1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 92 #define DM_IO_BIO_OFFSET \ 93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 94 95 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 96 { 97 return container_of(clone, struct dm_target_io, clone); 98 } 99 100 void *dm_per_bio_data(struct bio *bio, size_t data_size) 101 { 102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 104 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 105 } 106 EXPORT_SYMBOL_GPL(dm_per_bio_data); 107 108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 109 { 110 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 111 if (io->magic == DM_IO_MAGIC) 112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 113 BUG_ON(io->magic != DM_TIO_MAGIC); 114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 115 } 116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 117 118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 119 { 120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 123 124 #define MINOR_ALLOCED ((void *)-1) 125 126 #define DM_NUMA_NODE NUMA_NO_NODE 127 static int dm_numa_node = DM_NUMA_NODE; 128 129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 130 static int swap_bios = DEFAULT_SWAP_BIOS; 131 static int get_swap_bios(void) 132 { 133 int latch = READ_ONCE(swap_bios); 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned __dm_get_module_param(unsigned *module_param, 173 unsigned def, unsigned max) 174 { 175 unsigned param = READ_ONCE(*module_param); 176 unsigned modified_param = 0; 177 178 if (!param) 179 modified_param = def; 180 else if (param > max) 181 modified_param = max; 182 183 if (modified_param) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned dm_get_reserved_bio_based_ios(void) 192 { 193 return __dm_get_module_param(&reserved_bio_based_ios, 194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 195 } 196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 197 198 static unsigned dm_get_numa_node(void) 199 { 200 return __dm_get_module_param_int(&dm_numa_node, 201 DM_NUMA_NODE, num_online_nodes() - 1); 202 } 203 204 static int __init local_init(void) 205 { 206 int r; 207 208 r = dm_uevent_init(); 209 if (r) 210 return r; 211 212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 213 if (!deferred_remove_workqueue) { 214 r = -ENOMEM; 215 goto out_uevent_exit; 216 } 217 218 _major = major; 219 r = register_blkdev(_major, _name); 220 if (r < 0) 221 goto out_free_workqueue; 222 223 if (!_major) 224 _major = r; 225 226 return 0; 227 228 out_free_workqueue: 229 destroy_workqueue(deferred_remove_workqueue); 230 out_uevent_exit: 231 dm_uevent_exit(); 232 233 return r; 234 } 235 236 static void local_exit(void) 237 { 238 flush_scheduled_work(); 239 destroy_workqueue(deferred_remove_workqueue); 240 241 unregister_blkdev(_major, _name); 242 dm_uevent_exit(); 243 244 _major = 0; 245 246 DMINFO("cleaned up"); 247 } 248 249 static int (*_inits[])(void) __initdata = { 250 local_init, 251 dm_target_init, 252 dm_linear_init, 253 dm_stripe_init, 254 dm_io_init, 255 dm_kcopyd_init, 256 dm_interface_init, 257 dm_statistics_init, 258 }; 259 260 static void (*_exits[])(void) = { 261 local_exit, 262 dm_target_exit, 263 dm_linear_exit, 264 dm_stripe_exit, 265 dm_io_exit, 266 dm_kcopyd_exit, 267 dm_interface_exit, 268 dm_statistics_exit, 269 }; 270 271 static int __init dm_init(void) 272 { 273 const int count = ARRAY_SIZE(_inits); 274 int r, i; 275 276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 278 " Duplicate IMA measurements will not be recorded in the IMA log."); 279 #endif 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 bad: 289 while (i--) 290 _exits[i](); 291 292 return r; 293 } 294 295 static void __exit dm_exit(void) 296 { 297 int i = ARRAY_SIZE(_exits); 298 299 while (i--) 300 _exits[i](); 301 302 /* 303 * Should be empty by this point. 304 */ 305 idr_destroy(&_minor_idr); 306 } 307 308 /* 309 * Block device functions 310 */ 311 int dm_deleting_md(struct mapped_device *md) 312 { 313 return test_bit(DMF_DELETING, &md->flags); 314 } 315 316 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 317 { 318 struct mapped_device *md; 319 320 spin_lock(&_minor_lock); 321 322 md = bdev->bd_disk->private_data; 323 if (!md) 324 goto out; 325 326 if (test_bit(DMF_FREEING, &md->flags) || 327 dm_deleting_md(md)) { 328 md = NULL; 329 goto out; 330 } 331 332 dm_get(md); 333 atomic_inc(&md->open_count); 334 out: 335 spin_unlock(&_minor_lock); 336 337 return md ? 0 : -ENXIO; 338 } 339 340 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 341 { 342 struct mapped_device *md; 343 344 spin_lock(&_minor_lock); 345 346 md = disk->private_data; 347 if (WARN_ON(!md)) 348 goto out; 349 350 if (atomic_dec_and_test(&md->open_count) && 351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 352 queue_work(deferred_remove_workqueue, &deferred_remove_work); 353 354 dm_put(md); 355 out: 356 spin_unlock(&_minor_lock); 357 } 358 359 int dm_open_count(struct mapped_device *md) 360 { 361 return atomic_read(&md->open_count); 362 } 363 364 /* 365 * Guarantees nothing is using the device before it's deleted. 366 */ 367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 368 { 369 int r = 0; 370 371 spin_lock(&_minor_lock); 372 373 if (dm_open_count(md)) { 374 r = -EBUSY; 375 if (mark_deferred) 376 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 378 r = -EEXIST; 379 else 380 set_bit(DMF_DELETING, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 int dm_cancel_deferred_remove(struct mapped_device *md) 388 { 389 int r = 0; 390 391 spin_lock(&_minor_lock); 392 393 if (test_bit(DMF_DELETING, &md->flags)) 394 r = -EBUSY; 395 else 396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 397 398 spin_unlock(&_minor_lock); 399 400 return r; 401 } 402 403 static void do_deferred_remove(struct work_struct *w) 404 { 405 dm_deferred_remove(); 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 416 struct block_device **bdev) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 return r; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 return r; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 return r; 435 436 if (dm_suspended_md(md)) 437 return -EAGAIN; 438 439 r = tgt->type->prepare_ioctl(tgt, bdev); 440 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 441 dm_put_live_table(md, *srcu_idx); 442 msleep(10); 443 goto retry; 444 } 445 446 return r; 447 } 448 449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 450 { 451 dm_put_live_table(md, srcu_idx); 452 } 453 454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 455 unsigned int cmd, unsigned long arg) 456 { 457 struct mapped_device *md = bdev->bd_disk->private_data; 458 int r, srcu_idx; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 461 if (r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static void dm_io_acct(struct dm_io *io, bool end) 499 { 500 struct dm_stats_aux *stats_aux = &io->stats_aux; 501 unsigned long start_time = io->start_time; 502 struct mapped_device *md = io->md; 503 struct bio *bio = io->orig_bio; 504 unsigned int sectors; 505 506 /* 507 * If REQ_PREFLUSH set, don't account payload, it will be 508 * submitted (and accounted) after this flush completes. 509 */ 510 if (bio_is_flush_with_data(bio)) 511 sectors = 0; 512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 513 sectors = bio_sectors(bio); 514 else 515 sectors = io->sectors; 516 517 if (!end) 518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 519 start_time); 520 else 521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&md->stats))) { 525 sector_t sector; 526 527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio->bi_iter.bi_sector; 529 else 530 sector = bio_end_sector(bio) - io->sector_offset; 531 532 dm_stats_account_io(&md->stats, bio_data_dir(bio), 533 sector, sectors, 534 end, start_time, stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 559 spin_unlock_irqrestore(&io->lock, flags); 560 return; 561 } 562 dm_io_set_flag(io, DM_IO_ACCOUNTED); 563 spin_unlock_irqrestore(&io->lock, flags); 564 } 565 566 __dm_start_io_acct(io); 567 } 568 569 static void dm_end_io_acct(struct dm_io *io) 570 { 571 dm_io_acct(io, true); 572 } 573 574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 575 { 576 struct dm_io *io; 577 struct dm_target_io *tio; 578 struct bio *clone; 579 580 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 581 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 582 clone->bi_bdev = md->disk->part0; 583 584 tio = clone_to_tio(clone); 585 tio->flags = 0; 586 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 587 tio->io = NULL; 588 589 io = container_of(tio, struct dm_io, tio); 590 io->magic = DM_IO_MAGIC; 591 io->status = BLK_STS_OK; 592 593 /* one ref is for submission, the other is for completion */ 594 atomic_set(&io->io_count, 2); 595 this_cpu_inc(*md->pending_io); 596 io->orig_bio = bio; 597 io->md = md; 598 spin_lock_init(&io->lock); 599 io->start_time = jiffies; 600 io->flags = 0; 601 602 if (static_branch_unlikely(&stats_enabled)) 603 dm_stats_record_start(&md->stats, &io->stats_aux); 604 605 return io; 606 } 607 608 static void free_io(struct dm_io *io) 609 { 610 bio_put(&io->tio.clone); 611 } 612 613 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 614 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 615 { 616 struct dm_target_io *tio; 617 struct bio *clone; 618 619 if (!ci->io->tio.io) { 620 /* the dm_target_io embedded in ci->io is available */ 621 tio = &ci->io->tio; 622 /* alloc_io() already initialized embedded clone */ 623 clone = &tio->clone; 624 } else { 625 struct mapped_device *md = ci->io->md; 626 627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 628 &md->mempools->bs); 629 if (!clone) 630 return NULL; 631 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 632 clone->bi_bdev = md->disk->part0; 633 634 /* REQ_DM_POLL_LIST shouldn't be inherited */ 635 clone->bi_opf &= ~REQ_DM_POLL_LIST; 636 637 tio = clone_to_tio(clone); 638 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 639 } 640 641 tio->magic = DM_TIO_MAGIC; 642 tio->io = ci->io; 643 tio->ti = ti; 644 tio->target_bio_nr = target_bio_nr; 645 tio->len_ptr = len; 646 tio->old_sector = 0; 647 648 if (len) { 649 clone->bi_iter.bi_size = to_bytes(*len); 650 if (bio_integrity(clone)) 651 bio_integrity_trim(clone); 652 } 653 654 return clone; 655 } 656 657 static void free_tio(struct bio *clone) 658 { 659 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 660 return; 661 bio_put(clone); 662 } 663 664 /* 665 * Add the bio to the list of deferred io. 666 */ 667 static void queue_io(struct mapped_device *md, struct bio *bio) 668 { 669 unsigned long flags; 670 671 spin_lock_irqsave(&md->deferred_lock, flags); 672 bio_list_add(&md->deferred, bio); 673 spin_unlock_irqrestore(&md->deferred_lock, flags); 674 queue_work(md->wq, &md->work); 675 } 676 677 /* 678 * Everyone (including functions in this file), should use this 679 * function to access the md->map field, and make sure they call 680 * dm_put_live_table() when finished. 681 */ 682 struct dm_table *dm_get_live_table(struct mapped_device *md, 683 int *srcu_idx) __acquires(md->io_barrier) 684 { 685 *srcu_idx = srcu_read_lock(&md->io_barrier); 686 687 return srcu_dereference(md->map, &md->io_barrier); 688 } 689 690 void dm_put_live_table(struct mapped_device *md, 691 int srcu_idx) __releases(md->io_barrier) 692 { 693 srcu_read_unlock(&md->io_barrier, srcu_idx); 694 } 695 696 void dm_sync_table(struct mapped_device *md) 697 { 698 synchronize_srcu(&md->io_barrier); 699 synchronize_rcu_expedited(); 700 } 701 702 /* 703 * A fast alternative to dm_get_live_table/dm_put_live_table. 704 * The caller must not block between these two functions. 705 */ 706 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 707 { 708 rcu_read_lock(); 709 return rcu_dereference(md->map); 710 } 711 712 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 713 { 714 rcu_read_unlock(); 715 } 716 717 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 718 int *srcu_idx, unsigned bio_opf) 719 { 720 if (bio_opf & REQ_NOWAIT) 721 return dm_get_live_table_fast(md); 722 else 723 return dm_get_live_table(md, srcu_idx); 724 } 725 726 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 727 unsigned bio_opf) 728 { 729 if (bio_opf & REQ_NOWAIT) 730 dm_put_live_table_fast(md); 731 else 732 dm_put_live_table(md, srcu_idx); 733 } 734 735 static char *_dm_claim_ptr = "I belong to device-mapper"; 736 737 /* 738 * Open a table device so we can use it as a map destination. 739 */ 740 static int open_table_device(struct table_device *td, dev_t dev, 741 struct mapped_device *md) 742 { 743 struct block_device *bdev; 744 u64 part_off; 745 int r; 746 747 BUG_ON(td->dm_dev.bdev); 748 749 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 750 if (IS_ERR(bdev)) 751 return PTR_ERR(bdev); 752 753 r = bd_link_disk_holder(bdev, dm_disk(md)); 754 if (r) { 755 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 756 return r; 757 } 758 759 td->dm_dev.bdev = bdev; 760 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 761 return 0; 762 } 763 764 /* 765 * Close a table device that we've been using. 766 */ 767 static void close_table_device(struct table_device *td, struct mapped_device *md) 768 { 769 if (!td->dm_dev.bdev) 770 return; 771 772 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 773 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 774 put_dax(td->dm_dev.dax_dev); 775 td->dm_dev.bdev = NULL; 776 td->dm_dev.dax_dev = NULL; 777 } 778 779 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 780 fmode_t mode) 781 { 782 struct table_device *td; 783 784 list_for_each_entry(td, l, list) 785 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 786 return td; 787 788 return NULL; 789 } 790 791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 792 struct dm_dev **result) 793 { 794 int r; 795 struct table_device *td; 796 797 mutex_lock(&md->table_devices_lock); 798 td = find_table_device(&md->table_devices, dev, mode); 799 if (!td) { 800 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 801 if (!td) { 802 mutex_unlock(&md->table_devices_lock); 803 return -ENOMEM; 804 } 805 806 td->dm_dev.mode = mode; 807 td->dm_dev.bdev = NULL; 808 809 if ((r = open_table_device(td, dev, md))) { 810 mutex_unlock(&md->table_devices_lock); 811 kfree(td); 812 return r; 813 } 814 815 format_dev_t(td->dm_dev.name, dev); 816 817 refcount_set(&td->count, 1); 818 list_add(&td->list, &md->table_devices); 819 } else { 820 refcount_inc(&td->count); 821 } 822 mutex_unlock(&md->table_devices_lock); 823 824 *result = &td->dm_dev; 825 return 0; 826 } 827 828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 829 { 830 struct table_device *td = container_of(d, struct table_device, dm_dev); 831 832 mutex_lock(&md->table_devices_lock); 833 if (refcount_dec_and_test(&td->count)) { 834 close_table_device(td, md); 835 list_del(&td->list); 836 kfree(td); 837 } 838 mutex_unlock(&md->table_devices_lock); 839 } 840 841 static void free_table_devices(struct list_head *devices) 842 { 843 struct list_head *tmp, *next; 844 845 list_for_each_safe(tmp, next, devices) { 846 struct table_device *td = list_entry(tmp, struct table_device, list); 847 848 DMWARN("dm_destroy: %s still exists with %d references", 849 td->dm_dev.name, refcount_read(&td->count)); 850 kfree(td); 851 } 852 } 853 854 /* 855 * Get the geometry associated with a dm device 856 */ 857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 858 { 859 *geo = md->geometry; 860 861 return 0; 862 } 863 864 /* 865 * Set the geometry of a device. 866 */ 867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 868 { 869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 870 871 if (geo->start > sz) { 872 DMWARN("Start sector is beyond the geometry limits."); 873 return -EINVAL; 874 } 875 876 md->geometry = *geo; 877 878 return 0; 879 } 880 881 static int __noflush_suspending(struct mapped_device *md) 882 { 883 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 884 } 885 886 static void dm_io_complete(struct dm_io *io) 887 { 888 blk_status_t io_error; 889 struct mapped_device *md = io->md; 890 struct bio *bio = io->orig_bio; 891 892 if (io->status == BLK_STS_DM_REQUEUE) { 893 unsigned long flags; 894 /* 895 * Target requested pushing back the I/O. 896 */ 897 spin_lock_irqsave(&md->deferred_lock, flags); 898 if (__noflush_suspending(md) && 899 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 900 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 901 bio_list_add_head(&md->deferred, bio); 902 } else { 903 /* 904 * noflush suspend was interrupted or this is 905 * a write to a zoned target. 906 */ 907 io->status = BLK_STS_IOERR; 908 } 909 spin_unlock_irqrestore(&md->deferred_lock, flags); 910 } 911 912 io_error = io->status; 913 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 914 dm_end_io_acct(io); 915 else if (!io_error) { 916 /* 917 * Must handle target that DM_MAPIO_SUBMITTED only to 918 * then bio_endio() rather than dm_submit_bio_remap() 919 */ 920 __dm_start_io_acct(io); 921 dm_end_io_acct(io); 922 } 923 free_io(io); 924 smp_wmb(); 925 this_cpu_dec(*md->pending_io); 926 927 /* nudge anyone waiting on suspend queue */ 928 if (unlikely(wq_has_sleeper(&md->wait))) 929 wake_up(&md->wait); 930 931 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 932 if (bio->bi_opf & REQ_POLLED) { 933 /* 934 * Upper layer won't help us poll split bio (io->orig_bio 935 * may only reflect a subset of the pre-split original) 936 * so clear REQ_POLLED in case of requeue. 937 */ 938 bio_clear_polled(bio); 939 if (io_error == BLK_STS_AGAIN) { 940 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 941 queue_io(md, bio); 942 } 943 } 944 return; 945 } 946 947 if (bio_is_flush_with_data(bio)) { 948 /* 949 * Preflush done for flush with data, reissue 950 * without REQ_PREFLUSH. 951 */ 952 bio->bi_opf &= ~REQ_PREFLUSH; 953 queue_io(md, bio); 954 } else { 955 /* done with normal IO or empty flush */ 956 if (io_error) 957 bio->bi_status = io_error; 958 bio_endio(bio); 959 } 960 } 961 962 /* 963 * Decrements the number of outstanding ios that a bio has been 964 * cloned into, completing the original io if necc. 965 */ 966 static inline void __dm_io_dec_pending(struct dm_io *io) 967 { 968 if (atomic_dec_and_test(&io->io_count)) 969 dm_io_complete(io); 970 } 971 972 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 973 { 974 unsigned long flags; 975 976 /* Push-back supersedes any I/O errors */ 977 spin_lock_irqsave(&io->lock, flags); 978 if (!(io->status == BLK_STS_DM_REQUEUE && 979 __noflush_suspending(io->md))) { 980 io->status = error; 981 } 982 spin_unlock_irqrestore(&io->lock, flags); 983 } 984 985 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 986 { 987 if (unlikely(error)) 988 dm_io_set_error(io, error); 989 990 __dm_io_dec_pending(io); 991 } 992 993 void disable_discard(struct mapped_device *md) 994 { 995 struct queue_limits *limits = dm_get_queue_limits(md); 996 997 /* device doesn't really support DISCARD, disable it */ 998 limits->max_discard_sectors = 0; 999 } 1000 1001 void disable_write_zeroes(struct mapped_device *md) 1002 { 1003 struct queue_limits *limits = dm_get_queue_limits(md); 1004 1005 /* device doesn't really support WRITE ZEROES, disable it */ 1006 limits->max_write_zeroes_sectors = 0; 1007 } 1008 1009 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1010 { 1011 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1012 } 1013 1014 static void clone_endio(struct bio *bio) 1015 { 1016 blk_status_t error = bio->bi_status; 1017 struct dm_target_io *tio = clone_to_tio(bio); 1018 struct dm_target *ti = tio->ti; 1019 dm_endio_fn endio = ti->type->end_io; 1020 struct dm_io *io = tio->io; 1021 struct mapped_device *md = io->md; 1022 1023 if (unlikely(error == BLK_STS_TARGET)) { 1024 if (bio_op(bio) == REQ_OP_DISCARD && 1025 !bdev_max_discard_sectors(bio->bi_bdev)) 1026 disable_discard(md); 1027 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1028 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1029 disable_write_zeroes(md); 1030 } 1031 1032 if (static_branch_unlikely(&zoned_enabled) && 1033 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev)))) 1034 dm_zone_endio(io, bio); 1035 1036 if (endio) { 1037 int r = endio(ti, bio, &error); 1038 switch (r) { 1039 case DM_ENDIO_REQUEUE: 1040 if (static_branch_unlikely(&zoned_enabled)) { 1041 /* 1042 * Requeuing writes to a sequential zone of a zoned 1043 * target will break the sequential write pattern: 1044 * fail such IO. 1045 */ 1046 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1047 error = BLK_STS_IOERR; 1048 else 1049 error = BLK_STS_DM_REQUEUE; 1050 } else 1051 error = BLK_STS_DM_REQUEUE; 1052 fallthrough; 1053 case DM_ENDIO_DONE: 1054 break; 1055 case DM_ENDIO_INCOMPLETE: 1056 /* The target will handle the io */ 1057 return; 1058 default: 1059 DMWARN("unimplemented target endio return value: %d", r); 1060 BUG(); 1061 } 1062 } 1063 1064 if (static_branch_unlikely(&swap_bios_enabled) && 1065 unlikely(swap_bios_limit(ti, bio))) 1066 up(&md->swap_bios_semaphore); 1067 1068 free_tio(bio); 1069 dm_io_dec_pending(io, error); 1070 } 1071 1072 /* 1073 * Return maximum size of I/O possible at the supplied sector up to the current 1074 * target boundary. 1075 */ 1076 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1077 sector_t target_offset) 1078 { 1079 return ti->len - target_offset; 1080 } 1081 1082 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1083 { 1084 sector_t target_offset = dm_target_offset(ti, sector); 1085 sector_t len = max_io_len_target_boundary(ti, target_offset); 1086 sector_t max_len; 1087 1088 /* 1089 * Does the target need to split IO even further? 1090 * - varied (per target) IO splitting is a tenet of DM; this 1091 * explains why stacked chunk_sectors based splitting via 1092 * blk_max_size_offset() isn't possible here. So pass in 1093 * ti->max_io_len to override stacked chunk_sectors. 1094 */ 1095 if (ti->max_io_len) { 1096 max_len = blk_max_size_offset(ti->table->md->queue, 1097 target_offset, ti->max_io_len); 1098 if (len > max_len) 1099 len = max_len; 1100 } 1101 1102 return len; 1103 } 1104 1105 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1106 { 1107 if (len > UINT_MAX) { 1108 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1109 (unsigned long long)len, UINT_MAX); 1110 ti->error = "Maximum size of target IO is too large"; 1111 return -EINVAL; 1112 } 1113 1114 ti->max_io_len = (uint32_t) len; 1115 1116 return 0; 1117 } 1118 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1119 1120 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1121 sector_t sector, int *srcu_idx) 1122 __acquires(md->io_barrier) 1123 { 1124 struct dm_table *map; 1125 struct dm_target *ti; 1126 1127 map = dm_get_live_table(md, srcu_idx); 1128 if (!map) 1129 return NULL; 1130 1131 ti = dm_table_find_target(map, sector); 1132 if (!ti) 1133 return NULL; 1134 1135 return ti; 1136 } 1137 1138 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1139 long nr_pages, enum dax_access_mode mode, void **kaddr, 1140 pfn_t *pfn) 1141 { 1142 struct mapped_device *md = dax_get_private(dax_dev); 1143 sector_t sector = pgoff * PAGE_SECTORS; 1144 struct dm_target *ti; 1145 long len, ret = -EIO; 1146 int srcu_idx; 1147 1148 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1149 1150 if (!ti) 1151 goto out; 1152 if (!ti->type->direct_access) 1153 goto out; 1154 len = max_io_len(ti, sector) / PAGE_SECTORS; 1155 if (len < 1) 1156 goto out; 1157 nr_pages = min(len, nr_pages); 1158 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1159 1160 out: 1161 dm_put_live_table(md, srcu_idx); 1162 1163 return ret; 1164 } 1165 1166 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1167 size_t nr_pages) 1168 { 1169 struct mapped_device *md = dax_get_private(dax_dev); 1170 sector_t sector = pgoff * PAGE_SECTORS; 1171 struct dm_target *ti; 1172 int ret = -EIO; 1173 int srcu_idx; 1174 1175 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1176 1177 if (!ti) 1178 goto out; 1179 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1180 /* 1181 * ->zero_page_range() is mandatory dax operation. If we are 1182 * here, something is wrong. 1183 */ 1184 goto out; 1185 } 1186 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1187 out: 1188 dm_put_live_table(md, srcu_idx); 1189 1190 return ret; 1191 } 1192 1193 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1194 void *addr, size_t bytes, struct iov_iter *i) 1195 { 1196 struct mapped_device *md = dax_get_private(dax_dev); 1197 sector_t sector = pgoff * PAGE_SECTORS; 1198 struct dm_target *ti; 1199 int srcu_idx; 1200 long ret = 0; 1201 1202 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1203 if (!ti || !ti->type->dax_recovery_write) 1204 goto out; 1205 1206 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1207 out: 1208 dm_put_live_table(md, srcu_idx); 1209 return ret; 1210 } 1211 1212 /* 1213 * A target may call dm_accept_partial_bio only from the map routine. It is 1214 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1215 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1216 * __send_duplicate_bios(). 1217 * 1218 * dm_accept_partial_bio informs the dm that the target only wants to process 1219 * additional n_sectors sectors of the bio and the rest of the data should be 1220 * sent in a next bio. 1221 * 1222 * A diagram that explains the arithmetics: 1223 * +--------------------+---------------+-------+ 1224 * | 1 | 2 | 3 | 1225 * +--------------------+---------------+-------+ 1226 * 1227 * <-------------- *tio->len_ptr ---------------> 1228 * <----- bio_sectors -----> 1229 * <-- n_sectors --> 1230 * 1231 * Region 1 was already iterated over with bio_advance or similar function. 1232 * (it may be empty if the target doesn't use bio_advance) 1233 * Region 2 is the remaining bio size that the target wants to process. 1234 * (it may be empty if region 1 is non-empty, although there is no reason 1235 * to make it empty) 1236 * The target requires that region 3 is to be sent in the next bio. 1237 * 1238 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1239 * the partially processed part (the sum of regions 1+2) must be the same for all 1240 * copies of the bio. 1241 */ 1242 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1243 { 1244 struct dm_target_io *tio = clone_to_tio(bio); 1245 unsigned bio_sectors = bio_sectors(bio); 1246 1247 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1248 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1249 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1250 BUG_ON(bio_sectors > *tio->len_ptr); 1251 BUG_ON(n_sectors > bio_sectors); 1252 1253 *tio->len_ptr -= bio_sectors - n_sectors; 1254 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1255 1256 /* 1257 * __split_and_process_bio() may have already saved mapped part 1258 * for accounting but it is being reduced so update accordingly. 1259 */ 1260 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT); 1261 tio->io->sectors = n_sectors; 1262 } 1263 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1264 1265 /* 1266 * @clone: clone bio that DM core passed to target's .map function 1267 * @tgt_clone: clone of @clone bio that target needs submitted 1268 * 1269 * Targets should use this interface to submit bios they take 1270 * ownership of when returning DM_MAPIO_SUBMITTED. 1271 * 1272 * Target should also enable ti->accounts_remapped_io 1273 */ 1274 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1275 { 1276 struct dm_target_io *tio = clone_to_tio(clone); 1277 struct dm_io *io = tio->io; 1278 1279 /* establish bio that will get submitted */ 1280 if (!tgt_clone) 1281 tgt_clone = clone; 1282 1283 /* 1284 * Account io->origin_bio to DM dev on behalf of target 1285 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1286 */ 1287 dm_start_io_acct(io, clone); 1288 1289 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1290 tio->old_sector); 1291 submit_bio_noacct(tgt_clone); 1292 } 1293 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1294 1295 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1296 { 1297 mutex_lock(&md->swap_bios_lock); 1298 while (latch < md->swap_bios) { 1299 cond_resched(); 1300 down(&md->swap_bios_semaphore); 1301 md->swap_bios--; 1302 } 1303 while (latch > md->swap_bios) { 1304 cond_resched(); 1305 up(&md->swap_bios_semaphore); 1306 md->swap_bios++; 1307 } 1308 mutex_unlock(&md->swap_bios_lock); 1309 } 1310 1311 static void __map_bio(struct bio *clone) 1312 { 1313 struct dm_target_io *tio = clone_to_tio(clone); 1314 struct dm_target *ti = tio->ti; 1315 struct dm_io *io = tio->io; 1316 struct mapped_device *md = io->md; 1317 int r; 1318 1319 clone->bi_end_io = clone_endio; 1320 1321 /* 1322 * Map the clone. 1323 */ 1324 tio->old_sector = clone->bi_iter.bi_sector; 1325 1326 if (static_branch_unlikely(&swap_bios_enabled) && 1327 unlikely(swap_bios_limit(ti, clone))) { 1328 int latch = get_swap_bios(); 1329 if (unlikely(latch != md->swap_bios)) 1330 __set_swap_bios_limit(md, latch); 1331 down(&md->swap_bios_semaphore); 1332 } 1333 1334 if (static_branch_unlikely(&zoned_enabled)) { 1335 /* 1336 * Check if the IO needs a special mapping due to zone append 1337 * emulation on zoned target. In this case, dm_zone_map_bio() 1338 * calls the target map operation. 1339 */ 1340 if (unlikely(dm_emulate_zone_append(md))) 1341 r = dm_zone_map_bio(tio); 1342 else 1343 r = ti->type->map(ti, clone); 1344 } else 1345 r = ti->type->map(ti, clone); 1346 1347 switch (r) { 1348 case DM_MAPIO_SUBMITTED: 1349 /* target has assumed ownership of this io */ 1350 if (!ti->accounts_remapped_io) 1351 dm_start_io_acct(io, clone); 1352 break; 1353 case DM_MAPIO_REMAPPED: 1354 dm_submit_bio_remap(clone, NULL); 1355 break; 1356 case DM_MAPIO_KILL: 1357 case DM_MAPIO_REQUEUE: 1358 if (static_branch_unlikely(&swap_bios_enabled) && 1359 unlikely(swap_bios_limit(ti, clone))) 1360 up(&md->swap_bios_semaphore); 1361 free_tio(clone); 1362 if (r == DM_MAPIO_KILL) 1363 dm_io_dec_pending(io, BLK_STS_IOERR); 1364 else 1365 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1366 break; 1367 default: 1368 DMWARN("unimplemented target map return value: %d", r); 1369 BUG(); 1370 } 1371 } 1372 1373 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1374 { 1375 struct dm_io *io = ci->io; 1376 1377 if (ci->sector_count > len) { 1378 /* 1379 * Split needed, save the mapped part for accounting. 1380 * NOTE: dm_accept_partial_bio() will update accordingly. 1381 */ 1382 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1383 io->sectors = len; 1384 } 1385 1386 if (static_branch_unlikely(&stats_enabled) && 1387 unlikely(dm_stats_used(&io->md->stats))) { 1388 /* 1389 * Save bi_sector in terms of its offset from end of 1390 * original bio, only needed for DM-stats' benefit. 1391 * - saved regardless of whether split needed so that 1392 * dm_accept_partial_bio() doesn't need to. 1393 */ 1394 io->sector_offset = bio_end_sector(ci->bio) - ci->sector; 1395 } 1396 } 1397 1398 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1399 struct dm_target *ti, unsigned num_bios) 1400 { 1401 struct bio *bio; 1402 int try; 1403 1404 for (try = 0; try < 2; try++) { 1405 int bio_nr; 1406 1407 if (try) 1408 mutex_lock(&ci->io->md->table_devices_lock); 1409 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1410 bio = alloc_tio(ci, ti, bio_nr, NULL, 1411 try ? GFP_NOIO : GFP_NOWAIT); 1412 if (!bio) 1413 break; 1414 1415 bio_list_add(blist, bio); 1416 } 1417 if (try) 1418 mutex_unlock(&ci->io->md->table_devices_lock); 1419 if (bio_nr == num_bios) 1420 return; 1421 1422 while ((bio = bio_list_pop(blist))) 1423 free_tio(bio); 1424 } 1425 } 1426 1427 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1428 unsigned num_bios, unsigned *len) 1429 { 1430 struct bio_list blist = BIO_EMPTY_LIST; 1431 struct bio *clone; 1432 int ret = 0; 1433 1434 switch (num_bios) { 1435 case 0: 1436 break; 1437 case 1: 1438 if (len) 1439 setup_split_accounting(ci, *len); 1440 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1441 __map_bio(clone); 1442 ret = 1; 1443 break; 1444 default: 1445 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1446 alloc_multiple_bios(&blist, ci, ti, num_bios); 1447 while ((clone = bio_list_pop(&blist))) { 1448 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1449 __map_bio(clone); 1450 ret += 1; 1451 } 1452 break; 1453 } 1454 1455 return ret; 1456 } 1457 1458 static void __send_empty_flush(struct clone_info *ci) 1459 { 1460 unsigned target_nr = 0; 1461 struct dm_target *ti; 1462 struct bio flush_bio; 1463 1464 /* 1465 * Use an on-stack bio for this, it's safe since we don't 1466 * need to reference it after submit. It's just used as 1467 * the basis for the clone(s). 1468 */ 1469 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1470 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1471 1472 ci->bio = &flush_bio; 1473 ci->sector_count = 0; 1474 ci->io->tio.clone.bi_iter.bi_size = 0; 1475 1476 while ((ti = dm_table_get_target(ci->map, target_nr++))) { 1477 int bios; 1478 1479 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1480 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1481 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1482 } 1483 1484 /* 1485 * alloc_io() takes one extra reference for submission, so the 1486 * reference won't reach 0 without the following subtraction 1487 */ 1488 atomic_sub(1, &ci->io->io_count); 1489 1490 bio_uninit(ci->bio); 1491 } 1492 1493 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1494 unsigned num_bios) 1495 { 1496 unsigned len; 1497 int bios; 1498 1499 len = min_t(sector_t, ci->sector_count, 1500 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1501 1502 atomic_add(num_bios, &ci->io->io_count); 1503 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1504 /* 1505 * alloc_io() takes one extra reference for submission, so the 1506 * reference won't reach 0 without the following (+1) subtraction 1507 */ 1508 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1509 1510 ci->sector += len; 1511 ci->sector_count -= len; 1512 } 1513 1514 static bool is_abnormal_io(struct bio *bio) 1515 { 1516 unsigned int op = bio_op(bio); 1517 1518 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1519 switch (op) { 1520 case REQ_OP_DISCARD: 1521 case REQ_OP_SECURE_ERASE: 1522 case REQ_OP_WRITE_ZEROES: 1523 return true; 1524 default: 1525 break; 1526 } 1527 } 1528 1529 return false; 1530 } 1531 1532 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1533 struct dm_target *ti) 1534 { 1535 unsigned num_bios = 0; 1536 1537 switch (bio_op(ci->bio)) { 1538 case REQ_OP_DISCARD: 1539 num_bios = ti->num_discard_bios; 1540 break; 1541 case REQ_OP_SECURE_ERASE: 1542 num_bios = ti->num_secure_erase_bios; 1543 break; 1544 case REQ_OP_WRITE_ZEROES: 1545 num_bios = ti->num_write_zeroes_bios; 1546 break; 1547 } 1548 1549 /* 1550 * Even though the device advertised support for this type of 1551 * request, that does not mean every target supports it, and 1552 * reconfiguration might also have changed that since the 1553 * check was performed. 1554 */ 1555 if (unlikely(!num_bios)) 1556 return BLK_STS_NOTSUPP; 1557 1558 __send_changing_extent_only(ci, ti, num_bios); 1559 return BLK_STS_OK; 1560 } 1561 1562 /* 1563 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1564 * associated with this bio, and this bio's bi_private needs to be 1565 * stored in dm_io->data before the reuse. 1566 * 1567 * bio->bi_private is owned by fs or upper layer, so block layer won't 1568 * touch it after splitting. Meantime it won't be changed by anyone after 1569 * bio is submitted. So this reuse is safe. 1570 */ 1571 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1572 { 1573 return (struct dm_io **)&bio->bi_private; 1574 } 1575 1576 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1577 { 1578 struct dm_io **head = dm_poll_list_head(bio); 1579 1580 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1581 bio->bi_opf |= REQ_DM_POLL_LIST; 1582 /* 1583 * Save .bi_private into dm_io, so that we can reuse 1584 * .bi_private as dm_io list head for storing dm_io list 1585 */ 1586 io->data = bio->bi_private; 1587 1588 /* tell block layer to poll for completion */ 1589 bio->bi_cookie = ~BLK_QC_T_NONE; 1590 1591 io->next = NULL; 1592 } else { 1593 /* 1594 * bio recursed due to split, reuse original poll list, 1595 * and save bio->bi_private too. 1596 */ 1597 io->data = (*head)->data; 1598 io->next = *head; 1599 } 1600 1601 *head = io; 1602 } 1603 1604 /* 1605 * Select the correct strategy for processing a non-flush bio. 1606 */ 1607 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1608 { 1609 struct bio *clone; 1610 struct dm_target *ti; 1611 unsigned len; 1612 1613 ti = dm_table_find_target(ci->map, ci->sector); 1614 if (unlikely(!ti)) 1615 return BLK_STS_IOERR; 1616 else if (unlikely(ci->is_abnormal_io)) 1617 return __process_abnormal_io(ci, ti); 1618 1619 /* 1620 * Only support bio polling for normal IO, and the target io is 1621 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1622 */ 1623 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1624 1625 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1626 setup_split_accounting(ci, len); 1627 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1628 __map_bio(clone); 1629 1630 ci->sector += len; 1631 ci->sector_count -= len; 1632 1633 return BLK_STS_OK; 1634 } 1635 1636 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1637 struct dm_table *map, struct bio *bio, bool is_abnormal) 1638 { 1639 ci->map = map; 1640 ci->io = alloc_io(md, bio); 1641 ci->bio = bio; 1642 ci->is_abnormal_io = is_abnormal; 1643 ci->submit_as_polled = false; 1644 ci->sector = bio->bi_iter.bi_sector; 1645 ci->sector_count = bio_sectors(bio); 1646 1647 /* Shouldn't happen but sector_count was being set to 0 so... */ 1648 if (static_branch_unlikely(&zoned_enabled) && 1649 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1650 ci->sector_count = 0; 1651 } 1652 1653 /* 1654 * Entry point to split a bio into clones and submit them to the targets. 1655 */ 1656 static void dm_split_and_process_bio(struct mapped_device *md, 1657 struct dm_table *map, struct bio *bio) 1658 { 1659 struct clone_info ci; 1660 struct dm_io *io; 1661 blk_status_t error = BLK_STS_OK; 1662 bool is_abnormal; 1663 1664 is_abnormal = is_abnormal_io(bio); 1665 if (unlikely(is_abnormal)) { 1666 /* 1667 * Use blk_queue_split() for abnormal IO (e.g. discard, etc) 1668 * otherwise associated queue_limits won't be imposed. 1669 */ 1670 blk_queue_split(&bio); 1671 } 1672 1673 init_clone_info(&ci, md, map, bio, is_abnormal); 1674 io = ci.io; 1675 1676 if (bio->bi_opf & REQ_PREFLUSH) { 1677 __send_empty_flush(&ci); 1678 /* dm_io_complete submits any data associated with flush */ 1679 goto out; 1680 } 1681 1682 error = __split_and_process_bio(&ci); 1683 if (error || !ci.sector_count) 1684 goto out; 1685 /* 1686 * Remainder must be passed to submit_bio_noacct() so it gets handled 1687 * *after* bios already submitted have been completely processed. 1688 */ 1689 bio_trim(bio, io->sectors, ci.sector_count); 1690 trace_block_split(bio, bio->bi_iter.bi_sector); 1691 bio_inc_remaining(bio); 1692 submit_bio_noacct(bio); 1693 out: 1694 /* 1695 * Drop the extra reference count for non-POLLED bio, and hold one 1696 * reference for POLLED bio, which will be released in dm_poll_bio 1697 * 1698 * Add every dm_io instance into the dm_io list head which is stored 1699 * in bio->bi_private, so that dm_poll_bio can poll them all. 1700 */ 1701 if (error || !ci.submit_as_polled) { 1702 /* 1703 * In case of submission failure, the extra reference for 1704 * submitting io isn't consumed yet 1705 */ 1706 if (error) 1707 atomic_dec(&io->io_count); 1708 dm_io_dec_pending(io, error); 1709 } else 1710 dm_queue_poll_io(bio, io); 1711 } 1712 1713 static void dm_submit_bio(struct bio *bio) 1714 { 1715 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1716 int srcu_idx; 1717 struct dm_table *map; 1718 unsigned bio_opf = bio->bi_opf; 1719 1720 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1721 1722 /* If suspended, or map not yet available, queue this IO for later */ 1723 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1724 unlikely(!map)) { 1725 if (bio->bi_opf & REQ_NOWAIT) 1726 bio_wouldblock_error(bio); 1727 else if (bio->bi_opf & REQ_RAHEAD) 1728 bio_io_error(bio); 1729 else 1730 queue_io(md, bio); 1731 goto out; 1732 } 1733 1734 dm_split_and_process_bio(md, map, bio); 1735 out: 1736 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1737 } 1738 1739 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1740 unsigned int flags) 1741 { 1742 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1743 1744 /* don't poll if the mapped io is done */ 1745 if (atomic_read(&io->io_count) > 1) 1746 bio_poll(&io->tio.clone, iob, flags); 1747 1748 /* bio_poll holds the last reference */ 1749 return atomic_read(&io->io_count) == 1; 1750 } 1751 1752 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1753 unsigned int flags) 1754 { 1755 struct dm_io **head = dm_poll_list_head(bio); 1756 struct dm_io *list = *head; 1757 struct dm_io *tmp = NULL; 1758 struct dm_io *curr, *next; 1759 1760 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1761 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1762 return 0; 1763 1764 WARN_ON_ONCE(!list); 1765 1766 /* 1767 * Restore .bi_private before possibly completing dm_io. 1768 * 1769 * bio_poll() is only possible once @bio has been completely 1770 * submitted via submit_bio_noacct()'s depth-first submission. 1771 * So there is no dm_queue_poll_io() race associated with 1772 * clearing REQ_DM_POLL_LIST here. 1773 */ 1774 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1775 bio->bi_private = list->data; 1776 1777 for (curr = list, next = curr->next; curr; curr = next, next = 1778 curr ? curr->next : NULL) { 1779 if (dm_poll_dm_io(curr, iob, flags)) { 1780 /* 1781 * clone_endio() has already occurred, so no 1782 * error handling is needed here. 1783 */ 1784 __dm_io_dec_pending(curr); 1785 } else { 1786 curr->next = tmp; 1787 tmp = curr; 1788 } 1789 } 1790 1791 /* Not done? */ 1792 if (tmp) { 1793 bio->bi_opf |= REQ_DM_POLL_LIST; 1794 /* Reset bio->bi_private to dm_io list head */ 1795 *head = tmp; 1796 return 0; 1797 } 1798 return 1; 1799 } 1800 1801 /*----------------------------------------------------------------- 1802 * An IDR is used to keep track of allocated minor numbers. 1803 *---------------------------------------------------------------*/ 1804 static void free_minor(int minor) 1805 { 1806 spin_lock(&_minor_lock); 1807 idr_remove(&_minor_idr, minor); 1808 spin_unlock(&_minor_lock); 1809 } 1810 1811 /* 1812 * See if the device with a specific minor # is free. 1813 */ 1814 static int specific_minor(int minor) 1815 { 1816 int r; 1817 1818 if (minor >= (1 << MINORBITS)) 1819 return -EINVAL; 1820 1821 idr_preload(GFP_KERNEL); 1822 spin_lock(&_minor_lock); 1823 1824 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1825 1826 spin_unlock(&_minor_lock); 1827 idr_preload_end(); 1828 if (r < 0) 1829 return r == -ENOSPC ? -EBUSY : r; 1830 return 0; 1831 } 1832 1833 static int next_free_minor(int *minor) 1834 { 1835 int r; 1836 1837 idr_preload(GFP_KERNEL); 1838 spin_lock(&_minor_lock); 1839 1840 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1841 1842 spin_unlock(&_minor_lock); 1843 idr_preload_end(); 1844 if (r < 0) 1845 return r; 1846 *minor = r; 1847 return 0; 1848 } 1849 1850 static const struct block_device_operations dm_blk_dops; 1851 static const struct block_device_operations dm_rq_blk_dops; 1852 static const struct dax_operations dm_dax_ops; 1853 1854 static void dm_wq_work(struct work_struct *work); 1855 1856 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1857 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1858 { 1859 dm_destroy_crypto_profile(q->crypto_profile); 1860 } 1861 1862 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1863 1864 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1865 { 1866 } 1867 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1868 1869 static void cleanup_mapped_device(struct mapped_device *md) 1870 { 1871 if (md->wq) 1872 destroy_workqueue(md->wq); 1873 dm_free_md_mempools(md->mempools); 1874 1875 if (md->dax_dev) { 1876 dax_remove_host(md->disk); 1877 kill_dax(md->dax_dev); 1878 put_dax(md->dax_dev); 1879 md->dax_dev = NULL; 1880 } 1881 1882 dm_cleanup_zoned_dev(md); 1883 if (md->disk) { 1884 spin_lock(&_minor_lock); 1885 md->disk->private_data = NULL; 1886 spin_unlock(&_minor_lock); 1887 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1888 dm_sysfs_exit(md); 1889 del_gendisk(md->disk); 1890 } 1891 dm_queue_destroy_crypto_profile(md->queue); 1892 blk_cleanup_disk(md->disk); 1893 } 1894 1895 if (md->pending_io) { 1896 free_percpu(md->pending_io); 1897 md->pending_io = NULL; 1898 } 1899 1900 cleanup_srcu_struct(&md->io_barrier); 1901 1902 mutex_destroy(&md->suspend_lock); 1903 mutex_destroy(&md->type_lock); 1904 mutex_destroy(&md->table_devices_lock); 1905 mutex_destroy(&md->swap_bios_lock); 1906 1907 dm_mq_cleanup_mapped_device(md); 1908 } 1909 1910 /* 1911 * Allocate and initialise a blank device with a given minor. 1912 */ 1913 static struct mapped_device *alloc_dev(int minor) 1914 { 1915 int r, numa_node_id = dm_get_numa_node(); 1916 struct mapped_device *md; 1917 void *old_md; 1918 1919 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1920 if (!md) { 1921 DMWARN("unable to allocate device, out of memory."); 1922 return NULL; 1923 } 1924 1925 if (!try_module_get(THIS_MODULE)) 1926 goto bad_module_get; 1927 1928 /* get a minor number for the dev */ 1929 if (minor == DM_ANY_MINOR) 1930 r = next_free_minor(&minor); 1931 else 1932 r = specific_minor(minor); 1933 if (r < 0) 1934 goto bad_minor; 1935 1936 r = init_srcu_struct(&md->io_barrier); 1937 if (r < 0) 1938 goto bad_io_barrier; 1939 1940 md->numa_node_id = numa_node_id; 1941 md->init_tio_pdu = false; 1942 md->type = DM_TYPE_NONE; 1943 mutex_init(&md->suspend_lock); 1944 mutex_init(&md->type_lock); 1945 mutex_init(&md->table_devices_lock); 1946 spin_lock_init(&md->deferred_lock); 1947 atomic_set(&md->holders, 1); 1948 atomic_set(&md->open_count, 0); 1949 atomic_set(&md->event_nr, 0); 1950 atomic_set(&md->uevent_seq, 0); 1951 INIT_LIST_HEAD(&md->uevent_list); 1952 INIT_LIST_HEAD(&md->table_devices); 1953 spin_lock_init(&md->uevent_lock); 1954 1955 /* 1956 * default to bio-based until DM table is loaded and md->type 1957 * established. If request-based table is loaded: blk-mq will 1958 * override accordingly. 1959 */ 1960 md->disk = blk_alloc_disk(md->numa_node_id); 1961 if (!md->disk) 1962 goto bad; 1963 md->queue = md->disk->queue; 1964 1965 init_waitqueue_head(&md->wait); 1966 INIT_WORK(&md->work, dm_wq_work); 1967 init_waitqueue_head(&md->eventq); 1968 init_completion(&md->kobj_holder.completion); 1969 1970 md->swap_bios = get_swap_bios(); 1971 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1972 mutex_init(&md->swap_bios_lock); 1973 1974 md->disk->major = _major; 1975 md->disk->first_minor = minor; 1976 md->disk->minors = 1; 1977 md->disk->flags |= GENHD_FL_NO_PART; 1978 md->disk->fops = &dm_blk_dops; 1979 md->disk->queue = md->queue; 1980 md->disk->private_data = md; 1981 sprintf(md->disk->disk_name, "dm-%d", minor); 1982 1983 if (IS_ENABLED(CONFIG_FS_DAX)) { 1984 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1985 if (IS_ERR(md->dax_dev)) { 1986 md->dax_dev = NULL; 1987 goto bad; 1988 } 1989 set_dax_nocache(md->dax_dev); 1990 set_dax_nomc(md->dax_dev); 1991 if (dax_add_host(md->dax_dev, md->disk)) 1992 goto bad; 1993 } 1994 1995 format_dev_t(md->name, MKDEV(_major, minor)); 1996 1997 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1998 if (!md->wq) 1999 goto bad; 2000 2001 md->pending_io = alloc_percpu(unsigned long); 2002 if (!md->pending_io) 2003 goto bad; 2004 2005 dm_stats_init(&md->stats); 2006 2007 /* Populate the mapping, nobody knows we exist yet */ 2008 spin_lock(&_minor_lock); 2009 old_md = idr_replace(&_minor_idr, md, minor); 2010 spin_unlock(&_minor_lock); 2011 2012 BUG_ON(old_md != MINOR_ALLOCED); 2013 2014 return md; 2015 2016 bad: 2017 cleanup_mapped_device(md); 2018 bad_io_barrier: 2019 free_minor(minor); 2020 bad_minor: 2021 module_put(THIS_MODULE); 2022 bad_module_get: 2023 kvfree(md); 2024 return NULL; 2025 } 2026 2027 static void unlock_fs(struct mapped_device *md); 2028 2029 static void free_dev(struct mapped_device *md) 2030 { 2031 int minor = MINOR(disk_devt(md->disk)); 2032 2033 unlock_fs(md); 2034 2035 cleanup_mapped_device(md); 2036 2037 free_table_devices(&md->table_devices); 2038 dm_stats_cleanup(&md->stats); 2039 free_minor(minor); 2040 2041 module_put(THIS_MODULE); 2042 kvfree(md); 2043 } 2044 2045 /* 2046 * Bind a table to the device. 2047 */ 2048 static void event_callback(void *context) 2049 { 2050 unsigned long flags; 2051 LIST_HEAD(uevents); 2052 struct mapped_device *md = (struct mapped_device *) context; 2053 2054 spin_lock_irqsave(&md->uevent_lock, flags); 2055 list_splice_init(&md->uevent_list, &uevents); 2056 spin_unlock_irqrestore(&md->uevent_lock, flags); 2057 2058 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2059 2060 atomic_inc(&md->event_nr); 2061 wake_up(&md->eventq); 2062 dm_issue_global_event(); 2063 } 2064 2065 /* 2066 * Returns old map, which caller must destroy. 2067 */ 2068 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2069 struct queue_limits *limits) 2070 { 2071 struct dm_table *old_map; 2072 sector_t size; 2073 int ret; 2074 2075 lockdep_assert_held(&md->suspend_lock); 2076 2077 size = dm_table_get_size(t); 2078 2079 /* 2080 * Wipe any geometry if the size of the table changed. 2081 */ 2082 if (size != dm_get_size(md)) 2083 memset(&md->geometry, 0, sizeof(md->geometry)); 2084 2085 if (!get_capacity(md->disk)) 2086 set_capacity(md->disk, size); 2087 else 2088 set_capacity_and_notify(md->disk, size); 2089 2090 dm_table_event_callback(t, event_callback, md); 2091 2092 if (dm_table_request_based(t)) { 2093 /* 2094 * Leverage the fact that request-based DM targets are 2095 * immutable singletons - used to optimize dm_mq_queue_rq. 2096 */ 2097 md->immutable_target = dm_table_get_immutable_target(t); 2098 2099 /* 2100 * There is no need to reload with request-based dm because the 2101 * size of front_pad doesn't change. 2102 * 2103 * Note for future: If you are to reload bioset, prep-ed 2104 * requests in the queue may refer to bio from the old bioset, 2105 * so you must walk through the queue to unprep. 2106 */ 2107 if (!md->mempools) { 2108 md->mempools = t->mempools; 2109 t->mempools = NULL; 2110 } 2111 } else { 2112 /* 2113 * The md may already have mempools that need changing. 2114 * If so, reload bioset because front_pad may have changed 2115 * because a different table was loaded. 2116 */ 2117 dm_free_md_mempools(md->mempools); 2118 md->mempools = t->mempools; 2119 t->mempools = NULL; 2120 } 2121 2122 ret = dm_table_set_restrictions(t, md->queue, limits); 2123 if (ret) { 2124 old_map = ERR_PTR(ret); 2125 goto out; 2126 } 2127 2128 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2129 rcu_assign_pointer(md->map, (void *)t); 2130 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2131 2132 if (old_map) 2133 dm_sync_table(md); 2134 out: 2135 return old_map; 2136 } 2137 2138 /* 2139 * Returns unbound table for the caller to free. 2140 */ 2141 static struct dm_table *__unbind(struct mapped_device *md) 2142 { 2143 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2144 2145 if (!map) 2146 return NULL; 2147 2148 dm_table_event_callback(map, NULL, NULL); 2149 RCU_INIT_POINTER(md->map, NULL); 2150 dm_sync_table(md); 2151 2152 return map; 2153 } 2154 2155 /* 2156 * Constructor for a new device. 2157 */ 2158 int dm_create(int minor, struct mapped_device **result) 2159 { 2160 struct mapped_device *md; 2161 2162 md = alloc_dev(minor); 2163 if (!md) 2164 return -ENXIO; 2165 2166 dm_ima_reset_data(md); 2167 2168 *result = md; 2169 return 0; 2170 } 2171 2172 /* 2173 * Functions to manage md->type. 2174 * All are required to hold md->type_lock. 2175 */ 2176 void dm_lock_md_type(struct mapped_device *md) 2177 { 2178 mutex_lock(&md->type_lock); 2179 } 2180 2181 void dm_unlock_md_type(struct mapped_device *md) 2182 { 2183 mutex_unlock(&md->type_lock); 2184 } 2185 2186 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2187 { 2188 BUG_ON(!mutex_is_locked(&md->type_lock)); 2189 md->type = type; 2190 } 2191 2192 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2193 { 2194 return md->type; 2195 } 2196 2197 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2198 { 2199 return md->immutable_target_type; 2200 } 2201 2202 /* 2203 * The queue_limits are only valid as long as you have a reference 2204 * count on 'md'. 2205 */ 2206 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2207 { 2208 BUG_ON(!atomic_read(&md->holders)); 2209 return &md->queue->limits; 2210 } 2211 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2212 2213 /* 2214 * Setup the DM device's queue based on md's type 2215 */ 2216 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2217 { 2218 enum dm_queue_mode type = dm_table_get_type(t); 2219 struct queue_limits limits; 2220 int r; 2221 2222 switch (type) { 2223 case DM_TYPE_REQUEST_BASED: 2224 md->disk->fops = &dm_rq_blk_dops; 2225 r = dm_mq_init_request_queue(md, t); 2226 if (r) { 2227 DMERR("Cannot initialize queue for request-based dm mapped device"); 2228 return r; 2229 } 2230 break; 2231 case DM_TYPE_BIO_BASED: 2232 case DM_TYPE_DAX_BIO_BASED: 2233 break; 2234 case DM_TYPE_NONE: 2235 WARN_ON_ONCE(true); 2236 break; 2237 } 2238 2239 r = dm_calculate_queue_limits(t, &limits); 2240 if (r) { 2241 DMERR("Cannot calculate initial queue limits"); 2242 return r; 2243 } 2244 r = dm_table_set_restrictions(t, md->queue, &limits); 2245 if (r) 2246 return r; 2247 2248 r = add_disk(md->disk); 2249 if (r) 2250 return r; 2251 2252 r = dm_sysfs_init(md); 2253 if (r) { 2254 del_gendisk(md->disk); 2255 return r; 2256 } 2257 md->type = type; 2258 return 0; 2259 } 2260 2261 struct mapped_device *dm_get_md(dev_t dev) 2262 { 2263 struct mapped_device *md; 2264 unsigned minor = MINOR(dev); 2265 2266 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2267 return NULL; 2268 2269 spin_lock(&_minor_lock); 2270 2271 md = idr_find(&_minor_idr, minor); 2272 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2273 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2274 md = NULL; 2275 goto out; 2276 } 2277 dm_get(md); 2278 out: 2279 spin_unlock(&_minor_lock); 2280 2281 return md; 2282 } 2283 EXPORT_SYMBOL_GPL(dm_get_md); 2284 2285 void *dm_get_mdptr(struct mapped_device *md) 2286 { 2287 return md->interface_ptr; 2288 } 2289 2290 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2291 { 2292 md->interface_ptr = ptr; 2293 } 2294 2295 void dm_get(struct mapped_device *md) 2296 { 2297 atomic_inc(&md->holders); 2298 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2299 } 2300 2301 int dm_hold(struct mapped_device *md) 2302 { 2303 spin_lock(&_minor_lock); 2304 if (test_bit(DMF_FREEING, &md->flags)) { 2305 spin_unlock(&_minor_lock); 2306 return -EBUSY; 2307 } 2308 dm_get(md); 2309 spin_unlock(&_minor_lock); 2310 return 0; 2311 } 2312 EXPORT_SYMBOL_GPL(dm_hold); 2313 2314 const char *dm_device_name(struct mapped_device *md) 2315 { 2316 return md->name; 2317 } 2318 EXPORT_SYMBOL_GPL(dm_device_name); 2319 2320 static void __dm_destroy(struct mapped_device *md, bool wait) 2321 { 2322 struct dm_table *map; 2323 int srcu_idx; 2324 2325 might_sleep(); 2326 2327 spin_lock(&_minor_lock); 2328 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2329 set_bit(DMF_FREEING, &md->flags); 2330 spin_unlock(&_minor_lock); 2331 2332 blk_mark_disk_dead(md->disk); 2333 2334 /* 2335 * Take suspend_lock so that presuspend and postsuspend methods 2336 * do not race with internal suspend. 2337 */ 2338 mutex_lock(&md->suspend_lock); 2339 map = dm_get_live_table(md, &srcu_idx); 2340 if (!dm_suspended_md(md)) { 2341 dm_table_presuspend_targets(map); 2342 set_bit(DMF_SUSPENDED, &md->flags); 2343 set_bit(DMF_POST_SUSPENDING, &md->flags); 2344 dm_table_postsuspend_targets(map); 2345 } 2346 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2347 dm_put_live_table(md, srcu_idx); 2348 mutex_unlock(&md->suspend_lock); 2349 2350 /* 2351 * Rare, but there may be I/O requests still going to complete, 2352 * for example. Wait for all references to disappear. 2353 * No one should increment the reference count of the mapped_device, 2354 * after the mapped_device state becomes DMF_FREEING. 2355 */ 2356 if (wait) 2357 while (atomic_read(&md->holders)) 2358 msleep(1); 2359 else if (atomic_read(&md->holders)) 2360 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2361 dm_device_name(md), atomic_read(&md->holders)); 2362 2363 dm_table_destroy(__unbind(md)); 2364 free_dev(md); 2365 } 2366 2367 void dm_destroy(struct mapped_device *md) 2368 { 2369 __dm_destroy(md, true); 2370 } 2371 2372 void dm_destroy_immediate(struct mapped_device *md) 2373 { 2374 __dm_destroy(md, false); 2375 } 2376 2377 void dm_put(struct mapped_device *md) 2378 { 2379 atomic_dec(&md->holders); 2380 } 2381 EXPORT_SYMBOL_GPL(dm_put); 2382 2383 static bool dm_in_flight_bios(struct mapped_device *md) 2384 { 2385 int cpu; 2386 unsigned long sum = 0; 2387 2388 for_each_possible_cpu(cpu) 2389 sum += *per_cpu_ptr(md->pending_io, cpu); 2390 2391 return sum != 0; 2392 } 2393 2394 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2395 { 2396 int r = 0; 2397 DEFINE_WAIT(wait); 2398 2399 while (true) { 2400 prepare_to_wait(&md->wait, &wait, task_state); 2401 2402 if (!dm_in_flight_bios(md)) 2403 break; 2404 2405 if (signal_pending_state(task_state, current)) { 2406 r = -EINTR; 2407 break; 2408 } 2409 2410 io_schedule(); 2411 } 2412 finish_wait(&md->wait, &wait); 2413 2414 smp_rmb(); 2415 2416 return r; 2417 } 2418 2419 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2420 { 2421 int r = 0; 2422 2423 if (!queue_is_mq(md->queue)) 2424 return dm_wait_for_bios_completion(md, task_state); 2425 2426 while (true) { 2427 if (!blk_mq_queue_inflight(md->queue)) 2428 break; 2429 2430 if (signal_pending_state(task_state, current)) { 2431 r = -EINTR; 2432 break; 2433 } 2434 2435 msleep(5); 2436 } 2437 2438 return r; 2439 } 2440 2441 /* 2442 * Process the deferred bios 2443 */ 2444 static void dm_wq_work(struct work_struct *work) 2445 { 2446 struct mapped_device *md = container_of(work, struct mapped_device, work); 2447 struct bio *bio; 2448 2449 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2450 spin_lock_irq(&md->deferred_lock); 2451 bio = bio_list_pop(&md->deferred); 2452 spin_unlock_irq(&md->deferred_lock); 2453 2454 if (!bio) 2455 break; 2456 2457 submit_bio_noacct(bio); 2458 } 2459 } 2460 2461 static void dm_queue_flush(struct mapped_device *md) 2462 { 2463 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2464 smp_mb__after_atomic(); 2465 queue_work(md->wq, &md->work); 2466 } 2467 2468 /* 2469 * Swap in a new table, returning the old one for the caller to destroy. 2470 */ 2471 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2472 { 2473 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2474 struct queue_limits limits; 2475 int r; 2476 2477 mutex_lock(&md->suspend_lock); 2478 2479 /* device must be suspended */ 2480 if (!dm_suspended_md(md)) 2481 goto out; 2482 2483 /* 2484 * If the new table has no data devices, retain the existing limits. 2485 * This helps multipath with queue_if_no_path if all paths disappear, 2486 * then new I/O is queued based on these limits, and then some paths 2487 * reappear. 2488 */ 2489 if (dm_table_has_no_data_devices(table)) { 2490 live_map = dm_get_live_table_fast(md); 2491 if (live_map) 2492 limits = md->queue->limits; 2493 dm_put_live_table_fast(md); 2494 } 2495 2496 if (!live_map) { 2497 r = dm_calculate_queue_limits(table, &limits); 2498 if (r) { 2499 map = ERR_PTR(r); 2500 goto out; 2501 } 2502 } 2503 2504 map = __bind(md, table, &limits); 2505 dm_issue_global_event(); 2506 2507 out: 2508 mutex_unlock(&md->suspend_lock); 2509 return map; 2510 } 2511 2512 /* 2513 * Functions to lock and unlock any filesystem running on the 2514 * device. 2515 */ 2516 static int lock_fs(struct mapped_device *md) 2517 { 2518 int r; 2519 2520 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2521 2522 r = freeze_bdev(md->disk->part0); 2523 if (!r) 2524 set_bit(DMF_FROZEN, &md->flags); 2525 return r; 2526 } 2527 2528 static void unlock_fs(struct mapped_device *md) 2529 { 2530 if (!test_bit(DMF_FROZEN, &md->flags)) 2531 return; 2532 thaw_bdev(md->disk->part0); 2533 clear_bit(DMF_FROZEN, &md->flags); 2534 } 2535 2536 /* 2537 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2538 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2539 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2540 * 2541 * If __dm_suspend returns 0, the device is completely quiescent 2542 * now. There is no request-processing activity. All new requests 2543 * are being added to md->deferred list. 2544 */ 2545 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2546 unsigned suspend_flags, unsigned int task_state, 2547 int dmf_suspended_flag) 2548 { 2549 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2550 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2551 int r; 2552 2553 lockdep_assert_held(&md->suspend_lock); 2554 2555 /* 2556 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2557 * This flag is cleared before dm_suspend returns. 2558 */ 2559 if (noflush) 2560 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2561 else 2562 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2563 2564 /* 2565 * This gets reverted if there's an error later and the targets 2566 * provide the .presuspend_undo hook. 2567 */ 2568 dm_table_presuspend_targets(map); 2569 2570 /* 2571 * Flush I/O to the device. 2572 * Any I/O submitted after lock_fs() may not be flushed. 2573 * noflush takes precedence over do_lockfs. 2574 * (lock_fs() flushes I/Os and waits for them to complete.) 2575 */ 2576 if (!noflush && do_lockfs) { 2577 r = lock_fs(md); 2578 if (r) { 2579 dm_table_presuspend_undo_targets(map); 2580 return r; 2581 } 2582 } 2583 2584 /* 2585 * Here we must make sure that no processes are submitting requests 2586 * to target drivers i.e. no one may be executing 2587 * dm_split_and_process_bio from dm_submit_bio. 2588 * 2589 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2590 * we take the write lock. To prevent any process from reentering 2591 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2592 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2593 * flush_workqueue(md->wq). 2594 */ 2595 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2596 if (map) 2597 synchronize_srcu(&md->io_barrier); 2598 2599 /* 2600 * Stop md->queue before flushing md->wq in case request-based 2601 * dm defers requests to md->wq from md->queue. 2602 */ 2603 if (dm_request_based(md)) 2604 dm_stop_queue(md->queue); 2605 2606 flush_workqueue(md->wq); 2607 2608 /* 2609 * At this point no more requests are entering target request routines. 2610 * We call dm_wait_for_completion to wait for all existing requests 2611 * to finish. 2612 */ 2613 r = dm_wait_for_completion(md, task_state); 2614 if (!r) 2615 set_bit(dmf_suspended_flag, &md->flags); 2616 2617 if (noflush) 2618 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2619 if (map) 2620 synchronize_srcu(&md->io_barrier); 2621 2622 /* were we interrupted ? */ 2623 if (r < 0) { 2624 dm_queue_flush(md); 2625 2626 if (dm_request_based(md)) 2627 dm_start_queue(md->queue); 2628 2629 unlock_fs(md); 2630 dm_table_presuspend_undo_targets(map); 2631 /* pushback list is already flushed, so skip flush */ 2632 } 2633 2634 return r; 2635 } 2636 2637 /* 2638 * We need to be able to change a mapping table under a mounted 2639 * filesystem. For example we might want to move some data in 2640 * the background. Before the table can be swapped with 2641 * dm_bind_table, dm_suspend must be called to flush any in 2642 * flight bios and ensure that any further io gets deferred. 2643 */ 2644 /* 2645 * Suspend mechanism in request-based dm. 2646 * 2647 * 1. Flush all I/Os by lock_fs() if needed. 2648 * 2. Stop dispatching any I/O by stopping the request_queue. 2649 * 3. Wait for all in-flight I/Os to be completed or requeued. 2650 * 2651 * To abort suspend, start the request_queue. 2652 */ 2653 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2654 { 2655 struct dm_table *map = NULL; 2656 int r = 0; 2657 2658 retry: 2659 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2660 2661 if (dm_suspended_md(md)) { 2662 r = -EINVAL; 2663 goto out_unlock; 2664 } 2665 2666 if (dm_suspended_internally_md(md)) { 2667 /* already internally suspended, wait for internal resume */ 2668 mutex_unlock(&md->suspend_lock); 2669 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2670 if (r) 2671 return r; 2672 goto retry; 2673 } 2674 2675 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2676 2677 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2678 if (r) 2679 goto out_unlock; 2680 2681 set_bit(DMF_POST_SUSPENDING, &md->flags); 2682 dm_table_postsuspend_targets(map); 2683 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2684 2685 out_unlock: 2686 mutex_unlock(&md->suspend_lock); 2687 return r; 2688 } 2689 2690 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2691 { 2692 if (map) { 2693 int r = dm_table_resume_targets(map); 2694 if (r) 2695 return r; 2696 } 2697 2698 dm_queue_flush(md); 2699 2700 /* 2701 * Flushing deferred I/Os must be done after targets are resumed 2702 * so that mapping of targets can work correctly. 2703 * Request-based dm is queueing the deferred I/Os in its request_queue. 2704 */ 2705 if (dm_request_based(md)) 2706 dm_start_queue(md->queue); 2707 2708 unlock_fs(md); 2709 2710 return 0; 2711 } 2712 2713 int dm_resume(struct mapped_device *md) 2714 { 2715 int r; 2716 struct dm_table *map = NULL; 2717 2718 retry: 2719 r = -EINVAL; 2720 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2721 2722 if (!dm_suspended_md(md)) 2723 goto out; 2724 2725 if (dm_suspended_internally_md(md)) { 2726 /* already internally suspended, wait for internal resume */ 2727 mutex_unlock(&md->suspend_lock); 2728 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2729 if (r) 2730 return r; 2731 goto retry; 2732 } 2733 2734 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2735 if (!map || !dm_table_get_size(map)) 2736 goto out; 2737 2738 r = __dm_resume(md, map); 2739 if (r) 2740 goto out; 2741 2742 clear_bit(DMF_SUSPENDED, &md->flags); 2743 out: 2744 mutex_unlock(&md->suspend_lock); 2745 2746 return r; 2747 } 2748 2749 /* 2750 * Internal suspend/resume works like userspace-driven suspend. It waits 2751 * until all bios finish and prevents issuing new bios to the target drivers. 2752 * It may be used only from the kernel. 2753 */ 2754 2755 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2756 { 2757 struct dm_table *map = NULL; 2758 2759 lockdep_assert_held(&md->suspend_lock); 2760 2761 if (md->internal_suspend_count++) 2762 return; /* nested internal suspend */ 2763 2764 if (dm_suspended_md(md)) { 2765 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2766 return; /* nest suspend */ 2767 } 2768 2769 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2770 2771 /* 2772 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2773 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2774 * would require changing .presuspend to return an error -- avoid this 2775 * until there is a need for more elaborate variants of internal suspend. 2776 */ 2777 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2778 DMF_SUSPENDED_INTERNALLY); 2779 2780 set_bit(DMF_POST_SUSPENDING, &md->flags); 2781 dm_table_postsuspend_targets(map); 2782 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2783 } 2784 2785 static void __dm_internal_resume(struct mapped_device *md) 2786 { 2787 BUG_ON(!md->internal_suspend_count); 2788 2789 if (--md->internal_suspend_count) 2790 return; /* resume from nested internal suspend */ 2791 2792 if (dm_suspended_md(md)) 2793 goto done; /* resume from nested suspend */ 2794 2795 /* 2796 * NOTE: existing callers don't need to call dm_table_resume_targets 2797 * (which may fail -- so best to avoid it for now by passing NULL map) 2798 */ 2799 (void) __dm_resume(md, NULL); 2800 2801 done: 2802 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2803 smp_mb__after_atomic(); 2804 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2805 } 2806 2807 void dm_internal_suspend_noflush(struct mapped_device *md) 2808 { 2809 mutex_lock(&md->suspend_lock); 2810 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2811 mutex_unlock(&md->suspend_lock); 2812 } 2813 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2814 2815 void dm_internal_resume(struct mapped_device *md) 2816 { 2817 mutex_lock(&md->suspend_lock); 2818 __dm_internal_resume(md); 2819 mutex_unlock(&md->suspend_lock); 2820 } 2821 EXPORT_SYMBOL_GPL(dm_internal_resume); 2822 2823 /* 2824 * Fast variants of internal suspend/resume hold md->suspend_lock, 2825 * which prevents interaction with userspace-driven suspend. 2826 */ 2827 2828 void dm_internal_suspend_fast(struct mapped_device *md) 2829 { 2830 mutex_lock(&md->suspend_lock); 2831 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2832 return; 2833 2834 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2835 synchronize_srcu(&md->io_barrier); 2836 flush_workqueue(md->wq); 2837 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2838 } 2839 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2840 2841 void dm_internal_resume_fast(struct mapped_device *md) 2842 { 2843 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2844 goto done; 2845 2846 dm_queue_flush(md); 2847 2848 done: 2849 mutex_unlock(&md->suspend_lock); 2850 } 2851 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2852 2853 /*----------------------------------------------------------------- 2854 * Event notification. 2855 *---------------------------------------------------------------*/ 2856 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2857 unsigned cookie) 2858 { 2859 int r; 2860 unsigned noio_flag; 2861 char udev_cookie[DM_COOKIE_LENGTH]; 2862 char *envp[] = { udev_cookie, NULL }; 2863 2864 noio_flag = memalloc_noio_save(); 2865 2866 if (!cookie) 2867 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2868 else { 2869 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2870 DM_COOKIE_ENV_VAR_NAME, cookie); 2871 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2872 action, envp); 2873 } 2874 2875 memalloc_noio_restore(noio_flag); 2876 2877 return r; 2878 } 2879 2880 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2881 { 2882 return atomic_add_return(1, &md->uevent_seq); 2883 } 2884 2885 uint32_t dm_get_event_nr(struct mapped_device *md) 2886 { 2887 return atomic_read(&md->event_nr); 2888 } 2889 2890 int dm_wait_event(struct mapped_device *md, int event_nr) 2891 { 2892 return wait_event_interruptible(md->eventq, 2893 (event_nr != atomic_read(&md->event_nr))); 2894 } 2895 2896 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2897 { 2898 unsigned long flags; 2899 2900 spin_lock_irqsave(&md->uevent_lock, flags); 2901 list_add(elist, &md->uevent_list); 2902 spin_unlock_irqrestore(&md->uevent_lock, flags); 2903 } 2904 2905 /* 2906 * The gendisk is only valid as long as you have a reference 2907 * count on 'md'. 2908 */ 2909 struct gendisk *dm_disk(struct mapped_device *md) 2910 { 2911 return md->disk; 2912 } 2913 EXPORT_SYMBOL_GPL(dm_disk); 2914 2915 struct kobject *dm_kobject(struct mapped_device *md) 2916 { 2917 return &md->kobj_holder.kobj; 2918 } 2919 2920 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2921 { 2922 struct mapped_device *md; 2923 2924 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2925 2926 spin_lock(&_minor_lock); 2927 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2928 md = NULL; 2929 goto out; 2930 } 2931 dm_get(md); 2932 out: 2933 spin_unlock(&_minor_lock); 2934 2935 return md; 2936 } 2937 2938 int dm_suspended_md(struct mapped_device *md) 2939 { 2940 return test_bit(DMF_SUSPENDED, &md->flags); 2941 } 2942 2943 static int dm_post_suspending_md(struct mapped_device *md) 2944 { 2945 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2946 } 2947 2948 int dm_suspended_internally_md(struct mapped_device *md) 2949 { 2950 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2951 } 2952 2953 int dm_test_deferred_remove_flag(struct mapped_device *md) 2954 { 2955 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2956 } 2957 2958 int dm_suspended(struct dm_target *ti) 2959 { 2960 return dm_suspended_md(ti->table->md); 2961 } 2962 EXPORT_SYMBOL_GPL(dm_suspended); 2963 2964 int dm_post_suspending(struct dm_target *ti) 2965 { 2966 return dm_post_suspending_md(ti->table->md); 2967 } 2968 EXPORT_SYMBOL_GPL(dm_post_suspending); 2969 2970 int dm_noflush_suspending(struct dm_target *ti) 2971 { 2972 return __noflush_suspending(ti->table->md); 2973 } 2974 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2975 2976 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2977 unsigned per_io_data_size, unsigned min_pool_size, 2978 bool integrity, bool poll) 2979 { 2980 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2981 unsigned int pool_size = 0; 2982 unsigned int front_pad, io_front_pad; 2983 int ret; 2984 2985 if (!pools) 2986 return NULL; 2987 2988 switch (type) { 2989 case DM_TYPE_BIO_BASED: 2990 case DM_TYPE_DAX_BIO_BASED: 2991 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2992 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2993 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2994 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0); 2995 if (ret) 2996 goto out; 2997 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2998 goto out; 2999 break; 3000 case DM_TYPE_REQUEST_BASED: 3001 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3002 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3003 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3004 break; 3005 default: 3006 BUG(); 3007 } 3008 3009 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3010 if (ret) 3011 goto out; 3012 3013 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3014 goto out; 3015 3016 return pools; 3017 3018 out: 3019 dm_free_md_mempools(pools); 3020 3021 return NULL; 3022 } 3023 3024 void dm_free_md_mempools(struct dm_md_mempools *pools) 3025 { 3026 if (!pools) 3027 return; 3028 3029 bioset_exit(&pools->bs); 3030 bioset_exit(&pools->io_bs); 3031 3032 kfree(pools); 3033 } 3034 3035 struct dm_pr { 3036 u64 old_key; 3037 u64 new_key; 3038 u32 flags; 3039 bool fail_early; 3040 }; 3041 3042 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3043 void *data) 3044 { 3045 struct mapped_device *md = bdev->bd_disk->private_data; 3046 struct dm_table *table; 3047 struct dm_target *ti; 3048 int ret = -ENOTTY, srcu_idx; 3049 3050 table = dm_get_live_table(md, &srcu_idx); 3051 if (!table || !dm_table_get_size(table)) 3052 goto out; 3053 3054 /* We only support devices that have a single target */ 3055 if (dm_table_get_num_targets(table) != 1) 3056 goto out; 3057 ti = dm_table_get_target(table, 0); 3058 3059 ret = -EINVAL; 3060 if (!ti->type->iterate_devices) 3061 goto out; 3062 3063 ret = ti->type->iterate_devices(ti, fn, data); 3064 out: 3065 dm_put_live_table(md, srcu_idx); 3066 return ret; 3067 } 3068 3069 /* 3070 * For register / unregister we need to manually call out to every path. 3071 */ 3072 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3073 sector_t start, sector_t len, void *data) 3074 { 3075 struct dm_pr *pr = data; 3076 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3077 3078 if (!ops || !ops->pr_register) 3079 return -EOPNOTSUPP; 3080 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3081 } 3082 3083 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3084 u32 flags) 3085 { 3086 struct dm_pr pr = { 3087 .old_key = old_key, 3088 .new_key = new_key, 3089 .flags = flags, 3090 .fail_early = true, 3091 }; 3092 int ret; 3093 3094 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3095 if (ret && new_key) { 3096 /* unregister all paths if we failed to register any path */ 3097 pr.old_key = new_key; 3098 pr.new_key = 0; 3099 pr.flags = 0; 3100 pr.fail_early = false; 3101 dm_call_pr(bdev, __dm_pr_register, &pr); 3102 } 3103 3104 return ret; 3105 } 3106 3107 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3108 u32 flags) 3109 { 3110 struct mapped_device *md = bdev->bd_disk->private_data; 3111 const struct pr_ops *ops; 3112 int r, srcu_idx; 3113 3114 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3115 if (r < 0) 3116 goto out; 3117 3118 ops = bdev->bd_disk->fops->pr_ops; 3119 if (ops && ops->pr_reserve) 3120 r = ops->pr_reserve(bdev, key, type, flags); 3121 else 3122 r = -EOPNOTSUPP; 3123 out: 3124 dm_unprepare_ioctl(md, srcu_idx); 3125 return r; 3126 } 3127 3128 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3129 { 3130 struct mapped_device *md = bdev->bd_disk->private_data; 3131 const struct pr_ops *ops; 3132 int r, srcu_idx; 3133 3134 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3135 if (r < 0) 3136 goto out; 3137 3138 ops = bdev->bd_disk->fops->pr_ops; 3139 if (ops && ops->pr_release) 3140 r = ops->pr_release(bdev, key, type); 3141 else 3142 r = -EOPNOTSUPP; 3143 out: 3144 dm_unprepare_ioctl(md, srcu_idx); 3145 return r; 3146 } 3147 3148 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3149 enum pr_type type, bool abort) 3150 { 3151 struct mapped_device *md = bdev->bd_disk->private_data; 3152 const struct pr_ops *ops; 3153 int r, srcu_idx; 3154 3155 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3156 if (r < 0) 3157 goto out; 3158 3159 ops = bdev->bd_disk->fops->pr_ops; 3160 if (ops && ops->pr_preempt) 3161 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3162 else 3163 r = -EOPNOTSUPP; 3164 out: 3165 dm_unprepare_ioctl(md, srcu_idx); 3166 return r; 3167 } 3168 3169 static int dm_pr_clear(struct block_device *bdev, u64 key) 3170 { 3171 struct mapped_device *md = bdev->bd_disk->private_data; 3172 const struct pr_ops *ops; 3173 int r, srcu_idx; 3174 3175 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3176 if (r < 0) 3177 goto out; 3178 3179 ops = bdev->bd_disk->fops->pr_ops; 3180 if (ops && ops->pr_clear) 3181 r = ops->pr_clear(bdev, key); 3182 else 3183 r = -EOPNOTSUPP; 3184 out: 3185 dm_unprepare_ioctl(md, srcu_idx); 3186 return r; 3187 } 3188 3189 static const struct pr_ops dm_pr_ops = { 3190 .pr_register = dm_pr_register, 3191 .pr_reserve = dm_pr_reserve, 3192 .pr_release = dm_pr_release, 3193 .pr_preempt = dm_pr_preempt, 3194 .pr_clear = dm_pr_clear, 3195 }; 3196 3197 static const struct block_device_operations dm_blk_dops = { 3198 .submit_bio = dm_submit_bio, 3199 .poll_bio = dm_poll_bio, 3200 .open = dm_blk_open, 3201 .release = dm_blk_close, 3202 .ioctl = dm_blk_ioctl, 3203 .getgeo = dm_blk_getgeo, 3204 .report_zones = dm_blk_report_zones, 3205 .pr_ops = &dm_pr_ops, 3206 .owner = THIS_MODULE 3207 }; 3208 3209 static const struct block_device_operations dm_rq_blk_dops = { 3210 .open = dm_blk_open, 3211 .release = dm_blk_close, 3212 .ioctl = dm_blk_ioctl, 3213 .getgeo = dm_blk_getgeo, 3214 .pr_ops = &dm_pr_ops, 3215 .owner = THIS_MODULE 3216 }; 3217 3218 static const struct dax_operations dm_dax_ops = { 3219 .direct_access = dm_dax_direct_access, 3220 .zero_page_range = dm_dax_zero_page_range, 3221 .recovery_write = dm_dax_recovery_write, 3222 }; 3223 3224 /* 3225 * module hooks 3226 */ 3227 module_init(dm_init); 3228 module_exit(dm_exit); 3229 3230 module_param(major, uint, 0); 3231 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3232 3233 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3234 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3235 3236 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3237 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3238 3239 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3240 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3241 3242 MODULE_DESCRIPTION(DM_NAME " driver"); 3243 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3244 MODULE_LICENSE("GPL"); 3245