xref: /openbmc/linux/drivers/md/dm.c (revision 5eac3eb30c9ab9ee7fe2bd9aa9db6373cabb77f8)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 /*
162  * Bio-based DM's mempools' reserved IOs set by the user.
163  */
164 #define RESERVED_BIO_BASED_IOS		16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166 
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 	int param = READ_ONCE(*module_param);
170 	int modified_param = 0;
171 	bool modified = true;
172 
173 	if (param < min)
174 		modified_param = min;
175 	else if (param > max)
176 		modified_param = max;
177 	else
178 		modified = false;
179 
180 	if (modified) {
181 		(void)cmpxchg(module_param, param, modified_param);
182 		param = modified_param;
183 	}
184 
185 	return param;
186 }
187 
188 unsigned __dm_get_module_param(unsigned *module_param,
189 			       unsigned def, unsigned max)
190 {
191 	unsigned param = READ_ONCE(*module_param);
192 	unsigned modified_param = 0;
193 
194 	if (!param)
195 		modified_param = def;
196 	else if (param > max)
197 		modified_param = max;
198 
199 	if (modified_param) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 	return __dm_get_module_param(&reserved_bio_based_ios,
210 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213 
214 static unsigned dm_get_numa_node(void)
215 {
216 	return __dm_get_module_param_int(&dm_numa_node,
217 					 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219 
220 static int __init local_init(void)
221 {
222 	int r;
223 
224 	r = dm_uevent_init();
225 	if (r)
226 		return r;
227 
228 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 	if (!deferred_remove_workqueue) {
230 		r = -ENOMEM;
231 		goto out_uevent_exit;
232 	}
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_free_workqueue;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_free_workqueue:
245 	destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 	dm_uevent_exit();
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	flush_scheduled_work();
255 	destroy_workqueue(deferred_remove_workqueue);
256 
257 	unregister_blkdev(_major, _name);
258 	dm_uevent_exit();
259 
260 	_major = 0;
261 
262 	DMINFO("cleaned up");
263 }
264 
265 static int (*_inits[])(void) __initdata = {
266 	local_init,
267 	dm_target_init,
268 	dm_linear_init,
269 	dm_stripe_init,
270 	dm_io_init,
271 	dm_kcopyd_init,
272 	dm_interface_init,
273 	dm_statistics_init,
274 };
275 
276 static void (*_exits[])(void) = {
277 	local_exit,
278 	dm_target_exit,
279 	dm_linear_exit,
280 	dm_stripe_exit,
281 	dm_io_exit,
282 	dm_kcopyd_exit,
283 	dm_interface_exit,
284 	dm_statistics_exit,
285 };
286 
287 static int __init dm_init(void)
288 {
289 	const int count = ARRAY_SIZE(_inits);
290 
291 	int r, i;
292 
293 	for (i = 0; i < count; i++) {
294 		r = _inits[i]();
295 		if (r)
296 			goto bad;
297 	}
298 
299 	return 0;
300 
301       bad:
302 	while (i--)
303 		_exits[i]();
304 
305 	return r;
306 }
307 
308 static void __exit dm_exit(void)
309 {
310 	int i = ARRAY_SIZE(_exits);
311 
312 	while (i--)
313 		_exits[i]();
314 
315 	/*
316 	 * Should be empty by this point.
317 	 */
318 	idr_destroy(&_minor_idr);
319 }
320 
321 /*
322  * Block device functions
323  */
324 int dm_deleting_md(struct mapped_device *md)
325 {
326 	return test_bit(DMF_DELETING, &md->flags);
327 }
328 
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 	struct mapped_device *md;
332 
333 	spin_lock(&_minor_lock);
334 
335 	md = bdev->bd_disk->private_data;
336 	if (!md)
337 		goto out;
338 
339 	if (test_bit(DMF_FREEING, &md->flags) ||
340 	    dm_deleting_md(md)) {
341 		md = NULL;
342 		goto out;
343 	}
344 
345 	dm_get(md);
346 	atomic_inc(&md->open_count);
347 out:
348 	spin_unlock(&_minor_lock);
349 
350 	return md ? 0 : -ENXIO;
351 }
352 
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = disk->private_data;
360 	if (WARN_ON(!md))
361 		goto out;
362 
363 	if (atomic_dec_and_test(&md->open_count) &&
364 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
366 
367 	dm_put(md);
368 out:
369 	spin_unlock(&_minor_lock);
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md)) {
387 		r = -EBUSY;
388 		if (mark_deferred)
389 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 		r = -EEXIST;
392 	else
393 		set_bit(DMF_DELETING, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (test_bit(DMF_DELETING, &md->flags))
407 		r = -EBUSY;
408 	else
409 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static void do_deferred_remove(struct work_struct *w)
417 {
418 	dm_deferred_remove();
419 }
420 
421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 	return get_capacity(md->disk);
424 }
425 
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 	return md->queue;
429 }
430 
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 	return &md->stats;
434 }
435 
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 	struct mapped_device *md = bdev->bd_disk->private_data;
439 
440 	return dm_get_geometry(md, geo);
441 }
442 
443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 			       struct blk_zone *zones, unsigned int *nr_zones)
445 {
446 #ifdef CONFIG_BLK_DEV_ZONED
447 	struct mapped_device *md = disk->private_data;
448 	struct dm_target *tgt;
449 	struct dm_table *map;
450 	int srcu_idx, ret;
451 
452 	if (dm_suspended_md(md))
453 		return -EAGAIN;
454 
455 	map = dm_get_live_table(md, &srcu_idx);
456 	if (!map)
457 		return -EIO;
458 
459 	tgt = dm_table_find_target(map, sector);
460 	if (!tgt) {
461 		ret = -EIO;
462 		goto out;
463 	}
464 
465 	/*
466 	 * If we are executing this, we already know that the block device
467 	 * is a zoned device and so each target should have support for that
468 	 * type of drive. A missing report_zones method means that the target
469 	 * driver has a problem.
470 	 */
471 	if (WARN_ON(!tgt->type->report_zones)) {
472 		ret = -EIO;
473 		goto out;
474 	}
475 
476 	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
477 
478 out:
479 	dm_put_live_table(md, srcu_idx);
480 	return ret;
481 #else
482 	return -ENOTSUPP;
483 #endif
484 }
485 
486 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
487 			    struct block_device **bdev)
488 	__acquires(md->io_barrier)
489 {
490 	struct dm_target *tgt;
491 	struct dm_table *map;
492 	int r;
493 
494 retry:
495 	r = -ENOTTY;
496 	map = dm_get_live_table(md, srcu_idx);
497 	if (!map || !dm_table_get_size(map))
498 		return r;
499 
500 	/* We only support devices that have a single target */
501 	if (dm_table_get_num_targets(map) != 1)
502 		return r;
503 
504 	tgt = dm_table_get_target(map, 0);
505 	if (!tgt->type->prepare_ioctl)
506 		return r;
507 
508 	if (dm_suspended_md(md))
509 		return -EAGAIN;
510 
511 	r = tgt->type->prepare_ioctl(tgt, bdev);
512 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
513 		dm_put_live_table(md, *srcu_idx);
514 		msleep(10);
515 		goto retry;
516 	}
517 
518 	return r;
519 }
520 
521 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
522 	__releases(md->io_barrier)
523 {
524 	dm_put_live_table(md, srcu_idx);
525 }
526 
527 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
528 			unsigned int cmd, unsigned long arg)
529 {
530 	struct mapped_device *md = bdev->bd_disk->private_data;
531 	int r, srcu_idx;
532 
533 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
534 	if (r < 0)
535 		goto out;
536 
537 	if (r > 0) {
538 		/*
539 		 * Target determined this ioctl is being issued against a
540 		 * subset of the parent bdev; require extra privileges.
541 		 */
542 		if (!capable(CAP_SYS_RAWIO)) {
543 			DMWARN_LIMIT(
544 	"%s: sending ioctl %x to DM device without required privilege.",
545 				current->comm, cmd);
546 			r = -ENOIOCTLCMD;
547 			goto out;
548 		}
549 	}
550 
551 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
552 out:
553 	dm_unprepare_ioctl(md, srcu_idx);
554 	return r;
555 }
556 
557 static void start_io_acct(struct dm_io *io);
558 
559 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
560 {
561 	struct dm_io *io;
562 	struct dm_target_io *tio;
563 	struct bio *clone;
564 
565 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
566 	if (!clone)
567 		return NULL;
568 
569 	tio = container_of(clone, struct dm_target_io, clone);
570 	tio->inside_dm_io = true;
571 	tio->io = NULL;
572 
573 	io = container_of(tio, struct dm_io, tio);
574 	io->magic = DM_IO_MAGIC;
575 	io->status = 0;
576 	atomic_set(&io->io_count, 1);
577 	io->orig_bio = bio;
578 	io->md = md;
579 	spin_lock_init(&io->endio_lock);
580 
581 	start_io_acct(io);
582 
583 	return io;
584 }
585 
586 static void free_io(struct mapped_device *md, struct dm_io *io)
587 {
588 	bio_put(&io->tio.clone);
589 }
590 
591 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
592 				      unsigned target_bio_nr, gfp_t gfp_mask)
593 {
594 	struct dm_target_io *tio;
595 
596 	if (!ci->io->tio.io) {
597 		/* the dm_target_io embedded in ci->io is available */
598 		tio = &ci->io->tio;
599 	} else {
600 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
601 		if (!clone)
602 			return NULL;
603 
604 		tio = container_of(clone, struct dm_target_io, clone);
605 		tio->inside_dm_io = false;
606 	}
607 
608 	tio->magic = DM_TIO_MAGIC;
609 	tio->io = ci->io;
610 	tio->ti = ti;
611 	tio->target_bio_nr = target_bio_nr;
612 
613 	return tio;
614 }
615 
616 static void free_tio(struct dm_target_io *tio)
617 {
618 	if (tio->inside_dm_io)
619 		return;
620 	bio_put(&tio->clone);
621 }
622 
623 static bool md_in_flight_bios(struct mapped_device *md)
624 {
625 	int cpu;
626 	struct hd_struct *part = &dm_disk(md)->part0;
627 	long sum = 0;
628 
629 	for_each_possible_cpu(cpu) {
630 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
631 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
632 	}
633 
634 	return sum != 0;
635 }
636 
637 static bool md_in_flight(struct mapped_device *md)
638 {
639 	if (queue_is_mq(md->queue))
640 		return blk_mq_queue_inflight(md->queue);
641 	else
642 		return md_in_flight_bios(md);
643 }
644 
645 static void start_io_acct(struct dm_io *io)
646 {
647 	struct mapped_device *md = io->md;
648 	struct bio *bio = io->orig_bio;
649 
650 	io->start_time = jiffies;
651 
652 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
653 			      &dm_disk(md)->part0);
654 
655 	if (unlikely(dm_stats_used(&md->stats)))
656 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
657 				    bio->bi_iter.bi_sector, bio_sectors(bio),
658 				    false, 0, &io->stats_aux);
659 }
660 
661 static void end_io_acct(struct dm_io *io)
662 {
663 	struct mapped_device *md = io->md;
664 	struct bio *bio = io->orig_bio;
665 	unsigned long duration = jiffies - io->start_time;
666 
667 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
668 			    io->start_time);
669 
670 	if (unlikely(dm_stats_used(&md->stats)))
671 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
672 				    bio->bi_iter.bi_sector, bio_sectors(bio),
673 				    true, duration, &io->stats_aux);
674 
675 	/* nudge anyone waiting on suspend queue */
676 	if (unlikely(wq_has_sleeper(&md->wait)))
677 		wake_up(&md->wait);
678 }
679 
680 /*
681  * Add the bio to the list of deferred io.
682  */
683 static void queue_io(struct mapped_device *md, struct bio *bio)
684 {
685 	unsigned long flags;
686 
687 	spin_lock_irqsave(&md->deferred_lock, flags);
688 	bio_list_add(&md->deferred, bio);
689 	spin_unlock_irqrestore(&md->deferred_lock, flags);
690 	queue_work(md->wq, &md->work);
691 }
692 
693 /*
694  * Everyone (including functions in this file), should use this
695  * function to access the md->map field, and make sure they call
696  * dm_put_live_table() when finished.
697  */
698 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
699 {
700 	*srcu_idx = srcu_read_lock(&md->io_barrier);
701 
702 	return srcu_dereference(md->map, &md->io_barrier);
703 }
704 
705 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
706 {
707 	srcu_read_unlock(&md->io_barrier, srcu_idx);
708 }
709 
710 void dm_sync_table(struct mapped_device *md)
711 {
712 	synchronize_srcu(&md->io_barrier);
713 	synchronize_rcu_expedited();
714 }
715 
716 /*
717  * A fast alternative to dm_get_live_table/dm_put_live_table.
718  * The caller must not block between these two functions.
719  */
720 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
721 {
722 	rcu_read_lock();
723 	return rcu_dereference(md->map);
724 }
725 
726 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
727 {
728 	rcu_read_unlock();
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static int open_table_device(struct table_device *td, dev_t dev,
737 			     struct mapped_device *md)
738 {
739 	struct block_device *bdev;
740 
741 	int r;
742 
743 	BUG_ON(td->dm_dev.bdev);
744 
745 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
746 	if (IS_ERR(bdev))
747 		return PTR_ERR(bdev);
748 
749 	r = bd_link_disk_holder(bdev, dm_disk(md));
750 	if (r) {
751 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
752 		return r;
753 	}
754 
755 	td->dm_dev.bdev = bdev;
756 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
757 	return 0;
758 }
759 
760 /*
761  * Close a table device that we've been using.
762  */
763 static void close_table_device(struct table_device *td, struct mapped_device *md)
764 {
765 	if (!td->dm_dev.bdev)
766 		return;
767 
768 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
769 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
770 	put_dax(td->dm_dev.dax_dev);
771 	td->dm_dev.bdev = NULL;
772 	td->dm_dev.dax_dev = NULL;
773 }
774 
775 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
776 					      fmode_t mode)
777 {
778 	struct table_device *td;
779 
780 	list_for_each_entry(td, l, list)
781 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
782 			return td;
783 
784 	return NULL;
785 }
786 
787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
788 			struct dm_dev **result)
789 {
790 	int r;
791 	struct table_device *td;
792 
793 	mutex_lock(&md->table_devices_lock);
794 	td = find_table_device(&md->table_devices, dev, mode);
795 	if (!td) {
796 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
797 		if (!td) {
798 			mutex_unlock(&md->table_devices_lock);
799 			return -ENOMEM;
800 		}
801 
802 		td->dm_dev.mode = mode;
803 		td->dm_dev.bdev = NULL;
804 
805 		if ((r = open_table_device(td, dev, md))) {
806 			mutex_unlock(&md->table_devices_lock);
807 			kfree(td);
808 			return r;
809 		}
810 
811 		format_dev_t(td->dm_dev.name, dev);
812 
813 		refcount_set(&td->count, 1);
814 		list_add(&td->list, &md->table_devices);
815 	} else {
816 		refcount_inc(&td->count);
817 	}
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824 
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 	struct table_device *td = container_of(d, struct table_device, dm_dev);
828 
829 	mutex_lock(&md->table_devices_lock);
830 	if (refcount_dec_and_test(&td->count)) {
831 		close_table_device(td, md);
832 		list_del(&td->list);
833 		kfree(td);
834 	}
835 	mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838 
839 static void free_table_devices(struct list_head *devices)
840 {
841 	struct list_head *tmp, *next;
842 
843 	list_for_each_safe(tmp, next, devices) {
844 		struct table_device *td = list_entry(tmp, struct table_device, list);
845 
846 		DMWARN("dm_destroy: %s still exists with %d references",
847 		       td->dm_dev.name, refcount_read(&td->count));
848 		kfree(td);
849 	}
850 }
851 
852 /*
853  * Get the geometry associated with a dm device
854  */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 	*geo = md->geometry;
858 
859 	return 0;
860 }
861 
862 /*
863  * Set the geometry of a device.
864  */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868 
869 	if (geo->start > sz) {
870 		DMWARN("Start sector is beyond the geometry limits.");
871 		return -EINVAL;
872 	}
873 
874 	md->geometry = *geo;
875 
876 	return 0;
877 }
878 
879 static int __noflush_suspending(struct mapped_device *md)
880 {
881 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
882 }
883 
884 /*
885  * Decrements the number of outstanding ios that a bio has been
886  * cloned into, completing the original io if necc.
887  */
888 static void dec_pending(struct dm_io *io, blk_status_t error)
889 {
890 	unsigned long flags;
891 	blk_status_t io_error;
892 	struct bio *bio;
893 	struct mapped_device *md = io->md;
894 
895 	/* Push-back supersedes any I/O errors */
896 	if (unlikely(error)) {
897 		spin_lock_irqsave(&io->endio_lock, flags);
898 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
899 			io->status = error;
900 		spin_unlock_irqrestore(&io->endio_lock, flags);
901 	}
902 
903 	if (atomic_dec_and_test(&io->io_count)) {
904 		if (io->status == BLK_STS_DM_REQUEUE) {
905 			/*
906 			 * Target requested pushing back the I/O.
907 			 */
908 			spin_lock_irqsave(&md->deferred_lock, flags);
909 			if (__noflush_suspending(md))
910 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
911 				bio_list_add_head(&md->deferred, io->orig_bio);
912 			else
913 				/* noflush suspend was interrupted. */
914 				io->status = BLK_STS_IOERR;
915 			spin_unlock_irqrestore(&md->deferred_lock, flags);
916 		}
917 
918 		io_error = io->status;
919 		bio = io->orig_bio;
920 		end_io_acct(io);
921 		free_io(md, io);
922 
923 		if (io_error == BLK_STS_DM_REQUEUE)
924 			return;
925 
926 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
927 			/*
928 			 * Preflush done for flush with data, reissue
929 			 * without REQ_PREFLUSH.
930 			 */
931 			bio->bi_opf &= ~REQ_PREFLUSH;
932 			queue_io(md, bio);
933 		} else {
934 			/* done with normal IO or empty flush */
935 			if (io_error)
936 				bio->bi_status = io_error;
937 			bio_endio(bio);
938 		}
939 	}
940 }
941 
942 void disable_discard(struct mapped_device *md)
943 {
944 	struct queue_limits *limits = dm_get_queue_limits(md);
945 
946 	/* device doesn't really support DISCARD, disable it */
947 	limits->max_discard_sectors = 0;
948 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
949 }
950 
951 void disable_write_same(struct mapped_device *md)
952 {
953 	struct queue_limits *limits = dm_get_queue_limits(md);
954 
955 	/* device doesn't really support WRITE SAME, disable it */
956 	limits->max_write_same_sectors = 0;
957 }
958 
959 void disable_write_zeroes(struct mapped_device *md)
960 {
961 	struct queue_limits *limits = dm_get_queue_limits(md);
962 
963 	/* device doesn't really support WRITE ZEROES, disable it */
964 	limits->max_write_zeroes_sectors = 0;
965 }
966 
967 static void clone_endio(struct bio *bio)
968 {
969 	blk_status_t error = bio->bi_status;
970 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
971 	struct dm_io *io = tio->io;
972 	struct mapped_device *md = tio->io->md;
973 	dm_endio_fn endio = tio->ti->type->end_io;
974 
975 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
976 		if (bio_op(bio) == REQ_OP_DISCARD &&
977 		    !bio->bi_disk->queue->limits.max_discard_sectors)
978 			disable_discard(md);
979 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
980 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
981 			disable_write_same(md);
982 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
983 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
984 			disable_write_zeroes(md);
985 	}
986 
987 	if (endio) {
988 		int r = endio(tio->ti, bio, &error);
989 		switch (r) {
990 		case DM_ENDIO_REQUEUE:
991 			error = BLK_STS_DM_REQUEUE;
992 			/*FALLTHRU*/
993 		case DM_ENDIO_DONE:
994 			break;
995 		case DM_ENDIO_INCOMPLETE:
996 			/* The target will handle the io */
997 			return;
998 		default:
999 			DMWARN("unimplemented target endio return value: %d", r);
1000 			BUG();
1001 		}
1002 	}
1003 
1004 	free_tio(tio);
1005 	dec_pending(io, error);
1006 }
1007 
1008 /*
1009  * Return maximum size of I/O possible at the supplied sector up to the current
1010  * target boundary.
1011  */
1012 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1013 {
1014 	sector_t target_offset = dm_target_offset(ti, sector);
1015 
1016 	return ti->len - target_offset;
1017 }
1018 
1019 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1020 {
1021 	sector_t len = max_io_len_target_boundary(sector, ti);
1022 	sector_t offset, max_len;
1023 
1024 	/*
1025 	 * Does the target need to split even further?
1026 	 */
1027 	if (ti->max_io_len) {
1028 		offset = dm_target_offset(ti, sector);
1029 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1030 			max_len = sector_div(offset, ti->max_io_len);
1031 		else
1032 			max_len = offset & (ti->max_io_len - 1);
1033 		max_len = ti->max_io_len - max_len;
1034 
1035 		if (len > max_len)
1036 			len = max_len;
1037 	}
1038 
1039 	return len;
1040 }
1041 
1042 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1043 {
1044 	if (len > UINT_MAX) {
1045 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1046 		      (unsigned long long)len, UINT_MAX);
1047 		ti->error = "Maximum size of target IO is too large";
1048 		return -EINVAL;
1049 	}
1050 
1051 	ti->max_io_len = (uint32_t) len;
1052 
1053 	return 0;
1054 }
1055 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1056 
1057 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1058 						sector_t sector, int *srcu_idx)
1059 	__acquires(md->io_barrier)
1060 {
1061 	struct dm_table *map;
1062 	struct dm_target *ti;
1063 
1064 	map = dm_get_live_table(md, srcu_idx);
1065 	if (!map)
1066 		return NULL;
1067 
1068 	ti = dm_table_find_target(map, sector);
1069 	if (!ti)
1070 		return NULL;
1071 
1072 	return ti;
1073 }
1074 
1075 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1076 				 long nr_pages, void **kaddr, pfn_t *pfn)
1077 {
1078 	struct mapped_device *md = dax_get_private(dax_dev);
1079 	sector_t sector = pgoff * PAGE_SECTORS;
1080 	struct dm_target *ti;
1081 	long len, ret = -EIO;
1082 	int srcu_idx;
1083 
1084 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1085 
1086 	if (!ti)
1087 		goto out;
1088 	if (!ti->type->direct_access)
1089 		goto out;
1090 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1091 	if (len < 1)
1092 		goto out;
1093 	nr_pages = min(len, nr_pages);
1094 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1095 
1096  out:
1097 	dm_put_live_table(md, srcu_idx);
1098 
1099 	return ret;
1100 }
1101 
1102 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1103 		int blocksize, sector_t start, sector_t len)
1104 {
1105 	struct mapped_device *md = dax_get_private(dax_dev);
1106 	struct dm_table *map;
1107 	int srcu_idx;
1108 	bool ret;
1109 
1110 	map = dm_get_live_table(md, &srcu_idx);
1111 	if (!map)
1112 		return false;
1113 
1114 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1115 
1116 	dm_put_live_table(md, srcu_idx);
1117 
1118 	return ret;
1119 }
1120 
1121 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1122 				    void *addr, size_t bytes, struct iov_iter *i)
1123 {
1124 	struct mapped_device *md = dax_get_private(dax_dev);
1125 	sector_t sector = pgoff * PAGE_SECTORS;
1126 	struct dm_target *ti;
1127 	long ret = 0;
1128 	int srcu_idx;
1129 
1130 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1131 
1132 	if (!ti)
1133 		goto out;
1134 	if (!ti->type->dax_copy_from_iter) {
1135 		ret = copy_from_iter(addr, bytes, i);
1136 		goto out;
1137 	}
1138 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1139  out:
1140 	dm_put_live_table(md, srcu_idx);
1141 
1142 	return ret;
1143 }
1144 
1145 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1146 		void *addr, size_t bytes, struct iov_iter *i)
1147 {
1148 	struct mapped_device *md = dax_get_private(dax_dev);
1149 	sector_t sector = pgoff * PAGE_SECTORS;
1150 	struct dm_target *ti;
1151 	long ret = 0;
1152 	int srcu_idx;
1153 
1154 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1155 
1156 	if (!ti)
1157 		goto out;
1158 	if (!ti->type->dax_copy_to_iter) {
1159 		ret = copy_to_iter(addr, bytes, i);
1160 		goto out;
1161 	}
1162 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1163  out:
1164 	dm_put_live_table(md, srcu_idx);
1165 
1166 	return ret;
1167 }
1168 
1169 /*
1170  * A target may call dm_accept_partial_bio only from the map routine.  It is
1171  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1172  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1173  *
1174  * dm_accept_partial_bio informs the dm that the target only wants to process
1175  * additional n_sectors sectors of the bio and the rest of the data should be
1176  * sent in a next bio.
1177  *
1178  * A diagram that explains the arithmetics:
1179  * +--------------------+---------------+-------+
1180  * |         1          |       2       |   3   |
1181  * +--------------------+---------------+-------+
1182  *
1183  * <-------------- *tio->len_ptr --------------->
1184  *                      <------- bi_size ------->
1185  *                      <-- n_sectors -->
1186  *
1187  * Region 1 was already iterated over with bio_advance or similar function.
1188  *	(it may be empty if the target doesn't use bio_advance)
1189  * Region 2 is the remaining bio size that the target wants to process.
1190  *	(it may be empty if region 1 is non-empty, although there is no reason
1191  *	 to make it empty)
1192  * The target requires that region 3 is to be sent in the next bio.
1193  *
1194  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1195  * the partially processed part (the sum of regions 1+2) must be the same for all
1196  * copies of the bio.
1197  */
1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1199 {
1200 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1201 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1202 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1203 	BUG_ON(bi_size > *tio->len_ptr);
1204 	BUG_ON(n_sectors > bi_size);
1205 	*tio->len_ptr -= bi_size - n_sectors;
1206 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1207 }
1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1209 
1210 /*
1211  * The zone descriptors obtained with a zone report indicate
1212  * zone positions within the underlying device of the target. The zone
1213  * descriptors must be remapped to match their position within the dm device.
1214  */
1215 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1216 			  struct blk_zone *zones, unsigned int *nr_zones)
1217 {
1218 #ifdef CONFIG_BLK_DEV_ZONED
1219 	struct blk_zone *zone;
1220 	unsigned int nrz = *nr_zones;
1221 	int i;
1222 
1223 	/*
1224 	 * Remap the start sector and write pointer position of the zones in
1225 	 * the array. Since we may have obtained from the target underlying
1226 	 * device more zones that the target size, also adjust the number
1227 	 * of zones.
1228 	 */
1229 	for (i = 0; i < nrz; i++) {
1230 		zone = zones + i;
1231 		if (zone->start >= start + ti->len) {
1232 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1233 			break;
1234 		}
1235 
1236 		zone->start = zone->start + ti->begin - start;
1237 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1238 			continue;
1239 
1240 		if (zone->cond == BLK_ZONE_COND_FULL)
1241 			zone->wp = zone->start + zone->len;
1242 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1243 			zone->wp = zone->start;
1244 		else
1245 			zone->wp = zone->wp + ti->begin - start;
1246 	}
1247 
1248 	*nr_zones = i;
1249 #else /* !CONFIG_BLK_DEV_ZONED */
1250 	*nr_zones = 0;
1251 #endif
1252 }
1253 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1254 
1255 static blk_qc_t __map_bio(struct dm_target_io *tio)
1256 {
1257 	int r;
1258 	sector_t sector;
1259 	struct bio *clone = &tio->clone;
1260 	struct dm_io *io = tio->io;
1261 	struct mapped_device *md = io->md;
1262 	struct dm_target *ti = tio->ti;
1263 	blk_qc_t ret = BLK_QC_T_NONE;
1264 
1265 	clone->bi_end_io = clone_endio;
1266 
1267 	/*
1268 	 * Map the clone.  If r == 0 we don't need to do
1269 	 * anything, the target has assumed ownership of
1270 	 * this io.
1271 	 */
1272 	atomic_inc(&io->io_count);
1273 	sector = clone->bi_iter.bi_sector;
1274 
1275 	r = ti->type->map(ti, clone);
1276 	switch (r) {
1277 	case DM_MAPIO_SUBMITTED:
1278 		break;
1279 	case DM_MAPIO_REMAPPED:
1280 		/* the bio has been remapped so dispatch it */
1281 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1282 				      bio_dev(io->orig_bio), sector);
1283 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1284 			ret = direct_make_request(clone);
1285 		else
1286 			ret = generic_make_request(clone);
1287 		break;
1288 	case DM_MAPIO_KILL:
1289 		free_tio(tio);
1290 		dec_pending(io, BLK_STS_IOERR);
1291 		break;
1292 	case DM_MAPIO_REQUEUE:
1293 		free_tio(tio);
1294 		dec_pending(io, BLK_STS_DM_REQUEUE);
1295 		break;
1296 	default:
1297 		DMWARN("unimplemented target map return value: %d", r);
1298 		BUG();
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1305 {
1306 	bio->bi_iter.bi_sector = sector;
1307 	bio->bi_iter.bi_size = to_bytes(len);
1308 }
1309 
1310 /*
1311  * Creates a bio that consists of range of complete bvecs.
1312  */
1313 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1314 		     sector_t sector, unsigned len)
1315 {
1316 	struct bio *clone = &tio->clone;
1317 
1318 	__bio_clone_fast(clone, bio);
1319 
1320 	if (bio_integrity(bio)) {
1321 		int r;
1322 
1323 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1324 			     !dm_target_passes_integrity(tio->ti->type))) {
1325 			DMWARN("%s: the target %s doesn't support integrity data.",
1326 				dm_device_name(tio->io->md),
1327 				tio->ti->type->name);
1328 			return -EIO;
1329 		}
1330 
1331 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1332 		if (r < 0)
1333 			return r;
1334 	}
1335 
1336 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1337 	clone->bi_iter.bi_size = to_bytes(len);
1338 
1339 	if (bio_integrity(bio))
1340 		bio_integrity_trim(clone);
1341 
1342 	return 0;
1343 }
1344 
1345 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1346 				struct dm_target *ti, unsigned num_bios)
1347 {
1348 	struct dm_target_io *tio;
1349 	int try;
1350 
1351 	if (!num_bios)
1352 		return;
1353 
1354 	if (num_bios == 1) {
1355 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1356 		bio_list_add(blist, &tio->clone);
1357 		return;
1358 	}
1359 
1360 	for (try = 0; try < 2; try++) {
1361 		int bio_nr;
1362 		struct bio *bio;
1363 
1364 		if (try)
1365 			mutex_lock(&ci->io->md->table_devices_lock);
1366 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1367 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1368 			if (!tio)
1369 				break;
1370 
1371 			bio_list_add(blist, &tio->clone);
1372 		}
1373 		if (try)
1374 			mutex_unlock(&ci->io->md->table_devices_lock);
1375 		if (bio_nr == num_bios)
1376 			return;
1377 
1378 		while ((bio = bio_list_pop(blist))) {
1379 			tio = container_of(bio, struct dm_target_io, clone);
1380 			free_tio(tio);
1381 		}
1382 	}
1383 }
1384 
1385 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1386 					   struct dm_target_io *tio, unsigned *len)
1387 {
1388 	struct bio *clone = &tio->clone;
1389 
1390 	tio->len_ptr = len;
1391 
1392 	__bio_clone_fast(clone, ci->bio);
1393 	if (len)
1394 		bio_setup_sector(clone, ci->sector, *len);
1395 
1396 	return __map_bio(tio);
1397 }
1398 
1399 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1400 				  unsigned num_bios, unsigned *len)
1401 {
1402 	struct bio_list blist = BIO_EMPTY_LIST;
1403 	struct bio *bio;
1404 	struct dm_target_io *tio;
1405 
1406 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1407 
1408 	while ((bio = bio_list_pop(&blist))) {
1409 		tio = container_of(bio, struct dm_target_io, clone);
1410 		(void) __clone_and_map_simple_bio(ci, tio, len);
1411 	}
1412 }
1413 
1414 static int __send_empty_flush(struct clone_info *ci)
1415 {
1416 	unsigned target_nr = 0;
1417 	struct dm_target *ti;
1418 
1419 	/*
1420 	 * Empty flush uses a statically initialized bio, as the base for
1421 	 * cloning.  However, blkg association requires that a bdev is
1422 	 * associated with a gendisk, which doesn't happen until the bdev is
1423 	 * opened.  So, blkg association is done at issue time of the flush
1424 	 * rather than when the device is created in alloc_dev().
1425 	 */
1426 	bio_set_dev(ci->bio, ci->io->md->bdev);
1427 
1428 	BUG_ON(bio_has_data(ci->bio));
1429 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1430 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1431 
1432 	bio_disassociate_blkg(ci->bio);
1433 
1434 	return 0;
1435 }
1436 
1437 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1438 				    sector_t sector, unsigned *len)
1439 {
1440 	struct bio *bio = ci->bio;
1441 	struct dm_target_io *tio;
1442 	int r;
1443 
1444 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1445 	tio->len_ptr = len;
1446 	r = clone_bio(tio, bio, sector, *len);
1447 	if (r < 0) {
1448 		free_tio(tio);
1449 		return r;
1450 	}
1451 	(void) __map_bio(tio);
1452 
1453 	return 0;
1454 }
1455 
1456 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1457 
1458 static unsigned get_num_discard_bios(struct dm_target *ti)
1459 {
1460 	return ti->num_discard_bios;
1461 }
1462 
1463 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1464 {
1465 	return ti->num_secure_erase_bios;
1466 }
1467 
1468 static unsigned get_num_write_same_bios(struct dm_target *ti)
1469 {
1470 	return ti->num_write_same_bios;
1471 }
1472 
1473 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1474 {
1475 	return ti->num_write_zeroes_bios;
1476 }
1477 
1478 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1479 				       unsigned num_bios)
1480 {
1481 	unsigned len;
1482 
1483 	/*
1484 	 * Even though the device advertised support for this type of
1485 	 * request, that does not mean every target supports it, and
1486 	 * reconfiguration might also have changed that since the
1487 	 * check was performed.
1488 	 */
1489 	if (!num_bios)
1490 		return -EOPNOTSUPP;
1491 
1492 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1493 
1494 	__send_duplicate_bios(ci, ti, num_bios, &len);
1495 
1496 	ci->sector += len;
1497 	ci->sector_count -= len;
1498 
1499 	return 0;
1500 }
1501 
1502 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1503 {
1504 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1505 }
1506 
1507 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1508 {
1509 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1510 }
1511 
1512 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1513 {
1514 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1515 }
1516 
1517 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1518 {
1519 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1520 }
1521 
1522 static bool is_abnormal_io(struct bio *bio)
1523 {
1524 	bool r = false;
1525 
1526 	switch (bio_op(bio)) {
1527 	case REQ_OP_DISCARD:
1528 	case REQ_OP_SECURE_ERASE:
1529 	case REQ_OP_WRITE_SAME:
1530 	case REQ_OP_WRITE_ZEROES:
1531 		r = true;
1532 		break;
1533 	}
1534 
1535 	return r;
1536 }
1537 
1538 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1539 				  int *result)
1540 {
1541 	struct bio *bio = ci->bio;
1542 
1543 	if (bio_op(bio) == REQ_OP_DISCARD)
1544 		*result = __send_discard(ci, ti);
1545 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1546 		*result = __send_secure_erase(ci, ti);
1547 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1548 		*result = __send_write_same(ci, ti);
1549 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1550 		*result = __send_write_zeroes(ci, ti);
1551 	else
1552 		return false;
1553 
1554 	return true;
1555 }
1556 
1557 /*
1558  * Select the correct strategy for processing a non-flush bio.
1559  */
1560 static int __split_and_process_non_flush(struct clone_info *ci)
1561 {
1562 	struct dm_target *ti;
1563 	unsigned len;
1564 	int r;
1565 
1566 	ti = dm_table_find_target(ci->map, ci->sector);
1567 	if (!ti)
1568 		return -EIO;
1569 
1570 	if (__process_abnormal_io(ci, ti, &r))
1571 		return r;
1572 
1573 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1574 
1575 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1576 	if (r < 0)
1577 		return r;
1578 
1579 	ci->sector += len;
1580 	ci->sector_count -= len;
1581 
1582 	return 0;
1583 }
1584 
1585 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1586 			    struct dm_table *map, struct bio *bio)
1587 {
1588 	ci->map = map;
1589 	ci->io = alloc_io(md, bio);
1590 	ci->sector = bio->bi_iter.bi_sector;
1591 }
1592 
1593 #define __dm_part_stat_sub(part, field, subnd)	\
1594 	(part_stat_get(part, field) -= (subnd))
1595 
1596 /*
1597  * Entry point to split a bio into clones and submit them to the targets.
1598  */
1599 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1600 					struct dm_table *map, struct bio *bio)
1601 {
1602 	struct clone_info ci;
1603 	blk_qc_t ret = BLK_QC_T_NONE;
1604 	int error = 0;
1605 
1606 	init_clone_info(&ci, md, map, bio);
1607 
1608 	if (bio->bi_opf & REQ_PREFLUSH) {
1609 		struct bio flush_bio;
1610 
1611 		/*
1612 		 * Use an on-stack bio for this, it's safe since we don't
1613 		 * need to reference it after submit. It's just used as
1614 		 * the basis for the clone(s).
1615 		 */
1616 		bio_init(&flush_bio, NULL, 0);
1617 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1618 		ci.bio = &flush_bio;
1619 		ci.sector_count = 0;
1620 		error = __send_empty_flush(&ci);
1621 		/* dec_pending submits any data associated with flush */
1622 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1623 		ci.bio = bio;
1624 		ci.sector_count = 0;
1625 		error = __split_and_process_non_flush(&ci);
1626 	} else {
1627 		ci.bio = bio;
1628 		ci.sector_count = bio_sectors(bio);
1629 		while (ci.sector_count && !error) {
1630 			error = __split_and_process_non_flush(&ci);
1631 			if (current->bio_list && ci.sector_count && !error) {
1632 				/*
1633 				 * Remainder must be passed to generic_make_request()
1634 				 * so that it gets handled *after* bios already submitted
1635 				 * have been completely processed.
1636 				 * We take a clone of the original to store in
1637 				 * ci.io->orig_bio to be used by end_io_acct() and
1638 				 * for dec_pending to use for completion handling.
1639 				 */
1640 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1641 							  GFP_NOIO, &md->queue->bio_split);
1642 				ci.io->orig_bio = b;
1643 
1644 				/*
1645 				 * Adjust IO stats for each split, otherwise upon queue
1646 				 * reentry there will be redundant IO accounting.
1647 				 * NOTE: this is a stop-gap fix, a proper fix involves
1648 				 * significant refactoring of DM core's bio splitting
1649 				 * (by eliminating DM's splitting and just using bio_split)
1650 				 */
1651 				part_stat_lock();
1652 				__dm_part_stat_sub(&dm_disk(md)->part0,
1653 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1654 				part_stat_unlock();
1655 
1656 				bio_chain(b, bio);
1657 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1658 				ret = generic_make_request(bio);
1659 				break;
1660 			}
1661 		}
1662 	}
1663 
1664 	/* drop the extra reference count */
1665 	dec_pending(ci.io, errno_to_blk_status(error));
1666 	return ret;
1667 }
1668 
1669 /*
1670  * Optimized variant of __split_and_process_bio that leverages the
1671  * fact that targets that use it do _not_ have a need to split bios.
1672  */
1673 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1674 			      struct bio *bio, struct dm_target *ti)
1675 {
1676 	struct clone_info ci;
1677 	blk_qc_t ret = BLK_QC_T_NONE;
1678 	int error = 0;
1679 
1680 	init_clone_info(&ci, md, map, bio);
1681 
1682 	if (bio->bi_opf & REQ_PREFLUSH) {
1683 		struct bio flush_bio;
1684 
1685 		/*
1686 		 * Use an on-stack bio for this, it's safe since we don't
1687 		 * need to reference it after submit. It's just used as
1688 		 * the basis for the clone(s).
1689 		 */
1690 		bio_init(&flush_bio, NULL, 0);
1691 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1692 		ci.bio = &flush_bio;
1693 		ci.sector_count = 0;
1694 		error = __send_empty_flush(&ci);
1695 		/* dec_pending submits any data associated with flush */
1696 	} else {
1697 		struct dm_target_io *tio;
1698 
1699 		ci.bio = bio;
1700 		ci.sector_count = bio_sectors(bio);
1701 		if (__process_abnormal_io(&ci, ti, &error))
1702 			goto out;
1703 
1704 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1705 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1706 	}
1707 out:
1708 	/* drop the extra reference count */
1709 	dec_pending(ci.io, errno_to_blk_status(error));
1710 	return ret;
1711 }
1712 
1713 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1714 {
1715 	unsigned len, sector_count;
1716 
1717 	sector_count = bio_sectors(*bio);
1718 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1719 
1720 	if (sector_count > len) {
1721 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1722 
1723 		bio_chain(split, *bio);
1724 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1725 		generic_make_request(*bio);
1726 		*bio = split;
1727 	}
1728 }
1729 
1730 static blk_qc_t dm_process_bio(struct mapped_device *md,
1731 			       struct dm_table *map, struct bio *bio)
1732 {
1733 	blk_qc_t ret = BLK_QC_T_NONE;
1734 	struct dm_target *ti = md->immutable_target;
1735 
1736 	if (unlikely(!map)) {
1737 		bio_io_error(bio);
1738 		return ret;
1739 	}
1740 
1741 	if (!ti) {
1742 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1743 		if (unlikely(!ti)) {
1744 			bio_io_error(bio);
1745 			return ret;
1746 		}
1747 	}
1748 
1749 	/*
1750 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1751 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1752 	 * won't be imposed.
1753 	 */
1754 	if (current->bio_list) {
1755 		blk_queue_split(md->queue, &bio);
1756 		if (!is_abnormal_io(bio))
1757 			dm_queue_split(md, ti, &bio);
1758 	}
1759 
1760 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1761 		return __process_bio(md, map, bio, ti);
1762 	else
1763 		return __split_and_process_bio(md, map, bio);
1764 }
1765 
1766 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1767 {
1768 	struct mapped_device *md = q->queuedata;
1769 	blk_qc_t ret = BLK_QC_T_NONE;
1770 	int srcu_idx;
1771 	struct dm_table *map;
1772 
1773 	map = dm_get_live_table(md, &srcu_idx);
1774 
1775 	/* if we're suspended, we have to queue this io for later */
1776 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1777 		dm_put_live_table(md, srcu_idx);
1778 
1779 		if (!(bio->bi_opf & REQ_RAHEAD))
1780 			queue_io(md, bio);
1781 		else
1782 			bio_io_error(bio);
1783 		return ret;
1784 	}
1785 
1786 	ret = dm_process_bio(md, map, bio);
1787 
1788 	dm_put_live_table(md, srcu_idx);
1789 	return ret;
1790 }
1791 
1792 static int dm_any_congested(void *congested_data, int bdi_bits)
1793 {
1794 	int r = bdi_bits;
1795 	struct mapped_device *md = congested_data;
1796 	struct dm_table *map;
1797 
1798 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1799 		if (dm_request_based(md)) {
1800 			/*
1801 			 * With request-based DM we only need to check the
1802 			 * top-level queue for congestion.
1803 			 */
1804 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1805 		} else {
1806 			map = dm_get_live_table_fast(md);
1807 			if (map)
1808 				r = dm_table_any_congested(map, bdi_bits);
1809 			dm_put_live_table_fast(md);
1810 		}
1811 	}
1812 
1813 	return r;
1814 }
1815 
1816 /*-----------------------------------------------------------------
1817  * An IDR is used to keep track of allocated minor numbers.
1818  *---------------------------------------------------------------*/
1819 static void free_minor(int minor)
1820 {
1821 	spin_lock(&_minor_lock);
1822 	idr_remove(&_minor_idr, minor);
1823 	spin_unlock(&_minor_lock);
1824 }
1825 
1826 /*
1827  * See if the device with a specific minor # is free.
1828  */
1829 static int specific_minor(int minor)
1830 {
1831 	int r;
1832 
1833 	if (minor >= (1 << MINORBITS))
1834 		return -EINVAL;
1835 
1836 	idr_preload(GFP_KERNEL);
1837 	spin_lock(&_minor_lock);
1838 
1839 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1840 
1841 	spin_unlock(&_minor_lock);
1842 	idr_preload_end();
1843 	if (r < 0)
1844 		return r == -ENOSPC ? -EBUSY : r;
1845 	return 0;
1846 }
1847 
1848 static int next_free_minor(int *minor)
1849 {
1850 	int r;
1851 
1852 	idr_preload(GFP_KERNEL);
1853 	spin_lock(&_minor_lock);
1854 
1855 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1856 
1857 	spin_unlock(&_minor_lock);
1858 	idr_preload_end();
1859 	if (r < 0)
1860 		return r;
1861 	*minor = r;
1862 	return 0;
1863 }
1864 
1865 static const struct block_device_operations dm_blk_dops;
1866 static const struct dax_operations dm_dax_ops;
1867 
1868 static void dm_wq_work(struct work_struct *work);
1869 
1870 static void dm_init_normal_md_queue(struct mapped_device *md)
1871 {
1872 	/*
1873 	 * Initialize aspects of queue that aren't relevant for blk-mq
1874 	 */
1875 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1876 }
1877 
1878 static void cleanup_mapped_device(struct mapped_device *md)
1879 {
1880 	if (md->wq)
1881 		destroy_workqueue(md->wq);
1882 	bioset_exit(&md->bs);
1883 	bioset_exit(&md->io_bs);
1884 
1885 	if (md->dax_dev) {
1886 		kill_dax(md->dax_dev);
1887 		put_dax(md->dax_dev);
1888 		md->dax_dev = NULL;
1889 	}
1890 
1891 	if (md->disk) {
1892 		spin_lock(&_minor_lock);
1893 		md->disk->private_data = NULL;
1894 		spin_unlock(&_minor_lock);
1895 		del_gendisk(md->disk);
1896 		put_disk(md->disk);
1897 	}
1898 
1899 	if (md->queue)
1900 		blk_cleanup_queue(md->queue);
1901 
1902 	cleanup_srcu_struct(&md->io_barrier);
1903 
1904 	if (md->bdev) {
1905 		bdput(md->bdev);
1906 		md->bdev = NULL;
1907 	}
1908 
1909 	mutex_destroy(&md->suspend_lock);
1910 	mutex_destroy(&md->type_lock);
1911 	mutex_destroy(&md->table_devices_lock);
1912 
1913 	dm_mq_cleanup_mapped_device(md);
1914 }
1915 
1916 /*
1917  * Allocate and initialise a blank device with a given minor.
1918  */
1919 static struct mapped_device *alloc_dev(int minor)
1920 {
1921 	int r, numa_node_id = dm_get_numa_node();
1922 	struct mapped_device *md;
1923 	void *old_md;
1924 
1925 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1926 	if (!md) {
1927 		DMWARN("unable to allocate device, out of memory.");
1928 		return NULL;
1929 	}
1930 
1931 	if (!try_module_get(THIS_MODULE))
1932 		goto bad_module_get;
1933 
1934 	/* get a minor number for the dev */
1935 	if (minor == DM_ANY_MINOR)
1936 		r = next_free_minor(&minor);
1937 	else
1938 		r = specific_minor(minor);
1939 	if (r < 0)
1940 		goto bad_minor;
1941 
1942 	r = init_srcu_struct(&md->io_barrier);
1943 	if (r < 0)
1944 		goto bad_io_barrier;
1945 
1946 	md->numa_node_id = numa_node_id;
1947 	md->init_tio_pdu = false;
1948 	md->type = DM_TYPE_NONE;
1949 	mutex_init(&md->suspend_lock);
1950 	mutex_init(&md->type_lock);
1951 	mutex_init(&md->table_devices_lock);
1952 	spin_lock_init(&md->deferred_lock);
1953 	atomic_set(&md->holders, 1);
1954 	atomic_set(&md->open_count, 0);
1955 	atomic_set(&md->event_nr, 0);
1956 	atomic_set(&md->uevent_seq, 0);
1957 	INIT_LIST_HEAD(&md->uevent_list);
1958 	INIT_LIST_HEAD(&md->table_devices);
1959 	spin_lock_init(&md->uevent_lock);
1960 
1961 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1962 	if (!md->queue)
1963 		goto bad;
1964 	md->queue->queuedata = md;
1965 	md->queue->backing_dev_info->congested_data = md;
1966 
1967 	md->disk = alloc_disk_node(1, md->numa_node_id);
1968 	if (!md->disk)
1969 		goto bad;
1970 
1971 	init_waitqueue_head(&md->wait);
1972 	INIT_WORK(&md->work, dm_wq_work);
1973 	init_waitqueue_head(&md->eventq);
1974 	init_completion(&md->kobj_holder.completion);
1975 
1976 	md->disk->major = _major;
1977 	md->disk->first_minor = minor;
1978 	md->disk->fops = &dm_blk_dops;
1979 	md->disk->queue = md->queue;
1980 	md->disk->private_data = md;
1981 	sprintf(md->disk->disk_name, "dm-%d", minor);
1982 
1983 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1984 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1985 					&dm_dax_ops, 0);
1986 		if (!md->dax_dev)
1987 			goto bad;
1988 	}
1989 
1990 	add_disk_no_queue_reg(md->disk);
1991 	format_dev_t(md->name, MKDEV(_major, minor));
1992 
1993 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1994 	if (!md->wq)
1995 		goto bad;
1996 
1997 	md->bdev = bdget_disk(md->disk, 0);
1998 	if (!md->bdev)
1999 		goto bad;
2000 
2001 	dm_stats_init(&md->stats);
2002 
2003 	/* Populate the mapping, nobody knows we exist yet */
2004 	spin_lock(&_minor_lock);
2005 	old_md = idr_replace(&_minor_idr, md, minor);
2006 	spin_unlock(&_minor_lock);
2007 
2008 	BUG_ON(old_md != MINOR_ALLOCED);
2009 
2010 	return md;
2011 
2012 bad:
2013 	cleanup_mapped_device(md);
2014 bad_io_barrier:
2015 	free_minor(minor);
2016 bad_minor:
2017 	module_put(THIS_MODULE);
2018 bad_module_get:
2019 	kvfree(md);
2020 	return NULL;
2021 }
2022 
2023 static void unlock_fs(struct mapped_device *md);
2024 
2025 static void free_dev(struct mapped_device *md)
2026 {
2027 	int minor = MINOR(disk_devt(md->disk));
2028 
2029 	unlock_fs(md);
2030 
2031 	cleanup_mapped_device(md);
2032 
2033 	free_table_devices(&md->table_devices);
2034 	dm_stats_cleanup(&md->stats);
2035 	free_minor(minor);
2036 
2037 	module_put(THIS_MODULE);
2038 	kvfree(md);
2039 }
2040 
2041 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2042 {
2043 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2044 	int ret = 0;
2045 
2046 	if (dm_table_bio_based(t)) {
2047 		/*
2048 		 * The md may already have mempools that need changing.
2049 		 * If so, reload bioset because front_pad may have changed
2050 		 * because a different table was loaded.
2051 		 */
2052 		bioset_exit(&md->bs);
2053 		bioset_exit(&md->io_bs);
2054 
2055 	} else if (bioset_initialized(&md->bs)) {
2056 		/*
2057 		 * There's no need to reload with request-based dm
2058 		 * because the size of front_pad doesn't change.
2059 		 * Note for future: If you are to reload bioset,
2060 		 * prep-ed requests in the queue may refer
2061 		 * to bio from the old bioset, so you must walk
2062 		 * through the queue to unprep.
2063 		 */
2064 		goto out;
2065 	}
2066 
2067 	BUG_ON(!p ||
2068 	       bioset_initialized(&md->bs) ||
2069 	       bioset_initialized(&md->io_bs));
2070 
2071 	ret = bioset_init_from_src(&md->bs, &p->bs);
2072 	if (ret)
2073 		goto out;
2074 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2075 	if (ret)
2076 		bioset_exit(&md->bs);
2077 out:
2078 	/* mempool bind completed, no longer need any mempools in the table */
2079 	dm_table_free_md_mempools(t);
2080 	return ret;
2081 }
2082 
2083 /*
2084  * Bind a table to the device.
2085  */
2086 static void event_callback(void *context)
2087 {
2088 	unsigned long flags;
2089 	LIST_HEAD(uevents);
2090 	struct mapped_device *md = (struct mapped_device *) context;
2091 
2092 	spin_lock_irqsave(&md->uevent_lock, flags);
2093 	list_splice_init(&md->uevent_list, &uevents);
2094 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2095 
2096 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2097 
2098 	atomic_inc(&md->event_nr);
2099 	wake_up(&md->eventq);
2100 	dm_issue_global_event();
2101 }
2102 
2103 /*
2104  * Protected by md->suspend_lock obtained by dm_swap_table().
2105  */
2106 static void __set_size(struct mapped_device *md, sector_t size)
2107 {
2108 	lockdep_assert_held(&md->suspend_lock);
2109 
2110 	set_capacity(md->disk, size);
2111 
2112 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2113 }
2114 
2115 /*
2116  * Returns old map, which caller must destroy.
2117  */
2118 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2119 			       struct queue_limits *limits)
2120 {
2121 	struct dm_table *old_map;
2122 	struct request_queue *q = md->queue;
2123 	bool request_based = dm_table_request_based(t);
2124 	sector_t size;
2125 	int ret;
2126 
2127 	lockdep_assert_held(&md->suspend_lock);
2128 
2129 	size = dm_table_get_size(t);
2130 
2131 	/*
2132 	 * Wipe any geometry if the size of the table changed.
2133 	 */
2134 	if (size != dm_get_size(md))
2135 		memset(&md->geometry, 0, sizeof(md->geometry));
2136 
2137 	__set_size(md, size);
2138 
2139 	dm_table_event_callback(t, event_callback, md);
2140 
2141 	/*
2142 	 * The queue hasn't been stopped yet, if the old table type wasn't
2143 	 * for request-based during suspension.  So stop it to prevent
2144 	 * I/O mapping before resume.
2145 	 * This must be done before setting the queue restrictions,
2146 	 * because request-based dm may be run just after the setting.
2147 	 */
2148 	if (request_based)
2149 		dm_stop_queue(q);
2150 
2151 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2152 		/*
2153 		 * Leverage the fact that request-based DM targets and
2154 		 * NVMe bio based targets are immutable singletons
2155 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2156 		 *   and __process_bio.
2157 		 */
2158 		md->immutable_target = dm_table_get_immutable_target(t);
2159 	}
2160 
2161 	ret = __bind_mempools(md, t);
2162 	if (ret) {
2163 		old_map = ERR_PTR(ret);
2164 		goto out;
2165 	}
2166 
2167 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2168 	rcu_assign_pointer(md->map, (void *)t);
2169 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2170 
2171 	dm_table_set_restrictions(t, q, limits);
2172 	if (old_map)
2173 		dm_sync_table(md);
2174 
2175 out:
2176 	return old_map;
2177 }
2178 
2179 /*
2180  * Returns unbound table for the caller to free.
2181  */
2182 static struct dm_table *__unbind(struct mapped_device *md)
2183 {
2184 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2185 
2186 	if (!map)
2187 		return NULL;
2188 
2189 	dm_table_event_callback(map, NULL, NULL);
2190 	RCU_INIT_POINTER(md->map, NULL);
2191 	dm_sync_table(md);
2192 
2193 	return map;
2194 }
2195 
2196 /*
2197  * Constructor for a new device.
2198  */
2199 int dm_create(int minor, struct mapped_device **result)
2200 {
2201 	int r;
2202 	struct mapped_device *md;
2203 
2204 	md = alloc_dev(minor);
2205 	if (!md)
2206 		return -ENXIO;
2207 
2208 	r = dm_sysfs_init(md);
2209 	if (r) {
2210 		free_dev(md);
2211 		return r;
2212 	}
2213 
2214 	*result = md;
2215 	return 0;
2216 }
2217 
2218 /*
2219  * Functions to manage md->type.
2220  * All are required to hold md->type_lock.
2221  */
2222 void dm_lock_md_type(struct mapped_device *md)
2223 {
2224 	mutex_lock(&md->type_lock);
2225 }
2226 
2227 void dm_unlock_md_type(struct mapped_device *md)
2228 {
2229 	mutex_unlock(&md->type_lock);
2230 }
2231 
2232 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2233 {
2234 	BUG_ON(!mutex_is_locked(&md->type_lock));
2235 	md->type = type;
2236 }
2237 
2238 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2239 {
2240 	return md->type;
2241 }
2242 
2243 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2244 {
2245 	return md->immutable_target_type;
2246 }
2247 
2248 /*
2249  * The queue_limits are only valid as long as you have a reference
2250  * count on 'md'.
2251  */
2252 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2253 {
2254 	BUG_ON(!atomic_read(&md->holders));
2255 	return &md->queue->limits;
2256 }
2257 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2258 
2259 /*
2260  * Setup the DM device's queue based on md's type
2261  */
2262 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2263 {
2264 	int r;
2265 	struct queue_limits limits;
2266 	enum dm_queue_mode type = dm_get_md_type(md);
2267 
2268 	switch (type) {
2269 	case DM_TYPE_REQUEST_BASED:
2270 		r = dm_mq_init_request_queue(md, t);
2271 		if (r) {
2272 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2273 			return r;
2274 		}
2275 		break;
2276 	case DM_TYPE_BIO_BASED:
2277 	case DM_TYPE_DAX_BIO_BASED:
2278 	case DM_TYPE_NVME_BIO_BASED:
2279 		dm_init_normal_md_queue(md);
2280 		blk_queue_make_request(md->queue, dm_make_request);
2281 		break;
2282 	case DM_TYPE_NONE:
2283 		WARN_ON_ONCE(true);
2284 		break;
2285 	}
2286 
2287 	r = dm_calculate_queue_limits(t, &limits);
2288 	if (r) {
2289 		DMERR("Cannot calculate initial queue limits");
2290 		return r;
2291 	}
2292 	dm_table_set_restrictions(t, md->queue, &limits);
2293 	blk_register_queue(md->disk);
2294 
2295 	return 0;
2296 }
2297 
2298 struct mapped_device *dm_get_md(dev_t dev)
2299 {
2300 	struct mapped_device *md;
2301 	unsigned minor = MINOR(dev);
2302 
2303 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2304 		return NULL;
2305 
2306 	spin_lock(&_minor_lock);
2307 
2308 	md = idr_find(&_minor_idr, minor);
2309 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2310 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2311 		md = NULL;
2312 		goto out;
2313 	}
2314 	dm_get(md);
2315 out:
2316 	spin_unlock(&_minor_lock);
2317 
2318 	return md;
2319 }
2320 EXPORT_SYMBOL_GPL(dm_get_md);
2321 
2322 void *dm_get_mdptr(struct mapped_device *md)
2323 {
2324 	return md->interface_ptr;
2325 }
2326 
2327 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2328 {
2329 	md->interface_ptr = ptr;
2330 }
2331 
2332 void dm_get(struct mapped_device *md)
2333 {
2334 	atomic_inc(&md->holders);
2335 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2336 }
2337 
2338 int dm_hold(struct mapped_device *md)
2339 {
2340 	spin_lock(&_minor_lock);
2341 	if (test_bit(DMF_FREEING, &md->flags)) {
2342 		spin_unlock(&_minor_lock);
2343 		return -EBUSY;
2344 	}
2345 	dm_get(md);
2346 	spin_unlock(&_minor_lock);
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(dm_hold);
2350 
2351 const char *dm_device_name(struct mapped_device *md)
2352 {
2353 	return md->name;
2354 }
2355 EXPORT_SYMBOL_GPL(dm_device_name);
2356 
2357 static void __dm_destroy(struct mapped_device *md, bool wait)
2358 {
2359 	struct dm_table *map;
2360 	int srcu_idx;
2361 
2362 	might_sleep();
2363 
2364 	spin_lock(&_minor_lock);
2365 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2366 	set_bit(DMF_FREEING, &md->flags);
2367 	spin_unlock(&_minor_lock);
2368 
2369 	blk_set_queue_dying(md->queue);
2370 
2371 	/*
2372 	 * Take suspend_lock so that presuspend and postsuspend methods
2373 	 * do not race with internal suspend.
2374 	 */
2375 	mutex_lock(&md->suspend_lock);
2376 	map = dm_get_live_table(md, &srcu_idx);
2377 	if (!dm_suspended_md(md)) {
2378 		dm_table_presuspend_targets(map);
2379 		dm_table_postsuspend_targets(map);
2380 	}
2381 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2382 	dm_put_live_table(md, srcu_idx);
2383 	mutex_unlock(&md->suspend_lock);
2384 
2385 	/*
2386 	 * Rare, but there may be I/O requests still going to complete,
2387 	 * for example.  Wait for all references to disappear.
2388 	 * No one should increment the reference count of the mapped_device,
2389 	 * after the mapped_device state becomes DMF_FREEING.
2390 	 */
2391 	if (wait)
2392 		while (atomic_read(&md->holders))
2393 			msleep(1);
2394 	else if (atomic_read(&md->holders))
2395 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2396 		       dm_device_name(md), atomic_read(&md->holders));
2397 
2398 	dm_sysfs_exit(md);
2399 	dm_table_destroy(__unbind(md));
2400 	free_dev(md);
2401 }
2402 
2403 void dm_destroy(struct mapped_device *md)
2404 {
2405 	__dm_destroy(md, true);
2406 }
2407 
2408 void dm_destroy_immediate(struct mapped_device *md)
2409 {
2410 	__dm_destroy(md, false);
2411 }
2412 
2413 void dm_put(struct mapped_device *md)
2414 {
2415 	atomic_dec(&md->holders);
2416 }
2417 EXPORT_SYMBOL_GPL(dm_put);
2418 
2419 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2420 {
2421 	int r = 0;
2422 	DEFINE_WAIT(wait);
2423 
2424 	while (1) {
2425 		prepare_to_wait(&md->wait, &wait, task_state);
2426 
2427 		if (!md_in_flight(md))
2428 			break;
2429 
2430 		if (signal_pending_state(task_state, current)) {
2431 			r = -EINTR;
2432 			break;
2433 		}
2434 
2435 		io_schedule();
2436 	}
2437 	finish_wait(&md->wait, &wait);
2438 
2439 	return r;
2440 }
2441 
2442 /*
2443  * Process the deferred bios
2444  */
2445 static void dm_wq_work(struct work_struct *work)
2446 {
2447 	struct mapped_device *md = container_of(work, struct mapped_device,
2448 						work);
2449 	struct bio *c;
2450 	int srcu_idx;
2451 	struct dm_table *map;
2452 
2453 	map = dm_get_live_table(md, &srcu_idx);
2454 
2455 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2456 		spin_lock_irq(&md->deferred_lock);
2457 		c = bio_list_pop(&md->deferred);
2458 		spin_unlock_irq(&md->deferred_lock);
2459 
2460 		if (!c)
2461 			break;
2462 
2463 		if (dm_request_based(md))
2464 			(void) generic_make_request(c);
2465 		else
2466 			(void) dm_process_bio(md, map, c);
2467 	}
2468 
2469 	dm_put_live_table(md, srcu_idx);
2470 }
2471 
2472 static void dm_queue_flush(struct mapped_device *md)
2473 {
2474 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2475 	smp_mb__after_atomic();
2476 	queue_work(md->wq, &md->work);
2477 }
2478 
2479 /*
2480  * Swap in a new table, returning the old one for the caller to destroy.
2481  */
2482 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2483 {
2484 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2485 	struct queue_limits limits;
2486 	int r;
2487 
2488 	mutex_lock(&md->suspend_lock);
2489 
2490 	/* device must be suspended */
2491 	if (!dm_suspended_md(md))
2492 		goto out;
2493 
2494 	/*
2495 	 * If the new table has no data devices, retain the existing limits.
2496 	 * This helps multipath with queue_if_no_path if all paths disappear,
2497 	 * then new I/O is queued based on these limits, and then some paths
2498 	 * reappear.
2499 	 */
2500 	if (dm_table_has_no_data_devices(table)) {
2501 		live_map = dm_get_live_table_fast(md);
2502 		if (live_map)
2503 			limits = md->queue->limits;
2504 		dm_put_live_table_fast(md);
2505 	}
2506 
2507 	if (!live_map) {
2508 		r = dm_calculate_queue_limits(table, &limits);
2509 		if (r) {
2510 			map = ERR_PTR(r);
2511 			goto out;
2512 		}
2513 	}
2514 
2515 	map = __bind(md, table, &limits);
2516 	dm_issue_global_event();
2517 
2518 out:
2519 	mutex_unlock(&md->suspend_lock);
2520 	return map;
2521 }
2522 
2523 /*
2524  * Functions to lock and unlock any filesystem running on the
2525  * device.
2526  */
2527 static int lock_fs(struct mapped_device *md)
2528 {
2529 	int r;
2530 
2531 	WARN_ON(md->frozen_sb);
2532 
2533 	md->frozen_sb = freeze_bdev(md->bdev);
2534 	if (IS_ERR(md->frozen_sb)) {
2535 		r = PTR_ERR(md->frozen_sb);
2536 		md->frozen_sb = NULL;
2537 		return r;
2538 	}
2539 
2540 	set_bit(DMF_FROZEN, &md->flags);
2541 
2542 	return 0;
2543 }
2544 
2545 static void unlock_fs(struct mapped_device *md)
2546 {
2547 	if (!test_bit(DMF_FROZEN, &md->flags))
2548 		return;
2549 
2550 	thaw_bdev(md->bdev, md->frozen_sb);
2551 	md->frozen_sb = NULL;
2552 	clear_bit(DMF_FROZEN, &md->flags);
2553 }
2554 
2555 /*
2556  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2557  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2558  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2559  *
2560  * If __dm_suspend returns 0, the device is completely quiescent
2561  * now. There is no request-processing activity. All new requests
2562  * are being added to md->deferred list.
2563  */
2564 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2565 			unsigned suspend_flags, long task_state,
2566 			int dmf_suspended_flag)
2567 {
2568 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2569 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2570 	int r;
2571 
2572 	lockdep_assert_held(&md->suspend_lock);
2573 
2574 	/*
2575 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2576 	 * This flag is cleared before dm_suspend returns.
2577 	 */
2578 	if (noflush)
2579 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2580 	else
2581 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2582 
2583 	/*
2584 	 * This gets reverted if there's an error later and the targets
2585 	 * provide the .presuspend_undo hook.
2586 	 */
2587 	dm_table_presuspend_targets(map);
2588 
2589 	/*
2590 	 * Flush I/O to the device.
2591 	 * Any I/O submitted after lock_fs() may not be flushed.
2592 	 * noflush takes precedence over do_lockfs.
2593 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2594 	 */
2595 	if (!noflush && do_lockfs) {
2596 		r = lock_fs(md);
2597 		if (r) {
2598 			dm_table_presuspend_undo_targets(map);
2599 			return r;
2600 		}
2601 	}
2602 
2603 	/*
2604 	 * Here we must make sure that no processes are submitting requests
2605 	 * to target drivers i.e. no one may be executing
2606 	 * __split_and_process_bio. This is called from dm_request and
2607 	 * dm_wq_work.
2608 	 *
2609 	 * To get all processes out of __split_and_process_bio in dm_request,
2610 	 * we take the write lock. To prevent any process from reentering
2611 	 * __split_and_process_bio from dm_request and quiesce the thread
2612 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2613 	 * flush_workqueue(md->wq).
2614 	 */
2615 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2616 	if (map)
2617 		synchronize_srcu(&md->io_barrier);
2618 
2619 	/*
2620 	 * Stop md->queue before flushing md->wq in case request-based
2621 	 * dm defers requests to md->wq from md->queue.
2622 	 */
2623 	if (dm_request_based(md))
2624 		dm_stop_queue(md->queue);
2625 
2626 	flush_workqueue(md->wq);
2627 
2628 	/*
2629 	 * At this point no more requests are entering target request routines.
2630 	 * We call dm_wait_for_completion to wait for all existing requests
2631 	 * to finish.
2632 	 */
2633 	r = dm_wait_for_completion(md, task_state);
2634 	if (!r)
2635 		set_bit(dmf_suspended_flag, &md->flags);
2636 
2637 	if (noflush)
2638 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2639 	if (map)
2640 		synchronize_srcu(&md->io_barrier);
2641 
2642 	/* were we interrupted ? */
2643 	if (r < 0) {
2644 		dm_queue_flush(md);
2645 
2646 		if (dm_request_based(md))
2647 			dm_start_queue(md->queue);
2648 
2649 		unlock_fs(md);
2650 		dm_table_presuspend_undo_targets(map);
2651 		/* pushback list is already flushed, so skip flush */
2652 	}
2653 
2654 	return r;
2655 }
2656 
2657 /*
2658  * We need to be able to change a mapping table under a mounted
2659  * filesystem.  For example we might want to move some data in
2660  * the background.  Before the table can be swapped with
2661  * dm_bind_table, dm_suspend must be called to flush any in
2662  * flight bios and ensure that any further io gets deferred.
2663  */
2664 /*
2665  * Suspend mechanism in request-based dm.
2666  *
2667  * 1. Flush all I/Os by lock_fs() if needed.
2668  * 2. Stop dispatching any I/O by stopping the request_queue.
2669  * 3. Wait for all in-flight I/Os to be completed or requeued.
2670  *
2671  * To abort suspend, start the request_queue.
2672  */
2673 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2674 {
2675 	struct dm_table *map = NULL;
2676 	int r = 0;
2677 
2678 retry:
2679 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2680 
2681 	if (dm_suspended_md(md)) {
2682 		r = -EINVAL;
2683 		goto out_unlock;
2684 	}
2685 
2686 	if (dm_suspended_internally_md(md)) {
2687 		/* already internally suspended, wait for internal resume */
2688 		mutex_unlock(&md->suspend_lock);
2689 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2690 		if (r)
2691 			return r;
2692 		goto retry;
2693 	}
2694 
2695 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2696 
2697 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2698 	if (r)
2699 		goto out_unlock;
2700 
2701 	dm_table_postsuspend_targets(map);
2702 
2703 out_unlock:
2704 	mutex_unlock(&md->suspend_lock);
2705 	return r;
2706 }
2707 
2708 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2709 {
2710 	if (map) {
2711 		int r = dm_table_resume_targets(map);
2712 		if (r)
2713 			return r;
2714 	}
2715 
2716 	dm_queue_flush(md);
2717 
2718 	/*
2719 	 * Flushing deferred I/Os must be done after targets are resumed
2720 	 * so that mapping of targets can work correctly.
2721 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2722 	 */
2723 	if (dm_request_based(md))
2724 		dm_start_queue(md->queue);
2725 
2726 	unlock_fs(md);
2727 
2728 	return 0;
2729 }
2730 
2731 int dm_resume(struct mapped_device *md)
2732 {
2733 	int r;
2734 	struct dm_table *map = NULL;
2735 
2736 retry:
2737 	r = -EINVAL;
2738 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2739 
2740 	if (!dm_suspended_md(md))
2741 		goto out;
2742 
2743 	if (dm_suspended_internally_md(md)) {
2744 		/* already internally suspended, wait for internal resume */
2745 		mutex_unlock(&md->suspend_lock);
2746 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2747 		if (r)
2748 			return r;
2749 		goto retry;
2750 	}
2751 
2752 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2753 	if (!map || !dm_table_get_size(map))
2754 		goto out;
2755 
2756 	r = __dm_resume(md, map);
2757 	if (r)
2758 		goto out;
2759 
2760 	clear_bit(DMF_SUSPENDED, &md->flags);
2761 out:
2762 	mutex_unlock(&md->suspend_lock);
2763 
2764 	return r;
2765 }
2766 
2767 /*
2768  * Internal suspend/resume works like userspace-driven suspend. It waits
2769  * until all bios finish and prevents issuing new bios to the target drivers.
2770  * It may be used only from the kernel.
2771  */
2772 
2773 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2774 {
2775 	struct dm_table *map = NULL;
2776 
2777 	lockdep_assert_held(&md->suspend_lock);
2778 
2779 	if (md->internal_suspend_count++)
2780 		return; /* nested internal suspend */
2781 
2782 	if (dm_suspended_md(md)) {
2783 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2784 		return; /* nest suspend */
2785 	}
2786 
2787 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2788 
2789 	/*
2790 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2791 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2792 	 * would require changing .presuspend to return an error -- avoid this
2793 	 * until there is a need for more elaborate variants of internal suspend.
2794 	 */
2795 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2796 			    DMF_SUSPENDED_INTERNALLY);
2797 
2798 	dm_table_postsuspend_targets(map);
2799 }
2800 
2801 static void __dm_internal_resume(struct mapped_device *md)
2802 {
2803 	BUG_ON(!md->internal_suspend_count);
2804 
2805 	if (--md->internal_suspend_count)
2806 		return; /* resume from nested internal suspend */
2807 
2808 	if (dm_suspended_md(md))
2809 		goto done; /* resume from nested suspend */
2810 
2811 	/*
2812 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2813 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2814 	 */
2815 	(void) __dm_resume(md, NULL);
2816 
2817 done:
2818 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2819 	smp_mb__after_atomic();
2820 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2821 }
2822 
2823 void dm_internal_suspend_noflush(struct mapped_device *md)
2824 {
2825 	mutex_lock(&md->suspend_lock);
2826 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2827 	mutex_unlock(&md->suspend_lock);
2828 }
2829 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2830 
2831 void dm_internal_resume(struct mapped_device *md)
2832 {
2833 	mutex_lock(&md->suspend_lock);
2834 	__dm_internal_resume(md);
2835 	mutex_unlock(&md->suspend_lock);
2836 }
2837 EXPORT_SYMBOL_GPL(dm_internal_resume);
2838 
2839 /*
2840  * Fast variants of internal suspend/resume hold md->suspend_lock,
2841  * which prevents interaction with userspace-driven suspend.
2842  */
2843 
2844 void dm_internal_suspend_fast(struct mapped_device *md)
2845 {
2846 	mutex_lock(&md->suspend_lock);
2847 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2848 		return;
2849 
2850 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2851 	synchronize_srcu(&md->io_barrier);
2852 	flush_workqueue(md->wq);
2853 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2854 }
2855 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2856 
2857 void dm_internal_resume_fast(struct mapped_device *md)
2858 {
2859 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2860 		goto done;
2861 
2862 	dm_queue_flush(md);
2863 
2864 done:
2865 	mutex_unlock(&md->suspend_lock);
2866 }
2867 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2868 
2869 /*-----------------------------------------------------------------
2870  * Event notification.
2871  *---------------------------------------------------------------*/
2872 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2873 		       unsigned cookie)
2874 {
2875 	char udev_cookie[DM_COOKIE_LENGTH];
2876 	char *envp[] = { udev_cookie, NULL };
2877 
2878 	if (!cookie)
2879 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2880 	else {
2881 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2882 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2883 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2884 					  action, envp);
2885 	}
2886 }
2887 
2888 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2889 {
2890 	return atomic_add_return(1, &md->uevent_seq);
2891 }
2892 
2893 uint32_t dm_get_event_nr(struct mapped_device *md)
2894 {
2895 	return atomic_read(&md->event_nr);
2896 }
2897 
2898 int dm_wait_event(struct mapped_device *md, int event_nr)
2899 {
2900 	return wait_event_interruptible(md->eventq,
2901 			(event_nr != atomic_read(&md->event_nr)));
2902 }
2903 
2904 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2905 {
2906 	unsigned long flags;
2907 
2908 	spin_lock_irqsave(&md->uevent_lock, flags);
2909 	list_add(elist, &md->uevent_list);
2910 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2911 }
2912 
2913 /*
2914  * The gendisk is only valid as long as you have a reference
2915  * count on 'md'.
2916  */
2917 struct gendisk *dm_disk(struct mapped_device *md)
2918 {
2919 	return md->disk;
2920 }
2921 EXPORT_SYMBOL_GPL(dm_disk);
2922 
2923 struct kobject *dm_kobject(struct mapped_device *md)
2924 {
2925 	return &md->kobj_holder.kobj;
2926 }
2927 
2928 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2929 {
2930 	struct mapped_device *md;
2931 
2932 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2933 
2934 	spin_lock(&_minor_lock);
2935 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2936 		md = NULL;
2937 		goto out;
2938 	}
2939 	dm_get(md);
2940 out:
2941 	spin_unlock(&_minor_lock);
2942 
2943 	return md;
2944 }
2945 
2946 int dm_suspended_md(struct mapped_device *md)
2947 {
2948 	return test_bit(DMF_SUSPENDED, &md->flags);
2949 }
2950 
2951 int dm_suspended_internally_md(struct mapped_device *md)
2952 {
2953 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2954 }
2955 
2956 int dm_test_deferred_remove_flag(struct mapped_device *md)
2957 {
2958 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2959 }
2960 
2961 int dm_suspended(struct dm_target *ti)
2962 {
2963 	return dm_suspended_md(dm_table_get_md(ti->table));
2964 }
2965 EXPORT_SYMBOL_GPL(dm_suspended);
2966 
2967 int dm_noflush_suspending(struct dm_target *ti)
2968 {
2969 	return __noflush_suspending(dm_table_get_md(ti->table));
2970 }
2971 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2972 
2973 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2974 					    unsigned integrity, unsigned per_io_data_size,
2975 					    unsigned min_pool_size)
2976 {
2977 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2978 	unsigned int pool_size = 0;
2979 	unsigned int front_pad, io_front_pad;
2980 	int ret;
2981 
2982 	if (!pools)
2983 		return NULL;
2984 
2985 	switch (type) {
2986 	case DM_TYPE_BIO_BASED:
2987 	case DM_TYPE_DAX_BIO_BASED:
2988 	case DM_TYPE_NVME_BIO_BASED:
2989 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2990 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2991 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2992 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2993 		if (ret)
2994 			goto out;
2995 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2996 			goto out;
2997 		break;
2998 	case DM_TYPE_REQUEST_BASED:
2999 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3000 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3001 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3002 		break;
3003 	default:
3004 		BUG();
3005 	}
3006 
3007 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3008 	if (ret)
3009 		goto out;
3010 
3011 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3012 		goto out;
3013 
3014 	return pools;
3015 
3016 out:
3017 	dm_free_md_mempools(pools);
3018 
3019 	return NULL;
3020 }
3021 
3022 void dm_free_md_mempools(struct dm_md_mempools *pools)
3023 {
3024 	if (!pools)
3025 		return;
3026 
3027 	bioset_exit(&pools->bs);
3028 	bioset_exit(&pools->io_bs);
3029 
3030 	kfree(pools);
3031 }
3032 
3033 struct dm_pr {
3034 	u64	old_key;
3035 	u64	new_key;
3036 	u32	flags;
3037 	bool	fail_early;
3038 };
3039 
3040 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3041 		      void *data)
3042 {
3043 	struct mapped_device *md = bdev->bd_disk->private_data;
3044 	struct dm_table *table;
3045 	struct dm_target *ti;
3046 	int ret = -ENOTTY, srcu_idx;
3047 
3048 	table = dm_get_live_table(md, &srcu_idx);
3049 	if (!table || !dm_table_get_size(table))
3050 		goto out;
3051 
3052 	/* We only support devices that have a single target */
3053 	if (dm_table_get_num_targets(table) != 1)
3054 		goto out;
3055 	ti = dm_table_get_target(table, 0);
3056 
3057 	ret = -EINVAL;
3058 	if (!ti->type->iterate_devices)
3059 		goto out;
3060 
3061 	ret = ti->type->iterate_devices(ti, fn, data);
3062 out:
3063 	dm_put_live_table(md, srcu_idx);
3064 	return ret;
3065 }
3066 
3067 /*
3068  * For register / unregister we need to manually call out to every path.
3069  */
3070 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3071 			    sector_t start, sector_t len, void *data)
3072 {
3073 	struct dm_pr *pr = data;
3074 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3075 
3076 	if (!ops || !ops->pr_register)
3077 		return -EOPNOTSUPP;
3078 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3079 }
3080 
3081 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3082 			  u32 flags)
3083 {
3084 	struct dm_pr pr = {
3085 		.old_key	= old_key,
3086 		.new_key	= new_key,
3087 		.flags		= flags,
3088 		.fail_early	= true,
3089 	};
3090 	int ret;
3091 
3092 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3093 	if (ret && new_key) {
3094 		/* unregister all paths if we failed to register any path */
3095 		pr.old_key = new_key;
3096 		pr.new_key = 0;
3097 		pr.flags = 0;
3098 		pr.fail_early = false;
3099 		dm_call_pr(bdev, __dm_pr_register, &pr);
3100 	}
3101 
3102 	return ret;
3103 }
3104 
3105 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3106 			 u32 flags)
3107 {
3108 	struct mapped_device *md = bdev->bd_disk->private_data;
3109 	const struct pr_ops *ops;
3110 	int r, srcu_idx;
3111 
3112 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3113 	if (r < 0)
3114 		goto out;
3115 
3116 	ops = bdev->bd_disk->fops->pr_ops;
3117 	if (ops && ops->pr_reserve)
3118 		r = ops->pr_reserve(bdev, key, type, flags);
3119 	else
3120 		r = -EOPNOTSUPP;
3121 out:
3122 	dm_unprepare_ioctl(md, srcu_idx);
3123 	return r;
3124 }
3125 
3126 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3127 {
3128 	struct mapped_device *md = bdev->bd_disk->private_data;
3129 	const struct pr_ops *ops;
3130 	int r, srcu_idx;
3131 
3132 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3133 	if (r < 0)
3134 		goto out;
3135 
3136 	ops = bdev->bd_disk->fops->pr_ops;
3137 	if (ops && ops->pr_release)
3138 		r = ops->pr_release(bdev, key, type);
3139 	else
3140 		r = -EOPNOTSUPP;
3141 out:
3142 	dm_unprepare_ioctl(md, srcu_idx);
3143 	return r;
3144 }
3145 
3146 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3147 			 enum pr_type type, bool abort)
3148 {
3149 	struct mapped_device *md = bdev->bd_disk->private_data;
3150 	const struct pr_ops *ops;
3151 	int r, srcu_idx;
3152 
3153 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3154 	if (r < 0)
3155 		goto out;
3156 
3157 	ops = bdev->bd_disk->fops->pr_ops;
3158 	if (ops && ops->pr_preempt)
3159 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3160 	else
3161 		r = -EOPNOTSUPP;
3162 out:
3163 	dm_unprepare_ioctl(md, srcu_idx);
3164 	return r;
3165 }
3166 
3167 static int dm_pr_clear(struct block_device *bdev, u64 key)
3168 {
3169 	struct mapped_device *md = bdev->bd_disk->private_data;
3170 	const struct pr_ops *ops;
3171 	int r, srcu_idx;
3172 
3173 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3174 	if (r < 0)
3175 		goto out;
3176 
3177 	ops = bdev->bd_disk->fops->pr_ops;
3178 	if (ops && ops->pr_clear)
3179 		r = ops->pr_clear(bdev, key);
3180 	else
3181 		r = -EOPNOTSUPP;
3182 out:
3183 	dm_unprepare_ioctl(md, srcu_idx);
3184 	return r;
3185 }
3186 
3187 static const struct pr_ops dm_pr_ops = {
3188 	.pr_register	= dm_pr_register,
3189 	.pr_reserve	= dm_pr_reserve,
3190 	.pr_release	= dm_pr_release,
3191 	.pr_preempt	= dm_pr_preempt,
3192 	.pr_clear	= dm_pr_clear,
3193 };
3194 
3195 static const struct block_device_operations dm_blk_dops = {
3196 	.open = dm_blk_open,
3197 	.release = dm_blk_close,
3198 	.ioctl = dm_blk_ioctl,
3199 	.getgeo = dm_blk_getgeo,
3200 	.report_zones = dm_blk_report_zones,
3201 	.pr_ops = &dm_pr_ops,
3202 	.owner = THIS_MODULE
3203 };
3204 
3205 static const struct dax_operations dm_dax_ops = {
3206 	.direct_access = dm_dax_direct_access,
3207 	.dax_supported = dm_dax_supported,
3208 	.copy_from_iter = dm_dax_copy_from_iter,
3209 	.copy_to_iter = dm_dax_copy_to_iter,
3210 };
3211 
3212 /*
3213  * module hooks
3214  */
3215 module_init(dm_init);
3216 module_exit(dm_exit);
3217 
3218 module_param(major, uint, 0);
3219 MODULE_PARM_DESC(major, "The major number of the device mapper");
3220 
3221 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3222 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3223 
3224 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3225 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3226 
3227 MODULE_DESCRIPTION(DM_NAME " driver");
3228 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3229 MODULE_LICENSE("GPL");
3230