = dm_pr_preempt, 3192 .pr_clear = dm_pr_clear, 3193 }; 3194 3195 static const struct block_device_operations dm_blk_dops = { 3196 .open = dm_blk_open, 3197 .release = dm_blk_close, 3198 .ioctl = dm_blk_ioctl, 3199 .getgeo = dm_blk_getgeo, 3200 .report_zones = dm_blk_report_zones, 3201 .pr_ops = &dm_pr_ops, 3202 .owner = THIS_MODULE 3203 }; 3204 3205 static const struct dax_operations dm_dax_ops = { 3206 .direct_access = dm_dax_direct_access, 3207 .dax_supported = dm_dax_supported, 3208 .copy_from_iter = dm_dax_copy_from_iter, 3209 .copy_to_iter = dm_dax_copy_to_iter, 3210 }; 3211 3212 /* 3213 * module hooks 3214 */ 3215 module_init(dm_init); 3216 module_exit(dm_exit); 3217 3218 module_param(major, uint, 0); 3219 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3220 3221 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3222 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3223 3224 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3225 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3226 3227 MODULE_DESCRIPTION(DM_NAME " driver"); 3228 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3229 MODULE_LICENSE("GPL"); 3230