1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 static const char *_name = DM_NAME; 28 29 static unsigned int major = 0; 30 static unsigned int _major = 0; 31 32 static DEFINE_SPINLOCK(_minor_lock); 33 /* 34 * For bio-based dm. 35 * One of these is allocated per bio. 36 */ 37 struct dm_io { 38 struct mapped_device *md; 39 int error; 40 atomic_t io_count; 41 struct bio *bio; 42 unsigned long start_time; 43 }; 44 45 /* 46 * For bio-based dm. 47 * One of these is allocated per target within a bio. Hopefully 48 * this will be simplified out one day. 49 */ 50 struct dm_target_io { 51 struct dm_io *io; 52 struct dm_target *ti; 53 union map_info info; 54 }; 55 56 /* 57 * For request-based dm. 58 * One of these is allocated per request. 59 */ 60 struct dm_rq_target_io { 61 struct mapped_device *md; 62 struct dm_target *ti; 63 struct request *orig, clone; 64 int error; 65 union map_info info; 66 }; 67 68 /* 69 * For request-based dm. 70 * One of these is allocated per bio. 71 */ 72 struct dm_rq_clone_bio_info { 73 struct bio *orig; 74 struct request *rq; 75 }; 76 77 union map_info *dm_get_mapinfo(struct bio *bio) 78 { 79 if (bio && bio->bi_private) 80 return &((struct dm_target_io *)bio->bi_private)->info; 81 return NULL; 82 } 83 84 #define MINOR_ALLOCED ((void *)-1) 85 86 /* 87 * Bits for the md->flags field. 88 */ 89 #define DMF_BLOCK_IO_FOR_SUSPEND 0 90 #define DMF_SUSPENDED 1 91 #define DMF_FROZEN 2 92 #define DMF_FREEING 3 93 #define DMF_DELETING 4 94 #define DMF_NOFLUSH_SUSPENDING 5 95 #define DMF_QUEUE_IO_TO_THREAD 6 96 97 /* 98 * Work processed by per-device workqueue. 99 */ 100 struct mapped_device { 101 struct rw_semaphore io_lock; 102 struct mutex suspend_lock; 103 rwlock_t map_lock; 104 atomic_t holders; 105 atomic_t open_count; 106 107 unsigned long flags; 108 109 struct request_queue *queue; 110 struct gendisk *disk; 111 char name[16]; 112 113 void *interface_ptr; 114 115 /* 116 * A list of ios that arrived while we were suspended. 117 */ 118 atomic_t pending; 119 wait_queue_head_t wait; 120 struct work_struct work; 121 struct bio_list deferred; 122 spinlock_t deferred_lock; 123 124 /* 125 * An error from the barrier request currently being processed. 126 */ 127 int barrier_error; 128 129 /* 130 * Processing queue (flush/barriers) 131 */ 132 struct workqueue_struct *wq; 133 134 /* 135 * The current mapping. 136 */ 137 struct dm_table *map; 138 139 /* 140 * io objects are allocated from here. 141 */ 142 mempool_t *io_pool; 143 mempool_t *tio_pool; 144 145 struct bio_set *bs; 146 147 /* 148 * Event handling. 149 */ 150 atomic_t event_nr; 151 wait_queue_head_t eventq; 152 atomic_t uevent_seq; 153 struct list_head uevent_list; 154 spinlock_t uevent_lock; /* Protect access to uevent_list */ 155 156 /* 157 * freeze/thaw support require holding onto a super block 158 */ 159 struct super_block *frozen_sb; 160 struct block_device *bdev; 161 162 /* forced geometry settings */ 163 struct hd_geometry geometry; 164 165 /* sysfs handle */ 166 struct kobject kobj; 167 }; 168 169 #define MIN_IOS 256 170 static struct kmem_cache *_io_cache; 171 static struct kmem_cache *_tio_cache; 172 static struct kmem_cache *_rq_tio_cache; 173 static struct kmem_cache *_rq_bio_info_cache; 174 175 static int __init local_init(void) 176 { 177 int r = -ENOMEM; 178 179 /* allocate a slab for the dm_ios */ 180 _io_cache = KMEM_CACHE(dm_io, 0); 181 if (!_io_cache) 182 return r; 183 184 /* allocate a slab for the target ios */ 185 _tio_cache = KMEM_CACHE(dm_target_io, 0); 186 if (!_tio_cache) 187 goto out_free_io_cache; 188 189 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 190 if (!_rq_tio_cache) 191 goto out_free_tio_cache; 192 193 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 194 if (!_rq_bio_info_cache) 195 goto out_free_rq_tio_cache; 196 197 r = dm_uevent_init(); 198 if (r) 199 goto out_free_rq_bio_info_cache; 200 201 _major = major; 202 r = register_blkdev(_major, _name); 203 if (r < 0) 204 goto out_uevent_exit; 205 206 if (!_major) 207 _major = r; 208 209 return 0; 210 211 out_uevent_exit: 212 dm_uevent_exit(); 213 out_free_rq_bio_info_cache: 214 kmem_cache_destroy(_rq_bio_info_cache); 215 out_free_rq_tio_cache: 216 kmem_cache_destroy(_rq_tio_cache); 217 out_free_tio_cache: 218 kmem_cache_destroy(_tio_cache); 219 out_free_io_cache: 220 kmem_cache_destroy(_io_cache); 221 222 return r; 223 } 224 225 static void local_exit(void) 226 { 227 kmem_cache_destroy(_rq_bio_info_cache); 228 kmem_cache_destroy(_rq_tio_cache); 229 kmem_cache_destroy(_tio_cache); 230 kmem_cache_destroy(_io_cache); 231 unregister_blkdev(_major, _name); 232 dm_uevent_exit(); 233 234 _major = 0; 235 236 DMINFO("cleaned up"); 237 } 238 239 static int (*_inits[])(void) __initdata = { 240 local_init, 241 dm_target_init, 242 dm_linear_init, 243 dm_stripe_init, 244 dm_kcopyd_init, 245 dm_interface_init, 246 }; 247 248 static void (*_exits[])(void) = { 249 local_exit, 250 dm_target_exit, 251 dm_linear_exit, 252 dm_stripe_exit, 253 dm_kcopyd_exit, 254 dm_interface_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 } 285 286 /* 287 * Block device functions 288 */ 289 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 290 { 291 struct mapped_device *md; 292 293 spin_lock(&_minor_lock); 294 295 md = bdev->bd_disk->private_data; 296 if (!md) 297 goto out; 298 299 if (test_bit(DMF_FREEING, &md->flags) || 300 test_bit(DMF_DELETING, &md->flags)) { 301 md = NULL; 302 goto out; 303 } 304 305 dm_get(md); 306 atomic_inc(&md->open_count); 307 308 out: 309 spin_unlock(&_minor_lock); 310 311 return md ? 0 : -ENXIO; 312 } 313 314 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 315 { 316 struct mapped_device *md = disk->private_data; 317 atomic_dec(&md->open_count); 318 dm_put(md); 319 return 0; 320 } 321 322 int dm_open_count(struct mapped_device *md) 323 { 324 return atomic_read(&md->open_count); 325 } 326 327 /* 328 * Guarantees nothing is using the device before it's deleted. 329 */ 330 int dm_lock_for_deletion(struct mapped_device *md) 331 { 332 int r = 0; 333 334 spin_lock(&_minor_lock); 335 336 if (dm_open_count(md)) 337 r = -EBUSY; 338 else 339 set_bit(DMF_DELETING, &md->flags); 340 341 spin_unlock(&_minor_lock); 342 343 return r; 344 } 345 346 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 347 { 348 struct mapped_device *md = bdev->bd_disk->private_data; 349 350 return dm_get_geometry(md, geo); 351 } 352 353 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 354 unsigned int cmd, unsigned long arg) 355 { 356 struct mapped_device *md = bdev->bd_disk->private_data; 357 struct dm_table *map = dm_get_table(md); 358 struct dm_target *tgt; 359 int r = -ENOTTY; 360 361 if (!map || !dm_table_get_size(map)) 362 goto out; 363 364 /* We only support devices that have a single target */ 365 if (dm_table_get_num_targets(map) != 1) 366 goto out; 367 368 tgt = dm_table_get_target(map, 0); 369 370 if (dm_suspended(md)) { 371 r = -EAGAIN; 372 goto out; 373 } 374 375 if (tgt->type->ioctl) 376 r = tgt->type->ioctl(tgt, cmd, arg); 377 378 out: 379 dm_table_put(map); 380 381 return r; 382 } 383 384 static struct dm_io *alloc_io(struct mapped_device *md) 385 { 386 return mempool_alloc(md->io_pool, GFP_NOIO); 387 } 388 389 static void free_io(struct mapped_device *md, struct dm_io *io) 390 { 391 mempool_free(io, md->io_pool); 392 } 393 394 static struct dm_target_io *alloc_tio(struct mapped_device *md) 395 { 396 return mempool_alloc(md->tio_pool, GFP_NOIO); 397 } 398 399 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 400 { 401 mempool_free(tio, md->tio_pool); 402 } 403 404 static void start_io_acct(struct dm_io *io) 405 { 406 struct mapped_device *md = io->md; 407 int cpu; 408 409 io->start_time = jiffies; 410 411 cpu = part_stat_lock(); 412 part_round_stats(cpu, &dm_disk(md)->part0); 413 part_stat_unlock(); 414 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending); 415 } 416 417 static void end_io_acct(struct dm_io *io) 418 { 419 struct mapped_device *md = io->md; 420 struct bio *bio = io->bio; 421 unsigned long duration = jiffies - io->start_time; 422 int pending, cpu; 423 int rw = bio_data_dir(bio); 424 425 cpu = part_stat_lock(); 426 part_round_stats(cpu, &dm_disk(md)->part0); 427 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 428 part_stat_unlock(); 429 430 /* 431 * After this is decremented the bio must not be touched if it is 432 * a barrier. 433 */ 434 dm_disk(md)->part0.in_flight = pending = 435 atomic_dec_return(&md->pending); 436 437 /* nudge anyone waiting on suspend queue */ 438 if (!pending) 439 wake_up(&md->wait); 440 } 441 442 /* 443 * Add the bio to the list of deferred io. 444 */ 445 static void queue_io(struct mapped_device *md, struct bio *bio) 446 { 447 down_write(&md->io_lock); 448 449 spin_lock_irq(&md->deferred_lock); 450 bio_list_add(&md->deferred, bio); 451 spin_unlock_irq(&md->deferred_lock); 452 453 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) 454 queue_work(md->wq, &md->work); 455 456 up_write(&md->io_lock); 457 } 458 459 /* 460 * Everyone (including functions in this file), should use this 461 * function to access the md->map field, and make sure they call 462 * dm_table_put() when finished. 463 */ 464 struct dm_table *dm_get_table(struct mapped_device *md) 465 { 466 struct dm_table *t; 467 468 read_lock(&md->map_lock); 469 t = md->map; 470 if (t) 471 dm_table_get(t); 472 read_unlock(&md->map_lock); 473 474 return t; 475 } 476 477 /* 478 * Get the geometry associated with a dm device 479 */ 480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 481 { 482 *geo = md->geometry; 483 484 return 0; 485 } 486 487 /* 488 * Set the geometry of a device. 489 */ 490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 491 { 492 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 493 494 if (geo->start > sz) { 495 DMWARN("Start sector is beyond the geometry limits."); 496 return -EINVAL; 497 } 498 499 md->geometry = *geo; 500 501 return 0; 502 } 503 504 /*----------------------------------------------------------------- 505 * CRUD START: 506 * A more elegant soln is in the works that uses the queue 507 * merge fn, unfortunately there are a couple of changes to 508 * the block layer that I want to make for this. So in the 509 * interests of getting something for people to use I give 510 * you this clearly demarcated crap. 511 *---------------------------------------------------------------*/ 512 513 static int __noflush_suspending(struct mapped_device *md) 514 { 515 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 516 } 517 518 /* 519 * Decrements the number of outstanding ios that a bio has been 520 * cloned into, completing the original io if necc. 521 */ 522 static void dec_pending(struct dm_io *io, int error) 523 { 524 unsigned long flags; 525 int io_error; 526 struct bio *bio; 527 struct mapped_device *md = io->md; 528 529 /* Push-back supersedes any I/O errors */ 530 if (error && !(io->error > 0 && __noflush_suspending(md))) 531 io->error = error; 532 533 if (atomic_dec_and_test(&io->io_count)) { 534 if (io->error == DM_ENDIO_REQUEUE) { 535 /* 536 * Target requested pushing back the I/O. 537 */ 538 spin_lock_irqsave(&md->deferred_lock, flags); 539 if (__noflush_suspending(md)) { 540 if (!bio_barrier(io->bio)) 541 bio_list_add_head(&md->deferred, 542 io->bio); 543 } else 544 /* noflush suspend was interrupted. */ 545 io->error = -EIO; 546 spin_unlock_irqrestore(&md->deferred_lock, flags); 547 } 548 549 io_error = io->error; 550 bio = io->bio; 551 552 if (bio_barrier(bio)) { 553 /* 554 * There can be just one barrier request so we use 555 * a per-device variable for error reporting. 556 * Note that you can't touch the bio after end_io_acct 557 */ 558 if (!md->barrier_error) 559 md->barrier_error = io_error; 560 end_io_acct(io); 561 } else { 562 end_io_acct(io); 563 564 if (io_error != DM_ENDIO_REQUEUE) { 565 trace_block_bio_complete(md->queue, bio); 566 567 bio_endio(bio, io_error); 568 } 569 } 570 571 free_io(md, io); 572 } 573 } 574 575 static void clone_endio(struct bio *bio, int error) 576 { 577 int r = 0; 578 struct dm_target_io *tio = bio->bi_private; 579 struct dm_io *io = tio->io; 580 struct mapped_device *md = tio->io->md; 581 dm_endio_fn endio = tio->ti->type->end_io; 582 583 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 584 error = -EIO; 585 586 if (endio) { 587 r = endio(tio->ti, bio, error, &tio->info); 588 if (r < 0 || r == DM_ENDIO_REQUEUE) 589 /* 590 * error and requeue request are handled 591 * in dec_pending(). 592 */ 593 error = r; 594 else if (r == DM_ENDIO_INCOMPLETE) 595 /* The target will handle the io */ 596 return; 597 else if (r) { 598 DMWARN("unimplemented target endio return value: %d", r); 599 BUG(); 600 } 601 } 602 603 /* 604 * Store md for cleanup instead of tio which is about to get freed. 605 */ 606 bio->bi_private = md->bs; 607 608 free_tio(md, tio); 609 bio_put(bio); 610 dec_pending(io, error); 611 } 612 613 static sector_t max_io_len(struct mapped_device *md, 614 sector_t sector, struct dm_target *ti) 615 { 616 sector_t offset = sector - ti->begin; 617 sector_t len = ti->len - offset; 618 619 /* 620 * Does the target need to split even further ? 621 */ 622 if (ti->split_io) { 623 sector_t boundary; 624 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 625 - offset; 626 if (len > boundary) 627 len = boundary; 628 } 629 630 return len; 631 } 632 633 static void __map_bio(struct dm_target *ti, struct bio *clone, 634 struct dm_target_io *tio) 635 { 636 int r; 637 sector_t sector; 638 struct mapped_device *md; 639 640 /* 641 * Sanity checks. 642 */ 643 BUG_ON(!clone->bi_size); 644 645 clone->bi_end_io = clone_endio; 646 clone->bi_private = tio; 647 648 /* 649 * Map the clone. If r == 0 we don't need to do 650 * anything, the target has assumed ownership of 651 * this io. 652 */ 653 atomic_inc(&tio->io->io_count); 654 sector = clone->bi_sector; 655 r = ti->type->map(ti, clone, &tio->info); 656 if (r == DM_MAPIO_REMAPPED) { 657 /* the bio has been remapped so dispatch it */ 658 659 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone, 660 tio->io->bio->bi_bdev->bd_dev, sector); 661 662 generic_make_request(clone); 663 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 664 /* error the io and bail out, or requeue it if needed */ 665 md = tio->io->md; 666 dec_pending(tio->io, r); 667 /* 668 * Store bio_set for cleanup. 669 */ 670 clone->bi_private = md->bs; 671 bio_put(clone); 672 free_tio(md, tio); 673 } else if (r) { 674 DMWARN("unimplemented target map return value: %d", r); 675 BUG(); 676 } 677 } 678 679 struct clone_info { 680 struct mapped_device *md; 681 struct dm_table *map; 682 struct bio *bio; 683 struct dm_io *io; 684 sector_t sector; 685 sector_t sector_count; 686 unsigned short idx; 687 }; 688 689 static void dm_bio_destructor(struct bio *bio) 690 { 691 struct bio_set *bs = bio->bi_private; 692 693 bio_free(bio, bs); 694 } 695 696 /* 697 * Creates a little bio that is just does part of a bvec. 698 */ 699 static struct bio *split_bvec(struct bio *bio, sector_t sector, 700 unsigned short idx, unsigned int offset, 701 unsigned int len, struct bio_set *bs) 702 { 703 struct bio *clone; 704 struct bio_vec *bv = bio->bi_io_vec + idx; 705 706 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 707 clone->bi_destructor = dm_bio_destructor; 708 *clone->bi_io_vec = *bv; 709 710 clone->bi_sector = sector; 711 clone->bi_bdev = bio->bi_bdev; 712 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER); 713 clone->bi_vcnt = 1; 714 clone->bi_size = to_bytes(len); 715 clone->bi_io_vec->bv_offset = offset; 716 clone->bi_io_vec->bv_len = clone->bi_size; 717 clone->bi_flags |= 1 << BIO_CLONED; 718 719 if (bio_integrity(bio)) { 720 bio_integrity_clone(clone, bio, GFP_NOIO); 721 bio_integrity_trim(clone, 722 bio_sector_offset(bio, idx, offset), len); 723 } 724 725 return clone; 726 } 727 728 /* 729 * Creates a bio that consists of range of complete bvecs. 730 */ 731 static struct bio *clone_bio(struct bio *bio, sector_t sector, 732 unsigned short idx, unsigned short bv_count, 733 unsigned int len, struct bio_set *bs) 734 { 735 struct bio *clone; 736 737 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 738 __bio_clone(clone, bio); 739 clone->bi_rw &= ~(1 << BIO_RW_BARRIER); 740 clone->bi_destructor = dm_bio_destructor; 741 clone->bi_sector = sector; 742 clone->bi_idx = idx; 743 clone->bi_vcnt = idx + bv_count; 744 clone->bi_size = to_bytes(len); 745 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 746 747 if (bio_integrity(bio)) { 748 bio_integrity_clone(clone, bio, GFP_NOIO); 749 750 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 751 bio_integrity_trim(clone, 752 bio_sector_offset(bio, idx, 0), len); 753 } 754 755 return clone; 756 } 757 758 static int __clone_and_map(struct clone_info *ci) 759 { 760 struct bio *clone, *bio = ci->bio; 761 struct dm_target *ti; 762 sector_t len = 0, max; 763 struct dm_target_io *tio; 764 765 ti = dm_table_find_target(ci->map, ci->sector); 766 if (!dm_target_is_valid(ti)) 767 return -EIO; 768 769 max = max_io_len(ci->md, ci->sector, ti); 770 771 /* 772 * Allocate a target io object. 773 */ 774 tio = alloc_tio(ci->md); 775 tio->io = ci->io; 776 tio->ti = ti; 777 memset(&tio->info, 0, sizeof(tio->info)); 778 779 if (ci->sector_count <= max) { 780 /* 781 * Optimise for the simple case where we can do all of 782 * the remaining io with a single clone. 783 */ 784 clone = clone_bio(bio, ci->sector, ci->idx, 785 bio->bi_vcnt - ci->idx, ci->sector_count, 786 ci->md->bs); 787 __map_bio(ti, clone, tio); 788 ci->sector_count = 0; 789 790 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 791 /* 792 * There are some bvecs that don't span targets. 793 * Do as many of these as possible. 794 */ 795 int i; 796 sector_t remaining = max; 797 sector_t bv_len; 798 799 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 800 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 801 802 if (bv_len > remaining) 803 break; 804 805 remaining -= bv_len; 806 len += bv_len; 807 } 808 809 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 810 ci->md->bs); 811 __map_bio(ti, clone, tio); 812 813 ci->sector += len; 814 ci->sector_count -= len; 815 ci->idx = i; 816 817 } else { 818 /* 819 * Handle a bvec that must be split between two or more targets. 820 */ 821 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 822 sector_t remaining = to_sector(bv->bv_len); 823 unsigned int offset = 0; 824 825 do { 826 if (offset) { 827 ti = dm_table_find_target(ci->map, ci->sector); 828 if (!dm_target_is_valid(ti)) 829 return -EIO; 830 831 max = max_io_len(ci->md, ci->sector, ti); 832 833 tio = alloc_tio(ci->md); 834 tio->io = ci->io; 835 tio->ti = ti; 836 memset(&tio->info, 0, sizeof(tio->info)); 837 } 838 839 len = min(remaining, max); 840 841 clone = split_bvec(bio, ci->sector, ci->idx, 842 bv->bv_offset + offset, len, 843 ci->md->bs); 844 845 __map_bio(ti, clone, tio); 846 847 ci->sector += len; 848 ci->sector_count -= len; 849 offset += to_bytes(len); 850 } while (remaining -= len); 851 852 ci->idx++; 853 } 854 855 return 0; 856 } 857 858 /* 859 * Split the bio into several clones and submit it to targets. 860 */ 861 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 862 { 863 struct clone_info ci; 864 int error = 0; 865 866 ci.map = dm_get_table(md); 867 if (unlikely(!ci.map)) { 868 if (!bio_barrier(bio)) 869 bio_io_error(bio); 870 else 871 if (!md->barrier_error) 872 md->barrier_error = -EIO; 873 return; 874 } 875 876 ci.md = md; 877 ci.bio = bio; 878 ci.io = alloc_io(md); 879 ci.io->error = 0; 880 atomic_set(&ci.io->io_count, 1); 881 ci.io->bio = bio; 882 ci.io->md = md; 883 ci.sector = bio->bi_sector; 884 ci.sector_count = bio_sectors(bio); 885 ci.idx = bio->bi_idx; 886 887 start_io_acct(ci.io); 888 while (ci.sector_count && !error) 889 error = __clone_and_map(&ci); 890 891 /* drop the extra reference count */ 892 dec_pending(ci.io, error); 893 dm_table_put(ci.map); 894 } 895 /*----------------------------------------------------------------- 896 * CRUD END 897 *---------------------------------------------------------------*/ 898 899 static int dm_merge_bvec(struct request_queue *q, 900 struct bvec_merge_data *bvm, 901 struct bio_vec *biovec) 902 { 903 struct mapped_device *md = q->queuedata; 904 struct dm_table *map = dm_get_table(md); 905 struct dm_target *ti; 906 sector_t max_sectors; 907 int max_size = 0; 908 909 if (unlikely(!map)) 910 goto out; 911 912 ti = dm_table_find_target(map, bvm->bi_sector); 913 if (!dm_target_is_valid(ti)) 914 goto out_table; 915 916 /* 917 * Find maximum amount of I/O that won't need splitting 918 */ 919 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 920 (sector_t) BIO_MAX_SECTORS); 921 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 922 if (max_size < 0) 923 max_size = 0; 924 925 /* 926 * merge_bvec_fn() returns number of bytes 927 * it can accept at this offset 928 * max is precomputed maximal io size 929 */ 930 if (max_size && ti->type->merge) 931 max_size = ti->type->merge(ti, bvm, biovec, max_size); 932 /* 933 * If the target doesn't support merge method and some of the devices 934 * provided their merge_bvec method (we know this by looking at 935 * queue_max_hw_sectors), then we can't allow bios with multiple vector 936 * entries. So always set max_size to 0, and the code below allows 937 * just one page. 938 */ 939 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 940 941 max_size = 0; 942 943 out_table: 944 dm_table_put(map); 945 946 out: 947 /* 948 * Always allow an entire first page 949 */ 950 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 951 max_size = biovec->bv_len; 952 953 return max_size; 954 } 955 956 /* 957 * The request function that just remaps the bio built up by 958 * dm_merge_bvec. 959 */ 960 static int dm_request(struct request_queue *q, struct bio *bio) 961 { 962 int rw = bio_data_dir(bio); 963 struct mapped_device *md = q->queuedata; 964 int cpu; 965 966 down_read(&md->io_lock); 967 968 cpu = part_stat_lock(); 969 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 970 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 971 part_stat_unlock(); 972 973 /* 974 * If we're suspended or the thread is processing barriers 975 * we have to queue this io for later. 976 */ 977 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) || 978 unlikely(bio_barrier(bio))) { 979 up_read(&md->io_lock); 980 981 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) && 982 bio_rw(bio) == READA) { 983 bio_io_error(bio); 984 return 0; 985 } 986 987 queue_io(md, bio); 988 989 return 0; 990 } 991 992 __split_and_process_bio(md, bio); 993 up_read(&md->io_lock); 994 return 0; 995 } 996 997 static void dm_unplug_all(struct request_queue *q) 998 { 999 struct mapped_device *md = q->queuedata; 1000 struct dm_table *map = dm_get_table(md); 1001 1002 if (map) { 1003 dm_table_unplug_all(map); 1004 dm_table_put(map); 1005 } 1006 } 1007 1008 static int dm_any_congested(void *congested_data, int bdi_bits) 1009 { 1010 int r = bdi_bits; 1011 struct mapped_device *md = congested_data; 1012 struct dm_table *map; 1013 1014 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1015 map = dm_get_table(md); 1016 if (map) { 1017 r = dm_table_any_congested(map, bdi_bits); 1018 dm_table_put(map); 1019 } 1020 } 1021 1022 return r; 1023 } 1024 1025 /*----------------------------------------------------------------- 1026 * An IDR is used to keep track of allocated minor numbers. 1027 *---------------------------------------------------------------*/ 1028 static DEFINE_IDR(_minor_idr); 1029 1030 static void free_minor(int minor) 1031 { 1032 spin_lock(&_minor_lock); 1033 idr_remove(&_minor_idr, minor); 1034 spin_unlock(&_minor_lock); 1035 } 1036 1037 /* 1038 * See if the device with a specific minor # is free. 1039 */ 1040 static int specific_minor(int minor) 1041 { 1042 int r, m; 1043 1044 if (minor >= (1 << MINORBITS)) 1045 return -EINVAL; 1046 1047 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1048 if (!r) 1049 return -ENOMEM; 1050 1051 spin_lock(&_minor_lock); 1052 1053 if (idr_find(&_minor_idr, minor)) { 1054 r = -EBUSY; 1055 goto out; 1056 } 1057 1058 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1059 if (r) 1060 goto out; 1061 1062 if (m != minor) { 1063 idr_remove(&_minor_idr, m); 1064 r = -EBUSY; 1065 goto out; 1066 } 1067 1068 out: 1069 spin_unlock(&_minor_lock); 1070 return r; 1071 } 1072 1073 static int next_free_minor(int *minor) 1074 { 1075 int r, m; 1076 1077 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1078 if (!r) 1079 return -ENOMEM; 1080 1081 spin_lock(&_minor_lock); 1082 1083 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1084 if (r) 1085 goto out; 1086 1087 if (m >= (1 << MINORBITS)) { 1088 idr_remove(&_minor_idr, m); 1089 r = -ENOSPC; 1090 goto out; 1091 } 1092 1093 *minor = m; 1094 1095 out: 1096 spin_unlock(&_minor_lock); 1097 return r; 1098 } 1099 1100 static struct block_device_operations dm_blk_dops; 1101 1102 static void dm_wq_work(struct work_struct *work); 1103 1104 /* 1105 * Allocate and initialise a blank device with a given minor. 1106 */ 1107 static struct mapped_device *alloc_dev(int minor) 1108 { 1109 int r; 1110 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1111 void *old_md; 1112 1113 if (!md) { 1114 DMWARN("unable to allocate device, out of memory."); 1115 return NULL; 1116 } 1117 1118 if (!try_module_get(THIS_MODULE)) 1119 goto bad_module_get; 1120 1121 /* get a minor number for the dev */ 1122 if (minor == DM_ANY_MINOR) 1123 r = next_free_minor(&minor); 1124 else 1125 r = specific_minor(minor); 1126 if (r < 0) 1127 goto bad_minor; 1128 1129 init_rwsem(&md->io_lock); 1130 mutex_init(&md->suspend_lock); 1131 spin_lock_init(&md->deferred_lock); 1132 rwlock_init(&md->map_lock); 1133 atomic_set(&md->holders, 1); 1134 atomic_set(&md->open_count, 0); 1135 atomic_set(&md->event_nr, 0); 1136 atomic_set(&md->uevent_seq, 0); 1137 INIT_LIST_HEAD(&md->uevent_list); 1138 spin_lock_init(&md->uevent_lock); 1139 1140 md->queue = blk_alloc_queue(GFP_KERNEL); 1141 if (!md->queue) 1142 goto bad_queue; 1143 1144 md->queue->queuedata = md; 1145 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1146 md->queue->backing_dev_info.congested_data = md; 1147 blk_queue_make_request(md->queue, dm_request); 1148 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL); 1149 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1150 md->queue->unplug_fn = dm_unplug_all; 1151 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1152 1153 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 1154 if (!md->io_pool) 1155 goto bad_io_pool; 1156 1157 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 1158 if (!md->tio_pool) 1159 goto bad_tio_pool; 1160 1161 md->bs = bioset_create(16, 0); 1162 if (!md->bs) 1163 goto bad_no_bioset; 1164 1165 md->disk = alloc_disk(1); 1166 if (!md->disk) 1167 goto bad_disk; 1168 1169 atomic_set(&md->pending, 0); 1170 init_waitqueue_head(&md->wait); 1171 INIT_WORK(&md->work, dm_wq_work); 1172 init_waitqueue_head(&md->eventq); 1173 1174 md->disk->major = _major; 1175 md->disk->first_minor = minor; 1176 md->disk->fops = &dm_blk_dops; 1177 md->disk->queue = md->queue; 1178 md->disk->private_data = md; 1179 sprintf(md->disk->disk_name, "dm-%d", minor); 1180 add_disk(md->disk); 1181 format_dev_t(md->name, MKDEV(_major, minor)); 1182 1183 md->wq = create_singlethread_workqueue("kdmflush"); 1184 if (!md->wq) 1185 goto bad_thread; 1186 1187 md->bdev = bdget_disk(md->disk, 0); 1188 if (!md->bdev) 1189 goto bad_bdev; 1190 1191 /* Populate the mapping, nobody knows we exist yet */ 1192 spin_lock(&_minor_lock); 1193 old_md = idr_replace(&_minor_idr, md, minor); 1194 spin_unlock(&_minor_lock); 1195 1196 BUG_ON(old_md != MINOR_ALLOCED); 1197 1198 return md; 1199 1200 bad_bdev: 1201 destroy_workqueue(md->wq); 1202 bad_thread: 1203 put_disk(md->disk); 1204 bad_disk: 1205 bioset_free(md->bs); 1206 bad_no_bioset: 1207 mempool_destroy(md->tio_pool); 1208 bad_tio_pool: 1209 mempool_destroy(md->io_pool); 1210 bad_io_pool: 1211 blk_cleanup_queue(md->queue); 1212 bad_queue: 1213 free_minor(minor); 1214 bad_minor: 1215 module_put(THIS_MODULE); 1216 bad_module_get: 1217 kfree(md); 1218 return NULL; 1219 } 1220 1221 static void unlock_fs(struct mapped_device *md); 1222 1223 static void free_dev(struct mapped_device *md) 1224 { 1225 int minor = MINOR(disk_devt(md->disk)); 1226 1227 unlock_fs(md); 1228 bdput(md->bdev); 1229 destroy_workqueue(md->wq); 1230 mempool_destroy(md->tio_pool); 1231 mempool_destroy(md->io_pool); 1232 bioset_free(md->bs); 1233 blk_integrity_unregister(md->disk); 1234 del_gendisk(md->disk); 1235 free_minor(minor); 1236 1237 spin_lock(&_minor_lock); 1238 md->disk->private_data = NULL; 1239 spin_unlock(&_minor_lock); 1240 1241 put_disk(md->disk); 1242 blk_cleanup_queue(md->queue); 1243 module_put(THIS_MODULE); 1244 kfree(md); 1245 } 1246 1247 /* 1248 * Bind a table to the device. 1249 */ 1250 static void event_callback(void *context) 1251 { 1252 unsigned long flags; 1253 LIST_HEAD(uevents); 1254 struct mapped_device *md = (struct mapped_device *) context; 1255 1256 spin_lock_irqsave(&md->uevent_lock, flags); 1257 list_splice_init(&md->uevent_list, &uevents); 1258 spin_unlock_irqrestore(&md->uevent_lock, flags); 1259 1260 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1261 1262 atomic_inc(&md->event_nr); 1263 wake_up(&md->eventq); 1264 } 1265 1266 static void __set_size(struct mapped_device *md, sector_t size) 1267 { 1268 set_capacity(md->disk, size); 1269 1270 mutex_lock(&md->bdev->bd_inode->i_mutex); 1271 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1272 mutex_unlock(&md->bdev->bd_inode->i_mutex); 1273 } 1274 1275 static int __bind(struct mapped_device *md, struct dm_table *t) 1276 { 1277 struct request_queue *q = md->queue; 1278 sector_t size; 1279 1280 size = dm_table_get_size(t); 1281 1282 /* 1283 * Wipe any geometry if the size of the table changed. 1284 */ 1285 if (size != get_capacity(md->disk)) 1286 memset(&md->geometry, 0, sizeof(md->geometry)); 1287 1288 __set_size(md, size); 1289 1290 if (!size) { 1291 dm_table_destroy(t); 1292 return 0; 1293 } 1294 1295 dm_table_event_callback(t, event_callback, md); 1296 1297 write_lock(&md->map_lock); 1298 md->map = t; 1299 dm_table_set_restrictions(t, q); 1300 write_unlock(&md->map_lock); 1301 1302 return 0; 1303 } 1304 1305 static void __unbind(struct mapped_device *md) 1306 { 1307 struct dm_table *map = md->map; 1308 1309 if (!map) 1310 return; 1311 1312 dm_table_event_callback(map, NULL, NULL); 1313 write_lock(&md->map_lock); 1314 md->map = NULL; 1315 write_unlock(&md->map_lock); 1316 dm_table_destroy(map); 1317 } 1318 1319 /* 1320 * Constructor for a new device. 1321 */ 1322 int dm_create(int minor, struct mapped_device **result) 1323 { 1324 struct mapped_device *md; 1325 1326 md = alloc_dev(minor); 1327 if (!md) 1328 return -ENXIO; 1329 1330 dm_sysfs_init(md); 1331 1332 *result = md; 1333 return 0; 1334 } 1335 1336 static struct mapped_device *dm_find_md(dev_t dev) 1337 { 1338 struct mapped_device *md; 1339 unsigned minor = MINOR(dev); 1340 1341 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1342 return NULL; 1343 1344 spin_lock(&_minor_lock); 1345 1346 md = idr_find(&_minor_idr, minor); 1347 if (md && (md == MINOR_ALLOCED || 1348 (MINOR(disk_devt(dm_disk(md))) != minor) || 1349 test_bit(DMF_FREEING, &md->flags))) { 1350 md = NULL; 1351 goto out; 1352 } 1353 1354 out: 1355 spin_unlock(&_minor_lock); 1356 1357 return md; 1358 } 1359 1360 struct mapped_device *dm_get_md(dev_t dev) 1361 { 1362 struct mapped_device *md = dm_find_md(dev); 1363 1364 if (md) 1365 dm_get(md); 1366 1367 return md; 1368 } 1369 1370 void *dm_get_mdptr(struct mapped_device *md) 1371 { 1372 return md->interface_ptr; 1373 } 1374 1375 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1376 { 1377 md->interface_ptr = ptr; 1378 } 1379 1380 void dm_get(struct mapped_device *md) 1381 { 1382 atomic_inc(&md->holders); 1383 } 1384 1385 const char *dm_device_name(struct mapped_device *md) 1386 { 1387 return md->name; 1388 } 1389 EXPORT_SYMBOL_GPL(dm_device_name); 1390 1391 void dm_put(struct mapped_device *md) 1392 { 1393 struct dm_table *map; 1394 1395 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1396 1397 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 1398 map = dm_get_table(md); 1399 idr_replace(&_minor_idr, MINOR_ALLOCED, 1400 MINOR(disk_devt(dm_disk(md)))); 1401 set_bit(DMF_FREEING, &md->flags); 1402 spin_unlock(&_minor_lock); 1403 if (!dm_suspended(md)) { 1404 dm_table_presuspend_targets(map); 1405 dm_table_postsuspend_targets(map); 1406 } 1407 dm_sysfs_exit(md); 1408 dm_table_put(map); 1409 __unbind(md); 1410 free_dev(md); 1411 } 1412 } 1413 EXPORT_SYMBOL_GPL(dm_put); 1414 1415 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 1416 { 1417 int r = 0; 1418 DECLARE_WAITQUEUE(wait, current); 1419 1420 dm_unplug_all(md->queue); 1421 1422 add_wait_queue(&md->wait, &wait); 1423 1424 while (1) { 1425 set_current_state(interruptible); 1426 1427 smp_mb(); 1428 if (!atomic_read(&md->pending)) 1429 break; 1430 1431 if (interruptible == TASK_INTERRUPTIBLE && 1432 signal_pending(current)) { 1433 r = -EINTR; 1434 break; 1435 } 1436 1437 io_schedule(); 1438 } 1439 set_current_state(TASK_RUNNING); 1440 1441 remove_wait_queue(&md->wait, &wait); 1442 1443 return r; 1444 } 1445 1446 static void dm_flush(struct mapped_device *md) 1447 { 1448 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 1449 } 1450 1451 static void process_barrier(struct mapped_device *md, struct bio *bio) 1452 { 1453 md->barrier_error = 0; 1454 1455 dm_flush(md); 1456 1457 if (!bio_empty_barrier(bio)) { 1458 __split_and_process_bio(md, bio); 1459 dm_flush(md); 1460 } 1461 1462 if (md->barrier_error != DM_ENDIO_REQUEUE) 1463 bio_endio(bio, md->barrier_error); 1464 else { 1465 spin_lock_irq(&md->deferred_lock); 1466 bio_list_add_head(&md->deferred, bio); 1467 spin_unlock_irq(&md->deferred_lock); 1468 } 1469 } 1470 1471 /* 1472 * Process the deferred bios 1473 */ 1474 static void dm_wq_work(struct work_struct *work) 1475 { 1476 struct mapped_device *md = container_of(work, struct mapped_device, 1477 work); 1478 struct bio *c; 1479 1480 down_write(&md->io_lock); 1481 1482 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1483 spin_lock_irq(&md->deferred_lock); 1484 c = bio_list_pop(&md->deferred); 1485 spin_unlock_irq(&md->deferred_lock); 1486 1487 if (!c) { 1488 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 1489 break; 1490 } 1491 1492 up_write(&md->io_lock); 1493 1494 if (bio_barrier(c)) 1495 process_barrier(md, c); 1496 else 1497 __split_and_process_bio(md, c); 1498 1499 down_write(&md->io_lock); 1500 } 1501 1502 up_write(&md->io_lock); 1503 } 1504 1505 static void dm_queue_flush(struct mapped_device *md) 1506 { 1507 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 1508 smp_mb__after_clear_bit(); 1509 queue_work(md->wq, &md->work); 1510 } 1511 1512 /* 1513 * Swap in a new table (destroying old one). 1514 */ 1515 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1516 { 1517 int r = -EINVAL; 1518 1519 mutex_lock(&md->suspend_lock); 1520 1521 /* device must be suspended */ 1522 if (!dm_suspended(md)) 1523 goto out; 1524 1525 __unbind(md); 1526 r = __bind(md, table); 1527 1528 out: 1529 mutex_unlock(&md->suspend_lock); 1530 return r; 1531 } 1532 1533 /* 1534 * Functions to lock and unlock any filesystem running on the 1535 * device. 1536 */ 1537 static int lock_fs(struct mapped_device *md) 1538 { 1539 int r; 1540 1541 WARN_ON(md->frozen_sb); 1542 1543 md->frozen_sb = freeze_bdev(md->bdev); 1544 if (IS_ERR(md->frozen_sb)) { 1545 r = PTR_ERR(md->frozen_sb); 1546 md->frozen_sb = NULL; 1547 return r; 1548 } 1549 1550 set_bit(DMF_FROZEN, &md->flags); 1551 1552 return 0; 1553 } 1554 1555 static void unlock_fs(struct mapped_device *md) 1556 { 1557 if (!test_bit(DMF_FROZEN, &md->flags)) 1558 return; 1559 1560 thaw_bdev(md->bdev, md->frozen_sb); 1561 md->frozen_sb = NULL; 1562 clear_bit(DMF_FROZEN, &md->flags); 1563 } 1564 1565 /* 1566 * We need to be able to change a mapping table under a mounted 1567 * filesystem. For example we might want to move some data in 1568 * the background. Before the table can be swapped with 1569 * dm_bind_table, dm_suspend must be called to flush any in 1570 * flight bios and ensure that any further io gets deferred. 1571 */ 1572 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 1573 { 1574 struct dm_table *map = NULL; 1575 int r = 0; 1576 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 1577 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 1578 1579 mutex_lock(&md->suspend_lock); 1580 1581 if (dm_suspended(md)) { 1582 r = -EINVAL; 1583 goto out_unlock; 1584 } 1585 1586 map = dm_get_table(md); 1587 1588 /* 1589 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 1590 * This flag is cleared before dm_suspend returns. 1591 */ 1592 if (noflush) 1593 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1594 1595 /* This does not get reverted if there's an error later. */ 1596 dm_table_presuspend_targets(map); 1597 1598 /* 1599 * Flush I/O to the device. noflush supersedes do_lockfs, 1600 * because lock_fs() needs to flush I/Os. 1601 */ 1602 if (!noflush && do_lockfs) { 1603 r = lock_fs(md); 1604 if (r) 1605 goto out; 1606 } 1607 1608 /* 1609 * Here we must make sure that no processes are submitting requests 1610 * to target drivers i.e. no one may be executing 1611 * __split_and_process_bio. This is called from dm_request and 1612 * dm_wq_work. 1613 * 1614 * To get all processes out of __split_and_process_bio in dm_request, 1615 * we take the write lock. To prevent any process from reentering 1616 * __split_and_process_bio from dm_request, we set 1617 * DMF_QUEUE_IO_TO_THREAD. 1618 * 1619 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND 1620 * and call flush_workqueue(md->wq). flush_workqueue will wait until 1621 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any 1622 * further calls to __split_and_process_bio from dm_wq_work. 1623 */ 1624 down_write(&md->io_lock); 1625 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 1626 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 1627 up_write(&md->io_lock); 1628 1629 flush_workqueue(md->wq); 1630 1631 /* 1632 * At this point no more requests are entering target request routines. 1633 * We call dm_wait_for_completion to wait for all existing requests 1634 * to finish. 1635 */ 1636 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 1637 1638 down_write(&md->io_lock); 1639 if (noflush) 1640 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1641 up_write(&md->io_lock); 1642 1643 /* were we interrupted ? */ 1644 if (r < 0) { 1645 dm_queue_flush(md); 1646 1647 unlock_fs(md); 1648 goto out; /* pushback list is already flushed, so skip flush */ 1649 } 1650 1651 /* 1652 * If dm_wait_for_completion returned 0, the device is completely 1653 * quiescent now. There is no request-processing activity. All new 1654 * requests are being added to md->deferred list. 1655 */ 1656 1657 dm_table_postsuspend_targets(map); 1658 1659 set_bit(DMF_SUSPENDED, &md->flags); 1660 1661 out: 1662 dm_table_put(map); 1663 1664 out_unlock: 1665 mutex_unlock(&md->suspend_lock); 1666 return r; 1667 } 1668 1669 int dm_resume(struct mapped_device *md) 1670 { 1671 int r = -EINVAL; 1672 struct dm_table *map = NULL; 1673 1674 mutex_lock(&md->suspend_lock); 1675 if (!dm_suspended(md)) 1676 goto out; 1677 1678 map = dm_get_table(md); 1679 if (!map || !dm_table_get_size(map)) 1680 goto out; 1681 1682 r = dm_table_resume_targets(map); 1683 if (r) 1684 goto out; 1685 1686 dm_queue_flush(md); 1687 1688 unlock_fs(md); 1689 1690 clear_bit(DMF_SUSPENDED, &md->flags); 1691 1692 dm_table_unplug_all(map); 1693 1694 dm_kobject_uevent(md); 1695 1696 r = 0; 1697 1698 out: 1699 dm_table_put(map); 1700 mutex_unlock(&md->suspend_lock); 1701 1702 return r; 1703 } 1704 1705 /*----------------------------------------------------------------- 1706 * Event notification. 1707 *---------------------------------------------------------------*/ 1708 void dm_kobject_uevent(struct mapped_device *md) 1709 { 1710 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE); 1711 } 1712 1713 uint32_t dm_next_uevent_seq(struct mapped_device *md) 1714 { 1715 return atomic_add_return(1, &md->uevent_seq); 1716 } 1717 1718 uint32_t dm_get_event_nr(struct mapped_device *md) 1719 { 1720 return atomic_read(&md->event_nr); 1721 } 1722 1723 int dm_wait_event(struct mapped_device *md, int event_nr) 1724 { 1725 return wait_event_interruptible(md->eventq, 1726 (event_nr != atomic_read(&md->event_nr))); 1727 } 1728 1729 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 1730 { 1731 unsigned long flags; 1732 1733 spin_lock_irqsave(&md->uevent_lock, flags); 1734 list_add(elist, &md->uevent_list); 1735 spin_unlock_irqrestore(&md->uevent_lock, flags); 1736 } 1737 1738 /* 1739 * The gendisk is only valid as long as you have a reference 1740 * count on 'md'. 1741 */ 1742 struct gendisk *dm_disk(struct mapped_device *md) 1743 { 1744 return md->disk; 1745 } 1746 1747 struct kobject *dm_kobject(struct mapped_device *md) 1748 { 1749 return &md->kobj; 1750 } 1751 1752 /* 1753 * struct mapped_device should not be exported outside of dm.c 1754 * so use this check to verify that kobj is part of md structure 1755 */ 1756 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 1757 { 1758 struct mapped_device *md; 1759 1760 md = container_of(kobj, struct mapped_device, kobj); 1761 if (&md->kobj != kobj) 1762 return NULL; 1763 1764 if (test_bit(DMF_FREEING, &md->flags) || 1765 test_bit(DMF_DELETING, &md->flags)) 1766 return NULL; 1767 1768 dm_get(md); 1769 return md; 1770 } 1771 1772 int dm_suspended(struct mapped_device *md) 1773 { 1774 return test_bit(DMF_SUSPENDED, &md->flags); 1775 } 1776 1777 int dm_noflush_suspending(struct dm_target *ti) 1778 { 1779 struct mapped_device *md = dm_table_get_md(ti->table); 1780 int r = __noflush_suspending(md); 1781 1782 dm_put(md); 1783 1784 return r; 1785 } 1786 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 1787 1788 static struct block_device_operations dm_blk_dops = { 1789 .open = dm_blk_open, 1790 .release = dm_blk_close, 1791 .ioctl = dm_blk_ioctl, 1792 .getgeo = dm_blk_getgeo, 1793 .owner = THIS_MODULE 1794 }; 1795 1796 EXPORT_SYMBOL(dm_get_mapinfo); 1797 1798 /* 1799 * module hooks 1800 */ 1801 module_init(dm_init); 1802 module_exit(dm_exit); 1803 1804 module_param(major, uint, 0); 1805 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1806 MODULE_DESCRIPTION(DM_NAME " driver"); 1807 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1808 MODULE_LICENSE("GPL"); 1809