xref: /openbmc/linux/drivers/md/dm.c (revision 5aa2781d964e9835c441932110484bc454b5c207)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * For bio-based dm.
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * For bio-based dm.
47  * One of these is allocated per target within a bio.  Hopefully
48  * this will be simplified out one day.
49  */
50 struct dm_target_io {
51 	struct dm_io *io;
52 	struct dm_target *ti;
53 	union map_info info;
54 };
55 
56 /*
57  * For request-based dm.
58  * One of these is allocated per request.
59  */
60 struct dm_rq_target_io {
61 	struct mapped_device *md;
62 	struct dm_target *ti;
63 	struct request *orig, clone;
64 	int error;
65 	union map_info info;
66 };
67 
68 /*
69  * For request-based dm.
70  * One of these is allocated per bio.
71  */
72 struct dm_rq_clone_bio_info {
73 	struct bio *orig;
74 	struct request *rq;
75 };
76 
77 union map_info *dm_get_mapinfo(struct bio *bio)
78 {
79 	if (bio && bio->bi_private)
80 		return &((struct dm_target_io *)bio->bi_private)->info;
81 	return NULL;
82 }
83 
84 #define MINOR_ALLOCED ((void *)-1)
85 
86 /*
87  * Bits for the md->flags field.
88  */
89 #define DMF_BLOCK_IO_FOR_SUSPEND 0
90 #define DMF_SUSPENDED 1
91 #define DMF_FROZEN 2
92 #define DMF_FREEING 3
93 #define DMF_DELETING 4
94 #define DMF_NOFLUSH_SUSPENDING 5
95 #define DMF_QUEUE_IO_TO_THREAD 6
96 
97 /*
98  * Work processed by per-device workqueue.
99  */
100 struct mapped_device {
101 	struct rw_semaphore io_lock;
102 	struct mutex suspend_lock;
103 	rwlock_t map_lock;
104 	atomic_t holders;
105 	atomic_t open_count;
106 
107 	unsigned long flags;
108 
109 	struct request_queue *queue;
110 	struct gendisk *disk;
111 	char name[16];
112 
113 	void *interface_ptr;
114 
115 	/*
116 	 * A list of ios that arrived while we were suspended.
117 	 */
118 	atomic_t pending;
119 	wait_queue_head_t wait;
120 	struct work_struct work;
121 	struct bio_list deferred;
122 	spinlock_t deferred_lock;
123 
124 	/*
125 	 * An error from the barrier request currently being processed.
126 	 */
127 	int barrier_error;
128 
129 	/*
130 	 * Processing queue (flush/barriers)
131 	 */
132 	struct workqueue_struct *wq;
133 
134 	/*
135 	 * The current mapping.
136 	 */
137 	struct dm_table *map;
138 
139 	/*
140 	 * io objects are allocated from here.
141 	 */
142 	mempool_t *io_pool;
143 	mempool_t *tio_pool;
144 
145 	struct bio_set *bs;
146 
147 	/*
148 	 * Event handling.
149 	 */
150 	atomic_t event_nr;
151 	wait_queue_head_t eventq;
152 	atomic_t uevent_seq;
153 	struct list_head uevent_list;
154 	spinlock_t uevent_lock; /* Protect access to uevent_list */
155 
156 	/*
157 	 * freeze/thaw support require holding onto a super block
158 	 */
159 	struct super_block *frozen_sb;
160 	struct block_device *bdev;
161 
162 	/* forced geometry settings */
163 	struct hd_geometry geometry;
164 
165 	/* sysfs handle */
166 	struct kobject kobj;
167 };
168 
169 #define MIN_IOS 256
170 static struct kmem_cache *_io_cache;
171 static struct kmem_cache *_tio_cache;
172 static struct kmem_cache *_rq_tio_cache;
173 static struct kmem_cache *_rq_bio_info_cache;
174 
175 static int __init local_init(void)
176 {
177 	int r = -ENOMEM;
178 
179 	/* allocate a slab for the dm_ios */
180 	_io_cache = KMEM_CACHE(dm_io, 0);
181 	if (!_io_cache)
182 		return r;
183 
184 	/* allocate a slab for the target ios */
185 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
186 	if (!_tio_cache)
187 		goto out_free_io_cache;
188 
189 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
190 	if (!_rq_tio_cache)
191 		goto out_free_tio_cache;
192 
193 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
194 	if (!_rq_bio_info_cache)
195 		goto out_free_rq_tio_cache;
196 
197 	r = dm_uevent_init();
198 	if (r)
199 		goto out_free_rq_bio_info_cache;
200 
201 	_major = major;
202 	r = register_blkdev(_major, _name);
203 	if (r < 0)
204 		goto out_uevent_exit;
205 
206 	if (!_major)
207 		_major = r;
208 
209 	return 0;
210 
211 out_uevent_exit:
212 	dm_uevent_exit();
213 out_free_rq_bio_info_cache:
214 	kmem_cache_destroy(_rq_bio_info_cache);
215 out_free_rq_tio_cache:
216 	kmem_cache_destroy(_rq_tio_cache);
217 out_free_tio_cache:
218 	kmem_cache_destroy(_tio_cache);
219 out_free_io_cache:
220 	kmem_cache_destroy(_io_cache);
221 
222 	return r;
223 }
224 
225 static void local_exit(void)
226 {
227 	kmem_cache_destroy(_rq_bio_info_cache);
228 	kmem_cache_destroy(_rq_tio_cache);
229 	kmem_cache_destroy(_tio_cache);
230 	kmem_cache_destroy(_io_cache);
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_kcopyd_init,
245 	dm_interface_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_kcopyd_exit,
254 	dm_interface_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 }
285 
286 /*
287  * Block device functions
288  */
289 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 	struct mapped_device *md;
292 
293 	spin_lock(&_minor_lock);
294 
295 	md = bdev->bd_disk->private_data;
296 	if (!md)
297 		goto out;
298 
299 	if (test_bit(DMF_FREEING, &md->flags) ||
300 	    test_bit(DMF_DELETING, &md->flags)) {
301 		md = NULL;
302 		goto out;
303 	}
304 
305 	dm_get(md);
306 	atomic_inc(&md->open_count);
307 
308 out:
309 	spin_unlock(&_minor_lock);
310 
311 	return md ? 0 : -ENXIO;
312 }
313 
314 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
315 {
316 	struct mapped_device *md = disk->private_data;
317 	atomic_dec(&md->open_count);
318 	dm_put(md);
319 	return 0;
320 }
321 
322 int dm_open_count(struct mapped_device *md)
323 {
324 	return atomic_read(&md->open_count);
325 }
326 
327 /*
328  * Guarantees nothing is using the device before it's deleted.
329  */
330 int dm_lock_for_deletion(struct mapped_device *md)
331 {
332 	int r = 0;
333 
334 	spin_lock(&_minor_lock);
335 
336 	if (dm_open_count(md))
337 		r = -EBUSY;
338 	else
339 		set_bit(DMF_DELETING, &md->flags);
340 
341 	spin_unlock(&_minor_lock);
342 
343 	return r;
344 }
345 
346 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
347 {
348 	struct mapped_device *md = bdev->bd_disk->private_data;
349 
350 	return dm_get_geometry(md, geo);
351 }
352 
353 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
354 			unsigned int cmd, unsigned long arg)
355 {
356 	struct mapped_device *md = bdev->bd_disk->private_data;
357 	struct dm_table *map = dm_get_table(md);
358 	struct dm_target *tgt;
359 	int r = -ENOTTY;
360 
361 	if (!map || !dm_table_get_size(map))
362 		goto out;
363 
364 	/* We only support devices that have a single target */
365 	if (dm_table_get_num_targets(map) != 1)
366 		goto out;
367 
368 	tgt = dm_table_get_target(map, 0);
369 
370 	if (dm_suspended(md)) {
371 		r = -EAGAIN;
372 		goto out;
373 	}
374 
375 	if (tgt->type->ioctl)
376 		r = tgt->type->ioctl(tgt, cmd, arg);
377 
378 out:
379 	dm_table_put(map);
380 
381 	return r;
382 }
383 
384 static struct dm_io *alloc_io(struct mapped_device *md)
385 {
386 	return mempool_alloc(md->io_pool, GFP_NOIO);
387 }
388 
389 static void free_io(struct mapped_device *md, struct dm_io *io)
390 {
391 	mempool_free(io, md->io_pool);
392 }
393 
394 static struct dm_target_io *alloc_tio(struct mapped_device *md)
395 {
396 	return mempool_alloc(md->tio_pool, GFP_NOIO);
397 }
398 
399 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
400 {
401 	mempool_free(tio, md->tio_pool);
402 }
403 
404 static void start_io_acct(struct dm_io *io)
405 {
406 	struct mapped_device *md = io->md;
407 	int cpu;
408 
409 	io->start_time = jiffies;
410 
411 	cpu = part_stat_lock();
412 	part_round_stats(cpu, &dm_disk(md)->part0);
413 	part_stat_unlock();
414 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
415 }
416 
417 static void end_io_acct(struct dm_io *io)
418 {
419 	struct mapped_device *md = io->md;
420 	struct bio *bio = io->bio;
421 	unsigned long duration = jiffies - io->start_time;
422 	int pending, cpu;
423 	int rw = bio_data_dir(bio);
424 
425 	cpu = part_stat_lock();
426 	part_round_stats(cpu, &dm_disk(md)->part0);
427 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
428 	part_stat_unlock();
429 
430 	/*
431 	 * After this is decremented the bio must not be touched if it is
432 	 * a barrier.
433 	 */
434 	dm_disk(md)->part0.in_flight = pending =
435 		atomic_dec_return(&md->pending);
436 
437 	/* nudge anyone waiting on suspend queue */
438 	if (!pending)
439 		wake_up(&md->wait);
440 }
441 
442 /*
443  * Add the bio to the list of deferred io.
444  */
445 static void queue_io(struct mapped_device *md, struct bio *bio)
446 {
447 	down_write(&md->io_lock);
448 
449 	spin_lock_irq(&md->deferred_lock);
450 	bio_list_add(&md->deferred, bio);
451 	spin_unlock_irq(&md->deferred_lock);
452 
453 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
454 		queue_work(md->wq, &md->work);
455 
456 	up_write(&md->io_lock);
457 }
458 
459 /*
460  * Everyone (including functions in this file), should use this
461  * function to access the md->map field, and make sure they call
462  * dm_table_put() when finished.
463  */
464 struct dm_table *dm_get_table(struct mapped_device *md)
465 {
466 	struct dm_table *t;
467 
468 	read_lock(&md->map_lock);
469 	t = md->map;
470 	if (t)
471 		dm_table_get(t);
472 	read_unlock(&md->map_lock);
473 
474 	return t;
475 }
476 
477 /*
478  * Get the geometry associated with a dm device
479  */
480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
481 {
482 	*geo = md->geometry;
483 
484 	return 0;
485 }
486 
487 /*
488  * Set the geometry of a device.
489  */
490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
491 {
492 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
493 
494 	if (geo->start > sz) {
495 		DMWARN("Start sector is beyond the geometry limits.");
496 		return -EINVAL;
497 	}
498 
499 	md->geometry = *geo;
500 
501 	return 0;
502 }
503 
504 /*-----------------------------------------------------------------
505  * CRUD START:
506  *   A more elegant soln is in the works that uses the queue
507  *   merge fn, unfortunately there are a couple of changes to
508  *   the block layer that I want to make for this.  So in the
509  *   interests of getting something for people to use I give
510  *   you this clearly demarcated crap.
511  *---------------------------------------------------------------*/
512 
513 static int __noflush_suspending(struct mapped_device *md)
514 {
515 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
516 }
517 
518 /*
519  * Decrements the number of outstanding ios that a bio has been
520  * cloned into, completing the original io if necc.
521  */
522 static void dec_pending(struct dm_io *io, int error)
523 {
524 	unsigned long flags;
525 	int io_error;
526 	struct bio *bio;
527 	struct mapped_device *md = io->md;
528 
529 	/* Push-back supersedes any I/O errors */
530 	if (error && !(io->error > 0 && __noflush_suspending(md)))
531 		io->error = error;
532 
533 	if (atomic_dec_and_test(&io->io_count)) {
534 		if (io->error == DM_ENDIO_REQUEUE) {
535 			/*
536 			 * Target requested pushing back the I/O.
537 			 */
538 			spin_lock_irqsave(&md->deferred_lock, flags);
539 			if (__noflush_suspending(md)) {
540 				if (!bio_barrier(io->bio))
541 					bio_list_add_head(&md->deferred,
542 							  io->bio);
543 			} else
544 				/* noflush suspend was interrupted. */
545 				io->error = -EIO;
546 			spin_unlock_irqrestore(&md->deferred_lock, flags);
547 		}
548 
549 		io_error = io->error;
550 		bio = io->bio;
551 
552 		if (bio_barrier(bio)) {
553 			/*
554 			 * There can be just one barrier request so we use
555 			 * a per-device variable for error reporting.
556 			 * Note that you can't touch the bio after end_io_acct
557 			 */
558 			if (!md->barrier_error)
559 				md->barrier_error = io_error;
560 			end_io_acct(io);
561 		} else {
562 			end_io_acct(io);
563 
564 			if (io_error != DM_ENDIO_REQUEUE) {
565 				trace_block_bio_complete(md->queue, bio);
566 
567 				bio_endio(bio, io_error);
568 			}
569 		}
570 
571 		free_io(md, io);
572 	}
573 }
574 
575 static void clone_endio(struct bio *bio, int error)
576 {
577 	int r = 0;
578 	struct dm_target_io *tio = bio->bi_private;
579 	struct dm_io *io = tio->io;
580 	struct mapped_device *md = tio->io->md;
581 	dm_endio_fn endio = tio->ti->type->end_io;
582 
583 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
584 		error = -EIO;
585 
586 	if (endio) {
587 		r = endio(tio->ti, bio, error, &tio->info);
588 		if (r < 0 || r == DM_ENDIO_REQUEUE)
589 			/*
590 			 * error and requeue request are handled
591 			 * in dec_pending().
592 			 */
593 			error = r;
594 		else if (r == DM_ENDIO_INCOMPLETE)
595 			/* The target will handle the io */
596 			return;
597 		else if (r) {
598 			DMWARN("unimplemented target endio return value: %d", r);
599 			BUG();
600 		}
601 	}
602 
603 	/*
604 	 * Store md for cleanup instead of tio which is about to get freed.
605 	 */
606 	bio->bi_private = md->bs;
607 
608 	free_tio(md, tio);
609 	bio_put(bio);
610 	dec_pending(io, error);
611 }
612 
613 static sector_t max_io_len(struct mapped_device *md,
614 			   sector_t sector, struct dm_target *ti)
615 {
616 	sector_t offset = sector - ti->begin;
617 	sector_t len = ti->len - offset;
618 
619 	/*
620 	 * Does the target need to split even further ?
621 	 */
622 	if (ti->split_io) {
623 		sector_t boundary;
624 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
625 			   - offset;
626 		if (len > boundary)
627 			len = boundary;
628 	}
629 
630 	return len;
631 }
632 
633 static void __map_bio(struct dm_target *ti, struct bio *clone,
634 		      struct dm_target_io *tio)
635 {
636 	int r;
637 	sector_t sector;
638 	struct mapped_device *md;
639 
640 	/*
641 	 * Sanity checks.
642 	 */
643 	BUG_ON(!clone->bi_size);
644 
645 	clone->bi_end_io = clone_endio;
646 	clone->bi_private = tio;
647 
648 	/*
649 	 * Map the clone.  If r == 0 we don't need to do
650 	 * anything, the target has assumed ownership of
651 	 * this io.
652 	 */
653 	atomic_inc(&tio->io->io_count);
654 	sector = clone->bi_sector;
655 	r = ti->type->map(ti, clone, &tio->info);
656 	if (r == DM_MAPIO_REMAPPED) {
657 		/* the bio has been remapped so dispatch it */
658 
659 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
660 				    tio->io->bio->bi_bdev->bd_dev, sector);
661 
662 		generic_make_request(clone);
663 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
664 		/* error the io and bail out, or requeue it if needed */
665 		md = tio->io->md;
666 		dec_pending(tio->io, r);
667 		/*
668 		 * Store bio_set for cleanup.
669 		 */
670 		clone->bi_private = md->bs;
671 		bio_put(clone);
672 		free_tio(md, tio);
673 	} else if (r) {
674 		DMWARN("unimplemented target map return value: %d", r);
675 		BUG();
676 	}
677 }
678 
679 struct clone_info {
680 	struct mapped_device *md;
681 	struct dm_table *map;
682 	struct bio *bio;
683 	struct dm_io *io;
684 	sector_t sector;
685 	sector_t sector_count;
686 	unsigned short idx;
687 };
688 
689 static void dm_bio_destructor(struct bio *bio)
690 {
691 	struct bio_set *bs = bio->bi_private;
692 
693 	bio_free(bio, bs);
694 }
695 
696 /*
697  * Creates a little bio that is just does part of a bvec.
698  */
699 static struct bio *split_bvec(struct bio *bio, sector_t sector,
700 			      unsigned short idx, unsigned int offset,
701 			      unsigned int len, struct bio_set *bs)
702 {
703 	struct bio *clone;
704 	struct bio_vec *bv = bio->bi_io_vec + idx;
705 
706 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
707 	clone->bi_destructor = dm_bio_destructor;
708 	*clone->bi_io_vec = *bv;
709 
710 	clone->bi_sector = sector;
711 	clone->bi_bdev = bio->bi_bdev;
712 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
713 	clone->bi_vcnt = 1;
714 	clone->bi_size = to_bytes(len);
715 	clone->bi_io_vec->bv_offset = offset;
716 	clone->bi_io_vec->bv_len = clone->bi_size;
717 	clone->bi_flags |= 1 << BIO_CLONED;
718 
719 	if (bio_integrity(bio)) {
720 		bio_integrity_clone(clone, bio, GFP_NOIO);
721 		bio_integrity_trim(clone,
722 				   bio_sector_offset(bio, idx, offset), len);
723 	}
724 
725 	return clone;
726 }
727 
728 /*
729  * Creates a bio that consists of range of complete bvecs.
730  */
731 static struct bio *clone_bio(struct bio *bio, sector_t sector,
732 			     unsigned short idx, unsigned short bv_count,
733 			     unsigned int len, struct bio_set *bs)
734 {
735 	struct bio *clone;
736 
737 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
738 	__bio_clone(clone, bio);
739 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
740 	clone->bi_destructor = dm_bio_destructor;
741 	clone->bi_sector = sector;
742 	clone->bi_idx = idx;
743 	clone->bi_vcnt = idx + bv_count;
744 	clone->bi_size = to_bytes(len);
745 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
746 
747 	if (bio_integrity(bio)) {
748 		bio_integrity_clone(clone, bio, GFP_NOIO);
749 
750 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
751 			bio_integrity_trim(clone,
752 					   bio_sector_offset(bio, idx, 0), len);
753 	}
754 
755 	return clone;
756 }
757 
758 static int __clone_and_map(struct clone_info *ci)
759 {
760 	struct bio *clone, *bio = ci->bio;
761 	struct dm_target *ti;
762 	sector_t len = 0, max;
763 	struct dm_target_io *tio;
764 
765 	ti = dm_table_find_target(ci->map, ci->sector);
766 	if (!dm_target_is_valid(ti))
767 		return -EIO;
768 
769 	max = max_io_len(ci->md, ci->sector, ti);
770 
771 	/*
772 	 * Allocate a target io object.
773 	 */
774 	tio = alloc_tio(ci->md);
775 	tio->io = ci->io;
776 	tio->ti = ti;
777 	memset(&tio->info, 0, sizeof(tio->info));
778 
779 	if (ci->sector_count <= max) {
780 		/*
781 		 * Optimise for the simple case where we can do all of
782 		 * the remaining io with a single clone.
783 		 */
784 		clone = clone_bio(bio, ci->sector, ci->idx,
785 				  bio->bi_vcnt - ci->idx, ci->sector_count,
786 				  ci->md->bs);
787 		__map_bio(ti, clone, tio);
788 		ci->sector_count = 0;
789 
790 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
791 		/*
792 		 * There are some bvecs that don't span targets.
793 		 * Do as many of these as possible.
794 		 */
795 		int i;
796 		sector_t remaining = max;
797 		sector_t bv_len;
798 
799 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
800 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
801 
802 			if (bv_len > remaining)
803 				break;
804 
805 			remaining -= bv_len;
806 			len += bv_len;
807 		}
808 
809 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
810 				  ci->md->bs);
811 		__map_bio(ti, clone, tio);
812 
813 		ci->sector += len;
814 		ci->sector_count -= len;
815 		ci->idx = i;
816 
817 	} else {
818 		/*
819 		 * Handle a bvec that must be split between two or more targets.
820 		 */
821 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
822 		sector_t remaining = to_sector(bv->bv_len);
823 		unsigned int offset = 0;
824 
825 		do {
826 			if (offset) {
827 				ti = dm_table_find_target(ci->map, ci->sector);
828 				if (!dm_target_is_valid(ti))
829 					return -EIO;
830 
831 				max = max_io_len(ci->md, ci->sector, ti);
832 
833 				tio = alloc_tio(ci->md);
834 				tio->io = ci->io;
835 				tio->ti = ti;
836 				memset(&tio->info, 0, sizeof(tio->info));
837 			}
838 
839 			len = min(remaining, max);
840 
841 			clone = split_bvec(bio, ci->sector, ci->idx,
842 					   bv->bv_offset + offset, len,
843 					   ci->md->bs);
844 
845 			__map_bio(ti, clone, tio);
846 
847 			ci->sector += len;
848 			ci->sector_count -= len;
849 			offset += to_bytes(len);
850 		} while (remaining -= len);
851 
852 		ci->idx++;
853 	}
854 
855 	return 0;
856 }
857 
858 /*
859  * Split the bio into several clones and submit it to targets.
860  */
861 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
862 {
863 	struct clone_info ci;
864 	int error = 0;
865 
866 	ci.map = dm_get_table(md);
867 	if (unlikely(!ci.map)) {
868 		if (!bio_barrier(bio))
869 			bio_io_error(bio);
870 		else
871 			if (!md->barrier_error)
872 				md->barrier_error = -EIO;
873 		return;
874 	}
875 
876 	ci.md = md;
877 	ci.bio = bio;
878 	ci.io = alloc_io(md);
879 	ci.io->error = 0;
880 	atomic_set(&ci.io->io_count, 1);
881 	ci.io->bio = bio;
882 	ci.io->md = md;
883 	ci.sector = bio->bi_sector;
884 	ci.sector_count = bio_sectors(bio);
885 	ci.idx = bio->bi_idx;
886 
887 	start_io_acct(ci.io);
888 	while (ci.sector_count && !error)
889 		error = __clone_and_map(&ci);
890 
891 	/* drop the extra reference count */
892 	dec_pending(ci.io, error);
893 	dm_table_put(ci.map);
894 }
895 /*-----------------------------------------------------------------
896  * CRUD END
897  *---------------------------------------------------------------*/
898 
899 static int dm_merge_bvec(struct request_queue *q,
900 			 struct bvec_merge_data *bvm,
901 			 struct bio_vec *biovec)
902 {
903 	struct mapped_device *md = q->queuedata;
904 	struct dm_table *map = dm_get_table(md);
905 	struct dm_target *ti;
906 	sector_t max_sectors;
907 	int max_size = 0;
908 
909 	if (unlikely(!map))
910 		goto out;
911 
912 	ti = dm_table_find_target(map, bvm->bi_sector);
913 	if (!dm_target_is_valid(ti))
914 		goto out_table;
915 
916 	/*
917 	 * Find maximum amount of I/O that won't need splitting
918 	 */
919 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
920 			  (sector_t) BIO_MAX_SECTORS);
921 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
922 	if (max_size < 0)
923 		max_size = 0;
924 
925 	/*
926 	 * merge_bvec_fn() returns number of bytes
927 	 * it can accept at this offset
928 	 * max is precomputed maximal io size
929 	 */
930 	if (max_size && ti->type->merge)
931 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
932 	/*
933 	 * If the target doesn't support merge method and some of the devices
934 	 * provided their merge_bvec method (we know this by looking at
935 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
936 	 * entries.  So always set max_size to 0, and the code below allows
937 	 * just one page.
938 	 */
939 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
940 
941 		max_size = 0;
942 
943 out_table:
944 	dm_table_put(map);
945 
946 out:
947 	/*
948 	 * Always allow an entire first page
949 	 */
950 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
951 		max_size = biovec->bv_len;
952 
953 	return max_size;
954 }
955 
956 /*
957  * The request function that just remaps the bio built up by
958  * dm_merge_bvec.
959  */
960 static int dm_request(struct request_queue *q, struct bio *bio)
961 {
962 	int rw = bio_data_dir(bio);
963 	struct mapped_device *md = q->queuedata;
964 	int cpu;
965 
966 	down_read(&md->io_lock);
967 
968 	cpu = part_stat_lock();
969 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
970 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
971 	part_stat_unlock();
972 
973 	/*
974 	 * If we're suspended or the thread is processing barriers
975 	 * we have to queue this io for later.
976 	 */
977 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
978 	    unlikely(bio_barrier(bio))) {
979 		up_read(&md->io_lock);
980 
981 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
982 		    bio_rw(bio) == READA) {
983 			bio_io_error(bio);
984 			return 0;
985 		}
986 
987 		queue_io(md, bio);
988 
989 		return 0;
990 	}
991 
992 	__split_and_process_bio(md, bio);
993 	up_read(&md->io_lock);
994 	return 0;
995 }
996 
997 static void dm_unplug_all(struct request_queue *q)
998 {
999 	struct mapped_device *md = q->queuedata;
1000 	struct dm_table *map = dm_get_table(md);
1001 
1002 	if (map) {
1003 		dm_table_unplug_all(map);
1004 		dm_table_put(map);
1005 	}
1006 }
1007 
1008 static int dm_any_congested(void *congested_data, int bdi_bits)
1009 {
1010 	int r = bdi_bits;
1011 	struct mapped_device *md = congested_data;
1012 	struct dm_table *map;
1013 
1014 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1015 		map = dm_get_table(md);
1016 		if (map) {
1017 			r = dm_table_any_congested(map, bdi_bits);
1018 			dm_table_put(map);
1019 		}
1020 	}
1021 
1022 	return r;
1023 }
1024 
1025 /*-----------------------------------------------------------------
1026  * An IDR is used to keep track of allocated minor numbers.
1027  *---------------------------------------------------------------*/
1028 static DEFINE_IDR(_minor_idr);
1029 
1030 static void free_minor(int minor)
1031 {
1032 	spin_lock(&_minor_lock);
1033 	idr_remove(&_minor_idr, minor);
1034 	spin_unlock(&_minor_lock);
1035 }
1036 
1037 /*
1038  * See if the device with a specific minor # is free.
1039  */
1040 static int specific_minor(int minor)
1041 {
1042 	int r, m;
1043 
1044 	if (minor >= (1 << MINORBITS))
1045 		return -EINVAL;
1046 
1047 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1048 	if (!r)
1049 		return -ENOMEM;
1050 
1051 	spin_lock(&_minor_lock);
1052 
1053 	if (idr_find(&_minor_idr, minor)) {
1054 		r = -EBUSY;
1055 		goto out;
1056 	}
1057 
1058 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1059 	if (r)
1060 		goto out;
1061 
1062 	if (m != minor) {
1063 		idr_remove(&_minor_idr, m);
1064 		r = -EBUSY;
1065 		goto out;
1066 	}
1067 
1068 out:
1069 	spin_unlock(&_minor_lock);
1070 	return r;
1071 }
1072 
1073 static int next_free_minor(int *minor)
1074 {
1075 	int r, m;
1076 
1077 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1078 	if (!r)
1079 		return -ENOMEM;
1080 
1081 	spin_lock(&_minor_lock);
1082 
1083 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1084 	if (r)
1085 		goto out;
1086 
1087 	if (m >= (1 << MINORBITS)) {
1088 		idr_remove(&_minor_idr, m);
1089 		r = -ENOSPC;
1090 		goto out;
1091 	}
1092 
1093 	*minor = m;
1094 
1095 out:
1096 	spin_unlock(&_minor_lock);
1097 	return r;
1098 }
1099 
1100 static struct block_device_operations dm_blk_dops;
1101 
1102 static void dm_wq_work(struct work_struct *work);
1103 
1104 /*
1105  * Allocate and initialise a blank device with a given minor.
1106  */
1107 static struct mapped_device *alloc_dev(int minor)
1108 {
1109 	int r;
1110 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1111 	void *old_md;
1112 
1113 	if (!md) {
1114 		DMWARN("unable to allocate device, out of memory.");
1115 		return NULL;
1116 	}
1117 
1118 	if (!try_module_get(THIS_MODULE))
1119 		goto bad_module_get;
1120 
1121 	/* get a minor number for the dev */
1122 	if (minor == DM_ANY_MINOR)
1123 		r = next_free_minor(&minor);
1124 	else
1125 		r = specific_minor(minor);
1126 	if (r < 0)
1127 		goto bad_minor;
1128 
1129 	init_rwsem(&md->io_lock);
1130 	mutex_init(&md->suspend_lock);
1131 	spin_lock_init(&md->deferred_lock);
1132 	rwlock_init(&md->map_lock);
1133 	atomic_set(&md->holders, 1);
1134 	atomic_set(&md->open_count, 0);
1135 	atomic_set(&md->event_nr, 0);
1136 	atomic_set(&md->uevent_seq, 0);
1137 	INIT_LIST_HEAD(&md->uevent_list);
1138 	spin_lock_init(&md->uevent_lock);
1139 
1140 	md->queue = blk_alloc_queue(GFP_KERNEL);
1141 	if (!md->queue)
1142 		goto bad_queue;
1143 
1144 	md->queue->queuedata = md;
1145 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1146 	md->queue->backing_dev_info.congested_data = md;
1147 	blk_queue_make_request(md->queue, dm_request);
1148 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1149 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1150 	md->queue->unplug_fn = dm_unplug_all;
1151 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1152 
1153 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1154 	if (!md->io_pool)
1155 		goto bad_io_pool;
1156 
1157 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1158 	if (!md->tio_pool)
1159 		goto bad_tio_pool;
1160 
1161 	md->bs = bioset_create(16, 0);
1162 	if (!md->bs)
1163 		goto bad_no_bioset;
1164 
1165 	md->disk = alloc_disk(1);
1166 	if (!md->disk)
1167 		goto bad_disk;
1168 
1169 	atomic_set(&md->pending, 0);
1170 	init_waitqueue_head(&md->wait);
1171 	INIT_WORK(&md->work, dm_wq_work);
1172 	init_waitqueue_head(&md->eventq);
1173 
1174 	md->disk->major = _major;
1175 	md->disk->first_minor = minor;
1176 	md->disk->fops = &dm_blk_dops;
1177 	md->disk->queue = md->queue;
1178 	md->disk->private_data = md;
1179 	sprintf(md->disk->disk_name, "dm-%d", minor);
1180 	add_disk(md->disk);
1181 	format_dev_t(md->name, MKDEV(_major, minor));
1182 
1183 	md->wq = create_singlethread_workqueue("kdmflush");
1184 	if (!md->wq)
1185 		goto bad_thread;
1186 
1187 	md->bdev = bdget_disk(md->disk, 0);
1188 	if (!md->bdev)
1189 		goto bad_bdev;
1190 
1191 	/* Populate the mapping, nobody knows we exist yet */
1192 	spin_lock(&_minor_lock);
1193 	old_md = idr_replace(&_minor_idr, md, minor);
1194 	spin_unlock(&_minor_lock);
1195 
1196 	BUG_ON(old_md != MINOR_ALLOCED);
1197 
1198 	return md;
1199 
1200 bad_bdev:
1201 	destroy_workqueue(md->wq);
1202 bad_thread:
1203 	put_disk(md->disk);
1204 bad_disk:
1205 	bioset_free(md->bs);
1206 bad_no_bioset:
1207 	mempool_destroy(md->tio_pool);
1208 bad_tio_pool:
1209 	mempool_destroy(md->io_pool);
1210 bad_io_pool:
1211 	blk_cleanup_queue(md->queue);
1212 bad_queue:
1213 	free_minor(minor);
1214 bad_minor:
1215 	module_put(THIS_MODULE);
1216 bad_module_get:
1217 	kfree(md);
1218 	return NULL;
1219 }
1220 
1221 static void unlock_fs(struct mapped_device *md);
1222 
1223 static void free_dev(struct mapped_device *md)
1224 {
1225 	int minor = MINOR(disk_devt(md->disk));
1226 
1227 	unlock_fs(md);
1228 	bdput(md->bdev);
1229 	destroy_workqueue(md->wq);
1230 	mempool_destroy(md->tio_pool);
1231 	mempool_destroy(md->io_pool);
1232 	bioset_free(md->bs);
1233 	blk_integrity_unregister(md->disk);
1234 	del_gendisk(md->disk);
1235 	free_minor(minor);
1236 
1237 	spin_lock(&_minor_lock);
1238 	md->disk->private_data = NULL;
1239 	spin_unlock(&_minor_lock);
1240 
1241 	put_disk(md->disk);
1242 	blk_cleanup_queue(md->queue);
1243 	module_put(THIS_MODULE);
1244 	kfree(md);
1245 }
1246 
1247 /*
1248  * Bind a table to the device.
1249  */
1250 static void event_callback(void *context)
1251 {
1252 	unsigned long flags;
1253 	LIST_HEAD(uevents);
1254 	struct mapped_device *md = (struct mapped_device *) context;
1255 
1256 	spin_lock_irqsave(&md->uevent_lock, flags);
1257 	list_splice_init(&md->uevent_list, &uevents);
1258 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1259 
1260 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1261 
1262 	atomic_inc(&md->event_nr);
1263 	wake_up(&md->eventq);
1264 }
1265 
1266 static void __set_size(struct mapped_device *md, sector_t size)
1267 {
1268 	set_capacity(md->disk, size);
1269 
1270 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1271 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1272 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1273 }
1274 
1275 static int __bind(struct mapped_device *md, struct dm_table *t)
1276 {
1277 	struct request_queue *q = md->queue;
1278 	sector_t size;
1279 
1280 	size = dm_table_get_size(t);
1281 
1282 	/*
1283 	 * Wipe any geometry if the size of the table changed.
1284 	 */
1285 	if (size != get_capacity(md->disk))
1286 		memset(&md->geometry, 0, sizeof(md->geometry));
1287 
1288 	__set_size(md, size);
1289 
1290 	if (!size) {
1291 		dm_table_destroy(t);
1292 		return 0;
1293 	}
1294 
1295 	dm_table_event_callback(t, event_callback, md);
1296 
1297 	write_lock(&md->map_lock);
1298 	md->map = t;
1299 	dm_table_set_restrictions(t, q);
1300 	write_unlock(&md->map_lock);
1301 
1302 	return 0;
1303 }
1304 
1305 static void __unbind(struct mapped_device *md)
1306 {
1307 	struct dm_table *map = md->map;
1308 
1309 	if (!map)
1310 		return;
1311 
1312 	dm_table_event_callback(map, NULL, NULL);
1313 	write_lock(&md->map_lock);
1314 	md->map = NULL;
1315 	write_unlock(&md->map_lock);
1316 	dm_table_destroy(map);
1317 }
1318 
1319 /*
1320  * Constructor for a new device.
1321  */
1322 int dm_create(int minor, struct mapped_device **result)
1323 {
1324 	struct mapped_device *md;
1325 
1326 	md = alloc_dev(minor);
1327 	if (!md)
1328 		return -ENXIO;
1329 
1330 	dm_sysfs_init(md);
1331 
1332 	*result = md;
1333 	return 0;
1334 }
1335 
1336 static struct mapped_device *dm_find_md(dev_t dev)
1337 {
1338 	struct mapped_device *md;
1339 	unsigned minor = MINOR(dev);
1340 
1341 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1342 		return NULL;
1343 
1344 	spin_lock(&_minor_lock);
1345 
1346 	md = idr_find(&_minor_idr, minor);
1347 	if (md && (md == MINOR_ALLOCED ||
1348 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1349 		   test_bit(DMF_FREEING, &md->flags))) {
1350 		md = NULL;
1351 		goto out;
1352 	}
1353 
1354 out:
1355 	spin_unlock(&_minor_lock);
1356 
1357 	return md;
1358 }
1359 
1360 struct mapped_device *dm_get_md(dev_t dev)
1361 {
1362 	struct mapped_device *md = dm_find_md(dev);
1363 
1364 	if (md)
1365 		dm_get(md);
1366 
1367 	return md;
1368 }
1369 
1370 void *dm_get_mdptr(struct mapped_device *md)
1371 {
1372 	return md->interface_ptr;
1373 }
1374 
1375 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1376 {
1377 	md->interface_ptr = ptr;
1378 }
1379 
1380 void dm_get(struct mapped_device *md)
1381 {
1382 	atomic_inc(&md->holders);
1383 }
1384 
1385 const char *dm_device_name(struct mapped_device *md)
1386 {
1387 	return md->name;
1388 }
1389 EXPORT_SYMBOL_GPL(dm_device_name);
1390 
1391 void dm_put(struct mapped_device *md)
1392 {
1393 	struct dm_table *map;
1394 
1395 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1396 
1397 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1398 		map = dm_get_table(md);
1399 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1400 			    MINOR(disk_devt(dm_disk(md))));
1401 		set_bit(DMF_FREEING, &md->flags);
1402 		spin_unlock(&_minor_lock);
1403 		if (!dm_suspended(md)) {
1404 			dm_table_presuspend_targets(map);
1405 			dm_table_postsuspend_targets(map);
1406 		}
1407 		dm_sysfs_exit(md);
1408 		dm_table_put(map);
1409 		__unbind(md);
1410 		free_dev(md);
1411 	}
1412 }
1413 EXPORT_SYMBOL_GPL(dm_put);
1414 
1415 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1416 {
1417 	int r = 0;
1418 	DECLARE_WAITQUEUE(wait, current);
1419 
1420 	dm_unplug_all(md->queue);
1421 
1422 	add_wait_queue(&md->wait, &wait);
1423 
1424 	while (1) {
1425 		set_current_state(interruptible);
1426 
1427 		smp_mb();
1428 		if (!atomic_read(&md->pending))
1429 			break;
1430 
1431 		if (interruptible == TASK_INTERRUPTIBLE &&
1432 		    signal_pending(current)) {
1433 			r = -EINTR;
1434 			break;
1435 		}
1436 
1437 		io_schedule();
1438 	}
1439 	set_current_state(TASK_RUNNING);
1440 
1441 	remove_wait_queue(&md->wait, &wait);
1442 
1443 	return r;
1444 }
1445 
1446 static void dm_flush(struct mapped_device *md)
1447 {
1448 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1449 }
1450 
1451 static void process_barrier(struct mapped_device *md, struct bio *bio)
1452 {
1453 	md->barrier_error = 0;
1454 
1455 	dm_flush(md);
1456 
1457 	if (!bio_empty_barrier(bio)) {
1458 		__split_and_process_bio(md, bio);
1459 		dm_flush(md);
1460 	}
1461 
1462 	if (md->barrier_error != DM_ENDIO_REQUEUE)
1463 		bio_endio(bio, md->barrier_error);
1464 	else {
1465 		spin_lock_irq(&md->deferred_lock);
1466 		bio_list_add_head(&md->deferred, bio);
1467 		spin_unlock_irq(&md->deferred_lock);
1468 	}
1469 }
1470 
1471 /*
1472  * Process the deferred bios
1473  */
1474 static void dm_wq_work(struct work_struct *work)
1475 {
1476 	struct mapped_device *md = container_of(work, struct mapped_device,
1477 						work);
1478 	struct bio *c;
1479 
1480 	down_write(&md->io_lock);
1481 
1482 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1483 		spin_lock_irq(&md->deferred_lock);
1484 		c = bio_list_pop(&md->deferred);
1485 		spin_unlock_irq(&md->deferred_lock);
1486 
1487 		if (!c) {
1488 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1489 			break;
1490 		}
1491 
1492 		up_write(&md->io_lock);
1493 
1494 		if (bio_barrier(c))
1495 			process_barrier(md, c);
1496 		else
1497 			__split_and_process_bio(md, c);
1498 
1499 		down_write(&md->io_lock);
1500 	}
1501 
1502 	up_write(&md->io_lock);
1503 }
1504 
1505 static void dm_queue_flush(struct mapped_device *md)
1506 {
1507 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1508 	smp_mb__after_clear_bit();
1509 	queue_work(md->wq, &md->work);
1510 }
1511 
1512 /*
1513  * Swap in a new table (destroying old one).
1514  */
1515 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1516 {
1517 	int r = -EINVAL;
1518 
1519 	mutex_lock(&md->suspend_lock);
1520 
1521 	/* device must be suspended */
1522 	if (!dm_suspended(md))
1523 		goto out;
1524 
1525 	__unbind(md);
1526 	r = __bind(md, table);
1527 
1528 out:
1529 	mutex_unlock(&md->suspend_lock);
1530 	return r;
1531 }
1532 
1533 /*
1534  * Functions to lock and unlock any filesystem running on the
1535  * device.
1536  */
1537 static int lock_fs(struct mapped_device *md)
1538 {
1539 	int r;
1540 
1541 	WARN_ON(md->frozen_sb);
1542 
1543 	md->frozen_sb = freeze_bdev(md->bdev);
1544 	if (IS_ERR(md->frozen_sb)) {
1545 		r = PTR_ERR(md->frozen_sb);
1546 		md->frozen_sb = NULL;
1547 		return r;
1548 	}
1549 
1550 	set_bit(DMF_FROZEN, &md->flags);
1551 
1552 	return 0;
1553 }
1554 
1555 static void unlock_fs(struct mapped_device *md)
1556 {
1557 	if (!test_bit(DMF_FROZEN, &md->flags))
1558 		return;
1559 
1560 	thaw_bdev(md->bdev, md->frozen_sb);
1561 	md->frozen_sb = NULL;
1562 	clear_bit(DMF_FROZEN, &md->flags);
1563 }
1564 
1565 /*
1566  * We need to be able to change a mapping table under a mounted
1567  * filesystem.  For example we might want to move some data in
1568  * the background.  Before the table can be swapped with
1569  * dm_bind_table, dm_suspend must be called to flush any in
1570  * flight bios and ensure that any further io gets deferred.
1571  */
1572 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1573 {
1574 	struct dm_table *map = NULL;
1575 	int r = 0;
1576 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1577 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1578 
1579 	mutex_lock(&md->suspend_lock);
1580 
1581 	if (dm_suspended(md)) {
1582 		r = -EINVAL;
1583 		goto out_unlock;
1584 	}
1585 
1586 	map = dm_get_table(md);
1587 
1588 	/*
1589 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1590 	 * This flag is cleared before dm_suspend returns.
1591 	 */
1592 	if (noflush)
1593 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1594 
1595 	/* This does not get reverted if there's an error later. */
1596 	dm_table_presuspend_targets(map);
1597 
1598 	/*
1599 	 * Flush I/O to the device. noflush supersedes do_lockfs,
1600 	 * because lock_fs() needs to flush I/Os.
1601 	 */
1602 	if (!noflush && do_lockfs) {
1603 		r = lock_fs(md);
1604 		if (r)
1605 			goto out;
1606 	}
1607 
1608 	/*
1609 	 * Here we must make sure that no processes are submitting requests
1610 	 * to target drivers i.e. no one may be executing
1611 	 * __split_and_process_bio. This is called from dm_request and
1612 	 * dm_wq_work.
1613 	 *
1614 	 * To get all processes out of __split_and_process_bio in dm_request,
1615 	 * we take the write lock. To prevent any process from reentering
1616 	 * __split_and_process_bio from dm_request, we set
1617 	 * DMF_QUEUE_IO_TO_THREAD.
1618 	 *
1619 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1620 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1621 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1622 	 * further calls to __split_and_process_bio from dm_wq_work.
1623 	 */
1624 	down_write(&md->io_lock);
1625 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1626 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1627 	up_write(&md->io_lock);
1628 
1629 	flush_workqueue(md->wq);
1630 
1631 	/*
1632 	 * At this point no more requests are entering target request routines.
1633 	 * We call dm_wait_for_completion to wait for all existing requests
1634 	 * to finish.
1635 	 */
1636 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1637 
1638 	down_write(&md->io_lock);
1639 	if (noflush)
1640 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1641 	up_write(&md->io_lock);
1642 
1643 	/* were we interrupted ? */
1644 	if (r < 0) {
1645 		dm_queue_flush(md);
1646 
1647 		unlock_fs(md);
1648 		goto out; /* pushback list is already flushed, so skip flush */
1649 	}
1650 
1651 	/*
1652 	 * If dm_wait_for_completion returned 0, the device is completely
1653 	 * quiescent now. There is no request-processing activity. All new
1654 	 * requests are being added to md->deferred list.
1655 	 */
1656 
1657 	dm_table_postsuspend_targets(map);
1658 
1659 	set_bit(DMF_SUSPENDED, &md->flags);
1660 
1661 out:
1662 	dm_table_put(map);
1663 
1664 out_unlock:
1665 	mutex_unlock(&md->suspend_lock);
1666 	return r;
1667 }
1668 
1669 int dm_resume(struct mapped_device *md)
1670 {
1671 	int r = -EINVAL;
1672 	struct dm_table *map = NULL;
1673 
1674 	mutex_lock(&md->suspend_lock);
1675 	if (!dm_suspended(md))
1676 		goto out;
1677 
1678 	map = dm_get_table(md);
1679 	if (!map || !dm_table_get_size(map))
1680 		goto out;
1681 
1682 	r = dm_table_resume_targets(map);
1683 	if (r)
1684 		goto out;
1685 
1686 	dm_queue_flush(md);
1687 
1688 	unlock_fs(md);
1689 
1690 	clear_bit(DMF_SUSPENDED, &md->flags);
1691 
1692 	dm_table_unplug_all(map);
1693 
1694 	dm_kobject_uevent(md);
1695 
1696 	r = 0;
1697 
1698 out:
1699 	dm_table_put(map);
1700 	mutex_unlock(&md->suspend_lock);
1701 
1702 	return r;
1703 }
1704 
1705 /*-----------------------------------------------------------------
1706  * Event notification.
1707  *---------------------------------------------------------------*/
1708 void dm_kobject_uevent(struct mapped_device *md)
1709 {
1710 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1711 }
1712 
1713 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1714 {
1715 	return atomic_add_return(1, &md->uevent_seq);
1716 }
1717 
1718 uint32_t dm_get_event_nr(struct mapped_device *md)
1719 {
1720 	return atomic_read(&md->event_nr);
1721 }
1722 
1723 int dm_wait_event(struct mapped_device *md, int event_nr)
1724 {
1725 	return wait_event_interruptible(md->eventq,
1726 			(event_nr != atomic_read(&md->event_nr)));
1727 }
1728 
1729 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1730 {
1731 	unsigned long flags;
1732 
1733 	spin_lock_irqsave(&md->uevent_lock, flags);
1734 	list_add(elist, &md->uevent_list);
1735 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1736 }
1737 
1738 /*
1739  * The gendisk is only valid as long as you have a reference
1740  * count on 'md'.
1741  */
1742 struct gendisk *dm_disk(struct mapped_device *md)
1743 {
1744 	return md->disk;
1745 }
1746 
1747 struct kobject *dm_kobject(struct mapped_device *md)
1748 {
1749 	return &md->kobj;
1750 }
1751 
1752 /*
1753  * struct mapped_device should not be exported outside of dm.c
1754  * so use this check to verify that kobj is part of md structure
1755  */
1756 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1757 {
1758 	struct mapped_device *md;
1759 
1760 	md = container_of(kobj, struct mapped_device, kobj);
1761 	if (&md->kobj != kobj)
1762 		return NULL;
1763 
1764 	if (test_bit(DMF_FREEING, &md->flags) ||
1765 	    test_bit(DMF_DELETING, &md->flags))
1766 		return NULL;
1767 
1768 	dm_get(md);
1769 	return md;
1770 }
1771 
1772 int dm_suspended(struct mapped_device *md)
1773 {
1774 	return test_bit(DMF_SUSPENDED, &md->flags);
1775 }
1776 
1777 int dm_noflush_suspending(struct dm_target *ti)
1778 {
1779 	struct mapped_device *md = dm_table_get_md(ti->table);
1780 	int r = __noflush_suspending(md);
1781 
1782 	dm_put(md);
1783 
1784 	return r;
1785 }
1786 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1787 
1788 static struct block_device_operations dm_blk_dops = {
1789 	.open = dm_blk_open,
1790 	.release = dm_blk_close,
1791 	.ioctl = dm_blk_ioctl,
1792 	.getgeo = dm_blk_getgeo,
1793 	.owner = THIS_MODULE
1794 };
1795 
1796 EXPORT_SYMBOL(dm_get_mapinfo);
1797 
1798 /*
1799  * module hooks
1800  */
1801 module_init(dm_init);
1802 module_exit(dm_exit);
1803 
1804 module_param(major, uint, 0);
1805 MODULE_PARM_DESC(major, "The major number of the device mapper");
1806 MODULE_DESCRIPTION(DM_NAME " driver");
1807 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1808 MODULE_LICENSE("GPL");
1809