1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pr.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 static struct workqueue_struct *deferred_remove_workqueue; 58 59 /* 60 * One of these is allocated per bio. 61 */ 62 struct dm_io { 63 struct mapped_device *md; 64 int error; 65 atomic_t io_count; 66 struct bio *bio; 67 unsigned long start_time; 68 spinlock_t endio_lock; 69 struct dm_stats_aux stats_aux; 70 }; 71 72 #define MINOR_ALLOCED ((void *)-1) 73 74 /* 75 * Bits for the md->flags field. 76 */ 77 #define DMF_BLOCK_IO_FOR_SUSPEND 0 78 #define DMF_SUSPENDED 1 79 #define DMF_FROZEN 2 80 #define DMF_FREEING 3 81 #define DMF_DELETING 4 82 #define DMF_NOFLUSH_SUSPENDING 5 83 #define DMF_DEFERRED_REMOVE 6 84 #define DMF_SUSPENDED_INTERNALLY 7 85 86 #define DM_NUMA_NODE NUMA_NO_NODE 87 static int dm_numa_node = DM_NUMA_NODE; 88 89 /* 90 * For mempools pre-allocation at the table loading time. 91 */ 92 struct dm_md_mempools { 93 mempool_t *io_pool; 94 mempool_t *rq_pool; 95 struct bio_set *bs; 96 }; 97 98 struct table_device { 99 struct list_head list; 100 atomic_t count; 101 struct dm_dev dm_dev; 102 }; 103 104 static struct kmem_cache *_io_cache; 105 static struct kmem_cache *_rq_tio_cache; 106 static struct kmem_cache *_rq_cache; 107 108 /* 109 * Bio-based DM's mempools' reserved IOs set by the user. 110 */ 111 #define RESERVED_BIO_BASED_IOS 16 112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 113 114 static int __dm_get_module_param_int(int *module_param, int min, int max) 115 { 116 int param = ACCESS_ONCE(*module_param); 117 int modified_param = 0; 118 bool modified = true; 119 120 if (param < min) 121 modified_param = min; 122 else if (param > max) 123 modified_param = max; 124 else 125 modified = false; 126 127 if (modified) { 128 (void)cmpxchg(module_param, param, modified_param); 129 param = modified_param; 130 } 131 132 return param; 133 } 134 135 unsigned __dm_get_module_param(unsigned *module_param, 136 unsigned def, unsigned max) 137 { 138 unsigned param = ACCESS_ONCE(*module_param); 139 unsigned modified_param = 0; 140 141 if (!param) 142 modified_param = def; 143 else if (param > max) 144 modified_param = max; 145 146 if (modified_param) { 147 (void)cmpxchg(module_param, param, modified_param); 148 param = modified_param; 149 } 150 151 return param; 152 } 153 154 unsigned dm_get_reserved_bio_based_ios(void) 155 { 156 return __dm_get_module_param(&reserved_bio_based_ios, 157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 158 } 159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 160 161 static unsigned dm_get_numa_node(void) 162 { 163 return __dm_get_module_param_int(&dm_numa_node, 164 DM_NUMA_NODE, num_online_nodes() - 1); 165 } 166 167 static int __init local_init(void) 168 { 169 int r = -ENOMEM; 170 171 /* allocate a slab for the dm_ios */ 172 _io_cache = KMEM_CACHE(dm_io, 0); 173 if (!_io_cache) 174 return r; 175 176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 177 if (!_rq_tio_cache) 178 goto out_free_io_cache; 179 180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 181 __alignof__(struct request), 0, NULL); 182 if (!_rq_cache) 183 goto out_free_rq_tio_cache; 184 185 r = dm_uevent_init(); 186 if (r) 187 goto out_free_rq_cache; 188 189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 190 if (!deferred_remove_workqueue) { 191 r = -ENOMEM; 192 goto out_uevent_exit; 193 } 194 195 _major = major; 196 r = register_blkdev(_major, _name); 197 if (r < 0) 198 goto out_free_workqueue; 199 200 if (!_major) 201 _major = r; 202 203 return 0; 204 205 out_free_workqueue: 206 destroy_workqueue(deferred_remove_workqueue); 207 out_uevent_exit: 208 dm_uevent_exit(); 209 out_free_rq_cache: 210 kmem_cache_destroy(_rq_cache); 211 out_free_rq_tio_cache: 212 kmem_cache_destroy(_rq_tio_cache); 213 out_free_io_cache: 214 kmem_cache_destroy(_io_cache); 215 216 return r; 217 } 218 219 static void local_exit(void) 220 { 221 flush_scheduled_work(); 222 destroy_workqueue(deferred_remove_workqueue); 223 224 kmem_cache_destroy(_rq_cache); 225 kmem_cache_destroy(_rq_tio_cache); 226 kmem_cache_destroy(_io_cache); 227 unregister_blkdev(_major, _name); 228 dm_uevent_exit(); 229 230 _major = 0; 231 232 DMINFO("cleaned up"); 233 } 234 235 static int (*_inits[])(void) __initdata = { 236 local_init, 237 dm_target_init, 238 dm_linear_init, 239 dm_stripe_init, 240 dm_io_init, 241 dm_kcopyd_init, 242 dm_interface_init, 243 dm_statistics_init, 244 }; 245 246 static void (*_exits[])(void) = { 247 local_exit, 248 dm_target_exit, 249 dm_linear_exit, 250 dm_stripe_exit, 251 dm_io_exit, 252 dm_kcopyd_exit, 253 dm_interface_exit, 254 dm_statistics_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 285 /* 286 * Should be empty by this point. 287 */ 288 idr_destroy(&_minor_idr); 289 } 290 291 /* 292 * Block device functions 293 */ 294 int dm_deleting_md(struct mapped_device *md) 295 { 296 return test_bit(DMF_DELETING, &md->flags); 297 } 298 299 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 300 { 301 struct mapped_device *md; 302 303 spin_lock(&_minor_lock); 304 305 md = bdev->bd_disk->private_data; 306 if (!md) 307 goto out; 308 309 if (test_bit(DMF_FREEING, &md->flags) || 310 dm_deleting_md(md)) { 311 md = NULL; 312 goto out; 313 } 314 315 dm_get(md); 316 atomic_inc(&md->open_count); 317 out: 318 spin_unlock(&_minor_lock); 319 320 return md ? 0 : -ENXIO; 321 } 322 323 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 324 { 325 struct mapped_device *md; 326 327 spin_lock(&_minor_lock); 328 329 md = disk->private_data; 330 if (WARN_ON(!md)) 331 goto out; 332 333 if (atomic_dec_and_test(&md->open_count) && 334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 335 queue_work(deferred_remove_workqueue, &deferred_remove_work); 336 337 dm_put(md); 338 out: 339 spin_unlock(&_minor_lock); 340 } 341 342 int dm_open_count(struct mapped_device *md) 343 { 344 return atomic_read(&md->open_count); 345 } 346 347 /* 348 * Guarantees nothing is using the device before it's deleted. 349 */ 350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 351 { 352 int r = 0; 353 354 spin_lock(&_minor_lock); 355 356 if (dm_open_count(md)) { 357 r = -EBUSY; 358 if (mark_deferred) 359 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 361 r = -EEXIST; 362 else 363 set_bit(DMF_DELETING, &md->flags); 364 365 spin_unlock(&_minor_lock); 366 367 return r; 368 } 369 370 int dm_cancel_deferred_remove(struct mapped_device *md) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (test_bit(DMF_DELETING, &md->flags)) 377 r = -EBUSY; 378 else 379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 381 spin_unlock(&_minor_lock); 382 383 return r; 384 } 385 386 static void do_deferred_remove(struct work_struct *w) 387 { 388 dm_deferred_remove(); 389 } 390 391 sector_t dm_get_size(struct mapped_device *md) 392 { 393 return get_capacity(md->disk); 394 } 395 396 struct request_queue *dm_get_md_queue(struct mapped_device *md) 397 { 398 return md->queue; 399 } 400 401 struct dm_stats *dm_get_stats(struct mapped_device *md) 402 { 403 return &md->stats; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 414 struct block_device **bdev, 415 fmode_t *mode) 416 { 417 struct dm_target *tgt; 418 struct dm_table *map; 419 int srcu_idx, r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, &srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 goto out; 426 427 /* We only support devices that have a single target */ 428 if (dm_table_get_num_targets(map) != 1) 429 goto out; 430 431 tgt = dm_table_get_target(map, 0); 432 if (!tgt->type->prepare_ioctl) 433 goto out; 434 435 if (dm_suspended_md(md)) { 436 r = -EAGAIN; 437 goto out; 438 } 439 440 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 441 if (r < 0) 442 goto out; 443 444 bdgrab(*bdev); 445 dm_put_live_table(md, srcu_idx); 446 return r; 447 448 out: 449 dm_put_live_table(md, srcu_idx); 450 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 451 msleep(10); 452 goto retry; 453 } 454 return r; 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r; 462 463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 464 if (r < 0) 465 return r; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against 470 * a logical partition of the parent bdev; so extra 471 * validation is needed. 472 */ 473 r = scsi_verify_blk_ioctl(NULL, cmd); 474 if (r) 475 goto out; 476 } 477 478 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 479 out: 480 bdput(bdev); 481 return r; 482 } 483 484 static struct dm_io *alloc_io(struct mapped_device *md) 485 { 486 return mempool_alloc(md->io_pool, GFP_NOIO); 487 } 488 489 static void free_io(struct mapped_device *md, struct dm_io *io) 490 { 491 mempool_free(io, md->io_pool); 492 } 493 494 static void free_tio(struct dm_target_io *tio) 495 { 496 bio_put(&tio->clone); 497 } 498 499 int md_in_flight(struct mapped_device *md) 500 { 501 return atomic_read(&md->pending[READ]) + 502 atomic_read(&md->pending[WRITE]); 503 } 504 505 static void start_io_acct(struct dm_io *io) 506 { 507 struct mapped_device *md = io->md; 508 struct bio *bio = io->bio; 509 int cpu; 510 int rw = bio_data_dir(bio); 511 512 io->start_time = jiffies; 513 514 cpu = part_stat_lock(); 515 part_round_stats(cpu, &dm_disk(md)->part0); 516 part_stat_unlock(); 517 atomic_set(&dm_disk(md)->part0.in_flight[rw], 518 atomic_inc_return(&md->pending[rw])); 519 520 if (unlikely(dm_stats_used(&md->stats))) 521 dm_stats_account_io(&md->stats, bio_data_dir(bio), 522 bio->bi_iter.bi_sector, bio_sectors(bio), 523 false, 0, &io->stats_aux); 524 } 525 526 static void end_io_acct(struct dm_io *io) 527 { 528 struct mapped_device *md = io->md; 529 struct bio *bio = io->bio; 530 unsigned long duration = jiffies - io->start_time; 531 int pending; 532 int rw = bio_data_dir(bio); 533 534 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 535 536 if (unlikely(dm_stats_used(&md->stats))) 537 dm_stats_account_io(&md->stats, bio_data_dir(bio), 538 bio->bi_iter.bi_sector, bio_sectors(bio), 539 true, duration, &io->stats_aux); 540 541 /* 542 * After this is decremented the bio must not be touched if it is 543 * a flush. 544 */ 545 pending = atomic_dec_return(&md->pending[rw]); 546 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 547 pending += atomic_read(&md->pending[rw^0x1]); 548 549 /* nudge anyone waiting on suspend queue */ 550 if (!pending) 551 wake_up(&md->wait); 552 } 553 554 /* 555 * Add the bio to the list of deferred io. 556 */ 557 static void queue_io(struct mapped_device *md, struct bio *bio) 558 { 559 unsigned long flags; 560 561 spin_lock_irqsave(&md->deferred_lock, flags); 562 bio_list_add(&md->deferred, bio); 563 spin_unlock_irqrestore(&md->deferred_lock, flags); 564 queue_work(md->wq, &md->work); 565 } 566 567 /* 568 * Everyone (including functions in this file), should use this 569 * function to access the md->map field, and make sure they call 570 * dm_put_live_table() when finished. 571 */ 572 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 573 { 574 *srcu_idx = srcu_read_lock(&md->io_barrier); 575 576 return srcu_dereference(md->map, &md->io_barrier); 577 } 578 579 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 580 { 581 srcu_read_unlock(&md->io_barrier, srcu_idx); 582 } 583 584 void dm_sync_table(struct mapped_device *md) 585 { 586 synchronize_srcu(&md->io_barrier); 587 synchronize_rcu_expedited(); 588 } 589 590 /* 591 * A fast alternative to dm_get_live_table/dm_put_live_table. 592 * The caller must not block between these two functions. 593 */ 594 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 595 { 596 rcu_read_lock(); 597 return rcu_dereference(md->map); 598 } 599 600 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 601 { 602 rcu_read_unlock(); 603 } 604 605 /* 606 * Open a table device so we can use it as a map destination. 607 */ 608 static int open_table_device(struct table_device *td, dev_t dev, 609 struct mapped_device *md) 610 { 611 static char *_claim_ptr = "I belong to device-mapper"; 612 struct block_device *bdev; 613 614 int r; 615 616 BUG_ON(td->dm_dev.bdev); 617 618 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 619 if (IS_ERR(bdev)) 620 return PTR_ERR(bdev); 621 622 r = bd_link_disk_holder(bdev, dm_disk(md)); 623 if (r) { 624 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 625 return r; 626 } 627 628 td->dm_dev.bdev = bdev; 629 return 0; 630 } 631 632 /* 633 * Close a table device that we've been using. 634 */ 635 static void close_table_device(struct table_device *td, struct mapped_device *md) 636 { 637 if (!td->dm_dev.bdev) 638 return; 639 640 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 641 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 642 td->dm_dev.bdev = NULL; 643 } 644 645 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 646 fmode_t mode) { 647 struct table_device *td; 648 649 list_for_each_entry(td, l, list) 650 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 651 return td; 652 653 return NULL; 654 } 655 656 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 657 struct dm_dev **result) { 658 int r; 659 struct table_device *td; 660 661 mutex_lock(&md->table_devices_lock); 662 td = find_table_device(&md->table_devices, dev, mode); 663 if (!td) { 664 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 665 if (!td) { 666 mutex_unlock(&md->table_devices_lock); 667 return -ENOMEM; 668 } 669 670 td->dm_dev.mode = mode; 671 td->dm_dev.bdev = NULL; 672 673 if ((r = open_table_device(td, dev, md))) { 674 mutex_unlock(&md->table_devices_lock); 675 kfree(td); 676 return r; 677 } 678 679 format_dev_t(td->dm_dev.name, dev); 680 681 atomic_set(&td->count, 0); 682 list_add(&td->list, &md->table_devices); 683 } 684 atomic_inc(&td->count); 685 mutex_unlock(&md->table_devices_lock); 686 687 *result = &td->dm_dev; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(dm_get_table_device); 691 692 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 693 { 694 struct table_device *td = container_of(d, struct table_device, dm_dev); 695 696 mutex_lock(&md->table_devices_lock); 697 if (atomic_dec_and_test(&td->count)) { 698 close_table_device(td, md); 699 list_del(&td->list); 700 kfree(td); 701 } 702 mutex_unlock(&md->table_devices_lock); 703 } 704 EXPORT_SYMBOL(dm_put_table_device); 705 706 static void free_table_devices(struct list_head *devices) 707 { 708 struct list_head *tmp, *next; 709 710 list_for_each_safe(tmp, next, devices) { 711 struct table_device *td = list_entry(tmp, struct table_device, list); 712 713 DMWARN("dm_destroy: %s still exists with %d references", 714 td->dm_dev.name, atomic_read(&td->count)); 715 kfree(td); 716 } 717 } 718 719 /* 720 * Get the geometry associated with a dm device 721 */ 722 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 723 { 724 *geo = md->geometry; 725 726 return 0; 727 } 728 729 /* 730 * Set the geometry of a device. 731 */ 732 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 733 { 734 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 735 736 if (geo->start > sz) { 737 DMWARN("Start sector is beyond the geometry limits."); 738 return -EINVAL; 739 } 740 741 md->geometry = *geo; 742 743 return 0; 744 } 745 746 /*----------------------------------------------------------------- 747 * CRUD START: 748 * A more elegant soln is in the works that uses the queue 749 * merge fn, unfortunately there are a couple of changes to 750 * the block layer that I want to make for this. So in the 751 * interests of getting something for people to use I give 752 * you this clearly demarcated crap. 753 *---------------------------------------------------------------*/ 754 755 static int __noflush_suspending(struct mapped_device *md) 756 { 757 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 758 } 759 760 /* 761 * Decrements the number of outstanding ios that a bio has been 762 * cloned into, completing the original io if necc. 763 */ 764 static void dec_pending(struct dm_io *io, int error) 765 { 766 unsigned long flags; 767 int io_error; 768 struct bio *bio; 769 struct mapped_device *md = io->md; 770 771 /* Push-back supersedes any I/O errors */ 772 if (unlikely(error)) { 773 spin_lock_irqsave(&io->endio_lock, flags); 774 if (!(io->error > 0 && __noflush_suspending(md))) 775 io->error = error; 776 spin_unlock_irqrestore(&io->endio_lock, flags); 777 } 778 779 if (atomic_dec_and_test(&io->io_count)) { 780 if (io->error == DM_ENDIO_REQUEUE) { 781 /* 782 * Target requested pushing back the I/O. 783 */ 784 spin_lock_irqsave(&md->deferred_lock, flags); 785 if (__noflush_suspending(md)) 786 bio_list_add_head(&md->deferred, io->bio); 787 else 788 /* noflush suspend was interrupted. */ 789 io->error = -EIO; 790 spin_unlock_irqrestore(&md->deferred_lock, flags); 791 } 792 793 io_error = io->error; 794 bio = io->bio; 795 end_io_acct(io); 796 free_io(md, io); 797 798 if (io_error == DM_ENDIO_REQUEUE) 799 return; 800 801 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 802 /* 803 * Preflush done for flush with data, reissue 804 * without REQ_PREFLUSH. 805 */ 806 bio->bi_opf &= ~REQ_PREFLUSH; 807 queue_io(md, bio); 808 } else { 809 /* done with normal IO or empty flush */ 810 trace_block_bio_complete(md->queue, bio, io_error); 811 bio->bi_error = io_error; 812 bio_endio(bio); 813 } 814 } 815 } 816 817 void disable_write_same(struct mapped_device *md) 818 { 819 struct queue_limits *limits = dm_get_queue_limits(md); 820 821 /* device doesn't really support WRITE SAME, disable it */ 822 limits->max_write_same_sectors = 0; 823 } 824 825 static void clone_endio(struct bio *bio) 826 { 827 int error = bio->bi_error; 828 int r = error; 829 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 830 struct dm_io *io = tio->io; 831 struct mapped_device *md = tio->io->md; 832 dm_endio_fn endio = tio->ti->type->end_io; 833 834 if (endio) { 835 r = endio(tio->ti, bio, error); 836 if (r < 0 || r == DM_ENDIO_REQUEUE) 837 /* 838 * error and requeue request are handled 839 * in dec_pending(). 840 */ 841 error = r; 842 else if (r == DM_ENDIO_INCOMPLETE) 843 /* The target will handle the io */ 844 return; 845 else if (r) { 846 DMWARN("unimplemented target endio return value: %d", r); 847 BUG(); 848 } 849 } 850 851 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) && 852 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 853 disable_write_same(md); 854 855 free_tio(tio); 856 dec_pending(io, error); 857 } 858 859 /* 860 * Return maximum size of I/O possible at the supplied sector up to the current 861 * target boundary. 862 */ 863 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 864 { 865 sector_t target_offset = dm_target_offset(ti, sector); 866 867 return ti->len - target_offset; 868 } 869 870 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 871 { 872 sector_t len = max_io_len_target_boundary(sector, ti); 873 sector_t offset, max_len; 874 875 /* 876 * Does the target need to split even further? 877 */ 878 if (ti->max_io_len) { 879 offset = dm_target_offset(ti, sector); 880 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 881 max_len = sector_div(offset, ti->max_io_len); 882 else 883 max_len = offset & (ti->max_io_len - 1); 884 max_len = ti->max_io_len - max_len; 885 886 if (len > max_len) 887 len = max_len; 888 } 889 890 return len; 891 } 892 893 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 894 { 895 if (len > UINT_MAX) { 896 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 897 (unsigned long long)len, UINT_MAX); 898 ti->error = "Maximum size of target IO is too large"; 899 return -EINVAL; 900 } 901 902 ti->max_io_len = (uint32_t) len; 903 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 907 908 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector, 909 void **kaddr, pfn_t *pfn, long size) 910 { 911 struct mapped_device *md = bdev->bd_disk->private_data; 912 struct dm_table *map; 913 struct dm_target *ti; 914 int srcu_idx; 915 long len, ret = -EIO; 916 917 map = dm_get_live_table(md, &srcu_idx); 918 if (!map) 919 goto out; 920 921 ti = dm_table_find_target(map, sector); 922 if (!dm_target_is_valid(ti)) 923 goto out; 924 925 len = max_io_len(sector, ti) << SECTOR_SHIFT; 926 size = min(len, size); 927 928 if (ti->type->direct_access) 929 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size); 930 out: 931 dm_put_live_table(md, srcu_idx); 932 return min(ret, size); 933 } 934 935 /* 936 * A target may call dm_accept_partial_bio only from the map routine. It is 937 * allowed for all bio types except REQ_PREFLUSH. 938 * 939 * dm_accept_partial_bio informs the dm that the target only wants to process 940 * additional n_sectors sectors of the bio and the rest of the data should be 941 * sent in a next bio. 942 * 943 * A diagram that explains the arithmetics: 944 * +--------------------+---------------+-------+ 945 * | 1 | 2 | 3 | 946 * +--------------------+---------------+-------+ 947 * 948 * <-------------- *tio->len_ptr ---------------> 949 * <------- bi_size -------> 950 * <-- n_sectors --> 951 * 952 * Region 1 was already iterated over with bio_advance or similar function. 953 * (it may be empty if the target doesn't use bio_advance) 954 * Region 2 is the remaining bio size that the target wants to process. 955 * (it may be empty if region 1 is non-empty, although there is no reason 956 * to make it empty) 957 * The target requires that region 3 is to be sent in the next bio. 958 * 959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 960 * the partially processed part (the sum of regions 1+2) must be the same for all 961 * copies of the bio. 962 */ 963 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 964 { 965 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 966 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 967 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 968 BUG_ON(bi_size > *tio->len_ptr); 969 BUG_ON(n_sectors > bi_size); 970 *tio->len_ptr -= bi_size - n_sectors; 971 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 972 } 973 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 974 975 static void __map_bio(struct dm_target_io *tio) 976 { 977 int r; 978 sector_t sector; 979 struct bio *clone = &tio->clone; 980 struct dm_target *ti = tio->ti; 981 982 clone->bi_end_io = clone_endio; 983 984 /* 985 * Map the clone. If r == 0 we don't need to do 986 * anything, the target has assumed ownership of 987 * this io. 988 */ 989 atomic_inc(&tio->io->io_count); 990 sector = clone->bi_iter.bi_sector; 991 r = ti->type->map(ti, clone); 992 if (r == DM_MAPIO_REMAPPED) { 993 /* the bio has been remapped so dispatch it */ 994 995 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 996 tio->io->bio->bi_bdev->bd_dev, sector); 997 998 generic_make_request(clone); 999 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1000 /* error the io and bail out, or requeue it if needed */ 1001 dec_pending(tio->io, r); 1002 free_tio(tio); 1003 } else if (r != DM_MAPIO_SUBMITTED) { 1004 DMWARN("unimplemented target map return value: %d", r); 1005 BUG(); 1006 } 1007 } 1008 1009 struct clone_info { 1010 struct mapped_device *md; 1011 struct dm_table *map; 1012 struct bio *bio; 1013 struct dm_io *io; 1014 sector_t sector; 1015 unsigned sector_count; 1016 }; 1017 1018 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1019 { 1020 bio->bi_iter.bi_sector = sector; 1021 bio->bi_iter.bi_size = to_bytes(len); 1022 } 1023 1024 /* 1025 * Creates a bio that consists of range of complete bvecs. 1026 */ 1027 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1028 sector_t sector, unsigned len) 1029 { 1030 struct bio *clone = &tio->clone; 1031 1032 __bio_clone_fast(clone, bio); 1033 1034 if (bio_integrity(bio)) { 1035 int r = bio_integrity_clone(clone, bio, GFP_NOIO); 1036 if (r < 0) 1037 return r; 1038 } 1039 1040 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1041 clone->bi_iter.bi_size = to_bytes(len); 1042 1043 if (bio_integrity(bio)) 1044 bio_integrity_trim(clone, 0, len); 1045 1046 return 0; 1047 } 1048 1049 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1050 struct dm_target *ti, 1051 unsigned target_bio_nr) 1052 { 1053 struct dm_target_io *tio; 1054 struct bio *clone; 1055 1056 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1057 tio = container_of(clone, struct dm_target_io, clone); 1058 1059 tio->io = ci->io; 1060 tio->ti = ti; 1061 tio->target_bio_nr = target_bio_nr; 1062 1063 return tio; 1064 } 1065 1066 static void __clone_and_map_simple_bio(struct clone_info *ci, 1067 struct dm_target *ti, 1068 unsigned target_bio_nr, unsigned *len) 1069 { 1070 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1071 struct bio *clone = &tio->clone; 1072 1073 tio->len_ptr = len; 1074 1075 __bio_clone_fast(clone, ci->bio); 1076 if (len) 1077 bio_setup_sector(clone, ci->sector, *len); 1078 1079 __map_bio(tio); 1080 } 1081 1082 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1083 unsigned num_bios, unsigned *len) 1084 { 1085 unsigned target_bio_nr; 1086 1087 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1088 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1089 } 1090 1091 static int __send_empty_flush(struct clone_info *ci) 1092 { 1093 unsigned target_nr = 0; 1094 struct dm_target *ti; 1095 1096 BUG_ON(bio_has_data(ci->bio)); 1097 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1098 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1099 1100 return 0; 1101 } 1102 1103 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1104 sector_t sector, unsigned *len) 1105 { 1106 struct bio *bio = ci->bio; 1107 struct dm_target_io *tio; 1108 unsigned target_bio_nr; 1109 unsigned num_target_bios = 1; 1110 int r = 0; 1111 1112 /* 1113 * Does the target want to receive duplicate copies of the bio? 1114 */ 1115 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1116 num_target_bios = ti->num_write_bios(ti, bio); 1117 1118 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1119 tio = alloc_tio(ci, ti, target_bio_nr); 1120 tio->len_ptr = len; 1121 r = clone_bio(tio, bio, sector, *len); 1122 if (r < 0) { 1123 free_tio(tio); 1124 break; 1125 } 1126 __map_bio(tio); 1127 } 1128 1129 return r; 1130 } 1131 1132 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1133 1134 static unsigned get_num_discard_bios(struct dm_target *ti) 1135 { 1136 return ti->num_discard_bios; 1137 } 1138 1139 static unsigned get_num_write_same_bios(struct dm_target *ti) 1140 { 1141 return ti->num_write_same_bios; 1142 } 1143 1144 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1145 1146 static bool is_split_required_for_discard(struct dm_target *ti) 1147 { 1148 return ti->split_discard_bios; 1149 } 1150 1151 static int __send_changing_extent_only(struct clone_info *ci, 1152 get_num_bios_fn get_num_bios, 1153 is_split_required_fn is_split_required) 1154 { 1155 struct dm_target *ti; 1156 unsigned len; 1157 unsigned num_bios; 1158 1159 do { 1160 ti = dm_table_find_target(ci->map, ci->sector); 1161 if (!dm_target_is_valid(ti)) 1162 return -EIO; 1163 1164 /* 1165 * Even though the device advertised support for this type of 1166 * request, that does not mean every target supports it, and 1167 * reconfiguration might also have changed that since the 1168 * check was performed. 1169 */ 1170 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1171 if (!num_bios) 1172 return -EOPNOTSUPP; 1173 1174 if (is_split_required && !is_split_required(ti)) 1175 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1176 else 1177 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1178 1179 __send_duplicate_bios(ci, ti, num_bios, &len); 1180 1181 ci->sector += len; 1182 } while (ci->sector_count -= len); 1183 1184 return 0; 1185 } 1186 1187 static int __send_discard(struct clone_info *ci) 1188 { 1189 return __send_changing_extent_only(ci, get_num_discard_bios, 1190 is_split_required_for_discard); 1191 } 1192 1193 static int __send_write_same(struct clone_info *ci) 1194 { 1195 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1196 } 1197 1198 /* 1199 * Select the correct strategy for processing a non-flush bio. 1200 */ 1201 static int __split_and_process_non_flush(struct clone_info *ci) 1202 { 1203 struct bio *bio = ci->bio; 1204 struct dm_target *ti; 1205 unsigned len; 1206 int r; 1207 1208 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1209 return __send_discard(ci); 1210 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1211 return __send_write_same(ci); 1212 1213 ti = dm_table_find_target(ci->map, ci->sector); 1214 if (!dm_target_is_valid(ti)) 1215 return -EIO; 1216 1217 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1218 1219 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1220 if (r < 0) 1221 return r; 1222 1223 ci->sector += len; 1224 ci->sector_count -= len; 1225 1226 return 0; 1227 } 1228 1229 /* 1230 * Entry point to split a bio into clones and submit them to the targets. 1231 */ 1232 static void __split_and_process_bio(struct mapped_device *md, 1233 struct dm_table *map, struct bio *bio) 1234 { 1235 struct clone_info ci; 1236 int error = 0; 1237 1238 if (unlikely(!map)) { 1239 bio_io_error(bio); 1240 return; 1241 } 1242 1243 ci.map = map; 1244 ci.md = md; 1245 ci.io = alloc_io(md); 1246 ci.io->error = 0; 1247 atomic_set(&ci.io->io_count, 1); 1248 ci.io->bio = bio; 1249 ci.io->md = md; 1250 spin_lock_init(&ci.io->endio_lock); 1251 ci.sector = bio->bi_iter.bi_sector; 1252 1253 start_io_acct(ci.io); 1254 1255 if (bio->bi_opf & REQ_PREFLUSH) { 1256 ci.bio = &ci.md->flush_bio; 1257 ci.sector_count = 0; 1258 error = __send_empty_flush(&ci); 1259 /* dec_pending submits any data associated with flush */ 1260 } else { 1261 ci.bio = bio; 1262 ci.sector_count = bio_sectors(bio); 1263 while (ci.sector_count && !error) 1264 error = __split_and_process_non_flush(&ci); 1265 } 1266 1267 /* drop the extra reference count */ 1268 dec_pending(ci.io, error); 1269 } 1270 /*----------------------------------------------------------------- 1271 * CRUD END 1272 *---------------------------------------------------------------*/ 1273 1274 /* 1275 * The request function that just remaps the bio built up by 1276 * dm_merge_bvec. 1277 */ 1278 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1279 { 1280 int rw = bio_data_dir(bio); 1281 struct mapped_device *md = q->queuedata; 1282 int srcu_idx; 1283 struct dm_table *map; 1284 1285 map = dm_get_live_table(md, &srcu_idx); 1286 1287 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1288 1289 /* if we're suspended, we have to queue this io for later */ 1290 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1291 dm_put_live_table(md, srcu_idx); 1292 1293 if (!(bio->bi_opf & REQ_RAHEAD)) 1294 queue_io(md, bio); 1295 else 1296 bio_io_error(bio); 1297 return BLK_QC_T_NONE; 1298 } 1299 1300 __split_and_process_bio(md, map, bio); 1301 dm_put_live_table(md, srcu_idx); 1302 return BLK_QC_T_NONE; 1303 } 1304 1305 static int dm_any_congested(void *congested_data, int bdi_bits) 1306 { 1307 int r = bdi_bits; 1308 struct mapped_device *md = congested_data; 1309 struct dm_table *map; 1310 1311 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1312 if (dm_request_based(md)) { 1313 /* 1314 * With request-based DM we only need to check the 1315 * top-level queue for congestion. 1316 */ 1317 r = md->queue->backing_dev_info.wb.state & bdi_bits; 1318 } else { 1319 map = dm_get_live_table_fast(md); 1320 if (map) 1321 r = dm_table_any_congested(map, bdi_bits); 1322 dm_put_live_table_fast(md); 1323 } 1324 } 1325 1326 return r; 1327 } 1328 1329 /*----------------------------------------------------------------- 1330 * An IDR is used to keep track of allocated minor numbers. 1331 *---------------------------------------------------------------*/ 1332 static void free_minor(int minor) 1333 { 1334 spin_lock(&_minor_lock); 1335 idr_remove(&_minor_idr, minor); 1336 spin_unlock(&_minor_lock); 1337 } 1338 1339 /* 1340 * See if the device with a specific minor # is free. 1341 */ 1342 static int specific_minor(int minor) 1343 { 1344 int r; 1345 1346 if (minor >= (1 << MINORBITS)) 1347 return -EINVAL; 1348 1349 idr_preload(GFP_KERNEL); 1350 spin_lock(&_minor_lock); 1351 1352 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1353 1354 spin_unlock(&_minor_lock); 1355 idr_preload_end(); 1356 if (r < 0) 1357 return r == -ENOSPC ? -EBUSY : r; 1358 return 0; 1359 } 1360 1361 static int next_free_minor(int *minor) 1362 { 1363 int r; 1364 1365 idr_preload(GFP_KERNEL); 1366 spin_lock(&_minor_lock); 1367 1368 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1369 1370 spin_unlock(&_minor_lock); 1371 idr_preload_end(); 1372 if (r < 0) 1373 return r; 1374 *minor = r; 1375 return 0; 1376 } 1377 1378 static const struct block_device_operations dm_blk_dops; 1379 1380 static void dm_wq_work(struct work_struct *work); 1381 1382 void dm_init_md_queue(struct mapped_device *md) 1383 { 1384 /* 1385 * Request-based dm devices cannot be stacked on top of bio-based dm 1386 * devices. The type of this dm device may not have been decided yet. 1387 * The type is decided at the first table loading time. 1388 * To prevent problematic device stacking, clear the queue flag 1389 * for request stacking support until then. 1390 * 1391 * This queue is new, so no concurrency on the queue_flags. 1392 */ 1393 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1394 1395 /* 1396 * Initialize data that will only be used by a non-blk-mq DM queue 1397 * - must do so here (in alloc_dev callchain) before queue is used 1398 */ 1399 md->queue->queuedata = md; 1400 md->queue->backing_dev_info.congested_data = md; 1401 } 1402 1403 void dm_init_normal_md_queue(struct mapped_device *md) 1404 { 1405 md->use_blk_mq = false; 1406 dm_init_md_queue(md); 1407 1408 /* 1409 * Initialize aspects of queue that aren't relevant for blk-mq 1410 */ 1411 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1412 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1413 } 1414 1415 static void cleanup_mapped_device(struct mapped_device *md) 1416 { 1417 if (md->wq) 1418 destroy_workqueue(md->wq); 1419 if (md->kworker_task) 1420 kthread_stop(md->kworker_task); 1421 mempool_destroy(md->io_pool); 1422 mempool_destroy(md->rq_pool); 1423 if (md->bs) 1424 bioset_free(md->bs); 1425 1426 cleanup_srcu_struct(&md->io_barrier); 1427 1428 if (md->disk) { 1429 spin_lock(&_minor_lock); 1430 md->disk->private_data = NULL; 1431 spin_unlock(&_minor_lock); 1432 del_gendisk(md->disk); 1433 put_disk(md->disk); 1434 } 1435 1436 if (md->queue) 1437 blk_cleanup_queue(md->queue); 1438 1439 if (md->bdev) { 1440 bdput(md->bdev); 1441 md->bdev = NULL; 1442 } 1443 1444 dm_mq_cleanup_mapped_device(md); 1445 } 1446 1447 /* 1448 * Allocate and initialise a blank device with a given minor. 1449 */ 1450 static struct mapped_device *alloc_dev(int minor) 1451 { 1452 int r, numa_node_id = dm_get_numa_node(); 1453 struct mapped_device *md; 1454 void *old_md; 1455 1456 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1457 if (!md) { 1458 DMWARN("unable to allocate device, out of memory."); 1459 return NULL; 1460 } 1461 1462 if (!try_module_get(THIS_MODULE)) 1463 goto bad_module_get; 1464 1465 /* get a minor number for the dev */ 1466 if (minor == DM_ANY_MINOR) 1467 r = next_free_minor(&minor); 1468 else 1469 r = specific_minor(minor); 1470 if (r < 0) 1471 goto bad_minor; 1472 1473 r = init_srcu_struct(&md->io_barrier); 1474 if (r < 0) 1475 goto bad_io_barrier; 1476 1477 md->numa_node_id = numa_node_id; 1478 md->use_blk_mq = dm_use_blk_mq_default(); 1479 md->init_tio_pdu = false; 1480 md->type = DM_TYPE_NONE; 1481 mutex_init(&md->suspend_lock); 1482 mutex_init(&md->type_lock); 1483 mutex_init(&md->table_devices_lock); 1484 spin_lock_init(&md->deferred_lock); 1485 atomic_set(&md->holders, 1); 1486 atomic_set(&md->open_count, 0); 1487 atomic_set(&md->event_nr, 0); 1488 atomic_set(&md->uevent_seq, 0); 1489 INIT_LIST_HEAD(&md->uevent_list); 1490 INIT_LIST_HEAD(&md->table_devices); 1491 spin_lock_init(&md->uevent_lock); 1492 1493 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1494 if (!md->queue) 1495 goto bad; 1496 1497 dm_init_md_queue(md); 1498 1499 md->disk = alloc_disk_node(1, numa_node_id); 1500 if (!md->disk) 1501 goto bad; 1502 1503 atomic_set(&md->pending[0], 0); 1504 atomic_set(&md->pending[1], 0); 1505 init_waitqueue_head(&md->wait); 1506 INIT_WORK(&md->work, dm_wq_work); 1507 init_waitqueue_head(&md->eventq); 1508 init_completion(&md->kobj_holder.completion); 1509 md->kworker_task = NULL; 1510 1511 md->disk->major = _major; 1512 md->disk->first_minor = minor; 1513 md->disk->fops = &dm_blk_dops; 1514 md->disk->queue = md->queue; 1515 md->disk->private_data = md; 1516 sprintf(md->disk->disk_name, "dm-%d", minor); 1517 add_disk(md->disk); 1518 format_dev_t(md->name, MKDEV(_major, minor)); 1519 1520 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1521 if (!md->wq) 1522 goto bad; 1523 1524 md->bdev = bdget_disk(md->disk, 0); 1525 if (!md->bdev) 1526 goto bad; 1527 1528 bio_init(&md->flush_bio); 1529 md->flush_bio.bi_bdev = md->bdev; 1530 bio_set_op_attrs(&md->flush_bio, REQ_OP_WRITE, WRITE_FLUSH); 1531 1532 dm_stats_init(&md->stats); 1533 1534 /* Populate the mapping, nobody knows we exist yet */ 1535 spin_lock(&_minor_lock); 1536 old_md = idr_replace(&_minor_idr, md, minor); 1537 spin_unlock(&_minor_lock); 1538 1539 BUG_ON(old_md != MINOR_ALLOCED); 1540 1541 return md; 1542 1543 bad: 1544 cleanup_mapped_device(md); 1545 bad_io_barrier: 1546 free_minor(minor); 1547 bad_minor: 1548 module_put(THIS_MODULE); 1549 bad_module_get: 1550 kfree(md); 1551 return NULL; 1552 } 1553 1554 static void unlock_fs(struct mapped_device *md); 1555 1556 static void free_dev(struct mapped_device *md) 1557 { 1558 int minor = MINOR(disk_devt(md->disk)); 1559 1560 unlock_fs(md); 1561 1562 cleanup_mapped_device(md); 1563 1564 free_table_devices(&md->table_devices); 1565 dm_stats_cleanup(&md->stats); 1566 free_minor(minor); 1567 1568 module_put(THIS_MODULE); 1569 kfree(md); 1570 } 1571 1572 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1573 { 1574 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1575 1576 if (md->bs) { 1577 /* The md already has necessary mempools. */ 1578 if (dm_table_bio_based(t)) { 1579 /* 1580 * Reload bioset because front_pad may have changed 1581 * because a different table was loaded. 1582 */ 1583 bioset_free(md->bs); 1584 md->bs = p->bs; 1585 p->bs = NULL; 1586 } 1587 /* 1588 * There's no need to reload with request-based dm 1589 * because the size of front_pad doesn't change. 1590 * Note for future: If you are to reload bioset, 1591 * prep-ed requests in the queue may refer 1592 * to bio from the old bioset, so you must walk 1593 * through the queue to unprep. 1594 */ 1595 goto out; 1596 } 1597 1598 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 1599 1600 md->io_pool = p->io_pool; 1601 p->io_pool = NULL; 1602 md->rq_pool = p->rq_pool; 1603 p->rq_pool = NULL; 1604 md->bs = p->bs; 1605 p->bs = NULL; 1606 1607 out: 1608 /* mempool bind completed, no longer need any mempools in the table */ 1609 dm_table_free_md_mempools(t); 1610 } 1611 1612 /* 1613 * Bind a table to the device. 1614 */ 1615 static void event_callback(void *context) 1616 { 1617 unsigned long flags; 1618 LIST_HEAD(uevents); 1619 struct mapped_device *md = (struct mapped_device *) context; 1620 1621 spin_lock_irqsave(&md->uevent_lock, flags); 1622 list_splice_init(&md->uevent_list, &uevents); 1623 spin_unlock_irqrestore(&md->uevent_lock, flags); 1624 1625 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1626 1627 atomic_inc(&md->event_nr); 1628 wake_up(&md->eventq); 1629 } 1630 1631 /* 1632 * Protected by md->suspend_lock obtained by dm_swap_table(). 1633 */ 1634 static void __set_size(struct mapped_device *md, sector_t size) 1635 { 1636 set_capacity(md->disk, size); 1637 1638 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1639 } 1640 1641 /* 1642 * Returns old map, which caller must destroy. 1643 */ 1644 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1645 struct queue_limits *limits) 1646 { 1647 struct dm_table *old_map; 1648 struct request_queue *q = md->queue; 1649 sector_t size; 1650 1651 lockdep_assert_held(&md->suspend_lock); 1652 1653 size = dm_table_get_size(t); 1654 1655 /* 1656 * Wipe any geometry if the size of the table changed. 1657 */ 1658 if (size != dm_get_size(md)) 1659 memset(&md->geometry, 0, sizeof(md->geometry)); 1660 1661 __set_size(md, size); 1662 1663 dm_table_event_callback(t, event_callback, md); 1664 1665 /* 1666 * The queue hasn't been stopped yet, if the old table type wasn't 1667 * for request-based during suspension. So stop it to prevent 1668 * I/O mapping before resume. 1669 * This must be done before setting the queue restrictions, 1670 * because request-based dm may be run just after the setting. 1671 */ 1672 if (dm_table_request_based(t)) { 1673 dm_stop_queue(q); 1674 /* 1675 * Leverage the fact that request-based DM targets are 1676 * immutable singletons and establish md->immutable_target 1677 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1678 */ 1679 md->immutable_target = dm_table_get_immutable_target(t); 1680 } 1681 1682 __bind_mempools(md, t); 1683 1684 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1685 rcu_assign_pointer(md->map, (void *)t); 1686 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1687 1688 dm_table_set_restrictions(t, q, limits); 1689 if (old_map) 1690 dm_sync_table(md); 1691 1692 return old_map; 1693 } 1694 1695 /* 1696 * Returns unbound table for the caller to free. 1697 */ 1698 static struct dm_table *__unbind(struct mapped_device *md) 1699 { 1700 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1701 1702 if (!map) 1703 return NULL; 1704 1705 dm_table_event_callback(map, NULL, NULL); 1706 RCU_INIT_POINTER(md->map, NULL); 1707 dm_sync_table(md); 1708 1709 return map; 1710 } 1711 1712 /* 1713 * Constructor for a new device. 1714 */ 1715 int dm_create(int minor, struct mapped_device **result) 1716 { 1717 struct mapped_device *md; 1718 1719 md = alloc_dev(minor); 1720 if (!md) 1721 return -ENXIO; 1722 1723 dm_sysfs_init(md); 1724 1725 *result = md; 1726 return 0; 1727 } 1728 1729 /* 1730 * Functions to manage md->type. 1731 * All are required to hold md->type_lock. 1732 */ 1733 void dm_lock_md_type(struct mapped_device *md) 1734 { 1735 mutex_lock(&md->type_lock); 1736 } 1737 1738 void dm_unlock_md_type(struct mapped_device *md) 1739 { 1740 mutex_unlock(&md->type_lock); 1741 } 1742 1743 void dm_set_md_type(struct mapped_device *md, unsigned type) 1744 { 1745 BUG_ON(!mutex_is_locked(&md->type_lock)); 1746 md->type = type; 1747 } 1748 1749 unsigned dm_get_md_type(struct mapped_device *md) 1750 { 1751 return md->type; 1752 } 1753 1754 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1755 { 1756 return md->immutable_target_type; 1757 } 1758 1759 /* 1760 * The queue_limits are only valid as long as you have a reference 1761 * count on 'md'. 1762 */ 1763 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1764 { 1765 BUG_ON(!atomic_read(&md->holders)); 1766 return &md->queue->limits; 1767 } 1768 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1769 1770 /* 1771 * Setup the DM device's queue based on md's type 1772 */ 1773 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1774 { 1775 int r; 1776 unsigned type = dm_get_md_type(md); 1777 1778 switch (type) { 1779 case DM_TYPE_REQUEST_BASED: 1780 r = dm_old_init_request_queue(md); 1781 if (r) { 1782 DMERR("Cannot initialize queue for request-based mapped device"); 1783 return r; 1784 } 1785 break; 1786 case DM_TYPE_MQ_REQUEST_BASED: 1787 r = dm_mq_init_request_queue(md, t); 1788 if (r) { 1789 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1790 return r; 1791 } 1792 break; 1793 case DM_TYPE_BIO_BASED: 1794 case DM_TYPE_DAX_BIO_BASED: 1795 dm_init_normal_md_queue(md); 1796 blk_queue_make_request(md->queue, dm_make_request); 1797 /* 1798 * DM handles splitting bios as needed. Free the bio_split bioset 1799 * since it won't be used (saves 1 process per bio-based DM device). 1800 */ 1801 bioset_free(md->queue->bio_split); 1802 md->queue->bio_split = NULL; 1803 1804 if (type == DM_TYPE_DAX_BIO_BASED) 1805 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1806 break; 1807 } 1808 1809 return 0; 1810 } 1811 1812 struct mapped_device *dm_get_md(dev_t dev) 1813 { 1814 struct mapped_device *md; 1815 unsigned minor = MINOR(dev); 1816 1817 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1818 return NULL; 1819 1820 spin_lock(&_minor_lock); 1821 1822 md = idr_find(&_minor_idr, minor); 1823 if (md) { 1824 if ((md == MINOR_ALLOCED || 1825 (MINOR(disk_devt(dm_disk(md))) != minor) || 1826 dm_deleting_md(md) || 1827 test_bit(DMF_FREEING, &md->flags))) { 1828 md = NULL; 1829 goto out; 1830 } 1831 dm_get(md); 1832 } 1833 1834 out: 1835 spin_unlock(&_minor_lock); 1836 1837 return md; 1838 } 1839 EXPORT_SYMBOL_GPL(dm_get_md); 1840 1841 void *dm_get_mdptr(struct mapped_device *md) 1842 { 1843 return md->interface_ptr; 1844 } 1845 1846 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1847 { 1848 md->interface_ptr = ptr; 1849 } 1850 1851 void dm_get(struct mapped_device *md) 1852 { 1853 atomic_inc(&md->holders); 1854 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1855 } 1856 1857 int dm_hold(struct mapped_device *md) 1858 { 1859 spin_lock(&_minor_lock); 1860 if (test_bit(DMF_FREEING, &md->flags)) { 1861 spin_unlock(&_minor_lock); 1862 return -EBUSY; 1863 } 1864 dm_get(md); 1865 spin_unlock(&_minor_lock); 1866 return 0; 1867 } 1868 EXPORT_SYMBOL_GPL(dm_hold); 1869 1870 const char *dm_device_name(struct mapped_device *md) 1871 { 1872 return md->name; 1873 } 1874 EXPORT_SYMBOL_GPL(dm_device_name); 1875 1876 static void __dm_destroy(struct mapped_device *md, bool wait) 1877 { 1878 struct request_queue *q = dm_get_md_queue(md); 1879 struct dm_table *map; 1880 int srcu_idx; 1881 1882 might_sleep(); 1883 1884 spin_lock(&_minor_lock); 1885 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1886 set_bit(DMF_FREEING, &md->flags); 1887 spin_unlock(&_minor_lock); 1888 1889 spin_lock_irq(q->queue_lock); 1890 queue_flag_set(QUEUE_FLAG_DYING, q); 1891 spin_unlock_irq(q->queue_lock); 1892 1893 if (dm_request_based(md) && md->kworker_task) 1894 flush_kthread_worker(&md->kworker); 1895 1896 /* 1897 * Take suspend_lock so that presuspend and postsuspend methods 1898 * do not race with internal suspend. 1899 */ 1900 mutex_lock(&md->suspend_lock); 1901 map = dm_get_live_table(md, &srcu_idx); 1902 if (!dm_suspended_md(md)) { 1903 dm_table_presuspend_targets(map); 1904 dm_table_postsuspend_targets(map); 1905 } 1906 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1907 dm_put_live_table(md, srcu_idx); 1908 mutex_unlock(&md->suspend_lock); 1909 1910 /* 1911 * Rare, but there may be I/O requests still going to complete, 1912 * for example. Wait for all references to disappear. 1913 * No one should increment the reference count of the mapped_device, 1914 * after the mapped_device state becomes DMF_FREEING. 1915 */ 1916 if (wait) 1917 while (atomic_read(&md->holders)) 1918 msleep(1); 1919 else if (atomic_read(&md->holders)) 1920 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 1921 dm_device_name(md), atomic_read(&md->holders)); 1922 1923 dm_sysfs_exit(md); 1924 dm_table_destroy(__unbind(md)); 1925 free_dev(md); 1926 } 1927 1928 void dm_destroy(struct mapped_device *md) 1929 { 1930 __dm_destroy(md, true); 1931 } 1932 1933 void dm_destroy_immediate(struct mapped_device *md) 1934 { 1935 __dm_destroy(md, false); 1936 } 1937 1938 void dm_put(struct mapped_device *md) 1939 { 1940 atomic_dec(&md->holders); 1941 } 1942 EXPORT_SYMBOL_GPL(dm_put); 1943 1944 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 1945 { 1946 int r = 0; 1947 DECLARE_WAITQUEUE(wait, current); 1948 1949 add_wait_queue(&md->wait, &wait); 1950 1951 while (1) { 1952 set_current_state(interruptible); 1953 1954 if (!md_in_flight(md)) 1955 break; 1956 1957 if (interruptible == TASK_INTERRUPTIBLE && 1958 signal_pending(current)) { 1959 r = -EINTR; 1960 break; 1961 } 1962 1963 io_schedule(); 1964 } 1965 set_current_state(TASK_RUNNING); 1966 1967 remove_wait_queue(&md->wait, &wait); 1968 1969 return r; 1970 } 1971 1972 /* 1973 * Process the deferred bios 1974 */ 1975 static void dm_wq_work(struct work_struct *work) 1976 { 1977 struct mapped_device *md = container_of(work, struct mapped_device, 1978 work); 1979 struct bio *c; 1980 int srcu_idx; 1981 struct dm_table *map; 1982 1983 map = dm_get_live_table(md, &srcu_idx); 1984 1985 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1986 spin_lock_irq(&md->deferred_lock); 1987 c = bio_list_pop(&md->deferred); 1988 spin_unlock_irq(&md->deferred_lock); 1989 1990 if (!c) 1991 break; 1992 1993 if (dm_request_based(md)) 1994 generic_make_request(c); 1995 else 1996 __split_and_process_bio(md, map, c); 1997 } 1998 1999 dm_put_live_table(md, srcu_idx); 2000 } 2001 2002 static void dm_queue_flush(struct mapped_device *md) 2003 { 2004 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2005 smp_mb__after_atomic(); 2006 queue_work(md->wq, &md->work); 2007 } 2008 2009 /* 2010 * Swap in a new table, returning the old one for the caller to destroy. 2011 */ 2012 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2013 { 2014 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2015 struct queue_limits limits; 2016 int r; 2017 2018 mutex_lock(&md->suspend_lock); 2019 2020 /* device must be suspended */ 2021 if (!dm_suspended_md(md)) 2022 goto out; 2023 2024 /* 2025 * If the new table has no data devices, retain the existing limits. 2026 * This helps multipath with queue_if_no_path if all paths disappear, 2027 * then new I/O is queued based on these limits, and then some paths 2028 * reappear. 2029 */ 2030 if (dm_table_has_no_data_devices(table)) { 2031 live_map = dm_get_live_table_fast(md); 2032 if (live_map) 2033 limits = md->queue->limits; 2034 dm_put_live_table_fast(md); 2035 } 2036 2037 if (!live_map) { 2038 r = dm_calculate_queue_limits(table, &limits); 2039 if (r) { 2040 map = ERR_PTR(r); 2041 goto out; 2042 } 2043 } 2044 2045 map = __bind(md, table, &limits); 2046 2047 out: 2048 mutex_unlock(&md->suspend_lock); 2049 return map; 2050 } 2051 2052 /* 2053 * Functions to lock and unlock any filesystem running on the 2054 * device. 2055 */ 2056 static int lock_fs(struct mapped_device *md) 2057 { 2058 int r; 2059 2060 WARN_ON(md->frozen_sb); 2061 2062 md->frozen_sb = freeze_bdev(md->bdev); 2063 if (IS_ERR(md->frozen_sb)) { 2064 r = PTR_ERR(md->frozen_sb); 2065 md->frozen_sb = NULL; 2066 return r; 2067 } 2068 2069 set_bit(DMF_FROZEN, &md->flags); 2070 2071 return 0; 2072 } 2073 2074 static void unlock_fs(struct mapped_device *md) 2075 { 2076 if (!test_bit(DMF_FROZEN, &md->flags)) 2077 return; 2078 2079 thaw_bdev(md->bdev, md->frozen_sb); 2080 md->frozen_sb = NULL; 2081 clear_bit(DMF_FROZEN, &md->flags); 2082 } 2083 2084 /* 2085 * If __dm_suspend returns 0, the device is completely quiescent 2086 * now. There is no request-processing activity. All new requests 2087 * are being added to md->deferred list. 2088 * 2089 * Caller must hold md->suspend_lock 2090 */ 2091 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2092 unsigned suspend_flags, int interruptible, 2093 int dmf_suspended_flag) 2094 { 2095 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2096 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2097 int r; 2098 2099 lockdep_assert_held(&md->suspend_lock); 2100 2101 /* 2102 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2103 * This flag is cleared before dm_suspend returns. 2104 */ 2105 if (noflush) 2106 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2107 2108 /* 2109 * This gets reverted if there's an error later and the targets 2110 * provide the .presuspend_undo hook. 2111 */ 2112 dm_table_presuspend_targets(map); 2113 2114 /* 2115 * Flush I/O to the device. 2116 * Any I/O submitted after lock_fs() may not be flushed. 2117 * noflush takes precedence over do_lockfs. 2118 * (lock_fs() flushes I/Os and waits for them to complete.) 2119 */ 2120 if (!noflush && do_lockfs) { 2121 r = lock_fs(md); 2122 if (r) { 2123 dm_table_presuspend_undo_targets(map); 2124 return r; 2125 } 2126 } 2127 2128 /* 2129 * Here we must make sure that no processes are submitting requests 2130 * to target drivers i.e. no one may be executing 2131 * __split_and_process_bio. This is called from dm_request and 2132 * dm_wq_work. 2133 * 2134 * To get all processes out of __split_and_process_bio in dm_request, 2135 * we take the write lock. To prevent any process from reentering 2136 * __split_and_process_bio from dm_request and quiesce the thread 2137 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2138 * flush_workqueue(md->wq). 2139 */ 2140 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2141 if (map) 2142 synchronize_srcu(&md->io_barrier); 2143 2144 /* 2145 * Stop md->queue before flushing md->wq in case request-based 2146 * dm defers requests to md->wq from md->queue. 2147 */ 2148 if (dm_request_based(md)) { 2149 dm_stop_queue(md->queue); 2150 if (md->kworker_task) 2151 flush_kthread_worker(&md->kworker); 2152 } 2153 2154 flush_workqueue(md->wq); 2155 2156 /* 2157 * At this point no more requests are entering target request routines. 2158 * We call dm_wait_for_completion to wait for all existing requests 2159 * to finish. 2160 */ 2161 r = dm_wait_for_completion(md, interruptible); 2162 if (!r) 2163 set_bit(dmf_suspended_flag, &md->flags); 2164 2165 if (noflush) 2166 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2167 if (map) 2168 synchronize_srcu(&md->io_barrier); 2169 2170 /* were we interrupted ? */ 2171 if (r < 0) { 2172 dm_queue_flush(md); 2173 2174 if (dm_request_based(md)) 2175 dm_start_queue(md->queue); 2176 2177 unlock_fs(md); 2178 dm_table_presuspend_undo_targets(map); 2179 /* pushback list is already flushed, so skip flush */ 2180 } 2181 2182 return r; 2183 } 2184 2185 /* 2186 * We need to be able to change a mapping table under a mounted 2187 * filesystem. For example we might want to move some data in 2188 * the background. Before the table can be swapped with 2189 * dm_bind_table, dm_suspend must be called to flush any in 2190 * flight bios and ensure that any further io gets deferred. 2191 */ 2192 /* 2193 * Suspend mechanism in request-based dm. 2194 * 2195 * 1. Flush all I/Os by lock_fs() if needed. 2196 * 2. Stop dispatching any I/O by stopping the request_queue. 2197 * 3. Wait for all in-flight I/Os to be completed or requeued. 2198 * 2199 * To abort suspend, start the request_queue. 2200 */ 2201 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2202 { 2203 struct dm_table *map = NULL; 2204 int r = 0; 2205 2206 retry: 2207 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2208 2209 if (dm_suspended_md(md)) { 2210 r = -EINVAL; 2211 goto out_unlock; 2212 } 2213 2214 if (dm_suspended_internally_md(md)) { 2215 /* already internally suspended, wait for internal resume */ 2216 mutex_unlock(&md->suspend_lock); 2217 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2218 if (r) 2219 return r; 2220 goto retry; 2221 } 2222 2223 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2224 2225 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2226 if (r) 2227 goto out_unlock; 2228 2229 dm_table_postsuspend_targets(map); 2230 2231 out_unlock: 2232 mutex_unlock(&md->suspend_lock); 2233 return r; 2234 } 2235 2236 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2237 { 2238 if (map) { 2239 int r = dm_table_resume_targets(map); 2240 if (r) 2241 return r; 2242 } 2243 2244 dm_queue_flush(md); 2245 2246 /* 2247 * Flushing deferred I/Os must be done after targets are resumed 2248 * so that mapping of targets can work correctly. 2249 * Request-based dm is queueing the deferred I/Os in its request_queue. 2250 */ 2251 if (dm_request_based(md)) 2252 dm_start_queue(md->queue); 2253 2254 unlock_fs(md); 2255 2256 return 0; 2257 } 2258 2259 int dm_resume(struct mapped_device *md) 2260 { 2261 int r; 2262 struct dm_table *map = NULL; 2263 2264 retry: 2265 r = -EINVAL; 2266 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2267 2268 if (!dm_suspended_md(md)) 2269 goto out; 2270 2271 if (dm_suspended_internally_md(md)) { 2272 /* already internally suspended, wait for internal resume */ 2273 mutex_unlock(&md->suspend_lock); 2274 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2275 if (r) 2276 return r; 2277 goto retry; 2278 } 2279 2280 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2281 if (!map || !dm_table_get_size(map)) 2282 goto out; 2283 2284 r = __dm_resume(md, map); 2285 if (r) 2286 goto out; 2287 2288 clear_bit(DMF_SUSPENDED, &md->flags); 2289 out: 2290 mutex_unlock(&md->suspend_lock); 2291 2292 return r; 2293 } 2294 2295 /* 2296 * Internal suspend/resume works like userspace-driven suspend. It waits 2297 * until all bios finish and prevents issuing new bios to the target drivers. 2298 * It may be used only from the kernel. 2299 */ 2300 2301 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2302 { 2303 struct dm_table *map = NULL; 2304 2305 if (md->internal_suspend_count++) 2306 return; /* nested internal suspend */ 2307 2308 if (dm_suspended_md(md)) { 2309 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2310 return; /* nest suspend */ 2311 } 2312 2313 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2314 2315 /* 2316 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2317 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2318 * would require changing .presuspend to return an error -- avoid this 2319 * until there is a need for more elaborate variants of internal suspend. 2320 */ 2321 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2322 DMF_SUSPENDED_INTERNALLY); 2323 2324 dm_table_postsuspend_targets(map); 2325 } 2326 2327 static void __dm_internal_resume(struct mapped_device *md) 2328 { 2329 BUG_ON(!md->internal_suspend_count); 2330 2331 if (--md->internal_suspend_count) 2332 return; /* resume from nested internal suspend */ 2333 2334 if (dm_suspended_md(md)) 2335 goto done; /* resume from nested suspend */ 2336 2337 /* 2338 * NOTE: existing callers don't need to call dm_table_resume_targets 2339 * (which may fail -- so best to avoid it for now by passing NULL map) 2340 */ 2341 (void) __dm_resume(md, NULL); 2342 2343 done: 2344 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2345 smp_mb__after_atomic(); 2346 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2347 } 2348 2349 void dm_internal_suspend_noflush(struct mapped_device *md) 2350 { 2351 mutex_lock(&md->suspend_lock); 2352 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2353 mutex_unlock(&md->suspend_lock); 2354 } 2355 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2356 2357 void dm_internal_resume(struct mapped_device *md) 2358 { 2359 mutex_lock(&md->suspend_lock); 2360 __dm_internal_resume(md); 2361 mutex_unlock(&md->suspend_lock); 2362 } 2363 EXPORT_SYMBOL_GPL(dm_internal_resume); 2364 2365 /* 2366 * Fast variants of internal suspend/resume hold md->suspend_lock, 2367 * which prevents interaction with userspace-driven suspend. 2368 */ 2369 2370 void dm_internal_suspend_fast(struct mapped_device *md) 2371 { 2372 mutex_lock(&md->suspend_lock); 2373 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2374 return; 2375 2376 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2377 synchronize_srcu(&md->io_barrier); 2378 flush_workqueue(md->wq); 2379 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2380 } 2381 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2382 2383 void dm_internal_resume_fast(struct mapped_device *md) 2384 { 2385 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2386 goto done; 2387 2388 dm_queue_flush(md); 2389 2390 done: 2391 mutex_unlock(&md->suspend_lock); 2392 } 2393 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2394 2395 /*----------------------------------------------------------------- 2396 * Event notification. 2397 *---------------------------------------------------------------*/ 2398 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2399 unsigned cookie) 2400 { 2401 char udev_cookie[DM_COOKIE_LENGTH]; 2402 char *envp[] = { udev_cookie, NULL }; 2403 2404 if (!cookie) 2405 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2406 else { 2407 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2408 DM_COOKIE_ENV_VAR_NAME, cookie); 2409 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2410 action, envp); 2411 } 2412 } 2413 2414 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2415 { 2416 return atomic_add_return(1, &md->uevent_seq); 2417 } 2418 2419 uint32_t dm_get_event_nr(struct mapped_device *md) 2420 { 2421 return atomic_read(&md->event_nr); 2422 } 2423 2424 int dm_wait_event(struct mapped_device *md, int event_nr) 2425 { 2426 return wait_event_interruptible(md->eventq, 2427 (event_nr != atomic_read(&md->event_nr))); 2428 } 2429 2430 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2431 { 2432 unsigned long flags; 2433 2434 spin_lock_irqsave(&md->uevent_lock, flags); 2435 list_add(elist, &md->uevent_list); 2436 spin_unlock_irqrestore(&md->uevent_lock, flags); 2437 } 2438 2439 /* 2440 * The gendisk is only valid as long as you have a reference 2441 * count on 'md'. 2442 */ 2443 struct gendisk *dm_disk(struct mapped_device *md) 2444 { 2445 return md->disk; 2446 } 2447 EXPORT_SYMBOL_GPL(dm_disk); 2448 2449 struct kobject *dm_kobject(struct mapped_device *md) 2450 { 2451 return &md->kobj_holder.kobj; 2452 } 2453 2454 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2455 { 2456 struct mapped_device *md; 2457 2458 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2459 2460 if (test_bit(DMF_FREEING, &md->flags) || 2461 dm_deleting_md(md)) 2462 return NULL; 2463 2464 dm_get(md); 2465 return md; 2466 } 2467 2468 int dm_suspended_md(struct mapped_device *md) 2469 { 2470 return test_bit(DMF_SUSPENDED, &md->flags); 2471 } 2472 2473 int dm_suspended_internally_md(struct mapped_device *md) 2474 { 2475 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2476 } 2477 2478 int dm_test_deferred_remove_flag(struct mapped_device *md) 2479 { 2480 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2481 } 2482 2483 int dm_suspended(struct dm_target *ti) 2484 { 2485 return dm_suspended_md(dm_table_get_md(ti->table)); 2486 } 2487 EXPORT_SYMBOL_GPL(dm_suspended); 2488 2489 int dm_noflush_suspending(struct dm_target *ti) 2490 { 2491 return __noflush_suspending(dm_table_get_md(ti->table)); 2492 } 2493 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2494 2495 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 2496 unsigned integrity, unsigned per_io_data_size) 2497 { 2498 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2499 struct kmem_cache *cachep = NULL; 2500 unsigned int pool_size = 0; 2501 unsigned int front_pad; 2502 2503 if (!pools) 2504 return NULL; 2505 2506 switch (type) { 2507 case DM_TYPE_BIO_BASED: 2508 case DM_TYPE_DAX_BIO_BASED: 2509 cachep = _io_cache; 2510 pool_size = dm_get_reserved_bio_based_ios(); 2511 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2512 break; 2513 case DM_TYPE_REQUEST_BASED: 2514 cachep = _rq_tio_cache; 2515 pool_size = dm_get_reserved_rq_based_ios(); 2516 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 2517 if (!pools->rq_pool) 2518 goto out; 2519 /* fall through to setup remaining rq-based pools */ 2520 case DM_TYPE_MQ_REQUEST_BASED: 2521 if (!pool_size) 2522 pool_size = dm_get_reserved_rq_based_ios(); 2523 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2524 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2525 break; 2526 default: 2527 BUG(); 2528 } 2529 2530 if (cachep) { 2531 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2532 if (!pools->io_pool) 2533 goto out; 2534 } 2535 2536 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2537 if (!pools->bs) 2538 goto out; 2539 2540 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2541 goto out; 2542 2543 return pools; 2544 2545 out: 2546 dm_free_md_mempools(pools); 2547 2548 return NULL; 2549 } 2550 2551 void dm_free_md_mempools(struct dm_md_mempools *pools) 2552 { 2553 if (!pools) 2554 return; 2555 2556 mempool_destroy(pools->io_pool); 2557 mempool_destroy(pools->rq_pool); 2558 2559 if (pools->bs) 2560 bioset_free(pools->bs); 2561 2562 kfree(pools); 2563 } 2564 2565 struct dm_pr { 2566 u64 old_key; 2567 u64 new_key; 2568 u32 flags; 2569 bool fail_early; 2570 }; 2571 2572 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2573 void *data) 2574 { 2575 struct mapped_device *md = bdev->bd_disk->private_data; 2576 struct dm_table *table; 2577 struct dm_target *ti; 2578 int ret = -ENOTTY, srcu_idx; 2579 2580 table = dm_get_live_table(md, &srcu_idx); 2581 if (!table || !dm_table_get_size(table)) 2582 goto out; 2583 2584 /* We only support devices that have a single target */ 2585 if (dm_table_get_num_targets(table) != 1) 2586 goto out; 2587 ti = dm_table_get_target(table, 0); 2588 2589 ret = -EINVAL; 2590 if (!ti->type->iterate_devices) 2591 goto out; 2592 2593 ret = ti->type->iterate_devices(ti, fn, data); 2594 out: 2595 dm_put_live_table(md, srcu_idx); 2596 return ret; 2597 } 2598 2599 /* 2600 * For register / unregister we need to manually call out to every path. 2601 */ 2602 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2603 sector_t start, sector_t len, void *data) 2604 { 2605 struct dm_pr *pr = data; 2606 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2607 2608 if (!ops || !ops->pr_register) 2609 return -EOPNOTSUPP; 2610 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2611 } 2612 2613 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2614 u32 flags) 2615 { 2616 struct dm_pr pr = { 2617 .old_key = old_key, 2618 .new_key = new_key, 2619 .flags = flags, 2620 .fail_early = true, 2621 }; 2622 int ret; 2623 2624 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2625 if (ret && new_key) { 2626 /* unregister all paths if we failed to register any path */ 2627 pr.old_key = new_key; 2628 pr.new_key = 0; 2629 pr.flags = 0; 2630 pr.fail_early = false; 2631 dm_call_pr(bdev, __dm_pr_register, &pr); 2632 } 2633 2634 return ret; 2635 } 2636 2637 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2638 u32 flags) 2639 { 2640 struct mapped_device *md = bdev->bd_disk->private_data; 2641 const struct pr_ops *ops; 2642 fmode_t mode; 2643 int r; 2644 2645 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2646 if (r < 0) 2647 return r; 2648 2649 ops = bdev->bd_disk->fops->pr_ops; 2650 if (ops && ops->pr_reserve) 2651 r = ops->pr_reserve(bdev, key, type, flags); 2652 else 2653 r = -EOPNOTSUPP; 2654 2655 bdput(bdev); 2656 return r; 2657 } 2658 2659 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2660 { 2661 struct mapped_device *md = bdev->bd_disk->private_data; 2662 const struct pr_ops *ops; 2663 fmode_t mode; 2664 int r; 2665 2666 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2667 if (r < 0) 2668 return r; 2669 2670 ops = bdev->bd_disk->fops->pr_ops; 2671 if (ops && ops->pr_release) 2672 r = ops->pr_release(bdev, key, type); 2673 else 2674 r = -EOPNOTSUPP; 2675 2676 bdput(bdev); 2677 return r; 2678 } 2679 2680 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2681 enum pr_type type, bool abort) 2682 { 2683 struct mapped_device *md = bdev->bd_disk->private_data; 2684 const struct pr_ops *ops; 2685 fmode_t mode; 2686 int r; 2687 2688 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2689 if (r < 0) 2690 return r; 2691 2692 ops = bdev->bd_disk->fops->pr_ops; 2693 if (ops && ops->pr_preempt) 2694 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2695 else 2696 r = -EOPNOTSUPP; 2697 2698 bdput(bdev); 2699 return r; 2700 } 2701 2702 static int dm_pr_clear(struct block_device *bdev, u64 key) 2703 { 2704 struct mapped_device *md = bdev->bd_disk->private_data; 2705 const struct pr_ops *ops; 2706 fmode_t mode; 2707 int r; 2708 2709 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2710 if (r < 0) 2711 return r; 2712 2713 ops = bdev->bd_disk->fops->pr_ops; 2714 if (ops && ops->pr_clear) 2715 r = ops->pr_clear(bdev, key); 2716 else 2717 r = -EOPNOTSUPP; 2718 2719 bdput(bdev); 2720 return r; 2721 } 2722 2723 static const struct pr_ops dm_pr_ops = { 2724 .pr_register = dm_pr_register, 2725 .pr_reserve = dm_pr_reserve, 2726 .pr_release = dm_pr_release, 2727 .pr_preempt = dm_pr_preempt, 2728 .pr_clear = dm_pr_clear, 2729 }; 2730 2731 static const struct block_device_operations dm_blk_dops = { 2732 .open = dm_blk_open, 2733 .release = dm_blk_close, 2734 .ioctl = dm_blk_ioctl, 2735 .direct_access = dm_blk_direct_access, 2736 .getgeo = dm_blk_getgeo, 2737 .pr_ops = &dm_pr_ops, 2738 .owner = THIS_MODULE 2739 }; 2740 2741 /* 2742 * module hooks 2743 */ 2744 module_init(dm_init); 2745 module_exit(dm_exit); 2746 2747 module_param(major, uint, 0); 2748 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2749 2750 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2751 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2752 2753 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2754 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2755 2756 MODULE_DESCRIPTION(DM_NAME " driver"); 2757 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2758 MODULE_LICENSE("GPL"); 2759